Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.3"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
217 printk(message); \
218 } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338 {
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416 {
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454 {
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500 {
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579 {
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609 {
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_work(priv->workqueue, &priv->reset_work);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 down(&priv->adapter_sem);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 up(&priv->adapter_sem);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standy if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 down(&priv->adapter_sem);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 up(&priv->adapter_sem);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677 unsigned long flags;
1678 int rc = 0;
1679 u32 lock;
1680 u32 ord_len = sizeof(lock);
1681
1682 /* Quite if manually disabled. */
1683 if (priv->status & STATUS_RF_KILL_SW) {
1684 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685 "switch\n", priv->net_dev->name);
1686 return 0;
1687 }
1688
1689 /* If the interrupt is enabled, turn it off... */
1690 spin_lock_irqsave(&priv->low_lock, flags);
1691 ipw2100_disable_interrupts(priv);
1692
1693 /* Reset any fatal_error conditions */
1694 ipw2100_reset_fatalerror(priv);
1695 spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697 if (priv->status & STATUS_POWERED ||
1698 (priv->status & STATUS_RESET_PENDING)) {
1699 /* Power cycle the card ... */
1700 if (ipw2100_power_cycle_adapter(priv)) {
1701 printk(KERN_WARNING DRV_NAME
1702 ": %s: Could not cycle adapter.\n",
1703 priv->net_dev->name);
1704 rc = 1;
1705 goto exit;
1706 }
1707 } else
1708 priv->status |= STATUS_POWERED;
1709
1710 /* Load the firmware, start the clocks, etc. */
1711 if (ipw2100_start_adapter(priv)) {
1712 printk(KERN_ERR DRV_NAME
1713 ": %s: Failed to start the firmware.\n",
1714 priv->net_dev->name);
1715 rc = 1;
1716 goto exit;
1717 }
1718
1719 ipw2100_initialize_ordinals(priv);
1720
1721 /* Determine capabilities of this particular HW configuration */
1722 if (ipw2100_get_hw_features(priv)) {
1723 printk(KERN_ERR DRV_NAME
1724 ": %s: Failed to determine HW features.\n",
1725 priv->net_dev->name);
1726 rc = 1;
1727 goto exit;
1728 }
1729
1730 lock = LOCK_NONE;
1731 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732 printk(KERN_ERR DRV_NAME
1733 ": %s: Failed to clear ordinal lock.\n",
1734 priv->net_dev->name);
1735 rc = 1;
1736 goto exit;
1737 }
1738
1739 priv->status &= ~STATUS_SCANNING;
1740
1741 if (rf_kill_active(priv)) {
1742 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743 priv->net_dev->name);
1744
1745 if (priv->stop_rf_kill) {
1746 priv->stop_rf_kill = 0;
1747 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748 }
1749
1750 deferred = 1;
1751 }
1752
1753 /* Turn on the interrupt so that commands can be processed */
1754 ipw2100_enable_interrupts(priv);
1755
1756 /* Send all of the commands that must be sent prior to
1757 * HOST_COMPLETE */
1758 if (ipw2100_adapter_setup(priv)) {
1759 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760 priv->net_dev->name);
1761 rc = 1;
1762 goto exit;
1763 }
1764
1765 if (!deferred) {
1766 /* Enable the adapter - sends HOST_COMPLETE */
1767 if (ipw2100_enable_adapter(priv)) {
1768 printk(KERN_ERR DRV_NAME ": "
1769 "%s: failed in call to enable adapter.\n",
1770 priv->net_dev->name);
1771 ipw2100_hw_stop_adapter(priv);
1772 rc = 1;
1773 goto exit;
1774 }
1775
1776 /* Start a scan . . . */
1777 ipw2100_set_scan_options(priv);
1778 ipw2100_start_scan(priv);
1779 }
1780
1781 exit:
1782 return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788 struct ipw2100_priv *priv = ieee80211_priv(dev);
1789 return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794 unsigned long flags;
1795 union iwreq_data wrqu = {
1796 .ap_addr = {
1797 .sa_family = ARPHRD_ETHER}
1798 };
1799 int associated = priv->status & STATUS_ASSOCIATED;
1800
1801 /* Kill the RF switch timer */
1802 if (!priv->stop_rf_kill) {
1803 priv->stop_rf_kill = 1;
1804 cancel_delayed_work(&priv->rf_kill);
1805 }
1806
1807 /* Kill the firmare hang check timer */
1808 if (!priv->stop_hang_check) {
1809 priv->stop_hang_check = 1;
1810 cancel_delayed_work(&priv->hang_check);
1811 }
1812
1813 /* Kill any pending resets */
1814 if (priv->status & STATUS_RESET_PENDING)
1815 cancel_delayed_work(&priv->reset_work);
1816
1817 /* Make sure the interrupt is on so that FW commands will be
1818 * processed correctly */
1819 spin_lock_irqsave(&priv->low_lock, flags);
1820 ipw2100_enable_interrupts(priv);
1821 spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823 if (ipw2100_hw_stop_adapter(priv))
1824 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825 priv->net_dev->name);
1826
1827 /* Do not disable the interrupt until _after_ we disable
1828 * the adaptor. Otherwise the CARD_DISABLE command will never
1829 * be ack'd by the firmware */
1830 spin_lock_irqsave(&priv->low_lock, flags);
1831 ipw2100_disable_interrupts(priv);
1832 spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835 if (priv->config & CFG_C3_DISABLED) {
1836 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837 acpi_set_cstate_limit(priv->cstate_limit);
1838 priv->config &= ~CFG_C3_DISABLED;
1839 }
1840 #endif
1841
1842 /* We have to signal any supplicant if we are disassociating */
1843 if (associated)
1844 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847 netif_carrier_off(priv->net_dev);
1848 netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853 unsigned long flags;
1854 union iwreq_data wrqu = {
1855 .ap_addr = {
1856 .sa_family = ARPHRD_ETHER}
1857 };
1858 int associated = priv->status & STATUS_ASSOCIATED;
1859
1860 spin_lock_irqsave(&priv->low_lock, flags);
1861 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862 priv->resets++;
1863 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864 priv->status |= STATUS_SECURITY_UPDATED;
1865
1866 /* Force a power cycle even if interface hasn't been opened
1867 * yet */
1868 cancel_delayed_work(&priv->reset_work);
1869 priv->status |= STATUS_RESET_PENDING;
1870 spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872 down(&priv->action_sem);
1873 /* stop timed checks so that they don't interfere with reset */
1874 priv->stop_hang_check = 1;
1875 cancel_delayed_work(&priv->hang_check);
1876
1877 /* We have to signal any supplicant if we are disassociating */
1878 if (associated)
1879 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881 ipw2100_up(priv, 0);
1882 up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890 int ret, len, essid_len;
1891 char essid[IW_ESSID_MAX_SIZE];
1892 u32 txrate;
1893 u32 chan;
1894 char *txratename;
1895 u8 bssid[ETH_ALEN];
1896
1897 /*
1898 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899 * an actual MAC of the AP. Seems like FW sets this
1900 * address too late. Read it later and expose through
1901 * /proc or schedule a later task to query and update
1902 */
1903
1904 essid_len = IW_ESSID_MAX_SIZE;
1905 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906 essid, &essid_len);
1907 if (ret) {
1908 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909 __LINE__);
1910 return;
1911 }
1912
1913 len = sizeof(u32);
1914 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915 if (ret) {
1916 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917 __LINE__);
1918 return;
1919 }
1920
1921 len = sizeof(u32);
1922 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923 if (ret) {
1924 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925 __LINE__);
1926 return;
1927 }
1928 len = ETH_ALEN;
1929 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930 if (ret) {
1931 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932 __LINE__);
1933 return;
1934 }
1935 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937 switch (txrate) {
1938 case TX_RATE_1_MBIT:
1939 txratename = "1Mbps";
1940 break;
1941 case TX_RATE_2_MBIT:
1942 txratename = "2Mbsp";
1943 break;
1944 case TX_RATE_5_5_MBIT:
1945 txratename = "5.5Mbps";
1946 break;
1947 case TX_RATE_11_MBIT:
1948 txratename = "11Mbps";
1949 break;
1950 default:
1951 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952 txratename = "unknown rate";
1953 break;
1954 }
1955
1956 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957 MAC_FMT ")\n",
1958 priv->net_dev->name, escape_essid(essid, essid_len),
1959 txratename, chan, MAC_ARG(bssid));
1960
1961 /* now we copy read ssid into dev */
1962 if (!(priv->config & CFG_STATIC_ESSID)) {
1963 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964 memcpy(priv->essid, essid, priv->essid_len);
1965 }
1966 priv->channel = chan;
1967 memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969 priv->status |= STATUS_ASSOCIATING;
1970 priv->connect_start = get_seconds();
1971
1972 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976 int length, int batch_mode)
1977 {
1978 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979 struct host_command cmd = {
1980 .host_command = SSID,
1981 .host_command_sequence = 0,
1982 .host_command_length = ssid_len
1983 };
1984 int err;
1985
1986 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988 if (ssid_len)
1989 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991 if (!batch_mode) {
1992 err = ipw2100_disable_adapter(priv);
1993 if (err)
1994 return err;
1995 }
1996
1997 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998 * disable auto association -- so we cheat by setting a bogus SSID */
1999 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000 int i;
2001 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003 bogus[i] = 0x18 + i;
2004 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005 }
2006
2007 /* NOTE: We always send the SSID command even if the provided ESSID is
2008 * the same as what we currently think is set. */
2009
2010 err = ipw2100_hw_send_command(priv, &cmd);
2011 if (!err) {
2012 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013 memcpy(priv->essid, essid, ssid_len);
2014 priv->essid_len = ssid_len;
2015 }
2016
2017 if (!batch_mode) {
2018 if (ipw2100_enable_adapter(priv))
2019 err = -EIO;
2020 }
2021
2022 return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028 "disassociated: '%s' " MAC_FMT " \n",
2029 escape_essid(priv->essid, priv->essid_len),
2030 MAC_ARG(priv->bssid));
2031
2032 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034 if (priv->status & STATUS_STOPPING) {
2035 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036 return;
2037 }
2038
2039 memset(priv->bssid, 0, ETH_ALEN);
2040 memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042 netif_carrier_off(priv->net_dev);
2043 netif_stop_queue(priv->net_dev);
2044
2045 if (!(priv->status & STATUS_RUNNING))
2046 return;
2047
2048 if (priv->status & STATUS_SECURITY_UPDATED)
2049 queue_work(priv->workqueue, &priv->security_work);
2050
2051 queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057 priv->net_dev->name);
2058
2059 /* RF_KILL is now enabled (else we wouldn't be here) */
2060 priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063 if (priv->config & CFG_C3_DISABLED) {
2064 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065 acpi_set_cstate_limit(priv->cstate_limit);
2066 priv->config &= ~CFG_C3_DISABLED;
2067 }
2068 #endif
2069
2070 /* Make sure the RF Kill check timer is running */
2071 priv->stop_rf_kill = 0;
2072 cancel_delayed_work(&priv->rf_kill);
2073 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078 IPW_DEBUG_SCAN("scan complete\n");
2079 /* Age the scan results... */
2080 priv->ieee->scans++;
2081 priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW2100_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087 int status;
2088 void (*cb) (struct ipw2100_priv * priv, u32 status);
2089 char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094 int status;
2095 void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif /* CONFIG_IPW2100_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101 IPW_DEBUG_SCAN("Scanning...\n");
2102 priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118 IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123 int i;
2124
2125 if (status == IPW_STATE_SCANNING &&
2126 priv->status & STATUS_ASSOCIATED &&
2127 !(priv->status & STATUS_SCANNING)) {
2128 IPW_DEBUG_INFO("Scan detected while associated, with "
2129 "no scan request. Restarting firmware.\n");
2130
2131 /* Wake up any sleeping jobs */
2132 schedule_reset(priv);
2133 }
2134
2135 for (i = 0; status_handlers[i].status != -1; i++) {
2136 if (status == status_handlers[i].status) {
2137 IPW_DEBUG_NOTIF("Status change: %s\n",
2138 status_handlers[i].name);
2139 if (status_handlers[i].cb)
2140 status_handlers[i].cb(priv, status);
2141 priv->wstats.status = status;
2142 return;
2143 }
2144 }
2145
2146 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150 struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW2100_DEBUG
2153 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155 command_types[cmd->host_command_reg],
2156 cmd->host_command_reg);
2157 }
2158 #endif
2159 if (cmd->host_command_reg == HOST_COMPLETE)
2160 priv->status |= STATUS_ENABLED;
2161
2162 if (cmd->host_command_reg == CARD_DISABLE)
2163 priv->status &= ~STATUS_ENABLED;
2164
2165 priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167 wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 static const char *frame_types[] = {
2172 "COMMAND_STATUS_VAL",
2173 "STATUS_CHANGE_VAL",
2174 "P80211_DATA_VAL",
2175 "P8023_DATA_VAL",
2176 "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181 struct ipw2100_rx_packet *packet)
2182 {
2183 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184 if (!packet->skb)
2185 return -ENOMEM;
2186
2187 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189 sizeof(struct ipw2100_rx),
2190 PCI_DMA_FROMDEVICE);
2191 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192 * dma_addr */
2193
2194 return 0;
2195 }
2196
2197 #define SEARCH_ERROR 0xffffffff
2198 #define SEARCH_FAIL 0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2205 {
2206 int i;
2207 if (!priv->snapshot[0])
2208 return;
2209 for (i = 0; i < 0x30; i++)
2210 kfree(priv->snapshot[i]);
2211 priv->snapshot[0] = NULL;
2212 }
2213
2214 #ifdef CONFIG_IPW2100_DEBUG_C3
2215 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2216 {
2217 int i;
2218 if (priv->snapshot[0])
2219 return 1;
2220 for (i = 0; i < 0x30; i++) {
2221 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2222 if (!priv->snapshot[i]) {
2223 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2224 "buffer %d\n", priv->net_dev->name, i);
2225 while (i > 0)
2226 kfree(priv->snapshot[--i]);
2227 priv->snapshot[0] = NULL;
2228 return 0;
2229 }
2230 }
2231
2232 return 1;
2233 }
2234
2235 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2236 size_t len, int mode)
2237 {
2238 u32 i, j;
2239 u32 tmp;
2240 u8 *s, *d;
2241 u32 ret;
2242
2243 s = in_buf;
2244 if (mode == SEARCH_SNAPSHOT) {
2245 if (!ipw2100_snapshot_alloc(priv))
2246 mode = SEARCH_DISCARD;
2247 }
2248
2249 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2250 read_nic_dword(priv->net_dev, i, &tmp);
2251 if (mode == SEARCH_SNAPSHOT)
2252 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2253 if (ret == SEARCH_FAIL) {
2254 d = (u8 *) & tmp;
2255 for (j = 0; j < 4; j++) {
2256 if (*s != *d) {
2257 s = in_buf;
2258 continue;
2259 }
2260
2261 s++;
2262 d++;
2263
2264 if ((s - in_buf) == len)
2265 ret = (i + j) - len + 1;
2266 }
2267 } else if (mode == SEARCH_DISCARD)
2268 return ret;
2269 }
2270
2271 return ret;
2272 }
2273 #endif
2274
2275 /*
2276 *
2277 * 0) Disconnect the SKB from the firmware (just unmap)
2278 * 1) Pack the ETH header into the SKB
2279 * 2) Pass the SKB to the network stack
2280 *
2281 * When packet is provided by the firmware, it contains the following:
2282 *
2283 * . ieee80211_hdr
2284 * . ieee80211_snap_hdr
2285 *
2286 * The size of the constructed ethernet
2287 *
2288 */
2289 #ifdef CONFIG_IPW2100_RX_DEBUG
2290 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2291 #endif
2292
2293 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2294 {
2295 #ifdef CONFIG_IPW2100_DEBUG_C3
2296 struct ipw2100_status *status = &priv->status_queue.drv[i];
2297 u32 match, reg;
2298 int j;
2299 #endif
2300 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2301 int limit;
2302 #endif
2303
2304 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2305 i * sizeof(struct ipw2100_status));
2306
2307 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2308 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2309 limit = acpi_get_cstate_limit();
2310 if (limit > 2) {
2311 priv->cstate_limit = limit;
2312 acpi_set_cstate_limit(2);
2313 priv->config |= CFG_C3_DISABLED;
2314 }
2315 #endif
2316
2317 #ifdef CONFIG_IPW2100_DEBUG_C3
2318 /* Halt the fimrware so we can get a good image */
2319 write_register(priv->net_dev, IPW_REG_RESET_REG,
2320 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2321 j = 5;
2322 do {
2323 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2324 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2325
2326 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2327 break;
2328 } while (j--);
2329
2330 match = ipw2100_match_buf(priv, (u8 *) status,
2331 sizeof(struct ipw2100_status),
2332 SEARCH_SNAPSHOT);
2333 if (match < SEARCH_SUCCESS)
2334 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2335 "offset 0x%06X, length %d:\n",
2336 priv->net_dev->name, match,
2337 sizeof(struct ipw2100_status));
2338 else
2339 IPW_DEBUG_INFO("%s: No DMA status match in "
2340 "Firmware.\n", priv->net_dev->name);
2341
2342 printk_buf((u8 *) priv->status_queue.drv,
2343 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2344 #endif
2345
2346 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2347 priv->ieee->stats.rx_errors++;
2348 schedule_reset(priv);
2349 }
2350
2351 static void isr_rx(struct ipw2100_priv *priv, int i,
2352 struct ieee80211_rx_stats *stats)
2353 {
2354 struct ipw2100_status *status = &priv->status_queue.drv[i];
2355 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2356
2357 IPW_DEBUG_RX("Handler...\n");
2358
2359 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2360 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2361 " Dropping.\n",
2362 priv->net_dev->name,
2363 status->frame_size, skb_tailroom(packet->skb));
2364 priv->ieee->stats.rx_errors++;
2365 return;
2366 }
2367
2368 if (unlikely(!netif_running(priv->net_dev))) {
2369 priv->ieee->stats.rx_errors++;
2370 priv->wstats.discard.misc++;
2371 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2372 return;
2373 }
2374 #ifdef CONFIG_IPW2100_MONITOR
2375 if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2376 priv->config & CFG_CRC_CHECK &&
2377 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2378 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2379 priv->ieee->stats.rx_errors++;
2380 return;
2381 }
2382 #endif
2383
2384 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2385 !(priv->status & STATUS_ASSOCIATED))) {
2386 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2387 priv->wstats.discard.misc++;
2388 return;
2389 }
2390
2391 pci_unmap_single(priv->pci_dev,
2392 packet->dma_addr,
2393 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2394
2395 skb_put(packet->skb, status->frame_size);
2396
2397 #ifdef CONFIG_IPW2100_RX_DEBUG
2398 /* Make a copy of the frame so we can dump it to the logs if
2399 * ieee80211_rx fails */
2400 memcpy(packet_data, packet->skb->data,
2401 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2402 #endif
2403
2404 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2405 #ifdef CONFIG_IPW2100_RX_DEBUG
2406 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2407 priv->net_dev->name);
2408 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2409 #endif
2410 priv->ieee->stats.rx_errors++;
2411
2412 /* ieee80211_rx failed, so it didn't free the SKB */
2413 dev_kfree_skb_any(packet->skb);
2414 packet->skb = NULL;
2415 }
2416
2417 /* We need to allocate a new SKB and attach it to the RDB. */
2418 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2419 printk(KERN_WARNING DRV_NAME ": "
2420 "%s: Unable to allocate SKB onto RBD ring - disabling "
2421 "adapter.\n", priv->net_dev->name);
2422 /* TODO: schedule adapter shutdown */
2423 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2424 }
2425
2426 /* Update the RDB entry */
2427 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2428 }
2429
2430 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2431 {
2432 struct ipw2100_status *status = &priv->status_queue.drv[i];
2433 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2434 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2435
2436 switch (frame_type) {
2437 case COMMAND_STATUS_VAL:
2438 return (status->frame_size != sizeof(u->rx_data.command));
2439 case STATUS_CHANGE_VAL:
2440 return (status->frame_size != sizeof(u->rx_data.status));
2441 case HOST_NOTIFICATION_VAL:
2442 return (status->frame_size < sizeof(u->rx_data.notification));
2443 case P80211_DATA_VAL:
2444 case P8023_DATA_VAL:
2445 #ifdef CONFIG_IPW2100_MONITOR
2446 return 0;
2447 #else
2448 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2449 case IEEE80211_FTYPE_MGMT:
2450 case IEEE80211_FTYPE_CTL:
2451 return 0;
2452 case IEEE80211_FTYPE_DATA:
2453 return (status->frame_size >
2454 IPW_MAX_802_11_PAYLOAD_LENGTH);
2455 }
2456 #endif
2457 }
2458
2459 return 1;
2460 }
2461
2462 /*
2463 * ipw2100 interrupts are disabled at this point, and the ISR
2464 * is the only code that calls this method. So, we do not need
2465 * to play with any locks.
2466 *
2467 * RX Queue works as follows:
2468 *
2469 * Read index - firmware places packet in entry identified by the
2470 * Read index and advances Read index. In this manner,
2471 * Read index will always point to the next packet to
2472 * be filled--but not yet valid.
2473 *
2474 * Write index - driver fills this entry with an unused RBD entry.
2475 * This entry has not filled by the firmware yet.
2476 *
2477 * In between the W and R indexes are the RBDs that have been received
2478 * but not yet processed.
2479 *
2480 * The process of handling packets will start at WRITE + 1 and advance
2481 * until it reaches the READ index.
2482 *
2483 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2484 *
2485 */
2486 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2487 {
2488 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2489 struct ipw2100_status_queue *sq = &priv->status_queue;
2490 struct ipw2100_rx_packet *packet;
2491 u16 frame_type;
2492 u32 r, w, i, s;
2493 struct ipw2100_rx *u;
2494 struct ieee80211_rx_stats stats = {
2495 .mac_time = jiffies,
2496 };
2497
2498 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2499 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2500
2501 if (r >= rxq->entries) {
2502 IPW_DEBUG_RX("exit - bad read index\n");
2503 return;
2504 }
2505
2506 i = (rxq->next + 1) % rxq->entries;
2507 s = i;
2508 while (i != r) {
2509 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2510 r, rxq->next, i); */
2511
2512 packet = &priv->rx_buffers[i];
2513
2514 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2515 * the correct values */
2516 pci_dma_sync_single_for_cpu(priv->pci_dev,
2517 sq->nic +
2518 sizeof(struct ipw2100_status) * i,
2519 sizeof(struct ipw2100_status),
2520 PCI_DMA_FROMDEVICE);
2521
2522 /* Sync the DMA for the RX buffer so CPU is sure to get
2523 * the correct values */
2524 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2525 sizeof(struct ipw2100_rx),
2526 PCI_DMA_FROMDEVICE);
2527
2528 if (unlikely(ipw2100_corruption_check(priv, i))) {
2529 ipw2100_corruption_detected(priv, i);
2530 goto increment;
2531 }
2532
2533 u = packet->rxp;
2534 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2535 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2536 stats.len = sq->drv[i].frame_size;
2537
2538 stats.mask = 0;
2539 if (stats.rssi != 0)
2540 stats.mask |= IEEE80211_STATMASK_RSSI;
2541 stats.freq = IEEE80211_24GHZ_BAND;
2542
2543 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2544 priv->net_dev->name, frame_types[frame_type],
2545 stats.len);
2546
2547 switch (frame_type) {
2548 case COMMAND_STATUS_VAL:
2549 /* Reset Rx watchdog */
2550 isr_rx_complete_command(priv, &u->rx_data.command);
2551 break;
2552
2553 case STATUS_CHANGE_VAL:
2554 isr_status_change(priv, u->rx_data.status);
2555 break;
2556
2557 case P80211_DATA_VAL:
2558 case P8023_DATA_VAL:
2559 #ifdef CONFIG_IPW2100_MONITOR
2560 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2561 isr_rx(priv, i, &stats);
2562 break;
2563 }
2564 #endif
2565 if (stats.len < sizeof(u->rx_data.header))
2566 break;
2567 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2568 case IEEE80211_FTYPE_MGMT:
2569 ieee80211_rx_mgt(priv->ieee,
2570 &u->rx_data.header, &stats);
2571 break;
2572
2573 case IEEE80211_FTYPE_CTL:
2574 break;
2575
2576 case IEEE80211_FTYPE_DATA:
2577 isr_rx(priv, i, &stats);
2578 break;
2579
2580 }
2581 break;
2582 }
2583
2584 increment:
2585 /* clear status field associated with this RBD */
2586 rxq->drv[i].status.info.field = 0;
2587
2588 i = (i + 1) % rxq->entries;
2589 }
2590
2591 if (i != s) {
2592 /* backtrack one entry, wrapping to end if at 0 */
2593 rxq->next = (i ? i : rxq->entries) - 1;
2594
2595 write_register(priv->net_dev,
2596 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2597 }
2598 }
2599
2600 /*
2601 * __ipw2100_tx_process
2602 *
2603 * This routine will determine whether the next packet on
2604 * the fw_pend_list has been processed by the firmware yet.
