ath9k: optimize ath_tx_rc_status usage
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35
36 static u16 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 };
47
48 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok, int sendbar);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 static int ath_max_4ms_framelen[4][32] = {
77 [MCS_HT20] = {
78 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
79 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
80 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
81 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
82 },
83 [MCS_HT20_SGI] = {
84 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
85 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
86 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
87 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
88 },
89 [MCS_HT40] = {
90 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
91 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
92 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
93 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
94 },
95 [MCS_HT40_SGI] = {
96 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
97 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
98 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
99 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
100 }
101 };
102
103 /*********************/
104 /* Aggregation logic */
105 /*********************/
106
107 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
108 {
109 struct ath_atx_ac *ac = tid->ac;
110
111 if (tid->paused)
112 return;
113
114 if (tid->sched)
115 return;
116
117 tid->sched = true;
118 list_add_tail(&tid->list, &ac->tid_q);
119
120 if (ac->sched)
121 return;
122
123 ac->sched = true;
124 list_add_tail(&ac->list, &txq->axq_acq);
125 }
126
127 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
128 {
129 struct ath_txq *txq = tid->ac->txq;
130
131 WARN_ON(!tid->paused);
132
133 spin_lock_bh(&txq->axq_lock);
134 tid->paused = false;
135
136 if (skb_queue_empty(&tid->buf_q))
137 goto unlock;
138
139 ath_tx_queue_tid(txq, tid);
140 ath_txq_schedule(sc, txq);
141 unlock:
142 spin_unlock_bh(&txq->axq_lock);
143 }
144
145 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
146 {
147 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
148 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
149 sizeof(tx_info->rate_driver_data));
150 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
151 }
152
153 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 struct ath_txq *txq = tid->ac->txq;
156 struct sk_buff *skb;
157 struct ath_buf *bf;
158 struct list_head bf_head;
159 struct ath_tx_status ts;
160 struct ath_frame_info *fi;
161
162 INIT_LIST_HEAD(&bf_head);
163
164 memset(&ts, 0, sizeof(ts));
165 spin_lock_bh(&txq->axq_lock);
166
167 while ((skb = __skb_dequeue(&tid->buf_q))) {
168 fi = get_frame_info(skb);
169 bf = fi->bf;
170
171 spin_unlock_bh(&txq->axq_lock);
172 if (bf && fi->retries) {
173 list_add_tail(&bf->list, &bf_head);
174 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
175 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1);
176 } else {
177 ath_tx_send_normal(sc, txq, NULL, skb);
178 }
179 spin_lock_bh(&txq->axq_lock);
180 }
181
182 spin_unlock_bh(&txq->axq_lock);
183 }
184
185 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
186 int seqno)
187 {
188 int index, cindex;
189
190 index = ATH_BA_INDEX(tid->seq_start, seqno);
191 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
192
193 __clear_bit(cindex, tid->tx_buf);
194
195 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
196 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
197 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
198 }
199 }
200
201 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
202 u16 seqno)
203 {
204 int index, cindex;
205
206 index = ATH_BA_INDEX(tid->seq_start, seqno);
207 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
208 __set_bit(cindex, tid->tx_buf);
209
210 if (index >= ((tid->baw_tail - tid->baw_head) &
211 (ATH_TID_MAX_BUFS - 1))) {
212 tid->baw_tail = cindex;
213 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
214 }
215 }
216
217 /*
218 * TODO: For frame(s) that are in the retry state, we will reuse the
219 * sequence number(s) without setting the retry bit. The
220 * alternative is to give up on these and BAR the receiver's window
221 * forward.
222 */
223 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
224 struct ath_atx_tid *tid)
225
226 {
227 struct sk_buff *skb;
228 struct ath_buf *bf;
229 struct list_head bf_head;
230 struct ath_tx_status ts;
231 struct ath_frame_info *fi;
232
233 memset(&ts, 0, sizeof(ts));
234 INIT_LIST_HEAD(&bf_head);
235
236 while ((skb = __skb_dequeue(&tid->buf_q))) {
237 fi = get_frame_info(skb);
238 bf = fi->bf;
239
240 if (!bf) {
241 spin_unlock(&txq->axq_lock);
242 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
243 spin_lock(&txq->axq_lock);
244 continue;
245 }
246
247 list_add_tail(&bf->list, &bf_head);
248
249 if (fi->retries)
250 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
251
252 spin_unlock(&txq->axq_lock);
253 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
254 spin_lock(&txq->axq_lock);
255 }
256
257 tid->seq_next = tid->seq_start;
258 tid->baw_tail = tid->baw_head;
259 }
260
261 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
262 struct sk_buff *skb)
263 {
264 struct ath_frame_info *fi = get_frame_info(skb);
265 struct ieee80211_hdr *hdr;
266
267 TX_STAT_INC(txq->axq_qnum, a_retries);
268 if (fi->retries++ > 0)
269 return;
270
271 hdr = (struct ieee80211_hdr *)skb->data;
272 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
273 }
274
275 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
276 {
277 struct ath_buf *bf = NULL;
278
279 spin_lock_bh(&sc->tx.txbuflock);
280
281 if (unlikely(list_empty(&sc->tx.txbuf))) {
282 spin_unlock_bh(&sc->tx.txbuflock);
283 return NULL;
284 }
285
