ath9k: Revamp TX aggregation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
33
34 #define OFDM_SIFS_TIME 16
35
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
54 };
55
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
57
58 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct list_head *bf_q,
63 int txok, int sendbar);
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head);
66 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
67
68 /*********************/
69 /* Aggregation logic */
70 /*********************/
71
72 static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
73 {
74 struct ath_atx_tid *tid;
75 tid = ATH_AN_2_TID(an, tidno);
76
77 if (tid->state & AGGR_ADDBA_COMPLETE ||
78 tid->state & AGGR_ADDBA_PROGRESS)
79 return 1;
80 else
81 return 0;
82 }
83
84 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
85 {
86 struct ath_atx_ac *ac = tid->ac;
87
88 if (tid->paused)
89 return;
90
91 if (tid->sched)
92 return;
93
94 tid->sched = true;
95 list_add_tail(&tid->list, &ac->tid_q);
96
97 if (ac->sched)
98 return;
99
100 ac->sched = true;
101 list_add_tail(&ac->list, &txq->axq_acq);
102 }
103
104 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
105 {
106 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
107
108 spin_lock_bh(&txq->axq_lock);
109 tid->paused++;
110 spin_unlock_bh(&txq->axq_lock);
111 }
112
113 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
114 {
115 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
116
117 ASSERT(tid->paused > 0);
118 spin_lock_bh(&txq->axq_lock);
119
120 tid->paused--;
121
122 if (tid->paused > 0)
123 goto unlock;
124
125 if (list_empty(&tid->buf_q))
126 goto unlock;
127
128 ath_tx_queue_tid(txq, tid);
129 ath_txq_schedule(sc, txq);
130 unlock:
131 spin_unlock_bh(&txq->axq_lock);
132 }
133
134 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
135 {
136 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
137 struct ath_buf *bf;
138 struct list_head bf_head;
139 INIT_LIST_HEAD(&bf_head);
140
141 ASSERT(tid->paused > 0);
142 spin_lock_bh(&txq->axq_lock);
143
144 tid->paused--;
145
146 if (tid->paused > 0) {
147 spin_unlock_bh(&txq->axq_lock);
148 return;
149 }
150
151 while (!list_empty(&tid->buf_q)) {
152 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
153 ASSERT(!bf_isretried(bf));
154 list_move_tail(&bf->list, &bf_head);
155 ath_tx_send_normal(sc, txq, tid, &bf_head);
156 }
157
158 spin_unlock_bh(&txq->axq_lock);
159 }
160
161 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
162 int seqno)
163 {
164 int index, cindex;
165
166 index = ATH_BA_INDEX(tid->seq_start, seqno);
167 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
168
169 tid->tx_buf[cindex] = NULL;
170
171 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
172 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
173 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
174 }
175 }
176
177 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
178 struct ath_buf *bf)
179 {
180 int index, cindex;
181
182 if (bf_isretried(bf))
183 return;
184
185 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
187
188 ASSERT(tid->tx_buf[cindex] == NULL);
189 tid->tx_buf[cindex] = bf;
190
191 if (index >= ((tid->baw_tail - tid->baw_head) &
192 (ATH_TID_MAX_BUFS - 1))) {
193 tid->baw_tail = cindex;
194 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
195 }
196 }
197
198 /*
199 * TODO: For frame(s) that are in the retry state, we will reuse the
200 * sequence number(s) without setting the retry bit. The
201 * alternative is to give up on these and BAR the receiver's window
202 * forward.
203 */
204 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
205 struct ath_atx_tid *tid)
206
207 {
208 struct ath_buf *bf;
209 struct list_head bf_head;
210 INIT_LIST_HEAD(&bf_head);
211
212 for (;;) {
213 if (list_empty(&tid->buf_q))
214 break;
215
216 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
217 list_move_tail(&bf->list, &bf_head);
218
219 if (bf_isretried(bf))
220 ath_tx_update_baw(sc, tid, bf->bf_seqno);
221
222 spin_unlock(&txq->axq_lock);
223 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
224 spin_lock(&txq->axq_lock);
225 }
226
227 tid->seq_next = tid->seq_start;
228 tid->baw_tail = tid->baw_head;
229 }
230
231 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
232 {
233 struct sk_buff *skb;
234 struct ieee80211_hdr *hdr;
235
236 bf->bf_state.bf_type |= BUF_RETRY;
237 bf->bf_retries++;
238
239 skb = bf->bf_mpdu;
240 hdr = (struct ieee80211_hdr *)skb->data;
241 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
242 }
243
244 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
245 {
246 struct ath_buf *tbf;
247
248 spin_lock_bh(&sc->tx.txbuflock);
249 ASSERT(!list_empty((&sc->tx.txbuf)));
250 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
251 list_del(&tbf->list);
252 spin_unlock_bh(&sc->tx.txbuflock);
253
254 ATH_TXBUF_RESET(tbf);
255
256 tbf->bf_mpdu = bf->bf_mpdu;
257 tbf->bf_buf_addr = bf->bf_buf_addr;
258 *(tbf->bf_desc) = *(bf->bf_desc);
259 tbf->bf_state = bf->bf_state;
260 tbf->bf_dmacontext = bf->bf_dmacontext;
261
262 return tbf;
263 }
264
265 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
266 struct ath_buf *bf, struct list_head *bf_q,
267 int txok)
268 {
269 struct ath_node *an = NULL;
270 struct sk_buff *skb;
271 struct ieee80211_tx_info *tx_info;
272 struct ath_atx_tid *tid = NULL;
273 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
274 struct ath_desc *ds = bf_last->bf_desc;
275 struct list_head bf_head, bf_pending;
276 u16 seq_st = 0;
277 u32 ba[WME_BA_BMP_SIZE >> 5];
278 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
279
280 skb = (struct sk_buff *)bf->bf_mpdu;
281 tx_info = IEEE80211_SKB_CB(skb);
282
283 if (tx_info->control.sta) {
284 an = (struct ath_node *)tx_info->control.sta->drv_priv;
285 tid = ATH_AN_2_TID(an, bf->bf_tidno);
286 }
287
288 isaggr = bf_isaggr(bf);
289 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
290
291 if (isaggr && txok) {
292 if (ATH_DS_TX_BA(ds)) {
293 seq_st = ATH_DS_BA_SEQ(ds);
294 memcpy(ba, ATH_DS_BA_BITMAP(ds),
295 WME_BA_BMP_SIZE >> 3);
296 } else {
297 /*
298 * AR5416 can become deaf/mute when BA
299 * issue happens. Chip needs to be reset.
300 * But AP code may have sychronization issues
301 * when perform internal reset in this routine.
302 * Only enable reset in STA mode for now.