2605 *
2606 * If not, then it does nothing and returns.
2607 *
2608 * If so, then it removes the item from the fw_pend_list, frees
2609 * any associated storage, and places the item back on the
2610 * free list of its source (either msg_free_list or tx_free_list)
2611 *
2612 * TX Queue works as follows:
2613 *
2614 * Read index - points to the next TBD that the firmware will
2615 * process. The firmware will read the data, and once
2616 * done processing, it will advance the Read index.
2617 *
2618 * Write index - driver fills this entry with an constructed TBD
2619 * entry. The Write index is not advanced until the
2620 * packet has been configured.
2621 *
2622 * In between the W and R indexes are the TBDs that have NOT been
2623 * processed. Lagging behind the R index are packets that have
2624 * been processed but have not been freed by the driver.
2625 *
2626 * In order to free old storage, an internal index will be maintained
2627 * that points to the next packet to be freed. When all used
2628 * packets have been freed, the oldest index will be the same as the
2629 * firmware's read index.
2630 *
2631 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2632 *
2633 * Because the TBD structure can not contain arbitrary data, the
2634 * driver must keep an internal queue of cached allocations such that
2635 * it can put that data back into the tx_free_list and msg_free_list
2636 * for use by future command and data packets.
2637 *
2638 */
2639 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2640 {
2641 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2642 struct ipw2100_bd *tbd;
2643 struct list_head *element;
2644 struct ipw2100_tx_packet *packet;
2645 int descriptors_used;
2646 int e, i;
2647 u32 r, w, frag_num = 0;
2648
2649 if (list_empty(&priv->fw_pend_list))
2650 return 0;
2651
2652 element = priv->fw_pend_list.next;
2653
2654 packet = list_entry(element, struct ipw2100_tx_packet, list);
2655 tbd = &txq->drv[packet->index];
2656
2657 /* Determine how many TBD entries must be finished... */
2658 switch (packet->type) {
2659 case COMMAND:
2660 /* COMMAND uses only one slot; don't advance */
2661 descriptors_used = 1;
2662 e = txq->oldest;
2663 break;
2664
2665 case DATA:
2666 /* DATA uses two slots; advance and loop position. */
2667 descriptors_used = tbd->num_fragments;
2668 frag_num = tbd->num_fragments - 1;
2669 e = txq->oldest + frag_num;
2670 e %= txq->entries;
2671 break;
2672
2673 default:
2674 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2675 priv->net_dev->name);
2676 return 0;
2677 }
2678
2679 /* if the last TBD is not done by NIC yet, then packet is
2680 * not ready to be released.
2681 *
2682 */
2683 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2684 &r);
2685 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2686 &w);
2687 if (w != txq->next)
2688 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2689 priv->net_dev->name);
2690
2691 /*
2692 * txq->next is the index of the last packet written txq->oldest is
2693 * the index of the r is the index of the next packet to be read by
2694 * firmware
2695 */
2696
2697 /*
2698 * Quick graphic to help you visualize the following
2699 * if / else statement
2700 *
2701 * ===>| s---->|===============
2702 * e>|
2703 * | a | b | c | d | e | f | g | h | i | j | k | l
2704 * r---->|
2705 * w
2706 *
2707 * w - updated by driver
2708 * r - updated by firmware
2709 * s - start of oldest BD entry (txq->oldest)
2710 * e - end of oldest BD entry
2711 *
2712 */
2713 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2714 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2715 return 0;
2716 }
2717
2718 list_del(element);
2719 DEC_STAT(&priv->fw_pend_stat);
2720
2721 #ifdef CONFIG_IPW2100_DEBUG
2722 {
2723 int i = txq->oldest;
2724 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2725 &txq->drv[i],
2726 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2727 txq->drv[i].host_addr, txq->drv[i].buf_length);
2728
2729 if (packet->type == DATA) {
2730 i = (i + 1) % txq->entries;
2731
2732 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2733 &txq->drv[i],
2734 (u32) (txq->nic + i *
2735 sizeof(struct ipw2100_bd)),
2736 (u32) txq->drv[i].host_addr,
2737 txq->drv[i].buf_length);
2738 }
2739 }
2740 #endif
2741
2742 switch (packet->type) {
2743 case DATA:
2744 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2745 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2746 "Expecting DATA TBD but pulled "
2747 "something else: ids %d=%d.\n",
2748 priv->net_dev->name, txq->oldest, packet->index);
2749
2750 /* DATA packet; we have to unmap and free the SKB */
2751 for (i = 0; i < frag_num; i++) {
2752 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2753
2754 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2755 (packet->index + 1 + i) % txq->entries,
2756 tbd->host_addr, tbd->buf_length);
2757
2758 pci_unmap_single(priv->pci_dev,
2759 tbd->host_addr,
2760 tbd->buf_length, PCI_DMA_TODEVICE);
2761 }
2762
2763 ieee80211_txb_free(packet->info.d_struct.txb);
2764 packet->info.d_struct.txb = NULL;
2765
2766 list_add_tail(element, &priv->tx_free_list);
2767 INC_STAT(&priv->tx_free_stat);
2768
2769 /* We have a free slot in the Tx queue, so wake up the
2770 * transmit layer if it is stopped. */
2771 if (priv->status & STATUS_ASSOCIATED)
2772 netif_wake_queue(priv->net_dev);
2773
2774 /* A packet was processed by the hardware, so update the
2775 * watchdog */
2776 priv->net_dev->trans_start = jiffies;
2777
2778 break;
2779
2780 case COMMAND:
2781 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2782 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2783 "Expecting COMMAND TBD but pulled "
2784 "something else: ids %d=%d.\n",
2785 priv->net_dev->name, txq->oldest, packet->index);
2786
2787 #ifdef CONFIG_IPW2100_DEBUG
2788 if (packet->info.c_struct.cmd->host_command_reg <
2789 sizeof(command_types) / sizeof(*command_types))
2790 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2791 command_types[packet->info.c_struct.cmd->
2792 host_command_reg],
2793 packet->info.c_struct.cmd->
2794 host_command_reg,
2795 packet->info.c_struct.cmd->cmd_status_reg);
2796 #endif
2797
2798 list_add_tail(element, &priv->msg_free_list);
2799 INC_STAT(&priv->msg_free_stat);
2800 break;
2801 }
2802
2803 /* advance oldest used TBD pointer to start of next entry */
2804 txq->oldest = (e + 1) % txq->entries;
2805 /* increase available TBDs number */
2806 txq->available += descriptors_used;
2807 SET_STAT(&priv->txq_stat, txq->available);
2808
2809 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2810 jiffies - packet->jiffy_start);
2811
2812 return (!list_empty(&priv->fw_pend_list));
2813 }
2814
2815 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2816 {
2817 int i = 0;
2818
2819 while (__ipw2100_tx_process(priv) && i < 200)
2820 i++;
2821
2822 if (i == 200) {
2823 printk(KERN_WARNING DRV_NAME ": "
2824 "%s: Driver is running slow (%d iters).\n",
2825 priv->net_dev->name, i);
2826 }
2827 }
2828
2829 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2830 {
2831 struct list_head *element;
2832 struct ipw2100_tx_packet *packet;
2833 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2834 struct ipw2100_bd *tbd;
2835 int next = txq->next;
2836
2837 while (!list_empty(&priv->msg_pend_list)) {
2838 /* if there isn't enough space in TBD queue, then
2839 * don't stuff a new one in.
2840 * NOTE: 3 are needed as a command will take one,
2841 * and there is a minimum of 2 that must be
2842 * maintained between the r and w indexes
2843 */
2844 if (txq->available <= 3) {
2845 IPW_DEBUG_TX("no room in tx_queue\n");
2846 break;
2847 }
2848
2849 element = priv->msg_pend_list.next;
2850 list_del(element);
2851 DEC_STAT(&priv->msg_pend_stat);
2852
2853 packet = list_entry(element, struct ipw2100_tx_packet, list);
2854
2855 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2856 &txq->drv[txq->next],
2857 (void *)(txq->nic + txq->next *
2858 sizeof(struct ipw2100_bd)));
2859
2860 packet->index = txq->next;
2861
2862 tbd = &txq->drv[txq->next];
2863
2864 /* initialize TBD */
2865 tbd->host_addr = packet->info.c_struct.cmd_phys;
2866 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2867 /* not marking number of fragments causes problems
2868 * with f/w debug version */
2869 tbd->num_fragments = 1;
2870 tbd->status.info.field =
2871 IPW_BD_STATUS_TX_FRAME_COMMAND |
2872 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2873
2874 /* update TBD queue counters */
2875 txq->next++;
2876 txq->next %= txq->entries;
2877 txq->available--;
2878 DEC_STAT(&priv->txq_stat);
2879
2880 list_add_tail(element, &priv->fw_pend_list);
2881 INC_STAT(&priv->fw_pend_stat);
2882 }
2883
2884 if (txq->next != next) {
2885 /* kick off the DMA by notifying firmware the
2886 * write index has moved; make sure TBD stores are sync'd */
2887 wmb();
2888 write_register(priv->net_dev,
2889 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2890 txq->next);
2891 }
2892 }
2893
2894 /*
2895 * ipw2100_tx_send_data
2896 *
2897 */
2898 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2899 {
2900 struct list_head *element;
2901 struct ipw2100_tx_packet *packet;
2902 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2903 struct ipw2100_bd *tbd;
2904 int next = txq->next;
2905 int i = 0;
2906 struct ipw2100_data_header *ipw_hdr;
2907 struct ieee80211_hdr_3addr *hdr;
2908
2909 while (!list_empty(&priv->tx_pend_list)) {
2910 /* if there isn't enough space in TBD queue, then
2911 * don't stuff a new one in.
2912 * NOTE: 4 are needed as a data will take two,
2913 * and there is a minimum of 2 that must be
2914 * maintained between the r and w indexes
2915 */
2916 element = priv->tx_pend_list.next;
2917 packet = list_entry(element, struct ipw2100_tx_packet, list);
2918
2919 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2920 IPW_MAX_BDS)) {
2921 /* TODO: Support merging buffers if more than
2922 * IPW_MAX_BDS are used */
2923 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
2924 "Increase fragmentation level.\n",
2925 priv->net_dev->name);
2926 }
2927
2928 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2929 IPW_DEBUG_TX("no room in tx_queue\n");
2930 break;
2931 }
2932
2933 list_del(element);
2934 DEC_STAT(&priv->tx_pend_stat);
2935
2936 tbd = &txq->drv[txq->next];
2937
2938 packet->index = txq->next;
2939
2940 ipw_hdr = packet->info.d_struct.data;
2941 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2942 fragments[0]->data;
2943
2944 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2945 /* To DS: Addr1 = BSSID, Addr2 = SA,
2946 Addr3 = DA */
2947 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2948 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2949 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2950 /* not From/To DS: Addr1 = DA, Addr2 = SA,
2951 Addr3 = BSSID */
2952 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2953 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2954 }
2955
2956 ipw_hdr->host_command_reg = SEND;
2957 ipw_hdr->host_command_reg1 = 0;
2958
2959 /* For now we only support host based encryption */
2960 ipw_hdr->needs_encryption = 0;
2961 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2962 if (packet->info.d_struct.txb->nr_frags > 1)
2963 ipw_hdr->fragment_size =
2964 packet->info.d_struct.txb->frag_size -
2965 IEEE80211_3ADDR_LEN;
2966 else
2967 ipw_hdr->fragment_size = 0;
2968
2969 tbd->host_addr = packet->info.d_struct.data_phys;
2970 tbd->buf_length = sizeof(struct ipw2100_data_header);
2971 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2972 tbd->status.info.field =
2973 IPW_BD_STATUS_TX_FRAME_802_3 |
2974 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2975 txq->next++;
2976 txq->next %= txq->entries;
2977
2978 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2979 packet->index, tbd->host_addr, tbd->buf_length);
2980 #ifdef CONFIG_IPW2100_DEBUG
2981 if (packet->info.d_struct.txb->nr_frags > 1)
2982 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2983 packet->info.d_struct.txb->nr_frags);
2984 #endif
2985
2986 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2987 tbd = &txq->drv[txq->next];
2988 if (i == packet->info.d_struct.txb->nr_frags - 1)
2989 tbd->status.info.field =
2990 IPW_BD_STATUS_TX_FRAME_802_3 |
2991 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2992 else
2993 tbd->status.info.field =
2994 IPW_BD_STATUS_TX_FRAME_802_3 |
2995 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2996
2997 tbd->buf_length = packet->info.d_struct.txb->
2998 fragments[i]->len - IEEE80211_3ADDR_LEN;
2999
3000 tbd->host_addr = pci_map_single(priv->pci_dev,
3001 packet->info.d_struct.
3002 txb->fragments[i]->
3003 data +
3004 IEEE80211_3ADDR_LEN,
3005 tbd->buf_length,
3006 PCI_DMA_TODEVICE);
3007
3008 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3009 txq->next, tbd->host_addr,
3010 tbd->buf_length);
3011
3012 pci_dma_sync_single_for_device(priv->pci_dev,
3013 tbd->host_addr,
3014 tbd->buf_length,
3015 PCI_DMA_TODEVICE);
3016
3017 txq->next++;
3018 txq->next %= txq->entries;
3019 }
3020
3021 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3022 SET_STAT(&priv->txq_stat, txq->available);
3023
3024 list_add_tail(element, &priv->fw_pend_list);
3025 INC_STAT(&priv->fw_pend_stat);
3026 }
3027
3028 if (txq->next != next) {
3029 /* kick off the DMA by notifying firmware the
3030 * write index has moved; make sure TBD stores are sync'd */
3031 write_register(priv->net_dev,
3032 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3033 txq->next);
3034 }
3035 return;
3036 }
3037
3038 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3039 {
3040 struct net_device *dev = priv->net_dev;
3041 unsigned long flags;
3042 u32 inta, tmp;
3043
3044 spin_lock_irqsave(&priv->low_lock, flags);
3045 ipw2100_disable_interrupts(priv);
3046
3047 read_register(dev, IPW_REG_INTA, &inta);
3048
3049 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3050 (unsigned long)inta & IPW_INTERRUPT_MASK);
3051
3052 priv->in_isr++;
3053 priv->interrupts++;
3054
3055 /* We do not loop and keep polling for more interrupts as this
3056 * is frowned upon and doesn't play nicely with other potentially
3057 * chained IRQs */
3058 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3059 (unsigned long)inta & IPW_INTERRUPT_MASK);
3060
3061 if (inta & IPW2100_INTA_FATAL_ERROR) {
3062 printk(KERN_WARNING DRV_NAME
3063 ": Fatal interrupt. Scheduling firmware restart.\n");
3064 priv->inta_other++;
3065 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3066
3067 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3068 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3069 priv->net_dev->name, priv->fatal_error);
3070
3071 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3072 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3073 priv->net_dev->name, tmp);
3074
3075 /* Wake up any sleeping jobs */
3076 schedule_reset(priv);
3077 }
3078
3079 if (inta & IPW2100_INTA_PARITY_ERROR) {
3080 printk(KERN_ERR DRV_NAME
3081 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3082 priv->inta_other++;
3083 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3084 }
3085
3086 if (inta & IPW2100_INTA_RX_TRANSFER) {
3087 IPW_DEBUG_ISR("RX interrupt\n");
3088
3089 priv->rx_interrupts++;
3090
3091 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3092
3093 __ipw2100_rx_process(priv);
3094 __ipw2100_tx_complete(priv);
3095 }
3096
3097 if (inta & IPW2100_INTA_TX_TRANSFER) {
3098 IPW_DEBUG_ISR("TX interrupt\n");
3099
3100 priv->tx_interrupts++;
3101
3102 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3103
3104 __ipw2100_tx_complete(priv);
3105 ipw2100_tx_send_commands(priv);
3106 ipw2100_tx_send_data(priv);
3107 }
3108
3109 if (inta & IPW2100_INTA_TX_COMPLETE) {
3110 IPW_DEBUG_ISR("TX complete\n");
3111 priv->inta_other++;
3112 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3113
3114 __ipw2100_tx_complete(priv);
3115 }
3116
3117 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3118 /* ipw2100_handle_event(dev); */
3119 priv->inta_other++;
3120 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3121 }
3122
3123 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3124 IPW_DEBUG_ISR("FW init done interrupt\n");
3125 priv->inta_other++;
3126
3127 read_register(dev, IPW_REG_INTA, &tmp);
3128 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3129 IPW2100_INTA_PARITY_ERROR)) {
3130 write_register(dev, IPW_REG_INTA,
3131 IPW2100_INTA_FATAL_ERROR |
3132 IPW2100_INTA_PARITY_ERROR);
3133 }
3134
3135 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3136 }
3137
3138 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3139 IPW_DEBUG_ISR("Status change interrupt\n");
3140 priv->inta_other++;
3141 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3142 }
3143
3144 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3145 IPW_DEBUG_ISR("slave host mode interrupt\n");
3146 priv->inta_other++;
3147 write_register(dev, IPW_REG_INTA,
3148 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3149 }
3150
3151 priv->in_isr--;
3152 ipw2100_enable_interrupts(priv);
3153
3154 spin_unlock_irqrestore(&priv->low_lock, flags);
3155
3156 IPW_DEBUG_ISR("exit\n");
3157 }
3158
3159 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3160 {
3161 struct ipw2100_priv *priv = data;
3162 u32 inta, inta_mask;
3163
3164 if (!data)
3165 return IRQ_NONE;
3166
3167 spin_lock(&priv->low_lock);
3168
3169 /* We check to see if we should be ignoring interrupts before
3170 * we touch the hardware. During ucode load if we try and handle
3171 * an interrupt we can cause keyboard problems as well as cause
3172 * the ucode to fail to initialize */
3173 if (!(priv->status & STATUS_INT_ENABLED)) {
3174 /* Shared IRQ */
3175 goto none;
3176 }
3177
3178 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3179 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3180
3181 if (inta == 0xFFFFFFFF) {
3182 /* Hardware disappeared */
3183 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3184 goto none;
3185 }
3186
3187 inta &= IPW_INTERRUPT_MASK;
3188
3189 if (!(inta & inta_mask)) {
3190 /* Shared interrupt */
3191 goto none;
3192 }
3193
3194 /* We disable the hardware interrupt here just to prevent unneeded
3195 * calls to be made. We disable this again within the actual
3196 * work tasklet, so if another part of the code re-enables the
3197 * interrupt, that is fine */
3198 ipw2100_disable_interrupts(priv);
3199
3200 tasklet_schedule(&priv->irq_tasklet);
3201 spin_unlock(&priv->low_lock);
3202
3203 return IRQ_HANDLED;
3204 none:
3205 spin_unlock(&priv->low_lock);
3206 return IRQ_NONE;
3207 }
3208
3209 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3210 int pri)
3211 {
3212 struct ipw2100_priv *priv = ieee80211_priv(dev);
3213 struct list_head *element;
3214 struct ipw2100_tx_packet *packet;
3215 unsigned long flags;
3216
3217 spin_lock_irqsave(&priv->low_lock, flags);
3218
3219 if (!(priv->status & STATUS_ASSOCIATED)) {
3220 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3221 priv->ieee->stats.tx_carrier_errors++;
3222 netif_stop_queue(dev);
3223 goto fail_unlock;
3224 }
3225
3226 if (list_empty(&priv->tx_free_list))
3227 goto fail_unlock;
3228
3229 element = priv->tx_free_list.next;
3230 packet = list_entry(element, struct ipw2100_tx_packet, list);
3231
3232 packet->info.d_struct.txb = txb;
3233
3234 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3235 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3236
3237 packet->jiffy_start = jiffies;
3238
3239 list_del(element);
3240 DEC_STAT(&priv->tx_free_stat);
3241
3242 list_add_tail(element, &priv->tx_pend_list);
3243 INC_STAT(&priv->tx_pend_stat);
3244
3245 ipw2100_tx_send_data(priv);
3246
3247 spin_unlock_irqrestore(&priv->low_lock, flags);
3248 return 0;
3249
3250 fail_unlock:
3251 netif_stop_queue(dev);
3252 spin_unlock_irqrestore(&priv->low_lock, flags);
3253 return 1;
3254 }
3255
3256 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3257 {
3258 int i, j, err = -EINVAL;
3259 void *v;
3260 dma_addr_t p;
3261
3262 priv->msg_buffers =
3263 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3264 sizeof(struct
3265 ipw2100_tx_packet),
3266 GFP_KERNEL);
3267 if (!priv->msg_buffers) {
3268 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3269 "buffers.\n", priv->net_dev->name);
3270 return -ENOMEM;
3271 }
3272
3273 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3274 v = pci_alloc_consistent(priv->pci_dev,
3275 sizeof(struct ipw2100_cmd_header), &p);
3276 if (!v) {
3277 printk(KERN_ERR DRV_NAME ": "
3278 "%s: PCI alloc failed for msg "
3279 "buffers.\n", priv->net_dev->name);
3280 err = -ENOMEM;
3281 break;
3282 }
3283
3284 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3285
3286 priv->msg_buffers[i].type = COMMAND;
3287 priv->msg_buffers[i].info.c_struct.cmd =
3288 (struct ipw2100_cmd_header *)v;
3289 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3290 }
3291
3292 if (i == IPW_COMMAND_POOL_SIZE)
3293 return 0;
3294
3295 for (j = 0; j < i; j++) {
3296 pci_free_consistent(priv->pci_dev,
3297 sizeof(struct ipw2100_cmd_header),
3298 priv->msg_buffers[j].info.c_struct.cmd,
3299 priv->msg_buffers[j].info.c_struct.
3300 cmd_phys);
3301 }
3302
3303 kfree(priv->msg_buffers);
3304 priv->msg_buffers = NULL;
3305
3306 return err;
3307 }
3308
3309 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3310 {
3311 int i;
3312
3313 INIT_LIST_HEAD(&priv->msg_free_list);
3314 INIT_LIST_HEAD(&priv->msg_pend_list);
3315
3316 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3317 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3318 SET_STAT(&priv->msg_free_stat, i);
3319
3320 return 0;
3321 }
3322
3323 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3324 {
3325 int i;
3326
3327 if (!priv->msg_buffers)
3328 return;
3329
3330 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3331 pci_free_consistent(priv->pci_dev,
3332 sizeof(struct ipw2100_cmd_header),
3333 priv->msg_buffers[i].info.c_struct.cmd,
3334 priv->msg_buffers[i].info.c_struct.