286 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
287 list_del(&bf->list);
288
289 spin_unlock_bh(&sc->tx.txbuflock);
290
291 return bf;
292 }
293
294 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
295 {
296 spin_lock_bh(&sc->tx.txbuflock);
297 list_add_tail(&bf->list, &sc->tx.txbuf);
298 spin_unlock_bh(&sc->tx.txbuflock);
299 }
300
301 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
302 {
303 struct ath_buf *tbf;
304
305 tbf = ath_tx_get_buffer(sc);
306 if (WARN_ON(!tbf))
307 return NULL;
308
309 ATH_TXBUF_RESET(tbf);
310
311 tbf->bf_mpdu = bf->bf_mpdu;
312 tbf->bf_buf_addr = bf->bf_buf_addr;
313 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
314 tbf->bf_state = bf->bf_state;
315
316 return tbf;
317 }
318
319 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
320 struct ath_tx_status *ts, int txok,
321 int *nframes, int *nbad)
322 {
323 struct ath_frame_info *fi;
324 u16 seq_st = 0;
325 u32 ba[WME_BA_BMP_SIZE >> 5];
326 int ba_index;
327 int isaggr = 0;
328
329 *nbad = 0;
330 *nframes = 0;
331
332 isaggr = bf_isaggr(bf);
333 if (isaggr) {
334 seq_st = ts->ts_seqnum;
335 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
336 }
337
338 while (bf) {
339 fi = get_frame_info(bf->bf_mpdu);
340 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
341
342 (*nframes)++;
343 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
344 (*nbad)++;
345
346 bf = bf->bf_next;
347 }
348 }
349
350
351 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
352 struct ath_buf *bf, struct list_head *bf_q,
353 struct ath_tx_status *ts, int txok, bool retry)
354 {
355 struct ath_node *an = NULL;
356 struct sk_buff *skb;
357 struct ieee80211_sta *sta;
358 struct ieee80211_hw *hw = sc->hw;
359 struct ieee80211_hdr *hdr;
360 struct ieee80211_tx_info *tx_info;
361 struct ath_atx_tid *tid = NULL;
362 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
363 struct list_head bf_head;
364 struct sk_buff_head bf_pending;
365 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
366 u32 ba[WME_BA_BMP_SIZE >> 5];
367 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
368 bool rc_update = true;
369 struct ieee80211_tx_rate rates[4];
370 struct ath_frame_info *fi;
371 int nframes;
372 u8 tidno;
373 bool clear_filter;
374
375 skb = bf->bf_mpdu;
376 hdr = (struct ieee80211_hdr *)skb->data;
377
378 tx_info = IEEE80211_SKB_CB(skb);
379
380 memcpy(rates, tx_info->control.rates, sizeof(rates));
381
382 rcu_read_lock();
383
384 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
385 if (!sta) {
386 rcu_read_unlock();
387
388 INIT_LIST_HEAD(&bf_head);
389 while (bf) {
390 bf_next = bf->bf_next;
391
392 if (!bf->bf_stale || bf_next != NULL)
393 list_move_tail(&bf->list, &bf_head);
394
395 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
396 0, 0);
397
398 bf = bf_next;
399 }
400 return;
401 }
402
403 an = (struct ath_node *)sta->drv_priv;
404 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
405 tid = ATH_AN_2_TID(an, tidno);
406
407 /*
408 * The hardware occasionally sends a tx status for the wrong TID.
409 * In this case, the BA status cannot be considered valid and all
410 * subframes need to be retransmitted
411 */
412 if (tidno != ts->tid)
413 txok = false;
414
415 isaggr = bf_isaggr(bf);
416 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
417
418 if (isaggr && txok) {
419 if (ts->ts_flags & ATH9K_TX_BA) {
420 seq_st = ts->ts_seqnum;
421 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
422 } else {
423 /*
424 * AR5416 can become deaf/mute when BA
425 * issue happens. Chip needs to be reset.
426 * But AP code may have sychronization issues
427 * when perform internal reset in this routine.
428 * Only enable reset in STA mode for now.
429 */
430 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
431 needreset = 1;
432 }
433 }
434
435 __skb_queue_head_init(&bf_pending);
436
437 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
438 while (bf) {
439 u16 seqno = bf->bf_state.seqno;
440
441 txfail = txpending = sendbar = 0;
442 bf_next = bf->bf_next;
443
444 skb = bf->bf_mpdu;
445 tx_info = IEEE80211_SKB_CB(skb);
446 fi = get_frame_info(skb);
447
448 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
449 /* transmit completion, subframe is
450 * acked by block ack */
451 acked_cnt++;
452 } else if (!isaggr && txok) {
453 /* transmit completion */
454 acked_cnt++;
455 } else {
456 if ((tid->state & AGGR_CLEANUP) || !retry) {
457 /*
458 * cleanup in progress, just fail
459 * the un-acked sub-frames
460 */
461 txfail = 1;
462 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
463 if (!(ts->ts_status & ATH9K_TXERR_FILT) ||
464 !an->sleeping)
465 ath_tx_set_retry(sc, txq, bf->bf_mpdu);
466
467 clear_filter = true;
468 txpending = 1;
469 } else {
470 txfail = 1;
471 sendbar = 1;
472 txfail_cnt++;
473 }
474 }
475
476 /*
477 * Make sure the last desc is reclaimed if it
478 * not a holding desc.
479 */
480 INIT_LIST_HEAD(&bf_head);
481 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
482 bf_next != NULL || !bf_last->bf_stale)
483 list_move_tail(&bf->list, &bf_head);
484
485 if (!txpending || (tid->state & AGGR_CLEANUP)) {
486 /*
487 * complete the acked-ones/xretried ones; update
488 * block-ack window
489 */
490 spin_lock_bh(&txq->axq_lock);
491 ath_tx_update_baw(sc, tid, seqno);
492 spin_unlock_bh(&txq->axq_lock);
493
494 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
495 memcpy(tx_info->control.rates, rates, sizeof(rates));
496 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
497 rc_update = false;
498 }
499
500 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
501 !txfail, sendbar);
502 } else {
503 /* retry the un-acked ones */
504 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
505 if (bf->bf_next == NULL && bf_last->bf_stale) {
506 struct ath_buf *tbf;
507
508 tbf = ath_clone_txbuf(sc, bf_last);
509 /*
510 * Update tx baw and complete the
511 * frame with failed status if we
512 * run out of tx buf.