303 */
304 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION)
305 needreset = 1;
306 }
307 }
308
309 INIT_LIST_HEAD(&bf_pending);
310 INIT_LIST_HEAD(&bf_head);
311
312 while (bf) {
313 txfail = txpending = 0;
314 bf_next = bf->bf_next;
315
316 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
317 /* transmit completion, subframe is
318 * acked by block ack */
319 } else if (!isaggr && txok) {
320 /* transmit completion */
321 } else {
322 if (!(tid->state & AGGR_CLEANUP) &&
323 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
324 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
325 ath_tx_set_retry(sc, bf);
326 txpending = 1;
327 } else {
328 bf->bf_state.bf_type |= BUF_XRETRY;
329 txfail = 1;
330 sendbar = 1;
331 }
332 } else {
333 /*
334 * cleanup in progress, just fail
335 * the un-acked sub-frames
336 */
337 txfail = 1;
338 }
339 }
340
341 if (bf_next == NULL) {
342 INIT_LIST_HEAD(&bf_head);
343 } else {
344 ASSERT(!list_empty(bf_q));
345 list_move_tail(&bf->list, &bf_head);
346 }
347
348 if (!txpending) {
349 /*
350 * complete the acked-ones/xretried ones; update
351 * block-ack window
352 */
353 spin_lock_bh(&txq->axq_lock);
354 ath_tx_update_baw(sc, tid, bf->bf_seqno);
355 spin_unlock_bh(&txq->axq_lock);
356
357 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
358 } else {
359 /* retry the un-acked ones */
360 if (bf->bf_next == NULL &&
361 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
362 struct ath_buf *tbf;
363
364 tbf = ath_clone_txbuf(sc, bf_last);
365 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
366 list_add_tail(&tbf->list, &bf_head);
367 } else {
368 /*
369 * Clear descriptor status words for
370 * software retry
371 */
372 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
373 }
374
375 /*
376 * Put this buffer to the temporary pending
377 * queue to retain ordering
378 */
379 list_splice_tail_init(&bf_head, &bf_pending);
380 }
381
382 bf = bf_next;
383 }
384
385 if (tid->state & AGGR_CLEANUP) {
386 if (tid->baw_head == tid->baw_tail) {
387 tid->state &= ~AGGR_ADDBA_COMPLETE;
388 tid->addba_exchangeattempts = 0;
389 tid->state &= ~AGGR_CLEANUP;
390
391 /* send buffered frames as singles */
392 ath_tx_flush_tid(sc, tid);
393 }
394 return;
395 }
396
397 /* prepend un-acked frames to the beginning of the pending frame queue */
398 if (!list_empty(&bf_pending)) {
399 spin_lock_bh(&txq->axq_lock);
400 list_splice(&bf_pending, &tid->buf_q);
401 ath_tx_queue_tid(txq, tid);
402 spin_unlock_bh(&txq->axq_lock);
403 }
404
405 if (needreset)
406 ath_reset(sc, false);
407 }
408
409 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
410 struct ath_atx_tid *tid)
411 {
412 struct ath_rate_table *rate_table = sc->cur_rate_table;
413 struct sk_buff *skb;
414 struct ieee80211_tx_info *tx_info;
415 struct ieee80211_tx_rate *rates;
416 struct ath_tx_info_priv *tx_info_priv;
417 u32 max_4ms_framelen, frmlen;
418 u16 aggr_limit, legacy = 0, maxampdu;
419 int i;
420
421 skb = (struct sk_buff *)bf->bf_mpdu;
422 tx_info = IEEE80211_SKB_CB(skb);
423 rates = tx_info->control.rates;
424 tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
425
426 /*
427 * Find the lowest frame length among the rate series that will have a
428 * 4ms transmit duration.
429 * TODO - TXOP limit needs to be considered.
430 */
431 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
432
433 for (i = 0; i < 4; i++) {
434 if (rates[i].count) {
435 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
436 legacy = 1;
437 break;
438 }
439
440 frmlen = rate_table->info[rates[i].idx].max_4ms_framelen;
441 max_4ms_framelen = min(max_4ms_framelen, frmlen);
442 }
443 }
444
445 /*
446 * limit aggregate size by the minimum rate if rate selected is
447 * not a probe rate, if rate selected is a probe rate then
448 * avoid aggregation of this packet.
449 */
450 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
451 return 0;
452
453 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_DEFAULT);
454
455 /*
456 * h/w can accept aggregates upto 16 bit lengths (65535).
457 * The IE, however can hold upto 65536, which shows up here
458 * as zero. Ignore 65536 since we are constrained by hw.
459 */
460 maxampdu = tid->an->maxampdu;
461 if (maxampdu)
462 aggr_limit = min(aggr_limit, maxampdu);
463
464 return aggr_limit;
465 }
466
467 /*
468 * Returns the number of delimiters to be added to
469 * meet the minimum required mpdudensity.
470 * caller should make sure that the rate is HT rate .
471 */
472 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
473 struct ath_buf *bf, u16 frmlen)
474 {
475 struct ath_rate_table *rt = sc->cur_rate_table;
476 struct sk_buff *skb = bf->bf_mpdu;
477 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
478 u32 nsymbits, nsymbols, mpdudensity;
479 u16 minlen;
480 u8 rc, flags, rix;
481 int width, half_gi, ndelim, mindelim;
482
483 /* Select standard number of delimiters based on frame length alone */
484 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
485
486 /*
487 * If encryption enabled, hardware requires some more padding between
488 * subframes.
489 * TODO - this could be improved to be dependent on the rate.
490 * The hardware can keep up at lower rates, but not higher rates
491 */
492 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
493 ndelim += ATH_AGGR_ENCRYPTDELIM;
494
495 /*
496 * Convert desired mpdu density from microeconds to bytes based
497 * on highest rate in rate series (i.e. first rate) to determine
498 * required minimum length for subframe. Take into account
499 * whether high rate is 20 or 40Mhz and half or full GI.
500 */
501 mpdudensity = tid->an->mpdudensity;
502
503 /*
504 * If there is no mpdu density restriction, no further calculation
505 * is needed.
506 */
507 if (mpdudensity == 0)
508 return ndelim;
509
510 rix = tx_info->control.rates[0].idx;
511 flags = tx_info->control.rates[0].flags;
512 rc = rt->info[rix].ratecode;
513 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
514 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
515
516 if (half_gi)
517 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
518 else
519 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
520
521 if (nsymbols == 0)
522 nsymbols = 1;
523
524 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
525 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
526
527 if (frmlen < minlen) {
528 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
529 ndelim = max(mindelim, ndelim);
530 }
531
532 return ndelim;
533 }
534
535 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
536 struct ath_atx_tid *tid,
537 struct list_head *bf_q)
538 {
539 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
540 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
541 int rl = 0, nframes = 0, ndelim, prev_al = 0;
542 u16 aggr_limit = 0, al = 0, bpad = 0,
543 al_delta, h_baw = tid->baw_size / 2;
544 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
545
546 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
547
548 do {
549 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
550
551 /* do not step over block-ack window */
552 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
553 status = ATH_AGGR_BAW_CLOSED;
554 break;
555 }
556
557 if (!rl) {
558 aggr_limit = ath_lookup_rate(sc, bf, tid);
559 rl = 1;
560 }
561
562 /* do not exceed aggregation limit */
563 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
564
565 if (nframes &&
566 (aggr_limit < (al + bpad + al_delta + prev_al))) {
567 status = ATH_AGGR_LIMITED;
568 break;
569 }
570
571 /* do not exceed subframe limit */
572 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
573 status = ATH_AGGR_LIMITED;
574 break;
575 }
576 nframes++;
577
578 /* add padding for previous frame to aggregation length */
579 al += bpad + al_delta;
580
581 /*
582 * Get the delimiters needed to meet the MPDU
583 * density for this node.
584 */
585 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
586 bpad = PADBYTES(al_delta) + (ndelim << 2);
587
588 bf->bf_next = NULL;
589 bf->bf_desc->ds_link = 0;
590
591 /* link buffers of this frame to the aggregate */
592 ath_tx_addto_baw(sc, tid, bf);
593 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
594 list_move_tail(&bf->list, bf_q);
595 if (bf_prev) {
596 bf_prev->bf_next = bf;
597 bf_prev->bf_desc->ds_link = bf->bf_daddr;
598 }
599 bf_prev = bf;
600 } while (!list_empty(&tid->buf_q));
601
602 bf_first->bf_al = al;
603 bf_first->bf_nframes = nframes;
604
605 return status;
606 #undef PADBYTES
607 }
608
609 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
610 struct ath_atx_tid *tid)
611 {
612 struct ath_buf *bf;
613 enum ATH_AGGR_STATUS status;
614 struct list_head bf_q;
615
616 do {
617 if (list_empty(&tid->buf_q))
618 return;
619
620 INIT_LIST_HEAD(&bf_q);
621
622 status = ath_tx_form_aggr(sc, tid, &bf_q);
623
624 /*
625 * no frames picked up to be aggregated;
626 * block-ack window is not open.