3335 cmd_phys);
3336 }
3337
3338 kfree(priv->msg_buffers);
3339 priv->msg_buffers = NULL;
3340 }
3341
3342 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3343 char *buf)
3344 {
3345 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3346 char *out = buf;
3347 int i, j;
3348 u32 val;
3349
3350 for (i = 0; i < 16; i++) {
3351 out += sprintf(out, "[%08X] ", i * 16);
3352 for (j = 0; j < 16; j += 4) {
3353 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3354 out += sprintf(out, "%08X ", val);
3355 }
3356 out += sprintf(out, "\n");
3357 }
3358
3359 return out - buf;
3360 }
3361
3362 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3363
3364 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3365 char *buf)
3366 {
3367 struct ipw2100_priv *p = d->driver_data;
3368 return sprintf(buf, "0x%08x\n", (int)p->config);
3369 }
3370
3371 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3372
3373 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3374 char *buf)
3375 {
3376 struct ipw2100_priv *p = d->driver_data;
3377 return sprintf(buf, "0x%08x\n", (int)p->status);
3378 }
3379
3380 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3381
3382 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3383 char *buf)
3384 {
3385 struct ipw2100_priv *p = d->driver_data;
3386 return sprintf(buf, "0x%08x\n", (int)p->capability);
3387 }
3388
3389 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3390
3391 #define IPW2100_REG(x) { IPW_ ##x, #x }
3392 static const struct {
3393 u32 addr;
3394 const char *name;
3395 } hw_data[] = {
3396 IPW2100_REG(REG_GP_CNTRL),
3397 IPW2100_REG(REG_GPIO),
3398 IPW2100_REG(REG_INTA),
3399 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3400 #define IPW2100_NIC(x, s) { x, #x, s }
3401 static const struct {
3402 u32 addr;
3403 const char *name;
3404 size_t size;
3405 } nic_data[] = {
3406 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3407 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3408 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3409 static const struct {
3410 u8 index;
3411 const char *name;
3412 const char *desc;
3413 } ord_data[] = {
3414 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3415 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3416 "successful Host Tx's (MSDU)"),
3417 IPW2100_ORD(STAT_TX_DIR_DATA,
3418 "successful Directed Tx's (MSDU)"),
3419 IPW2100_ORD(STAT_TX_DIR_DATA1,
3420 "successful Directed Tx's (MSDU) @ 1MB"),
3421 IPW2100_ORD(STAT_TX_DIR_DATA2,
3422 "successful Directed Tx's (MSDU) @ 2MB"),
3423 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3424 "successful Directed Tx's (MSDU) @ 5_5MB"),
3425 IPW2100_ORD(STAT_TX_DIR_DATA11,
3426 "successful Directed Tx's (MSDU) @ 11MB"),
3427 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3428 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3429 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3430 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3431 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3432 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3433 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3434 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3435 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3436 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3437 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3438 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3439 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3440 IPW2100_ORD(STAT_TX_ASSN_RESP,
3441 "successful Association response Tx's"),
3442 IPW2100_ORD(STAT_TX_REASSN,
3443 "successful Reassociation Tx's"),
3444 IPW2100_ORD(STAT_TX_REASSN_RESP,
3445 "successful Reassociation response Tx's"),
3446 IPW2100_ORD(STAT_TX_PROBE,
3447 "probes successfully transmitted"),
3448 IPW2100_ORD(STAT_TX_PROBE_RESP,
3449 "probe responses successfully transmitted"),
3450 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3451 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3452 IPW2100_ORD(STAT_TX_DISASSN,
3453 "successful Disassociation TX"),
3454 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3455 IPW2100_ORD(STAT_TX_DEAUTH,
3456 "successful Deauthentication TX"),
3457 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3458 "Total successful Tx data bytes"),
3459 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3460 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3461 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3462 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3463 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3464 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3465 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3466 "times max tries in a hop failed"),
3467 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3468 "times disassociation failed"),
3469 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3470 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3471 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3472 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3473 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3474 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3475 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3476 "directed packets at 5.5MB"),
3477 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3478 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3479 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3480 "nondirected packets at 1MB"),
3481 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3482 "nondirected packets at 2MB"),
3483 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3484 "nondirected packets at 5.5MB"),
3485 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3486 "nondirected packets at 11MB"),
3487 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3488 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3489 "Rx CTS"),
3490 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3491 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3492 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3493 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3494 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3495 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3496 IPW2100_ORD(STAT_RX_REASSN_RESP,
3497 "Reassociation response Rx's"),
3498 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3499 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3500 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3501 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3502 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3503 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3504 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3505 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3506 "Total rx data bytes received"),
3507 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3508 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3509 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3510 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3511 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3512 IPW2100_ORD(STAT_RX_DUPLICATE1,
3513 "duplicate rx packets at 1MB"),
3514 IPW2100_ORD(STAT_RX_DUPLICATE2,
3515 "duplicate rx packets at 2MB"),
3516 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3517 "duplicate rx packets at 5.5MB"),
3518 IPW2100_ORD(STAT_RX_DUPLICATE11,
3519 "duplicate rx packets at 11MB"),
3520 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3521 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3522 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3523 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3524 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3525 "rx frames with invalid protocol"),
3526 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3527 IPW2100_ORD(STAT_RX_NO_BUFFER,
3528 "rx frames rejected due to no buffer"),
3529 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3530 "rx frames dropped due to missing fragment"),
3531 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3532 "rx frames dropped due to non-sequential fragment"),
3533 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3534 "rx frames dropped due to unmatched 1st frame"),
3535 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3536 "rx frames dropped due to uncompleted frame"),
3537 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3538 "ICV errors during decryption"),
3539 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3540 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3541 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3542 "poll response timeouts"),
3543 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3544 "timeouts waiting for last {broad,multi}cast pkt"),
3545 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3546 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3547 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3548 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3549 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3550 "current calculation of % missed beacons"),
3551 IPW2100_ORD(STAT_PERCENT_RETRIES,
3552 "current calculation of % missed tx retries"),
3553 IPW2100_ORD(ASSOCIATED_AP_PTR,
3554 "0 if not associated, else pointer to AP table entry"),
3555 IPW2100_ORD(AVAILABLE_AP_CNT,
3556 "AP's decsribed in the AP table"),
3557 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3558 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3559 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3560 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3561 "failures due to response fail"),
3562 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3563 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3564 IPW2100_ORD(STAT_ROAM_INHIBIT,
3565 "times roaming was inhibited due to activity"),
3566 IPW2100_ORD(RSSI_AT_ASSN,
3567 "RSSI of associated AP at time of association"),
3568 IPW2100_ORD(STAT_ASSN_CAUSE1,
3569 "reassociation: no probe response or TX on hop"),
3570 IPW2100_ORD(STAT_ASSN_CAUSE2,
3571 "reassociation: poor tx/rx quality"),
3572 IPW2100_ORD(STAT_ASSN_CAUSE3,
3573 "reassociation: tx/rx quality (excessive AP load"),
3574 IPW2100_ORD(STAT_ASSN_CAUSE4,
3575 "reassociation: AP RSSI level"),
3576 IPW2100_ORD(STAT_ASSN_CAUSE5,
3577 "reassociations due to load leveling"),
3578 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3579 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3580 "times authentication response failed"),
3581 IPW2100_ORD(STATION_TABLE_CNT,
3582 "entries in association table"),
3583 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3584 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3585 IPW2100_ORD(COUNTRY_CODE,
3586 "IEEE country code as recv'd from beacon"),
3587 IPW2100_ORD(COUNTRY_CHANNELS,
3588 "channels suported by country"),
3589 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3590 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3591 IPW2100_ORD(ANTENNA_DIVERSITY,
3592 "TRUE if antenna diversity is disabled"),
3593 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3594 IPW2100_ORD(OUR_FREQ,
3595 "current radio freq lower digits - channel ID"),
3596 IPW2100_ORD(RTC_TIME, "current RTC time"),
3597 IPW2100_ORD(PORT_TYPE, "operating mode"),
3598 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3599 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3600 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3601 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3602 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3603 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3604 IPW2100_ORD(CAPABILITIES,
3605 "Management frame capability field"),
3606 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3607 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3608 IPW2100_ORD(RTS_THRESHOLD,
3609 "Min packet length for RTS handshaking"),
3610 IPW2100_ORD(INT_MODE, "International mode"),
3611 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3612 "protocol frag threshold"),
3613 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3614 "EEPROM offset in SRAM"),
3615 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3616 "EEPROM size in SRAM"),
3617 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3618 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3619 "EEPROM IBSS 11b channel set"),
3620 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3621 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3622 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3623 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3624 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3625
3626 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3627 char *buf)
3628 {
3629 int i;
3630 struct ipw2100_priv *priv = dev_get_drvdata(d);
3631 struct net_device *dev = priv->net_dev;
3632 char *out = buf;
3633 u32 val = 0;
3634
3635 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3636
3637 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3638 read_register(dev, hw_data[i].addr, &val);
3639 out += sprintf(out, "%30s [%08X] : %08X\n",
3640 hw_data[i].name, hw_data[i].addr, val);
3641 }
3642
3643 return out - buf;
3644 }
3645
3646 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3647
3648 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3649 char *buf)
3650 {
3651 struct ipw2100_priv *priv = dev_get_drvdata(d);
3652 struct net_device *dev = priv->net_dev;
3653 char *out = buf;
3654 int i;
3655
3656 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3657
3658 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3659 u8 tmp8;
3660 u16 tmp16;
3661 u32 tmp32;
3662
3663 switch (nic_data[i].size) {
3664 case 1:
3665 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3666 out += sprintf(out, "%30s [%08X] : %02X\n",
3667 nic_data[i].name, nic_data[i].addr,
3668 tmp8);
3669 break;
3670 case 2:
3671 read_nic_word(dev, nic_data[i].addr, &tmp16);
3672 out += sprintf(out, "%30s [%08X] : %04X\n",
3673 nic_data[i].name, nic_data[i].addr,
3674 tmp16);
3675 break;
3676 case 4:
3677 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3678 out += sprintf(out, "%30s [%08X] : %08X\n",
3679 nic_data[i].name, nic_data[i].addr,
3680 tmp32);
3681 break;
3682 }
3683 }
3684 return out - buf;
3685 }
3686
3687 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3688
3689 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3690 char *buf)
3691 {
3692 struct ipw2100_priv *priv = dev_get_drvdata(d);
3693 struct net_device *dev = priv->net_dev;
3694 static unsigned long loop = 0;
3695 int len = 0;
3696 u32 buffer[4];
3697 int i;
3698 char line[81];
3699
3700 if (loop >= 0x30000)
3701 loop = 0;
3702
3703 /* sysfs provides us PAGE_SIZE buffer */
3704 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3705
3706 if (priv->snapshot[0])
3707 for (i = 0; i < 4; i++)
3708 buffer[i] =
3709 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3710 else
3711 for (i = 0; i < 4; i++)
3712 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3713
3714 if (priv->dump_raw)
3715 len += sprintf(buf + len,
3716 "%c%c%c%c"
3717 "%c%c%c%c"
3718 "%c%c%c%c"
3719 "%c%c%c%c",
3720 ((u8 *) buffer)[0x0],
3721 ((u8 *) buffer)[0x1],
3722 ((u8 *) buffer)[0x2],
3723 ((u8 *) buffer)[0x3],
3724 ((u8 *) buffer)[0x4],
3725 ((u8 *) buffer)[0x5],
3726 ((u8 *) buffer)[0x6],
3727 ((u8 *) buffer)[0x7],
3728 ((u8 *) buffer)[0x8],
3729 ((u8 *) buffer)[0x9],
3730 ((u8 *) buffer)[0xa],
3731 ((u8 *) buffer)[0xb],
3732 ((u8 *) buffer)[0xc],
3733 ((u8 *) buffer)[0xd],
3734 ((u8 *) buffer)[0xe],
3735 ((u8 *) buffer)[0xf]);
3736 else
3737 len += sprintf(buf + len, "%s\n",
3738 snprint_line(line, sizeof(line),
3739 (u8 *) buffer, 16, loop));
3740 loop += 16;
3741 }
3742
3743 return len;
3744 }
3745
3746 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3747 const char *buf, size_t count)
3748 {
3749 struct ipw2100_priv *priv = dev_get_drvdata(d);
3750 struct net_device *dev = priv->net_dev;
3751 const char *p = buf;
3752
3753 (void) dev; /* kill unused-var warning for debug-only code */
3754
3755 if (count < 1)
3756 return count;
3757
3758 if (p[0] == '1' ||
3759 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3760 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3761 dev->name);
3762 priv->dump_raw = 1;
3763
3764 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3765 tolower(p[1]) == 'f')) {
3766 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3767 dev->name);
3768 priv->dump_raw = 0;
3769
3770 } else if (tolower(p[0]) == 'r') {
3771 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3772 ipw2100_snapshot_free(priv);
3773
3774 } else
3775 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3776 "reset = clear memory snapshot\n", dev->name);
3777
3778 return count;
3779 }
3780
3781 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3782
3783 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3784 char *buf)
3785 {
3786 struct ipw2100_priv *priv = dev_get_drvdata(d);
3787 u32 val = 0;
3788 int len = 0;
3789 u32 val_len;
3790 static int loop = 0;
3791
3792 if (priv->status & STATUS_RF_KILL_MASK)
3793 return 0;
3794
3795 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3796 loop = 0;
3797
3798 /* sysfs provides us PAGE_SIZE buffer */
3799 while (len < PAGE_SIZE - 128 &&
3800 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3801
3802 val_len = sizeof(u32);
3803
3804 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3805 &val_len))
3806 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3807 ord_data[loop].index,
3808 ord_data[loop].desc);
3809 else
3810 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3811 ord_data[loop].index, val,
3812 ord_data[loop].desc);
3813 loop++;
3814 }
3815
3816 return len;
3817 }
3818
3819 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3820
3821 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3822 char *buf)
3823 {
3824 struct ipw2100_priv *priv = dev_get_drvdata(d);
3825 char *out = buf;
3826
3827 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3828 priv->interrupts, priv->tx_interrupts,
3829 priv->rx_interrupts, priv->inta_other);
3830 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3831 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3832 #ifdef CONFIG_IPW2100_DEBUG
3833 out += sprintf(out, "packet mismatch image: %s\n",
3834 priv->snapshot[0] ? "YES" : "NO");
3835 #endif
3836
3837 return out - buf;
3838 }
3839
3840 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3841
3842 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3843 {
3844 int err;
3845
3846 if (mode == priv->ieee->iw_mode)
3847 return 0;
3848
3849 err = ipw2100_disable_adapter(priv);
3850 if (err) {
3851 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3852 priv->net_dev->name, err);
3853 return err;
3854 }
3855
3856 switch (mode) {
3857 case IW_MODE_INFRA:
3858 priv->net_dev->type = ARPHRD_ETHER;
3859 break;
3860 case IW_MODE_ADHOC:
3861 priv->net_dev->type = ARPHRD_ETHER;
3862 break;
3863 #ifdef CONFIG_IPW2100_MONITOR
3864 case IW_MODE_MONITOR:
3865 priv->last_mode = priv->ieee->iw_mode;
3866 priv->net_dev->type = ARPHRD_IEEE80211;
3867 break;
3868 #endif /* CONFIG_IPW2100_MONITOR */
3869 }
3870
3871 priv->ieee->iw_mode = mode;
3872
3873 #ifdef CONFIG_PM
3874 /* Indicate ipw2100_download_firmware download firmware
3875 * from disk instead of memory. */
3876 ipw2100_firmware.version = 0;
3877 #endif
3878
3879 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3880 priv->reset_backoff = 0;
3881 schedule_reset(priv);
3882
3883 return 0;
3884 }
3885
3886 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3887 char *buf)
3888 {
3889 struct ipw2100_priv *priv = dev_get_drvdata(d);
3890 int len = 0;
3891
3892 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3893
3894 if (priv->status & STATUS_ASSOCIATED)
3895 len += sprintf(buf + len, "connected: %lu\n",
3896 get_seconds() - priv->connect_start);
3897 else
3898 len += sprintf(buf + len, "not connected\n");
3899
3900 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3901 DUMP_VAR(status, "08lx");
3902 DUMP_VAR(config, "08lx");
3903 DUMP_VAR(capability, "08lx");
3904
3905 len +=
3906 sprintf(buf + len, "last_rtc: %lu\n",
3907 (unsigned long)priv->last_rtc);
3908
3909 DUMP_VAR(fatal_error, "d");
3910 DUMP_VAR(stop_hang_check, "d");
3911 DUMP_VAR(stop_rf_kill, "d");
3912 DUMP_VAR(messages_sent, "d");
3913
3914 DUMP_VAR(tx_pend_stat.value, "d");
3915 DUMP_VAR(tx_pend_stat.hi, "d");
3916
3917 DUMP_VAR(tx_free_stat.value, "d");
3918 DUMP_VAR(tx_free_stat.lo, "d");
3919
3920 DUMP_VAR(msg_free_stat.value, "d");
3921 DUMP_VAR(msg_free_stat.lo, "d");
3922
3923 DUMP_VAR(msg_pend_stat.value, "d");
3924 DUMP_VAR(msg_pend_stat.hi, "d");
3925
3926 DUMP_VAR(fw_pend_stat.value, "d");
3927 DUMP_VAR(fw_pend_stat.hi, "d");
3928
3929 DUMP_VAR(txq_stat.value, "d");
3930 DUMP_VAR(txq_stat.lo, "d");
3931
3932 DUMP_VAR(ieee->scans, "d");
3933 DUMP_VAR(reset_backoff, "d");
3934
3935 return len;
3936 }
3937
3938 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3939
3940 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3941 char *buf)
3942 {
3943 struct ipw2100_priv *priv = dev_get_drvdata(d);
3944 char essid[IW_ESSID_MAX_SIZE + 1];
3945 u8 bssid[ETH_ALEN];
3946 u32 chan = 0;
3947 char *out = buf;
3948 int length;
3949 int ret;
3950
3951 if (priv->status & STATUS_RF_KILL_MASK)
3952 return 0;
3953
3954 memset(essid, 0, sizeof(essid));
3955 memset(bssid, 0, sizeof(bssid));
3956
3957 length = IW_ESSID_MAX_SIZE;
3958 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3959 if (ret)
3960 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3961 __LINE__);
3962
3963 length = sizeof(bssid);
3964 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3965 bssid, &length);
3966 if (ret)
3967 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3968 __LINE__);
3969
3970 length = sizeof(u32);
3971 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3972 if (ret)
3973 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3974 __LINE__);
3975
3976 out += sprintf(out, "ESSID: %s\n", essid);
3977 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
3978 bssid[0], bssid[1], bssid[2],
3979 bssid[3], bssid[4], bssid[5]);
3980 out += sprintf(out, "Channel: %d\n", chan);
3981
3982 return out - buf;
3983 }
3984
3985 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
3986
3987 #ifdef CONFIG_IPW2100_DEBUG
3988 static ssize_t show_debug_level(struct device_driver *d, char *buf)
3989 {
3990 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
3991 }
3992
3993 static ssize_t store_debug_level(struct device_driver *d,
3994 const char *buf, size_t count)
3995 {
3996 char *p = (char *)buf;
3997 u32 val;
3998
3999 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4000 p++;
4001 if (p[0] == 'x' || p[0] == 'X')
4002 p++;
4003 val = simple_strtoul(p, &p, 16);
4004 } else
4005 val = simple_strtoul(p, &p, 10);
4006 if (p == buf)
4007 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4008 else
4009 ipw2100_debug_level = val;
4010
4011 return strnlen(buf, count);
4012 }
4013
4014 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4015 store_debug_level);
4016 #endif /* CONFIG_IPW2100_DEBUG */
4017
4018 static ssize_t show_fatal_error(struct device *d,
4019 struct device_attribute *attr, char *buf)
4020 {
4021 struct ipw2100_priv *priv = dev_get_drvdata(d);
4022 char *out = buf;
4023 int i;
4024
4025 if (priv->fatal_error)
4026 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4027 else
4028 out += sprintf(out, "0\n");
4029
4030 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4031 if (!priv->fatal_errors[(priv->fatal_index - i) %
4032 IPW2100_ERROR_QUEUE])
4033 continue;
4034
4035 out += sprintf(out, "%d. 0x%08X\n", i,
4036 priv->fatal_errors[(priv->fatal_index - i) %
4037 IPW2100_ERROR_QUEUE]);
4038 }
4039
4040 return out - buf;
4041 }
4042
4043 static ssize_t store_fatal_error(struct device *d,
4044 struct device_attribute *attr, const char *buf,
4045 size_t count)
4046 {
4047 struct ipw2100_priv *priv = dev_get_drvdata(d);
4048 schedule_reset(priv);
4049 return count;
4050 }
4051
4052 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4053 store_fatal_error);
4054
4055 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4056 char *buf)
4057 {
4058 struct ipw2100_priv *priv = dev_get_drvdata(d);
4059 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4060 }
4061
4062 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4063 const char *buf, size_t count)
4064 {
4065 struct ipw2100_priv *priv = dev_get_drvdata(d);
4066 struct net_device *dev = priv->net_dev;
4067 char buffer[] = "00000000";
4068 unsigned long len =
4069 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4070 unsigned long val;
4071 char *p = buffer;
4072
4073 (void) dev; /* kill unused-var warning for debug-only code */
4074
4075 IPW_DEBUG_INFO("enter\n");
4076
4077 strncpy(buffer, buf, len);
4078 buffer[len] = 0;
4079
4080 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4081 p++;
4082 if (p[0] == 'x' || p[0] == 'X')
4083 p++;
4084 val = simple_strtoul(p, &p, 16);
4085 } else
4086 val = simple_strtoul(p, &p, 10);
4087 if (p == buffer) {
4088 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4089 } else {
4090 priv->ieee->scan_age = val;
4091 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4092 }
4093
4094 IPW_DEBUG_INFO("exit\n");
4095 return len;
4096 }
4097
4098 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4099
4100 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4101 char *buf)
4102 {
4103 /* 0 - RF kill not enabled
4104 1 - SW based RF kill active (sysfs)
4105 2 - HW based RF kill active
4106 3 - Both HW and SW baed RF kill active */
4107 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4108 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4109 (rf_kill_active(priv) ? 0x2 : 0x0);
4110 return sprintf(buf, "%i\n", val);
4111 }
4112
4113 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4114 {
4115 if ((disable_radio ? 1 : 0) ==
4116 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4117 return 0;
4118
4119 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4120 disable_radio ? "OFF" : "ON");
4121
4122 down(&priv->action_sem);
4123
4124 if (disable_radio) {
4125 priv->status |= STATUS_RF_KILL_SW;
4126 ipw2100_down(priv);
4127 } else {
4128 priv->status &= ~STATUS_RF_KILL_SW;
4129 if (rf_kill_active(priv)) {
4130 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4131 "disabled by HW switch\n");
4132 /* Make sure the RF_KILL check timer is running */
4133 priv->stop_rf_kill = 0;
4134 cancel_delayed_work(&priv->rf_kill);
4135 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4136 } else
4137 schedule_reset(priv);
4138 }
4139
4140 up(&priv->action_sem);
4141 return 1;
4142 }
4143
4144 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4145 const char *buf, size_t count)
4146 {
4147 struct ipw2100_priv *priv = dev_get_drvdata(d);
4148 ipw_radio_kill_sw(priv, buf[0] == '1');
4149 return count;
4150 }
4151
4152 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4153
4154 static struct attribute *ipw2100_sysfs_entries[] = {
4155 &dev_attr_hardware.attr,
4156 &dev_attr_registers.attr,
4157 &dev_attr_ordinals.attr,
4158 &dev_attr_pci.attr,
4159 &dev_attr_stats.attr,
4160 &dev_attr_internals.attr,
4161 &dev_attr_bssinfo.attr,
4162 &dev_attr_memory.attr,
4163 &dev_attr_scan_age.attr,
4164 &dev_attr_fatal_error.attr,
4165 &dev_attr_rf_kill.attr,
4166 &dev_attr_cfg.attr,
4167 &dev_attr_status.attr,
4168 &dev_attr_capability.attr,
4169 NULL,
4170 };
4171
4172 static struct attribute_group ipw2100_attribute_group = {
4173 .attrs = ipw2100_sysfs_entries,
4174 };
4175
4176 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4177 {
4178 struct ipw2100_status_queue *q = &priv->status_queue;
4179
4180 IPW_DEBUG_INFO("enter\n");
4181
4182 q->size = entries * sizeof(struct ipw2100_status);
4183 q->drv =
4184 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4185 q->size, &q->nic);
4186 if (!q->drv) {
4187 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4188 return -ENOMEM;
4189 }
4190
4191 memset(q->drv, 0, q->size);
4192
4193 IPW_DEBUG_INFO("exit\n");
4194
4195 return 0;
4196 }
4197
4198 static void status_queue_free(struct ipw2100_priv *priv)
4199 {
4200 IPW_DEBUG_INFO("enter\n");
4201
4202 if (priv->status_queue.drv) {
4203 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4204 priv->status_queue.drv,
4205 priv->status_queue.nic);
4206 priv->status_queue.drv = NULL;
4207 }
4208
4209 IPW_DEBUG_INFO("exit\n");
4210 }
4211
4212 static int bd_queue_allocate(struct ipw2100_priv *priv,
4213 struct ipw2100_bd_queue *q, int entries)
4214 {
4215 IPW_DEBUG_INFO("enter\n");
4216
4217 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4218
4219 q->entries = entries;
4220 q->size = entries * sizeof(struct ipw2100_bd);
4221 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4222 if (!q->drv) {
4223 IPW_DEBUG_INFO
4224 ("can't allocate shared memory for buffer descriptors\n");
4225 return -ENOMEM;
4226 }
4227 memset(q->drv, 0, q->size);
4228
4229 IPW_DEBUG_INFO("exit\n");
4230
4231 return 0;
4232 }
4233
4234 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4235 {
4236 IPW_DEBUG_INFO("enter\n");
4237
4238 if (!q)
4239 return;
4240
4241 if (q->drv) {
4242 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4243 q->drv = NULL;
4244 }
4245
4246 IPW_DEBUG_INFO("exit\n");
4247 }
4248
4249 static void bd_queue_initialize(struct ipw2100_priv *priv,
4250 struct ipw2100_bd_queue *q, u32 base, u32 size,
4251 u32 r, u32 w)
4252 {
4253 IPW_DEBUG_INFO("enter\n");
4254
4255 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4256 (u32) q->nic);
4257
4258 write_register(priv->net_dev, base, q->nic);
4259 write_register(priv->net_dev, size, q->entries);
4260 write_register(priv->net_dev, r, q->oldest);
4261 write_register(priv->net_dev, w, q->next);
4262
4263 IPW_DEBUG_INFO("exit\n");
4264 }
4265
4266 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4267 {
4268 if (priv->workqueue) {
4269 priv->stop_rf_kill = 1;
4270 priv->stop_hang_check = 1;
4271 cancel_delayed_work(&priv->reset_work);
4272 cancel_delayed_work(&priv->security_work);
4273 cancel_delayed_work(&priv->wx_event_work);
4274 cancel_delayed_work(&priv->hang_check);
4275 cancel_delayed_work(&priv->rf_kill);
4276 destroy_workqueue(priv->workqueue);
4277 priv->workqueue = NULL;
4278 }
4279 }
4280
4281 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4282 {
4283 int i, j, err = -EINVAL;
4284 void *v;
4285 dma_addr_t p;
4286
4287 IPW_DEBUG_INFO("enter\n");
4288
4289 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4290 if (err) {
4291 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4292 priv->net_dev->name);
4293 return err;
4294 }
4295
4296 priv->tx_buffers =
4297 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4298 sizeof(struct
4299 ipw2100_tx_packet),
4300 GFP_ATOMIC);
4301 if (!priv->tx_buffers) {
4302 printk(KERN_ERR DRV_NAME
4303 ": %s: alloc failed form tx buffers.\n",
4304 priv->net_dev->name);
4305 bd_queue_free(priv, &priv->tx_queue);
4306 return -ENOMEM;
4307 }
4308
4309 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4310 v = pci_alloc_consistent(priv->pci_dev,
4311 sizeof(struct ipw2100_data_header),
4312 &p);
4313 if (!v) {
4314 printk(KERN_ERR DRV_NAME
4315 ": %s: PCI alloc failed for tx " "buffers.\n",
4316 priv->net_dev->name);
4317 err = -ENOMEM;
4318 break;
4319 }
4320
4321 priv->tx_buffers[i].type = DATA;
4322 priv->tx_buffers[i].info.d_struct.data =
4323 (struct ipw2100_data_header *)v;
4324 priv->tx_buffers[i].info.d_struct.data_phys = p;
4325 priv->tx_buffers[i].info.d_struct.txb = NULL;
4326 }
4327
4328 if (i == TX_PENDED_QUEUE_LENGTH)
4329 return 0;
4330
4331 for (j = 0; j < i; j++) {
4332 pci_free_consistent(priv->pci_dev,
4333 sizeof(struct ipw2100_data_header),
4334 priv->tx_buffers[j].info.d_struct.data,
4335 priv->tx_buffers[j].info.d_struct.
