Merge branch 'sundance'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.1.4"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
217 printk(message); \
218 } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338 {
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416 {
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454 {
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500 {
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579 {
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609 {
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_work(priv->workqueue, &priv->reset_work);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 down(&priv->adapter_sem);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 up(&priv->adapter_sem);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standy if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 down(&priv->adapter_sem);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 up(&priv->adapter_sem);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* If the interrupt is enabled, turn it off... */
1702 spin_lock_irqsave(&priv->low_lock, flags);
1703 ipw2100_disable_interrupts(priv);
1704
1705 /* Reset any fatal_error conditions */
1706 ipw2100_reset_fatalerror(priv);
1707 spin_unlock_irqrestore(&priv->low_lock, flags);
1708
1709 if (priv->status & STATUS_POWERED ||
1710 (priv->status & STATUS_RESET_PENDING)) {
1711 /* Power cycle the card ... */
1712 if (ipw2100_power_cycle_adapter(priv)) {
1713 printk(KERN_WARNING DRV_NAME
1714 ": %s: Could not cycle adapter.\n",
1715 priv->net_dev->name);
1716 rc = 1;
1717 goto exit;
1718 }
1719 } else
1720 priv->status |= STATUS_POWERED;
1721
1722 /* Load the firmware, start the clocks, etc. */
1723 if (ipw2100_start_adapter(priv)) {
1724 printk(KERN_ERR DRV_NAME
1725 ": %s: Failed to start the firmware.\n",
1726 priv->net_dev->name);
1727 rc = 1;
1728 goto exit;
1729 }
1730
1731 ipw2100_initialize_ordinals(priv);
1732
1733 /* Determine capabilities of this particular HW configuration */
1734 if (ipw2100_get_hw_features(priv)) {
1735 printk(KERN_ERR DRV_NAME
1736 ": %s: Failed to determine HW features.\n",
1737 priv->net_dev->name);
1738 rc = 1;
1739 goto exit;
1740 }
1741
1742 /* Initialize the geo */
1743 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1744 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1745 return 0;
1746 }
1747 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1748
1749 lock = LOCK_NONE;
1750 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1751 printk(KERN_ERR DRV_NAME
1752 ": %s: Failed to clear ordinal lock.\n",
1753 priv->net_dev->name);
1754 rc = 1;
1755 goto exit;
1756 }
1757
1758 priv->status &= ~STATUS_SCANNING;
1759
1760 if (rf_kill_active(priv)) {
1761 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1762 priv->net_dev->name);
1763
1764 if (priv->stop_rf_kill) {
1765 priv->stop_rf_kill = 0;
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1767 }
1768
1769 deferred = 1;
1770 }
1771
1772 /* Turn on the interrupt so that commands can be processed */
1773 ipw2100_enable_interrupts(priv);
1774
1775 /* Send all of the commands that must be sent prior to
1776 * HOST_COMPLETE */
1777 if (ipw2100_adapter_setup(priv)) {
1778 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1779 priv->net_dev->name);
1780 rc = 1;
1781 goto exit;
1782 }
1783
1784 if (!deferred) {
1785 /* Enable the adapter - sends HOST_COMPLETE */
1786 if (ipw2100_enable_adapter(priv)) {
1787 printk(KERN_ERR DRV_NAME ": "
1788 "%s: failed in call to enable adapter.\n",
1789 priv->net_dev->name);
1790 ipw2100_hw_stop_adapter(priv);
1791 rc = 1;
1792 goto exit;
1793 }
1794
1795 /* Start a scan . . . */
1796 ipw2100_set_scan_options(priv);
1797 ipw2100_start_scan(priv);
1798 }
1799
1800 exit:
1801 return rc;
1802 }
1803
1804 /* Called by register_netdev() */
1805 static int ipw2100_net_init(struct net_device *dev)
1806 {
1807 struct ipw2100_priv *priv = ieee80211_priv(dev);
1808 return ipw2100_up(priv, 1);
1809 }
1810
1811 static void ipw2100_down(struct ipw2100_priv *priv)
1812 {
1813 unsigned long flags;
1814 union iwreq_data wrqu = {
1815 .ap_addr = {
1816 .sa_family = ARPHRD_ETHER}
1817 };
1818 int associated = priv->status & STATUS_ASSOCIATED;
1819
1820 /* Kill the RF switch timer */
1821 if (!priv->stop_rf_kill) {
1822 priv->stop_rf_kill = 1;
1823 cancel_delayed_work(&priv->rf_kill);
1824 }
1825
1826 /* Kill the firmare hang check timer */
1827 if (!priv->stop_hang_check) {
1828 priv->stop_hang_check = 1;
1829 cancel_delayed_work(&priv->hang_check);
1830 }
1831
1832 /* Kill any pending resets */
1833 if (priv->status & STATUS_RESET_PENDING)
1834 cancel_delayed_work(&priv->reset_work);
1835
1836 /* Make sure the interrupt is on so that FW commands will be
1837 * processed correctly */
1838 spin_lock_irqsave(&priv->low_lock, flags);
1839 ipw2100_enable_interrupts(priv);
1840 spin_unlock_irqrestore(&priv->low_lock, flags);
1841
1842 if (ipw2100_hw_stop_adapter(priv))
1843 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1844 priv->net_dev->name);
1845
1846 /* Do not disable the interrupt until _after_ we disable
1847 * the adaptor. Otherwise the CARD_DISABLE command will never
1848 * be ack'd by the firmware */
1849 spin_lock_irqsave(&priv->low_lock, flags);
1850 ipw2100_disable_interrupts(priv);
1851 spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1854 if (priv->config & CFG_C3_DISABLED) {
1855 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1856 acpi_set_cstate_limit(priv->cstate_limit);
1857 priv->config &= ~CFG_C3_DISABLED;
1858 }
1859 #endif
1860
1861 /* We have to signal any supplicant if we are disassociating */
1862 if (associated)
1863 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866 netif_carrier_off(priv->net_dev);
1867 netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1871 {
1872 unsigned long flags;
1873 union iwreq_data wrqu = {
1874 .ap_addr = {
1875 .sa_family = ARPHRD_ETHER}
1876 };
1877 int associated = priv->status & STATUS_ASSOCIATED;
1878
1879 spin_lock_irqsave(&priv->low_lock, flags);
1880 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1881 priv->resets++;
1882 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1883 priv->status |= STATUS_SECURITY_UPDATED;
1884
1885 /* Force a power cycle even if interface hasn't been opened
1886 * yet */
1887 cancel_delayed_work(&priv->reset_work);
1888 priv->status |= STATUS_RESET_PENDING;
1889 spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891 down(&priv->action_sem);
1892 /* stop timed checks so that they don't interfere with reset */
1893 priv->stop_hang_check = 1;
1894 cancel_delayed_work(&priv->hang_check);
1895
1896 /* We have to signal any supplicant if we are disassociating */
1897 if (associated)
1898 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900 ipw2100_up(priv, 0);
1901 up(&priv->action_sem);
1902
1903 }
1904
1905 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1906 {
1907
1908 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1909 int ret, len, essid_len;
1910 char essid[IW_ESSID_MAX_SIZE];
1911 u32 txrate;
1912 u32 chan;
1913 char *txratename;
1914 u8 bssid[ETH_ALEN];
1915
1916 /*
1917 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1918 * an actual MAC of the AP. Seems like FW sets this
1919 * address too late. Read it later and expose through
1920 * /proc or schedule a later task to query and update
1921 */
1922
1923 essid_len = IW_ESSID_MAX_SIZE;
1924 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1925 essid, &essid_len);
1926 if (ret) {
1927 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1928 __LINE__);
1929 return;
1930 }
1931
1932 len = sizeof(u32);
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1934 if (ret) {
1935 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1936 __LINE__);
1937 return;
1938 }
1939
1940 len = sizeof(u32);
1941 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1942 if (ret) {
1943 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944 __LINE__);
1945 return;
1946 }
1947 len = ETH_ALEN;
1948 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1949 if (ret) {
1950 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951 __LINE__);
1952 return;
1953 }
1954 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1955
1956 switch (txrate) {
1957 case TX_RATE_1_MBIT:
1958 txratename = "1Mbps";
1959 break;
1960 case TX_RATE_2_MBIT:
1961 txratename = "2Mbsp";
1962 break;
1963 case TX_RATE_5_5_MBIT:
1964 txratename = "5.5Mbps";
1965 break;
1966 case TX_RATE_11_MBIT:
1967 txratename = "11Mbps";
1968 break;
1969 default:
1970 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1971 txratename = "unknown rate";
1972 break;
1973 }
1974
1975 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1976 MAC_FMT ")\n",
1977 priv->net_dev->name, escape_essid(essid, essid_len),
1978 txratename, chan, MAC_ARG(bssid));
1979
1980 /* now we copy read ssid into dev */
1981 if (!(priv->config & CFG_STATIC_ESSID)) {
1982 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1983 memcpy(priv->essid, essid, priv->essid_len);
1984 }
1985 priv->channel = chan;
1986 memcpy(priv->bssid, bssid, ETH_ALEN);
1987
1988 priv->status |= STATUS_ASSOCIATING;
1989 priv->connect_start = get_seconds();
1990
1991 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1992 }
1993
1994 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1995 int length, int batch_mode)
1996 {
1997 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1998 struct host_command cmd = {
1999 .host_command = SSID,
2000 .host_command_sequence = 0,
2001 .host_command_length = ssid_len
2002 };
2003 int err;
2004
2005 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2006
2007 if (ssid_len)
2008 memcpy(cmd.host_command_parameters, essid, ssid_len);
2009
2010 if (!batch_mode) {
2011 err = ipw2100_disable_adapter(priv);
2012 if (err)
2013 return err;
2014 }
2015
2016 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2017 * disable auto association -- so we cheat by setting a bogus SSID */
2018 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2019 int i;
2020 u8 *bogus = (u8 *) cmd.host_command_parameters;
2021 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2022 bogus[i] = 0x18 + i;
2023 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2024 }
2025
2026 /* NOTE: We always send the SSID command even if the provided ESSID is
2027 * the same as what we currently think is set. */
2028
2029 err = ipw2100_hw_send_command(priv, &cmd);
2030 if (!err) {
2031 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2032 memcpy(priv->essid, essid, ssid_len);
2033 priv->essid_len = ssid_len;
2034 }
2035
2036 if (!batch_mode) {
2037 if (ipw2100_enable_adapter(priv))
2038 err = -EIO;
2039 }
2040
2041 return err;
2042 }
2043
2044 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2045 {
2046 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2047 "disassociated: '%s' " MAC_FMT " \n",
2048 escape_essid(priv->essid, priv->essid_len),
2049 MAC_ARG(priv->bssid));
2050
2051 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2052
2053 if (priv->status & STATUS_STOPPING) {
2054 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2055 return;
2056 }
2057
2058 memset(priv->bssid, 0, ETH_ALEN);
2059 memset(priv->ieee->bssid, 0, ETH_ALEN);
2060
2061 netif_carrier_off(priv->net_dev);
2062 netif_stop_queue(priv->net_dev);
2063
2064 if (!(priv->status & STATUS_RUNNING))
2065 return;
2066
2067 if (priv->status & STATUS_SECURITY_UPDATED)
2068 queue_work(priv->workqueue, &priv->security_work);
2069
2070 queue_work(priv->workqueue, &priv->wx_event_work);
2071 }
2072
2073 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2074 {
2075 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2076 priv->net_dev->name);
2077
2078 /* RF_KILL is now enabled (else we wouldn't be here) */
2079 priv->status |= STATUS_RF_KILL_HW;
2080
2081 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2082 if (priv->config & CFG_C3_DISABLED) {
2083 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2084 acpi_set_cstate_limit(priv->cstate_limit);
2085 priv->config &= ~CFG_C3_DISABLED;
2086 }
2087 #endif
2088
2089 /* Make sure the RF Kill check timer is running */
2090 priv->stop_rf_kill = 0;
2091 cancel_delayed_work(&priv->rf_kill);
2092 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2093 }
2094
2095 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2096 {
2097 IPW_DEBUG_SCAN("scan complete\n");
2098 /* Age the scan results... */
2099 priv->ieee->scans++;
2100 priv->status &= ~STATUS_SCANNING;
2101 }
2102
2103 #ifdef CONFIG_IPW2100_DEBUG
2104 #define IPW2100_HANDLER(v, f) { v, f, # v }
2105 struct ipw2100_status_indicator {
2106 int status;
2107 void (*cb) (struct ipw2100_priv * priv, u32 status);
2108 char *name;
2109 };
2110 #else
2111 #define IPW2100_HANDLER(v, f) { v, f }
2112 struct ipw2100_status_indicator {
2113 int status;
2114 void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 };
2116 #endif /* CONFIG_IPW2100_DEBUG */
2117
2118 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2119 {
2120 IPW_DEBUG_SCAN("Scanning...\n");
2121 priv->status |= STATUS_SCANNING;
2122 }
2123
2124 static const struct ipw2100_status_indicator status_handlers[] = {
2125 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2126 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2127 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2128 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2129 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2130 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2131 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2132 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2133 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2134 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2136 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2137 IPW2100_HANDLER(-1, NULL)
2138 };
2139
2140 static void isr_status_change(struct ipw2100_priv *priv, int status)
2141 {
2142 int i;
2143
2144 if (status == IPW_STATE_SCANNING &&
2145 priv->status & STATUS_ASSOCIATED &&
2146 !(priv->status & STATUS_SCANNING)) {
2147 IPW_DEBUG_INFO("Scan detected while associated, with "
2148 "no scan request. Restarting firmware.\n");
2149
2150 /* Wake up any sleeping jobs */
2151 schedule_reset(priv);
2152 }
2153
2154 for (i = 0; status_handlers[i].status != -1; i++) {
2155 if (status == status_handlers[i].status) {
2156 IPW_DEBUG_NOTIF("Status change: %s\n",
2157 status_handlers[i].name);
2158 if (status_handlers[i].cb)
2159 status_handlers[i].cb(priv, status);
2160 priv->wstats.status = status;
2161 return;
2162 }
2163 }
2164
2165 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2166 }
2167
2168 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2169 struct ipw2100_cmd_header *cmd)
2170 {
2171 #ifdef CONFIG_IPW2100_DEBUG
2172 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2173 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2174 command_types[cmd->host_command_reg],
2175 cmd->host_command_reg);
2176 }
2177 #endif
2178 if (cmd->host_command_reg == HOST_COMPLETE)
2179 priv->status |= STATUS_ENABLED;
2180
2181 if (cmd->host_command_reg == CARD_DISABLE)
2182 priv->status &= ~STATUS_ENABLED;
2183
2184 priv->status &= ~STATUS_CMD_ACTIVE;
2185
2186 wake_up_interruptible(&priv->wait_command_queue);
2187 }
2188
2189 #ifdef CONFIG_IPW2100_DEBUG
2190 static const char *frame_types[] = {
2191 "COMMAND_STATUS_VAL",
2192 "STATUS_CHANGE_VAL",
2193 "P80211_DATA_VAL",
2194 "P8023_DATA_VAL",
2195 "HOST_NOTIFICATION_VAL"
2196 };
2197 #endif
2198
2199 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2200 struct ipw2100_rx_packet *packet)
2201 {
2202 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2203 if (!packet->skb)
2204 return -ENOMEM;
2205
2206 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2207 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2208 sizeof(struct ipw2100_rx),
2209 PCI_DMA_FROMDEVICE);
2210 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2211 * dma_addr */
2212
2213 return 0;
2214 }
2215
2216 #define SEARCH_ERROR 0xffffffff
2217 #define SEARCH_FAIL 0xfffffffe
2218 #define SEARCH_SUCCESS 0xfffffff0
2219 #define SEARCH_DISCARD 0
2220 #define SEARCH_SNAPSHOT 1
2221
2222 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2223 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2224 {
2225 int i;
2226 if (!priv->snapshot[0])
2227 return;
2228 for (i = 0; i < 0x30; i++)
2229 kfree(priv->snapshot[i]);
2230 priv->snapshot[0] = NULL;
2231 }
2232
2233 #ifdef CONFIG_IPW2100_DEBUG_C3
2234 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2235 {
2236 int i;
2237 if (priv->snapshot[0])
2238 return 1;
2239 for (i = 0; i < 0x30; i++) {
2240 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2241 if (!priv->snapshot[i]) {
2242 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2243 "buffer %d\n", priv->net_dev->name, i);
2244 while (i > 0)
2245 kfree(priv->snapshot[--i]);
2246 priv->snapshot[0] = NULL;
2247 return 0;
2248 }
2249 }
2250
2251 return 1;
2252 }
2253
2254 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2255 size_t len, int mode)
2256 {
2257 u32 i, j;
2258 u32 tmp;
2259 u8 *s, *d;
2260 u32 ret;
2261
2262 s = in_buf;
2263 if (mode == SEARCH_SNAPSHOT) {
2264 if (!ipw2100_snapshot_alloc(priv))
2265 mode = SEARCH_DISCARD;
2266 }
2267
2268 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2269 read_nic_dword(priv->net_dev, i, &tmp);
2270 if (mode == SEARCH_SNAPSHOT)
2271 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2272 if (ret == SEARCH_FAIL) {
2273 d = (u8 *) & tmp;
2274 for (j = 0; j < 4; j++) {
2275 if (*s != *d) {
2276 s = in_buf;
2277 continue;
2278 }
2279
2280 s++;
2281 d++;
2282
2283 if ((s - in_buf) == len)
2284 ret = (i + j) - len + 1;
2285 }
2286 } else if (mode == SEARCH_DISCARD)
2287 return ret;
2288 }
2289
2290 return ret;
2291 }
2292 #endif
2293
2294 /*
2295 *
2296 * 0) Disconnect the SKB from the firmware (just unmap)
2297 * 1) Pack the ETH header into the SKB
2298 * 2) Pass the SKB to the network stack
2299 *
2300 * When packet is provided by the firmware, it contains the following:
2301 *
2302 * . ieee80211_hdr
2303 * . ieee80211_snap_hdr
2304 *
2305 * The size of the constructed ethernet
2306 *
2307 */
2308 #ifdef CONFIG_IPW2100_RX_DEBUG
2309 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2310 #endif
2311
2312 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2313 {
2314 #ifdef CONFIG_IPW2100_DEBUG_C3
2315 struct ipw2100_status *status = &priv->status_queue.drv[i];
2316 u32 match, reg;
2317 int j;
2318 #endif
2319 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2320 int limit;
2321 #endif
2322
2323 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2324 i * sizeof(struct ipw2100_status));
2325
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2328 limit = acpi_get_cstate_limit();
2329 if (limit > 2) {
2330 priv->cstate_limit = limit;
2331 acpi_set_cstate_limit(2);
2332 priv->config |= CFG_C3_DISABLED;
2333 }
2334 #endif
2335
2336 #ifdef CONFIG_IPW2100_DEBUG_C3
2337 /* Halt the fimrware so we can get a good image */
2338 write_register(priv->net_dev, IPW_REG_RESET_REG,
2339 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2340 j = 5;
2341 do {
2342 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2343 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2344
2345 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2346 break;
2347 } while (j--);
2348
2349 match = ipw2100_match_buf(priv, (u8 *) status,
2350 sizeof(struct ipw2100_status),
2351 SEARCH_SNAPSHOT);
2352 if (match < SEARCH_SUCCESS)
2353 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2354 "offset 0x%06X, length %d:\n",
2355 priv->net_dev->name, match,
2356 sizeof(struct ipw2100_status));
2357 else
2358 IPW_DEBUG_INFO("%s: No DMA status match in "
2359 "Firmware.\n", priv->net_dev->name);
2360
2361 printk_buf((u8 *) priv->status_queue.drv,
2362 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2363 #endif
2364
2365 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2366 priv->ieee->stats.rx_errors++;
2367 schedule_reset(priv);
2368 }
2369
2370 static void isr_rx(struct ipw2100_priv *priv, int i,
2371 struct ieee80211_rx_stats *stats)
2372 {
2373 struct ipw2100_status *status = &priv->status_queue.drv[i];
2374 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2375
2376 IPW_DEBUG_RX("Handler...\n");
2377
2378 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2379 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2380 " Dropping.\n",
2381 priv->net_dev->name,
2382 status->frame_size, skb_tailroom(packet->skb));
2383 priv->ieee->stats.rx_errors++;
2384 return;
2385 }
2386
2387 if (unlikely(!netif_running(priv->net_dev))) {
2388 priv->ieee->stats.rx_errors++;
2389 priv->wstats.discard.misc++;
2390 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2391 return;
2392 }
2393 #ifdef CONFIG_IPW2100_MONITOR
2394 if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2395 priv->config & CFG_CRC_CHECK &&
2396 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2397 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2398 priv->ieee->stats.rx_errors++;
2399 return;
2400 }
2401 #endif
2402
2403 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404 !(priv->status & STATUS_ASSOCIATED))) {
2405 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406 priv->wstats.discard.misc++;
2407 return;
2408 }
2409
2410 pci_unmap_single(priv->pci_dev,
2411 packet->dma_addr,
2412 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414 skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef CONFIG_IPW2100_RX_DEBUG
2417 /* Make a copy of the frame so we can dump it to the logs if
2418 * ieee80211_rx fails */
2419 memcpy(packet_data, packet->skb->data,
2420 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2422
2423 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef CONFIG_IPW2100_RX_DEBUG
2425 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426 priv->net_dev->name);
2427 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429 priv->ieee->stats.rx_errors++;
2430
2431 /* ieee80211_rx failed, so it didn't free the SKB */
2432 dev_kfree_skb_any(packet->skb);
2433 packet->skb = NULL;
2434 }
2435
2436 /* We need to allocate a new SKB and attach it to the RDB. */
2437 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438 printk(KERN_WARNING DRV_NAME ": "
2439 "%s: Unable to allocate SKB onto RBD ring - disabling "
2440 "adapter.\n", priv->net_dev->name);
2441 /* TODO: schedule adapter shutdown */
2442 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2443 }
2444
2445 /* Update the RDB entry */
2446 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2447 }
2448
2449 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2450 {
2451 struct ipw2100_status *status = &priv->status_queue.drv[i];
2452 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2453 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2454
2455 switch (frame_type) {
2456 case COMMAND_STATUS_VAL:
2457 return (status->frame_size != sizeof(u->rx_data.command));
2458 case STATUS_CHANGE_VAL:
2459 return (status->frame_size != sizeof(u->rx_data.status));
2460 case HOST_NOTIFICATION_VAL:
2461 return (status->frame_size < sizeof(u->rx_data.notification));
2462 case P80211_DATA_VAL:
2463 case P8023_DATA_VAL:
2464 #ifdef CONFIG_IPW2100_MONITOR
2465 return 0;
2466 #else
2467 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2468 case IEEE80211_FTYPE_MGMT:
2469 case IEEE80211_FTYPE_CTL:
2470 return 0;
2471 case IEEE80211_FTYPE_DATA:
2472 return (status->frame_size >
2473 IPW_MAX_802_11_PAYLOAD_LENGTH);
2474 }
2475 #endif
2476 }
2477
2478 return 1;
2479 }
2480
2481 /*
2482 * ipw2100 interrupts are disabled at this point, and the ISR
2483 * is the only code that calls this method. So, we do not need
2484 * to play with any locks.
2485 *
2486 * RX Queue works as follows:
2487 *
2488 * Read index - firmware places packet in entry identified by the
2489 * Read index and advances Read index. In this manner,
2490 * Read index will always point to the next packet to
2491 * be filled--but not yet valid.
2492 *
2493 * Write index - driver fills this entry with an unused RBD entry.
2494 * This entry has not filled by the firmware yet.
2495 *
2496 * In between the W and R indexes are the RBDs that have been received
2497 * but not yet processed.
2498 *
2499 * The process of handling packets will start at WRITE + 1 and advance
2500 * until it reaches the READ index.