627 */
628 if (list_empty(&bf_q))
629 break;
630
631 bf = list_first_entry(&bf_q, struct ath_buf, list);
632 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
633
634 /* if only one frame, send as non-aggregate */
635 if (bf->bf_nframes == 1) {
636 bf->bf_state.bf_type &= ~BUF_AGGR;
637 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
638 ath_buf_set_rate(sc, bf);
639 ath_tx_txqaddbuf(sc, txq, &bf_q);
640 continue;
641 }
642
643 /* setup first desc of aggregate */
644 bf->bf_state.bf_type |= BUF_AGGR;
645 ath_buf_set_rate(sc, bf);
646 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
647
648 /* anchor last desc of aggregate */
649 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
650
651 txq->axq_aggr_depth++;
652 ath_tx_txqaddbuf(sc, txq, &bf_q);
653
654 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
655 status != ATH_AGGR_BAW_CLOSED);
656 }
657
658 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
659 u16 tid, u16 *ssn)
660 {
661 struct ath_atx_tid *txtid;
662 struct ath_node *an;
663
664 an = (struct ath_node *)sta->drv_priv;
665
666 if (sc->sc_flags & SC_OP_TXAGGR) {
667 txtid = ATH_AN_2_TID(an, tid);
668 txtid->state |= AGGR_ADDBA_PROGRESS;
669 ath_tx_pause_tid(sc, txtid);
670 }
671
672 return 0;
673 }
674
675 int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
676 {
677 struct ath_node *an = (struct ath_node *)sta->drv_priv;
678 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
679 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
680 struct ath_buf *bf;
681 struct list_head bf_head;
682 INIT_LIST_HEAD(&bf_head);
683
684 if (txtid->state & AGGR_CLEANUP)
685 return 0;
686
687 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
688 txtid->addba_exchangeattempts = 0;
689 return 0;
690 }
691
692 ath_tx_pause_tid(sc, txtid);
693
694 /* drop all software retried frames and mark this TID */
695 spin_lock_bh(&txq->axq_lock);
696 while (!list_empty(&txtid->buf_q)) {
697 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
698 if (!bf_isretried(bf)) {
699 /*
700 * NB: it's based on the assumption that
701 * software retried frame will always stay
702 * at the head of software queue.
703 */
704 break;
705 }
706 list_move_tail(&bf->list, &bf_head);
707 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
708 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
709 }
710 spin_unlock_bh(&txq->axq_lock);
711
712 if (txtid->baw_head != txtid->baw_tail) {
713 txtid->state |= AGGR_CLEANUP;
714 } else {
715 txtid->state &= ~AGGR_ADDBA_COMPLETE;
716 txtid->addba_exchangeattempts = 0;
717 ath_tx_flush_tid(sc, txtid);
718 }
719
720 return 0;
721 }
722
723 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
724 {
725 struct ath_atx_tid *txtid;
726 struct ath_node *an;
727
728 an = (struct ath_node *)sta->drv_priv;
729
730 if (sc->sc_flags & SC_OP_TXAGGR) {
731 txtid = ATH_AN_2_TID(an, tid);
732 txtid->baw_size =
733 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
734 txtid->state |= AGGR_ADDBA_COMPLETE;
735 txtid->state &= ~AGGR_ADDBA_PROGRESS;
736 ath_tx_resume_tid(sc, txtid);
737 }
738 }
739
740 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
741 {
742 struct ath_atx_tid *txtid;
743
744 if (!(sc->sc_flags & SC_OP_TXAGGR))
745 return false;
746
747 txtid = ATH_AN_2_TID(an, tidno);
748
749 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
750 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
751 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
752 txtid->addba_exchangeattempts++;
753 return true;
754 }
755 }
756
757 return false;
758 }
759
760 /********************/
761 /* Queue Management */
762 /********************/
763
764 static u32 ath_txq_depth(struct ath_softc *sc, int qnum)
765 {
766 return sc->tx.txq[qnum].axq_depth;
767 }
768
769 static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
770 struct ath_beacon_config *conf)
771 {
772 struct ieee80211_hw *hw = sc->hw;
773
774 /* fill in beacon config data */
775
776 conf->beacon_interval = hw->conf.beacon_int;
777 conf->listen_interval = 100;
778 conf->dtim_count = 1;
779 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
780 }
781
782 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
783 struct ath_txq *txq)
784 {
785 struct ath_atx_ac *ac, *ac_tmp;
786 struct ath_atx_tid *tid, *tid_tmp;
787
788 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
789 list_del(&ac->list);
790 ac->sched = false;
791 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
792 list_del(&tid->list);
793 tid->sched = false;
794 ath_tid_drain(sc, txq, tid);
795 }
796 }
797 }
798
799 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
800 {
801 struct ath_hal *ah = sc->sc_ah;
802 struct ath9k_tx_queue_info qi;
803 int qnum;
804
805 memset(&qi, 0, sizeof(qi));
806 qi.tqi_subtype = subtype;
807 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
808 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
809 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
810 qi.tqi_physCompBuf = 0;
811
812 /*
813 * Enable interrupts only for EOL and DESC conditions.
814 * We mark tx descriptors to receive a DESC interrupt
815 * when a tx queue gets deep; otherwise waiting for the
816 * EOL to reap descriptors. Note that this is done to
817 * reduce interrupt load and this only defers reaping
818 * descriptors, never transmitting frames. Aside from
819 * reducing interrupts this also permits more concurrency.
820 * The only potential downside is if the tx queue backs
821 * up in which case the top half of the kernel may backup
822 * due to a lack of tx descriptors.
823 *
824 * The UAPSD queue is an exception, since we take a desc-
825 * based intr on the EOSP frames.
826 */
827 if (qtype == ATH9K_TX_QUEUE_UAPSD)
828 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
829 else
830 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
831 TXQ_FLAG_TXDESCINT_ENABLE;
832 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
833 if (qnum == -1) {
834 /*
835 * NB: don't print a message, this happens
836 * normally on parts with too few tx queues
837 */
838 return NULL;
839 }
840 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
841 DPRINTF(sc, ATH_DBG_FATAL,
842 "qnum %u out of range, max %u!\n",
843 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
844 ath9k_hw_releasetxqueue(ah, qnum);
845 return NULL;
846 }
847 if (!ATH_TXQ_SETUP(sc, qnum)) {
848 struct ath_txq *txq = &sc->tx.txq[qnum];
849
850 txq->axq_qnum = qnum;
851 txq->axq_link = NULL;
852 INIT_LIST_HEAD(&txq->axq_q);
853 INIT_LIST_HEAD(&txq->axq_acq);
854 spin_lock_init(&txq->axq_lock);
855 txq->axq_depth = 0;
856 txq->axq_aggr_depth = 0;
857 txq->axq_totalqueued = 0;
858 txq->axq_linkbuf = NULL;
859 sc->tx.txqsetup |= 1<<qnum;
860 }
861 return &sc->tx.txq[qnum];
862 }
863
864 static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
865 {
866 int qnum;
867
868 switch (qtype) {
869 case ATH9K_TX_QUEUE_DATA:
870 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
871 DPRINTF(sc, ATH_DBG_FATAL,
872 "HAL AC %u out of range, max %zu!\n",
873 haltype, ARRAY_SIZE(sc->tx.hwq_map));
874 return -1;
875 }
876 qnum = sc->tx.hwq_map[haltype];
877 break;
878 case ATH9K_TX_QUEUE_BEACON:
879 qnum = sc->beacon.beaconq;
880 break;
881 case ATH9K_TX_QUEUE_CAB:
882 qnum = sc->beacon.cabq->axq_qnum;
883 break;
884 default:
885 qnum = -1;
886 }
887 return qnum;
888 }
889
890 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
891 {
892 struct ath_txq *txq = NULL;
893 int qnum;
894
895 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
896 txq = &sc->tx.txq[qnum];
897
898 spin_lock_bh(&txq->axq_lock);
899
900 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
901 DPRINTF(sc, ATH_DBG_FATAL,
902 "TX queue: %d is full, depth: %d\n",
903 qnum, txq->axq_depth);
904 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
905 txq->stopped = 1;
906 spin_unlock_bh(&txq->axq_lock);
907 return NULL;
908 }
909
910 spin_unlock_bh(&txq->axq_lock);
911
912 return txq;
913 }
914
915 int ath_txq_update(struct ath_softc *sc, int qnum,
916 struct ath9k_tx_queue_info *qinfo)
917 {
918 struct ath_hal *ah = sc->sc_ah;
919 int error = 0;
920 struct ath9k_tx_queue_info qi;
921
922 if (qnum == sc->beacon.beaconq) {
923 /*
924 * XXX: for beacon queue, we just save the parameter.