4336 data_phys);
4337 }
4338
4339 kfree(priv->tx_buffers);
4340 priv->tx_buffers = NULL;
4341
4342 return err;
4343 }
4344
4345 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4346 {
4347 int i;
4348
4349 IPW_DEBUG_INFO("enter\n");
4350
4351 /*
4352 * reinitialize packet info lists
4353 */
4354 INIT_LIST_HEAD(&priv->fw_pend_list);
4355 INIT_STAT(&priv->fw_pend_stat);
4356
4357 /*
4358 * reinitialize lists
4359 */
4360 INIT_LIST_HEAD(&priv->tx_pend_list);
4361 INIT_LIST_HEAD(&priv->tx_free_list);
4362 INIT_STAT(&priv->tx_pend_stat);
4363 INIT_STAT(&priv->tx_free_stat);
4364
4365 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4366 /* We simply drop any SKBs that have been queued for
4367 * transmit */
4368 if (priv->tx_buffers[i].info.d_struct.txb) {
4369 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4370 txb);
4371 priv->tx_buffers[i].info.d_struct.txb = NULL;
4372 }
4373
4374 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4375 }
4376
4377 SET_STAT(&priv->tx_free_stat, i);
4378
4379 priv->tx_queue.oldest = 0;
4380 priv->tx_queue.available = priv->tx_queue.entries;
4381 priv->tx_queue.next = 0;
4382 INIT_STAT(&priv->txq_stat);
4383 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4384
4385 bd_queue_initialize(priv, &priv->tx_queue,
4386 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4387 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4388 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4389 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4390
4391 IPW_DEBUG_INFO("exit\n");
4392
4393 }
4394
4395 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4396 {
4397 int i;
4398
4399 IPW_DEBUG_INFO("enter\n");
4400
4401 bd_queue_free(priv, &priv->tx_queue);
4402
4403 if (!priv->tx_buffers)
4404 return;
4405
4406 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4407 if (priv->tx_buffers[i].info.d_struct.txb) {
4408 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4409 txb);
4410 priv->tx_buffers[i].info.d_struct.txb = NULL;
4411 }
4412 if (priv->tx_buffers[i].info.d_struct.data)
4413 pci_free_consistent(priv->pci_dev,
4414 sizeof(struct ipw2100_data_header),
4415 priv->tx_buffers[i].info.d_struct.
4416 data,
4417 priv->tx_buffers[i].info.d_struct.
4418 data_phys);
4419 }
4420
4421 kfree(priv->tx_buffers);
4422 priv->tx_buffers = NULL;
4423
4424 IPW_DEBUG_INFO("exit\n");
4425 }
4426
4427 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4428 {
4429 int i, j, err = -EINVAL;
4430
4431 IPW_DEBUG_INFO("enter\n");
4432
4433 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4434 if (err) {
4435 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4436 return err;
4437 }
4438
4439 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4440 if (err) {
4441 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4442 bd_queue_free(priv, &priv->rx_queue);
4443 return err;
4444 }
4445
4446 /*
4447 * allocate packets
4448 */
4449 priv->rx_buffers = (struct ipw2100_rx_packet *)
4450 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4451 GFP_KERNEL);
4452 if (!priv->rx_buffers) {
4453 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4454
4455 bd_queue_free(priv, &priv->rx_queue);
4456
4457 status_queue_free(priv);
4458
4459 return -ENOMEM;
4460 }
4461
4462 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4463 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4464
4465 err = ipw2100_alloc_skb(priv, packet);
4466 if (unlikely(err)) {
4467 err = -ENOMEM;
4468 break;
4469 }
4470
4471 /* The BD holds the cache aligned address */
4472 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4473 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4474 priv->status_queue.drv[i].status_fields = 0;
4475 }
4476
4477 if (i == RX_QUEUE_LENGTH)
4478 return 0;
4479
4480 for (j = 0; j < i; j++) {
4481 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4482 sizeof(struct ipw2100_rx_packet),
4483 PCI_DMA_FROMDEVICE);
4484 dev_kfree_skb(priv->rx_buffers[j].skb);
4485 }
4486
4487 kfree(priv->rx_buffers);
4488 priv->rx_buffers = NULL;
4489
4490 bd_queue_free(priv, &priv->rx_queue);
4491
4492 status_queue_free(priv);
4493
4494 return err;
4495 }
4496
4497 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4498 {
4499 IPW_DEBUG_INFO("enter\n");
4500
4501 priv->rx_queue.oldest = 0;
4502 priv->rx_queue.available = priv->rx_queue.entries - 1;
4503 priv->rx_queue.next = priv->rx_queue.entries - 1;
4504
4505 INIT_STAT(&priv->rxq_stat);
4506 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4507
4508 bd_queue_initialize(priv, &priv->rx_queue,
4509 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4510 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4511 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4512 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4513
4514 /* set up the status queue */
4515 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4516 priv->status_queue.nic);
4517
4518 IPW_DEBUG_INFO("exit\n");
4519 }
4520
4521 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4522 {
4523 int i;
4524
4525 IPW_DEBUG_INFO("enter\n");
4526
4527 bd_queue_free(priv, &priv->rx_queue);
4528 status_queue_free(priv);
4529
4530 if (!priv->rx_buffers)
4531 return;
4532
4533 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4534 if (priv->rx_buffers[i].rxp) {
4535 pci_unmap_single(priv->pci_dev,
4536 priv->rx_buffers[i].dma_addr,
4537 sizeof(struct ipw2100_rx),
4538 PCI_DMA_FROMDEVICE);
4539 dev_kfree_skb(priv->rx_buffers[i].skb);
4540 }
4541 }
4542
4543 kfree(priv->rx_buffers);
4544 priv->rx_buffers = NULL;
4545
4546 IPW_DEBUG_INFO("exit\n");
4547 }
4548
4549 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4550 {
4551 u32 length = ETH_ALEN;
4552 u8 mac[ETH_ALEN];
4553
4554 int err;
4555
4556 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4557 if (err) {
4558 IPW_DEBUG_INFO("MAC address read failed\n");
4559 return -EIO;
4560 }
4561 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4562 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4563
4564 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4565
4566 return 0;
4567 }
4568
4569 /********************************************************************
4570 *
4571 * Firmware Commands
4572 *
4573 ********************************************************************/
4574
4575 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4576 {
4577 struct host_command cmd = {
4578 .host_command = ADAPTER_ADDRESS,
4579 .host_command_sequence = 0,
4580 .host_command_length = ETH_ALEN
4581 };
4582 int err;
4583
4584 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4585
4586 IPW_DEBUG_INFO("enter\n");
4587
4588 if (priv->config & CFG_CUSTOM_MAC) {
4589 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4590 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4591 } else
4592 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4593 ETH_ALEN);
4594
4595 err = ipw2100_hw_send_command(priv, &cmd);
4596
4597 IPW_DEBUG_INFO("exit\n");
4598 return err;
4599 }
4600
4601 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4602 int batch_mode)
4603 {
4604 struct host_command cmd = {
4605 .host_command = PORT_TYPE,
4606 .host_command_sequence = 0,
4607 .host_command_length = sizeof(u32)
4608 };
4609 int err;
4610
4611 switch (port_type) {
4612 case IW_MODE_INFRA:
4613 cmd.host_command_parameters[0] = IPW_BSS;
4614 break;
4615 case IW_MODE_ADHOC:
4616 cmd.host_command_parameters[0] = IPW_IBSS;
4617 break;
4618 }
4619
4620 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4621 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4622
4623 if (!batch_mode) {
4624 err = ipw2100_disable_adapter(priv);
4625 if (err) {
4626 printk(KERN_ERR DRV_NAME
4627 ": %s: Could not disable adapter %d\n",
4628 priv->net_dev->name, err);
4629 return err;
4630 }
4631 }
4632
4633 /* send cmd to firmware */
4634 err = ipw2100_hw_send_command(priv, &cmd);
4635
4636 if (!batch_mode)
4637 ipw2100_enable_adapter(priv);
4638
4639 return err;
4640 }
4641
4642 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4643 int batch_mode)
4644 {
4645 struct host_command cmd = {
4646 .host_command = CHANNEL,
4647 .host_command_sequence = 0,
4648 .host_command_length = sizeof(u32)
4649 };
4650 int err;
4651
4652 cmd.host_command_parameters[0] = channel;
4653
4654 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4655
4656 /* If BSS then we don't support channel selection */
4657 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4658 return 0;
4659
4660 if ((channel != 0) &&
4661 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4662 return -EINVAL;
4663
4664 if (!batch_mode) {
4665 err = ipw2100_disable_adapter(priv);
4666 if (err)
4667 return err;
4668 }
4669
4670 err = ipw2100_hw_send_command(priv, &cmd);
4671 if (err) {
4672 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4673 return err;
4674 }
4675
4676 if (channel)
4677 priv->config |= CFG_STATIC_CHANNEL;
4678 else
4679 priv->config &= ~CFG_STATIC_CHANNEL;
4680
4681 priv->channel = channel;
4682
4683 if (!batch_mode) {
4684 err = ipw2100_enable_adapter(priv);
4685 if (err)
4686 return err;
4687 }
4688
4689 return 0;
4690 }
4691
4692 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4693 {
4694 struct host_command cmd = {
4695 .host_command = SYSTEM_CONFIG,
4696 .host_command_sequence = 0,
4697 .host_command_length = 12,
4698 };
4699 u32 ibss_mask, len = sizeof(u32);
4700 int err;
4701
4702 /* Set system configuration */
4703
4704 if (!batch_mode) {
4705 err = ipw2100_disable_adapter(priv);
4706 if (err)
4707 return err;
4708 }
4709
4710 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4711 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4712
4713 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4714 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4715
4716 if (!(priv->config & CFG_LONG_PREAMBLE))
4717 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4718
4719 err = ipw2100_get_ordinal(priv,
4720 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4721 &ibss_mask, &len);
4722 if (err)
4723 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4724
4725 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4726 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4727
4728 /* 11b only */
4729 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4730
4731 err = ipw2100_hw_send_command(priv, &cmd);
4732 if (err)
4733 return err;
4734
4735 /* If IPv6 is configured in the kernel then we don't want to filter out all
4736 * of the multicast packets as IPv6 needs some. */
4737 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4738 cmd.host_command = ADD_MULTICAST;
4739 cmd.host_command_sequence = 0;
4740 cmd.host_command_length = 0;
4741
4742 ipw2100_hw_send_command(priv, &cmd);
4743 #endif
4744 if (!batch_mode) {
4745 err = ipw2100_enable_adapter(priv);
4746 if (err)
4747 return err;
4748 }
4749
4750 return 0;
4751 }
4752
4753 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4754 int batch_mode)
4755 {
4756 struct host_command cmd = {
4757 .host_command = BASIC_TX_RATES,
4758 .host_command_sequence = 0,
4759 .host_command_length = 4
4760 };
4761 int err;
4762
4763 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4764
4765 if (!batch_mode) {
4766 err = ipw2100_disable_adapter(priv);
4767 if (err)
4768 return err;
4769 }
4770
4771 /* Set BASIC TX Rate first */
4772 ipw2100_hw_send_command(priv, &cmd);
4773
4774 /* Set TX Rate */
4775 cmd.host_command = TX_RATES;
4776 ipw2100_hw_send_command(priv, &cmd);
4777
4778 /* Set MSDU TX Rate */
4779 cmd.host_command = MSDU_TX_RATES;
4780 ipw2100_hw_send_command(priv, &cmd);
4781
4782 if (!batch_mode) {
4783 err = ipw2100_enable_adapter(priv);
4784 if (err)
4785 return err;
4786 }
4787
4788 priv->tx_rates = rate;
4789
4790 return 0;
4791 }
4792
4793 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4794 {
4795 struct host_command cmd = {
4796 .host_command = POWER_MODE,
4797 .host_command_sequence = 0,
4798 .host_command_length = 4
4799 };
4800 int err;
4801
4802 cmd.host_command_parameters[0] = power_level;
4803
4804 err = ipw2100_hw_send_command(priv, &cmd);
4805 if (err)
4806 return err;
4807
4808 if (power_level == IPW_POWER_MODE_CAM)
4809 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4810 else
4811 priv->power_mode = IPW_POWER_ENABLED | power_level;
4812
4813 #ifdef CONFIG_IPW2100_TX_POWER
4814 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4815 /* Set beacon interval */
4816 cmd.host_command = TX_POWER_INDEX;
4817 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4818
4819 err = ipw2100_hw_send_command(priv, &cmd);
4820 if (err)
4821 return err;
4822 }
4823 #endif
4824
4825 return 0;
4826 }
4827
4828 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4829 {
4830 struct host_command cmd = {
4831 .host_command = RTS_THRESHOLD,
4832 .host_command_sequence = 0,
4833 .host_command_length = 4
4834 };
4835 int err;
4836
4837 if (threshold & RTS_DISABLED)
4838 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4839 else
4840 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4841
4842 err = ipw2100_hw_send_command(priv, &cmd);
4843 if (err)
4844 return err;
4845
4846 priv->rts_threshold = threshold;
4847
4848 return 0;
4849 }
4850
4851 #if 0
4852 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4853 u32 threshold, int batch_mode)
4854 {
4855 struct host_command cmd = {
4856 .host_command = FRAG_THRESHOLD,
4857 .host_command_sequence = 0,
4858 .host_command_length = 4,
4859 .host_command_parameters[0] = 0,
4860 };
4861 int err;
4862
4863 if (!batch_mode) {
4864 err = ipw2100_disable_adapter(priv);
4865 if (err)
4866 return err;
4867 }
4868
4869 if (threshold == 0)
4870 threshold = DEFAULT_FRAG_THRESHOLD;
4871 else {
4872 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4873 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4874 }
4875
4876 cmd.host_command_parameters[0] = threshold;
4877
4878 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4879
4880 err = ipw2100_hw_send_command(priv, &cmd);
4881
4882 if (!batch_mode)
4883 ipw2100_enable_adapter(priv);
4884
4885 if (!err)
4886 priv->frag_threshold = threshold;
4887
4888 return err;
4889 }
4890 #endif
4891
4892 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4893 {
4894 struct host_command cmd = {
4895 .host_command = SHORT_RETRY_LIMIT,
4896 .host_command_sequence = 0,
4897 .host_command_length = 4
4898 };
4899 int err;
4900
4901 cmd.host_command_parameters[0] = retry;
4902
4903 err = ipw2100_hw_send_command(priv, &cmd);
4904 if (err)
4905 return err;
4906
4907 priv->short_retry_limit = retry;
4908
4909 return 0;
4910 }
4911
4912 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4913 {
4914 struct host_command cmd = {
4915 .host_command = LONG_RETRY_LIMIT,
4916 .host_command_sequence = 0,
4917 .host_command_length = 4
4918 };
4919 int err;
4920
4921 cmd.host_command_parameters[0] = retry;
4922
4923 err = ipw2100_hw_send_command(priv, &cmd);
4924 if (err)
4925 return err;
4926
4927 priv->long_retry_limit = retry;
4928
4929 return 0;
4930 }
4931
4932 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4933 int batch_mode)
4934 {
4935 struct host_command cmd = {
4936 .host_command = MANDATORY_BSSID,
4937 .host_command_sequence = 0,
4938 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4939 };
4940 int err;
4941
4942 #ifdef CONFIG_IPW2100_DEBUG
4943 if (bssid != NULL)
4944 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4945 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4946 bssid[5]);
4947 else
4948 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4949 #endif
4950 /* if BSSID is empty then we disable mandatory bssid mode */
4951 if (bssid != NULL)
4952 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4953
4954 if (!batch_mode) {
4955 err = ipw2100_disable_adapter(priv);
4956 if (err)
4957 return err;
4958 }
4959
4960 err = ipw2100_hw_send_command(priv, &cmd);
4961
4962 if (!batch_mode)
4963 ipw2100_enable_adapter(priv);
4964
4965 return err;
4966 }
4967
4968 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4969 {
4970 struct host_command cmd = {
4971 .host_command = DISASSOCIATION_BSSID,
4972 .host_command_sequence = 0,
4973 .host_command_length = ETH_ALEN
4974 };
4975 int err;
4976 int len;
4977
4978 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4979
4980 len = ETH_ALEN;
4981 /* The Firmware currently ignores the BSSID and just disassociates from
4982 * the currently associated AP -- but in the off chance that a future
4983 * firmware does use the BSSID provided here, we go ahead and try and
4984 * set it to the currently associated AP's BSSID */
4985 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
4986
4987 err = ipw2100_hw_send_command(priv, &cmd);
4988
4989 return err;
4990 }
4991
4992 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
4993 struct ipw2100_wpa_assoc_frame *, int)
4994 __attribute__ ((unused));
4995
4996 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
4997 struct ipw2100_wpa_assoc_frame *wpa_frame,
4998 int batch_mode)
4999 {
5000 struct host_command cmd = {
5001 .host_command = SET_WPA_IE,
5002 .host_command_sequence = 0,
5003 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5004 };
5005 int err;
5006
5007 IPW_DEBUG_HC("SET_WPA_IE\n");
5008
5009 if (!batch_mode) {
5010 err = ipw2100_disable_adapter(priv);
5011 if (err)
5012 return err;
5013 }
5014
5015 memcpy(cmd.host_command_parameters, wpa_frame,
5016 sizeof(struct ipw2100_wpa_assoc_frame));
5017
5018 err = ipw2100_hw_send_command(priv, &cmd);
5019
5020 if (!batch_mode) {
5021 if (ipw2100_enable_adapter(priv))
5022 err = -EIO;
5023 }
5024
5025 return err;
5026 }
5027
5028 struct security_info_params {
5029 u32 allowed_ciphers;
5030 u16 version;
5031 u8 auth_mode;
5032 u8 replay_counters_number;
5033 u8 unicast_using_group;
5034 } __attribute__ ((packed));
5035
5036 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5037 int auth_mode,
5038 int security_level,
5039 int unicast_using_group,
5040 int batch_mode)
5041 {
5042 struct host_command cmd = {
5043 .host_command = SET_SECURITY_INFORMATION,
5044 .host_command_sequence = 0,
5045 .host_command_length = sizeof(struct security_info_params)
5046 };
5047 struct security_info_params *security =
5048 (struct security_info_params *)&cmd.host_command_parameters;
5049 int err;
5050 memset(security, 0, sizeof(*security));
5051
5052 /* If shared key AP authentication is turned on, then we need to
5053 * configure the firmware to try and use it.
5054 *
5055 * Actual data encryption/decryption is handled by the host. */
5056 security->auth_mode = auth_mode;
5057 security->unicast_using_group = unicast_using_group;
5058
5059 switch (security_level) {
5060 default:
5061 case SEC_LEVEL_0:
5062 security->allowed_ciphers = IPW_NONE_CIPHER;
5063 break;
5064 case SEC_LEVEL_1:
5065 security->allowed_ciphers = IPW_WEP40_CIPHER |
5066 IPW_WEP104_CIPHER;
5067 break;
5068 case SEC_LEVEL_2:
5069 security->allowed_ciphers = IPW_WEP40_CIPHER |
5070 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5071 break;
5072 case SEC_LEVEL_2_CKIP:
5073 security->allowed_ciphers = IPW_WEP40_CIPHER |
5074 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5075 break;
5076 case SEC_LEVEL_3:
5077 security->allowed_ciphers = IPW_WEP40_CIPHER |
5078 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5079 break;
5080 }
5081
5082 IPW_DEBUG_HC
5083 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5084 security->auth_mode, security->allowed_ciphers, security_level);
5085
5086 security->replay_counters_number = 0;
5087
5088 if (!batch_mode) {
5089 err = ipw2100_disable_adapter(priv);
5090 if (err)
5091 return err;
5092 }
5093
5094 err = ipw2100_hw_send_command(priv, &cmd);
5095
5096 if (!batch_mode)
5097 ipw2100_enable_adapter(priv);
5098
5099 return err;
5100 }
5101
5102 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5103 {
5104 struct host_command cmd = {
5105 .host_command = TX_POWER_INDEX,
5106 .host_command_sequence = 0,
5107 .host_command_length = 4
5108 };
5109 int err = 0;
5110
5111 if (tx_power != IPW_TX_POWER_DEFAULT)
5112 tx_power = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5113 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5114
5115 cmd.host_command_parameters[0] = tx_power;
5116
5117 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5118 err = ipw2100_hw_send_command(priv, &cmd);
5119 if (!err)
5120 priv->tx_power = tx_power;
5121
5122 return 0;
5123 }
5124
5125 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5126 u32 interval, int batch_mode)
5127 {
5128 struct host_command cmd = {
5129 .host_command = BEACON_INTERVAL,
5130 .host_command_sequence = 0,
5131 .host_command_length = 4
5132 };
5133 int err;
5134
5135 cmd.host_command_parameters[0] = interval;
5136
5137 IPW_DEBUG_INFO("enter\n");
5138
5139 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5140 if (!batch_mode) {
5141 err = ipw2100_disable_adapter(priv);
5142 if (err)
5143 return err;
5144 }
5145
5146 ipw2100_hw_send_command(priv, &cmd);
5147
5148 if (!batch_mode) {
5149 err = ipw2100_enable_adapter(priv);
5150 if (err)
5151 return err;
5152 }
5153 }
5154
5155 IPW_DEBUG_INFO("exit\n");
5156
5157 return 0;
5158 }
5159
5160 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5161 {
5162 ipw2100_tx_initialize(priv);
5163 ipw2100_rx_initialize(priv);
5164 ipw2100_msg_initialize(priv);
5165 }
5166
5167 void ipw2100_queues_free(struct ipw2100_priv *priv)
5168 {
5169 ipw2100_tx_free(priv);
5170 ipw2100_rx_free(priv);
5171 ipw2100_msg_free(priv);
5172 }
5173
5174 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5175 {
5176 if (ipw2100_tx_allocate(priv) ||
5177 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5178 goto fail;
5179
5180 return 0;
5181
5182 fail:
5183 ipw2100_tx_free(priv);
5184 ipw2100_rx_free(priv);
5185 ipw2100_msg_free(priv);
5186 return -ENOMEM;
5187 }
5188
5189 #define IPW_PRIVACY_CAPABLE 0x0008
5190
5191 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5192 int batch_mode)
5193 {
5194 struct host_command cmd = {
5195 .host_command = WEP_FLAGS,
5196 .host_command_sequence = 0,
5197 .host_command_length = 4
5198 };
5199 int err;
5200
5201 cmd.host_command_parameters[0] = flags;
5202
5203 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5204
5205 if (!batch_mode) {
5206 err = ipw2100_disable_adapter(priv);
5207 if (err) {
5208 printk(KERN_ERR DRV_NAME
5209 ": %s: Could not disable adapter %d\n",
5210 priv->net_dev->name, err);
5211 return err;
5212 }
5213 }
5214
5215 /* send cmd to firmware */
5216 err = ipw2100_hw_send_command(priv, &cmd);
5217
5218 if (!batch_mode)
5219 ipw2100_enable_adapter(priv);
5220
5221 return err;
5222 }
5223
5224 struct ipw2100_wep_key {
5225 u8 idx;
5226 u8 len;
5227 u8 key[13];
5228 };
5229
5230 /* Macros to ease up priting WEP keys */
5231 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5232 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5233 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5234 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5235
5236 /**
5237 * Set a the wep key
5238 *
5239 * @priv: struct to work on
5240 * @idx: index of the key we want to set
5241 * @key: ptr to the key data to set
5242 * @len: length of the buffer at @key
5243 * @batch_mode: FIXME perform the operation in batch mode, not
5244 * disabling the device.