2501 *
2502 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2503 *
2504 */
2505 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2506 {
2507 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2508 struct ipw2100_status_queue *sq = &priv->status_queue;
2509 struct ipw2100_rx_packet *packet;
2510 u16 frame_type;
2511 u32 r, w, i, s;
2512 struct ipw2100_rx *u;
2513 struct ieee80211_rx_stats stats = {
2514 .mac_time = jiffies,
2515 };
2516
2517 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2518 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2519
2520 if (r >= rxq->entries) {
2521 IPW_DEBUG_RX("exit - bad read index\n");
2522 return;
2523 }
2524
2525 i = (rxq->next + 1) % rxq->entries;
2526 s = i;
2527 while (i != r) {
2528 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2529 r, rxq->next, i); */
2530
2531 packet = &priv->rx_buffers[i];
2532
2533 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2534 * the correct values */
2535 pci_dma_sync_single_for_cpu(priv->pci_dev,
2536 sq->nic +
2537 sizeof(struct ipw2100_status) * i,
2538 sizeof(struct ipw2100_status),
2539 PCI_DMA_FROMDEVICE);
2540
2541 /* Sync the DMA for the RX buffer so CPU is sure to get
2542 * the correct values */
2543 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2544 sizeof(struct ipw2100_rx),
2545 PCI_DMA_FROMDEVICE);
2546
2547 if (unlikely(ipw2100_corruption_check(priv, i))) {
2548 ipw2100_corruption_detected(priv, i);
2549 goto increment;
2550 }
2551
2552 u = packet->rxp;
2553 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2554 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2555 stats.len = sq->drv[i].frame_size;
2556
2557 stats.mask = 0;
2558 if (stats.rssi != 0)
2559 stats.mask |= IEEE80211_STATMASK_RSSI;
2560 stats.freq = IEEE80211_24GHZ_BAND;
2561
2562 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2563 priv->net_dev->name, frame_types[frame_type],
2564 stats.len);
2565
2566 switch (frame_type) {
2567 case COMMAND_STATUS_VAL:
2568 /* Reset Rx watchdog */
2569 isr_rx_complete_command(priv, &u->rx_data.command);
2570 break;
2571
2572 case STATUS_CHANGE_VAL:
2573 isr_status_change(priv, u->rx_data.status);
2574 break;
2575
2576 case P80211_DATA_VAL:
2577 case P8023_DATA_VAL:
2578 #ifdef CONFIG_IPW2100_MONITOR
2579 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2580 isr_rx(priv, i, &stats);
2581 break;
2582 }
2583 #endif
2584 if (stats.len < sizeof(u->rx_data.header))
2585 break;
2586 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2587 case IEEE80211_FTYPE_MGMT:
2588 ieee80211_rx_mgt(priv->ieee,
2589 &u->rx_data.header, &stats);
2590 break;
2591
2592 case IEEE80211_FTYPE_CTL:
2593 break;
2594
2595 case IEEE80211_FTYPE_DATA:
2596 isr_rx(priv, i, &stats);
2597 break;
2598
2599 }
2600 break;
2601 }
2602
2603 increment:
2604 /* clear status field associated with this RBD */
2605 rxq->drv[i].status.info.field = 0;
2606
2607 i = (i + 1) % rxq->entries;
2608 }
2609
2610 if (i != s) {
2611 /* backtrack one entry, wrapping to end if at 0 */
2612 rxq->next = (i ? i : rxq->entries) - 1;
2613
2614 write_register(priv->net_dev,
2615 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2616 }
2617 }
2618
2619 /*
2620 * __ipw2100_tx_process
2621 *
2622 * This routine will determine whether the next packet on
2623 * the fw_pend_list has been processed by the firmware yet.
2624 *
2625 * If not, then it does nothing and returns.
2626 *
2627 * If so, then it removes the item from the fw_pend_list, frees
2628 * any associated storage, and places the item back on the
2629 * free list of its source (either msg_free_list or tx_free_list)
2630 *
2631 * TX Queue works as follows:
2632 *
2633 * Read index - points to the next TBD that the firmware will
2634 * process. The firmware will read the data, and once
2635 * done processing, it will advance the Read index.
2636 *
2637 * Write index - driver fills this entry with an constructed TBD
2638 * entry. The Write index is not advanced until the
2639 * packet has been configured.
2640 *
2641 * In between the W and R indexes are the TBDs that have NOT been
2642 * processed. Lagging behind the R index are packets that have
2643 * been processed but have not been freed by the driver.
2644 *
2645 * In order to free old storage, an internal index will be maintained
2646 * that points to the next packet to be freed. When all used
2647 * packets have been freed, the oldest index will be the same as the
2648 * firmware's read index.
2649 *
2650 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2651 *
2652 * Because the TBD structure can not contain arbitrary data, the
2653 * driver must keep an internal queue of cached allocations such that
2654 * it can put that data back into the tx_free_list and msg_free_list
2655 * for use by future command and data packets.
2656 *
2657 */
2658 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2659 {
2660 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2661 struct ipw2100_bd *tbd;
2662 struct list_head *element;
2663 struct ipw2100_tx_packet *packet;
2664 int descriptors_used;
2665 int e, i;
2666 u32 r, w, frag_num = 0;
2667
2668 if (list_empty(&priv->fw_pend_list))
2669 return 0;
2670
2671 element = priv->fw_pend_list.next;
2672
2673 packet = list_entry(element, struct ipw2100_tx_packet, list);
2674 tbd = &txq->drv[packet->index];
2675
2676 /* Determine how many TBD entries must be finished... */
2677 switch (packet->type) {
2678 case COMMAND:
2679 /* COMMAND uses only one slot; don't advance */
2680 descriptors_used = 1;
2681 e = txq->oldest;
2682 break;
2683
2684 case DATA:
2685 /* DATA uses two slots; advance and loop position. */
2686 descriptors_used = tbd->num_fragments;
2687 frag_num = tbd->num_fragments - 1;
2688 e = txq->oldest + frag_num;
2689 e %= txq->entries;
2690 break;
2691
2692 default:
2693 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2694 priv->net_dev->name);
2695 return 0;
2696 }
2697
2698 /* if the last TBD is not done by NIC yet, then packet is
2699 * not ready to be released.
2700 *
2701 */
2702 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2703 &r);
2704 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2705 &w);
2706 if (w != txq->next)
2707 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2708 priv->net_dev->name);
2709
2710 /*
2711 * txq->next is the index of the last packet written txq->oldest is
2712 * the index of the r is the index of the next packet to be read by
2713 * firmware
2714 */
2715
2716 /*
2717 * Quick graphic to help you visualize the following
2718 * if / else statement
2719 *
2720 * ===>| s---->|===============
2721 * e>|
2722 * | a | b | c | d | e | f | g | h | i | j | k | l
2723 * r---->|
2724 * w
2725 *
2726 * w - updated by driver
2727 * r - updated by firmware
2728 * s - start of oldest BD entry (txq->oldest)
2729 * e - end of oldest BD entry
2730 *
2731 */
2732 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2733 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2734 return 0;
2735 }
2736
2737 list_del(element);
2738 DEC_STAT(&priv->fw_pend_stat);
2739
2740 #ifdef CONFIG_IPW2100_DEBUG
2741 {
2742 int i = txq->oldest;
2743 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2744 &txq->drv[i],
2745 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2746 txq->drv[i].host_addr, txq->drv[i].buf_length);
2747
2748 if (packet->type == DATA) {
2749 i = (i + 1) % txq->entries;
2750
2751 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2752 &txq->drv[i],
2753 (u32) (txq->nic + i *
2754 sizeof(struct ipw2100_bd)),
2755 (u32) txq->drv[i].host_addr,
2756 txq->drv[i].buf_length);
2757 }
2758 }
2759 #endif
2760
2761 switch (packet->type) {
2762 case DATA:
2763 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2764 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2765 "Expecting DATA TBD but pulled "
2766 "something else: ids %d=%d.\n",
2767 priv->net_dev->name, txq->oldest, packet->index);
2768
2769 /* DATA packet; we have to unmap and free the SKB */
2770 for (i = 0; i < frag_num; i++) {
2771 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2772
2773 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2774 (packet->index + 1 + i) % txq->entries,
2775 tbd->host_addr, tbd->buf_length);
2776
2777 pci_unmap_single(priv->pci_dev,
2778 tbd->host_addr,
2779 tbd->buf_length, PCI_DMA_TODEVICE);
2780 }
2781
2782 ieee80211_txb_free(packet->info.d_struct.txb);
2783 packet->info.d_struct.txb = NULL;
2784
2785 list_add_tail(element, &priv->tx_free_list);
2786 INC_STAT(&priv->tx_free_stat);
2787
2788 /* We have a free slot in the Tx queue, so wake up the
2789 * transmit layer if it is stopped. */
2790 if (priv->status & STATUS_ASSOCIATED)
2791 netif_wake_queue(priv->net_dev);
2792
2793 /* A packet was processed by the hardware, so update the
2794 * watchdog */
2795 priv->net_dev->trans_start = jiffies;
2796
2797 break;
2798
2799 case COMMAND:
2800 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2801 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2802 "Expecting COMMAND TBD but pulled "
2803 "something else: ids %d=%d.\n",
2804 priv->net_dev->name, txq->oldest, packet->index);
2805
2806 #ifdef CONFIG_IPW2100_DEBUG
2807 if (packet->info.c_struct.cmd->host_command_reg <
2808 sizeof(command_types) / sizeof(*command_types))
2809 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2810 command_types[packet->info.c_struct.cmd->
2811 host_command_reg],
2812 packet->info.c_struct.cmd->
2813 host_command_reg,
2814 packet->info.c_struct.cmd->cmd_status_reg);
2815 #endif
2816
2817 list_add_tail(element, &priv->msg_free_list);
2818 INC_STAT(&priv->msg_free_stat);
2819 break;
2820 }
2821
2822 /* advance oldest used TBD pointer to start of next entry */
2823 txq->oldest = (e + 1) % txq->entries;
2824 /* increase available TBDs number */
2825 txq->available += descriptors_used;
2826 SET_STAT(&priv->txq_stat, txq->available);
2827
2828 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2829 jiffies - packet->jiffy_start);
2830
2831 return (!list_empty(&priv->fw_pend_list));
2832 }
2833
2834 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2835 {
2836 int i = 0;
2837
2838 while (__ipw2100_tx_process(priv) && i < 200)
2839 i++;
2840
2841 if (i == 200) {
2842 printk(KERN_WARNING DRV_NAME ": "
2843 "%s: Driver is running slow (%d iters).\n",
2844 priv->net_dev->name, i);
2845 }
2846 }
2847
2848 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2849 {
2850 struct list_head *element;
2851 struct ipw2100_tx_packet *packet;
2852 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2853 struct ipw2100_bd *tbd;
2854 int next = txq->next;
2855
2856 while (!list_empty(&priv->msg_pend_list)) {
2857 /* if there isn't enough space in TBD queue, then
2858 * don't stuff a new one in.
2859 * NOTE: 3 are needed as a command will take one,
2860 * and there is a minimum of 2 that must be
2861 * maintained between the r and w indexes
2862 */
2863 if (txq->available <= 3) {
2864 IPW_DEBUG_TX("no room in tx_queue\n");
2865 break;
2866 }
2867
2868 element = priv->msg_pend_list.next;
2869 list_del(element);
2870 DEC_STAT(&priv->msg_pend_stat);
2871
2872 packet = list_entry(element, struct ipw2100_tx_packet, list);
2873
2874 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2875 &txq->drv[txq->next],
2876 (void *)(txq->nic + txq->next *
2877 sizeof(struct ipw2100_bd)));
2878
2879 packet->index = txq->next;
2880
2881 tbd = &txq->drv[txq->next];
2882
2883 /* initialize TBD */
2884 tbd->host_addr = packet->info.c_struct.cmd_phys;
2885 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2886 /* not marking number of fragments causes problems
2887 * with f/w debug version */
2888 tbd->num_fragments = 1;
2889 tbd->status.info.field =
2890 IPW_BD_STATUS_TX_FRAME_COMMAND |
2891 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2892
2893 /* update TBD queue counters */
2894 txq->next++;
2895 txq->next %= txq->entries;
2896 txq->available--;
2897 DEC_STAT(&priv->txq_stat);
2898
2899 list_add_tail(element, &priv->fw_pend_list);
2900 INC_STAT(&priv->fw_pend_stat);
2901 }
2902
2903 if (txq->next != next) {
2904 /* kick off the DMA by notifying firmware the
2905 * write index has moved; make sure TBD stores are sync'd */
2906 wmb();
2907 write_register(priv->net_dev,
2908 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2909 txq->next);
2910 }
2911 }
2912
2913 /*
2914 * ipw2100_tx_send_data
2915 *
2916 */
2917 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2918 {
2919 struct list_head *element;
2920 struct ipw2100_tx_packet *packet;
2921 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2922 struct ipw2100_bd *tbd;
2923 int next = txq->next;
2924 int i = 0;
2925 struct ipw2100_data_header *ipw_hdr;
2926 struct ieee80211_hdr_3addr *hdr;
2927
2928 while (!list_empty(&priv->tx_pend_list)) {
2929 /* if there isn't enough space in TBD queue, then
2930 * don't stuff a new one in.
2931 * NOTE: 4 are needed as a data will take two,
2932 * and there is a minimum of 2 that must be
2933 * maintained between the r and w indexes
2934 */
2935 element = priv->tx_pend_list.next;
2936 packet = list_entry(element, struct ipw2100_tx_packet, list);
2937
2938 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2939 IPW_MAX_BDS)) {
2940 /* TODO: Support merging buffers if more than
2941 * IPW_MAX_BDS are used */
2942 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
2943 "Increase fragmentation level.\n",
2944 priv->net_dev->name);
2945 }
2946
2947 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2948 IPW_DEBUG_TX("no room in tx_queue\n");
2949 break;
2950 }
2951
2952 list_del(element);
2953 DEC_STAT(&priv->tx_pend_stat);
2954
2955 tbd = &txq->drv[txq->next];
2956
2957 packet->index = txq->next;
2958
2959 ipw_hdr = packet->info.d_struct.data;
2960 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2961 fragments[0]->data;
2962
2963 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2964 /* To DS: Addr1 = BSSID, Addr2 = SA,
2965 Addr3 = DA */
2966 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2967 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2968 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2969 /* not From/To DS: Addr1 = DA, Addr2 = SA,
2970 Addr3 = BSSID */
2971 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2972 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2973 }
2974
2975 ipw_hdr->host_command_reg = SEND;
2976 ipw_hdr->host_command_reg1 = 0;
2977
2978 /* For now we only support host based encryption */
2979 ipw_hdr->needs_encryption = 0;
2980 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2981 if (packet->info.d_struct.txb->nr_frags > 1)
2982 ipw_hdr->fragment_size =
2983 packet->info.d_struct.txb->frag_size -
2984 IEEE80211_3ADDR_LEN;
2985 else
2986 ipw_hdr->fragment_size = 0;
2987
2988 tbd->host_addr = packet->info.d_struct.data_phys;
2989 tbd->buf_length = sizeof(struct ipw2100_data_header);
2990 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2991 tbd->status.info.field =
2992 IPW_BD_STATUS_TX_FRAME_802_3 |
2993 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994 txq->next++;
2995 txq->next %= txq->entries;
2996
2997 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2998 packet->index, tbd->host_addr, tbd->buf_length);
2999 #ifdef CONFIG_IPW2100_DEBUG
3000 if (packet->info.d_struct.txb->nr_frags > 1)
3001 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3002 packet->info.d_struct.txb->nr_frags);
3003 #endif
3004
3005 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3006 tbd = &txq->drv[txq->next];
3007 if (i == packet->info.d_struct.txb->nr_frags - 1)
3008 tbd->status.info.field =
3009 IPW_BD_STATUS_TX_FRAME_802_3 |
3010 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3011 else
3012 tbd->status.info.field =
3013 IPW_BD_STATUS_TX_FRAME_802_3 |
3014 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3015
3016 tbd->buf_length = packet->info.d_struct.txb->
3017 fragments[i]->len - IEEE80211_3ADDR_LEN;
3018
3019 tbd->host_addr = pci_map_single(priv->pci_dev,
3020 packet->info.d_struct.
3021 txb->fragments[i]->
3022 data +
3023 IEEE80211_3ADDR_LEN,
3024 tbd->buf_length,
3025 PCI_DMA_TODEVICE);
3026
3027 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3028 txq->next, tbd->host_addr,
3029 tbd->buf_length);
3030
3031 pci_dma_sync_single_for_device(priv->pci_dev,
3032 tbd->host_addr,
3033 tbd->buf_length,
3034 PCI_DMA_TODEVICE);
3035
3036 txq->next++;
3037 txq->next %= txq->entries;
3038 }
3039
3040 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3041 SET_STAT(&priv->txq_stat, txq->available);
3042
3043 list_add_tail(element, &priv->fw_pend_list);
3044 INC_STAT(&priv->fw_pend_stat);
3045 }
3046
3047 if (txq->next != next) {
3048 /* kick off the DMA by notifying firmware the
3049 * write index has moved; make sure TBD stores are sync'd */
3050 write_register(priv->net_dev,
3051 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3052 txq->next);
3053 }
3054 return;
3055 }
3056
3057 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3058 {
3059 struct net_device *dev = priv->net_dev;
3060 unsigned long flags;
3061 u32 inta, tmp;
3062
3063 spin_lock_irqsave(&priv->low_lock, flags);
3064 ipw2100_disable_interrupts(priv);
3065
3066 read_register(dev, IPW_REG_INTA, &inta);
3067
3068 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3069 (unsigned long)inta & IPW_INTERRUPT_MASK);
3070
3071 priv->in_isr++;
3072 priv->interrupts++;
3073
3074 /* We do not loop and keep polling for more interrupts as this
3075 * is frowned upon and doesn't play nicely with other potentially
3076 * chained IRQs */
3077 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3078 (unsigned long)inta & IPW_INTERRUPT_MASK);
3079
3080 if (inta & IPW2100_INTA_FATAL_ERROR) {
3081 printk(KERN_WARNING DRV_NAME
3082 ": Fatal interrupt. Scheduling firmware restart.\n");
3083 priv->inta_other++;
3084 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3085
3086 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3087 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3088 priv->net_dev->name, priv->fatal_error);
3089
3090 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3091 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3092 priv->net_dev->name, tmp);
3093
3094 /* Wake up any sleeping jobs */
3095 schedule_reset(priv);
3096 }
3097
3098 if (inta & IPW2100_INTA_PARITY_ERROR) {
3099 printk(KERN_ERR DRV_NAME
3100 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3101 priv->inta_other++;
3102 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3103 }
3104
3105 if (inta & IPW2100_INTA_RX_TRANSFER) {
3106 IPW_DEBUG_ISR("RX interrupt\n");
3107
3108 priv->rx_interrupts++;
3109
3110 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3111
3112 __ipw2100_rx_process(priv);
3113 __ipw2100_tx_complete(priv);
3114 }
3115
3116 if (inta & IPW2100_INTA_TX_TRANSFER) {
3117 IPW_DEBUG_ISR("TX interrupt\n");
3118
3119 priv->tx_interrupts++;
3120
3121 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3122
3123 __ipw2100_tx_complete(priv);
3124 ipw2100_tx_send_commands(priv);
3125 ipw2100_tx_send_data(priv);
3126 }
3127
3128 if (inta & IPW2100_INTA_TX_COMPLETE) {
3129 IPW_DEBUG_ISR("TX complete\n");
3130 priv->inta_other++;
3131 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3132
3133 __ipw2100_tx_complete(priv);
3134 }
3135
3136 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3137 /* ipw2100_handle_event(dev); */
3138 priv->inta_other++;
3139 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3140 }
3141
3142 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3143 IPW_DEBUG_ISR("FW init done interrupt\n");
3144 priv->inta_other++;
3145
3146 read_register(dev, IPW_REG_INTA, &tmp);
3147 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3148 IPW2100_INTA_PARITY_ERROR)) {
3149 write_register(dev, IPW_REG_INTA,
3150 IPW2100_INTA_FATAL_ERROR |
3151 IPW2100_INTA_PARITY_ERROR);
3152 }
3153
3154 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3155 }
3156
3157 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3158 IPW_DEBUG_ISR("Status change interrupt\n");
3159 priv->inta_other++;
3160 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3161 }
3162
3163 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3164 IPW_DEBUG_ISR("slave host mode interrupt\n");
3165 priv->inta_other++;
3166 write_register(dev, IPW_REG_INTA,
3167 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3168 }
3169
3170 priv->in_isr--;
3171 ipw2100_enable_interrupts(priv);
3172
3173 spin_unlock_irqrestore(&priv->low_lock, flags);
3174
3175 IPW_DEBUG_ISR("exit\n");
3176 }
3177
3178 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3179 {
3180 struct ipw2100_priv *priv = data;
3181 u32 inta, inta_mask;
3182
3183 if (!data)
3184 return IRQ_NONE;
3185
3186 spin_lock(&priv->low_lock);
3187
3188 /* We check to see if we should be ignoring interrupts before
3189 * we touch the hardware. During ucode load if we try and handle
3190 * an interrupt we can cause keyboard problems as well as cause
3191 * the ucode to fail to initialize */
3192 if (!(priv->status & STATUS_INT_ENABLED)) {
3193 /* Shared IRQ */
3194 goto none;
3195 }
3196
3197 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3198 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3199
3200 if (inta == 0xFFFFFFFF) {
3201 /* Hardware disappeared */
3202 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3203 goto none;
3204 }
3205
3206 inta &= IPW_INTERRUPT_MASK;
3207
3208 if (!(inta & inta_mask)) {
3209 /* Shared interrupt */
3210 goto none;
3211 }
3212
3213 /* We disable the hardware interrupt here just to prevent unneeded
3214 * calls to be made. We disable this again within the actual
3215 * work tasklet, so if another part of the code re-enables the
3216 * interrupt, that is fine */
3217 ipw2100_disable_interrupts(priv);
3218
3219 tasklet_schedule(&priv->irq_tasklet);
3220 spin_unlock(&priv->low_lock);
3221
3222 return IRQ_HANDLED;
3223 none:
3224 spin_unlock(&priv->low_lock);
3225 return IRQ_NONE;
3226 }
3227
3228 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3229 int pri)
3230 {
3231 struct ipw2100_priv *priv = ieee80211_priv(dev);
3232 struct list_head *element;
3233 struct ipw2100_tx_packet *packet;
3234 unsigned long flags;
3235
3236 spin_lock_irqsave(&priv->low_lock, flags);
3237
3238 if (!(priv->status & STATUS_ASSOCIATED)) {
3239 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3240 priv->ieee->stats.tx_carrier_errors++;
3241 netif_stop_queue(dev);
3242 goto fail_unlock;
3243 }
3244
3245 if (list_empty(&priv->tx_free_list))
3246 goto fail_unlock;
3247
3248 element = priv->tx_free_list.next;
3249 packet = list_entry(element, struct ipw2100_tx_packet, list);
3250
3251 packet->info.d_struct.txb = txb;
3252
3253 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3254 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3255
3256 packet->jiffy_start = jiffies;
3257
3258 list_del(element);
3259 DEC_STAT(&priv->tx_free_stat);
3260
3261 list_add_tail(element, &priv->tx_pend_list);
3262 INC_STAT(&priv->tx_pend_stat);
3263
3264 ipw2100_tx_send_data(priv);
3265
3266 spin_unlock_irqrestore(&priv->low_lock, flags);
3267 return 0;
3268
3269 fail_unlock:
3270 netif_stop_queue(dev);
3271 spin_unlock_irqrestore(&priv->low_lock, flags);
3272 return 1;
3273 }
3274
3275 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3276 {
3277 int i, j, err = -EINVAL;
3278 void *v;
3279 dma_addr_t p;
3280
3281 priv->msg_buffers =
3282 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3283 sizeof(struct
3284 ipw2100_tx_packet),
3285 GFP_KERNEL);
3286 if (!priv->msg_buffers) {
3287 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3288 "buffers.\n", priv->net_dev->name);
3289 return -ENOMEM;
3290 }
3291
3292 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3293 v = pci_alloc_consistent(priv->pci_dev,
3294 sizeof(struct ipw2100_cmd_header), &p);
3295 if (!v) {
3296 printk(KERN_ERR DRV_NAME ": "
3297 "%s: PCI alloc failed for msg "
3298 "buffers.\n", priv->net_dev->name);
3299 err = -ENOMEM;
3300 break;
3301 }
3302
3303 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3304
3305 priv->msg_buffers[i].type = COMMAND;
3306 priv->msg_buffers[i].info.c_struct.cmd =
3307 (struct ipw2100_cmd_header *)v;
3308 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3309 }
3310
3311 if (i == IPW_COMMAND_POOL_SIZE)
3312 return 0;
3313
3314 for (j = 0; j < i; j++) {
3315 pci_free_consistent(priv->pci_dev,
3316 sizeof(struct ipw2100_cmd_header),
3317 priv->msg_buffers[j].info.c_struct.cmd,
3318 priv->msg_buffers[j].info.c_struct.
3319 cmd_phys);
3320 }
3321
3322 kfree(priv->msg_buffers);
3323 priv->msg_buffers = NULL;
3324
3325 return err;
3326 }
3327
3328 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3329 {
3330 int i;
3331
3332 INIT_LIST_HEAD(&priv->msg_free_list);
3333 INIT_LIST_HEAD(&priv->msg_pend_list);
3334
3335 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3336 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3337 SET_STAT(&priv->msg_free_stat, i);
3338
3339 return 0;
3340 }
3341
3342 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3343 {
3344 int i;
3345
3346 if (!priv->msg_buffers)
3347 return;
3348
3349 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3350 pci_free_consistent(priv->pci_dev,
3351 sizeof(struct ipw2100_cmd_header),
3352 priv->msg_buffers[i].info.c_struct.cmd,
3353 priv->msg_buffers[i].info.c_struct.