925 * It will be picked up by ath_beaconq_config when
926 * it's necessary.
927 */
928 sc->beacon.beacon_qi = *qinfo;
929 return 0;
930 }
931
932 ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
933
934 ath9k_hw_get_txq_props(ah, qnum, &qi);
935 qi.tqi_aifs = qinfo->tqi_aifs;
936 qi.tqi_cwmin = qinfo->tqi_cwmin;
937 qi.tqi_cwmax = qinfo->tqi_cwmax;
938 qi.tqi_burstTime = qinfo->tqi_burstTime;
939 qi.tqi_readyTime = qinfo->tqi_readyTime;
940
941 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
942 DPRINTF(sc, ATH_DBG_FATAL,
943 "Unable to update hardware queue %u!\n", qnum);
944 error = -EIO;
945 } else {
946 ath9k_hw_resettxqueue(ah, qnum);
947 }
948
949 return error;
950 }
951
952 int ath_cabq_update(struct ath_softc *sc)
953 {
954 struct ath9k_tx_queue_info qi;
955 int qnum = sc->beacon.cabq->axq_qnum;
956 struct ath_beacon_config conf;
957
958 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
959 /*
960 * Ensure the readytime % is within the bounds.
961 */
962 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
963 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
964 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
965 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
966
967 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
968 qi.tqi_readyTime =
969 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
970 ath_txq_update(sc, qnum, &qi);
971
972 return 0;
973 }
974
975 /*
976 * Drain a given TX queue (could be Beacon or Data)
977 *
978 * This assumes output has been stopped and
979 * we do not need to block ath_tx_tasklet.
980 */
981 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
982 {
983 struct ath_buf *bf, *lastbf;
984 struct list_head bf_head;
985
986 INIT_LIST_HEAD(&bf_head);
987
988 for (;;) {
989 spin_lock_bh(&txq->axq_lock);
990
991 if (list_empty(&txq->axq_q)) {
992 txq->axq_link = NULL;
993 txq->axq_linkbuf = NULL;
994 spin_unlock_bh(&txq->axq_lock);
995 break;
996 }
997
998 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
999
1000 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1001 list_del(&bf->list);
1002 spin_unlock_bh(&txq->axq_lock);
1003
1004 spin_lock_bh(&sc->tx.txbuflock);
1005 list_add_tail(&bf->list, &sc->tx.txbuf);
1006 spin_unlock_bh(&sc->tx.txbuflock);
1007 continue;
1008 }
1009
1010 lastbf = bf->bf_lastbf;
1011 if (!retry_tx)
1012 lastbf->bf_desc->ds_txstat.ts_flags =
1013 ATH9K_TX_SW_ABORTED;
1014
1015 /* remove ath_buf's of the same mpdu from txq */
1016 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1017 txq->axq_depth--;
1018
1019 spin_unlock_bh(&txq->axq_lock);
1020
1021 if (bf_isampdu(bf))
1022 ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1023 else
1024 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1025 }
1026
1027 /* flush any pending frames if aggregation is enabled */
1028 if (sc->sc_flags & SC_OP_TXAGGR) {
1029 if (!retry_tx) {
1030 spin_lock_bh(&txq->axq_lock);
1031 ath_txq_drain_pending_buffers(sc, txq);
1032 spin_unlock_bh(&txq->axq_lock);
1033 }
1034 }
1035 }
1036
1037 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1038 {
1039 struct ath_hal *ah = sc->sc_ah;
1040 struct ath_txq *txq;
1041 int i, npend = 0;
1042
1043 if (sc->sc_flags & SC_OP_INVALID)
1044 return;
1045
1046 /* Stop beacon queue */
1047 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1048
1049 /* Stop data queues */
1050 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1051 if (ATH_TXQ_SETUP(sc, i)) {
1052 txq = &sc->tx.txq[i];
1053 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1054 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1055 }
1056 }
1057
1058 if (npend) {
1059 int r;
1060
1061 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1062
1063 spin_lock_bh(&sc->sc_resetlock);
1064 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, true);
1065 if (r)
1066 DPRINTF(sc, ATH_DBG_FATAL,
1067 "Unable to reset hardware; reset status %u\n",
1068 r);
1069 spin_unlock_bh(&sc->sc_resetlock);
1070 }
1071
1072 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1073 if (ATH_TXQ_SETUP(sc, i))
1074 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1075 }
1076 }
1077
1078 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1079 {
1080 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1081 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1082 }
1083
1084 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1085 {
1086 struct ath_atx_ac *ac;
1087 struct ath_atx_tid *tid;
1088
1089 if (list_empty(&txq->axq_acq))
1090 return;
1091
1092 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1093 list_del(&ac->list);
1094 ac->sched = false;
1095
1096 do {
1097 if (list_empty(&ac->tid_q))
1098 return;
1099
1100 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1101 list_del(&tid->list);
1102 tid->sched = false;
1103
1104 if (tid->paused)
1105 continue;
1106
1107 if ((txq->axq_depth % 2) == 0)
1108 ath_tx_sched_aggr(sc, txq, tid);
1109
1110 /*
1111 * add tid to round-robin queue if more frames
1112 * are pending for the tid
1113 */
1114 if (!list_empty(&tid->buf_q))
1115 ath_tx_queue_tid(txq, tid);
1116
1117 break;
1118 } while (!list_empty(&ac->tid_q));
1119
1120 if (!list_empty(&ac->tid_q)) {
1121 if (!ac->sched) {
1122 ac->sched = true;
1123 list_add_tail(&ac->list, &txq->axq_acq);
1124 }
1125 }
1126 }
1127
1128 int ath_tx_setup(struct ath_softc *sc, int haltype)
1129 {
1130 struct ath_txq *txq;
1131
1132 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1133 DPRINTF(sc, ATH_DBG_FATAL,
1134 "HAL AC %u out of range, max %zu!\n",
1135 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1136 return 0;
1137 }
1138 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1139 if (txq != NULL) {
1140 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1141 return 1;
1142 } else
1143 return 0;
1144 }
1145
1146 /***********/
1147 /* TX, DMA */
1148 /***********/
1149
1150 /*
1151 * Insert a chain of ath_buf (descriptors) on a txq and
1152 * assume the descriptors are already chained together by caller.
1153 */
1154 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1155 struct list_head *head)
1156 {
1157 struct ath_hal *ah = sc->sc_ah;
1158 struct ath_buf *bf;
1159
1160 /*
1161 * Insert the frame on the outbound list and
1162 * pass it on to the hardware.