5245 *
5246 * @returns 0 if OK, < 0 errno code on error.
5247 *
5248 * Fill out a command structure with the new wep key, length an
5249 * index and send it down the wire.
5250 */
5251 static int ipw2100_set_key(struct ipw2100_priv *priv,
5252 int idx, char *key, int len, int batch_mode)
5253 {
5254 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5255 struct host_command cmd = {
5256 .host_command = WEP_KEY_INFO,
5257 .host_command_sequence = 0,
5258 .host_command_length = sizeof(struct ipw2100_wep_key),
5259 };
5260 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5261 int err;
5262
5263 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5264 idx, keylen, len);
5265
5266 /* NOTE: We don't check cached values in case the firmware was reset
5267 * or some other problem is occuring. If the user is setting the key,
5268 * then we push the change */
5269
5270 wep_key->idx = idx;
5271 wep_key->len = keylen;
5272
5273 if (keylen) {
5274 memcpy(wep_key->key, key, len);
5275 memset(wep_key->key + len, 0, keylen - len);
5276 }
5277
5278 /* Will be optimized out on debug not being configured in */
5279 if (keylen == 0)
5280 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5281 priv->net_dev->name, wep_key->idx);
5282 else if (keylen == 5)
5283 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5284 priv->net_dev->name, wep_key->idx, wep_key->len,
5285 WEP_STR_64(wep_key->key));
5286 else
5287 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5288 "\n",
5289 priv->net_dev->name, wep_key->idx, wep_key->len,
5290 WEP_STR_128(wep_key->key));
5291
5292 if (!batch_mode) {
5293 err = ipw2100_disable_adapter(priv);
5294 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5295 if (err) {
5296 printk(KERN_ERR DRV_NAME
5297 ": %s: Could not disable adapter %d\n",
5298 priv->net_dev->name, err);
5299 return err;
5300 }
5301 }
5302
5303 /* send cmd to firmware */
5304 err = ipw2100_hw_send_command(priv, &cmd);
5305
5306 if (!batch_mode) {
5307 int err2 = ipw2100_enable_adapter(priv);
5308 if (err == 0)
5309 err = err2;
5310 }
5311 return err;
5312 }
5313
5314 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5315 int idx, int batch_mode)
5316 {
5317 struct host_command cmd = {
5318 .host_command = WEP_KEY_INDEX,
5319 .host_command_sequence = 0,
5320 .host_command_length = 4,
5321 .host_command_parameters = {idx},
5322 };
5323 int err;
5324
5325 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5326
5327 if (idx < 0 || idx > 3)
5328 return -EINVAL;
5329
5330 if (!batch_mode) {
5331 err = ipw2100_disable_adapter(priv);
5332 if (err) {
5333 printk(KERN_ERR DRV_NAME
5334 ": %s: Could not disable adapter %d\n",
5335 priv->net_dev->name, err);
5336 return err;
5337 }
5338 }
5339
5340 /* send cmd to firmware */
5341 err = ipw2100_hw_send_command(priv, &cmd);
5342
5343 if (!batch_mode)
5344 ipw2100_enable_adapter(priv);
5345
5346 return err;
5347 }
5348
5349 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5350 {
5351 int i, err, auth_mode, sec_level, use_group;
5352
5353 if (!(priv->status & STATUS_RUNNING))
5354 return 0;
5355
5356 if (!batch_mode) {
5357 err = ipw2100_disable_adapter(priv);
5358 if (err)
5359 return err;
5360 }
5361
5362 if (!priv->ieee->sec.enabled) {
5363 err =
5364 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5365 SEC_LEVEL_0, 0, 1);
5366 } else {
5367 auth_mode = IPW_AUTH_OPEN;
5368 if ((priv->ieee->sec.flags & SEC_AUTH_MODE) &&
5369 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY))
5370 auth_mode = IPW_AUTH_SHARED;
5371
5372 sec_level = SEC_LEVEL_0;
5373 if (priv->ieee->sec.flags & SEC_LEVEL)
5374 sec_level = priv->ieee->sec.level;
5375
5376 use_group = 0;
5377 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5378 use_group = priv->ieee->sec.unicast_uses_group;
5379
5380 err =
5381 ipw2100_set_security_information(priv, auth_mode, sec_level,
5382 use_group, 1);
5383 }
5384
5385 if (err)
5386 goto exit;
5387
5388 if (priv->ieee->sec.enabled) {
5389 for (i = 0; i < 4; i++) {
5390 if (!(priv->ieee->sec.flags & (1 << i))) {
5391 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5392 priv->ieee->sec.key_sizes[i] = 0;
5393 } else {
5394 err = ipw2100_set_key(priv, i,
5395 priv->ieee->sec.keys[i],
5396 priv->ieee->sec.
5397 key_sizes[i], 1);
5398 if (err)
5399 goto exit;
5400 }
5401 }
5402
5403 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5404 }
5405
5406 /* Always enable privacy so the Host can filter WEP packets if
5407 * encrypted data is sent up */
5408 err =
5409 ipw2100_set_wep_flags(priv,
5410 priv->ieee->sec.
5411 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5412 if (err)
5413 goto exit;
5414
5415 priv->status &= ~STATUS_SECURITY_UPDATED;
5416
5417 exit:
5418 if (!batch_mode)
5419 ipw2100_enable_adapter(priv);
5420
5421 return err;
5422 }
5423
5424 static void ipw2100_security_work(struct ipw2100_priv *priv)
5425 {
5426 /* If we happen to have reconnected before we get a chance to
5427 * process this, then update the security settings--which causes
5428 * a disassociation to occur */
5429 if (!(priv->status & STATUS_ASSOCIATED) &&
5430 priv->status & STATUS_SECURITY_UPDATED)
5431 ipw2100_configure_security(priv, 0);
5432 }
5433
5434 static void shim__set_security(struct net_device *dev,
5435 struct ieee80211_security *sec)
5436 {
5437 struct ipw2100_priv *priv = ieee80211_priv(dev);
5438 int i, force_update = 0;
5439
5440 down(&priv->action_sem);
5441 if (!(priv->status & STATUS_INITIALIZED))
5442 goto done;
5443
5444 for (i = 0; i < 4; i++) {
5445 if (sec->flags & (1 << i)) {
5446 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5447 if (sec->key_sizes[i] == 0)
5448 priv->ieee->sec.flags &= ~(1 << i);
5449 else
5450 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5451 sec->key_sizes[i]);
5452 if (sec->level == SEC_LEVEL_1) {
5453 priv->ieee->sec.flags |= (1 << i);
5454 priv->status |= STATUS_SECURITY_UPDATED;
5455 } else
5456 priv->ieee->sec.flags &= ~(1 << i);
5457 }
5458 }
5459
5460 if ((sec->flags & SEC_ACTIVE_KEY) &&
5461 priv->ieee->sec.active_key != sec->active_key) {
5462 if (sec->active_key <= 3) {
5463 priv->ieee->sec.active_key = sec->active_key;
5464 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5465 } else
5466 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5467
5468 priv->status |= STATUS_SECURITY_UPDATED;
5469 }
5470
5471 if ((sec->flags & SEC_AUTH_MODE) &&
5472 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5473 priv->ieee->sec.auth_mode = sec->auth_mode;
5474 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5475 priv->status |= STATUS_SECURITY_UPDATED;
5476 }
5477
5478 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5479 priv->ieee->sec.flags |= SEC_ENABLED;
5480 priv->ieee->sec.enabled = sec->enabled;
5481 priv->status |= STATUS_SECURITY_UPDATED;
5482 force_update = 1;
5483 }
5484
5485 if (sec->flags & SEC_ENCRYPT)
5486 priv->ieee->sec.encrypt = sec->encrypt;
5487
5488 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5489 priv->ieee->sec.level = sec->level;
5490 priv->ieee->sec.flags |= SEC_LEVEL;
5491 priv->status |= STATUS_SECURITY_UPDATED;
5492 }
5493
5494 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5495 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5496 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5497 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5498 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5499 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5500 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5501 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5502 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5503 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5504
5505 /* As a temporary work around to enable WPA until we figure out why
5506 * wpa_supplicant toggles the security capability of the driver, which
5507 * forces a disassocation with force_update...
5508 *
5509 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5510 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5511 ipw2100_configure_security(priv, 0);
5512 done:
5513 up(&priv->action_sem);
5514 }
5515
5516 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5517 {
5518 int err;
5519 int batch_mode = 1;
5520 u8 *bssid;
5521
5522 IPW_DEBUG_INFO("enter\n");
5523
5524 err = ipw2100_disable_adapter(priv);
5525 if (err)
5526 return err;
5527 #ifdef CONFIG_IPW2100_MONITOR
5528 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5529 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5530 if (err)
5531 return err;
5532
5533 IPW_DEBUG_INFO("exit\n");
5534
5535 return 0;
5536 }
5537 #endif /* CONFIG_IPW2100_MONITOR */
5538
5539 err = ipw2100_read_mac_address(priv);
5540 if (err)
5541 return -EIO;
5542
5543 err = ipw2100_set_mac_address(priv, batch_mode);
5544 if (err)
5545 return err;
5546
5547 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5548 if (err)
5549 return err;
5550
5551 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5552 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5553 if (err)
5554 return err;
5555 }
5556
5557 err = ipw2100_system_config(priv, batch_mode);
5558 if (err)
5559 return err;
5560
5561 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5562 if (err)
5563 return err;
5564
5565 /* Default to power mode OFF */
5566 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5567 if (err)
5568 return err;
5569
5570 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5571 if (err)
5572 return err;
5573
5574 if (priv->config & CFG_STATIC_BSSID)
5575 bssid = priv->bssid;
5576 else
5577 bssid = NULL;
5578 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5579 if (err)
5580 return err;
5581
5582 if (priv->config & CFG_STATIC_ESSID)
5583 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5584 batch_mode);
5585 else
5586 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5587 if (err)
5588 return err;
5589
5590 err = ipw2100_configure_security(priv, batch_mode);
5591 if (err)
5592 return err;
5593
5594 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5595 err =
5596 ipw2100_set_ibss_beacon_interval(priv,
5597 priv->beacon_interval,
5598 batch_mode);
5599 if (err)
5600 return err;
5601
5602 err = ipw2100_set_tx_power(priv, priv->tx_power);
5603 if (err)
5604 return err;
5605 }
5606
5607 /*
5608 err = ipw2100_set_fragmentation_threshold(
5609 priv, priv->frag_threshold, batch_mode);
5610 if (err)
5611 return err;
5612 */
5613
5614 IPW_DEBUG_INFO("exit\n");
5615
5616 return 0;
5617 }
5618
5619 /*************************************************************************
5620 *
5621 * EXTERNALLY CALLED METHODS
5622 *
5623 *************************************************************************/
5624
5625 /* This method is called by the network layer -- not to be confused with
5626 * ipw2100_set_mac_address() declared above called by this driver (and this
5627 * method as well) to talk to the firmware */
5628 static int ipw2100_set_address(struct net_device *dev, void *p)
5629 {
5630 struct ipw2100_priv *priv = ieee80211_priv(dev);
5631 struct sockaddr *addr = p;
5632 int err = 0;
5633
5634 if (!is_valid_ether_addr(addr->sa_data))
5635 return -EADDRNOTAVAIL;
5636
5637 down(&priv->action_sem);
5638
5639 priv->config |= CFG_CUSTOM_MAC;
5640 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5641
5642 err = ipw2100_set_mac_address(priv, 0);
5643 if (err)
5644 goto done;
5645
5646 priv->reset_backoff = 0;
5647 up(&priv->action_sem);
5648 ipw2100_reset_adapter(priv);
5649 return 0;
5650
5651 done:
5652 up(&priv->action_sem);
5653 return err;
5654 }
5655
5656 static int ipw2100_open(struct net_device *dev)
5657 {
5658 struct ipw2100_priv *priv = ieee80211_priv(dev);
5659 unsigned long flags;
5660 IPW_DEBUG_INFO("dev->open\n");
5661
5662 spin_lock_irqsave(&priv->low_lock, flags);
5663 if (priv->status & STATUS_ASSOCIATED) {
5664 netif_carrier_on(dev);
5665 netif_start_queue(dev);
5666 }
5667 spin_unlock_irqrestore(&priv->low_lock, flags);
5668
5669 return 0;
5670 }
5671
5672 static int ipw2100_close(struct net_device *dev)
5673 {
5674 struct ipw2100_priv *priv = ieee80211_priv(dev);
5675 unsigned long flags;
5676 struct list_head *element;
5677 struct ipw2100_tx_packet *packet;
5678
5679 IPW_DEBUG_INFO("enter\n");
5680
5681 spin_lock_irqsave(&priv->low_lock, flags);
5682
5683 if (priv->status & STATUS_ASSOCIATED)
5684 netif_carrier_off(dev);
5685 netif_stop_queue(dev);
5686
5687 /* Flush the TX queue ... */
5688 while (!list_empty(&priv->tx_pend_list)) {
5689 element = priv->tx_pend_list.next;
5690 packet = list_entry(element, struct ipw2100_tx_packet, list);
5691
5692 list_del(element);
5693 DEC_STAT(&priv->tx_pend_stat);
5694
5695 ieee80211_txb_free(packet->info.d_struct.txb);
5696 packet->info.d_struct.txb = NULL;
5697
5698 list_add_tail(element, &priv->tx_free_list);
5699 INC_STAT(&priv->tx_free_stat);
5700 }
5701 spin_unlock_irqrestore(&priv->low_lock, flags);
5702
5703 IPW_DEBUG_INFO("exit\n");
5704
5705 return 0;
5706 }
5707
5708 /*
5709 * TODO: Fix this function... its just wrong
5710 */
5711 static void ipw2100_tx_timeout(struct net_device *dev)
5712 {
5713 struct ipw2100_priv *priv = ieee80211_priv(dev);
5714
5715 priv->ieee->stats.tx_errors++;
5716
5717 #ifdef CONFIG_IPW2100_MONITOR
5718 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5719 return;
5720 #endif
5721
5722 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5723 dev->name);
5724 schedule_reset(priv);
5725 }
5726
5727 /*
5728 * TODO: reimplement it so that it reads statistics
5729 * from the adapter using ordinal tables
5730 * instead of/in addition to collecting them
5731 * in the driver
5732 */
5733 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5734 {
5735 struct ipw2100_priv *priv = ieee80211_priv(dev);
5736
5737 return &priv->ieee->stats;
5738 }
5739
5740 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5741 {
5742 /* This is called when wpa_supplicant loads and closes the driver
5743 * interface. */
5744 priv->ieee->wpa_enabled = value;
5745 return 0;
5746 }
5747
5748 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5749 {
5750
5751 struct ieee80211_device *ieee = priv->ieee;
5752 struct ieee80211_security sec = {
5753 .flags = SEC_AUTH_MODE,
5754 };
5755 int ret = 0;
5756
5757 if (value & IW_AUTH_ALG_SHARED_KEY) {
5758 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5759 ieee->open_wep = 0;
5760 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5761 sec.auth_mode = WLAN_AUTH_OPEN;
5762 ieee->open_wep = 1;
5763 } else
5764 return -EINVAL;
5765
5766 if (ieee->set_security)
5767 ieee->set_security(ieee->dev, &sec);
5768 else
5769 ret = -EOPNOTSUPP;
5770
5771 return ret;
5772 }
5773
5774 void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5775 char *wpa_ie, int wpa_ie_len)
5776 {
5777
5778 struct ipw2100_wpa_assoc_frame frame;
5779
5780 frame.fixed_ie_mask = 0;
5781
5782 /* copy WPA IE */
5783 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5784 frame.var_ie_len = wpa_ie_len;
5785
5786 /* make sure WPA is enabled */
5787 ipw2100_wpa_enable(priv, 1);
5788 ipw2100_set_wpa_ie(priv, &frame, 0);
5789 }
5790
5791 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5792 struct ethtool_drvinfo *info)
5793 {
5794 struct ipw2100_priv *priv = ieee80211_priv(dev);
5795 char fw_ver[64], ucode_ver[64];
5796
5797 strcpy(info->driver, DRV_NAME);
5798 strcpy(info->version, DRV_VERSION);
5799
5800 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5801 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5802
5803 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5804 fw_ver, priv->eeprom_version, ucode_ver);
5805
5806 strcpy(info->bus_info, pci_name(priv->pci_dev));
5807 }
5808
5809 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5810 {
5811 struct ipw2100_priv *priv = ieee80211_priv(dev);
5812 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5813 }
5814
5815 static struct ethtool_ops ipw2100_ethtool_ops = {
5816 .get_link = ipw2100_ethtool_get_link,
5817 .get_drvinfo = ipw_ethtool_get_drvinfo,
5818 };
5819
5820 static void ipw2100_hang_check(void *adapter)
5821 {
5822 struct ipw2100_priv *priv = adapter;
5823 unsigned long flags;
5824 u32 rtc = 0xa5a5a5a5;
5825 u32 len = sizeof(rtc);
5826 int restart = 0;
5827
5828 spin_lock_irqsave(&priv->low_lock, flags);
5829
5830 if (priv->fatal_error != 0) {
5831 /* If fatal_error is set then we need to restart */
5832 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5833 priv->net_dev->name);
5834
5835 restart = 1;
5836 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5837 (rtc == priv->last_rtc)) {
5838 /* Check if firmware is hung */
5839 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5840 priv->net_dev->name);
5841
5842 restart = 1;
5843 }
5844
5845 if (restart) {
5846 /* Kill timer */
5847 priv->stop_hang_check = 1;
5848 priv->hangs++;
5849
5850 /* Restart the NIC */
5851 schedule_reset(priv);
5852 }
5853
5854 priv->last_rtc = rtc;
5855
5856 if (!priv->stop_hang_check)
5857 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5858
5859 spin_unlock_irqrestore(&priv->low_lock, flags);
5860 }
5861
5862 static void ipw2100_rf_kill(void *adapter)
5863 {
5864 struct ipw2100_priv *priv = adapter;
5865 unsigned long flags;
5866
5867 spin_lock_irqsave(&priv->low_lock, flags);
5868
5869 if (rf_kill_active(priv)) {
5870 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5871 if (!priv->stop_rf_kill)
5872 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5873 goto exit_unlock;
5874 }
5875
5876 /* RF Kill is now disabled, so bring the device back up */
5877
5878 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5879 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5880 "device\n");
5881 schedule_reset(priv);
5882 } else
5883 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5884 "enabled\n");
5885
5886 exit_unlock:
5887 spin_unlock_irqrestore(&priv->low_lock, flags);
5888 }
5889
5890 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5891
5892 /* Look into using netdev destructor to shutdown ieee80211? */
5893
5894 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5895 void __iomem * base_addr,
5896 unsigned long mem_start,
5897 unsigned long mem_len)
5898 {
5899 struct ipw2100_priv *priv;
5900 struct net_device *dev;
5901
5902 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
5903 if (!dev)
5904 return NULL;
5905 priv = ieee80211_priv(dev);
5906 priv->ieee = netdev_priv(dev);
5907 priv->pci_dev = pci_dev;
5908 priv->net_dev = dev;
5909
5910 priv->ieee->hard_start_xmit = ipw2100_tx;
5911 priv->ieee->set_security = shim__set_security;
5912
5913 priv->ieee->perfect_rssi = -20;
5914 priv->ieee->worst_rssi = -85;
5915
5916 dev->open = ipw2100_open;
5917 dev->stop = ipw2100_close;
5918 dev->init = ipw2100_net_init;
5919 dev->get_stats = ipw2100_stats;
5920 dev->ethtool_ops = &ipw2100_ethtool_ops;
5921 dev->tx_timeout = ipw2100_tx_timeout;
5922 dev->wireless_handlers = &ipw2100_wx_handler_def;
5923 priv->wireless_data.ieee80211 = priv->ieee;
5924 dev->wireless_data = &priv->wireless_data;
5925 dev->set_mac_address = ipw2100_set_address;
5926 dev->watchdog_timeo = 3 * HZ;
5927 dev->irq = 0;
5928
5929 dev->base_addr = (unsigned long)base_addr;
5930 dev->mem_start = mem_start;
5931 dev->mem_end = dev->mem_start + mem_len - 1;
5932
5933 /* NOTE: We don't use the wireless_handlers hook
5934 * in dev as the system will start throwing WX requests
5935 * to us before we're actually initialized and it just
5936 * ends up causing problems. So, we just handle
5937 * the WX extensions through the ipw2100_ioctl interface */
5938
5939 /* memset() puts everything to 0, so we only have explicitely set
5940 * those values that need to be something else */
5941
5942 /* If power management is turned on, default to AUTO mode */
5943 priv->power_mode = IPW_POWER_AUTO;
5944
5945 #ifdef CONFIG_IPW2100_MONITOR
5946 priv->config |= CFG_CRC_CHECK;
5947 #endif
5948 priv->ieee->wpa_enabled = 0;
5949 priv->ieee->drop_unencrypted = 0;
5950 priv->ieee->privacy_invoked = 0;
5951 priv->ieee->ieee802_1x = 1;
5952
5953 /* Set module parameters */
5954 switch (mode) {
5955 case 1:
5956 priv->ieee->iw_mode = IW_MODE_ADHOC;
5957 break;
5958 #ifdef CONFIG_IPW2100_MONITOR
5959 case 2:
5960 priv->ieee->iw_mode = IW_MODE_MONITOR;
5961 break;
5962 #endif
5963 default:
5964 case 0:
5965 priv->ieee->iw_mode = IW_MODE_INFRA;
5966 break;
5967 }
5968
5969 if (disable == 1)
5970 priv->status |= STATUS_RF_KILL_SW;
5971
5972 if (channel != 0 &&
5973 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
5974 priv->config |= CFG_STATIC_CHANNEL;
5975 priv->channel = channel;
5976 }
5977
5978 if (associate)
5979 priv->config |= CFG_ASSOCIATE;
5980
5981 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
5982 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
5983 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
5984 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
5985 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
5986 priv->tx_power = IPW_TX_POWER_DEFAULT;
5987 priv->tx_rates = DEFAULT_TX_RATES;
5988
5989 strcpy(priv->nick, "ipw2100");
5990
5991 spin_lock_init(&priv->low_lock);
5992 sema_init(&priv->action_sem, 1);
5993 sema_init(&priv->adapter_sem, 1);
5994
5995 init_waitqueue_head(&priv->wait_command_queue);
5996
5997 netif_carrier_off(dev);
5998
5999 INIT_LIST_HEAD(&priv->msg_free_list);
6000 INIT_LIST_HEAD(&priv->msg_pend_list);
6001 INIT_STAT(&priv->msg_free_stat);
6002 INIT_STAT(&priv->msg_pend_stat);
6003
6004 INIT_LIST_HEAD(&priv->tx_free_list);
6005 INIT_LIST_HEAD(&priv->tx_pend_list);
6006 INIT_STAT(&priv->tx_free_stat);
6007 INIT_STAT(&priv->tx_pend_stat);
6008
6009 INIT_LIST_HEAD(&priv->fw_pend_list);
6010 INIT_STAT(&priv->fw_pend_stat);
6011
6012 priv->workqueue = create_workqueue(DRV_NAME);
6013
6014 INIT_WORK(&priv->reset_work,
6015 (void (*)(void *))ipw2100_reset_adapter, priv);
6016 INIT_WORK(&priv->security_work,
6017 (void (*)(void *))ipw2100_security_work, priv);
6018 INIT_WORK(&priv->wx_event_work,
6019 (void (*)(void *))ipw2100_wx_event_work, priv);
6020 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6021 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6022
6023 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6024 ipw2100_irq_tasklet, (unsigned long)priv);
6025
6026 /* NOTE: We do not start the deferred work for status checks yet */
6027 priv->stop_rf_kill = 1;
6028 priv->stop_hang_check = 1;
6029
6030 return dev;
6031 }
6032
6033 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6034 const struct pci_device_id *ent)
6035 {
6036 unsigned long mem_start, mem_len, mem_flags;
6037 void __iomem *base_addr = NULL;
6038 struct net_device *dev = NULL;
6039 struct ipw2100_priv *priv = NULL;
6040 int err = 0;
6041 int registered = 0;
6042 u32 val;
6043
6044 IPW_DEBUG_INFO("enter\n");
6045
6046 mem_start = pci_resource_start(pci_dev, 0);
6047 mem_len = pci_resource_len(pci_dev, 0);
6048 mem_flags = pci_resource_flags(pci_dev, 0);
6049
6050 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6051 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6052 err = -ENODEV;
6053 goto fail;
6054 }
6055
6056 base_addr = ioremap_nocache(mem_start, mem_len);
6057 if (!base_addr) {
6058 printk(KERN_WARNING DRV_NAME
6059 "Error calling ioremap_nocache.\n");
6060 err = -EIO;
6061 goto fail;
6062 }
6063
6064 /* allocate and initialize our net_device */
6065 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6066 if (!dev) {
6067 printk(KERN_WARNING DRV_NAME
6068 "Error calling ipw2100_alloc_device.\n");
6069 err = -ENOMEM;
6070 goto fail;
6071 }
6072
6073 /* set up PCI mappings for device */
6074 err = pci_enable_device(pci_dev);
6075 if (err) {
6076 printk(KERN_WARNING DRV_NAME
6077 "Error calling pci_enable_device.\n");
6078 return err;
6079 }
6080
6081 priv = ieee80211_priv(dev);
6082
6083 pci_set_master(pci_dev);
6084 pci_set_drvdata(pci_dev, priv);
6085
6086 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6087 if (err) {
6088 printk(KERN_WARNING DRV_NAME
6089 "Error calling pci_set_dma_mask.\n");
6090 pci_disable_device(pci_dev);
6091 return err;
6092 }
6093
6094 err = pci_request_regions(pci_dev, DRV_NAME);
6095 if (err) {
6096 printk(KERN_WARNING DRV_NAME
6097 "Error calling pci_request_regions.\n");
6098 pci_disable_device(pci_dev);
6099 return err;
6100 }
6101
6102 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6103 * PCI Tx retries from interfering with C3 CPU state */
6104 pci_read_config_dword(pci_dev, 0x40, &val);
6105 if ((val & 0x0000ff00) != 0)
6106 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6107
6108 pci_set_power_state(pci_dev, PCI_D0);
6109
6110 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6111 printk(KERN_WARNING DRV_NAME
6112 "Device not found via register read.\n");
6113 err = -ENODEV;
6114 goto fail;
6115 }
6116
6117 SET_NETDEV_DEV(dev, &pci_dev->dev);
6118
6119 /* Force interrupts to be shut off on the device */
6120 priv->status |= STATUS_INT_ENABLED;
6121 ipw2100_disable_interrupts(priv);
6122
6123 /* Allocate and initialize the Tx/Rx queues and lists */
6124 if (ipw2100_queues_allocate(priv)) {
6125 printk(KERN_WARNING DRV_NAME
6126 "Error calilng ipw2100_queues_allocate.\n");
6127 err = -ENOMEM;
6128 goto fail;
6129 }
6130 ipw2100_queues_initialize(priv);
6131
6132 err = request_irq(pci_dev->irq,
6133 ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6134 if (err) {
6135 printk(KERN_WARNING DRV_NAME
6136 "Error calling request_irq: %d.\n", pci_dev->irq);
6137 goto fail;
6138 }
6139 dev->irq = pci_dev->irq;
6140
6141 IPW_DEBUG_INFO("Attempting to register device...\n");
6142
6143 SET_MODULE_OWNER(dev);
6144
6145 printk(KERN_INFO DRV_NAME
6146 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6147
6148 /* Bring up the interface. Pre 0.46, after we registered the
6149 * network device we would call ipw2100_up. This introduced a race
6150 * condition with newer hotplug configurations (network was coming
6151 * up and making calls before the device was initialized).