513 */
514 if (!tbf) {
515 spin_lock_bh(&txq->axq_lock);
516 ath_tx_update_baw(sc, tid, seqno);
517 spin_unlock_bh(&txq->axq_lock);
518
519 ath_tx_complete_buf(sc, bf, txq,
520 &bf_head,
521 ts, 0, 1);
522 break;
523 }
524
525 fi->bf = tbf;
526 }
527 }
528
529 /*
530 * Put this buffer to the temporary pending
531 * queue to retain ordering
532 */
533 __skb_queue_tail(&bf_pending, skb);
534 }
535
536 bf = bf_next;
537 }
538
539 /* prepend un-acked frames to the beginning of the pending frame queue */
540 if (!skb_queue_empty(&bf_pending)) {
541 if (an->sleeping)
542 ieee80211_sta_set_tim(sta);
543
544 spin_lock_bh(&txq->axq_lock);
545 if (clear_filter)
546 tid->ac->clear_ps_filter = true;
547 skb_queue_splice(&bf_pending, &tid->buf_q);
548 if (!an->sleeping)
549 ath_tx_queue_tid(txq, tid);
550 spin_unlock_bh(&txq->axq_lock);
551 }
552
553 if (tid->state & AGGR_CLEANUP) {
554 ath_tx_flush_tid(sc, tid);
555
556 if (tid->baw_head == tid->baw_tail) {
557 tid->state &= ~AGGR_ADDBA_COMPLETE;
558 tid->state &= ~AGGR_CLEANUP;
559 }
560 }
561
562 rcu_read_unlock();
563
564 if (needreset)
565 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
566 }
567
568 static bool ath_lookup_legacy(struct ath_buf *bf)
569 {
570 struct sk_buff *skb;
571 struct ieee80211_tx_info *tx_info;
572 struct ieee80211_tx_rate *rates;
573 int i;
574
575 skb = bf->bf_mpdu;
576 tx_info = IEEE80211_SKB_CB(skb);
577 rates = tx_info->control.rates;
578
579 for (i = 0; i < 4; i++) {
580 if (!rates[i].count || rates[i].idx < 0)
581 break;
582
583 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
584 return true;
585 }
586
587 return false;
588 }
589
590 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
591 struct ath_atx_tid *tid)
592 {
593 struct sk_buff *skb;
594 struct ieee80211_tx_info *tx_info;
595 struct ieee80211_tx_rate *rates;
596 u32 max_4ms_framelen, frmlen;
597 u16 aggr_limit, legacy = 0;
598 int i;
599
600 skb = bf->bf_mpdu;
601 tx_info = IEEE80211_SKB_CB(skb);
602 rates = tx_info->control.rates;
603
604 /*
605 * Find the lowest frame length among the rate series that will have a
606 * 4ms transmit duration.
607 * TODO - TXOP limit needs to be considered.
608 */
609 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
610
611 for (i = 0; i < 4; i++) {
612 if (rates[i].count) {
613 int modeidx;
614 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
615 legacy = 1;
616 break;
617 }
618
619 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
620 modeidx = MCS_HT40;
621 else
622 modeidx = MCS_HT20;
623
624 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
625 modeidx++;
626
627 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
628 max_4ms_framelen = min(max_4ms_framelen, frmlen);
629 }
630 }
631
632 /*
633 * limit aggregate size by the minimum rate if rate selected is
634 * not a probe rate, if rate selected is a probe rate then
635 * avoid aggregation of this packet.
636 */
637 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
638 return 0;
639
640 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
641 aggr_limit = min((max_4ms_framelen * 3) / 8,
642 (u32)ATH_AMPDU_LIMIT_MAX);
643 else
644 aggr_limit = min(max_4ms_framelen,
645 (u32)ATH_AMPDU_LIMIT_MAX);
646
647 /*
648 * h/w can accept aggregates up to 16 bit lengths (65535).
649 * The IE, however can hold up to 65536, which shows up here
650 * as zero. Ignore 65536 since we are constrained by hw.
651 */
652 if (tid->an->maxampdu)
653 aggr_limit = min(aggr_limit, tid->an->maxampdu);
654
655 return aggr_limit;
656 }
657
658 /*
659 * Returns the number of delimiters to be added to
660 * meet the minimum required mpdudensity.
661 */
662 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
663 struct ath_buf *bf, u16 frmlen,
664 bool first_subfrm)
665 {
666 #define FIRST_DESC_NDELIMS 60
667 struct sk_buff *skb = bf->bf_mpdu;
668 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
669 u32 nsymbits, nsymbols;
670 u16 minlen;
671 u8 flags, rix;
672 int width, streams, half_gi, ndelim, mindelim;
673 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
674
675 /* Select standard number of delimiters based on frame length alone */
676 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
677
678 /*
679 * If encryption enabled, hardware requires some more padding between
680 * subframes.
681 * TODO - this could be improved to be dependent on the rate.
682 * The hardware can keep up at lower rates, but not higher rates
683 */
684 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
685 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
686 ndelim += ATH_AGGR_ENCRYPTDELIM;
687
688 /*
689 * Add delimiter when using RTS/CTS with aggregation
690 * and non enterprise AR9003 card
691 */
692 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
693 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
694 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
695
696 /*
697 * Convert desired mpdu density from microeconds to bytes based
698 * on highest rate in rate series (i.e. first rate) to determine
699 * required minimum length for subframe. Take into account
700 * whether high rate is 20 or 40Mhz and half or full GI.
701 *
702 * If there is no mpdu density restriction, no further calculation
703 * is needed.