1163 */
1164
1165 if (list_empty(head))
1166 return;
1167
1168 bf = list_first_entry(head, struct ath_buf, list);
1169
1170 list_splice_tail_init(head, &txq->axq_q);
1171 txq->axq_depth++;
1172 txq->axq_totalqueued++;
1173 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1174
1175 DPRINTF(sc, ATH_DBG_QUEUE,
1176 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1177
1178 if (txq->axq_link == NULL) {
1179 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1180 DPRINTF(sc, ATH_DBG_XMIT,
1181 "TXDP[%u] = %llx (%p)\n",
1182 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1183 } else {
1184 *txq->axq_link = bf->bf_daddr;
1185 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1186 txq->axq_qnum, txq->axq_link,
1187 ito64(bf->bf_daddr), bf->bf_desc);
1188 }
1189 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1190 ath9k_hw_txstart(ah, txq->axq_qnum);
1191 }
1192
1193 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1194 {
1195 struct ath_buf *bf = NULL;
1196
1197 spin_lock_bh(&sc->tx.txbuflock);
1198
1199 if (unlikely(list_empty(&sc->tx.txbuf))) {
1200 spin_unlock_bh(&sc->tx.txbuflock);
1201 return NULL;
1202 }
1203
1204 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1205 list_del(&bf->list);
1206
1207 spin_unlock_bh(&sc->tx.txbuflock);
1208
1209 return bf;
1210 }
1211
1212 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1213 struct list_head *bf_head,
1214 struct ath_tx_control *txctl)
1215 {
1216 struct ath_buf *bf;
1217
1218 bf = list_first_entry(bf_head, struct ath_buf, list);
1219 bf->bf_state.bf_type |= BUF_AMPDU;
1220
1221 /*
1222 * Do not queue to h/w when any of the following conditions is true:
1223 * - there are pending frames in software queue
1224 * - the TID is currently paused for ADDBA/BAR request
1225 * - seqno is not within block-ack window
1226 * - h/w queue depth exceeds low water mark
1227 */
1228 if (!list_empty(&tid->buf_q) || tid->paused ||
1229 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1230 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1231 /*
1232 * Add this frame to software queue for scheduling later
1233 * for aggregation.
1234 */
1235 list_move_tail(&bf->list, &tid->buf_q);
1236 ath_tx_queue_tid(txctl->txq, tid);
1237 return;
1238 }
1239
1240 /* Add sub-frame to BAW */
1241 ath_tx_addto_baw(sc, tid, bf);
1242
1243 /* Queue to h/w without aggregation */
1244 bf->bf_nframes = 1;
1245 bf->bf_lastbf = bf;
1246 ath_buf_set_rate(sc, bf);
1247 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1248 }
1249
1250 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1251 struct ath_atx_tid *tid,
1252 struct list_head *bf_head)
1253 {
1254 struct ath_buf *bf;
1255
1256 bf = list_first_entry(bf_head, struct ath_buf, list);
1257 bf->bf_state.bf_type &= ~BUF_AMPDU;
1258
1259 /* update starting sequence number for subsequent ADDBA request */
1260 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1261
1262 bf->bf_nframes = 1;
1263 bf->bf_lastbf = bf;
1264 ath_buf_set_rate(sc, bf);
1265 ath_tx_txqaddbuf(sc, txq, bf_head);
1266 }
1267
1268 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1269 {
1270 struct ieee80211_hdr *hdr;
1271 enum ath9k_pkt_type htype;
1272 __le16 fc;
1273
1274 hdr = (struct ieee80211_hdr *)skb->data;
1275 fc = hdr->frame_control;
1276
1277 if (ieee80211_is_beacon(fc))
1278 htype = ATH9K_PKT_TYPE_BEACON;
1279 else if (ieee80211_is_probe_resp(fc))
1280 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1281 else if (ieee80211_is_atim(fc))
1282 htype = ATH9K_PKT_TYPE_ATIM;
1283 else if (ieee80211_is_pspoll(fc))
1284 htype = ATH9K_PKT_TYPE_PSPOLL;
1285 else
1286 htype = ATH9K_PKT_TYPE_NORMAL;
1287
1288 return htype;
1289 }
1290
1291 static bool is_pae(struct sk_buff *skb)
1292 {
1293 struct ieee80211_hdr *hdr;
1294 __le16 fc;
1295
1296 hdr = (struct ieee80211_hdr *)skb->data;
1297 fc = hdr->frame_control;
1298
1299 if (ieee80211_is_data(fc)) {
1300 if (ieee80211_is_nullfunc(fc) ||
1301 /* Port Access Entity (IEEE 802.1X) */
1302 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1303 return true;
1304 }
1305 }
1306
1307 return false;
1308 }
1309
1310 static int get_hw_crypto_keytype(struct sk_buff *skb)
1311 {
1312 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1313
1314 if (tx_info->control.hw_key) {
1315 if (tx_info->control.hw_key->alg == ALG_WEP)
1316 return ATH9K_KEY_TYPE_WEP;
1317 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1318 return ATH9K_KEY_TYPE_TKIP;
1319 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1320 return ATH9K_KEY_TYPE_AES;
1321 }
1322
1323 return ATH9K_KEY_TYPE_CLEAR;
1324 }
1325
1326 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1327 struct ath_buf *bf)
1328 {
1329 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1330 struct ieee80211_hdr *hdr;
1331 struct ath_node *an;
1332 struct ath_atx_tid *tid;
1333 __le16 fc;
1334 u8 *qc;
1335
1336 if (!tx_info->control.sta)
1337 return;
1338
1339 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1340 hdr = (struct ieee80211_hdr *)skb->data;
1341 fc = hdr->frame_control;
1342
1343 if (ieee80211_is_data_qos(fc)) {
1344 qc = ieee80211_get_qos_ctl(hdr);
1345 bf->bf_tidno = qc[0] & 0xf;
1346 }
1347
1348 /*
1349 * For HT capable stations, we save tidno for later use.
1350 * We also override seqno set by upper layer with the one
1351 * in tx aggregation state.
1352 *
1353 * If fragmentation is on, the sequence number is
1354 * not overridden, since it has been
1355 * incremented by the fragmentation routine.
1356 *
1357 * FIXME: check if the fragmentation threshold exceeds
1358 * IEEE80211 max.