3354 cmd_phys);
3355 }
3356
3357 kfree(priv->msg_buffers);
3358 priv->msg_buffers = NULL;
3359 }
3360
3361 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3362 char *buf)
3363 {
3364 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3365 char *out = buf;
3366 int i, j;
3367 u32 val;
3368
3369 for (i = 0; i < 16; i++) {
3370 out += sprintf(out, "[%08X] ", i * 16);
3371 for (j = 0; j < 16; j += 4) {
3372 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3373 out += sprintf(out, "%08X ", val);
3374 }
3375 out += sprintf(out, "\n");
3376 }
3377
3378 return out - buf;
3379 }
3380
3381 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3382
3383 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3384 char *buf)
3385 {
3386 struct ipw2100_priv *p = d->driver_data;
3387 return sprintf(buf, "0x%08x\n", (int)p->config);
3388 }
3389
3390 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3391
3392 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3393 char *buf)
3394 {
3395 struct ipw2100_priv *p = d->driver_data;
3396 return sprintf(buf, "0x%08x\n", (int)p->status);
3397 }
3398
3399 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3400
3401 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3402 char *buf)
3403 {
3404 struct ipw2100_priv *p = d->driver_data;
3405 return sprintf(buf, "0x%08x\n", (int)p->capability);
3406 }
3407
3408 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3409
3410 #define IPW2100_REG(x) { IPW_ ##x, #x }
3411 static const struct {
3412 u32 addr;
3413 const char *name;
3414 } hw_data[] = {
3415 IPW2100_REG(REG_GP_CNTRL),
3416 IPW2100_REG(REG_GPIO),
3417 IPW2100_REG(REG_INTA),
3418 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3419 #define IPW2100_NIC(x, s) { x, #x, s }
3420 static const struct {
3421 u32 addr;
3422 const char *name;
3423 size_t size;
3424 } nic_data[] = {
3425 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3426 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3427 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3428 static const struct {
3429 u8 index;
3430 const char *name;
3431 const char *desc;
3432 } ord_data[] = {
3433 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3434 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3435 "successful Host Tx's (MSDU)"),
3436 IPW2100_ORD(STAT_TX_DIR_DATA,
3437 "successful Directed Tx's (MSDU)"),
3438 IPW2100_ORD(STAT_TX_DIR_DATA1,
3439 "successful Directed Tx's (MSDU) @ 1MB"),
3440 IPW2100_ORD(STAT_TX_DIR_DATA2,
3441 "successful Directed Tx's (MSDU) @ 2MB"),
3442 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3443 "successful Directed Tx's (MSDU) @ 5_5MB"),
3444 IPW2100_ORD(STAT_TX_DIR_DATA11,
3445 "successful Directed Tx's (MSDU) @ 11MB"),
3446 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3447 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3448 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3449 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3450 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3451 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3452 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3453 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3454 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3455 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3456 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3457 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3458 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3459 IPW2100_ORD(STAT_TX_ASSN_RESP,
3460 "successful Association response Tx's"),
3461 IPW2100_ORD(STAT_TX_REASSN,
3462 "successful Reassociation Tx's"),
3463 IPW2100_ORD(STAT_TX_REASSN_RESP,
3464 "successful Reassociation response Tx's"),
3465 IPW2100_ORD(STAT_TX_PROBE,
3466 "probes successfully transmitted"),
3467 IPW2100_ORD(STAT_TX_PROBE_RESP,
3468 "probe responses successfully transmitted"),
3469 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3470 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3471 IPW2100_ORD(STAT_TX_DISASSN,
3472 "successful Disassociation TX"),
3473 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3474 IPW2100_ORD(STAT_TX_DEAUTH,
3475 "successful Deauthentication TX"),
3476 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3477 "Total successful Tx data bytes"),
3478 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3479 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3480 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3481 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3482 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3483 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3484 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3485 "times max tries in a hop failed"),
3486 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3487 "times disassociation failed"),
3488 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3489 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3490 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3491 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3492 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3493 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3494 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3495 "directed packets at 5.5MB"),
3496 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3497 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3498 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3499 "nondirected packets at 1MB"),
3500 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3501 "nondirected packets at 2MB"),
3502 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3503 "nondirected packets at 5.5MB"),
3504 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3505 "nondirected packets at 11MB"),
3506 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3507 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3508 "Rx CTS"),
3509 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3510 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3511 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3512 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3513 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3514 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3515 IPW2100_ORD(STAT_RX_REASSN_RESP,
3516 "Reassociation response Rx's"),
3517 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3518 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3519 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3520 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3521 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3522 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3523 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3524 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3525 "Total rx data bytes received"),
3526 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3527 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3528 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3529 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3530 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3531 IPW2100_ORD(STAT_RX_DUPLICATE1,
3532 "duplicate rx packets at 1MB"),
3533 IPW2100_ORD(STAT_RX_DUPLICATE2,
3534 "duplicate rx packets at 2MB"),
3535 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3536 "duplicate rx packets at 5.5MB"),
3537 IPW2100_ORD(STAT_RX_DUPLICATE11,
3538 "duplicate rx packets at 11MB"),
3539 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3540 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3541 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3542 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3543 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3544 "rx frames with invalid protocol"),
3545 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3546 IPW2100_ORD(STAT_RX_NO_BUFFER,
3547 "rx frames rejected due to no buffer"),
3548 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3549 "rx frames dropped due to missing fragment"),
3550 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3551 "rx frames dropped due to non-sequential fragment"),
3552 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3553 "rx frames dropped due to unmatched 1st frame"),
3554 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3555 "rx frames dropped due to uncompleted frame"),
3556 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3557 "ICV errors during decryption"),
3558 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3559 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3560 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3561 "poll response timeouts"),
3562 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3563 "timeouts waiting for last {broad,multi}cast pkt"),
3564 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3565 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3566 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3567 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3568 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3569 "current calculation of % missed beacons"),
3570 IPW2100_ORD(STAT_PERCENT_RETRIES,
3571 "current calculation of % missed tx retries"),
3572 IPW2100_ORD(ASSOCIATED_AP_PTR,
3573 "0 if not associated, else pointer to AP table entry"),
3574 IPW2100_ORD(AVAILABLE_AP_CNT,
3575 "AP's decsribed in the AP table"),
3576 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3577 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3578 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3579 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3580 "failures due to response fail"),
3581 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3582 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3583 IPW2100_ORD(STAT_ROAM_INHIBIT,
3584 "times roaming was inhibited due to activity"),
3585 IPW2100_ORD(RSSI_AT_ASSN,
3586 "RSSI of associated AP at time of association"),
3587 IPW2100_ORD(STAT_ASSN_CAUSE1,
3588 "reassociation: no probe response or TX on hop"),
3589 IPW2100_ORD(STAT_ASSN_CAUSE2,
3590 "reassociation: poor tx/rx quality"),
3591 IPW2100_ORD(STAT_ASSN_CAUSE3,
3592 "reassociation: tx/rx quality (excessive AP load"),
3593 IPW2100_ORD(STAT_ASSN_CAUSE4,
3594 "reassociation: AP RSSI level"),
3595 IPW2100_ORD(STAT_ASSN_CAUSE5,
3596 "reassociations due to load leveling"),
3597 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3598 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3599 "times authentication response failed"),
3600 IPW2100_ORD(STATION_TABLE_CNT,
3601 "entries in association table"),
3602 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3603 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3604 IPW2100_ORD(COUNTRY_CODE,
3605 "IEEE country code as recv'd from beacon"),
3606 IPW2100_ORD(COUNTRY_CHANNELS,
3607 "channels suported by country"),
3608 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3609 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3610 IPW2100_ORD(ANTENNA_DIVERSITY,
3611 "TRUE if antenna diversity is disabled"),
3612 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3613 IPW2100_ORD(OUR_FREQ,
3614 "current radio freq lower digits - channel ID"),
3615 IPW2100_ORD(RTC_TIME, "current RTC time"),
3616 IPW2100_ORD(PORT_TYPE, "operating mode"),
3617 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3618 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3619 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3620 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3621 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3622 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3623 IPW2100_ORD(CAPABILITIES,
3624 "Management frame capability field"),
3625 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3626 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3627 IPW2100_ORD(RTS_THRESHOLD,
3628 "Min packet length for RTS handshaking"),
3629 IPW2100_ORD(INT_MODE, "International mode"),
3630 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3631 "protocol frag threshold"),
3632 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3633 "EEPROM offset in SRAM"),
3634 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3635 "EEPROM size in SRAM"),
3636 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3637 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3638 "EEPROM IBSS 11b channel set"),
3639 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3640 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3641 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3642 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3643 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3644
3645 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3646 char *buf)
3647 {
3648 int i;
3649 struct ipw2100_priv *priv = dev_get_drvdata(d);
3650 struct net_device *dev = priv->net_dev;
3651 char *out = buf;
3652 u32 val = 0;
3653
3654 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3655
3656 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3657 read_register(dev, hw_data[i].addr, &val);
3658 out += sprintf(out, "%30s [%08X] : %08X\n",
3659 hw_data[i].name, hw_data[i].addr, val);
3660 }
3661
3662 return out - buf;
3663 }
3664
3665 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3666
3667 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3668 char *buf)
3669 {
3670 struct ipw2100_priv *priv = dev_get_drvdata(d);
3671 struct net_device *dev = priv->net_dev;
3672 char *out = buf;
3673 int i;
3674
3675 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3676
3677 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3678 u8 tmp8;
3679 u16 tmp16;
3680 u32 tmp32;
3681
3682 switch (nic_data[i].size) {
3683 case 1:
3684 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3685 out += sprintf(out, "%30s [%08X] : %02X\n",
3686 nic_data[i].name, nic_data[i].addr,
3687 tmp8);
3688 break;
3689 case 2:
3690 read_nic_word(dev, nic_data[i].addr, &tmp16);
3691 out += sprintf(out, "%30s [%08X] : %04X\n",
3692 nic_data[i].name, nic_data[i].addr,
3693 tmp16);
3694 break;
3695 case 4:
3696 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3697 out += sprintf(out, "%30s [%08X] : %08X\n",
3698 nic_data[i].name, nic_data[i].addr,
3699 tmp32);
3700 break;
3701 }
3702 }
3703 return out - buf;
3704 }
3705
3706 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3707
3708 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3709 char *buf)
3710 {
3711 struct ipw2100_priv *priv = dev_get_drvdata(d);
3712 struct net_device *dev = priv->net_dev;
3713 static unsigned long loop = 0;
3714 int len = 0;
3715 u32 buffer[4];
3716 int i;
3717 char line[81];
3718
3719 if (loop >= 0x30000)
3720 loop = 0;
3721
3722 /* sysfs provides us PAGE_SIZE buffer */
3723 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3724
3725 if (priv->snapshot[0])
3726 for (i = 0; i < 4; i++)
3727 buffer[i] =
3728 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3729 else
3730 for (i = 0; i < 4; i++)
3731 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3732
3733 if (priv->dump_raw)
3734 len += sprintf(buf + len,
3735 "%c%c%c%c"
3736 "%c%c%c%c"
3737 "%c%c%c%c"
3738 "%c%c%c%c",
3739 ((u8 *) buffer)[0x0],
3740 ((u8 *) buffer)[0x1],
3741 ((u8 *) buffer)[0x2],
3742 ((u8 *) buffer)[0x3],
3743 ((u8 *) buffer)[0x4],
3744 ((u8 *) buffer)[0x5],
3745 ((u8 *) buffer)[0x6],
3746 ((u8 *) buffer)[0x7],
3747 ((u8 *) buffer)[0x8],
3748 ((u8 *) buffer)[0x9],
3749 ((u8 *) buffer)[0xa],
3750 ((u8 *) buffer)[0xb],
3751 ((u8 *) buffer)[0xc],
3752 ((u8 *) buffer)[0xd],
3753 ((u8 *) buffer)[0xe],
3754 ((u8 *) buffer)[0xf]);
3755 else
3756 len += sprintf(buf + len, "%s\n",
3757 snprint_line(line, sizeof(line),
3758 (u8 *) buffer, 16, loop));
3759 loop += 16;
3760 }
3761
3762 return len;
3763 }
3764
3765 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3766 const char *buf, size_t count)
3767 {
3768 struct ipw2100_priv *priv = dev_get_drvdata(d);
3769 struct net_device *dev = priv->net_dev;
3770 const char *p = buf;
3771
3772 (void)dev; /* kill unused-var warning for debug-only code */
3773
3774 if (count < 1)
3775 return count;
3776
3777 if (p[0] == '1' ||
3778 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3779 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3780 dev->name);
3781 priv->dump_raw = 1;
3782
3783 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3784 tolower(p[1]) == 'f')) {
3785 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3786 dev->name);
3787 priv->dump_raw = 0;
3788
3789 } else if (tolower(p[0]) == 'r') {
3790 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3791 ipw2100_snapshot_free(priv);
3792
3793 } else
3794 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3795 "reset = clear memory snapshot\n", dev->name);
3796
3797 return count;
3798 }
3799
3800 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3801
3802 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3803 char *buf)
3804 {
3805 struct ipw2100_priv *priv = dev_get_drvdata(d);
3806 u32 val = 0;
3807 int len = 0;
3808 u32 val_len;
3809 static int loop = 0;
3810
3811 if (priv->status & STATUS_RF_KILL_MASK)
3812 return 0;
3813
3814 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3815 loop = 0;
3816
3817 /* sysfs provides us PAGE_SIZE buffer */
3818 while (len < PAGE_SIZE - 128 &&
3819 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3820
3821 val_len = sizeof(u32);
3822
3823 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3824 &val_len))
3825 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3826 ord_data[loop].index,
3827 ord_data[loop].desc);
3828 else
3829 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3830 ord_data[loop].index, val,
3831 ord_data[loop].desc);
3832 loop++;
3833 }
3834
3835 return len;
3836 }
3837
3838 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3839
3840 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3841 char *buf)
3842 {
3843 struct ipw2100_priv *priv = dev_get_drvdata(d);
3844 char *out = buf;
3845
3846 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3847 priv->interrupts, priv->tx_interrupts,
3848 priv->rx_interrupts, priv->inta_other);
3849 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3850 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3851 #ifdef CONFIG_IPW2100_DEBUG
3852 out += sprintf(out, "packet mismatch image: %s\n",
3853 priv->snapshot[0] ? "YES" : "NO");
3854 #endif
3855
3856 return out - buf;
3857 }
3858
3859 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3860
3861 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3862 {
3863 int err;
3864
3865 if (mode == priv->ieee->iw_mode)
3866 return 0;
3867
3868 err = ipw2100_disable_adapter(priv);
3869 if (err) {
3870 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3871 priv->net_dev->name, err);
3872 return err;
3873 }
3874
3875 switch (mode) {
3876 case IW_MODE_INFRA:
3877 priv->net_dev->type = ARPHRD_ETHER;
3878 break;
3879 case IW_MODE_ADHOC:
3880 priv->net_dev->type = ARPHRD_ETHER;
3881 break;
3882 #ifdef CONFIG_IPW2100_MONITOR
3883 case IW_MODE_MONITOR:
3884 priv->last_mode = priv->ieee->iw_mode;
3885 priv->net_dev->type = ARPHRD_IEEE80211;
3886 break;
3887 #endif /* CONFIG_IPW2100_MONITOR */
3888 }
3889
3890 priv->ieee->iw_mode = mode;
3891
3892 #ifdef CONFIG_PM
3893 /* Indicate ipw2100_download_firmware download firmware
3894 * from disk instead of memory. */
3895 ipw2100_firmware.version = 0;
3896 #endif
3897
3898 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3899 priv->reset_backoff = 0;
3900 schedule_reset(priv);
3901
3902 return 0;
3903 }
3904
3905 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3906 char *buf)
3907 {
3908 struct ipw2100_priv *priv = dev_get_drvdata(d);
3909 int len = 0;
3910
3911 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3912
3913 if (priv->status & STATUS_ASSOCIATED)
3914 len += sprintf(buf + len, "connected: %lu\n",
3915 get_seconds() - priv->connect_start);
3916 else
3917 len += sprintf(buf + len, "not connected\n");
3918
3919 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3920 DUMP_VAR(status, "08lx");
3921 DUMP_VAR(config, "08lx");
3922 DUMP_VAR(capability, "08lx");
3923
3924 len +=
3925 sprintf(buf + len, "last_rtc: %lu\n",
3926 (unsigned long)priv->last_rtc);
3927
3928 DUMP_VAR(fatal_error, "d");
3929 DUMP_VAR(stop_hang_check, "d");
3930 DUMP_VAR(stop_rf_kill, "d");
3931 DUMP_VAR(messages_sent, "d");
3932
3933 DUMP_VAR(tx_pend_stat.value, "d");
3934 DUMP_VAR(tx_pend_stat.hi, "d");
3935
3936 DUMP_VAR(tx_free_stat.value, "d");
3937 DUMP_VAR(tx_free_stat.lo, "d");
3938
3939 DUMP_VAR(msg_free_stat.value, "d");
3940 DUMP_VAR(msg_free_stat.lo, "d");
3941
3942 DUMP_VAR(msg_pend_stat.value, "d");
3943 DUMP_VAR(msg_pend_stat.hi, "d");
3944
3945 DUMP_VAR(fw_pend_stat.value, "d");
3946 DUMP_VAR(fw_pend_stat.hi, "d");
3947
3948 DUMP_VAR(txq_stat.value, "d");
3949 DUMP_VAR(txq_stat.lo, "d");
3950
3951 DUMP_VAR(ieee->scans, "d");
3952 DUMP_VAR(reset_backoff, "d");
3953
3954 return len;
3955 }
3956
3957 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3958
3959 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3960 char *buf)
3961 {
3962 struct ipw2100_priv *priv = dev_get_drvdata(d);
3963 char essid[IW_ESSID_MAX_SIZE + 1];
3964 u8 bssid[ETH_ALEN];
3965 u32 chan = 0;
3966 char *out = buf;
3967 int length;
3968 int ret;
3969
3970 if (priv->status & STATUS_RF_KILL_MASK)
3971 return 0;
3972
3973 memset(essid, 0, sizeof(essid));
3974 memset(bssid, 0, sizeof(bssid));
3975
3976 length = IW_ESSID_MAX_SIZE;
3977 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3978 if (ret)
3979 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3980 __LINE__);
3981
3982 length = sizeof(bssid);
3983 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3984 bssid, &length);
3985 if (ret)
3986 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3987 __LINE__);
3988
3989 length = sizeof(u32);
3990 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3991 if (ret)
3992 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3993 __LINE__);
3994
3995 out += sprintf(out, "ESSID: %s\n", essid);
3996 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
3997 bssid[0], bssid[1], bssid[2],
3998 bssid[3], bssid[4], bssid[5]);
3999 out += sprintf(out, "Channel: %d\n", chan);
4000
4001 return out - buf;
4002 }
4003
4004 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4005
4006 #ifdef CONFIG_IPW2100_DEBUG
4007 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4008 {
4009 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4010 }
4011
4012 static ssize_t store_debug_level(struct device_driver *d,
4013 const char *buf, size_t count)
4014 {
4015 char *p = (char *)buf;
4016 u32 val;
4017
4018 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4019 p++;
4020 if (p[0] == 'x' || p[0] == 'X')
4021 p++;
4022 val = simple_strtoul(p, &p, 16);
4023 } else
4024 val = simple_strtoul(p, &p, 10);
4025 if (p == buf)
4026 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4027 else
4028 ipw2100_debug_level = val;
4029
4030 return strnlen(buf, count);
4031 }
4032
4033 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4034 store_debug_level);
4035 #endif /* CONFIG_IPW2100_DEBUG */
4036
4037 static ssize_t show_fatal_error(struct device *d,
4038 struct device_attribute *attr, char *buf)
4039 {
4040 struct ipw2100_priv *priv = dev_get_drvdata(d);
4041 char *out = buf;
4042 int i;
4043
4044 if (priv->fatal_error)
4045 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4046 else
4047 out += sprintf(out, "0\n");
4048
4049 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4050 if (!priv->fatal_errors[(priv->fatal_index - i) %
4051 IPW2100_ERROR_QUEUE])
4052 continue;
4053
4054 out += sprintf(out, "%d. 0x%08X\n", i,
4055 priv->fatal_errors[(priv->fatal_index - i) %
4056 IPW2100_ERROR_QUEUE]);
4057 }
4058
4059 return out - buf;
4060 }
4061
4062 static ssize_t store_fatal_error(struct device *d,
4063 struct device_attribute *attr, const char *buf,
4064 size_t count)
4065 {
4066 struct ipw2100_priv *priv = dev_get_drvdata(d);
4067 schedule_reset(priv);
4068 return count;
4069 }
4070
4071 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4072 store_fatal_error);
4073
4074 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4075 char *buf)
4076 {
4077 struct ipw2100_priv *priv = dev_get_drvdata(d);
4078 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4079 }
4080
4081 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4082 const char *buf, size_t count)
4083 {
4084 struct ipw2100_priv *priv = dev_get_drvdata(d);
4085 struct net_device *dev = priv->net_dev;
4086 char buffer[] = "00000000";
4087 unsigned long len =
4088 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4089 unsigned long val;
4090 char *p = buffer;
4091
4092 (void)dev; /* kill unused-var warning for debug-only code */
4093
4094 IPW_DEBUG_INFO("enter\n");
4095
4096 strncpy(buffer, buf, len);
4097 buffer[len] = 0;
4098
4099 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4100 p++;
4101 if (p[0] == 'x' || p[0] == 'X')
4102 p++;
4103 val = simple_strtoul(p, &p, 16);
4104 } else
4105 val = simple_strtoul(p, &p, 10);
4106 if (p == buffer) {
4107 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4108 } else {
4109 priv->ieee->scan_age = val;
4110 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4111 }
4112
4113 IPW_DEBUG_INFO("exit\n");
4114 return len;
4115 }
4116
4117 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4118
4119 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4120 char *buf)
4121 {
4122 /* 0 - RF kill not enabled
4123 1 - SW based RF kill active (sysfs)
4124 2 - HW based RF kill active
4125 3 - Both HW and SW baed RF kill active */
4126 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4127 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4128 (rf_kill_active(priv) ? 0x2 : 0x0);
4129 return sprintf(buf, "%i\n", val);
4130 }
4131
4132 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4133 {
4134 if ((disable_radio ? 1 : 0) ==
4135 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4136 return 0;
4137
4138 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4139 disable_radio ? "OFF" : "ON");
4140
4141 down(&priv->action_sem);
4142
4143 if (disable_radio) {
4144 priv->status |= STATUS_RF_KILL_SW;
4145 ipw2100_down(priv);
4146 } else {
4147 priv->status &= ~STATUS_RF_KILL_SW;
4148 if (rf_kill_active(priv)) {
4149 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4150 "disabled by HW switch\n");
4151 /* Make sure the RF_KILL check timer is running */
4152 priv->stop_rf_kill = 0;
4153 cancel_delayed_work(&priv->rf_kill);
4154 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4155 } else
4156 schedule_reset(priv);
4157 }
4158
4159 up(&priv->action_sem);
4160 return 1;
4161 }
4162
4163 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4164 const char *buf, size_t count)
4165 {
4166 struct ipw2100_priv *priv = dev_get_drvdata(d);
4167 ipw_radio_kill_sw(priv, buf[0] == '1');
4168 return count;
4169 }
4170
4171 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4172
4173 static struct attribute *ipw2100_sysfs_entries[] = {
4174 &dev_attr_hardware.attr,
4175 &dev_attr_registers.attr,
4176 &dev_attr_ordinals.attr,
4177 &dev_attr_pci.attr,
4178 &dev_attr_stats.attr,
4179 &dev_attr_internals.attr,
4180 &dev_attr_bssinfo.attr,
4181 &dev_attr_memory.attr,
4182 &dev_attr_scan_age.attr,
4183 &dev_attr_fatal_error.attr,
4184 &dev_attr_rf_kill.attr,
4185 &dev_attr_cfg.attr,
4186 &dev_attr_status.attr,
4187 &dev_attr_capability.attr,
4188 NULL,
4189 };
4190
4191 static struct attribute_group ipw2100_attribute_group = {
4192 .attrs = ipw2100_sysfs_entries,
4193 };
4194
4195 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4196 {
4197 struct ipw2100_status_queue *q = &priv->status_queue;
4198
4199 IPW_DEBUG_INFO("enter\n");
4200
4201 q->size = entries * sizeof(struct ipw2100_status);
4202 q->drv =
4203 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4204 q->size, &q->nic);
4205 if (!q->drv) {
4206 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4207 return -ENOMEM;
4208 }
4209
4210 memset(q->drv, 0, q->size);
4211
4212 IPW_DEBUG_INFO("exit\n");
4213
4214 return 0;
4215 }
4216
4217 static void status_queue_free(struct ipw2100_priv *priv)
4218 {
4219 IPW_DEBUG_INFO("enter\n");
4220
4221 if (priv->status_queue.drv) {
4222 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4223 priv->status_queue.drv,
4224 priv->status_queue.nic);
4225 priv->status_queue.drv = NULL;
4226 }
4227
4228 IPW_DEBUG_INFO("exit\n");
4229 }
4230
4231 static int bd_queue_allocate(struct ipw2100_priv *priv,
4232 struct ipw2100_bd_queue *q, int entries)
4233 {
4234 IPW_DEBUG_INFO("enter\n");
4235
4236 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4237
4238 q->entries = entries;
4239 q->size = entries * sizeof(struct ipw2100_bd);
4240 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4241 if (!q->drv) {
4242 IPW_DEBUG_INFO
4243 ("can't allocate shared memory for buffer descriptors\n");
4244 return -ENOMEM;
4245 }
4246 memset(q->drv, 0, q->size);
4247
4248 IPW_DEBUG_INFO("exit\n");
4249
4250 return 0;
4251 }
4252
4253 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4254 {
4255 IPW_DEBUG_INFO("enter\n");
4256
4257 if (!q)
4258 return;
4259
4260 if (q->drv) {
4261 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4262 q->drv = NULL;
4263 }
4264
4265 IPW_DEBUG_INFO("exit\n");
4266 }
4267
4268 static void bd_queue_initialize(struct ipw2100_priv *priv,
4269 struct ipw2100_bd_queue *q, u32 base, u32 size,
4270 u32 r, u32 w)
4271 {
4272 IPW_DEBUG_INFO("enter\n");
4273
4274 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4275 (u32) q->nic);
4276
4277 write_register(priv->net_dev, base, q->nic);
4278 write_register(priv->net_dev, size, q->entries);
4279 write_register(priv->net_dev, r, q->oldest);
4280 write_register(priv->net_dev, w, q->next);
4281
4282 IPW_DEBUG_INFO("exit\n");
4283 }
4284
4285 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4286 {
4287 if (priv->workqueue) {
4288 priv->stop_rf_kill = 1;
4289 priv->stop_hang_check = 1;
4290 cancel_delayed_work(&priv->reset_work);
4291 cancel_delayed_work(&priv->security_work);
4292 cancel_delayed_work(&priv->wx_event_work);
4293 cancel_delayed_work(&priv->hang_check);
4294 cancel_delayed_work(&priv->rf_kill);
4295 destroy_workqueue(priv->workqueue);
4296 priv->workqueue = NULL;
4297 }
4298 }
4299
4300 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4301 {
4302 int i, j, err = -EINVAL;
4303 void *v;
4304 dma_addr_t p;
4305
4306 IPW_DEBUG_INFO("enter\n");
4307
4308 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4309 if (err) {
4310 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4311 priv->net_dev->name);
4312 return err;
4313 }
4314
4315 priv->tx_buffers =
4316 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4317 sizeof(struct
4318 ipw2100_tx_packet),
4319 GFP_ATOMIC);
4320 if (!priv->tx_buffers) {
4321 printk(KERN_ERR DRV_NAME
4322 ": %s: alloc failed form tx buffers.\n",
4323 priv->net_dev->name);
4324 bd_queue_free(priv, &priv->tx_queue);
4325 return -ENOMEM;
4326 }
4327
4328 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4329 v = pci_alloc_consistent(priv->pci_dev,
4330 sizeof(struct ipw2100_data_header),
4331 &p);
4332 if (!v) {
4333 printk(KERN_ERR DRV_NAME
4334 ": %s: PCI alloc failed for tx " "buffers.\n",
4335 priv->net_dev->name);
4336 err = -ENOMEM;
4337 break;
4338 }
4339
4340 priv->tx_buffers[i].type = DATA;
4341 priv->tx_buffers[i].info.d_struct.data =
4342 (struct ipw2100_data_header *)v;
4343 priv->tx_buffers[i].info.d_struct.data_phys = p;
4344 priv->tx_buffers[i].info.d_struct.txb = NULL;
4345 }
4346
4347 if (i == TX_PENDED_QUEUE_LENGTH)
4348 return 0;
4349
4350 for (j = 0; j < i; j++) {
4351 pci_free_consistent(priv->pci_dev,
4352 sizeof(struct ipw2100_data_header),
4353 priv->tx_buffers[j].info.d_struct.data,
4354 priv->tx_buffers[j].info.d_struct.