704 */
705
706 if (tid->an->mpdudensity == 0)
707 return ndelim;
708
709 rix = tx_info->control.rates[0].idx;
710 flags = tx_info->control.rates[0].flags;
711 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
712 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
713
714 if (half_gi)
715 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
716 else
717 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
718
719 if (nsymbols == 0)
720 nsymbols = 1;
721
722 streams = HT_RC_2_STREAMS(rix);
723 nsymbits = bits_per_symbol[rix % 8][width] * streams;
724 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
725
726 if (frmlen < minlen) {
727 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
728 ndelim = max(mindelim, ndelim);
729 }
730
731 return ndelim;
732 }
733
734 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
735 struct ath_txq *txq,
736 struct ath_atx_tid *tid,
737 struct list_head *bf_q,
738 int *aggr_len)
739 {
740 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
741 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
742 int rl = 0, nframes = 0, ndelim, prev_al = 0;
743 u16 aggr_limit = 0, al = 0, bpad = 0,
744 al_delta, h_baw = tid->baw_size / 2;
745 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
746 struct ieee80211_tx_info *tx_info;
747 struct ath_frame_info *fi;
748 struct sk_buff *skb;
749 u16 seqno;
750
751 do {
752 skb = skb_peek(&tid->buf_q);
753 fi = get_frame_info(skb);
754 bf = fi->bf;
755 if (!fi->bf)
756 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
757
758 if (!bf)
759 continue;
760
761 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
762 seqno = bf->bf_state.seqno;
763 if (!bf_first)
764 bf_first = bf;
765
766 /* do not step over block-ack window */
767 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
768 status = ATH_AGGR_BAW_CLOSED;
769 break;
770 }
771
772 if (!rl) {
773 aggr_limit = ath_lookup_rate(sc, bf, tid);
774 rl = 1;
775 }
776
777 /* do not exceed aggregation limit */
778 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
779
780 if (nframes &&
781 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
782 ath_lookup_legacy(bf))) {
783 status = ATH_AGGR_LIMITED;
784 break;
785 }
786
787 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
788 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
789 break;
790
791 /* do not exceed subframe limit */
792 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
793 status = ATH_AGGR_LIMITED;
794 break;
795 }
796
797 /* add padding for previous frame to aggregation length */
798 al += bpad + al_delta;
799
800 /*
801 * Get the delimiters needed to meet the MPDU
802 * density for this node.
803 */
804 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
805 !nframes);
806 bpad = PADBYTES(al_delta) + (ndelim << 2);
807
808 nframes++;
809 bf->bf_next = NULL;
810
811 /* link buffers of this frame to the aggregate */
812 if (!fi->retries)
813 ath_tx_addto_baw(sc, tid, seqno);
814 bf->bf_state.ndelim = ndelim;
815
816 __skb_unlink(skb, &tid->buf_q);
817 list_add_tail(&bf->list, bf_q);
818 if (bf_prev)
819 bf_prev->bf_next = bf;
820
821 bf_prev = bf;
822
823 } while (!skb_queue_empty(&tid->buf_q));
824
825 *aggr_len = al;
826
827 return status;
828 #undef PADBYTES
829 }
830
831 /*
832 * rix - rate index
833 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
834 * width - 0 for 20 MHz, 1 for 40 MHz
835 * half_gi - to use 4us v/s 3.6 us for symbol time
836 */
837 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
838 int width, int half_gi, bool shortPreamble)
839 {
840 u32 nbits, nsymbits, duration, nsymbols;
841 int streams;
842
843 /* find number of symbols: PLCP + data */
844 streams = HT_RC_2_STREAMS(rix);
845 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
846 nsymbits = bits_per_symbol[rix % 8][width] * streams;
847 nsymbols = (nbits + nsymbits - 1) / nsymbits;
848
849 if (!half_gi)
850 duration = SYMBOL_TIME(nsymbols);
851 else
852 duration = SYMBOL_TIME_HALFGI(nsymbols);
853
854 /* addup duration for legacy/ht training and signal fields */
855 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
856
857 return duration;
858 }
859
860 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
861 struct ath_tx_info *info, int len)
862 {
863 struct ath_hw *ah = sc->sc_ah;
864 struct sk_buff *skb;
865 struct ieee80211_tx_info *tx_info;
866 struct ieee80211_tx_rate *rates;
867 const struct ieee80211_rate *rate;
868 struct ieee80211_hdr *hdr;
869 int i;
870 u8 rix = 0;
871
872 skb = bf->bf_mpdu;
873 tx_info = IEEE80211_SKB_CB(skb);
874 rates = tx_info->control.rates;
875 hdr = (struct ieee80211_hdr *)skb->data;
876
877 /* set dur_update_en for l-sig computation except for PS-Poll frames */
878 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
879
880 /*
881 * We check if Short Preamble is needed for the CTS rate by
882 * checking the BSS's global flag.
883 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
884 */
885 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
886 info->rtscts_rate = rate->hw_value;
887 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
888 info->rtscts_rate |= rate->hw_value_short;
889
890 for (i = 0; i < 4; i++) {
891 bool is_40, is_sgi, is_sp;
892 int phy;
893
894 if (!rates[i].count || (rates[i].idx < 0))
895 continue;
896
897 rix = rates[i].idx;
898 info->rates[i].Tries = rates[i].count;
899
900 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
901 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
902 info->flags |= ATH9K_TXDESC_RTSENA;
903 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
904 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
905 info->flags |= ATH9K_TXDESC_CTSENA;
906 }
907
908 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
909 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
910 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
911 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
912
913 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
914 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
915 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
916
917 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
918 /* MCS rates */
919 info->rates[i].Rate = rix | 0x80;
920 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
921 ah->txchainmask, info->rates[i].Rate);
922 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