1359 */
1360 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1361 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1362 IEEE80211_SEQ_SEQ_SHIFT);
1363 bf->bf_seqno = tid->seq_next;
1364 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1365 }
1366
1367 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1368 struct ath_txq *txq)
1369 {
1370 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1371 int flags = 0;
1372
1373 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1374 flags |= ATH9K_TXDESC_INTREQ;
1375
1376 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1377 flags |= ATH9K_TXDESC_NOACK;
1378 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1379 flags |= ATH9K_TXDESC_RTSENA;
1380
1381 return flags;
1382 }
1383
1384 /*
1385 * rix - rate index
1386 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1387 * width - 0 for 20 MHz, 1 for 40 MHz
1388 * half_gi - to use 4us v/s 3.6 us for symbol time
1389 */
1390 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1391 int width, int half_gi, bool shortPreamble)
1392 {
1393 struct ath_rate_table *rate_table = sc->cur_rate_table;
1394 u32 nbits, nsymbits, duration, nsymbols;
1395 u8 rc;
1396 int streams, pktlen;
1397
1398 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1399 rc = rate_table->info[rix].ratecode;
1400
1401 /* for legacy rates, use old function to compute packet duration */
1402 if (!IS_HT_RATE(rc))
1403 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1404 rix, shortPreamble);
1405
1406 /* find number of symbols: PLCP + data */
1407 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1408 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1409 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1410
1411 if (!half_gi)
1412 duration = SYMBOL_TIME(nsymbols);
1413 else
1414 duration = SYMBOL_TIME_HALFGI(nsymbols);
1415
1416 /* addup duration for legacy/ht training and signal fields */
1417 streams = HT_RC_2_STREAMS(rc);
1418 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1419
1420 return duration;
1421 }
1422
1423 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1424 {
1425 struct ath_hal *ah = sc->sc_ah;
1426 struct ath_rate_table *rt;
1427 struct ath_desc *ds = bf->bf_desc;
1428 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
1429 struct ath9k_11n_rate_series series[4];
1430 struct sk_buff *skb;
1431 struct ieee80211_tx_info *tx_info;
1432 struct ieee80211_tx_rate *rates;
1433 struct ieee80211_hdr *hdr;
1434 struct ieee80211_hw *hw = sc->hw;
1435 int i, flags, rtsctsena = 0, enable_g_protection = 0;
1436 u32 ctsduration = 0;
1437 u8 rix = 0, cix, ctsrate = 0;
1438 __le16 fc;
1439
1440 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1441
1442 skb = (struct sk_buff *)bf->bf_mpdu;
1443 hdr = (struct ieee80211_hdr *)skb->data;
1444 fc = hdr->frame_control;
1445 tx_info = IEEE80211_SKB_CB(skb);
1446 rates = tx_info->control.rates;
1447
1448 if (ieee80211_has_morefrags(fc) ||
1449 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
1450 rates[1].count = rates[2].count = rates[3].count = 0;
1451 rates[1].idx = rates[2].idx = rates[3].idx = 0;
1452 rates[0].count = ATH_TXMAXTRY;
1453 }
1454
1455 /* get the cix for the lowest valid rix */
1456 rt = sc->cur_rate_table;
1457 for (i = 3; i >= 0; i--) {
1458 if (rates[i].count && (rates[i].idx >= 0)) {
1459 rix = rates[i].idx;
1460 break;
1461 }
1462 }
1463
1464 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
1465 cix = rt->info[rix].ctrl_rate;
1466
1467 /* All protection frames are transmited at 2Mb/s for 802.11g,
1468 * otherwise we transmit them at 1Mb/s */
1469 if (hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
1470 !conf_is_ht(&hw->conf))
1471 enable_g_protection = 1;
1472
1473 /*
1474 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
1475 * just CTS. Note that this is only done for OFDM/HT unicast frames.
1476 */
1477 if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
1478 && (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
1479 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
1480 if (sc->sc_protmode == PROT_M_RTSCTS)
1481 flags = ATH9K_TXDESC_RTSENA;
1482 else if (sc->sc_protmode == PROT_M_CTSONLY)
1483 flags = ATH9K_TXDESC_CTSENA;
1484
1485 cix = rt->info[enable_g_protection].ctrl_rate;
1486 rtsctsena = 1;
1487 }
1488
1489 /* For 11n, the default behavior is to enable RTS for hw retried frames.
1490 * We enable the global flag here and let rate series flags determine
1491 * which rates will actually use RTS.
1492 */
1493 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
1494 /* 802.11g protection not needed, use our default behavior */
1495 if (!rtsctsena)
1496 flags = ATH9K_TXDESC_RTSENA;
1497 }
1498
1499 /* Set protection if aggregate protection on */
1500 if (sc->sc_config.ath_aggr_prot &&
1501 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1502 flags = ATH9K_TXDESC_RTSENA;
1503 cix = rt->info[enable_g_protection].ctrl_rate;
1504 rtsctsena = 1;
1505 }
1506
1507 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1508 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
1509 flags &= ~(ATH9K_TXDESC_RTSENA);
1510
1511 /*
1512 * CTS transmit rate is derived from the transmit rate by looking in the
1513 * h/w rate table. We must also factor in whether or not a short
1514 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
1515 */
1516 ctsrate = rt->info[cix].ratecode |
1517 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
1518
1519 for (i = 0; i < 4; i++) {
1520 if (!rates[i].count || (rates[i].idx < 0))
1521 continue;
1522
1523 rix = rates[i].idx;
1524
1525 series[i].Rate = rt->info[rix].ratecode |
1526 (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
1527
1528 series[i].Tries = rates[i].count;
1529
1530 series[i].RateFlags = (
1531 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ?
1532 ATH9K_RATESERIES_RTS_CTS : 0) |
1533 ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
1534 ATH9K_RATESERIES_2040 : 0) |
1535 ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
1536 ATH9K_RATESERIES_HALFGI : 0);
1537
1538 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1539 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1540 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1541 bf_isshpreamble(bf));
1542
1543 series[i].ChSel = sc->sc_tx_chainmask;
1544
1545 if (rtsctsena)
1546 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1547 }
1548
1549 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1550 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
1551 ctsrate, ctsduration,
1552 series, 4, flags);
1553
1554 if (sc->sc_config.ath_aggr_prot && flags)
1555 ath9k_hw_set11n_burstduration(ah, ds, 8192);
1556 }
1557
1558 static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1559 struct sk_buff *skb,
1560 struct ath_tx_control *txctl)
1561 {
1562 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1563 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1564 struct ath_tx_info_priv *tx_info_priv;
1565 int hdrlen;
1566 __le16 fc;
1567
1568 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1569 if (unlikely(!tx_info_priv))
1570 return -ENOMEM;
1571 tx_info->rate_driver_data[0] = tx_info_priv;
1572 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1573 fc = hdr->frame_control;
1574
1575 ATH_TXBUF_RESET(bf);
1576
1577 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1578
1579 ieee80211_is_data(fc) ?
1580 (bf->bf_state.bf_type |= BUF_DATA) :
1581 (bf->bf_state.bf_type &= ~BUF_DATA);
1582 ieee80211_is_back_req(fc) ?
1583 (bf->bf_state.bf_type |= BUF_BAR) :
1584 (bf->bf_state.bf_type &= ~BUF_BAR);
1585 ieee80211_is_pspoll(fc) ?
1586 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1587 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1588 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
1589 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1590 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1591 (conf_is_ht(&sc->hw->conf) && !is_pae(skb) &&
1592 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1593 (bf->bf_state.bf_type |= BUF_HT) :
1594 (bf->bf_state.bf_type &= ~BUF_HT);
1595
1596 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1597
1598 bf->bf_keytype = get_hw_crypto_keytype(skb);
1599
1600 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1601 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1602 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1603 } else {
1604 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1605 }
1606
1607 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1608 assign_aggr_tid_seqno(skb, bf);
1609
1610 bf->bf_mpdu = skb;
1611
1612 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1613 skb->len, DMA_TO_DEVICE);
1614 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1615 bf->bf_mpdu = NULL;
1616 DPRINTF(sc, ATH_DBG_CONFIG,
1617 "dma_mapping_error() on TX\n");
1618 return -ENOMEM;
1619 }
1620
1621 bf->bf_buf_addr = bf->bf_dmacontext;
1622 return 0;
1623 }
1624
1625 /* FIXME: tx power */
1626 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1627 struct ath_tx_control *txctl)
1628 {
1629 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1630 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1631 struct ath_node *an = NULL;
1632 struct list_head bf_head;
1633 struct ath_desc *ds;
1634 struct ath_atx_tid *tid;
1635 struct ath_hal *ah = sc->sc_ah;
1636 int frm_type;
1637
1638 frm_type = get_hw_packet_type(skb);
1639
1640 INIT_LIST_HEAD(&bf_head);
1641 list_add_tail(&bf->list, &bf_head);
1642
1643 ds = bf->bf_desc;
1644 ds->ds_link = 0;
1645 ds->ds_data = bf->bf_buf_addr;
1646
1647 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1648 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1649
1650 ath9k_hw_filltxdesc(ah, ds,
1651 skb->len, /* segment length */
1652 true, /* first segment */
1653 true, /* last segment */
1654 ds); /* first descriptor */
1655
1656 spin_lock_bh(&txctl->txq->axq_lock);
1657
1658 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1659 tx_info->control.sta) {
1660 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1661 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1662
1663 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1664 /*
1665 * Try aggregation if it's a unicast data frame
1666 * and the destination is HT capable.