4355 data_phys);
4356 }
4357
4358 kfree(priv->tx_buffers);
4359 priv->tx_buffers = NULL;
4360
4361 return err;
4362 }
4363
4364 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4365 {
4366 int i;
4367
4368 IPW_DEBUG_INFO("enter\n");
4369
4370 /*
4371 * reinitialize packet info lists
4372 */
4373 INIT_LIST_HEAD(&priv->fw_pend_list);
4374 INIT_STAT(&priv->fw_pend_stat);
4375
4376 /*
4377 * reinitialize lists
4378 */
4379 INIT_LIST_HEAD(&priv->tx_pend_list);
4380 INIT_LIST_HEAD(&priv->tx_free_list);
4381 INIT_STAT(&priv->tx_pend_stat);
4382 INIT_STAT(&priv->tx_free_stat);
4383
4384 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4385 /* We simply drop any SKBs that have been queued for
4386 * transmit */
4387 if (priv->tx_buffers[i].info.d_struct.txb) {
4388 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4389 txb);
4390 priv->tx_buffers[i].info.d_struct.txb = NULL;
4391 }
4392
4393 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4394 }
4395
4396 SET_STAT(&priv->tx_free_stat, i);
4397
4398 priv->tx_queue.oldest = 0;
4399 priv->tx_queue.available = priv->tx_queue.entries;
4400 priv->tx_queue.next = 0;
4401 INIT_STAT(&priv->txq_stat);
4402 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4403
4404 bd_queue_initialize(priv, &priv->tx_queue,
4405 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4406 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4407 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4408 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4409
4410 IPW_DEBUG_INFO("exit\n");
4411
4412 }
4413
4414 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4415 {
4416 int i;
4417
4418 IPW_DEBUG_INFO("enter\n");
4419
4420 bd_queue_free(priv, &priv->tx_queue);
4421
4422 if (!priv->tx_buffers)
4423 return;
4424
4425 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4426 if (priv->tx_buffers[i].info.d_struct.txb) {
4427 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4428 txb);
4429 priv->tx_buffers[i].info.d_struct.txb = NULL;
4430 }
4431 if (priv->tx_buffers[i].info.d_struct.data)
4432 pci_free_consistent(priv->pci_dev,
4433 sizeof(struct ipw2100_data_header),
4434 priv->tx_buffers[i].info.d_struct.
4435 data,
4436 priv->tx_buffers[i].info.d_struct.
4437 data_phys);
4438 }
4439
4440 kfree(priv->tx_buffers);
4441 priv->tx_buffers = NULL;
4442
4443 IPW_DEBUG_INFO("exit\n");
4444 }
4445
4446 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4447 {
4448 int i, j, err = -EINVAL;
4449
4450 IPW_DEBUG_INFO("enter\n");
4451
4452 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4453 if (err) {
4454 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4455 return err;
4456 }
4457
4458 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4459 if (err) {
4460 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4461 bd_queue_free(priv, &priv->rx_queue);
4462 return err;
4463 }
4464
4465 /*
4466 * allocate packets
4467 */
4468 priv->rx_buffers = (struct ipw2100_rx_packet *)
4469 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4470 GFP_KERNEL);
4471 if (!priv->rx_buffers) {
4472 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4473
4474 bd_queue_free(priv, &priv->rx_queue);
4475
4476 status_queue_free(priv);
4477
4478 return -ENOMEM;
4479 }
4480
4481 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4482 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4483
4484 err = ipw2100_alloc_skb(priv, packet);
4485 if (unlikely(err)) {
4486 err = -ENOMEM;
4487 break;
4488 }
4489
4490 /* The BD holds the cache aligned address */
4491 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4492 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4493 priv->status_queue.drv[i].status_fields = 0;
4494 }
4495
4496 if (i == RX_QUEUE_LENGTH)
4497 return 0;
4498
4499 for (j = 0; j < i; j++) {
4500 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4501 sizeof(struct ipw2100_rx_packet),
4502 PCI_DMA_FROMDEVICE);
4503 dev_kfree_skb(priv->rx_buffers[j].skb);
4504 }
4505
4506 kfree(priv->rx_buffers);
4507 priv->rx_buffers = NULL;
4508
4509 bd_queue_free(priv, &priv->rx_queue);
4510
4511 status_queue_free(priv);
4512
4513 return err;
4514 }
4515
4516 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4517 {
4518 IPW_DEBUG_INFO("enter\n");
4519
4520 priv->rx_queue.oldest = 0;
4521 priv->rx_queue.available = priv->rx_queue.entries - 1;
4522 priv->rx_queue.next = priv->rx_queue.entries - 1;
4523
4524 INIT_STAT(&priv->rxq_stat);
4525 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4526
4527 bd_queue_initialize(priv, &priv->rx_queue,
4528 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4529 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4530 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4531 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4532
4533 /* set up the status queue */
4534 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4535 priv->status_queue.nic);
4536
4537 IPW_DEBUG_INFO("exit\n");
4538 }
4539
4540 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4541 {
4542 int i;
4543
4544 IPW_DEBUG_INFO("enter\n");
4545
4546 bd_queue_free(priv, &priv->rx_queue);
4547 status_queue_free(priv);
4548
4549 if (!priv->rx_buffers)
4550 return;
4551
4552 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4553 if (priv->rx_buffers[i].rxp) {
4554 pci_unmap_single(priv->pci_dev,
4555 priv->rx_buffers[i].dma_addr,
4556 sizeof(struct ipw2100_rx),
4557 PCI_DMA_FROMDEVICE);
4558 dev_kfree_skb(priv->rx_buffers[i].skb);
4559 }
4560 }
4561
4562 kfree(priv->rx_buffers);
4563 priv->rx_buffers = NULL;
4564
4565 IPW_DEBUG_INFO("exit\n");
4566 }
4567
4568 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4569 {
4570 u32 length = ETH_ALEN;
4571 u8 mac[ETH_ALEN];
4572
4573 int err;
4574
4575 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4576 if (err) {
4577 IPW_DEBUG_INFO("MAC address read failed\n");
4578 return -EIO;
4579 }
4580 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4581 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4582
4583 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4584
4585 return 0;
4586 }
4587
4588 /********************************************************************
4589 *
4590 * Firmware Commands
4591 *
4592 ********************************************************************/
4593
4594 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4595 {
4596 struct host_command cmd = {
4597 .host_command = ADAPTER_ADDRESS,
4598 .host_command_sequence = 0,
4599 .host_command_length = ETH_ALEN
4600 };
4601 int err;
4602
4603 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4604
4605 IPW_DEBUG_INFO("enter\n");
4606
4607 if (priv->config & CFG_CUSTOM_MAC) {
4608 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4609 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4610 } else
4611 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4612 ETH_ALEN);
4613
4614 err = ipw2100_hw_send_command(priv, &cmd);
4615
4616 IPW_DEBUG_INFO("exit\n");
4617 return err;
4618 }
4619
4620 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4621 int batch_mode)
4622 {
4623 struct host_command cmd = {
4624 .host_command = PORT_TYPE,
4625 .host_command_sequence = 0,
4626 .host_command_length = sizeof(u32)
4627 };
4628 int err;
4629
4630 switch (port_type) {
4631 case IW_MODE_INFRA:
4632 cmd.host_command_parameters[0] = IPW_BSS;
4633 break;
4634 case IW_MODE_ADHOC:
4635 cmd.host_command_parameters[0] = IPW_IBSS;
4636 break;
4637 }
4638
4639 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4640 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4641
4642 if (!batch_mode) {
4643 err = ipw2100_disable_adapter(priv);
4644 if (err) {
4645 printk(KERN_ERR DRV_NAME
4646 ": %s: Could not disable adapter %d\n",
4647 priv->net_dev->name, err);
4648 return err;
4649 }
4650 }
4651
4652 /* send cmd to firmware */
4653 err = ipw2100_hw_send_command(priv, &cmd);
4654
4655 if (!batch_mode)
4656 ipw2100_enable_adapter(priv);
4657
4658 return err;
4659 }
4660
4661 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4662 int batch_mode)
4663 {
4664 struct host_command cmd = {
4665 .host_command = CHANNEL,
4666 .host_command_sequence = 0,
4667 .host_command_length = sizeof(u32)
4668 };
4669 int err;
4670
4671 cmd.host_command_parameters[0] = channel;
4672
4673 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4674
4675 /* If BSS then we don't support channel selection */
4676 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4677 return 0;
4678
4679 if ((channel != 0) &&
4680 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4681 return -EINVAL;
4682
4683 if (!batch_mode) {
4684 err = ipw2100_disable_adapter(priv);
4685 if (err)
4686 return err;
4687 }
4688
4689 err = ipw2100_hw_send_command(priv, &cmd);
4690 if (err) {
4691 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4692 return err;
4693 }
4694
4695 if (channel)
4696 priv->config |= CFG_STATIC_CHANNEL;
4697 else
4698 priv->config &= ~CFG_STATIC_CHANNEL;
4699
4700 priv->channel = channel;
4701
4702 if (!batch_mode) {
4703 err = ipw2100_enable_adapter(priv);
4704 if (err)
4705 return err;
4706 }
4707
4708 return 0;
4709 }
4710
4711 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4712 {
4713 struct host_command cmd = {
4714 .host_command = SYSTEM_CONFIG,
4715 .host_command_sequence = 0,
4716 .host_command_length = 12,
4717 };
4718 u32 ibss_mask, len = sizeof(u32);
4719 int err;
4720
4721 /* Set system configuration */
4722
4723 if (!batch_mode) {
4724 err = ipw2100_disable_adapter(priv);
4725 if (err)
4726 return err;
4727 }
4728
4729 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4730 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4731
4732 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4733 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4734
4735 if (!(priv->config & CFG_LONG_PREAMBLE))
4736 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4737
4738 err = ipw2100_get_ordinal(priv,
4739 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4740 &ibss_mask, &len);
4741 if (err)
4742 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4743
4744 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4745 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4746
4747 /* 11b only */
4748 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4749
4750 err = ipw2100_hw_send_command(priv, &cmd);
4751 if (err)
4752 return err;
4753
4754 /* If IPv6 is configured in the kernel then we don't want to filter out all
4755 * of the multicast packets as IPv6 needs some. */
4756 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4757 cmd.host_command = ADD_MULTICAST;
4758 cmd.host_command_sequence = 0;
4759 cmd.host_command_length = 0;
4760
4761 ipw2100_hw_send_command(priv, &cmd);
4762 #endif
4763 if (!batch_mode) {
4764 err = ipw2100_enable_adapter(priv);
4765 if (err)
4766 return err;
4767 }
4768
4769 return 0;
4770 }
4771
4772 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4773 int batch_mode)
4774 {
4775 struct host_command cmd = {
4776 .host_command = BASIC_TX_RATES,
4777 .host_command_sequence = 0,
4778 .host_command_length = 4
4779 };
4780 int err;
4781
4782 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4783
4784 if (!batch_mode) {
4785 err = ipw2100_disable_adapter(priv);
4786 if (err)
4787 return err;
4788 }
4789
4790 /* Set BASIC TX Rate first */
4791 ipw2100_hw_send_command(priv, &cmd);
4792
4793 /* Set TX Rate */
4794 cmd.host_command = TX_RATES;
4795 ipw2100_hw_send_command(priv, &cmd);
4796
4797 /* Set MSDU TX Rate */
4798 cmd.host_command = MSDU_TX_RATES;
4799 ipw2100_hw_send_command(priv, &cmd);
4800
4801 if (!batch_mode) {
4802 err = ipw2100_enable_adapter(priv);
4803 if (err)
4804 return err;
4805 }
4806
4807 priv->tx_rates = rate;
4808
4809 return 0;
4810 }
4811
4812 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4813 {
4814 struct host_command cmd = {
4815 .host_command = POWER_MODE,
4816 .host_command_sequence = 0,
4817 .host_command_length = 4
4818 };
4819 int err;
4820
4821 cmd.host_command_parameters[0] = power_level;
4822
4823 err = ipw2100_hw_send_command(priv, &cmd);
4824 if (err)
4825 return err;
4826
4827 if (power_level == IPW_POWER_MODE_CAM)
4828 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4829 else
4830 priv->power_mode = IPW_POWER_ENABLED | power_level;
4831
4832 #ifdef CONFIG_IPW2100_TX_POWER
4833 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4834 /* Set beacon interval */
4835 cmd.host_command = TX_POWER_INDEX;
4836 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4837
4838 err = ipw2100_hw_send_command(priv, &cmd);
4839 if (err)
4840 return err;
4841 }
4842 #endif
4843
4844 return 0;
4845 }
4846
4847 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4848 {
4849 struct host_command cmd = {
4850 .host_command = RTS_THRESHOLD,
4851 .host_command_sequence = 0,
4852 .host_command_length = 4
4853 };
4854 int err;
4855
4856 if (threshold & RTS_DISABLED)
4857 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4858 else
4859 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4860
4861 err = ipw2100_hw_send_command(priv, &cmd);
4862 if (err)
4863 return err;
4864
4865 priv->rts_threshold = threshold;
4866
4867 return 0;
4868 }
4869
4870 #if 0
4871 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4872 u32 threshold, int batch_mode)
4873 {
4874 struct host_command cmd = {
4875 .host_command = FRAG_THRESHOLD,
4876 .host_command_sequence = 0,
4877 .host_command_length = 4,
4878 .host_command_parameters[0] = 0,
4879 };
4880 int err;
4881
4882 if (!batch_mode) {
4883 err = ipw2100_disable_adapter(priv);
4884 if (err)
4885 return err;
4886 }
4887
4888 if (threshold == 0)
4889 threshold = DEFAULT_FRAG_THRESHOLD;
4890 else {
4891 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4892 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4893 }
4894
4895 cmd.host_command_parameters[0] = threshold;
4896
4897 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4898
4899 err = ipw2100_hw_send_command(priv, &cmd);
4900
4901 if (!batch_mode)
4902 ipw2100_enable_adapter(priv);
4903
4904 if (!err)
4905 priv->frag_threshold = threshold;
4906
4907 return err;
4908 }
4909 #endif
4910
4911 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4912 {
4913 struct host_command cmd = {
4914 .host_command = SHORT_RETRY_LIMIT,
4915 .host_command_sequence = 0,
4916 .host_command_length = 4
4917 };
4918 int err;
4919
4920 cmd.host_command_parameters[0] = retry;
4921
4922 err = ipw2100_hw_send_command(priv, &cmd);
4923 if (err)
4924 return err;
4925
4926 priv->short_retry_limit = retry;
4927
4928 return 0;
4929 }
4930
4931 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4932 {
4933 struct host_command cmd = {
4934 .host_command = LONG_RETRY_LIMIT,
4935 .host_command_sequence = 0,
4936 .host_command_length = 4
4937 };
4938 int err;
4939
4940 cmd.host_command_parameters[0] = retry;
4941
4942 err = ipw2100_hw_send_command(priv, &cmd);
4943 if (err)
4944 return err;
4945
4946 priv->long_retry_limit = retry;
4947
4948 return 0;
4949 }
4950
4951 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4952 int batch_mode)
4953 {
4954 struct host_command cmd = {
4955 .host_command = MANDATORY_BSSID,
4956 .host_command_sequence = 0,
4957 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4958 };
4959 int err;
4960
4961 #ifdef CONFIG_IPW2100_DEBUG
4962 if (bssid != NULL)
4963 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4964 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4965 bssid[5]);
4966 else
4967 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4968 #endif
4969 /* if BSSID is empty then we disable mandatory bssid mode */
4970 if (bssid != NULL)
4971 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4972
4973 if (!batch_mode) {
4974 err = ipw2100_disable_adapter(priv);
4975 if (err)
4976 return err;
4977 }
4978
4979 err = ipw2100_hw_send_command(priv, &cmd);
4980
4981 if (!batch_mode)
4982 ipw2100_enable_adapter(priv);
4983
4984 return err;
4985 }
4986
4987 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4988 {
4989 struct host_command cmd = {
4990 .host_command = DISASSOCIATION_BSSID,
4991 .host_command_sequence = 0,
4992 .host_command_length = ETH_ALEN
4993 };
4994 int err;
4995 int len;
4996
4997 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4998
4999 len = ETH_ALEN;
5000 /* The Firmware currently ignores the BSSID and just disassociates from
5001 * the currently associated AP -- but in the off chance that a future
5002 * firmware does use the BSSID provided here, we go ahead and try and
5003 * set it to the currently associated AP's BSSID */
5004 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5005
5006 err = ipw2100_hw_send_command(priv, &cmd);
5007
5008 return err;
5009 }
5010
5011 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5012 struct ipw2100_wpa_assoc_frame *, int)
5013 __attribute__ ((unused));
5014
5015 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5016 struct ipw2100_wpa_assoc_frame *wpa_frame,
5017 int batch_mode)
5018 {
5019 struct host_command cmd = {
5020 .host_command = SET_WPA_IE,
5021 .host_command_sequence = 0,
5022 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5023 };
5024 int err;
5025
5026 IPW_DEBUG_HC("SET_WPA_IE\n");
5027
5028 if (!batch_mode) {
5029 err = ipw2100_disable_adapter(priv);
5030 if (err)
5031 return err;
5032 }
5033
5034 memcpy(cmd.host_command_parameters, wpa_frame,
5035 sizeof(struct ipw2100_wpa_assoc_frame));
5036
5037 err = ipw2100_hw_send_command(priv, &cmd);
5038
5039 if (!batch_mode) {
5040 if (ipw2100_enable_adapter(priv))
5041 err = -EIO;
5042 }
5043
5044 return err;
5045 }
5046
5047 struct security_info_params {
5048 u32 allowed_ciphers;
5049 u16 version;
5050 u8 auth_mode;
5051 u8 replay_counters_number;
5052 u8 unicast_using_group;
5053 } __attribute__ ((packed));
5054
5055 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5056 int auth_mode,
5057 int security_level,
5058 int unicast_using_group,
5059 int batch_mode)
5060 {
5061 struct host_command cmd = {
5062 .host_command = SET_SECURITY_INFORMATION,
5063 .host_command_sequence = 0,
5064 .host_command_length = sizeof(struct security_info_params)
5065 };
5066 struct security_info_params *security =
5067 (struct security_info_params *)&cmd.host_command_parameters;
5068 int err;
5069 memset(security, 0, sizeof(*security));
5070
5071 /* If shared key AP authentication is turned on, then we need to
5072 * configure the firmware to try and use it.
5073 *
5074 * Actual data encryption/decryption is handled by the host. */
5075 security->auth_mode = auth_mode;
5076 security->unicast_using_group = unicast_using_group;
5077
5078 switch (security_level) {
5079 default:
5080 case SEC_LEVEL_0:
5081 security->allowed_ciphers = IPW_NONE_CIPHER;
5082 break;
5083 case SEC_LEVEL_1:
5084 security->allowed_ciphers = IPW_WEP40_CIPHER |
5085 IPW_WEP104_CIPHER;
5086 break;
5087 case SEC_LEVEL_2:
5088 security->allowed_ciphers = IPW_WEP40_CIPHER |
5089 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5090 break;
5091 case SEC_LEVEL_2_CKIP:
5092 security->allowed_ciphers = IPW_WEP40_CIPHER |
5093 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5094 break;
5095 case SEC_LEVEL_3:
5096 security->allowed_ciphers = IPW_WEP40_CIPHER |
5097 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5098 break;
5099 }
5100
5101 IPW_DEBUG_HC
5102 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5103 security->auth_mode, security->allowed_ciphers, security_level);
5104
5105 security->replay_counters_number = 0;
5106
5107 if (!batch_mode) {
5108 err = ipw2100_disable_adapter(priv);
5109 if (err)
5110 return err;
5111 }
5112
5113 err = ipw2100_hw_send_command(priv, &cmd);
5114
5115 if (!batch_mode)
5116 ipw2100_enable_adapter(priv);
5117
5118 return err;
5119 }
5120
5121 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5122 {
5123 struct host_command cmd = {
5124 .host_command = TX_POWER_INDEX,
5125 .host_command_sequence = 0,
5126 .host_command_length = 4
5127 };
5128 int err = 0;
5129 u32 tmp = tx_power;
5130
5131 if (tx_power != IPW_TX_POWER_DEFAULT)
5132 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5133 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5134
5135 cmd.host_command_parameters[0] = tmp;
5136
5137 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5138 err = ipw2100_hw_send_command(priv, &cmd);
5139 if (!err)
5140 priv->tx_power = tx_power;
5141
5142 return 0;
5143 }
5144
5145 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5146 u32 interval, int batch_mode)
5147 {
5148 struct host_command cmd = {
5149 .host_command = BEACON_INTERVAL,
5150 .host_command_sequence = 0,
5151 .host_command_length = 4
5152 };
5153 int err;
5154
5155 cmd.host_command_parameters[0] = interval;
5156
5157 IPW_DEBUG_INFO("enter\n");
5158
5159 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5160 if (!batch_mode) {
5161 err = ipw2100_disable_adapter(priv);
5162 if (err)
5163 return err;
5164 }
5165
5166 ipw2100_hw_send_command(priv, &cmd);
5167
5168 if (!batch_mode) {
5169 err = ipw2100_enable_adapter(priv);
5170 if (err)
5171 return err;
5172 }
5173 }
5174
5175 IPW_DEBUG_INFO("exit\n");
5176
5177 return 0;
5178 }
5179
5180 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5181 {
5182 ipw2100_tx_initialize(priv);
5183 ipw2100_rx_initialize(priv);
5184 ipw2100_msg_initialize(priv);
5185 }
5186
5187 void ipw2100_queues_free(struct ipw2100_priv *priv)
5188 {
5189 ipw2100_tx_free(priv);
5190 ipw2100_rx_free(priv);
5191 ipw2100_msg_free(priv);
5192 }
5193
5194 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5195 {
5196 if (ipw2100_tx_allocate(priv) ||
5197 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5198 goto fail;
5199
5200 return 0;
5201
5202 fail:
5203 ipw2100_tx_free(priv);
5204 ipw2100_rx_free(priv);
5205 ipw2100_msg_free(priv);
5206 return -ENOMEM;
5207 }
5208
5209 #define IPW_PRIVACY_CAPABLE 0x0008
5210
5211 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5212 int batch_mode)
5213 {
5214 struct host_command cmd = {
5215 .host_command = WEP_FLAGS,
5216 .host_command_sequence = 0,
5217 .host_command_length = 4
5218 };
5219 int err;
5220
5221 cmd.host_command_parameters[0] = flags;
5222
5223 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5224
5225 if (!batch_mode) {
5226 err = ipw2100_disable_adapter(priv);
5227 if (err) {
5228 printk(KERN_ERR DRV_NAME
5229 ": %s: Could not disable adapter %d\n",
5230 priv->net_dev->name, err);
5231 return err;
5232 }
5233 }
5234
5235 /* send cmd to firmware */
5236 err = ipw2100_hw_send_command(priv, &cmd);
5237
5238 if (!batch_mode)
5239 ipw2100_enable_adapter(priv);
5240
5241 return err;
5242 }
5243
5244 struct ipw2100_wep_key {
5245 u8 idx;
5246 u8 len;
5247 u8 key[13];
5248 };
5249
5250 /* Macros to ease up priting WEP keys */
5251 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5252 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5253 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5254 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5255
5256 /**
5257 * Set a the wep key
5258 *
5259 * @priv: struct to work on
5260 * @idx: index of the key we want to set
5261 * @key: ptr to the key data to set
5262 * @len: length of the buffer at @key
5263 * @batch_mode: FIXME perform the operation in batch mode, not
5264 * disabling the device.