6152 *
6153 * If we called ipw2100_up before we registered the device, then the
6154 * device name wasn't registered. So, we instead use the net_dev->init
6155 * member to call a function that then just turns and calls ipw2100_up.
6156 * net_dev->init is called after name allocation but before the
6157 * notifier chain is called */
6158 down(&priv->action_sem);
6159 err = register_netdev(dev);
6160 if (err) {
6161 printk(KERN_WARNING DRV_NAME
6162 "Error calling register_netdev.\n");
6163 goto fail_unlock;
6164 }
6165 registered = 1;
6166
6167 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6168
6169 /* perform this after register_netdev so that dev->name is set */
6170 sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6171
6172 /* If the RF Kill switch is disabled, go ahead and complete the
6173 * startup sequence */
6174 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6175 /* Enable the adapter - sends HOST_COMPLETE */
6176 if (ipw2100_enable_adapter(priv)) {
6177 printk(KERN_WARNING DRV_NAME
6178 ": %s: failed in call to enable adapter.\n",
6179 priv->net_dev->name);
6180 ipw2100_hw_stop_adapter(priv);
6181 err = -EIO;
6182 goto fail_unlock;
6183 }
6184
6185 /* Start a scan . . . */
6186 ipw2100_set_scan_options(priv);
6187 ipw2100_start_scan(priv);
6188 }
6189
6190 IPW_DEBUG_INFO("exit\n");
6191
6192 priv->status |= STATUS_INITIALIZED;
6193
6194 up(&priv->action_sem);
6195
6196 return 0;
6197
6198 fail_unlock:
6199 up(&priv->action_sem);
6200
6201 fail:
6202 if (dev) {
6203 if (registered)
6204 unregister_netdev(dev);
6205
6206 ipw2100_hw_stop_adapter(priv);
6207
6208 ipw2100_disable_interrupts(priv);
6209
6210 if (dev->irq)
6211 free_irq(dev->irq, priv);
6212
6213 ipw2100_kill_workqueue(priv);
6214
6215 /* These are safe to call even if they weren't allocated */
6216 ipw2100_queues_free(priv);
6217 sysfs_remove_group(&pci_dev->dev.kobj,
6218 &ipw2100_attribute_group);
6219
6220 free_ieee80211(dev);
6221 pci_set_drvdata(pci_dev, NULL);
6222 }
6223
6224 if (base_addr)
6225 iounmap(base_addr);
6226
6227 pci_release_regions(pci_dev);
6228 pci_disable_device(pci_dev);
6229
6230 return err;
6231 }
6232
6233 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6234 {
6235 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6236 struct net_device *dev;
6237
6238 if (priv) {
6239 down(&priv->action_sem);
6240
6241 priv->status &= ~STATUS_INITIALIZED;
6242
6243 dev = priv->net_dev;
6244 sysfs_remove_group(&pci_dev->dev.kobj,
6245 &ipw2100_attribute_group);
6246
6247 #ifdef CONFIG_PM
6248 if (ipw2100_firmware.version)
6249 ipw2100_release_firmware(priv, &ipw2100_firmware);
6250 #endif
6251 /* Take down the hardware */
6252 ipw2100_down(priv);
6253
6254 /* Release the semaphore so that the network subsystem can
6255 * complete any needed calls into the driver... */
6256 up(&priv->action_sem);
6257
6258 /* Unregister the device first - this results in close()
6259 * being called if the device is open. If we free storage
6260 * first, then close() will crash. */
6261 unregister_netdev(dev);
6262
6263 /* ipw2100_down will ensure that there is no more pending work
6264 * in the workqueue's, so we can safely remove them now. */
6265 ipw2100_kill_workqueue(priv);
6266
6267 ipw2100_queues_free(priv);
6268
6269 /* Free potential debugging firmware snapshot */
6270 ipw2100_snapshot_free(priv);
6271
6272 if (dev->irq)
6273 free_irq(dev->irq, priv);
6274
6275 if (dev->base_addr)
6276 iounmap((void __iomem *)dev->base_addr);
6277
6278 free_ieee80211(dev);
6279 }
6280
6281 pci_release_regions(pci_dev);
6282 pci_disable_device(pci_dev);
6283
6284 IPW_DEBUG_INFO("exit\n");
6285 }
6286
6287 #ifdef CONFIG_PM
6288 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6289 {
6290 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6291 struct net_device *dev = priv->net_dev;
6292
6293 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6294
6295 down(&priv->action_sem);
6296 if (priv->status & STATUS_INITIALIZED) {
6297 /* Take down the device; powers it off, etc. */
6298 ipw2100_down(priv);
6299 }
6300
6301 /* Remove the PRESENT state of the device */
6302 netif_device_detach(dev);
6303
6304 pci_save_state(pci_dev);
6305 pci_disable_device(pci_dev);
6306 pci_set_power_state(pci_dev, PCI_D3hot);
6307
6308 up(&priv->action_sem);
6309
6310 return 0;
6311 }
6312
6313 static int ipw2100_resume(struct pci_dev *pci_dev)
6314 {
6315 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6316 struct net_device *dev = priv->net_dev;
6317 u32 val;
6318
6319 if (IPW2100_PM_DISABLED)
6320 return 0;
6321
6322 down(&priv->action_sem);
6323
6324 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6325
6326 pci_set_power_state(pci_dev, PCI_D0);
6327 pci_enable_device(pci_dev);
6328 pci_restore_state(pci_dev);
6329
6330 /*
6331 * Suspend/Resume resets the PCI configuration space, so we have to
6332 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6333 * from interfering with C3 CPU state. pci_restore_state won't help
6334 * here since it only restores the first 64 bytes pci config header.
6335 */
6336 pci_read_config_dword(pci_dev, 0x40, &val);
6337 if ((val & 0x0000ff00) != 0)
6338 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6339
6340 /* Set the device back into the PRESENT state; this will also wake
6341 * the queue of needed */
6342 netif_device_attach(dev);
6343
6344 /* Bring the device back up */
6345 if (!(priv->status & STATUS_RF_KILL_SW))
6346 ipw2100_up(priv, 0);
6347
6348 up(&priv->action_sem);
6349
6350 return 0;
6351 }
6352 #endif
6353
6354 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6355
6356 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6357 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6358 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6359 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6360 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6361 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6362 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6363 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6364 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6365 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6366 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6367 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6368 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6369 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6370
6371 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6372 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6373 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6374 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6375 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6376
6377 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6378 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6379 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6380 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6381 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6382 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6383 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6384
6385 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6386
6387 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6388 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6389 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6390 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6391 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6392 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6393 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6394
6395 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6396 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6397 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6398 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6399 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6400 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6401
6402 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6403 {0,},
6404 };
6405
6406 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6407
6408 static struct pci_driver ipw2100_pci_driver = {
6409 .name = DRV_NAME,
6410 .id_table = ipw2100_pci_id_table,
6411 .probe = ipw2100_pci_init_one,
6412 .remove = __devexit_p(ipw2100_pci_remove_one),
6413 #ifdef CONFIG_PM
6414 .suspend = ipw2100_suspend,
6415 .resume = ipw2100_resume,
6416 #endif
6417 };
6418
6419 /**
6420 * Initialize the ipw2100 driver/module
6421 *
6422 * @returns 0 if ok, < 0 errno node con error.
6423 *
6424 * Note: we cannot init the /proc stuff until the PCI driver is there,
6425 * or we risk an unlikely race condition on someone accessing
6426 * uninitialized data in the PCI dev struct through /proc.
6427 */
6428 static int __init ipw2100_init(void)
6429 {
6430 int ret;
6431
6432 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6433 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6434
6435 ret = pci_module_init(&ipw2100_pci_driver);
6436
6437 #ifdef CONFIG_IPW2100_DEBUG
6438 ipw2100_debug_level = debug;
6439 driver_create_file(&ipw2100_pci_driver.driver,
6440 &driver_attr_debug_level);
6441 #endif
6442
6443 return ret;
6444 }
6445
6446 /**
6447 * Cleanup ipw2100 driver registration
6448 */
6449 static void __exit ipw2100_exit(void)
6450 {
6451 /* FIXME: IPG: check that we have no instances of the devices open */
6452 #ifdef CONFIG_IPW2100_DEBUG
6453 driver_remove_file(&ipw2100_pci_driver.driver,
6454 &driver_attr_debug_level);
6455 #endif
6456 pci_unregister_driver(&ipw2100_pci_driver);
6457 }
6458
6459 module_init(ipw2100_init);
6460 module_exit(ipw2100_exit);
6461
6462 #define WEXT_USECHANNELS 1
6463
6464 static const long ipw2100_frequencies[] = {
6465 2412, 2417, 2422, 2427,
6466 2432, 2437, 2442, 2447,
6467 2452, 2457, 2462, 2467,
6468 2472, 2484
6469 };
6470
6471 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6472 sizeof(ipw2100_frequencies[0]))
6473
6474 static const long ipw2100_rates_11b[] = {
6475 1000000,
6476 2000000,
6477 5500000,
6478 11000000
6479 };
6480
6481 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6482
6483 static int ipw2100_wx_get_name(struct net_device *dev,
6484 struct iw_request_info *info,
6485 union iwreq_data *wrqu, char *extra)
6486 {
6487 /*
6488 * This can be called at any time. No action lock required
6489 */
6490
6491 struct ipw2100_priv *priv = ieee80211_priv(dev);
6492 if (!(priv->status & STATUS_ASSOCIATED))
6493 strcpy(wrqu->name, "unassociated");
6494 else
6495 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6496
6497 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6498 return 0;
6499 }
6500
6501 static int ipw2100_wx_set_freq(struct net_device *dev,
6502 struct iw_request_info *info,
6503 union iwreq_data *wrqu, char *extra)
6504 {
6505 struct ipw2100_priv *priv = ieee80211_priv(dev);
6506 struct iw_freq *fwrq = &wrqu->freq;
6507 int err = 0;
6508
6509 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6510 return -EOPNOTSUPP;
6511
6512 down(&priv->action_sem);
6513 if (!(priv->status & STATUS_INITIALIZED)) {
6514 err = -EIO;
6515 goto done;
6516 }
6517
6518 /* if setting by freq convert to channel */
6519 if (fwrq->e == 1) {
6520 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6521 int f = fwrq->m / 100000;
6522 int c = 0;
6523
6524 while ((c < REG_MAX_CHANNEL) &&
6525 (f != ipw2100_frequencies[c]))
6526 c++;
6527
6528 /* hack to fall through */
6529 fwrq->e = 0;
6530 fwrq->m = c + 1;
6531 }
6532 }
6533
6534 if (fwrq->e > 0 || fwrq->m > 1000) {
6535 err = -EOPNOTSUPP;
6536 goto done;
6537 } else { /* Set the channel */
6538 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6539 err = ipw2100_set_channel(priv, fwrq->m, 0);
6540 }
6541
6542 done:
6543 up(&priv->action_sem);
6544 return err;
6545 }
6546
6547 static int ipw2100_wx_get_freq(struct net_device *dev,
6548 struct iw_request_info *info,
6549 union iwreq_data *wrqu, char *extra)
6550 {
6551 /*
6552 * This can be called at any time. No action lock required
6553 */
6554
6555 struct ipw2100_priv *priv = ieee80211_priv(dev);
6556
6557 wrqu->freq.e = 0;
6558
6559 /* If we are associated, trying to associate, or have a statically
6560 * configured CHANNEL then return that; otherwise return ANY */
6561 if (priv->config & CFG_STATIC_CHANNEL ||
6562 priv->status & STATUS_ASSOCIATED)
6563 wrqu->freq.m = priv->channel;
6564 else
6565 wrqu->freq.m = 0;
6566
6567 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6568 return 0;
6569
6570 }
6571
6572 static int ipw2100_wx_set_mode(struct net_device *dev,
6573 struct iw_request_info *info,
6574 union iwreq_data *wrqu, char *extra)
6575 {
6576 struct ipw2100_priv *priv = ieee80211_priv(dev);
6577 int err = 0;
6578
6579 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6580
6581 if (wrqu->mode == priv->ieee->iw_mode)
6582 return 0;
6583
6584 down(&priv->action_sem);
6585 if (!(priv->status & STATUS_INITIALIZED)) {
6586 err = -EIO;
6587 goto done;
6588 }
6589
6590 switch (wrqu->mode) {
6591 #ifdef CONFIG_IPW2100_MONITOR
6592 case IW_MODE_MONITOR:
6593 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6594 break;
6595 #endif /* CONFIG_IPW2100_MONITOR */
6596 case IW_MODE_ADHOC:
6597 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6598 break;
6599 case IW_MODE_INFRA:
6600 case IW_MODE_AUTO:
6601 default:
6602 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6603 break;
6604 }
6605
6606 done:
6607 up(&priv->action_sem);
6608 return err;
6609 }
6610
6611 static int ipw2100_wx_get_mode(struct net_device *dev,
6612 struct iw_request_info *info,
6613 union iwreq_data *wrqu, char *extra)
6614 {
6615 /*
6616 * This can be called at any time. No action lock required
6617 */
6618
6619 struct ipw2100_priv *priv = ieee80211_priv(dev);
6620
6621 wrqu->mode = priv->ieee->iw_mode;
6622 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6623
6624 return 0;
6625 }
6626
6627 #define POWER_MODES 5
6628
6629 /* Values are in microsecond */
6630 static const s32 timeout_duration[POWER_MODES] = {
6631 350000,
6632 250000,
6633 75000,
6634 37000,
6635 25000,
6636 };
6637
6638 static const s32 period_duration[POWER_MODES] = {
6639 400000,
6640 700000,
6641 1000000,
6642 1000000,
6643 1000000
6644 };
6645
6646 static int ipw2100_wx_get_range(struct net_device *dev,
6647 struct iw_request_info *info,
6648 union iwreq_data *wrqu, char *extra)
6649 {
6650 /*
6651 * This can be called at any time. No action lock required
6652 */
6653
6654 struct ipw2100_priv *priv = ieee80211_priv(dev);
6655 struct iw_range *range = (struct iw_range *)extra;
6656 u16 val;
6657 int i, level;
6658
6659 wrqu->data.length = sizeof(*range);
6660 memset(range, 0, sizeof(*range));
6661
6662 /* Let's try to keep this struct in the same order as in
6663 * linux/include/wireless.h
6664 */
6665
6666 /* TODO: See what values we can set, and remove the ones we can't
6667 * set, or fill them with some default data.