923 is_40, is_sgi, is_sp);
924 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
925 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
926 continue;
927 }
928
929 /* legacy rates */
930 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
931 !(rate->flags & IEEE80211_RATE_ERP_G))
932 phy = WLAN_RC_PHY_CCK;
933 else
934 phy = WLAN_RC_PHY_OFDM;
935
936 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
937 info->rates[i].Rate = rate->hw_value;
938 if (rate->hw_value_short) {
939 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
940 info->rates[i].Rate |= rate->hw_value_short;
941 } else {
942 is_sp = false;
943 }
944
945 if (bf->bf_state.bfs_paprd)
946 info->rates[i].ChSel = ah->txchainmask;
947 else
948 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
949 ah->txchainmask, info->rates[i].Rate);
950
951 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
952 phy, rate->bitrate * 100, len, rix, is_sp);
953 }
954
955 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
956 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
957 info->flags &= ~ATH9K_TXDESC_RTSENA;
958
959 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
960 if (info->flags & ATH9K_TXDESC_RTSENA)
961 info->flags &= ~ATH9K_TXDESC_CTSENA;
962 }
963
964 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
965 {
966 struct ieee80211_hdr *hdr;
967 enum ath9k_pkt_type htype;
968 __le16 fc;
969
970 hdr = (struct ieee80211_hdr *)skb->data;
971 fc = hdr->frame_control;
972
973 if (ieee80211_is_beacon(fc))
974 htype = ATH9K_PKT_TYPE_BEACON;
975 else if (ieee80211_is_probe_resp(fc))
976 htype = ATH9K_PKT_TYPE_PROBE_RESP;
977 else if (ieee80211_is_atim(fc))
978 htype = ATH9K_PKT_TYPE_ATIM;
979 else if (ieee80211_is_pspoll(fc))
980 htype = ATH9K_PKT_TYPE_PSPOLL;
981 else
982 htype = ATH9K_PKT_TYPE_NORMAL;
983
984 return htype;
985 }
986
987 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
988 struct ath_txq *txq, int len)
989 {
990 struct ath_hw *ah = sc->sc_ah;
991 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
992 struct ath_buf *bf_first = bf;
993 struct ath_tx_info info;
994 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
995
996 memset(&info, 0, sizeof(info));
997 info.is_first = true;
998 info.is_last = true;
999 info.txpower = MAX_RATE_POWER;
1000 info.qcu = txq->axq_qnum;
1001
1002 info.flags = ATH9K_TXDESC_INTREQ;
1003 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1004 info.flags |= ATH9K_TXDESC_NOACK;
1005 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1006 info.flags |= ATH9K_TXDESC_LDPC;
1007
1008 ath_buf_set_rate(sc, bf, &info, len);
1009
1010 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1011 info.flags |= ATH9K_TXDESC_CLRDMASK;
1012
1013 if (bf->bf_state.bfs_paprd)
1014 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1015
1016
1017 while (bf) {
1018 struct sk_buff *skb = bf->bf_mpdu;
1019 struct ath_frame_info *fi = get_frame_info(skb);
1020
1021 info.type = get_hw_packet_type(skb);
1022 if (bf->bf_next)
1023 info.link = bf->bf_next->bf_daddr;
1024 else
1025 info.link = 0;
1026
1027 info.buf_addr[0] = bf->bf_buf_addr;
1028 info.buf_len[0] = skb->len;
1029 info.pkt_len = fi->framelen;
1030 info.keyix = fi->keyix;
1031 info.keytype = fi->keytype;
1032
1033 if (aggr) {
1034 if (bf == bf_first)
1035 info.aggr = AGGR_BUF_FIRST;
1036 else if (!bf->bf_next)
1037 info.aggr = AGGR_BUF_LAST;
1038 else
1039 info.aggr = AGGR_BUF_MIDDLE;
1040
1041 info.ndelim = bf->bf_state.ndelim;
1042 info.aggr_len = len;
1043 }
1044
1045 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1046 bf = bf->bf_next;
1047 }
1048 }
1049
1050 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1051 struct ath_atx_tid *tid)
1052 {
1053 struct ath_buf *bf;
1054 enum ATH_AGGR_STATUS status;
1055 struct ieee80211_tx_info *tx_info;
1056 struct list_head bf_q;
1057 int aggr_len;
1058
1059 do {
1060 if (skb_queue_empty(&tid->buf_q))
1061 return;
1062
1063 INIT_LIST_HEAD(&bf_q);
1064
1065 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1066
1067 /*
1068 * no frames picked up to be aggregated;
1069 * block-ack window is not open.
1070 */
1071 if (list_empty(&bf_q))
1072 break;
1073
1074 bf = list_first_entry(&bf_q, struct ath_buf, list);
1075 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1076 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1077
1078 if (tid->ac->clear_ps_filter) {
1079 tid->ac->clear_ps_filter = false;
1080 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1081 } else {
1082 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1083 }
1084
1085 /* if only one frame, send as non-aggregate */
1086 if (bf == bf->bf_lastbf) {
1087 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1088 bf->bf_state.bf_type = BUF_AMPDU;
1089 } else {
1090 TX_STAT_INC(txq->axq_qnum, a_aggr);
1091 }
1092
1093 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1094 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1095 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1096 status != ATH_AGGR_BAW_CLOSED);
1097 }
1098
1099 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1100 u16 tid, u16 *ssn)
1101 {
1102 struct ath_atx_tid *txtid;
1103 struct ath_node *an;
1104
1105 an = (struct ath_node *)sta->drv_priv;
1106 txtid = ATH_AN_2_TID(an, tid);
1107
1108 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1109 return -EAGAIN;
1110
1111 txtid->state |= AGGR_ADDBA_PROGRESS;
1112 txtid->paused = true;
1113 *ssn = txtid->seq_start = txtid->seq_next;
1114
1115 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1116 txtid->baw_head = txtid->baw_tail = 0;
1117
1118 return 0;
1119 }
1120
1121 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1122 {
1123 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1124 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1125 struct ath_txq *txq = txtid->ac->txq;
1126
1127 if (txtid->state & AGGR_CLEANUP)
1128 return;
1129
1130 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1131 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1132 return;
1133 }
1134
1135 spin_lock_bh(&txq->axq_lock);
1136 txtid->paused = true;
1137
1138 /*
1139 * If frames are still being transmitted for this TID, they will be
1140 * cleaned up during tx completion. To prevent race conditions, this
1141 * TID can only be reused after all in-progress subframes have been
1142 * completed.