5265 *
5266 * @returns 0 if OK, < 0 errno code on error.
5267 *
5268 * Fill out a command structure with the new wep key, length an
5269 * index and send it down the wire.
5270 */
5271 static int ipw2100_set_key(struct ipw2100_priv *priv,
5272 int idx, char *key, int len, int batch_mode)
5273 {
5274 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5275 struct host_command cmd = {
5276 .host_command = WEP_KEY_INFO,
5277 .host_command_sequence = 0,
5278 .host_command_length = sizeof(struct ipw2100_wep_key),
5279 };
5280 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5281 int err;
5282
5283 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5284 idx, keylen, len);
5285
5286 /* NOTE: We don't check cached values in case the firmware was reset
5287 * or some other problem is occuring. If the user is setting the key,
5288 * then we push the change */
5289
5290 wep_key->idx = idx;
5291 wep_key->len = keylen;
5292
5293 if (keylen) {
5294 memcpy(wep_key->key, key, len);
5295 memset(wep_key->key + len, 0, keylen - len);
5296 }
5297
5298 /* Will be optimized out on debug not being configured in */
5299 if (keylen == 0)
5300 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5301 priv->net_dev->name, wep_key->idx);
5302 else if (keylen == 5)
5303 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5304 priv->net_dev->name, wep_key->idx, wep_key->len,
5305 WEP_STR_64(wep_key->key));
5306 else
5307 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5308 "\n",
5309 priv->net_dev->name, wep_key->idx, wep_key->len,
5310 WEP_STR_128(wep_key->key));
5311
5312 if (!batch_mode) {
5313 err = ipw2100_disable_adapter(priv);
5314 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5315 if (err) {
5316 printk(KERN_ERR DRV_NAME
5317 ": %s: Could not disable adapter %d\n",
5318 priv->net_dev->name, err);
5319 return err;
5320 }
5321 }
5322
5323 /* send cmd to firmware */
5324 err = ipw2100_hw_send_command(priv, &cmd);
5325
5326 if (!batch_mode) {
5327 int err2 = ipw2100_enable_adapter(priv);
5328 if (err == 0)
5329 err = err2;
5330 }
5331 return err;
5332 }
5333
5334 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5335 int idx, int batch_mode)
5336 {
5337 struct host_command cmd = {
5338 .host_command = WEP_KEY_INDEX,
5339 .host_command_sequence = 0,
5340 .host_command_length = 4,
5341 .host_command_parameters = {idx},
5342 };
5343 int err;
5344
5345 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5346
5347 if (idx < 0 || idx > 3)
5348 return -EINVAL;
5349
5350 if (!batch_mode) {
5351 err = ipw2100_disable_adapter(priv);
5352 if (err) {
5353 printk(KERN_ERR DRV_NAME
5354 ": %s: Could not disable adapter %d\n",
5355 priv->net_dev->name, err);
5356 return err;
5357 }
5358 }
5359
5360 /* send cmd to firmware */
5361 err = ipw2100_hw_send_command(priv, &cmd);
5362
5363 if (!batch_mode)
5364 ipw2100_enable_adapter(priv);
5365
5366 return err;
5367 }
5368
5369 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5370 {
5371 int i, err, auth_mode, sec_level, use_group;
5372
5373 if (!(priv->status & STATUS_RUNNING))
5374 return 0;
5375
5376 if (!batch_mode) {
5377 err = ipw2100_disable_adapter(priv);
5378 if (err)
5379 return err;
5380 }
5381
5382 if (!priv->ieee->sec.enabled) {
5383 err =
5384 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5385 SEC_LEVEL_0, 0, 1);
5386 } else {
5387 auth_mode = IPW_AUTH_OPEN;
5388 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5389 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5390 auth_mode = IPW_AUTH_SHARED;
5391 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5392 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5393 }
5394
5395 sec_level = SEC_LEVEL_0;
5396 if (priv->ieee->sec.flags & SEC_LEVEL)
5397 sec_level = priv->ieee->sec.level;
5398
5399 use_group = 0;
5400 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5401 use_group = priv->ieee->sec.unicast_uses_group;
5402
5403 err =
5404 ipw2100_set_security_information(priv, auth_mode, sec_level,
5405 use_group, 1);
5406 }
5407
5408 if (err)
5409 goto exit;
5410
5411 if (priv->ieee->sec.enabled) {
5412 for (i = 0; i < 4; i++) {
5413 if (!(priv->ieee->sec.flags & (1 << i))) {
5414 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5415 priv->ieee->sec.key_sizes[i] = 0;
5416 } else {
5417 err = ipw2100_set_key(priv, i,
5418 priv->ieee->sec.keys[i],
5419 priv->ieee->sec.
5420 key_sizes[i], 1);
5421 if (err)
5422 goto exit;
5423 }
5424 }
5425
5426 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5427 }
5428
5429 /* Always enable privacy so the Host can filter WEP packets if
5430 * encrypted data is sent up */
5431 err =
5432 ipw2100_set_wep_flags(priv,
5433 priv->ieee->sec.
5434 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5435 if (err)
5436 goto exit;
5437
5438 priv->status &= ~STATUS_SECURITY_UPDATED;
5439
5440 exit:
5441 if (!batch_mode)
5442 ipw2100_enable_adapter(priv);
5443
5444 return err;
5445 }
5446
5447 static void ipw2100_security_work(struct ipw2100_priv *priv)
5448 {
5449 /* If we happen to have reconnected before we get a chance to
5450 * process this, then update the security settings--which causes
5451 * a disassociation to occur */
5452 if (!(priv->status & STATUS_ASSOCIATED) &&
5453 priv->status & STATUS_SECURITY_UPDATED)
5454 ipw2100_configure_security(priv, 0);
5455 }
5456
5457 static void shim__set_security(struct net_device *dev,
5458 struct ieee80211_security *sec)
5459 {
5460 struct ipw2100_priv *priv = ieee80211_priv(dev);
5461 int i, force_update = 0;
5462
5463 down(&priv->action_sem);
5464 if (!(priv->status & STATUS_INITIALIZED))
5465 goto done;
5466
5467 for (i = 0; i < 4; i++) {
5468 if (sec->flags & (1 << i)) {
5469 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5470 if (sec->key_sizes[i] == 0)
5471 priv->ieee->sec.flags &= ~(1 << i);
5472 else
5473 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5474 sec->key_sizes[i]);
5475 if (sec->level == SEC_LEVEL_1) {
5476 priv->ieee->sec.flags |= (1 << i);
5477 priv->status |= STATUS_SECURITY_UPDATED;
5478 } else
5479 priv->ieee->sec.flags &= ~(1 << i);
5480 }
5481 }
5482
5483 if ((sec->flags & SEC_ACTIVE_KEY) &&
5484 priv->ieee->sec.active_key != sec->active_key) {
5485 if (sec->active_key <= 3) {
5486 priv->ieee->sec.active_key = sec->active_key;
5487 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5488 } else
5489 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5490
5491 priv->status |= STATUS_SECURITY_UPDATED;
5492 }
5493
5494 if ((sec->flags & SEC_AUTH_MODE) &&
5495 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5496 priv->ieee->sec.auth_mode = sec->auth_mode;
5497 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5498 priv->status |= STATUS_SECURITY_UPDATED;
5499 }
5500
5501 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5502 priv->ieee->sec.flags |= SEC_ENABLED;
5503 priv->ieee->sec.enabled = sec->enabled;
5504 priv->status |= STATUS_SECURITY_UPDATED;
5505 force_update = 1;
5506 }
5507
5508 if (sec->flags & SEC_ENCRYPT)
5509 priv->ieee->sec.encrypt = sec->encrypt;
5510
5511 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5512 priv->ieee->sec.level = sec->level;
5513 priv->ieee->sec.flags |= SEC_LEVEL;
5514 priv->status |= STATUS_SECURITY_UPDATED;
5515 }
5516
5517 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5518 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5519 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5520 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5521 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5522 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5523 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5524 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5525 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5526 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5527
5528 /* As a temporary work around to enable WPA until we figure out why
5529 * wpa_supplicant toggles the security capability of the driver, which
5530 * forces a disassocation with force_update...
5531 *
5532 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5533 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5534 ipw2100_configure_security(priv, 0);
5535 done:
5536 up(&priv->action_sem);
5537 }
5538
5539 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5540 {
5541 int err;
5542 int batch_mode = 1;
5543 u8 *bssid;
5544
5545 IPW_DEBUG_INFO("enter\n");
5546
5547 err = ipw2100_disable_adapter(priv);
5548 if (err)
5549 return err;
5550 #ifdef CONFIG_IPW2100_MONITOR
5551 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5552 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5553 if (err)
5554 return err;
5555
5556 IPW_DEBUG_INFO("exit\n");
5557
5558 return 0;
5559 }
5560 #endif /* CONFIG_IPW2100_MONITOR */
5561
5562 err = ipw2100_read_mac_address(priv);
5563 if (err)
5564 return -EIO;
5565
5566 err = ipw2100_set_mac_address(priv, batch_mode);
5567 if (err)
5568 return err;
5569
5570 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5571 if (err)
5572 return err;
5573
5574 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5575 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5576 if (err)
5577 return err;
5578 }
5579
5580 err = ipw2100_system_config(priv, batch_mode);
5581 if (err)
5582 return err;
5583
5584 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5585 if (err)
5586 return err;
5587
5588 /* Default to power mode OFF */
5589 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5590 if (err)
5591 return err;
5592
5593 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5594 if (err)
5595 return err;
5596
5597 if (priv->config & CFG_STATIC_BSSID)
5598 bssid = priv->bssid;
5599 else
5600 bssid = NULL;
5601 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5602 if (err)
5603 return err;
5604
5605 if (priv->config & CFG_STATIC_ESSID)
5606 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5607 batch_mode);
5608 else
5609 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5610 if (err)
5611 return err;
5612
5613 err = ipw2100_configure_security(priv, batch_mode);
5614 if (err)
5615 return err;
5616
5617 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5618 err =
5619 ipw2100_set_ibss_beacon_interval(priv,
5620 priv->beacon_interval,
5621 batch_mode);
5622 if (err)
5623 return err;
5624
5625 err = ipw2100_set_tx_power(priv, priv->tx_power);
5626 if (err)
5627 return err;
5628 }
5629
5630 /*
5631 err = ipw2100_set_fragmentation_threshold(
5632 priv, priv->frag_threshold, batch_mode);
5633 if (err)
5634 return err;
5635 */
5636
5637 IPW_DEBUG_INFO("exit\n");
5638
5639 return 0;
5640 }
5641
5642 /*************************************************************************
5643 *
5644 * EXTERNALLY CALLED METHODS
5645 *
5646 *************************************************************************/
5647
5648 /* This method is called by the network layer -- not to be confused with
5649 * ipw2100_set_mac_address() declared above called by this driver (and this
5650 * method as well) to talk to the firmware */
5651 static int ipw2100_set_address(struct net_device *dev, void *p)
5652 {
5653 struct ipw2100_priv *priv = ieee80211_priv(dev);
5654 struct sockaddr *addr = p;
5655 int err = 0;
5656
5657 if (!is_valid_ether_addr(addr->sa_data))
5658 return -EADDRNOTAVAIL;
5659
5660 down(&priv->action_sem);
5661
5662 priv->config |= CFG_CUSTOM_MAC;
5663 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5664
5665 err = ipw2100_set_mac_address(priv, 0);
5666 if (err)
5667 goto done;
5668
5669 priv->reset_backoff = 0;
5670 up(&priv->action_sem);
5671 ipw2100_reset_adapter(priv);
5672 return 0;
5673
5674 done:
5675 up(&priv->action_sem);
5676 return err;
5677 }
5678
5679 static int ipw2100_open(struct net_device *dev)
5680 {
5681 struct ipw2100_priv *priv = ieee80211_priv(dev);
5682 unsigned long flags;
5683 IPW_DEBUG_INFO("dev->open\n");
5684
5685 spin_lock_irqsave(&priv->low_lock, flags);
5686 if (priv->status & STATUS_ASSOCIATED) {
5687 netif_carrier_on(dev);
5688 netif_start_queue(dev);
5689 }
5690 spin_unlock_irqrestore(&priv->low_lock, flags);
5691
5692 return 0;
5693 }
5694
5695 static int ipw2100_close(struct net_device *dev)
5696 {
5697 struct ipw2100_priv *priv = ieee80211_priv(dev);
5698 unsigned long flags;
5699 struct list_head *element;
5700 struct ipw2100_tx_packet *packet;
5701
5702 IPW_DEBUG_INFO("enter\n");
5703
5704 spin_lock_irqsave(&priv->low_lock, flags);
5705
5706 if (priv->status & STATUS_ASSOCIATED)
5707 netif_carrier_off(dev);
5708 netif_stop_queue(dev);
5709
5710 /* Flush the TX queue ... */
5711 while (!list_empty(&priv->tx_pend_list)) {
5712 element = priv->tx_pend_list.next;
5713 packet = list_entry(element, struct ipw2100_tx_packet, list);
5714
5715 list_del(element);
5716 DEC_STAT(&priv->tx_pend_stat);
5717
5718 ieee80211_txb_free(packet->info.d_struct.txb);
5719 packet->info.d_struct.txb = NULL;
5720
5721 list_add_tail(element, &priv->tx_free_list);
5722 INC_STAT(&priv->tx_free_stat);
5723 }
5724 spin_unlock_irqrestore(&priv->low_lock, flags);
5725
5726 IPW_DEBUG_INFO("exit\n");
5727
5728 return 0;
5729 }
5730
5731 /*
5732 * TODO: Fix this function... its just wrong
5733 */
5734 static void ipw2100_tx_timeout(struct net_device *dev)
5735 {
5736 struct ipw2100_priv *priv = ieee80211_priv(dev);
5737
5738 priv->ieee->stats.tx_errors++;
5739
5740 #ifdef CONFIG_IPW2100_MONITOR
5741 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5742 return;
5743 #endif
5744
5745 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5746 dev->name);
5747 schedule_reset(priv);
5748 }
5749
5750 /*
5751 * TODO: reimplement it so that it reads statistics
5752 * from the adapter using ordinal tables
5753 * instead of/in addition to collecting them
5754 * in the driver
5755 */
5756 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5757 {
5758 struct ipw2100_priv *priv = ieee80211_priv(dev);
5759
5760 return &priv->ieee->stats;
5761 }
5762
5763 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5764 {
5765 /* This is called when wpa_supplicant loads and closes the driver
5766 * interface. */
5767 priv->ieee->wpa_enabled = value;
5768 return 0;
5769 }
5770
5771 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5772 {
5773
5774 struct ieee80211_device *ieee = priv->ieee;
5775 struct ieee80211_security sec = {
5776 .flags = SEC_AUTH_MODE,
5777 };
5778 int ret = 0;
5779
5780 if (value & IW_AUTH_ALG_SHARED_KEY) {
5781 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5782 ieee->open_wep = 0;
5783 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5784 sec.auth_mode = WLAN_AUTH_OPEN;
5785 ieee->open_wep = 1;
5786 } else if (value & IW_AUTH_ALG_LEAP) {
5787 sec.auth_mode = WLAN_AUTH_LEAP;
5788 ieee->open_wep = 1;
5789 } else
5790 return -EINVAL;
5791
5792 if (ieee->set_security)
5793 ieee->set_security(ieee->dev, &sec);
5794 else
5795 ret = -EOPNOTSUPP;
5796
5797 return ret;
5798 }
5799
5800 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5801 char *wpa_ie, int wpa_ie_len)
5802 {
5803
5804 struct ipw2100_wpa_assoc_frame frame;
5805
5806 frame.fixed_ie_mask = 0;
5807
5808 /* copy WPA IE */
5809 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5810 frame.var_ie_len = wpa_ie_len;
5811
5812 /* make sure WPA is enabled */
5813 ipw2100_wpa_enable(priv, 1);
5814 ipw2100_set_wpa_ie(priv, &frame, 0);
5815 }
5816
5817 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5818 struct ethtool_drvinfo *info)
5819 {
5820 struct ipw2100_priv *priv = ieee80211_priv(dev);
5821 char fw_ver[64], ucode_ver[64];
5822
5823 strcpy(info->driver, DRV_NAME);
5824 strcpy(info->version, DRV_VERSION);
5825
5826 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5827 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5828
5829 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5830 fw_ver, priv->eeprom_version, ucode_ver);
5831
5832 strcpy(info->bus_info, pci_name(priv->pci_dev));
5833 }
5834
5835 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5836 {
5837 struct ipw2100_priv *priv = ieee80211_priv(dev);
5838 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5839 }
5840
5841 static struct ethtool_ops ipw2100_ethtool_ops = {
5842 .get_link = ipw2100_ethtool_get_link,
5843 .get_drvinfo = ipw_ethtool_get_drvinfo,
5844 };
5845
5846 static void ipw2100_hang_check(void *adapter)
5847 {
5848 struct ipw2100_priv *priv = adapter;
5849 unsigned long flags;
5850 u32 rtc = 0xa5a5a5a5;
5851 u32 len = sizeof(rtc);
5852 int restart = 0;
5853
5854 spin_lock_irqsave(&priv->low_lock, flags);
5855
5856 if (priv->fatal_error != 0) {
5857 /* If fatal_error is set then we need to restart */
5858 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5859 priv->net_dev->name);
5860
5861 restart = 1;
5862 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5863 (rtc == priv->last_rtc)) {
5864 /* Check if firmware is hung */
5865 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5866 priv->net_dev->name);
5867
5868 restart = 1;
5869 }
5870
5871 if (restart) {
5872 /* Kill timer */
5873 priv->stop_hang_check = 1;
5874 priv->hangs++;
5875
5876 /* Restart the NIC */
5877 schedule_reset(priv);
5878 }
5879
5880 priv->last_rtc = rtc;
5881
5882 if (!priv->stop_hang_check)
5883 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5884
5885 spin_unlock_irqrestore(&priv->low_lock, flags);
5886 }
5887
5888 static void ipw2100_rf_kill(void *adapter)
5889 {
5890 struct ipw2100_priv *priv = adapter;
5891 unsigned long flags;
5892
5893 spin_lock_irqsave(&priv->low_lock, flags);
5894
5895 if (rf_kill_active(priv)) {
5896 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5897 if (!priv->stop_rf_kill)
5898 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5899 goto exit_unlock;
5900 }
5901
5902 /* RF Kill is now disabled, so bring the device back up */
5903
5904 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5905 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5906 "device\n");
5907 schedule_reset(priv);
5908 } else
5909 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5910 "enabled\n");
5911
5912 exit_unlock:
5913 spin_unlock_irqrestore(&priv->low_lock, flags);
5914 }
5915
5916 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5917
5918 /* Look into using netdev destructor to shutdown ieee80211? */
5919
5920 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5921 void __iomem * base_addr,
5922 unsigned long mem_start,
5923 unsigned long mem_len)
5924 {
5925 struct ipw2100_priv *priv;
5926 struct net_device *dev;
5927
5928 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
5929 if (!dev)
5930 return NULL;
5931 priv = ieee80211_priv(dev);
5932 priv->ieee = netdev_priv(dev);
5933 priv->pci_dev = pci_dev;
5934 priv->net_dev = dev;
5935
5936 priv->ieee->hard_start_xmit = ipw2100_tx;
5937 priv->ieee->set_security = shim__set_security;
5938
5939 priv->ieee->perfect_rssi = -20;
5940 priv->ieee->worst_rssi = -85;
5941
5942 dev->open = ipw2100_open;
5943 dev->stop = ipw2100_close;
5944 dev->init = ipw2100_net_init;
5945 dev->get_stats = ipw2100_stats;
5946 dev->ethtool_ops = &ipw2100_ethtool_ops;
5947 dev->tx_timeout = ipw2100_tx_timeout;
5948 dev->wireless_handlers = &ipw2100_wx_handler_def;
5949 priv->wireless_data.ieee80211 = priv->ieee;
5950 dev->wireless_data = &priv->wireless_data;
5951 dev->set_mac_address = ipw2100_set_address;
5952 dev->watchdog_timeo = 3 * HZ;
5953 dev->irq = 0;
5954
5955 dev->base_addr = (unsigned long)base_addr;
5956 dev->mem_start = mem_start;
5957 dev->mem_end = dev->mem_start + mem_len - 1;
5958
5959 /* NOTE: We don't use the wireless_handlers hook
5960 * in dev as the system will start throwing WX requests
5961 * to us before we're actually initialized and it just
5962 * ends up causing problems. So, we just handle
5963 * the WX extensions through the ipw2100_ioctl interface */
5964
5965 /* memset() puts everything to 0, so we only have explicitely set
5966 * those values that need to be something else */
5967
5968 /* If power management is turned on, default to AUTO mode */
5969 priv->power_mode = IPW_POWER_AUTO;
5970
5971 #ifdef CONFIG_IPW2100_MONITOR
5972 priv->config |= CFG_CRC_CHECK;
5973 #endif
5974 priv->ieee->wpa_enabled = 0;
5975 priv->ieee->drop_unencrypted = 0;
5976 priv->ieee->privacy_invoked = 0;
5977 priv->ieee->ieee802_1x = 1;
5978
5979 /* Set module parameters */
5980 switch (mode) {
5981 case 1:
5982 priv->ieee->iw_mode = IW_MODE_ADHOC;
5983 break;
5984 #ifdef CONFIG_IPW2100_MONITOR
5985 case 2:
5986 priv->ieee->iw_mode = IW_MODE_MONITOR;
5987 break;
5988 #endif
5989 default:
5990 case 0:
5991 priv->ieee->iw_mode = IW_MODE_INFRA;
5992 break;
5993 }
5994
5995 if (disable == 1)
5996 priv->status |= STATUS_RF_KILL_SW;
5997
5998 if (channel != 0 &&
5999 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6000 priv->config |= CFG_STATIC_CHANNEL;
6001 priv->channel = channel;
6002 }
6003
6004 if (associate)
6005 priv->config |= CFG_ASSOCIATE;
6006
6007 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6008 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6009 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6010 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6011 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6012 priv->tx_power = IPW_TX_POWER_DEFAULT;
6013 priv->tx_rates = DEFAULT_TX_RATES;
6014
6015 strcpy(priv->nick, "ipw2100");
6016
6017 spin_lock_init(&priv->low_lock);
6018 sema_init(&priv->action_sem, 1);
6019 sema_init(&priv->adapter_sem, 1);
6020
6021 init_waitqueue_head(&priv->wait_command_queue);
6022
6023 netif_carrier_off(dev);
6024
6025 INIT_LIST_HEAD(&priv->msg_free_list);
6026 INIT_LIST_HEAD(&priv->msg_pend_list);
6027 INIT_STAT(&priv->msg_free_stat);
6028 INIT_STAT(&priv->msg_pend_stat);
6029
6030 INIT_LIST_HEAD(&priv->tx_free_list);
6031 INIT_LIST_HEAD(&priv->tx_pend_list);
6032 INIT_STAT(&priv->tx_free_stat);
6033 INIT_STAT(&priv->tx_pend_stat);
6034
6035 INIT_LIST_HEAD(&priv->fw_pend_list);
6036 INIT_STAT(&priv->fw_pend_stat);
6037
6038 priv->workqueue = create_workqueue(DRV_NAME);
6039
6040 INIT_WORK(&priv->reset_work,
6041 (void (*)(void *))ipw2100_reset_adapter, priv);
6042 INIT_WORK(&priv->security_work,
6043 (void (*)(void *))ipw2100_security_work, priv);
6044 INIT_WORK(&priv->wx_event_work,
6045 (void (*)(void *))ipw2100_wx_event_work, priv);
6046 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6047 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6048
6049 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6050 ipw2100_irq_tasklet, (unsigned long)priv);
6051
6052 /* NOTE: We do not start the deferred work for status checks yet */
6053 priv->stop_rf_kill = 1;
6054 priv->stop_hang_check = 1;
6055
6056 return dev;
6057 }
6058
6059 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6060 const struct pci_device_id *ent)
6061 {
6062 unsigned long mem_start, mem_len, mem_flags;
6063 void __iomem *base_addr = NULL;
6064 struct net_device *dev = NULL;
6065 struct ipw2100_priv *priv = NULL;
6066 int err = 0;
6067 int registered = 0;
6068 u32 val;
6069
6070 IPW_DEBUG_INFO("enter\n");
6071
6072 mem_start = pci_resource_start(pci_dev, 0);
6073 mem_len = pci_resource_len(pci_dev, 0);
6074 mem_flags = pci_resource_flags(pci_dev, 0);
6075
6076 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6077 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6078 err = -ENODEV;
6079 goto fail;
6080 }
6081
6082 base_addr = ioremap_nocache(mem_start, mem_len);
6083 if (!base_addr) {
6084 printk(KERN_WARNING DRV_NAME
6085 "Error calling ioremap_nocache.\n");
6086 err = -EIO;
6087 goto fail;
6088 }
6089
6090 /* allocate and initialize our net_device */
6091 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6092 if (!dev) {
6093 printk(KERN_WARNING DRV_NAME
6094 "Error calling ipw2100_alloc_device.\n");
6095 err = -ENOMEM;
6096 goto fail;
6097 }
6098
6099 /* set up PCI mappings for device */
6100 err = pci_enable_device(pci_dev);
6101 if (err) {
6102 printk(KERN_WARNING DRV_NAME
6103 "Error calling pci_enable_device.\n");
6104 return err;
6105 }
6106
6107 priv = ieee80211_priv(dev);
6108
6109 pci_set_master(pci_dev);
6110 pci_set_drvdata(pci_dev, priv);
6111
6112 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6113 if (err) {
6114 printk(KERN_WARNING DRV_NAME
6115 "Error calling pci_set_dma_mask.\n");
6116 pci_disable_device(pci_dev);
6117 return err;
6118 }
6119
6120 err = pci_request_regions(pci_dev, DRV_NAME);
6121 if (err) {
6122 printk(KERN_WARNING DRV_NAME
6123 "Error calling pci_request_regions.\n");
6124 pci_disable_device(pci_dev);
6125 return err;
6126 }
6127
6128 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6129 * PCI Tx retries from interfering with C3 CPU state */
6130 pci_read_config_dword(pci_dev, 0x40, &val);
6131 if ((val & 0x0000ff00) != 0)
6132 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6133
6134 pci_set_power_state(pci_dev, PCI_D0);
6135
6136 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6137 printk(KERN_WARNING DRV_NAME
6138 "Device not found via register read.\n");
6139 err = -ENODEV;
6140 goto fail;
6141 }
6142
6143 SET_NETDEV_DEV(dev, &pci_dev->dev);
6144
6145 /* Force interrupts to be shut off on the device */
6146 priv->status |= STATUS_INT_ENABLED;
6147 ipw2100_disable_interrupts(priv);
6148
6149 /* Allocate and initialize the Tx/Rx queues and lists */
6150 if (ipw2100_queues_allocate(priv)) {
6151 printk(KERN_WARNING DRV_NAME
6152 "Error calilng ipw2100_queues_allocate.\n");
6153 err = -ENOMEM;
6154 goto fail;
6155 }
6156 ipw2100_queues_initialize(priv);
6157
6158 err = request_irq(pci_dev->irq,
6159 ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6160 if (err) {
6161 printk(KERN_WARNING DRV_NAME
6162 "Error calling request_irq: %d.\n", pci_dev->irq);
6163 goto fail;
6164 }
6165 dev->irq = pci_dev->irq;
6166
6167 IPW_DEBUG_INFO("Attempting to register device...\n");
6168
6169 SET_MODULE_OWNER(dev);
6170
6171 printk(KERN_INFO DRV_NAME
6172 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6173
6174 /* Bring up the interface. Pre 0.46, after we registered the
6175 * network device we would call ipw2100_up. This introduced a race
6176 * condition with newer hotplug configurations (network was coming
6177 * up and making calls before the device was initialized).