6668 */
6669
6670 /* ~5 Mb/s real (802.11b) */
6671 range->throughput = 5 * 1000 * 1000;
6672
6673 // range->sensitivity; /* signal level threshold range */
6674
6675 range->max_qual.qual = 100;
6676 /* TODO: Find real max RSSI and stick here */
6677 range->max_qual.level = 0;
6678 range->max_qual.noise = 0;
6679 range->max_qual.updated = 7; /* Updated all three */
6680
6681 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6682 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6683 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6684 range->avg_qual.noise = 0;
6685 range->avg_qual.updated = 7; /* Updated all three */
6686
6687 range->num_bitrates = RATE_COUNT;
6688
6689 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6690 range->bitrate[i] = ipw2100_rates_11b[i];
6691 }
6692
6693 range->min_rts = MIN_RTS_THRESHOLD;
6694 range->max_rts = MAX_RTS_THRESHOLD;
6695 range->min_frag = MIN_FRAG_THRESHOLD;
6696 range->max_frag = MAX_FRAG_THRESHOLD;
6697
6698 range->min_pmp = period_duration[0]; /* Minimal PM period */
6699 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6700 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6701 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6702
6703 /* How to decode max/min PM period */
6704 range->pmp_flags = IW_POWER_PERIOD;
6705 /* How to decode max/min PM period */
6706 range->pmt_flags = IW_POWER_TIMEOUT;
6707 /* What PM options are supported */
6708 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6709
6710 range->encoding_size[0] = 5;
6711 range->encoding_size[1] = 13; /* Different token sizes */
6712 range->num_encoding_sizes = 2; /* Number of entry in the list */
6713 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6714 // range->encoding_login_index; /* token index for login token */
6715
6716 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6717 range->txpower_capa = IW_TXPOW_DBM;
6718 range->num_txpower = IW_MAX_TXPOWER;
6719 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6720 i < IW_MAX_TXPOWER;
6721 i++, level -=
6722 ((IPW_TX_POWER_MAX_DBM -
6723 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6724 range->txpower[i] = level / 16;
6725 } else {
6726 range->txpower_capa = 0;
6727 range->num_txpower = 0;
6728 }
6729
6730 /* Set the Wireless Extension versions */
6731 range->we_version_compiled = WIRELESS_EXT;
6732 range->we_version_source = 18;
6733
6734 // range->retry_capa; /* What retry options are supported */
6735 // range->retry_flags; /* How to decode max/min retry limit */
6736 // range->r_time_flags; /* How to decode max/min retry life */
6737 // range->min_retry; /* Minimal number of retries */
6738 // range->max_retry; /* Maximal number of retries */
6739 // range->min_r_time; /* Minimal retry lifetime */
6740 // range->max_r_time; /* Maximal retry lifetime */
6741
6742 range->num_channels = FREQ_COUNT;
6743
6744 val = 0;
6745 for (i = 0; i < FREQ_COUNT; i++) {
6746 // TODO: Include only legal frequencies for some countries
6747 // if (local->channel_mask & (1 << i)) {
6748 range->freq[val].i = i + 1;
6749 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6750 range->freq[val].e = 1;
6751 val++;
6752 // }
6753 if (val == IW_MAX_FREQUENCIES)
6754 break;
6755 }
6756 range->num_frequency = val;
6757
6758 /* Event capability (kernel + driver) */
6759 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6760 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6761 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6762
6763 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6764 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6765
6766 IPW_DEBUG_WX("GET Range\n");
6767
6768 return 0;
6769 }
6770
6771 static int ipw2100_wx_set_wap(struct net_device *dev,
6772 struct iw_request_info *info,
6773 union iwreq_data *wrqu, char *extra)
6774 {
6775 struct ipw2100_priv *priv = ieee80211_priv(dev);
6776 int err = 0;
6777
6778 static const unsigned char any[] = {
6779 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6780 };
6781 static const unsigned char off[] = {
6782 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6783 };
6784
6785 // sanity checks
6786 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6787 return -EINVAL;
6788
6789 down(&priv->action_sem);
6790 if (!(priv->status & STATUS_INITIALIZED)) {
6791 err = -EIO;
6792 goto done;
6793 }
6794
6795 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6796 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6797 /* we disable mandatory BSSID association */
6798 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6799 priv->config &= ~CFG_STATIC_BSSID;
6800 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6801 goto done;
6802 }
6803
6804 priv->config |= CFG_STATIC_BSSID;
6805 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6806
6807 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6808
6809 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6810 wrqu->ap_addr.sa_data[0] & 0xff,
6811 wrqu->ap_addr.sa_data[1] & 0xff,
6812 wrqu->ap_addr.sa_data[2] & 0xff,
6813 wrqu->ap_addr.sa_data[3] & 0xff,
6814 wrqu->ap_addr.sa_data[4] & 0xff,
6815 wrqu->ap_addr.sa_data[5] & 0xff);
6816
6817 done:
6818 up(&priv->action_sem);
6819 return err;
6820 }
6821
6822 static int ipw2100_wx_get_wap(struct net_device *dev,
6823 struct iw_request_info *info,
6824 union iwreq_data *wrqu, char *extra)
6825 {
6826 /*
6827 * This can be called at any time. No action lock required
6828 */
6829
6830 struct ipw2100_priv *priv = ieee80211_priv(dev);
6831
6832 /* If we are associated, trying to associate, or have a statically
6833 * configured BSSID then return that; otherwise return ANY */
6834 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6835 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6836 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6837 } else
6838 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6839
6840 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6841 MAC_ARG(wrqu->ap_addr.sa_data));
6842 return 0;
6843 }
6844
6845 static int ipw2100_wx_set_essid(struct net_device *dev,
6846 struct iw_request_info *info,
6847 union iwreq_data *wrqu, char *extra)
6848 {
6849 struct ipw2100_priv *priv = ieee80211_priv(dev);
6850 char *essid = ""; /* ANY */
6851 int length = 0;
6852 int err = 0;
6853
6854 down(&priv->action_sem);
6855 if (!(priv->status & STATUS_INITIALIZED)) {
6856 err = -EIO;
6857 goto done;
6858 }
6859
6860 if (wrqu->essid.flags && wrqu->essid.length) {
6861 length = wrqu->essid.length - 1;
6862 essid = extra;
6863 }
6864
6865 if (length == 0) {
6866 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6867 priv->config &= ~CFG_STATIC_ESSID;
6868 err = ipw2100_set_essid(priv, NULL, 0, 0);
6869 goto done;
6870 }
6871
6872 length = min(length, IW_ESSID_MAX_SIZE);
6873
6874 priv->config |= CFG_STATIC_ESSID;
6875
6876 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6877 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6878 err = 0;
6879 goto done;
6880 }
6881
6882 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6883 length);
6884
6885 priv->essid_len = length;
6886 memcpy(priv->essid, essid, priv->essid_len);
6887
6888 err = ipw2100_set_essid(priv, essid, length, 0);
6889
6890 done:
6891 up(&priv->action_sem);
6892 return err;
6893 }
6894
6895 static int ipw2100_wx_get_essid(struct net_device *dev,
6896 struct iw_request_info *info,
6897 union iwreq_data *wrqu, char *extra)
6898 {
6899 /*
6900 * This can be called at any time. No action lock required
6901 */
6902
6903 struct ipw2100_priv *priv = ieee80211_priv(dev);
6904
6905 /* If we are associated, trying to associate, or have a statically
6906 * configured ESSID then return that; otherwise return ANY */
6907 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6908 IPW_DEBUG_WX("Getting essid: '%s'\n",
6909 escape_essid(priv->essid, priv->essid_len));
6910 memcpy(extra, priv->essid, priv->essid_len);
6911 wrqu->essid.length = priv->essid_len;
6912 wrqu->essid.flags = 1; /* active */
6913 } else {
6914 IPW_DEBUG_WX("Getting essid: ANY\n");
6915 wrqu->essid.length = 0;
6916 wrqu->essid.flags = 0; /* active */
6917 }
6918
6919 return 0;
6920 }
6921
6922 static int ipw2100_wx_set_nick(struct net_device *dev,
6923 struct iw_request_info *info,
6924 union iwreq_data *wrqu, char *extra)
6925 {
6926 /*
6927 * This can be called at any time. No action lock required
6928 */
6929
6930 struct ipw2100_priv *priv = ieee80211_priv(dev);
6931
6932 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
6933 return -E2BIG;
6934
6935 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
6936 memset(priv->nick, 0, sizeof(priv->nick));
6937 memcpy(priv->nick, extra, wrqu->data.length);
6938
6939 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
6940
6941 return 0;
6942 }
6943
6944 static int ipw2100_wx_get_nick(struct net_device *dev,
6945 struct iw_request_info *info,
6946 union iwreq_data *wrqu, char *extra)
6947 {
6948 /*
6949 * This can be called at any time. No action lock required
6950 */
6951
6952 struct ipw2100_priv *priv = ieee80211_priv(dev);
6953
6954 wrqu->data.length = strlen(priv->nick) + 1;
6955 memcpy(extra, priv->nick, wrqu->data.length);
6956 wrqu->data.flags = 1; /* active */
6957
6958 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
6959
6960 return 0;
6961 }
6962
6963 static int ipw2100_wx_set_rate(struct net_device *dev,
6964 struct iw_request_info *info,
6965 union iwreq_data *wrqu, char *extra)
6966 {
6967 struct ipw2100_priv *priv = ieee80211_priv(dev);
6968 u32 target_rate = wrqu->bitrate.value;
6969 u32 rate;
6970 int err = 0;
6971
6972 down(&priv->action_sem);
6973 if (!(priv->status & STATUS_INITIALIZED)) {
6974 err = -EIO;
6975 goto done;
6976 }
6977
6978 rate = 0;
6979
6980 if (target_rate == 1000000 ||
6981 (!wrqu->bitrate.fixed && target_rate > 1000000))
6982 rate |= TX_RATE_1_MBIT;
6983 if (target_rate == 2000000 ||
6984 (!wrqu->bitrate.fixed && target_rate > 2000000))
6985 rate |= TX_RATE_2_MBIT;
6986 if (target_rate == 5500000 ||
6987 (!wrqu->bitrate.fixed && target_rate > 5500000))
6988 rate |= TX_RATE_5_5_MBIT;
6989 if (target_rate == 11000000 ||
6990 (!wrqu->bitrate.fixed && target_rate > 11000000))
6991 rate |= TX_RATE_11_MBIT;
6992 if (rate == 0)
6993 rate = DEFAULT_TX_RATES;
6994
6995 err = ipw2100_set_tx_rates(priv, rate, 0);
6996
6997 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
6998 done:
6999 up(&priv->action_sem);
7000 return err;
7001 }
7002
7003 static int ipw2100_wx_get_rate(struct net_device *dev,
7004 struct iw_request_info *info,
7005 union iwreq_data *wrqu, char *extra)
7006 {
7007 struct ipw2100_priv *priv = ieee80211_priv(dev);
7008 int val;
7009 int len = sizeof(val);
7010 int err = 0;
7011
7012 if (!(priv->status & STATUS_ENABLED) ||
7013 priv->status & STATUS_RF_KILL_MASK ||
7014 !(priv->status & STATUS_ASSOCIATED)) {
7015 wrqu->bitrate.value = 0;
7016 return 0;
7017 }
7018
7019 down(&priv->action_sem);
7020 if (!(priv->status & STATUS_INITIALIZED)) {
7021 err = -EIO;
7022 goto done;
7023 }
7024
7025 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7026 if (err) {
7027 IPW_DEBUG_WX("failed querying ordinals.\n");
7028 return err;
7029 }
7030
7031 switch (val & TX_RATE_MASK) {
7032 case TX_RATE_1_MBIT:
7033 wrqu->bitrate.value = 1000000;
7034 break;
7035 case TX_RATE_2_MBIT:
7036 wrqu->bitrate.value = 2000000;
7037 break;
7038 case TX_RATE_5_5_MBIT:
7039 wrqu->bitrate.value = 5500000;
7040 break;
7041 case TX_RATE_11_MBIT:
7042 wrqu->bitrate.value = 11000000;
7043 break;
7044 default:
7045 wrqu->bitrate.value = 0;
7046 }
7047
7048 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7049
7050 done:
7051 up(&priv->action_sem);
7052 return err;
7053 }
7054
7055 static int ipw2100_wx_set_rts(struct net_device *dev,
7056 struct iw_request_info *info,
7057 union iwreq_data *wrqu, char *extra)
7058 {
7059 struct ipw2100_priv *priv = ieee80211_priv(dev);
7060 int value, err;
7061
7062 /* Auto RTS not yet supported */
7063 if (wrqu->rts.fixed == 0)
7064 return -EINVAL;
7065
7066 down(&priv->action_sem);
7067 if (!(priv->status & STATUS_INITIALIZED)) {
7068 err = -EIO;
7069 goto done;
7070 }
7071
7072 if (wrqu->rts.disabled)
7073 value = priv->rts_threshold | RTS_DISABLED;
7074 else {
7075 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7076 err = -EINVAL;
7077 goto done;
7078 }
7079 value = wrqu->rts.value;
7080 }
7081
7082 err = ipw2100_set_rts_threshold(priv, value);
7083
7084 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7085 done:
7086 up(&priv->action_sem);
7087 return err;
7088 }
7089
7090 static int ipw2100_wx_get_rts(struct net_device *dev,
7091 struct iw_request_info *info,
7092 union iwreq_data *wrqu, char *extra)
7093 {
7094 /*
7095 * This can be called at any time. No action lock required
7096 */
7097
7098 struct ipw2100_priv *priv = ieee80211_priv(dev);
7099
7100 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7101 wrqu->rts.fixed = 1; /* no auto select */
7102
7103 /* If RTS is set to the default value, then it is disabled */
7104 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7105
7106 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7107
7108 return 0;
7109 }
7110
7111 static int ipw2100_wx_set_txpow(struct net_device *dev,
7112 struct iw_request_info *info,
7113 union iwreq_data *wrqu, char *extra)
7114 {
7115 struct ipw2100_priv *priv = ieee80211_priv(dev);
7116 int err = 0, value;
7117
7118 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7119 return -EINPROGRESS;
7120
7121 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7122 return 0;
7123
7124 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7125 return -EINVAL;
7126
7127 if (wrqu->txpower.fixed == 0)
7128 value = IPW_TX_POWER_DEFAULT;
7129 else {
7130 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7131 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7132 return -EINVAL;
7133
7134 value = wrqu->txpower.value;
7135 }
7136
7137 down(&priv->action_sem);
7138 if (!(priv->status & STATUS_INITIALIZED)) {
7139 err = -EIO;
7140 goto done;
7141 }
7142
7143 err = ipw2100_set_tx_power(priv, value);
7144
7145 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7146
7147 done:
7148 up(&priv->action_sem);
7149 return err;
7150 }
7151
7152 static int ipw2100_wx_get_txpow(struct net_device *dev,
7153 struct iw_request_info *info,
7154 union iwreq_data *wrqu, char *extra)
7155 {
7156 /*
7157 * This can be called at any time. No action lock required
7158 */
7159
7160 struct ipw2100_priv *priv = ieee80211_priv(dev);
7161
7162 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7163
7164 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7165 wrqu->txpower.fixed = 0;
7166 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7167 } else {
7168 wrqu->txpower.fixed = 1;
7169 wrqu->txpower.value = priv->tx_power;
7170 }
7171
7172 wrqu->txpower.flags = IW_TXPOW_DBM;
7173
7174 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7175
7176 return 0;
7177 }
7178
7179 static int ipw2100_wx_set_frag(struct net_device *dev,
7180 struct iw_request_info *info,
7181 union iwreq_data *wrqu, char *extra)
7182 {
7183 /*
7184 * This can be called at any time. No action lock required
7185 */
7186
7187 struct ipw2100_priv *priv = ieee80211_priv(dev);
7188
7189 if (!wrqu->frag.fixed)
7190 return -EINVAL;
7191
7192 if (wrqu->frag.disabled) {
7193 priv->frag_threshold |= FRAG_DISABLED;
7194 priv->ieee->fts = DEFAULT_FTS;
7195 } else {
7196 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7197 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7198 return -EINVAL;
7199
7200 priv->ieee->fts = wrqu->frag.value & ~0x1;
7201 priv->frag_threshold = priv->ieee->fts;
7202 }
7203
7204 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7205
7206 return 0;
7207 }
7208
7209 static int ipw2100_wx_get_frag(struct net_device *dev,
7210 struct iw_request_info *info,
7211 union iwreq_data *wrqu, char *extra)
7212 {
7213 /*
7214 * This can be called at any time. No action lock required
7215 */
7216
7217 struct ipw2100_priv *priv = ieee80211_priv(dev);
7218 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7219 wrqu->frag.fixed = 0; /* no auto select */
7220 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7221
7222 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7223
7224 return 0;
7225 }
7226
7227 static int ipw2100_wx_set_retry(struct net_device *dev,
7228 struct iw_request_info *info,
7229 union iwreq_data *wrqu, char *extra)
7230 {
7231 struct ipw2100_priv *priv = ieee80211_priv(dev);
7232 int err = 0;
7233
7234 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7235 return -EINVAL;
7236
7237 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7238 return 0;
7239
7240 down(&priv->action_sem);
7241 if (!(priv->status & STATUS_INITIALIZED)) {
7242 err = -EIO;
7243 goto done;
7244 }
7245
7246 if (wrqu->retry.flags & IW_RETRY_MIN) {
7247 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7248 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7249 wrqu->retry.value);
7250 goto done;
7251 }
7252
7253 if (wrqu->retry.flags & IW_RETRY_MAX) {
7254 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7255 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7256 wrqu->retry.value);
7257 goto done;
7258 }
7259
7260 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7261 if (!err)
7262 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7263
7264 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7265
7266 done:
7267 up(&priv->action_sem);
7268 return err;
7269 }
7270
7271 static int ipw2100_wx_get_retry(struct net_device *dev,
7272 struct iw_request_info *info,
7273 union iwreq_data *wrqu, char *extra)
7274 {
7275 /*
7276 * This can be called at any time. No action lock required
7277 */
7278
7279 struct ipw2100_priv *priv = ieee80211_priv(dev);
7280
7281 wrqu->retry.disabled = 0; /* can't be disabled */
7282
7283 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7284 return -EINVAL;
7285
7286 if (wrqu->retry.flags & IW_RETRY_MAX) {
7287 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7288 wrqu->retry.value = priv->long_retry_limit;
7289 } else {
7290 wrqu->retry.flags =
7291 (priv->short_retry_limit !=
7292 priv->long_retry_limit) ?
7293 IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7294
7295 wrqu->retry.value = priv->short_retry_limit;
7296 }
7297
7298 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7299
7300 return 0;
7301 }
7302
7303 static int ipw2100_wx_set_scan(struct net_device *dev,
7304 struct iw_request_info *info,
7305 union iwreq_data *wrqu, char *extra)
7306 {
7307 struct ipw2100_priv *priv = ieee80211_priv(dev);
7308 int err = 0;
7309
7310 down(&priv->action_sem);
7311 if (!(priv->status & STATUS_INITIALIZED)) {
7312 err = -EIO;
7313 goto done;
7314 }
7315
7316 IPW_DEBUG_WX("Initiating scan...\n");
7317 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7318 IPW_DEBUG_WX("Start scan failed.\n");
7319
7320 /* TODO: Mark a scan as pending so when hardware initialized
7321 * a scan starts */
7322 }
7323
7324 done:
7325 up(&priv->action_sem);
7326 return err;
7327 }
7328
7329 static int ipw2100_wx_get_scan(struct net_device *dev,
7330 struct iw_request_info *info,
7331 union iwreq_data *wrqu, char *extra)
7332 {
7333 /*
7334 * This can be called at any time. No action lock required
7335 */
7336
7337 struct ipw2100_priv *priv = ieee80211_priv(dev);
7338 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7339 }
7340
7341 /*
7342 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7343 */
7344 static int ipw2100_wx_set_encode(struct net_device *dev,
7345 struct iw_request_info *info,
7346 union iwreq_data *wrqu, char *key)
7347 {
7348 /*
7349 * No check of STATUS_INITIALIZED required
7350 */
7351
7352 struct ipw2100_priv *priv = ieee80211_priv(dev);
7353 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7354 }
7355
7356 static int ipw2100_wx_get_encode(struct net_device *dev,
7357 struct iw_request_info *info,
7358 union iwreq_data *wrqu, char *key)
7359 {
7360 /*
7361 * This can be called at any time. No action lock required
7362 */
7363
7364 struct ipw2100_priv *priv = ieee80211_priv(dev);
7365 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7366 }
7367
7368 static int ipw2100_wx_set_power(struct net_device *dev,
7369 struct iw_request_info *info,
7370 union iwreq_data *wrqu, char *extra)
7371 {
7372 struct ipw2100_priv *priv = ieee80211_priv(dev);
7373 int err = 0;
7374
7375 down(&priv->action_sem);
7376 if (!(priv->status & STATUS_INITIALIZED)) {
7377 err = -EIO;
7378 goto done;
7379 }
7380
7381 if (wrqu->power.disabled) {
7382 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7383 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7384 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7385 goto done;
7386 }
7387
7388 switch (wrqu->power.flags & IW_POWER_MODE) {
7389 case IW_POWER_ON: /* If not specified */
7390 case IW_POWER_MODE: /* If set all mask */
7391 case IW_POWER_ALL_R: /* If explicitely state all */
7392 break;
7393 default: /* Otherwise we don't support it */
7394 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7395 wrqu->power.flags);
7396 err = -EOPNOTSUPP;
7397 goto done;
7398 }
7399
7400 /* If the user hasn't specified a power management mode yet, default
7401 * to BATTERY */
7402 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7403 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7404
7405 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7406
7407 done:
7408 up(&priv->action_sem);
7409 return err;
7410
7411 }
7412
7413 static int ipw2100_wx_get_power(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *extra)
7416 {
7417 /*
7418 * This can be called at any time. No action lock required
7419 */
7420
7421 struct ipw2100_priv *priv = ieee80211_priv(dev);
7422
7423 if (!(priv->power_mode & IPW_POWER_ENABLED))
7424 wrqu->power.disabled = 1;
7425 else {
7426 wrqu->power.disabled = 0;
7427 wrqu->power.flags = 0;
7428 }
7429
7430 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7431
7432 return 0;
7433 }
7434
7435 /*
7436 * WE-18 WPA support
7437 */
7438
7439 /* SIOCSIWGENIE */
7440 static int ipw2100_wx_set_genie(struct net_device *dev,
7441 struct iw_request_info *info,
7442 union iwreq_data *wrqu, char *extra)
7443 {
7444
7445 struct ipw2100_priv *priv = ieee80211_priv(dev);
7446 struct ieee80211_device *ieee = priv->ieee;
7447 u8 *buf;
7448
7449 if (!ieee->wpa_enabled)
7450 return -EOPNOTSUPP;
7451
7452 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7453 (wrqu->data.length && extra == NULL))
7454 return -EINVAL;
7455
7456 if (wrqu->data.length) {
7457 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7458 if (buf == NULL)
7459 return -ENOMEM;
7460
7461 memcpy(buf, extra, wrqu->data.length);
7462 kfree(ieee->wpa_ie);
7463 ieee->wpa_ie = buf;
7464 ieee->wpa_ie_len = wrqu->data.length;
7465 } else {
7466 kfree(ieee->wpa_ie);
7467 ieee->wpa_ie = NULL;
7468 ieee->wpa_ie_len = 0;
7469 }
7470
7471 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7472
7473 return 0;
7474 }
7475
7476 /* SIOCGIWGENIE */
7477 static int ipw2100_wx_get_genie(struct net_device *dev,
7478 struct iw_request_info *info,
7479 union iwreq_data *wrqu, char *extra)
7480 {
7481 struct ipw2100_priv *priv = ieee80211_priv(dev);
7482 struct ieee80211_device *ieee = priv->ieee;
7483
7484 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7485 wrqu->data.length = 0;
7486 return 0;
7487 }
7488
7489 if (wrqu->data.length < ieee->wpa_ie_len)
7490 return -E2BIG;
7491
7492 wrqu->data.length = ieee->wpa_ie_len;
7493 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7494
7495 return 0;
7496 }
7497
7498 /* SIOCSIWAUTH */
7499 static int ipw2100_wx_set_auth(struct net_device *dev,
7500 struct iw_request_info *info,
7501 union iwreq_data *wrqu, char *extra)
7502 {
7503 struct ipw2100_priv *priv = ieee80211_priv(dev);
7504 struct ieee80211_device *ieee = priv->ieee;
7505 struct iw_param *param = &wrqu->param;
7506 struct ieee80211_crypt_data *crypt;
7507 unsigned long flags;
7508 int ret = 0;
7509
7510 switch (param->flags & IW_AUTH_INDEX) {
7511 case IW_AUTH_WPA_VERSION:
7512 case IW_AUTH_CIPHER_PAIRWISE:
7513 case IW_AUTH_CIPHER_GROUP:
7514 case IW_AUTH_KEY_MGMT:
7515 /*
7516 * ipw2200 does not use these parameters
7517 */
7518 break;
7519
7520 case IW_AUTH_TKIP_COUNTERMEASURES:
7521 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7522 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7523 break;
7524
7525 flags = crypt->ops->get_flags(crypt->priv);
7526
7527 if (param->value)
7528 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7529 else
7530 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7531
7532 crypt->ops->set_flags(flags, crypt->priv);
7533
7534 break;
7535
7536 case IW_AUTH_DROP_UNENCRYPTED:{
7537 /* HACK:
7538 *
7539 * wpa_supplicant calls set_wpa_enabled when the driver
7540 * is loaded and unloaded, regardless of if WPA is being
7541 * used. No other calls are made which can be used to
7542 * determine if encryption will be used or not prior to
7543 * association being expected. If encryption is not being
7544 * used, drop_unencrypted is set to false, else true -- we
7545 * can use this to determine if the CAP_PRIVACY_ON bit should
7546 * be set.
7547 */
7548 struct ieee80211_security sec = {
7549 .flags = SEC_ENABLED,
7550 .enabled = param->value,
7551 };
7552 priv->ieee->drop_unencrypted = param->value;
7553 /* We only change SEC_LEVEL for open mode. Others
7554 * are set by ipw_wpa_set_encryption.