1667 */
1668 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1669 } else {
1670 /*
1671 * Send this frame as regular when ADDBA
1672 * exchange is neither complete nor pending.
1673 */
1674 ath_tx_send_normal(sc, txctl->txq,
1675 tid, &bf_head);
1676 }
1677 } else {
1678 bf->bf_lastbf = bf;
1679 bf->bf_nframes = 1;
1680
1681 ath_buf_set_rate(sc, bf);
1682 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1683 }
1684
1685 spin_unlock_bh(&txctl->txq->axq_lock);
1686 }
1687
1688 /* Upon failure caller should free skb */
1689 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1690 struct ath_tx_control *txctl)
1691 {
1692 struct ath_buf *bf;
1693 int r;
1694
1695 bf = ath_tx_get_buffer(sc);
1696 if (!bf) {
1697 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1698 return -1;
1699 }
1700
1701 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1702 if (unlikely(r)) {
1703 struct ath_txq *txq = txctl->txq;
1704
1705 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1706
1707 /* upon ath_tx_processq() this TX queue will be resumed, we
1708 * guarantee this will happen by knowing beforehand that
1709 * we will at least have to run TX completionon one buffer
1710 * on the queue */
1711 spin_lock_bh(&txq->axq_lock);
1712 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1713 ieee80211_stop_queue(sc->hw,
1714 skb_get_queue_mapping(skb));
1715 txq->stopped = 1;
1716 }
1717 spin_unlock_bh(&txq->axq_lock);
1718
1719 spin_lock_bh(&sc->tx.txbuflock);
1720 list_add_tail(&bf->list, &sc->tx.txbuf);
1721 spin_unlock_bh(&sc->tx.txbuflock);
1722
1723 return r;
1724 }
1725
1726 ath_tx_start_dma(sc, bf, txctl);
1727
1728 return 0;
1729 }
1730
1731 void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
1732 {
1733 int hdrlen, padsize;
1734 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1735 struct ath_tx_control txctl;
1736
1737 memset(&txctl, 0, sizeof(struct ath_tx_control));
1738
1739 /*
1740 * As a temporary workaround, assign seq# here; this will likely need
1741 * to be cleaned up to work better with Beacon transmission and virtual
1742 * BSSes.
1743 */
1744 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1746 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1747 sc->tx.seq_no += 0x10;
1748 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1749 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1750 }
1751
1752 /* Add the padding after the header if this is not already done */
1753 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1754 if (hdrlen & 3) {
1755 padsize = hdrlen % 4;
1756 if (skb_headroom(skb) < padsize) {
1757 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
1758 dev_kfree_skb_any(skb);
1759 return;
1760 }
1761 skb_push(skb, padsize);
1762 memmove(skb->data, skb->data + padsize, hdrlen);
1763 }
1764
1765 txctl.txq = sc->beacon.cabq;
1766
1767 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
1768
1769 if (ath_tx_start(sc, skb, &txctl) != 0) {
1770 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
1771 goto exit;
1772 }
1773
1774 return;
1775 exit:
1776 dev_kfree_skb_any(skb);
1777 }
1778
1779 /*****************/
1780 /* TX Completion */
1781 /*****************/
1782
1783 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1784 struct ath_xmit_status *tx_status)
1785 {
1786 struct ieee80211_hw *hw = sc->hw;
1787 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1788 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1789 int hdrlen, padsize;
1790
1791 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1792
1793 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1794 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1795 kfree(tx_info_priv);
1796 tx_info->rate_driver_data[0] = NULL;
1797 }
1798
1799 if (tx_status->flags & ATH_TX_BAR) {
1800 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1801 tx_status->flags &= ~ATH_TX_BAR;
1802 }
1803
1804 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1805 /* Frame was ACKed */
1806 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1807 }
1808
1809 tx_info->status.rates[0].count = tx_status->retries + 1;
1810
1811 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1812 padsize = hdrlen & 3;
1813 if (padsize && hdrlen >= 24) {
1814 /*
1815 * Remove MAC header padding before giving the frame back to
1816 * mac80211.
1817 */
1818 memmove(skb->data + padsize, skb->data, hdrlen);
1819 skb_pull(skb, padsize);
1820 }
1821
1822 ieee80211_tx_status(hw, skb);
1823 }
1824
1825 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1826 struct list_head *bf_q,
1827 int txok, int sendbar)
1828 {
1829 struct sk_buff *skb = bf->bf_mpdu;
1830 struct ath_xmit_status tx_status;
1831 unsigned long flags;
1832
1833 /*
1834 * Set retry information.
1835 * NB: Don't use the information in the descriptor, because the frame
1836 * could be software retried.
1837 */
1838 tx_status.retries = bf->bf_retries;
1839 tx_status.flags = 0;
1840
1841 if (sendbar)
1842 tx_status.flags = ATH_TX_BAR;
1843
1844 if (!txok) {
1845 tx_status.flags |= ATH_TX_ERROR;
1846
1847 if (bf_isxretried(bf))
1848 tx_status.flags |= ATH_TX_XRETRY;
1849 }
1850
1851 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1852 ath_tx_complete(sc, skb, &tx_status);
1853
1854 /*
1855 * Return the list of ath_buf of this mpdu to free queue
1856 */
1857 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1858 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1859 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1860 }
1861
1862 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1863 int txok)
1864 {
1865 struct ath_buf *bf_last = bf->bf_lastbf;
1866 struct ath_desc *ds = bf_last->bf_desc;
1867 u16 seq_st = 0;
1868 u32 ba[WME_BA_BMP_SIZE >> 5];
1869 int ba_index;
1870 int nbad = 0;
1871 int isaggr = 0;
1872
1873 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1874 return 0;
1875
1876 isaggr = bf_isaggr(bf);
1877 if (isaggr) {
1878 seq_st = ATH_DS_BA_SEQ(ds);
1879 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1880 }
1881
1882 while (bf) {
1883 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1884 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1885 nbad++;
1886
1887 bf = bf->bf_next;
1888 }
1889
1890 return nbad;
1891 }
1892
1893 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
1894 {
1895 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1896 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1897 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1898
1899 tx_info_priv->update_rc = false;
1900 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1901 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1902
1903 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1904 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1905 if (bf_isdata(bf)) {
1906 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
1907 sizeof(tx_info_priv->tx));
1908 tx_info_priv->n_frames = bf->bf_nframes;
1909 tx_info_priv->n_bad_frames = nbad;
1910 tx_info_priv->update_rc = true;
1911 }
1912 }
1913 }
1914
1915 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1916 {
1917 int qnum;
1918
1919 spin_lock_bh(&txq->axq_lock);
1920 if (txq->stopped &&
1921 ath_txq_depth(sc, txq->axq_qnum) <= (ATH_TXBUF - 20)) {
1922 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1923 if (qnum != -1) {
1924 ieee80211_wake_queue(sc->hw, qnum);
1925 txq->stopped = 0;
1926 }
1927 }
1928 spin_unlock_bh(&txq->axq_lock);
1929 }
1930
1931 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1932 {
1933 struct ath_hal *ah = sc->sc_ah;
1934 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1935 struct list_head bf_head;
1936 struct ath_desc *ds;
1937 int txok, nbad = 0;
1938 int status;
1939
1940 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1941 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1942 txq->axq_link);
1943
1944 for (;;) {
1945 spin_lock_bh(&txq->axq_lock);
1946 if (list_empty(&txq->axq_q)) {
1947 txq->axq_link = NULL;
1948 txq->axq_linkbuf = NULL;
1949 spin_unlock_bh(&txq->axq_lock);
1950 break;
1951 }
1952 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1953
1954 /*
1955 * There is a race condition that a BH gets scheduled
1956 * after sw writes TxE and before hw re-load the last
1957 * descriptor to get the newly chained one.
1958 * Software must keep the last DONE descriptor as a
1959 * holding descriptor - software does so by marking
1960 * it with the STALE flag.