6178 *
6179 * If we called ipw2100_up before we registered the device, then the
6180 * device name wasn't registered. So, we instead use the net_dev->init
6181 * member to call a function that then just turns and calls ipw2100_up.
6182 * net_dev->init is called after name allocation but before the
6183 * notifier chain is called */
6184 down(&priv->action_sem);
6185 err = register_netdev(dev);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling register_netdev.\n");
6189 goto fail_unlock;
6190 }
6191 registered = 1;
6192
6193 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6194
6195 /* perform this after register_netdev so that dev->name is set */
6196 sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6197
6198 /* If the RF Kill switch is disabled, go ahead and complete the
6199 * startup sequence */
6200 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6201 /* Enable the adapter - sends HOST_COMPLETE */
6202 if (ipw2100_enable_adapter(priv)) {
6203 printk(KERN_WARNING DRV_NAME
6204 ": %s: failed in call to enable adapter.\n",
6205 priv->net_dev->name);
6206 ipw2100_hw_stop_adapter(priv);
6207 err = -EIO;
6208 goto fail_unlock;
6209 }
6210
6211 /* Start a scan . . . */
6212 ipw2100_set_scan_options(priv);
6213 ipw2100_start_scan(priv);
6214 }
6215
6216 IPW_DEBUG_INFO("exit\n");
6217
6218 priv->status |= STATUS_INITIALIZED;
6219
6220 up(&priv->action_sem);
6221
6222 return 0;
6223
6224 fail_unlock:
6225 up(&priv->action_sem);
6226
6227 fail:
6228 if (dev) {
6229 if (registered)
6230 unregister_netdev(dev);
6231
6232 ipw2100_hw_stop_adapter(priv);
6233
6234 ipw2100_disable_interrupts(priv);
6235
6236 if (dev->irq)
6237 free_irq(dev->irq, priv);
6238
6239 ipw2100_kill_workqueue(priv);
6240
6241 /* These are safe to call even if they weren't allocated */
6242 ipw2100_queues_free(priv);
6243 sysfs_remove_group(&pci_dev->dev.kobj,
6244 &ipw2100_attribute_group);
6245
6246 free_ieee80211(dev);
6247 pci_set_drvdata(pci_dev, NULL);
6248 }
6249
6250 if (base_addr)
6251 iounmap(base_addr);
6252
6253 pci_release_regions(pci_dev);
6254 pci_disable_device(pci_dev);
6255
6256 return err;
6257 }
6258
6259 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6260 {
6261 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6262 struct net_device *dev;
6263
6264 if (priv) {
6265 down(&priv->action_sem);
6266
6267 priv->status &= ~STATUS_INITIALIZED;
6268
6269 dev = priv->net_dev;
6270 sysfs_remove_group(&pci_dev->dev.kobj,
6271 &ipw2100_attribute_group);
6272
6273 #ifdef CONFIG_PM
6274 if (ipw2100_firmware.version)
6275 ipw2100_release_firmware(priv, &ipw2100_firmware);
6276 #endif
6277 /* Take down the hardware */
6278 ipw2100_down(priv);
6279
6280 /* Release the semaphore so that the network subsystem can
6281 * complete any needed calls into the driver... */
6282 up(&priv->action_sem);
6283
6284 /* Unregister the device first - this results in close()
6285 * being called if the device is open. If we free storage
6286 * first, then close() will crash. */
6287 unregister_netdev(dev);
6288
6289 /* ipw2100_down will ensure that there is no more pending work
6290 * in the workqueue's, so we can safely remove them now. */
6291 ipw2100_kill_workqueue(priv);
6292
6293 ipw2100_queues_free(priv);
6294
6295 /* Free potential debugging firmware snapshot */
6296 ipw2100_snapshot_free(priv);
6297
6298 if (dev->irq)
6299 free_irq(dev->irq, priv);
6300
6301 if (dev->base_addr)
6302 iounmap((void __iomem *)dev->base_addr);
6303
6304 free_ieee80211(dev);
6305 }
6306
6307 pci_release_regions(pci_dev);
6308 pci_disable_device(pci_dev);
6309
6310 IPW_DEBUG_INFO("exit\n");
6311 }
6312
6313 #ifdef CONFIG_PM
6314 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6315 {
6316 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6317 struct net_device *dev = priv->net_dev;
6318
6319 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6320
6321 down(&priv->action_sem);
6322 if (priv->status & STATUS_INITIALIZED) {
6323 /* Take down the device; powers it off, etc. */
6324 ipw2100_down(priv);
6325 }
6326
6327 /* Remove the PRESENT state of the device */
6328 netif_device_detach(dev);
6329
6330 pci_save_state(pci_dev);
6331 pci_disable_device(pci_dev);
6332 pci_set_power_state(pci_dev, PCI_D3hot);
6333
6334 up(&priv->action_sem);
6335
6336 return 0;
6337 }
6338
6339 static int ipw2100_resume(struct pci_dev *pci_dev)
6340 {
6341 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6342 struct net_device *dev = priv->net_dev;
6343 u32 val;
6344
6345 if (IPW2100_PM_DISABLED)
6346 return 0;
6347
6348 down(&priv->action_sem);
6349
6350 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6351
6352 pci_set_power_state(pci_dev, PCI_D0);
6353 pci_enable_device(pci_dev);
6354 pci_restore_state(pci_dev);
6355
6356 /*
6357 * Suspend/Resume resets the PCI configuration space, so we have to
6358 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6359 * from interfering with C3 CPU state. pci_restore_state won't help
6360 * here since it only restores the first 64 bytes pci config header.
6361 */
6362 pci_read_config_dword(pci_dev, 0x40, &val);
6363 if ((val & 0x0000ff00) != 0)
6364 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6365
6366 /* Set the device back into the PRESENT state; this will also wake
6367 * the queue of needed */
6368 netif_device_attach(dev);
6369
6370 /* Bring the device back up */
6371 if (!(priv->status & STATUS_RF_KILL_SW))
6372 ipw2100_up(priv, 0);
6373
6374 up(&priv->action_sem);
6375
6376 return 0;
6377 }
6378 #endif
6379
6380 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6381
6382 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6383 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6384 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6385 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6386 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6387 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6388 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6389 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6390 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6391 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6392 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6393 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6394 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6395 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6396
6397 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6398 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6399 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6400 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6401 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6402
6403 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6404 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6405 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6406 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6407 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6408 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6409 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6410
6411 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6412
6413 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6414 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6415 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6416 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6417 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6418 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6419 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6420
6421 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6422 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6423 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6424 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6425 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6426 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6427
6428 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6429 {0,},
6430 };
6431
6432 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6433
6434 static struct pci_driver ipw2100_pci_driver = {
6435 .name = DRV_NAME,
6436 .id_table = ipw2100_pci_id_table,
6437 .probe = ipw2100_pci_init_one,
6438 .remove = __devexit_p(ipw2100_pci_remove_one),
6439 #ifdef CONFIG_PM
6440 .suspend = ipw2100_suspend,
6441 .resume = ipw2100_resume,
6442 #endif
6443 };
6444
6445 /**
6446 * Initialize the ipw2100 driver/module
6447 *
6448 * @returns 0 if ok, < 0 errno node con error.
6449 *
6450 * Note: we cannot init the /proc stuff until the PCI driver is there,
6451 * or we risk an unlikely race condition on someone accessing
6452 * uninitialized data in the PCI dev struct through /proc.
6453 */
6454 static int __init ipw2100_init(void)
6455 {
6456 int ret;
6457
6458 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6459 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6460
6461 ret = pci_module_init(&ipw2100_pci_driver);
6462
6463 #ifdef CONFIG_IPW2100_DEBUG
6464 ipw2100_debug_level = debug;
6465 driver_create_file(&ipw2100_pci_driver.driver,
6466 &driver_attr_debug_level);
6467 #endif
6468
6469 return ret;
6470 }
6471
6472 /**
6473 * Cleanup ipw2100 driver registration
6474 */
6475 static void __exit ipw2100_exit(void)
6476 {
6477 /* FIXME: IPG: check that we have no instances of the devices open */
6478 #ifdef CONFIG_IPW2100_DEBUG
6479 driver_remove_file(&ipw2100_pci_driver.driver,
6480 &driver_attr_debug_level);
6481 #endif
6482 pci_unregister_driver(&ipw2100_pci_driver);
6483 }
6484
6485 module_init(ipw2100_init);
6486 module_exit(ipw2100_exit);
6487
6488 #define WEXT_USECHANNELS 1
6489
6490 static const long ipw2100_frequencies[] = {
6491 2412, 2417, 2422, 2427,
6492 2432, 2437, 2442, 2447,
6493 2452, 2457, 2462, 2467,
6494 2472, 2484
6495 };
6496
6497 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6498 sizeof(ipw2100_frequencies[0]))
6499
6500 static const long ipw2100_rates_11b[] = {
6501 1000000,
6502 2000000,
6503 5500000,
6504 11000000
6505 };
6506
6507 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6508
6509 static int ipw2100_wx_get_name(struct net_device *dev,
6510 struct iw_request_info *info,
6511 union iwreq_data *wrqu, char *extra)
6512 {
6513 /*
6514 * This can be called at any time. No action lock required
6515 */
6516
6517 struct ipw2100_priv *priv = ieee80211_priv(dev);
6518 if (!(priv->status & STATUS_ASSOCIATED))
6519 strcpy(wrqu->name, "unassociated");
6520 else
6521 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6522
6523 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6524 return 0;
6525 }
6526
6527 static int ipw2100_wx_set_freq(struct net_device *dev,
6528 struct iw_request_info *info,
6529 union iwreq_data *wrqu, char *extra)
6530 {
6531 struct ipw2100_priv *priv = ieee80211_priv(dev);
6532 struct iw_freq *fwrq = &wrqu->freq;
6533 int err = 0;
6534
6535 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6536 return -EOPNOTSUPP;
6537
6538 down(&priv->action_sem);
6539 if (!(priv->status & STATUS_INITIALIZED)) {
6540 err = -EIO;
6541 goto done;
6542 }
6543
6544 /* if setting by freq convert to channel */
6545 if (fwrq->e == 1) {
6546 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6547 int f = fwrq->m / 100000;
6548 int c = 0;
6549
6550 while ((c < REG_MAX_CHANNEL) &&
6551 (f != ipw2100_frequencies[c]))
6552 c++;
6553
6554 /* hack to fall through */
6555 fwrq->e = 0;
6556 fwrq->m = c + 1;
6557 }
6558 }
6559
6560 if (fwrq->e > 0 || fwrq->m > 1000) {
6561 err = -EOPNOTSUPP;
6562 goto done;
6563 } else { /* Set the channel */
6564 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6565 err = ipw2100_set_channel(priv, fwrq->m, 0);
6566 }
6567
6568 done:
6569 up(&priv->action_sem);
6570 return err;
6571 }
6572
6573 static int ipw2100_wx_get_freq(struct net_device *dev,
6574 struct iw_request_info *info,
6575 union iwreq_data *wrqu, char *extra)
6576 {
6577 /*
6578 * This can be called at any time. No action lock required
6579 */
6580
6581 struct ipw2100_priv *priv = ieee80211_priv(dev);
6582
6583 wrqu->freq.e = 0;
6584
6585 /* If we are associated, trying to associate, or have a statically
6586 * configured CHANNEL then return that; otherwise return ANY */
6587 if (priv->config & CFG_STATIC_CHANNEL ||
6588 priv->status & STATUS_ASSOCIATED)
6589 wrqu->freq.m = priv->channel;
6590 else
6591 wrqu->freq.m = 0;
6592
6593 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6594 return 0;
6595
6596 }
6597
6598 static int ipw2100_wx_set_mode(struct net_device *dev,
6599 struct iw_request_info *info,
6600 union iwreq_data *wrqu, char *extra)
6601 {
6602 struct ipw2100_priv *priv = ieee80211_priv(dev);
6603 int err = 0;
6604
6605 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6606
6607 if (wrqu->mode == priv->ieee->iw_mode)
6608 return 0;
6609
6610 down(&priv->action_sem);
6611 if (!(priv->status & STATUS_INITIALIZED)) {
6612 err = -EIO;
6613 goto done;
6614 }
6615
6616 switch (wrqu->mode) {
6617 #ifdef CONFIG_IPW2100_MONITOR
6618 case IW_MODE_MONITOR:
6619 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6620 break;
6621 #endif /* CONFIG_IPW2100_MONITOR */
6622 case IW_MODE_ADHOC:
6623 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6624 break;
6625 case IW_MODE_INFRA:
6626 case IW_MODE_AUTO:
6627 default:
6628 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6629 break;
6630 }
6631
6632 done:
6633 up(&priv->action_sem);
6634 return err;
6635 }
6636
6637 static int ipw2100_wx_get_mode(struct net_device *dev,
6638 struct iw_request_info *info,
6639 union iwreq_data *wrqu, char *extra)
6640 {
6641 /*
6642 * This can be called at any time. No action lock required
6643 */
6644
6645 struct ipw2100_priv *priv = ieee80211_priv(dev);
6646
6647 wrqu->mode = priv->ieee->iw_mode;
6648 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6649
6650 return 0;
6651 }
6652
6653 #define POWER_MODES 5
6654
6655 /* Values are in microsecond */
6656 static const s32 timeout_duration[POWER_MODES] = {
6657 350000,
6658 250000,
6659 75000,
6660 37000,
6661 25000,
6662 };
6663
6664 static const s32 period_duration[POWER_MODES] = {
6665 400000,
6666 700000,
6667 1000000,
6668 1000000,
6669 1000000
6670 };
6671
6672 static int ipw2100_wx_get_range(struct net_device *dev,
6673 struct iw_request_info *info,
6674 union iwreq_data *wrqu, char *extra)
6675 {
6676 /*
6677 * This can be called at any time. No action lock required
6678 */
6679
6680 struct ipw2100_priv *priv = ieee80211_priv(dev);
6681 struct iw_range *range = (struct iw_range *)extra;
6682 u16 val;
6683 int i, level;
6684
6685 wrqu->data.length = sizeof(*range);
6686 memset(range, 0, sizeof(*range));
6687
6688 /* Let's try to keep this struct in the same order as in
6689 * linux/include/wireless.h
6690 */
6691
6692 /* TODO: See what values we can set, and remove the ones we can't
6693 * set, or fill them with some default data.