1143 */
1144 if (txtid->baw_head != txtid->baw_tail)
1145 txtid->state |= AGGR_CLEANUP;
1146 else
1147 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1148 spin_unlock_bh(&txq->axq_lock);
1149
1150 ath_tx_flush_tid(sc, txtid);
1151 }
1152
1153 bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an)
1154 {
1155 struct ath_atx_tid *tid;
1156 struct ath_atx_ac *ac;
1157 struct ath_txq *txq;
1158 bool buffered = false;
1159 int tidno;
1160
1161 for (tidno = 0, tid = &an->tid[tidno];
1162 tidno < WME_NUM_TID; tidno++, tid++) {
1163
1164 if (!tid->sched)
1165 continue;
1166
1167 ac = tid->ac;
1168 txq = ac->txq;
1169
1170 spin_lock_bh(&txq->axq_lock);
1171
1172 if (!skb_queue_empty(&tid->buf_q))
1173 buffered = true;
1174
1175 tid->sched = false;
1176 list_del(&tid->list);
1177
1178 if (ac->sched) {
1179 ac->sched = false;
1180 list_del(&ac->list);
1181 }
1182
1183 spin_unlock_bh(&txq->axq_lock);
1184 }
1185
1186 return buffered;
1187 }
1188
1189 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1190 {
1191 struct ath_atx_tid *tid;
1192 struct ath_atx_ac *ac;
1193 struct ath_txq *txq;
1194 int tidno;
1195
1196 for (tidno = 0, tid = &an->tid[tidno];
1197 tidno < WME_NUM_TID; tidno++, tid++) {
1198
1199 ac = tid->ac;
1200 txq = ac->txq;
1201
1202 spin_lock_bh(&txq->axq_lock);
1203 ac->clear_ps_filter = true;
1204
1205 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1206 ath_tx_queue_tid(txq, tid);
1207 ath_txq_schedule(sc, txq);
1208 }
1209
1210 spin_unlock_bh(&txq->axq_lock);
1211 }
1212 }
1213
1214 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1215 {
1216 struct ath_atx_tid *txtid;
1217 struct ath_node *an;
1218
1219 an = (struct ath_node *)sta->drv_priv;
1220
1221 if (sc->sc_flags & SC_OP_TXAGGR) {
1222 txtid = ATH_AN_2_TID(an, tid);
1223 txtid->baw_size =
1224 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1225 txtid->state |= AGGR_ADDBA_COMPLETE;
1226 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1227 ath_tx_resume_tid(sc, txtid);
1228 }
1229 }
1230
1231 /********************/
1232 /* Queue Management */
1233 /********************/
1234
1235 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1236 struct ath_txq *txq)
1237 {
1238 struct ath_atx_ac *ac, *ac_tmp;
1239 struct ath_atx_tid *tid, *tid_tmp;
1240
1241 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1242 list_del(&ac->list);
1243 ac->sched = false;
1244 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1245 list_del(&tid->list);
1246 tid->sched = false;
1247 ath_tid_drain(sc, txq, tid);
1248 }
1249 }
1250 }
1251
1252 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1253 {
1254 struct ath_hw *ah = sc->sc_ah;
1255 struct ath_common *common = ath9k_hw_common(ah);
1256 struct ath9k_tx_queue_info qi;
1257 static const int subtype_txq_to_hwq[] = {
1258 [WME_AC_BE] = ATH_TXQ_AC_BE,
1259 [WME_AC_BK] = ATH_TXQ_AC_BK,
1260 [WME_AC_VI] = ATH_TXQ_AC_VI,
1261 [WME_AC_VO] = ATH_TXQ_AC_VO,
1262 };
1263 int axq_qnum, i;
1264
1265 memset(&qi, 0, sizeof(qi));
1266 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1267 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1268 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1269 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1270 qi.tqi_physCompBuf = 0;
1271
1272 /*
1273 * Enable interrupts only for EOL and DESC conditions.
1274 * We mark tx descriptors to receive a DESC interrupt
1275 * when a tx queue gets deep; otherwise waiting for the
1276 * EOL to reap descriptors. Note that this is done to
1277 * reduce interrupt load and this only defers reaping
1278 * descriptors, never transmitting frames. Aside from
1279 * reducing interrupts this also permits more concurrency.
1280 * The only potential downside is if the tx queue backs
1281 * up in which case the top half of the kernel may backup
1282 * due to a lack of tx descriptors.
1283 *
1284 * The UAPSD queue is an exception, since we take a desc-
1285 * based intr on the EOSP frames.
1286 */
1287 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1288 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
1289 TXQ_FLAG_TXERRINT_ENABLE;
1290 } else {
1291 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1292 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1293 else
1294 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1295 TXQ_FLAG_TXDESCINT_ENABLE;
1296 }
1297 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1298 if (axq_qnum == -1) {
1299 /*
1300 * NB: don't print a message, this happens
1301 * normally on parts with too few tx queues
1302 */
1303 return NULL;
1304 }
1305 if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) {
1306 ath_err(common, "qnum %u out of range, max %zu!\n",
1307 axq_qnum, ARRAY_SIZE(sc->tx.txq));
1308 ath9k_hw_releasetxqueue(ah, axq_qnum);
1309 return NULL;
1310 }
1311 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1312 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1313
1314 txq->axq_qnum = axq_qnum;
1315 txq->mac80211_qnum = -1;
1316 txq->axq_link = NULL;
1317 INIT_LIST_HEAD(&txq->axq_q);
1318 INIT_LIST_HEAD(&txq->axq_acq);
1319 spin_lock_init(&txq->axq_lock);
1320 txq->axq_depth = 0;
1321 txq->axq_ampdu_depth = 0;
1322 txq->axq_tx_inprogress = false;
1323 sc->tx.txqsetup |= 1<<axq_qnum;
1324
1325 txq->txq_headidx = txq->txq_tailidx = 0;
1326 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1327 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1328 }
1329 return &sc->tx.txq[axq_qnum];
1330 }
1331
1332 int ath_txq_update(struct ath_softc *sc, int qnum,
1333 struct ath9k_tx_queue_info *qinfo)
1334 {
1335 struct ath_hw *ah = sc->sc_ah;
1336 int error = 0;
1337 struct ath9k_tx_queue_info qi;
1338
1339 if (qnum == sc->beacon.beaconq) {
1340 /*
1341 * XXX: for beacon queue, we just save the parameter.
1342 * It will be picked up by ath_beaconq_config when
1343 * it's necessary.
1344 */
1345 sc->beacon.beacon_qi = *qinfo;
1346 return 0;
1347 }
1348
1349 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1350
1351 ath9k_hw_get_txq_props(ah, qnum, &qi);
1352 qi.tqi_aifs = qinfo->tqi_aifs;
1353 qi.tqi_cwmin = qinfo->tqi_cwmin;
1354 qi.tqi_cwmax = qinfo->tqi_cwmax;
1355 qi.tqi_burstTime = qinfo->tqi_burstTime;
1356 qi.tqi_readyTime = qinfo->tqi_readyTime;
1357
1358 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1359 ath_err(ath9k_hw_common(sc->sc_ah),
1360 "Unable to update hardware queue %u!\n", qnum);
1361 error = -EIO;
1362 } else {
1363 ath9k_hw_resettxqueue(ah, qnum);
1364 }
1365
1366 return error;
1367 }
1368
1369 int ath_cabq_update(struct ath_softc *sc)
1370 {
1371 struct ath9k_tx_queue_info qi;
1372 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1373 int qnum = sc->beacon.cabq->axq_qnum;
1374
1375 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1376 /*
1377 * Ensure the readytime % is within the bounds.