7555 */
7556 if (!param->value) {
7557 sec.flags |= SEC_LEVEL;
7558 sec.level = SEC_LEVEL_0;
7559 } else {
7560 sec.flags |= SEC_LEVEL;
7561 sec.level = SEC_LEVEL_1;
7562 }
7563 if (priv->ieee->set_security)
7564 priv->ieee->set_security(priv->ieee->dev, &sec);
7565 break;
7566 }
7567
7568 case IW_AUTH_80211_AUTH_ALG:
7569 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7570 break;
7571
7572 case IW_AUTH_WPA_ENABLED:
7573 ret = ipw2100_wpa_enable(priv, param->value);
7574 break;
7575
7576 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7577 ieee->ieee802_1x = param->value;
7578 break;
7579
7580 //case IW_AUTH_ROAMING_CONTROL:
7581 case IW_AUTH_PRIVACY_INVOKED:
7582 ieee->privacy_invoked = param->value;
7583 break;
7584
7585 default:
7586 return -EOPNOTSUPP;
7587 }
7588 return ret;
7589 }
7590
7591 /* SIOCGIWAUTH */
7592 static int ipw2100_wx_get_auth(struct net_device *dev,
7593 struct iw_request_info *info,
7594 union iwreq_data *wrqu, char *extra)
7595 {
7596 struct ipw2100_priv *priv = ieee80211_priv(dev);
7597 struct ieee80211_device *ieee = priv->ieee;
7598 struct ieee80211_crypt_data *crypt;
7599 struct iw_param *param = &wrqu->param;
7600 int ret = 0;
7601
7602 switch (param->flags & IW_AUTH_INDEX) {
7603 case IW_AUTH_WPA_VERSION:
7604 case IW_AUTH_CIPHER_PAIRWISE:
7605 case IW_AUTH_CIPHER_GROUP:
7606 case IW_AUTH_KEY_MGMT:
7607 /*
7608 * wpa_supplicant will control these internally
7609 */
7610 ret = -EOPNOTSUPP;
7611 break;
7612
7613 case IW_AUTH_TKIP_COUNTERMEASURES:
7614 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7615 if (!crypt || !crypt->ops->get_flags) {
7616 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7617 "crypt not set!\n");
7618 break;
7619 }
7620
7621 param->value = (crypt->ops->get_flags(crypt->priv) &
7622 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7623
7624 break;
7625
7626 case IW_AUTH_DROP_UNENCRYPTED:
7627 param->value = ieee->drop_unencrypted;
7628 break;
7629
7630 case IW_AUTH_80211_AUTH_ALG:
7631 param->value = priv->ieee->sec.auth_mode;
7632 break;
7633
7634 case IW_AUTH_WPA_ENABLED:
7635 param->value = ieee->wpa_enabled;
7636 break;
7637
7638 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7639 param->value = ieee->ieee802_1x;
7640 break;
7641
7642 case IW_AUTH_ROAMING_CONTROL:
7643 case IW_AUTH_PRIVACY_INVOKED:
7644 param->value = ieee->privacy_invoked;
7645 break;
7646
7647 default:
7648 return -EOPNOTSUPP;
7649 }
7650 return 0;
7651 }
7652
7653 /* SIOCSIWENCODEEXT */
7654 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7655 struct iw_request_info *info,
7656 union iwreq_data *wrqu, char *extra)
7657 {
7658 struct ipw2100_priv *priv = ieee80211_priv(dev);
7659 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7660 }
7661
7662 /* SIOCGIWENCODEEXT */
7663 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7664 struct iw_request_info *info,
7665 union iwreq_data *wrqu, char *extra)
7666 {
7667 struct ipw2100_priv *priv = ieee80211_priv(dev);
7668 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7669 }
7670
7671 /* SIOCSIWMLME */
7672 static int ipw2100_wx_set_mlme(struct net_device *dev,
7673 struct iw_request_info *info,
7674 union iwreq_data *wrqu, char *extra)
7675 {
7676 struct ipw2100_priv *priv = ieee80211_priv(dev);
7677 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7678 u16 reason;
7679
7680 reason = cpu_to_le16(mlme->reason_code);
7681
7682 switch (mlme->cmd) {
7683 case IW_MLME_DEAUTH:
7684 // silently ignore
7685 break;
7686
7687 case IW_MLME_DISASSOC:
7688 ipw2100_disassociate_bssid(priv);
7689 break;
7690
7691 default:
7692 return -EOPNOTSUPP;
7693 }
7694 return 0;
7695 }
7696
7697 /*
7698 *
7699 * IWPRIV handlers
7700 *
7701 */
7702 #ifdef CONFIG_IPW2100_MONITOR
7703 static int ipw2100_wx_set_promisc(struct net_device *dev,
7704 struct iw_request_info *info,
7705 union iwreq_data *wrqu, char *extra)
7706 {
7707 struct ipw2100_priv *priv = ieee80211_priv(dev);
7708 int *parms = (int *)extra;
7709 int enable = (parms[0] > 0);
7710 int err = 0;
7711
7712 down(&priv->action_sem);
7713 if (!(priv->status & STATUS_INITIALIZED)) {
7714 err = -EIO;
7715 goto done;
7716 }
7717
7718 if (enable) {
7719 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7720 err = ipw2100_set_channel(priv, parms[1], 0);
7721 goto done;
7722 }
7723 priv->channel = parms[1];
7724 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7725 } else {
7726 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7727 err = ipw2100_switch_mode(priv, priv->last_mode);
7728 }
7729 done:
7730 up(&priv->action_sem);
7731 return err;
7732 }
7733
7734 static int ipw2100_wx_reset(struct net_device *dev,
7735 struct iw_request_info *info,
7736 union iwreq_data *wrqu, char *extra)
7737 {
7738 struct ipw2100_priv *priv = ieee80211_priv(dev);
7739 if (priv->status & STATUS_INITIALIZED)
7740 schedule_reset(priv);
7741 return 0;
7742 }
7743
7744 #endif
7745
7746 static int ipw2100_wx_set_powermode(struct net_device *dev,
7747 struct iw_request_info *info,
7748 union iwreq_data *wrqu, char *extra)
7749 {
7750 struct ipw2100_priv *priv = ieee80211_priv(dev);
7751 int err = 0, mode = *(int *)extra;
7752
7753 down(&priv->action_sem);
7754 if (!(priv->status & STATUS_INITIALIZED)) {
7755 err = -EIO;
7756 goto done;
7757 }
7758
7759 if ((mode < 1) || (mode > POWER_MODES))
7760 mode = IPW_POWER_AUTO;
7761
7762 if (priv->power_mode != mode)
7763 err = ipw2100_set_power_mode(priv, mode);
7764 done:
7765 up(&priv->action_sem);
7766 return err;
7767 }
7768
7769 #define MAX_POWER_STRING 80
7770 static int ipw2100_wx_get_powermode(struct net_device *dev,
7771 struct iw_request_info *info,
7772 union iwreq_data *wrqu, char *extra)
7773 {
7774 /*
7775 * This can be called at any time. No action lock required
7776 */
7777
7778 struct ipw2100_priv *priv = ieee80211_priv(dev);
7779 int level = IPW_POWER_LEVEL(priv->power_mode);
7780 s32 timeout, period;
7781
7782 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7783 snprintf(extra, MAX_POWER_STRING,
7784 "Power save level: %d (Off)", level);
7785 } else {
7786 switch (level) {
7787 case IPW_POWER_MODE_CAM:
7788 snprintf(extra, MAX_POWER_STRING,
7789 "Power save level: %d (None)", level);
7790 break;
7791 case IPW_POWER_AUTO:
7792 snprintf(extra, MAX_POWER_STRING,
7793 "Power save level: %d (Auto)", 0);
7794 break;
7795 default:
7796 timeout = timeout_duration[level - 1] / 1000;
7797 period = period_duration[level - 1] / 1000;
7798 snprintf(extra, MAX_POWER_STRING,
7799 "Power save level: %d "
7800 "(Timeout %dms, Period %dms)",
7801 level, timeout, period);
7802 }
7803 }
7804
7805 wrqu->data.length = strlen(extra) + 1;
7806
7807 return 0;
7808 }
7809
7810 static int ipw2100_wx_set_preamble(struct net_device *dev,
7811 struct iw_request_info *info,
7812 union iwreq_data *wrqu, char *extra)
7813 {
7814 struct ipw2100_priv *priv = ieee80211_priv(dev);
7815 int err, mode = *(int *)extra;
7816
7817 down(&priv->action_sem);
7818 if (!(priv->status & STATUS_INITIALIZED)) {
7819 err = -EIO;
7820 goto done;
7821 }
7822
7823 if (mode == 1)
7824 priv->config |= CFG_LONG_PREAMBLE;
7825 else if (mode == 0)
7826 priv->config &= ~CFG_LONG_PREAMBLE;
7827 else {
7828 err = -EINVAL;
7829 goto done;
7830 }
7831
7832 err = ipw2100_system_config(priv, 0);
7833
7834 done:
7835 up(&priv->action_sem);
7836 return err;
7837 }
7838
7839 static int ipw2100_wx_get_preamble(struct net_device *dev,
7840 struct iw_request_info *info,
7841 union iwreq_data *wrqu, char *extra)
7842 {
7843 /*
7844 * This can be called at any time. No action lock required
7845 */
7846
7847 struct ipw2100_priv *priv = ieee80211_priv(dev);
7848
7849 if (priv->config & CFG_LONG_PREAMBLE)
7850 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7851 else
7852 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7853
7854 return 0;
7855 }
7856
7857 #ifdef CONFIG_IPW2100_MONITOR
7858 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7859 struct iw_request_info *info,
7860 union iwreq_data *wrqu, char *extra)
7861 {
7862 struct ipw2100_priv *priv = ieee80211_priv(dev);
7863 int err, mode = *(int *)extra;
7864
7865 down(&priv->action_sem);
7866 if (!(priv->status & STATUS_INITIALIZED)) {
7867 err = -EIO;
7868 goto done;
7869 }
7870
7871 if (mode == 1)
7872 priv->config |= CFG_CRC_CHECK;
7873 else if (mode == 0)
7874 priv->config &= ~CFG_CRC_CHECK;
7875 else {
7876 err = -EINVAL;
7877 goto done;
7878 }
7879 err = 0;
7880
7881 done:
7882 up(&priv->action_sem);
7883 return err;
7884 }
7885
7886 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7887 struct iw_request_info *info,
7888 union iwreq_data *wrqu, char *extra)
7889 {
7890 /*
7891 * This can be called at any time. No action lock required
7892 */
7893
7894 struct ipw2100_priv *priv = ieee80211_priv(dev);
7895
7896 if (priv->config & CFG_CRC_CHECK)
7897 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7898 else
7899 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7900
7901 return 0;
7902 }
7903 #endif /* CONFIG_IPW2100_MONITOR */
7904
7905 static iw_handler ipw2100_wx_handlers[] = {
7906 NULL, /* SIOCSIWCOMMIT */
7907 ipw2100_wx_get_name, /* SIOCGIWNAME */
7908 NULL, /* SIOCSIWNWID */
7909 NULL, /* SIOCGIWNWID */
7910 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
7911 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
7912 ipw2100_wx_set_mode, /* SIOCSIWMODE */
7913 ipw2100_wx_get_mode, /* SIOCGIWMODE */
7914 NULL, /* SIOCSIWSENS */
7915 NULL, /* SIOCGIWSENS */
7916 NULL, /* SIOCSIWRANGE */
7917 ipw2100_wx_get_range, /* SIOCGIWRANGE */
7918 NULL, /* SIOCSIWPRIV */
7919 NULL, /* SIOCGIWPRIV */
7920 NULL, /* SIOCSIWSTATS */
7921 NULL, /* SIOCGIWSTATS */
7922 NULL, /* SIOCSIWSPY */
7923 NULL, /* SIOCGIWSPY */
7924 NULL, /* SIOCGIWTHRSPY */
7925 NULL, /* SIOCWIWTHRSPY */
7926 ipw2100_wx_set_wap, /* SIOCSIWAP */
7927 ipw2100_wx_get_wap, /* SIOCGIWAP */
7928 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
7929 NULL, /* SIOCGIWAPLIST -- deprecated */
7930 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
7931 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
7932 ipw2100_wx_set_essid, /* SIOCSIWESSID */
7933 ipw2100_wx_get_essid, /* SIOCGIWESSID */
7934 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
7935 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
7936 NULL, /* -- hole -- */
7937 NULL, /* -- hole -- */
7938 ipw2100_wx_set_rate, /* SIOCSIWRATE */
7939 ipw2100_wx_get_rate, /* SIOCGIWRATE */
7940 ipw2100_wx_set_rts, /* SIOCSIWRTS */
7941 ipw2100_wx_get_rts, /* SIOCGIWRTS */
7942 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
7943 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
7944 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
7945 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
7946 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
7947 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
7948 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
7949 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
7950 ipw2100_wx_set_power, /* SIOCSIWPOWER */
7951 ipw2100_wx_get_power, /* SIOCGIWPOWER */
7952 NULL, /* -- hole -- */
7953 NULL, /* -- hole -- */
7954 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
7955 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
7956 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
7957 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
7958 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
7959 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
7960 NULL, /* SIOCSIWPMKSA */
7961 };
7962
7963 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
7964 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
7965 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
7966 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
7967 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
7968 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
7969 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
7970 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
7971
7972 static const struct iw_priv_args ipw2100_private_args[] = {
7973
7974 #ifdef CONFIG_IPW2100_MONITOR
7975 {
7976 IPW2100_PRIV_SET_MONITOR,
7977 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
7978 {
7979 IPW2100_PRIV_RESET,
7980 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
7981 #endif /* CONFIG_IPW2100_MONITOR */
7982
7983 {
7984 IPW2100_PRIV_SET_POWER,
7985 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
7986 {
7987 IPW2100_PRIV_GET_POWER,
7988 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
7989 "get_power"},
7990 {
7991 IPW2100_PRIV_SET_LONGPREAMBLE,
7992 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
7993 {
7994 IPW2100_PRIV_GET_LONGPREAMBLE,
7995 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
7996 #ifdef CONFIG_IPW2100_MONITOR
7997 {
7998 IPW2100_PRIV_SET_CRC_CHECK,
7999 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8000 {
8001 IPW2100_PRIV_GET_CRC_CHECK,
8002 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8003 #endif /* CONFIG_IPW2100_MONITOR */
8004 };
8005
8006 static iw_handler ipw2100_private_handler[] = {
8007 #ifdef CONFIG_IPW2100_MONITOR
8008 ipw2100_wx_set_promisc,
8009 ipw2100_wx_reset,
8010 #else /* CONFIG_IPW2100_MONITOR */
8011 NULL,
8012 NULL,
8013 #endif /* CONFIG_IPW2100_MONITOR */
8014 ipw2100_wx_set_powermode,
8015 ipw2100_wx_get_powermode,
8016 ipw2100_wx_set_preamble,
8017 ipw2100_wx_get_preamble,
8018 #ifdef CONFIG_IPW2100_MONITOR
8019 ipw2100_wx_set_crc_check,
8020 ipw2100_wx_get_crc_check,
8021 #else /* CONFIG_IPW2100_MONITOR */
8022 NULL,
8023 NULL,
8024 #endif /* CONFIG_IPW2100_MONITOR */
8025 };
8026
8027 /*
8028 * Get wireless statistics.
8029 * Called by /proc/net/wireless
8030 * Also called by SIOCGIWSTATS
8031 */
8032 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8033 {
8034 enum {
8035 POOR = 30,
8036 FAIR = 60,
8037 GOOD = 80,
8038 VERY_GOOD = 90,
8039 EXCELLENT = 95,
8040 PERFECT = 100
8041 };
8042 int rssi_qual;
8043 int tx_qual;
8044 int beacon_qual;
8045
8046 struct ipw2100_priv *priv = ieee80211_priv(dev);
8047 struct iw_statistics *wstats;
8048 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8049 u32 ord_len = sizeof(u32);
8050
8051 if (!priv)
8052 return (struct iw_statistics *)NULL;
8053
8054 wstats = &priv->wstats;
8055
8056 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8057 * ipw2100_wx_wireless_stats seems to be called before fw is
8058 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8059 * and associated; if not associcated, the values are all meaningless
8060 * anyway, so set them all to NULL and INVALID */
8061 if (!(priv->status & STATUS_ASSOCIATED)) {
8062 wstats->miss.beacon = 0;
8063 wstats->discard.retries = 0;
8064 wstats->qual.qual = 0;
8065 wstats->qual.level = 0;
8066 wstats->qual.noise = 0;
8067 wstats->qual.updated = 7;
8068 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8069 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8070 return wstats;
8071 }
8072
8073 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8074 &missed_beacons, &ord_len))
8075 goto fail_get_ordinal;
8076
8077 /* If we don't have a connection the quality and level is 0 */
8078 if (!(priv->status & STATUS_ASSOCIATED)) {
8079 wstats->qual.qual = 0;
8080 wstats->qual.level = 0;
8081 } else {
8082 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8083 &rssi, &ord_len))
8084 goto fail_get_ordinal;
8085 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8086 if (rssi < 10)
8087 rssi_qual = rssi * POOR / 10;
8088 else if (rssi < 15)
8089 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8090 else if (rssi < 20)
8091 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8092 else if (rssi < 30)
8093 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8094 10 + GOOD;
8095 else
8096 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8097 10 + VERY_GOOD;
8098
8099 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8100 &tx_retries, &ord_len))
8101 goto fail_get_ordinal;
8102
8103 if (tx_retries > 75)
8104 tx_qual = (90 - tx_retries) * POOR / 15;
8105 else if (tx_retries > 70)
8106 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8107 else if (tx_retries > 65)
8108 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8109 else if (tx_retries > 50)
8110 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8111 15 + GOOD;
8112 else
8113 tx_qual = (50 - tx_retries) *
8114 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8115
8116 if (missed_beacons > 50)
8117 beacon_qual = (60 - missed_beacons) * POOR / 10;
8118 else if (missed_beacons > 40)
8119 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8120 10 + POOR;
8121 else if (missed_beacons > 32)
8122 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8123 18 + FAIR;
8124 else if (missed_beacons > 20)
8125 beacon_qual = (32 - missed_beacons) *
8126 (VERY_GOOD - GOOD) / 20 + GOOD;
8127 else
8128 beacon_qual = (20 - missed_beacons) *
8129 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8130
8131 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8132
8133 #ifdef CONFIG_IPW2100_DEBUG
8134 if (beacon_qual == quality)
8135 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8136 else if (tx_qual == quality)
8137 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8138 else if (quality != 100)
8139 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8140 else
8141 IPW_DEBUG_WX("Quality not clamped.\n");
8142 #endif
8143
8144 wstats->qual.qual = quality;
8145 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8146 }
8147
8148 wstats->qual.noise = 0;
8149 wstats->qual.updated = 7;
8150 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8151
8152 /* FIXME: this is percent and not a # */
8153 wstats->miss.beacon = missed_beacons;
8154
8155 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8156 &tx_failures, &ord_len))
8157 goto fail_get_ordinal;
8158 wstats->discard.retries = tx_failures;
8159
8160 return wstats;
8161
8162 fail_get_ordinal:
8163 IPW_DEBUG_WX("failed querying ordinals.\n");
8164
8165 return (struct iw_statistics *)NULL;
8166 }
8167
8168 static struct iw_handler_def ipw2100_wx_handler_def = {
8169 .standard = ipw2100_wx_handlers,
8170 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8171 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8172 .num_private_args = sizeof(ipw2100_private_args) /
8173 sizeof(struct iw_priv_args),
8174 .private = (iw_handler *) ipw2100_private_handler,
8175 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8176 .get_wireless_stats = ipw2100_wx_wireless_stats,
8177 };
8178
8179 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8180 {
8181 union iwreq_data wrqu;
8182 int len = ETH_ALEN;
8183
8184 if (priv->status & STATUS_STOPPING)
8185 return;
8186
8187 down(&priv->action_sem);
8188
8189 IPW_DEBUG_WX("enter\n");
8190
8191 up(&priv->action_sem);
8192
8193 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8194
8195 /* Fetch BSSID from the hardware */
8196 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8197 priv->status & STATUS_RF_KILL_MASK ||
8198 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8199 &priv->bssid, &len)) {
8200 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8201 } else {
8202 /* We now have the BSSID, so can finish setting to the full
8203 * associated state */
8204 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8205 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8206 priv->status &= ~STATUS_ASSOCIATING;
8207 priv->status |= STATUS_ASSOCIATED;
8208 netif_carrier_on(priv->net_dev);
8209 netif_wake_queue(priv->net_dev);
8210 }
8211
8212 if (!(priv->status & STATUS_ASSOCIATED)) {
8213 IPW_DEBUG_WX("Configuring ESSID\n");
8214 down(&priv->action_sem);
8215 /* This is a disassociation event, so kick the firmware to
8216 * look for another AP */
8217 if (priv->config & CFG_STATIC_ESSID)
8218 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8219 0);
8220 else
8221 ipw2100_set_essid(priv, NULL, 0, 0);
8222 up(&priv->action_sem);
8223 }
8224
8225 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8226 }
8227
8228 #define IPW2100_FW_MAJOR_VERSION 1
8229 #define IPW2100_FW_MINOR_VERSION 3
8230
8231 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8232 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8233
8234 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8235 IPW2100_FW_MAJOR_VERSION)
8236
8237 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8238 "." __stringify(IPW2100_FW_MINOR_VERSION)
8239
8240 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8241
8242 /*
8243
8244 BINARY FIRMWARE HEADER FORMAT
8245
8246 offset length desc
8247 0 2 version
8248 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8249 4 4 fw_len
8250 8 4 uc_len
8251 C fw_len firmware data
8252 12 + fw_len uc_len microcode data
8253
8254 */
8255
8256 struct ipw2100_fw_header {
8257 short version;
8258 short mode;
8259 unsigned int fw_size;
8260 unsigned int uc_size;
8261 } __attribute__ ((packed));
8262
8263 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8264 {
8265 struct ipw2100_fw_header *h =
8266 (struct ipw2100_fw_header *)fw->fw_entry->data;
8267
8268 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8269 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8270 "(detected version id of %u). "
8271 "See Documentation/networking/README.ipw2100\n",
8272 h->version);
8273 return 1;
8274 }
8275
8276 fw->version = h->version;
8277 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8278 fw->fw.size = h->fw_size;
8279 fw->uc.data = fw->fw.data + h->fw_size;
8280 fw->uc.size = h->uc_size;
8281
8282 return 0;
8283 }
8284
8285 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8286 struct ipw2100_fw *fw)
8287 {
8288 char *fw_name;
8289 int rc;
8290
8291 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8292 priv->net_dev->name);
8293
8294 switch (priv->ieee->iw_mode) {
8295 case IW_MODE_ADHOC:
8296 fw_name = IPW2100_FW_NAME("-i");
8297 break;
8298 #ifdef CONFIG_IPW2100_MONITOR
8299 case IW_MODE_MONITOR:
8300 fw_name = IPW2100_FW_NAME("-p");
8301 break;
8302 #endif
8303 case IW_MODE_INFRA:
8304 default:
8305 fw_name = IPW2100_FW_NAME("");
8306 break;
8307 }
8308
8309 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8310
8311 if (rc < 0) {
8312 printk(KERN_ERR DRV_NAME ": "
8313 "%s: Firmware '%s' not available or load failed.\n",
8314 priv->net_dev->name, fw_name);
8315 return rc;
8316 }
8317 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8318 fw->fw_entry->size);
8319
8320 ipw2100_mod_firmware_load(fw);
8321
8322 return 0;
8323 }
8324
8325 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8326 struct ipw2100_fw *fw)
8327 {
8328 fw->version = 0;
8329 if (fw->fw_entry)
8330 release_firmware(fw->fw_entry);
8331 fw->fw_entry = NULL;
8332 }
8333
8334 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8335 size_t max)
8336 {
8337 char ver[MAX_FW_VERSION_LEN];
8338 u32 len = MAX_FW_VERSION_LEN;
8339 u32 tmp;
8340 int i;
8341 /* firmware version is an ascii string (max len of 14) */
8342 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8343 return -EIO;
8344 tmp = max;
8345 if (len >= max)
8346 len = max - 1;
8347 for (i = 0; i < len; i++)
8348 buf[i] = ver[i];
8349 buf[i] = '\0';
8350 return tmp;
8351 }
8352
8353 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8354 size_t max)
8355 {
8356 u32 ver;
8357 u32 len = sizeof(ver);
8358 /* microcode version is a 32 bit integer */
8359 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8360 return -EIO;
8361 return snprintf(buf, max, "%08X", ver);
8362 }
8363
8364 /*
8365 * On exit, the firmware will have been freed from the fw list
8366 */
8367 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8368 {
8369 /* firmware is constructed of N contiguous entries, each entry is
8370 * structured as:
8371 *
8372 * offset sie desc
8373 * 0 4 address to write to
8374 * 4 2 length of data run
8375 * 6 length data
8376 */
8377 unsigned int addr;
8378 unsigned short len;
8379
8380 const unsigned char *firmware_data = fw->fw.data;
8381 unsigned int firmware_data_left = fw->fw.size;
8382
8383 while (firmware_data_left > 0) {
8384 addr = *(u32 *) (firmware_data);
8385 firmware_data += 4;
8386 firmware_data_left -= 4;
8387
8388 len = *(u16 *) (firmware_data);
8389 firmware_data += 2;
8390 firmware_data_left -= 2;
8391
8392 if (len > 32) {
8393 printk(KERN_ERR DRV_NAME ": "
8394 "Invalid firmware run-length of %d bytes\n",
8395 len);
8396 return -EINVAL;
8397 }
8398
8399 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8400 firmware_data += len;
8401 firmware_data_left -= len;
8402 }
8403
8404 return 0;
8405 }
8406
8407 struct symbol_alive_response {
8408 u8 cmd_id;
8409 u8 seq_num;
8410 u8 ucode_rev;
8411 u8 eeprom_valid;
8412 u16 valid_flags;
8413 u8 IEEE_addr[6];
8414 u16 flags;
8415 u16 pcb_rev;
8416 u16 clock_settle_time; // 1us LSB
8417 u16 powerup_settle_time; // 1us LSB
8418 u16 hop_settle_time; // 1us LSB
8419 u8 date[3]; // month, day, year
8420 u8 time[2]; // hours, minutes
8421 u8 ucode_valid;
8422 };
8423
8424 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8425 struct ipw2100_fw *fw)
8426 {
8427 struct net_device *dev = priv->net_dev;
8428 const unsigned char *microcode_data = fw->uc.data;
8429 unsigned int microcode_data_left = fw->uc.size;
8430 void __iomem *reg = (void __iomem *)dev->base_addr;
8431
8432 struct symbol_alive_response response;
8433 int i, j;
8434 u8 data;
8435
8436 /* Symbol control */
8437 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8438 readl(reg);
8439 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8440 readl(reg);
8441
8442 /* HW config */
8443 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8444 readl(reg);
8445 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8446 readl(reg);
8447
8448 /* EN_CS_ACCESS bit to reset control store pointer */
8449 write_nic_byte(dev, 0x210000, 0x40);
8450 readl(reg);
8451 write_nic_byte(dev, 0x210000, 0x0);
8452 readl(reg);
8453 write_nic_byte(dev, 0x210000, 0x40);
8454 readl(reg);
8455
8456 /* copy microcode from buffer into Symbol */
8457
8458 while (microcode_data_left > 0) {
8459 write_nic_byte(dev, 0x210010, *microcode_data++);
8460 write_nic_byte(dev, 0x210010, *microcode_data++);
8461 microcode_data_left -= 2;
8462 }
8463
8464 /* EN_CS_ACCESS bit to reset the control store pointer */
8465 write_nic_byte(dev, 0x210000, 0x0);
8466 readl(reg);
8467
8468 /* Enable System (Reg 0)
8469 * first enable causes garbage in RX FIFO */
8470 write_nic_byte(dev, 0x210000, 0x0);
8471 readl(reg);
8472 write_nic_byte(dev, 0x210000, 0x80);
8473 readl(reg);
8474
8475 /* Reset External Baseband Reg */
8476 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8477 readl(reg);
8478 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8479 readl(reg);
8480
8481 /* HW Config (Reg 5) */
8482 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8483 readl(reg);
8484 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8485 readl(reg);
8486
8487 /* Enable System (Reg 0)
8488 * second enable should be OK */
8489 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8490 readl(reg);
8491 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8492
8493 /* check Symbol is enabled - upped this from 5 as it wasn't always
8494 * catching the update */
8495 for (i = 0; i < 10; i++) {
8496 udelay(10);
8497
8498 /* check Dino is enabled bit */
8499 read_nic_byte(dev, 0x210000, &data);
8500 if (data & 0x1)
8501 break;
8502 }
8503
8504 if (i == 10) {
8505 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8506 dev->name);
8507 return -EIO;
8508 }
8509
8510 /* Get Symbol alive response */
8511 for (i = 0; i < 30; i++) {
8512 /* Read alive response structure */
8513 for (j = 0;
8514 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8515 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8516
8517 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8518 break;
8519 udelay(10);
8520 }
8521
8522 if (i == 30) {
8523 printk(KERN_ERR DRV_NAME
8524 ": %s: No response from Symbol - hw not alive\n",
8525 dev->name);
8526 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8527 return -EIO;
8528 }
8529
8530 return 0;
8531 }