6694 */
6695
6696 /* ~5 Mb/s real (802.11b) */
6697 range->throughput = 5 * 1000 * 1000;
6698
6699 // range->sensitivity; /* signal level threshold range */
6700
6701 range->max_qual.qual = 100;
6702 /* TODO: Find real max RSSI and stick here */
6703 range->max_qual.level = 0;
6704 range->max_qual.noise = 0;
6705 range->max_qual.updated = 7; /* Updated all three */
6706
6707 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6708 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6709 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6710 range->avg_qual.noise = 0;
6711 range->avg_qual.updated = 7; /* Updated all three */
6712
6713 range->num_bitrates = RATE_COUNT;
6714
6715 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6716 range->bitrate[i] = ipw2100_rates_11b[i];
6717 }
6718
6719 range->min_rts = MIN_RTS_THRESHOLD;
6720 range->max_rts = MAX_RTS_THRESHOLD;
6721 range->min_frag = MIN_FRAG_THRESHOLD;
6722 range->max_frag = MAX_FRAG_THRESHOLD;
6723
6724 range->min_pmp = period_duration[0]; /* Minimal PM period */
6725 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6726 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6727 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6728
6729 /* How to decode max/min PM period */
6730 range->pmp_flags = IW_POWER_PERIOD;
6731 /* How to decode max/min PM period */
6732 range->pmt_flags = IW_POWER_TIMEOUT;
6733 /* What PM options are supported */
6734 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6735
6736 range->encoding_size[0] = 5;
6737 range->encoding_size[1] = 13; /* Different token sizes */
6738 range->num_encoding_sizes = 2; /* Number of entry in the list */
6739 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6740 // range->encoding_login_index; /* token index for login token */
6741
6742 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6743 range->txpower_capa = IW_TXPOW_DBM;
6744 range->num_txpower = IW_MAX_TXPOWER;
6745 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6746 i < IW_MAX_TXPOWER;
6747 i++, level -=
6748 ((IPW_TX_POWER_MAX_DBM -
6749 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6750 range->txpower[i] = level / 16;
6751 } else {
6752 range->txpower_capa = 0;
6753 range->num_txpower = 0;
6754 }
6755
6756 /* Set the Wireless Extension versions */
6757 range->we_version_compiled = WIRELESS_EXT;
6758 range->we_version_source = 18;
6759
6760 // range->retry_capa; /* What retry options are supported */
6761 // range->retry_flags; /* How to decode max/min retry limit */
6762 // range->r_time_flags; /* How to decode max/min retry life */
6763 // range->min_retry; /* Minimal number of retries */
6764 // range->max_retry; /* Maximal number of retries */
6765 // range->min_r_time; /* Minimal retry lifetime */
6766 // range->max_r_time; /* Maximal retry lifetime */
6767
6768 range->num_channels = FREQ_COUNT;
6769
6770 val = 0;
6771 for (i = 0; i < FREQ_COUNT; i++) {
6772 // TODO: Include only legal frequencies for some countries
6773 // if (local->channel_mask & (1 << i)) {
6774 range->freq[val].i = i + 1;
6775 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6776 range->freq[val].e = 1;
6777 val++;
6778 // }
6779 if (val == IW_MAX_FREQUENCIES)
6780 break;
6781 }
6782 range->num_frequency = val;
6783
6784 /* Event capability (kernel + driver) */
6785 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6786 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6787 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6788
6789 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6790 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6791
6792 IPW_DEBUG_WX("GET Range\n");
6793
6794 return 0;
6795 }
6796
6797 static int ipw2100_wx_set_wap(struct net_device *dev,
6798 struct iw_request_info *info,
6799 union iwreq_data *wrqu, char *extra)
6800 {
6801 struct ipw2100_priv *priv = ieee80211_priv(dev);
6802 int err = 0;
6803
6804 static const unsigned char any[] = {
6805 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6806 };
6807 static const unsigned char off[] = {
6808 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6809 };
6810
6811 // sanity checks
6812 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6813 return -EINVAL;
6814
6815 down(&priv->action_sem);
6816 if (!(priv->status & STATUS_INITIALIZED)) {
6817 err = -EIO;
6818 goto done;
6819 }
6820
6821 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6822 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6823 /* we disable mandatory BSSID association */
6824 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6825 priv->config &= ~CFG_STATIC_BSSID;
6826 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6827 goto done;
6828 }
6829
6830 priv->config |= CFG_STATIC_BSSID;
6831 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6832
6833 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6834
6835 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6836 wrqu->ap_addr.sa_data[0] & 0xff,
6837 wrqu->ap_addr.sa_data[1] & 0xff,
6838 wrqu->ap_addr.sa_data[2] & 0xff,
6839 wrqu->ap_addr.sa_data[3] & 0xff,
6840 wrqu->ap_addr.sa_data[4] & 0xff,
6841 wrqu->ap_addr.sa_data[5] & 0xff);
6842
6843 done:
6844 up(&priv->action_sem);
6845 return err;
6846 }
6847
6848 static int ipw2100_wx_get_wap(struct net_device *dev,
6849 struct iw_request_info *info,
6850 union iwreq_data *wrqu, char *extra)
6851 {
6852 /*
6853 * This can be called at any time. No action lock required
6854 */
6855
6856 struct ipw2100_priv *priv = ieee80211_priv(dev);
6857
6858 /* If we are associated, trying to associate, or have a statically
6859 * configured BSSID then return that; otherwise return ANY */
6860 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6861 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6862 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6863 } else
6864 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6865
6866 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6867 MAC_ARG(wrqu->ap_addr.sa_data));
6868 return 0;
6869 }
6870
6871 static int ipw2100_wx_set_essid(struct net_device *dev,
6872 struct iw_request_info *info,
6873 union iwreq_data *wrqu, char *extra)
6874 {
6875 struct ipw2100_priv *priv = ieee80211_priv(dev);
6876 char *essid = ""; /* ANY */
6877 int length = 0;
6878 int err = 0;
6879
6880 down(&priv->action_sem);
6881 if (!(priv->status & STATUS_INITIALIZED)) {
6882 err = -EIO;
6883 goto done;
6884 }
6885
6886 if (wrqu->essid.flags && wrqu->essid.length) {
6887 length = wrqu->essid.length - 1;
6888 essid = extra;
6889 }
6890
6891 if (length == 0) {
6892 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6893 priv->config &= ~CFG_STATIC_ESSID;
6894 err = ipw2100_set_essid(priv, NULL, 0, 0);
6895 goto done;
6896 }
6897
6898 length = min(length, IW_ESSID_MAX_SIZE);
6899
6900 priv->config |= CFG_STATIC_ESSID;
6901
6902 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6903 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6904 err = 0;
6905 goto done;
6906 }
6907
6908 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6909 length);
6910
6911 priv->essid_len = length;
6912 memcpy(priv->essid, essid, priv->essid_len);
6913
6914 err = ipw2100_set_essid(priv, essid, length, 0);
6915
6916 done:
6917 up(&priv->action_sem);
6918 return err;
6919 }
6920
6921 static int ipw2100_wx_get_essid(struct net_device *dev,
6922 struct iw_request_info *info,
6923 union iwreq_data *wrqu, char *extra)
6924 {
6925 /*
6926 * This can be called at any time. No action lock required
6927 */
6928
6929 struct ipw2100_priv *priv = ieee80211_priv(dev);
6930
6931 /* If we are associated, trying to associate, or have a statically
6932 * configured ESSID then return that; otherwise return ANY */
6933 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6934 IPW_DEBUG_WX("Getting essid: '%s'\n",
6935 escape_essid(priv->essid, priv->essid_len));
6936 memcpy(extra, priv->essid, priv->essid_len);
6937 wrqu->essid.length = priv->essid_len;
6938 wrqu->essid.flags = 1; /* active */
6939 } else {
6940 IPW_DEBUG_WX("Getting essid: ANY\n");
6941 wrqu->essid.length = 0;
6942 wrqu->essid.flags = 0; /* active */
6943 }
6944
6945 return 0;
6946 }
6947
6948 static int ipw2100_wx_set_nick(struct net_device *dev,
6949 struct iw_request_info *info,
6950 union iwreq_data *wrqu, char *extra)
6951 {
6952 /*
6953 * This can be called at any time. No action lock required
6954 */
6955
6956 struct ipw2100_priv *priv = ieee80211_priv(dev);
6957
6958 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
6959 return -E2BIG;
6960
6961 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
6962 memset(priv->nick, 0, sizeof(priv->nick));
6963 memcpy(priv->nick, extra, wrqu->data.length);
6964
6965 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
6966
6967 return 0;
6968 }
6969
6970 static int ipw2100_wx_get_nick(struct net_device *dev,
6971 struct iw_request_info *info,
6972 union iwreq_data *wrqu, char *extra)
6973 {
6974 /*
6975 * This can be called at any time. No action lock required
6976 */
6977
6978 struct ipw2100_priv *priv = ieee80211_priv(dev);
6979
6980 wrqu->data.length = strlen(priv->nick) + 1;
6981 memcpy(extra, priv->nick, wrqu->data.length);
6982 wrqu->data.flags = 1; /* active */
6983
6984 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
6985
6986 return 0;
6987 }
6988
6989 static int ipw2100_wx_set_rate(struct net_device *dev,
6990 struct iw_request_info *info,
6991 union iwreq_data *wrqu, char *extra)
6992 {
6993 struct ipw2100_priv *priv = ieee80211_priv(dev);
6994 u32 target_rate = wrqu->bitrate.value;
6995 u32 rate;
6996 int err = 0;
6997
6998 down(&priv->action_sem);
6999 if (!(priv->status & STATUS_INITIALIZED)) {
7000 err = -EIO;
7001 goto done;
7002 }
7003
7004 rate = 0;
7005
7006 if (target_rate == 1000000 ||
7007 (!wrqu->bitrate.fixed && target_rate > 1000000))
7008 rate |= TX_RATE_1_MBIT;
7009 if (target_rate == 2000000 ||
7010 (!wrqu->bitrate.fixed && target_rate > 2000000))
7011 rate |= TX_RATE_2_MBIT;
7012 if (target_rate == 5500000 ||
7013 (!wrqu->bitrate.fixed && target_rate > 5500000))
7014 rate |= TX_RATE_5_5_MBIT;
7015 if (target_rate == 11000000 ||
7016 (!wrqu->bitrate.fixed && target_rate > 11000000))
7017 rate |= TX_RATE_11_MBIT;
7018 if (rate == 0)
7019 rate = DEFAULT_TX_RATES;
7020
7021 err = ipw2100_set_tx_rates(priv, rate, 0);
7022
7023 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7024 done:
7025 up(&priv->action_sem);
7026 return err;
7027 }
7028
7029 static int ipw2100_wx_get_rate(struct net_device *dev,
7030 struct iw_request_info *info,
7031 union iwreq_data *wrqu, char *extra)
7032 {
7033 struct ipw2100_priv *priv = ieee80211_priv(dev);
7034 int val;
7035 int len = sizeof(val);
7036 int err = 0;
7037
7038 if (!(priv->status & STATUS_ENABLED) ||
7039 priv->status & STATUS_RF_KILL_MASK ||
7040 !(priv->status & STATUS_ASSOCIATED)) {
7041 wrqu->bitrate.value = 0;
7042 return 0;
7043 }
7044
7045 down(&priv->action_sem);
7046 if (!(priv->status & STATUS_INITIALIZED)) {
7047 err = -EIO;
7048 goto done;
7049 }
7050
7051 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7052 if (err) {
7053 IPW_DEBUG_WX("failed querying ordinals.\n");
7054 return err;
7055 }
7056
7057 switch (val & TX_RATE_MASK) {
7058 case TX_RATE_1_MBIT:
7059 wrqu->bitrate.value = 1000000;
7060 break;
7061 case TX_RATE_2_MBIT:
7062 wrqu->bitrate.value = 2000000;
7063 break;
7064 case TX_RATE_5_5_MBIT:
7065 wrqu->bitrate.value = 5500000;
7066 break;
7067 case TX_RATE_11_MBIT:
7068 wrqu->bitrate.value = 11000000;
7069 break;
7070 default:
7071 wrqu->bitrate.value = 0;
7072 }
7073
7074 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7075
7076 done:
7077 up(&priv->action_sem);
7078 return err;
7079 }
7080
7081 static int ipw2100_wx_set_rts(struct net_device *dev,
7082 struct iw_request_info *info,
7083 union iwreq_data *wrqu, char *extra)
7084 {
7085 struct ipw2100_priv *priv = ieee80211_priv(dev);
7086 int value, err;
7087
7088 /* Auto RTS not yet supported */
7089 if (wrqu->rts.fixed == 0)
7090 return -EINVAL;
7091
7092 down(&priv->action_sem);
7093 if (!(priv->status & STATUS_INITIALIZED)) {
7094 err = -EIO;
7095 goto done;
7096 }
7097
7098 if (wrqu->rts.disabled)
7099 value = priv->rts_threshold | RTS_DISABLED;
7100 else {
7101 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7102 err = -EINVAL;
7103 goto done;
7104 }
7105 value = wrqu->rts.value;
7106 }
7107
7108 err = ipw2100_set_rts_threshold(priv, value);
7109
7110 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7111 done:
7112 up(&priv->action_sem);
7113 return err;
7114 }
7115
7116 static int ipw2100_wx_get_rts(struct net_device *dev,
7117 struct iw_request_info *info,
7118 union iwreq_data *wrqu, char *extra)
7119 {
7120 /*
7121 * This can be called at any time. No action lock required
7122 */
7123
7124 struct ipw2100_priv *priv = ieee80211_priv(dev);
7125
7126 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7127 wrqu->rts.fixed = 1; /* no auto select */
7128
7129 /* If RTS is set to the default value, then it is disabled */
7130 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7131
7132 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7133
7134 return 0;
7135 }
7136
7137 static int ipw2100_wx_set_txpow(struct net_device *dev,
7138 struct iw_request_info *info,
7139 union iwreq_data *wrqu, char *extra)
7140 {
7141 struct ipw2100_priv *priv = ieee80211_priv(dev);
7142 int err = 0, value;
7143
7144 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7145 return -EINPROGRESS;
7146
7147 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7148 return 0;
7149
7150 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7151 return -EINVAL;
7152
7153 if (wrqu->txpower.fixed == 0)
7154 value = IPW_TX_POWER_DEFAULT;
7155 else {
7156 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7157 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7158 return -EINVAL;
7159
7160 value = wrqu->txpower.value;
7161 }
7162
7163 down(&priv->action_sem);
7164 if (!(priv->status & STATUS_INITIALIZED)) {
7165 err = -EIO;
7166 goto done;
7167 }
7168
7169 err = ipw2100_set_tx_power(priv, value);
7170
7171 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7172
7173 done:
7174 up(&priv->action_sem);
7175 return err;
7176 }
7177
7178 static int ipw2100_wx_get_txpow(struct net_device *dev,
7179 struct iw_request_info *info,
7180 union iwreq_data *wrqu, char *extra)
7181 {
7182 /*
7183 * This can be called at any time. No action lock required
7184 */
7185
7186 struct ipw2100_priv *priv = ieee80211_priv(dev);
7187
7188 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7189
7190 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7191 wrqu->txpower.fixed = 0;
7192 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7193 } else {
7194 wrqu->txpower.fixed = 1;
7195 wrqu->txpower.value = priv->tx_power;
7196 }
7197
7198 wrqu->txpower.flags = IW_TXPOW_DBM;
7199
7200 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7201
7202 return 0;
7203 }
7204
7205 static int ipw2100_wx_set_frag(struct net_device *dev,
7206 struct iw_request_info *info,
7207 union iwreq_data *wrqu, char *extra)
7208 {
7209 /*
7210 * This can be called at any time. No action lock required
7211 */
7212
7213 struct ipw2100_priv *priv = ieee80211_priv(dev);
7214
7215 if (!wrqu->frag.fixed)
7216 return -EINVAL;
7217
7218 if (wrqu->frag.disabled) {
7219 priv->frag_threshold |= FRAG_DISABLED;
7220 priv->ieee->fts = DEFAULT_FTS;
7221 } else {
7222 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7223 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7224 return -EINVAL;
7225
7226 priv->ieee->fts = wrqu->frag.value & ~0x1;
7227 priv->frag_threshold = priv->ieee->fts;
7228 }
7229
7230 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7231
7232 return 0;
7233 }
7234
7235 static int ipw2100_wx_get_frag(struct net_device *dev,
7236 struct iw_request_info *info,
7237 union iwreq_data *wrqu, char *extra)
7238 {
7239 /*
7240 * This can be called at any time. No action lock required
7241 */
7242
7243 struct ipw2100_priv *priv = ieee80211_priv(dev);
7244 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7245 wrqu->frag.fixed = 0; /* no auto select */
7246 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7247
7248 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7249
7250 return 0;
7251 }
7252
7253 static int ipw2100_wx_set_retry(struct net_device *dev,
7254 struct iw_request_info *info,
7255 union iwreq_data *wrqu, char *extra)
7256 {
7257 struct ipw2100_priv *priv = ieee80211_priv(dev);
7258 int err = 0;
7259
7260 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7261 return -EINVAL;
7262
7263 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7264 return 0;
7265
7266 down(&priv->action_sem);
7267 if (!(priv->status & STATUS_INITIALIZED)) {
7268 err = -EIO;
7269 goto done;
7270 }
7271
7272 if (wrqu->retry.flags & IW_RETRY_MIN) {
7273 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7274 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7275 wrqu->retry.value);
7276 goto done;
7277 }
7278
7279 if (wrqu->retry.flags & IW_RETRY_MAX) {
7280 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7281 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7282 wrqu->retry.value);
7283 goto done;
7284 }
7285
7286 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7287 if (!err)
7288 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7289
7290 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7291
7292 done:
7293 up(&priv->action_sem);
7294 return err;
7295 }
7296
7297 static int ipw2100_wx_get_retry(struct net_device *dev,
7298 struct iw_request_info *info,
7299 union iwreq_data *wrqu, char *extra)
7300 {
7301 /*
7302 * This can be called at any time. No action lock required
7303 */
7304
7305 struct ipw2100_priv *priv = ieee80211_priv(dev);
7306
7307 wrqu->retry.disabled = 0; /* can't be disabled */
7308
7309 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7310 return -EINVAL;
7311
7312 if (wrqu->retry.flags & IW_RETRY_MAX) {
7313 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7314 wrqu->retry.value = priv->long_retry_limit;
7315 } else {
7316 wrqu->retry.flags =
7317 (priv->short_retry_limit !=
7318 priv->long_retry_limit) ?
7319 IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7320
7321 wrqu->retry.value = priv->short_retry_limit;
7322 }
7323
7324 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7325
7326 return 0;
7327 }
7328
7329 static int ipw2100_wx_set_scan(struct net_device *dev,
7330 struct iw_request_info *info,
7331 union iwreq_data *wrqu, char *extra)
7332 {
7333 struct ipw2100_priv *priv = ieee80211_priv(dev);
7334 int err = 0;
7335
7336 down(&priv->action_sem);
7337 if (!(priv->status & STATUS_INITIALIZED)) {
7338 err = -EIO;
7339 goto done;
7340 }
7341
7342 IPW_DEBUG_WX("Initiating scan...\n");
7343 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7344 IPW_DEBUG_WX("Start scan failed.\n");
7345
7346 /* TODO: Mark a scan as pending so when hardware initialized
7347 * a scan starts */
7348 }
7349
7350 done:
7351 up(&priv->action_sem);
7352 return err;
7353 }
7354
7355 static int ipw2100_wx_get_scan(struct net_device *dev,
7356 struct iw_request_info *info,
7357 union iwreq_data *wrqu, char *extra)
7358 {
7359 /*
7360 * This can be called at any time. No action lock required
7361 */
7362
7363 struct ipw2100_priv *priv = ieee80211_priv(dev);
7364 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7365 }
7366
7367 /*
7368 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7369 */
7370 static int ipw2100_wx_set_encode(struct net_device *dev,
7371 struct iw_request_info *info,
7372 union iwreq_data *wrqu, char *key)
7373 {
7374 /*
7375 * No check of STATUS_INITIALIZED required
7376 */
7377
7378 struct ipw2100_priv *priv = ieee80211_priv(dev);
7379 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7380 }
7381
7382 static int ipw2100_wx_get_encode(struct net_device *dev,
7383 struct iw_request_info *info,
7384 union iwreq_data *wrqu, char *key)
7385 {
7386 /*
7387 * This can be called at any time. No action lock required
7388 */
7389
7390 struct ipw2100_priv *priv = ieee80211_priv(dev);
7391 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7392 }
7393
7394 static int ipw2100_wx_set_power(struct net_device *dev,
7395 struct iw_request_info *info,
7396 union iwreq_data *wrqu, char *extra)
7397 {
7398 struct ipw2100_priv *priv = ieee80211_priv(dev);
7399 int err = 0;
7400
7401 down(&priv->action_sem);
7402 if (!(priv->status & STATUS_INITIALIZED)) {
7403 err = -EIO;
7404 goto done;
7405 }
7406
7407 if (wrqu->power.disabled) {
7408 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7409 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7410 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7411 goto done;
7412 }
7413
7414 switch (wrqu->power.flags & IW_POWER_MODE) {
7415 case IW_POWER_ON: /* If not specified */
7416 case IW_POWER_MODE: /* If set all mask */
7417 case IW_POWER_ALL_R: /* If explicitely state all */
7418 break;
7419 default: /* Otherwise we don't support it */
7420 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7421 wrqu->power.flags);
7422 err = -EOPNOTSUPP;
7423 goto done;
7424 }
7425
7426 /* If the user hasn't specified a power management mode yet, default
7427 * to BATTERY */
7428 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7429 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7430
7431 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7432
7433 done:
7434 up(&priv->action_sem);
7435 return err;
7436
7437 }
7438
7439 static int ipw2100_wx_get_power(struct net_device *dev,
7440 struct iw_request_info *info,
7441 union iwreq_data *wrqu, char *extra)
7442 {
7443 /*
7444 * This can be called at any time. No action lock required
7445 */
7446
7447 struct ipw2100_priv *priv = ieee80211_priv(dev);
7448
7449 if (!(priv->power_mode & IPW_POWER_ENABLED))
7450 wrqu->power.disabled = 1;
7451 else {
7452 wrqu->power.disabled = 0;
7453 wrqu->power.flags = 0;
7454 }
7455
7456 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7457
7458 return 0;
7459 }
7460
7461 /*
7462 * WE-18 WPA support
7463 */
7464
7465 /* SIOCSIWGENIE */
7466 static int ipw2100_wx_set_genie(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *extra)
7469 {
7470
7471 struct ipw2100_priv *priv = ieee80211_priv(dev);
7472 struct ieee80211_device *ieee = priv->ieee;
7473 u8 *buf;
7474
7475 if (!ieee->wpa_enabled)
7476 return -EOPNOTSUPP;
7477
7478 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7479 (wrqu->data.length && extra == NULL))
7480 return -EINVAL;
7481
7482 if (wrqu->data.length) {
7483 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7484 if (buf == NULL)
7485 return -ENOMEM;
7486
7487 memcpy(buf, extra, wrqu->data.length);
7488 kfree(ieee->wpa_ie);
7489 ieee->wpa_ie = buf;
7490 ieee->wpa_ie_len = wrqu->data.length;
7491 } else {
7492 kfree(ieee->wpa_ie);
7493 ieee->wpa_ie = NULL;
7494 ieee->wpa_ie_len = 0;
7495 }
7496
7497 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7498
7499 return 0;
7500 }
7501
7502 /* SIOCGIWGENIE */
7503 static int ipw2100_wx_get_genie(struct net_device *dev,
7504 struct iw_request_info *info,
7505 union iwreq_data *wrqu, char *extra)
7506 {
7507 struct ipw2100_priv *priv = ieee80211_priv(dev);
7508 struct ieee80211_device *ieee = priv->ieee;
7509
7510 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7511 wrqu->data.length = 0;
7512 return 0;
7513 }
7514
7515 if (wrqu->data.length < ieee->wpa_ie_len)
7516 return -E2BIG;
7517
7518 wrqu->data.length = ieee->wpa_ie_len;
7519 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7520
7521 return 0;
7522 }
7523
7524 /* SIOCSIWAUTH */
7525 static int ipw2100_wx_set_auth(struct net_device *dev,
7526 struct iw_request_info *info,
7527 union iwreq_data *wrqu, char *extra)
7528 {
7529 struct ipw2100_priv *priv = ieee80211_priv(dev);
7530 struct ieee80211_device *ieee = priv->ieee;
7531 struct iw_param *param = &wrqu->param;
7532 struct ieee80211_crypt_data *crypt;
7533 unsigned long flags;
7534 int ret = 0;
7535
7536 switch (param->flags & IW_AUTH_INDEX) {
7537 case IW_AUTH_WPA_VERSION:
7538 case IW_AUTH_CIPHER_PAIRWISE:
7539 case IW_AUTH_CIPHER_GROUP:
7540 case IW_AUTH_KEY_MGMT:
7541 /*
7542 * ipw2200 does not use these parameters
7543 */
7544 break;
7545
7546 case IW_AUTH_TKIP_COUNTERMEASURES:
7547 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7548 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7549 break;
7550
7551 flags = crypt->ops->get_flags(crypt->priv);
7552
7553 if (param->value)
7554 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7555 else
7556 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7557
7558 crypt->ops->set_flags(flags, crypt->priv);
7559
7560 break;
7561
7562 case IW_AUTH_DROP_UNENCRYPTED:{
7563 /* HACK:
7564 *
7565 * wpa_supplicant calls set_wpa_enabled when the driver
7566 * is loaded and unloaded, regardless of if WPA is being
7567 * used. No other calls are made which can be used to
7568 * determine if encryption will be used or not prior to
7569 * association being expected. If encryption is not being
7570 * used, drop_unencrypted is set to false, else true -- we
7571 * can use this to determine if the CAP_PRIVACY_ON bit should
7572 * be set.
7573 */
7574 struct ieee80211_security sec = {
7575 .flags = SEC_ENABLED,
7576 .enabled = param->value,
7577 };
7578 priv->ieee->drop_unencrypted = param->value;
7579 /* We only change SEC_LEVEL for open mode. Others
7580 * are set by ipw_wpa_set_encryption.