1378 */
1379 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1380 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1381 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1382 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1383
1384 qi.tqi_readyTime = (cur_conf->beacon_interval *
1385 sc->config.cabqReadytime) / 100;
1386 ath_txq_update(sc, qnum, &qi);
1387
1388 return 0;
1389 }
1390
1391 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1392 {
1393 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1394 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1395 }
1396
1397 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1398 struct list_head *list, bool retry_tx)
1399 __releases(txq->axq_lock)
1400 __acquires(txq->axq_lock)
1401 {
1402 struct ath_buf *bf, *lastbf;
1403 struct list_head bf_head;
1404 struct ath_tx_status ts;
1405
1406 memset(&ts, 0, sizeof(ts));
1407 INIT_LIST_HEAD(&bf_head);
1408
1409 while (!list_empty(list)) {
1410 bf = list_first_entry(list, struct ath_buf, list);
1411
1412 if (bf->bf_stale) {
1413 list_del(&bf->list);
1414
1415 ath_tx_return_buffer(sc, bf);
1416 continue;
1417 }
1418
1419 lastbf = bf->bf_lastbf;
1420 list_cut_position(&bf_head, list, &lastbf->list);
1421
1422 txq->axq_depth--;
1423 if (bf_is_ampdu_not_probing(bf))
1424 txq->axq_ampdu_depth--;
1425
1426 spin_unlock_bh(&txq->axq_lock);
1427 if (bf_isampdu(bf))
1428 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1429 retry_tx);
1430 else
1431 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1432 spin_lock_bh(&txq->axq_lock);
1433 }
1434 }
1435
1436 /*
1437 * Drain a given TX queue (could be Beacon or Data)
1438 *
1439 * This assumes output has been stopped and
1440 * we do not need to block ath_tx_tasklet.
1441 */
1442 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1443 {
1444 spin_lock_bh(&txq->axq_lock);
1445 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1446 int idx = txq->txq_tailidx;
1447
1448 while (!list_empty(&txq->txq_fifo[idx])) {
1449 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1450 retry_tx);
1451
1452 INCR(idx, ATH_TXFIFO_DEPTH);
1453 }
1454 txq->txq_tailidx = idx;
1455 }
1456
1457 txq->axq_link = NULL;
1458 txq->axq_tx_inprogress = false;
1459 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1460
1461 /* flush any pending frames if aggregation is enabled */
1462 if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
1463 ath_txq_drain_pending_buffers(sc, txq);
1464
1465 spin_unlock_bh(&txq->axq_lock);
1466 }
1467
1468 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1469 {
1470 struct ath_hw *ah = sc->sc_ah;
1471 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1472 struct ath_txq *txq;
1473 int i, npend = 0;
1474
1475 if (sc->sc_flags & SC_OP_INVALID)
1476 return true;
1477
1478 ath9k_hw_abort_tx_dma(ah);
1479
1480 /* Check if any queue remains active */
1481 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1482 if (!ATH_TXQ_SETUP(sc, i))
1483 continue;
1484
1485 npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum);
1486 }
1487
1488 if (npend)
1489 ath_err(common, "Failed to stop TX DMA!\n");
1490
1491 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1492 if (!ATH_TXQ_SETUP(sc, i))
1493 continue;
1494
1495 /*
1496 * The caller will resume queues with ieee80211_wake_queues.
1497 * Mark the queue as not stopped to prevent ath_tx_complete
1498 * from waking the queue too early.
1499 */
1500 txq = &sc->tx.txq[i];
1501 txq->stopped = false;
1502 ath_draintxq(sc, txq, retry_tx);
1503 }
1504
1505 return !npend;
1506 }
1507
1508 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1509 {
1510 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1511 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1512 }
1513
1514 /* For each axq_acq entry, for each tid, try to schedule packets
1515 * for transmit until ampdu_depth has reached min Q depth.
1516 */
1517 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1518 {
1519 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1520 struct ath_atx_tid *tid, *last_tid;
1521
1522 if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
1523 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1524 return;
1525
1526 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1527 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1528
1529 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1530 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1531 list_del(&ac->list);
1532 ac->sched = false;
1533
1534 while (!list_empty(&ac->tid_q)) {
1535 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1536 list);
1537 list_del(&tid->list);
1538 tid->sched = false;
1539
1540 if (tid->paused)
1541 continue;
1542
1543 ath_tx_sched_aggr(sc, txq, tid);
1544
1545 /*
1546 * add tid to round-robin queue if more frames
1547 * are pending for the tid
1548 */
1549 if (!skb_queue_empty(&tid->buf_q))
1550 ath_tx_queue_tid(txq, tid);
1551
1552 if (tid == last_tid ||
1553 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1554 break;
1555 }
1556
1557 if (!list_empty(&ac->tid_q)) {
1558 if (!ac->sched) {
1559 ac->sched = true;
1560 list_add_tail(&ac->list, &txq->axq_acq);
1561 }
1562 }
1563
1564 if (ac == last_ac ||
1565 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1566 return;
1567 }
1568 }
1569
1570 /***********/
1571 /* TX, DMA */
1572 /***********/
1573
1574 /*
1575 * Insert a chain of ath_buf (descriptors) on a txq and
1576 * assume the descriptors are already chained together by caller.
1577 */
1578 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1579 struct list_head *head, bool internal)
1580 {
1581 struct ath_hw *ah = sc->sc_ah;
1582 struct ath_common *common = ath9k_hw_common(ah);
1583 struct ath_buf *bf, *bf_last;
1584 bool puttxbuf = false;
1585 bool edma;
1586
1587 /*
1588 * Insert the frame on the outbound list and
1589 * pass it on to the hardware.