1961 */
1962 bf_held = NULL;
1963 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1964 bf_held = bf;
1965 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1966 txq->axq_link = NULL;
1967 txq->axq_linkbuf = NULL;
1968 spin_unlock_bh(&txq->axq_lock);
1969
1970 /*
1971 * The holding descriptor is the last
1972 * descriptor in queue. It's safe to remove
1973 * the last holding descriptor in BH context.
1974 */
1975 spin_lock_bh(&sc->tx.txbuflock);
1976 list_move_tail(&bf_held->list, &sc->tx.txbuf);
1977 spin_unlock_bh(&sc->tx.txbuflock);
1978
1979 break;
1980 } else {
1981 bf = list_entry(bf_held->list.next,
1982 struct ath_buf, list);
1983 }
1984 }
1985
1986 lastbf = bf->bf_lastbf;
1987 ds = lastbf->bf_desc;
1988
1989 status = ath9k_hw_txprocdesc(ah, ds);
1990 if (status == -EINPROGRESS) {
1991 spin_unlock_bh(&txq->axq_lock);
1992 break;
1993 }
1994 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1995 txq->axq_lastdsWithCTS = NULL;
1996 if (ds == txq->axq_gatingds)
1997 txq->axq_gatingds = NULL;
1998
1999 /*
2000 * Remove ath_buf's of the same transmit unit from txq,
2001 * however leave the last descriptor back as the holding
2002 * descriptor for hw.
2003 */
2004 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
2005 INIT_LIST_HEAD(&bf_head);
2006 if (!list_is_singular(&lastbf->list))
2007 list_cut_position(&bf_head,
2008 &txq->axq_q, lastbf->list.prev);
2009
2010 txq->axq_depth--;
2011 if (bf_isaggr(bf))
2012 txq->axq_aggr_depth--;
2013
2014 txok = (ds->ds_txstat.ts_status == 0);
2015 spin_unlock_bh(&txq->axq_lock);
2016
2017 if (bf_held) {
2018 spin_lock_bh(&sc->tx.txbuflock);
2019 list_move_tail(&bf_held->list, &sc->tx.txbuf);
2020 spin_unlock_bh(&sc->tx.txbuflock);
2021 }
2022
2023 if (!bf_isampdu(bf)) {
2024 /*
2025 * This frame is sent out as a single frame.
2026 * Use hardware retry status for this frame.
2027 */
2028 bf->bf_retries = ds->ds_txstat.ts_longretry;
2029 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2030 bf->bf_state.bf_type |= BUF_XRETRY;
2031 nbad = 0;
2032 } else {
2033 nbad = ath_tx_num_badfrms(sc, bf, txok);
2034 }
2035
2036 ath_tx_rc_status(bf, ds, nbad);
2037
2038 if (bf_isampdu(bf))
2039 ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
2040 else
2041 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
2042
2043 ath_wake_mac80211_queue(sc, txq);
2044
2045 spin_lock_bh(&txq->axq_lock);
2046 if (sc->sc_flags & SC_OP_TXAGGR)
2047 ath_txq_schedule(sc, txq);
2048 spin_unlock_bh(&txq->axq_lock);
2049 }
2050 }
2051
2052
2053 void ath_tx_tasklet(struct ath_softc *sc)
2054 {
2055 int i;
2056 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2057
2058 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2059
2060 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2061 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2062 ath_tx_processq(sc, &sc->tx.txq[i]);
2063 }
2064 }
2065
2066 /*****************/
2067 /* Init, Cleanup */
2068 /*****************/
2069
2070 int ath_tx_init(struct ath_softc *sc, int nbufs)
2071 {
2072 int error = 0;
2073
2074 do {
2075 spin_lock_init(&sc->tx.txbuflock);
2076
2077 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2078 "tx", nbufs, 1);
2079 if (error != 0) {
2080 DPRINTF(sc, ATH_DBG_FATAL,
2081 "Failed to allocate tx descriptors: %d\n",
2082 error);
2083 break;
2084 }
2085
2086 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2087 "beacon", ATH_BCBUF, 1);
2088 if (error != 0) {
2089 DPRINTF(sc, ATH_DBG_FATAL,
2090 "Failed to allocate beacon descriptors: %d\n",
2091 error);
2092 break;
2093 }
2094
2095 } while (0);
2096
2097 if (error != 0)
2098 ath_tx_cleanup(sc);
2099
2100 return error;
2101 }
2102
2103 int ath_tx_cleanup(struct ath_softc *sc)
2104 {
2105 if (sc->beacon.bdma.dd_desc_len != 0)
2106 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2107
2108 if (sc->tx.txdma.dd_desc_len != 0)
2109 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2110
2111 return 0;
2112 }
2113
2114 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2115 {
2116 struct ath_atx_tid *tid;
2117 struct ath_atx_ac *ac;
2118 int tidno, acno;
2119
2120 for (tidno = 0, tid = &an->tid[tidno];
2121 tidno < WME_NUM_TID;
2122 tidno++, tid++) {
2123 tid->an = an;
2124 tid->tidno = tidno;
2125 tid->seq_start = tid->seq_next = 0;
2126 tid->baw_size = WME_MAX_BA;
2127 tid->baw_head = tid->baw_tail = 0;
2128 tid->sched = false;
2129 tid->paused = false;
2130 tid->state &= ~AGGR_CLEANUP;
2131 INIT_LIST_HEAD(&tid->buf_q);
2132 acno = TID_TO_WME_AC(tidno);
2133 tid->ac = &an->ac[acno];
2134 tid->state &= ~AGGR_ADDBA_COMPLETE;
2135 tid->state &= ~AGGR_ADDBA_PROGRESS;
2136 tid->addba_exchangeattempts = 0;
2137 }
2138
2139 for (acno = 0, ac = &an->ac[acno];
2140 acno < WME_NUM_AC; acno++, ac++) {
2141 ac->sched = false;
2142 INIT_LIST_HEAD(&ac->tid_q);
2143
2144 switch (acno) {
2145 case WME_AC_BE:
2146 ac->qnum = ath_tx_get_qnum(sc,
2147 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2148 break;
2149 case WME_AC_BK:
2150 ac->qnum = ath_tx_get_qnum(sc,
2151 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2152 break;
2153 case WME_AC_VI:
2154 ac->qnum = ath_tx_get_qnum(sc,
2155 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2156 break;
2157 case WME_AC_VO:
2158 ac->qnum = ath_tx_get_qnum(sc,
2159 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2160 break;
2161 }
2162 }
2163 }
2164
2165 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2166 {
2167 int i;
2168 struct ath_atx_ac *ac, *ac_tmp;
2169 struct ath_atx_tid *tid, *tid_tmp;
2170 struct ath_txq *txq;
2171
2172 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2173 if (ATH_TXQ_SETUP(sc, i)) {
2174 txq = &sc->tx.txq[i];
2175
2176 spin_lock(&txq->axq_lock);
2177
2178 list_for_each_entry_safe(ac,
2179 ac_tmp, &txq->axq_acq, list) {
2180 tid = list_first_entry(&ac->tid_q,
2181 struct ath_atx_tid, list);
2182 if (tid && tid->an != an)
2183 continue;
2184 list_del(&ac->list);
2185 ac->sched = false;
2186
2187 list_for_each_entry_safe(tid,
2188 tid_tmp, &ac->tid_q, list) {
2189 list_del(&tid->list);
2190 tid->sched = false;
2191 ath_tid_drain(sc, txq, tid);
2192 tid->state &= ~AGGR_ADDBA_COMPLETE;
2193 tid->addba_exchangeattempts = 0;
2194 tid->state &= ~AGGR_CLEANUP;
2195 }
2196 }
2197
2198 spin_unlock(&txq->axq_lock);
2199 }
2200 }
2201 }