7581 */
7582 if (!param->value) {
7583 sec.flags |= SEC_LEVEL;
7584 sec.level = SEC_LEVEL_0;
7585 } else {
7586 sec.flags |= SEC_LEVEL;
7587 sec.level = SEC_LEVEL_1;
7588 }
7589 if (priv->ieee->set_security)
7590 priv->ieee->set_security(priv->ieee->dev, &sec);
7591 break;
7592 }
7593
7594 case IW_AUTH_80211_AUTH_ALG:
7595 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7596 break;
7597
7598 case IW_AUTH_WPA_ENABLED:
7599 ret = ipw2100_wpa_enable(priv, param->value);
7600 break;
7601
7602 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7603 ieee->ieee802_1x = param->value;
7604 break;
7605
7606 //case IW_AUTH_ROAMING_CONTROL:
7607 case IW_AUTH_PRIVACY_INVOKED:
7608 ieee->privacy_invoked = param->value;
7609 break;
7610
7611 default:
7612 return -EOPNOTSUPP;
7613 }
7614 return ret;
7615 }
7616
7617 /* SIOCGIWAUTH */
7618 static int ipw2100_wx_get_auth(struct net_device *dev,
7619 struct iw_request_info *info,
7620 union iwreq_data *wrqu, char *extra)
7621 {
7622 struct ipw2100_priv *priv = ieee80211_priv(dev);
7623 struct ieee80211_device *ieee = priv->ieee;
7624 struct ieee80211_crypt_data *crypt;
7625 struct iw_param *param = &wrqu->param;
7626 int ret = 0;
7627
7628 switch (param->flags & IW_AUTH_INDEX) {
7629 case IW_AUTH_WPA_VERSION:
7630 case IW_AUTH_CIPHER_PAIRWISE:
7631 case IW_AUTH_CIPHER_GROUP:
7632 case IW_AUTH_KEY_MGMT:
7633 /*
7634 * wpa_supplicant will control these internally
7635 */
7636 ret = -EOPNOTSUPP;
7637 break;
7638
7639 case IW_AUTH_TKIP_COUNTERMEASURES:
7640 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7641 if (!crypt || !crypt->ops->get_flags) {
7642 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7643 "crypt not set!\n");
7644 break;
7645 }
7646
7647 param->value = (crypt->ops->get_flags(crypt->priv) &
7648 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7649
7650 break;
7651
7652 case IW_AUTH_DROP_UNENCRYPTED:
7653 param->value = ieee->drop_unencrypted;
7654 break;
7655
7656 case IW_AUTH_80211_AUTH_ALG:
7657 param->value = priv->ieee->sec.auth_mode;
7658 break;
7659
7660 case IW_AUTH_WPA_ENABLED:
7661 param->value = ieee->wpa_enabled;
7662 break;
7663
7664 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7665 param->value = ieee->ieee802_1x;
7666 break;
7667
7668 case IW_AUTH_ROAMING_CONTROL:
7669 case IW_AUTH_PRIVACY_INVOKED:
7670 param->value = ieee->privacy_invoked;
7671 break;
7672
7673 default:
7674 return -EOPNOTSUPP;
7675 }
7676 return 0;
7677 }
7678
7679 /* SIOCSIWENCODEEXT */
7680 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7681 struct iw_request_info *info,
7682 union iwreq_data *wrqu, char *extra)
7683 {
7684 struct ipw2100_priv *priv = ieee80211_priv(dev);
7685 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7686 }
7687
7688 /* SIOCGIWENCODEEXT */
7689 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7690 struct iw_request_info *info,
7691 union iwreq_data *wrqu, char *extra)
7692 {
7693 struct ipw2100_priv *priv = ieee80211_priv(dev);
7694 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7695 }
7696
7697 /* SIOCSIWMLME */
7698 static int ipw2100_wx_set_mlme(struct net_device *dev,
7699 struct iw_request_info *info,
7700 union iwreq_data *wrqu, char *extra)
7701 {
7702 struct ipw2100_priv *priv = ieee80211_priv(dev);
7703 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7704 u16 reason;
7705
7706 reason = cpu_to_le16(mlme->reason_code);
7707
7708 switch (mlme->cmd) {
7709 case IW_MLME_DEAUTH:
7710 // silently ignore
7711 break;
7712
7713 case IW_MLME_DISASSOC:
7714 ipw2100_disassociate_bssid(priv);
7715 break;
7716
7717 default:
7718 return -EOPNOTSUPP;
7719 }
7720 return 0;
7721 }
7722
7723 /*
7724 *
7725 * IWPRIV handlers
7726 *
7727 */
7728 #ifdef CONFIG_IPW2100_MONITOR
7729 static int ipw2100_wx_set_promisc(struct net_device *dev,
7730 struct iw_request_info *info,
7731 union iwreq_data *wrqu, char *extra)
7732 {
7733 struct ipw2100_priv *priv = ieee80211_priv(dev);
7734 int *parms = (int *)extra;
7735 int enable = (parms[0] > 0);
7736 int err = 0;
7737
7738 down(&priv->action_sem);
7739 if (!(priv->status & STATUS_INITIALIZED)) {
7740 err = -EIO;
7741 goto done;
7742 }
7743
7744 if (enable) {
7745 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7746 err = ipw2100_set_channel(priv, parms[1], 0);
7747 goto done;
7748 }
7749 priv->channel = parms[1];
7750 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7751 } else {
7752 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7753 err = ipw2100_switch_mode(priv, priv->last_mode);
7754 }
7755 done:
7756 up(&priv->action_sem);
7757 return err;
7758 }
7759
7760 static int ipw2100_wx_reset(struct net_device *dev,
7761 struct iw_request_info *info,
7762 union iwreq_data *wrqu, char *extra)
7763 {
7764 struct ipw2100_priv *priv = ieee80211_priv(dev);
7765 if (priv->status & STATUS_INITIALIZED)
7766 schedule_reset(priv);
7767 return 0;
7768 }
7769
7770 #endif
7771
7772 static int ipw2100_wx_set_powermode(struct net_device *dev,
7773 struct iw_request_info *info,
7774 union iwreq_data *wrqu, char *extra)
7775 {
7776 struct ipw2100_priv *priv = ieee80211_priv(dev);
7777 int err = 0, mode = *(int *)extra;
7778
7779 down(&priv->action_sem);
7780 if (!(priv->status & STATUS_INITIALIZED)) {
7781 err = -EIO;
7782 goto done;
7783 }
7784
7785 if ((mode < 1) || (mode > POWER_MODES))
7786 mode = IPW_POWER_AUTO;
7787
7788 if (priv->power_mode != mode)
7789 err = ipw2100_set_power_mode(priv, mode);
7790 done:
7791 up(&priv->action_sem);
7792 return err;
7793 }
7794
7795 #define MAX_POWER_STRING 80
7796 static int ipw2100_wx_get_powermode(struct net_device *dev,
7797 struct iw_request_info *info,
7798 union iwreq_data *wrqu, char *extra)
7799 {
7800 /*
7801 * This can be called at any time. No action lock required
7802 */
7803
7804 struct ipw2100_priv *priv = ieee80211_priv(dev);
7805 int level = IPW_POWER_LEVEL(priv->power_mode);
7806 s32 timeout, period;
7807
7808 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7809 snprintf(extra, MAX_POWER_STRING,
7810 "Power save level: %d (Off)", level);
7811 } else {
7812 switch (level) {
7813 case IPW_POWER_MODE_CAM:
7814 snprintf(extra, MAX_POWER_STRING,
7815 "Power save level: %d (None)", level);
7816 break;
7817 case IPW_POWER_AUTO:
7818 snprintf(extra, MAX_POWER_STRING,
7819 "Power save level: %d (Auto)", 0);
7820 break;
7821 default:
7822 timeout = timeout_duration[level - 1] / 1000;
7823 period = period_duration[level - 1] / 1000;
7824 snprintf(extra, MAX_POWER_STRING,
7825 "Power save level: %d "
7826 "(Timeout %dms, Period %dms)",
7827 level, timeout, period);
7828 }
7829 }
7830
7831 wrqu->data.length = strlen(extra) + 1;
7832
7833 return 0;
7834 }
7835
7836 static int ipw2100_wx_set_preamble(struct net_device *dev,
7837 struct iw_request_info *info,
7838 union iwreq_data *wrqu, char *extra)
7839 {
7840 struct ipw2100_priv *priv = ieee80211_priv(dev);
7841 int err, mode = *(int *)extra;
7842
7843 down(&priv->action_sem);
7844 if (!(priv->status & STATUS_INITIALIZED)) {
7845 err = -EIO;
7846 goto done;
7847 }
7848
7849 if (mode == 1)
7850 priv->config |= CFG_LONG_PREAMBLE;
7851 else if (mode == 0)
7852 priv->config &= ~CFG_LONG_PREAMBLE;
7853 else {
7854 err = -EINVAL;
7855 goto done;
7856 }
7857
7858 err = ipw2100_system_config(priv, 0);
7859
7860 done:
7861 up(&priv->action_sem);
7862 return err;
7863 }
7864
7865 static int ipw2100_wx_get_preamble(struct net_device *dev,
7866 struct iw_request_info *info,
7867 union iwreq_data *wrqu, char *extra)
7868 {
7869 /*
7870 * This can be called at any time. No action lock required
7871 */
7872
7873 struct ipw2100_priv *priv = ieee80211_priv(dev);
7874
7875 if (priv->config & CFG_LONG_PREAMBLE)
7876 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7877 else
7878 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7879
7880 return 0;
7881 }
7882
7883 #ifdef CONFIG_IPW2100_MONITOR
7884 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7885 struct iw_request_info *info,
7886 union iwreq_data *wrqu, char *extra)
7887 {
7888 struct ipw2100_priv *priv = ieee80211_priv(dev);
7889 int err, mode = *(int *)extra;
7890
7891 down(&priv->action_sem);
7892 if (!(priv->status & STATUS_INITIALIZED)) {
7893 err = -EIO;
7894 goto done;
7895 }
7896
7897 if (mode == 1)
7898 priv->config |= CFG_CRC_CHECK;
7899 else if (mode == 0)
7900 priv->config &= ~CFG_CRC_CHECK;
7901 else {
7902 err = -EINVAL;
7903 goto done;
7904 }
7905 err = 0;
7906
7907 done:
7908 up(&priv->action_sem);
7909 return err;
7910 }
7911
7912 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7913 struct iw_request_info *info,
7914 union iwreq_data *wrqu, char *extra)
7915 {
7916 /*
7917 * This can be called at any time. No action lock required
7918 */
7919
7920 struct ipw2100_priv *priv = ieee80211_priv(dev);
7921
7922 if (priv->config & CFG_CRC_CHECK)
7923 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7924 else
7925 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7926
7927 return 0;
7928 }
7929 #endif /* CONFIG_IPW2100_MONITOR */
7930
7931 static iw_handler ipw2100_wx_handlers[] = {
7932 NULL, /* SIOCSIWCOMMIT */
7933 ipw2100_wx_get_name, /* SIOCGIWNAME */
7934 NULL, /* SIOCSIWNWID */
7935 NULL, /* SIOCGIWNWID */
7936 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
7937 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
7938 ipw2100_wx_set_mode, /* SIOCSIWMODE */
7939 ipw2100_wx_get_mode, /* SIOCGIWMODE */
7940 NULL, /* SIOCSIWSENS */
7941 NULL, /* SIOCGIWSENS */
7942 NULL, /* SIOCSIWRANGE */
7943 ipw2100_wx_get_range, /* SIOCGIWRANGE */
7944 NULL, /* SIOCSIWPRIV */
7945 NULL, /* SIOCGIWPRIV */
7946 NULL, /* SIOCSIWSTATS */
7947 NULL, /* SIOCGIWSTATS */
7948 NULL, /* SIOCSIWSPY */
7949 NULL, /* SIOCGIWSPY */
7950 NULL, /* SIOCGIWTHRSPY */
7951 NULL, /* SIOCWIWTHRSPY */
7952 ipw2100_wx_set_wap, /* SIOCSIWAP */
7953 ipw2100_wx_get_wap, /* SIOCGIWAP */
7954 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
7955 NULL, /* SIOCGIWAPLIST -- deprecated */
7956 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
7957 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
7958 ipw2100_wx_set_essid, /* SIOCSIWESSID */
7959 ipw2100_wx_get_essid, /* SIOCGIWESSID */
7960 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
7961 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
7962 NULL, /* -- hole -- */
7963 NULL, /* -- hole -- */
7964 ipw2100_wx_set_rate, /* SIOCSIWRATE */
7965 ipw2100_wx_get_rate, /* SIOCGIWRATE */
7966 ipw2100_wx_set_rts, /* SIOCSIWRTS */
7967 ipw2100_wx_get_rts, /* SIOCGIWRTS */
7968 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
7969 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
7970 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
7971 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
7972 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
7973 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
7974 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
7975 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
7976 ipw2100_wx_set_power, /* SIOCSIWPOWER */
7977 ipw2100_wx_get_power, /* SIOCGIWPOWER */
7978 NULL, /* -- hole -- */
7979 NULL, /* -- hole -- */
7980 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
7981 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
7982 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
7983 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
7984 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
7985 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
7986 NULL, /* SIOCSIWPMKSA */
7987 };
7988
7989 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
7990 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
7991 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
7992 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
7993 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
7994 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
7995 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
7996 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
7997
7998 static const struct iw_priv_args ipw2100_private_args[] = {
7999
8000 #ifdef CONFIG_IPW2100_MONITOR
8001 {
8002 IPW2100_PRIV_SET_MONITOR,
8003 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8004 {
8005 IPW2100_PRIV_RESET,
8006 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8007 #endif /* CONFIG_IPW2100_MONITOR */
8008
8009 {
8010 IPW2100_PRIV_SET_POWER,
8011 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8012 {
8013 IPW2100_PRIV_GET_POWER,
8014 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8015 "get_power"},
8016 {
8017 IPW2100_PRIV_SET_LONGPREAMBLE,
8018 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8019 {
8020 IPW2100_PRIV_GET_LONGPREAMBLE,
8021 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8022 #ifdef CONFIG_IPW2100_MONITOR
8023 {
8024 IPW2100_PRIV_SET_CRC_CHECK,
8025 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8026 {
8027 IPW2100_PRIV_GET_CRC_CHECK,
8028 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8029 #endif /* CONFIG_IPW2100_MONITOR */
8030 };
8031
8032 static iw_handler ipw2100_private_handler[] = {
8033 #ifdef CONFIG_IPW2100_MONITOR
8034 ipw2100_wx_set_promisc,
8035 ipw2100_wx_reset,
8036 #else /* CONFIG_IPW2100_MONITOR */
8037 NULL,
8038 NULL,
8039 #endif /* CONFIG_IPW2100_MONITOR */
8040 ipw2100_wx_set_powermode,
8041 ipw2100_wx_get_powermode,
8042 ipw2100_wx_set_preamble,
8043 ipw2100_wx_get_preamble,
8044 #ifdef CONFIG_IPW2100_MONITOR
8045 ipw2100_wx_set_crc_check,
8046 ipw2100_wx_get_crc_check,
8047 #else /* CONFIG_IPW2100_MONITOR */
8048 NULL,
8049 NULL,
8050 #endif /* CONFIG_IPW2100_MONITOR */
8051 };
8052
8053 /*
8054 * Get wireless statistics.
8055 * Called by /proc/net/wireless
8056 * Also called by SIOCGIWSTATS
8057 */
8058 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8059 {
8060 enum {
8061 POOR = 30,
8062 FAIR = 60,
8063 GOOD = 80,
8064 VERY_GOOD = 90,
8065 EXCELLENT = 95,
8066 PERFECT = 100
8067 };
8068 int rssi_qual;
8069 int tx_qual;
8070 int beacon_qual;
8071
8072 struct ipw2100_priv *priv = ieee80211_priv(dev);
8073 struct iw_statistics *wstats;
8074 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8075 u32 ord_len = sizeof(u32);
8076
8077 if (!priv)
8078 return (struct iw_statistics *)NULL;
8079
8080 wstats = &priv->wstats;
8081
8082 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8083 * ipw2100_wx_wireless_stats seems to be called before fw is
8084 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8085 * and associated; if not associcated, the values are all meaningless
8086 * anyway, so set them all to NULL and INVALID */
8087 if (!(priv->status & STATUS_ASSOCIATED)) {
8088 wstats->miss.beacon = 0;
8089 wstats->discard.retries = 0;
8090 wstats->qual.qual = 0;
8091 wstats->qual.level = 0;
8092 wstats->qual.noise = 0;
8093 wstats->qual.updated = 7;
8094 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8095 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8096 return wstats;
8097 }
8098
8099 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8100 &missed_beacons, &ord_len))
8101 goto fail_get_ordinal;
8102
8103 /* If we don't have a connection the quality and level is 0 */
8104 if (!(priv->status & STATUS_ASSOCIATED)) {
8105 wstats->qual.qual = 0;
8106 wstats->qual.level = 0;
8107 } else {
8108 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8109 &rssi, &ord_len))
8110 goto fail_get_ordinal;
8111 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8112 if (rssi < 10)
8113 rssi_qual = rssi * POOR / 10;
8114 else if (rssi < 15)
8115 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8116 else if (rssi < 20)
8117 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8118 else if (rssi < 30)
8119 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8120 10 + GOOD;
8121 else
8122 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8123 10 + VERY_GOOD;
8124
8125 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8126 &tx_retries, &ord_len))
8127 goto fail_get_ordinal;
8128
8129 if (tx_retries > 75)
8130 tx_qual = (90 - tx_retries) * POOR / 15;
8131 else if (tx_retries > 70)
8132 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8133 else if (tx_retries > 65)
8134 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8135 else if (tx_retries > 50)
8136 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8137 15 + GOOD;
8138 else
8139 tx_qual = (50 - tx_retries) *
8140 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8141
8142 if (missed_beacons > 50)
8143 beacon_qual = (60 - missed_beacons) * POOR / 10;
8144 else if (missed_beacons > 40)
8145 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8146 10 + POOR;
8147 else if (missed_beacons > 32)
8148 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8149 18 + FAIR;
8150 else if (missed_beacons > 20)
8151 beacon_qual = (32 - missed_beacons) *
8152 (VERY_GOOD - GOOD) / 20 + GOOD;
8153 else
8154 beacon_qual = (20 - missed_beacons) *
8155 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8156
8157 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8158
8159 #ifdef CONFIG_IPW2100_DEBUG
8160 if (beacon_qual == quality)
8161 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8162 else if (tx_qual == quality)
8163 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8164 else if (quality != 100)
8165 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8166 else
8167 IPW_DEBUG_WX("Quality not clamped.\n");
8168 #endif
8169
8170 wstats->qual.qual = quality;
8171 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8172 }
8173
8174 wstats->qual.noise = 0;
8175 wstats->qual.updated = 7;
8176 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8177
8178 /* FIXME: this is percent and not a # */
8179 wstats->miss.beacon = missed_beacons;
8180
8181 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8182 &tx_failures, &ord_len))
8183 goto fail_get_ordinal;
8184 wstats->discard.retries = tx_failures;
8185
8186 return wstats;
8187
8188 fail_get_ordinal:
8189 IPW_DEBUG_WX("failed querying ordinals.\n");
8190
8191 return (struct iw_statistics *)NULL;
8192 }
8193
8194 static struct iw_handler_def ipw2100_wx_handler_def = {
8195 .standard = ipw2100_wx_handlers,
8196 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8197 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8198 .num_private_args = sizeof(ipw2100_private_args) /
8199 sizeof(struct iw_priv_args),
8200 .private = (iw_handler *) ipw2100_private_handler,
8201 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8202 .get_wireless_stats = ipw2100_wx_wireless_stats,
8203 };
8204
8205 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8206 {
8207 union iwreq_data wrqu;
8208 int len = ETH_ALEN;
8209
8210 if (priv->status & STATUS_STOPPING)
8211 return;
8212
8213 down(&priv->action_sem);
8214
8215 IPW_DEBUG_WX("enter\n");
8216
8217 up(&priv->action_sem);
8218
8219 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8220
8221 /* Fetch BSSID from the hardware */
8222 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8223 priv->status & STATUS_RF_KILL_MASK ||
8224 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8225 &priv->bssid, &len)) {
8226 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8227 } else {
8228 /* We now have the BSSID, so can finish setting to the full
8229 * associated state */
8230 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8231 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8232 priv->status &= ~STATUS_ASSOCIATING;
8233 priv->status |= STATUS_ASSOCIATED;
8234 netif_carrier_on(priv->net_dev);
8235 netif_wake_queue(priv->net_dev);
8236 }
8237
8238 if (!(priv->status & STATUS_ASSOCIATED)) {
8239 IPW_DEBUG_WX("Configuring ESSID\n");
8240 down(&priv->action_sem);
8241 /* This is a disassociation event, so kick the firmware to
8242 * look for another AP */
8243 if (priv->config & CFG_STATIC_ESSID)
8244 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8245 0);
8246 else
8247 ipw2100_set_essid(priv, NULL, 0, 0);
8248 up(&priv->action_sem);
8249 }
8250
8251 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8252 }
8253
8254 #define IPW2100_FW_MAJOR_VERSION 1
8255 #define IPW2100_FW_MINOR_VERSION 3
8256
8257 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8258 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8259
8260 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8261 IPW2100_FW_MAJOR_VERSION)
8262
8263 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8264 "." __stringify(IPW2100_FW_MINOR_VERSION)
8265
8266 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8267
8268 /*
8269
8270 BINARY FIRMWARE HEADER FORMAT
8271
8272 offset length desc
8273 0 2 version
8274 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8275 4 4 fw_len
8276 8 4 uc_len
8277 C fw_len firmware data
8278 12 + fw_len uc_len microcode data
8279
8280 */
8281
8282 struct ipw2100_fw_header {
8283 short version;
8284 short mode;
8285 unsigned int fw_size;
8286 unsigned int uc_size;
8287 } __attribute__ ((packed));
8288
8289 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8290 {
8291 struct ipw2100_fw_header *h =
8292 (struct ipw2100_fw_header *)fw->fw_entry->data;
8293
8294 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8295 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8296 "(detected version id of %u). "
8297 "See Documentation/networking/README.ipw2100\n",
8298 h->version);
8299 return 1;
8300 }
8301
8302 fw->version = h->version;
8303 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8304 fw->fw.size = h->fw_size;
8305 fw->uc.data = fw->fw.data + h->fw_size;
8306 fw->uc.size = h->uc_size;
8307
8308 return 0;
8309 }
8310
8311 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8312 struct ipw2100_fw *fw)
8313 {
8314 char *fw_name;
8315 int rc;
8316
8317 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8318 priv->net_dev->name);
8319
8320 switch (priv->ieee->iw_mode) {
8321 case IW_MODE_ADHOC:
8322 fw_name = IPW2100_FW_NAME("-i");
8323 break;
8324 #ifdef CONFIG_IPW2100_MONITOR
8325 case IW_MODE_MONITOR:
8326 fw_name = IPW2100_FW_NAME("-p");
8327 break;
8328 #endif
8329 case IW_MODE_INFRA:
8330 default:
8331 fw_name = IPW2100_FW_NAME("");
8332 break;
8333 }
8334
8335 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8336
8337 if (rc < 0) {
8338 printk(KERN_ERR DRV_NAME ": "
8339 "%s: Firmware '%s' not available or load failed.\n",
8340 priv->net_dev->name, fw_name);
8341 return rc;
8342 }
8343 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8344 fw->fw_entry->size);
8345
8346 ipw2100_mod_firmware_load(fw);
8347
8348 return 0;
8349 }
8350
8351 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8352 struct ipw2100_fw *fw)
8353 {
8354 fw->version = 0;
8355 if (fw->fw_entry)
8356 release_firmware(fw->fw_entry);
8357 fw->fw_entry = NULL;
8358 }
8359
8360 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8361 size_t max)
8362 {
8363 char ver[MAX_FW_VERSION_LEN];
8364 u32 len = MAX_FW_VERSION_LEN;
8365 u32 tmp;
8366 int i;
8367 /* firmware version is an ascii string (max len of 14) */
8368 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8369 return -EIO;
8370 tmp = max;
8371 if (len >= max)
8372 len = max - 1;
8373 for (i = 0; i < len; i++)
8374 buf[i] = ver[i];
8375 buf[i] = '\0';
8376 return tmp;
8377 }
8378
8379 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8380 size_t max)
8381 {
8382 u32 ver;
8383 u32 len = sizeof(ver);
8384 /* microcode version is a 32 bit integer */
8385 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8386 return -EIO;
8387 return snprintf(buf, max, "%08X", ver);
8388 }
8389
8390 /*
8391 * On exit, the firmware will have been freed from the fw list
8392 */
8393 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8394 {
8395 /* firmware is constructed of N contiguous entries, each entry is
8396 * structured as:
8397 *
8398 * offset sie desc
8399 * 0 4 address to write to
8400 * 4 2 length of data run
8401 * 6 length data
8402 */
8403 unsigned int addr;
8404 unsigned short len;
8405
8406 const unsigned char *firmware_data = fw->fw.data;
8407 unsigned int firmware_data_left = fw->fw.size;
8408
8409 while (firmware_data_left > 0) {
8410 addr = *(u32 *) (firmware_data);
8411 firmware_data += 4;
8412 firmware_data_left -= 4;
8413
8414 len = *(u16 *) (firmware_data);
8415 firmware_data += 2;
8416 firmware_data_left -= 2;
8417
8418 if (len > 32) {
8419 printk(KERN_ERR DRV_NAME ": "
8420 "Invalid firmware run-length of %d bytes\n",
8421 len);
8422 return -EINVAL;
8423 }
8424
8425 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8426 firmware_data += len;
8427 firmware_data_left -= len;
8428 }
8429
8430 return 0;
8431 }
8432
8433 struct symbol_alive_response {
8434 u8 cmd_id;
8435 u8 seq_num;
8436 u8 ucode_rev;
8437 u8 eeprom_valid;
8438 u16 valid_flags;
8439 u8 IEEE_addr[6];
8440 u16 flags;
8441 u16 pcb_rev;
8442 u16 clock_settle_time; // 1us LSB
8443 u16 powerup_settle_time; // 1us LSB
8444 u16 hop_settle_time; // 1us LSB
8445 u8 date[3]; // month, day, year
8446 u8 time[2]; // hours, minutes
8447 u8 ucode_valid;
8448 };
8449
8450 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8451 struct ipw2100_fw *fw)
8452 {
8453 struct net_device *dev = priv->net_dev;
8454 const unsigned char *microcode_data = fw->uc.data;
8455 unsigned int microcode_data_left = fw->uc.size;
8456 void __iomem *reg = (void __iomem *)dev->base_addr;
8457
8458 struct symbol_alive_response response;
8459 int i, j;
8460 u8 data;
8461
8462 /* Symbol control */
8463 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8464 readl(reg);
8465 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8466 readl(reg);
8467
8468 /* HW config */
8469 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8470 readl(reg);
8471 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8472 readl(reg);
8473
8474 /* EN_CS_ACCESS bit to reset control store pointer */
8475 write_nic_byte(dev, 0x210000, 0x40);
8476 readl(reg);
8477 write_nic_byte(dev, 0x210000, 0x0);
8478 readl(reg);
8479 write_nic_byte(dev, 0x210000, 0x40);
8480 readl(reg);
8481
8482 /* copy microcode from buffer into Symbol */
8483
8484 while (microcode_data_left > 0) {
8485 write_nic_byte(dev, 0x210010, *microcode_data++);
8486 write_nic_byte(dev, 0x210010, *microcode_data++);
8487 microcode_data_left -= 2;
8488 }
8489
8490 /* EN_CS_ACCESS bit to reset the control store pointer */
8491 write_nic_byte(dev, 0x210000, 0x0);
8492 readl(reg);
8493
8494 /* Enable System (Reg 0)
8495 * first enable causes garbage in RX FIFO */
8496 write_nic_byte(dev, 0x210000, 0x0);
8497 readl(reg);
8498 write_nic_byte(dev, 0x210000, 0x80);
8499 readl(reg);
8500
8501 /* Reset External Baseband Reg */
8502 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8503 readl(reg);
8504 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8505 readl(reg);
8506
8507 /* HW Config (Reg 5) */
8508 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8509 readl(reg);
8510 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8511 readl(reg);
8512
8513 /* Enable System (Reg 0)
8514 * second enable should be OK */
8515 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8516 readl(reg);
8517 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8518
8519 /* check Symbol is enabled - upped this from 5 as it wasn't always
8520 * catching the update */
8521 for (i = 0; i < 10; i++) {
8522 udelay(10);
8523
8524 /* check Dino is enabled bit */
8525 read_nic_byte(dev, 0x210000, &data);
8526 if (data & 0x1)
8527 break;
8528 }
8529
8530 if (i == 10) {
8531 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8532 dev->name);
8533 return -EIO;
8534 }
8535
8536 /* Get Symbol alive response */
8537 for (i = 0; i < 30; i++) {
8538 /* Read alive response structure */
8539 for (j = 0;
8540 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8541 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8542
8543 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8544 break;
8545 udelay(10);
8546 }
8547
8548 if (i == 30) {
8549 printk(KERN_ERR DRV_NAME
8550 ": %s: No response from Symbol - hw not alive\n",
8551 dev->name);
8552 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8553 return -EIO;
8554 }
8555
8556 return 0;
8557 }