1590 */
1591
1592 if (list_empty(head))
1593 return;
1594
1595 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1596 bf = list_first_entry(head, struct ath_buf, list);
1597 bf_last = list_entry(head->prev, struct ath_buf, list);
1598
1599 ath_dbg(common, ATH_DBG_QUEUE,
1600 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1601
1602 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1603 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1604 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1605 puttxbuf = true;
1606 } else {
1607 list_splice_tail_init(head, &txq->axq_q);
1608
1609 if (txq->axq_link) {
1610 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1611 ath_dbg(common, ATH_DBG_XMIT,
1612 "link[%u] (%p)=%llx (%p)\n",
1613 txq->axq_qnum, txq->axq_link,
1614 ito64(bf->bf_daddr), bf->bf_desc);
1615 } else if (!edma)
1616 puttxbuf = true;
1617
1618 txq->axq_link = bf_last->bf_desc;
1619 }
1620
1621 if (puttxbuf) {
1622 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1623 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1624 ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
1625 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1626 }
1627
1628 if (!edma) {
1629 TX_STAT_INC(txq->axq_qnum, txstart);
1630 ath9k_hw_txstart(ah, txq->axq_qnum);
1631 }
1632
1633 if (!internal) {
1634 txq->axq_depth++;
1635 if (bf_is_ampdu_not_probing(bf))
1636 txq->axq_ampdu_depth++;
1637 }
1638 }
1639
1640 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1641 struct sk_buff *skb, struct ath_tx_control *txctl)
1642 {
1643 struct ath_frame_info *fi = get_frame_info(skb);
1644 struct list_head bf_head;
1645 struct ath_buf *bf;
1646
1647 /*
1648 * Do not queue to h/w when any of the following conditions is true:
1649 * - there are pending frames in software queue
1650 * - the TID is currently paused for ADDBA/BAR request
1651 * - seqno is not within block-ack window
1652 * - h/w queue depth exceeds low water mark
1653 */
1654 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1655 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1656 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1657 /*
1658 * Add this frame to software queue for scheduling later
1659 * for aggregation.
1660 */
1661 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1662 __skb_queue_tail(&tid->buf_q, skb);
1663 if (!txctl->an || !txctl->an->sleeping)
1664 ath_tx_queue_tid(txctl->txq, tid);
1665 return;
1666 }
1667
1668 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1669 if (!bf)
1670 return;
1671
1672 bf->bf_state.bf_type = BUF_AMPDU;
1673 INIT_LIST_HEAD(&bf_head);
1674 list_add(&bf->list, &bf_head);
1675
1676 /* Add sub-frame to BAW */
1677 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1678
1679 /* Queue to h/w without aggregation */
1680 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1681 bf->bf_lastbf = bf;
1682 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1683 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1684 }
1685
1686 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1687 struct ath_atx_tid *tid, struct sk_buff *skb)
1688 {
1689 struct ath_frame_info *fi = get_frame_info(skb);
1690 struct list_head bf_head;
1691 struct ath_buf *bf;
1692
1693 bf = fi->bf;
1694 if (!bf)
1695 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1696
1697 if (!bf)
1698 return;
1699
1700 INIT_LIST_HEAD(&bf_head);
1701 list_add_tail(&bf->list, &bf_head);
1702 bf->bf_state.bf_type = 0;
1703
1704 /* update starting sequence number for subsequent ADDBA request */
1705 if (tid)
1706 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1707
1708 bf->bf_lastbf = bf;
1709 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1710 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1711 TX_STAT_INC(txq->axq_qnum, queued);
1712 }
1713
1714 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1715 int framelen)
1716 {
1717 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1718 struct ieee80211_sta *sta = tx_info->control.sta;
1719 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1720 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1721 struct ath_frame_info *fi = get_frame_info(skb);
1722 struct ath_node *an = NULL;
1723 enum ath9k_key_type keytype;
1724
1725 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1726
1727 if (sta)
1728 an = (struct ath_node *) sta->drv_priv;
1729
1730 memset(fi, 0, sizeof(*fi));
1731 if (hw_key)
1732 fi->keyix = hw_key->hw_key_idx;
1733 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1734 fi->keyix = an->ps_key;
1735 else
1736 fi->keyix = ATH9K_TXKEYIX_INVALID;
1737 fi->keytype = keytype;
1738 fi->framelen = framelen;
1739 }
1740
1741 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1742 {
1743 struct ath_hw *ah = sc->sc_ah;
1744 struct ath9k_channel *curchan = ah->curchan;
1745 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1746 (curchan->channelFlags & CHANNEL_5GHZ) &&
1747 (chainmask == 0x7) && (rate < 0x90))
1748 return 0x3;
1749 else
1750 return chainmask;
1751 }
1752
1753 /*
1754 * Assign a descriptor (and sequence number if necessary,
1755 * and map buffer for DMA. Frees skb on error
1756 */
1757 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1758 struct ath_txq *txq,
1759 struct ath_atx_tid *tid,
1760 struct sk_buff *skb)
1761 {
1762 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1763 struct ath_frame_info *fi = get_frame_info(skb);
1764 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1765 struct ath_buf *bf;
1766 u16 seqno;
1767
1768 bf = ath_tx_get_buffer(sc);
1769 if (!bf) {
1770 ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
1771 goto error;
1772 }
1773
1774 ATH_TXBUF_RESET(bf);
1775
1776 if (tid) {
1777 seqno = tid->seq_next;
1778 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1779 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1780 bf->bf_state.seqno = seqno;
1781 }
1782
1783 bf->bf_mpdu = skb;
1784
1785 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1786 skb->len, DMA_TO_DEVICE);
1787 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1788 bf->bf_mpdu = NULL;
1789 bf->bf_buf_addr = 0;
1790 ath_err(ath9k_hw_common(sc->sc_ah),
1791 "dma_mapping_error() on TX\n");
1792 ath_tx_return_buffer(sc, bf);
1793 goto error;
1794 }
1795
1796 fi->bf = bf;
1797
1798 return bf;
1799
1800 error:
1801 dev_kfree_skb_any(skb);
1802 return NULL;
1803 }
1804
1805 /* FIXME: tx power */
1806 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1807 struct ath_tx_control *txctl)
1808 {
1809 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1810 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1811 struct ath_atx_tid *tid = NULL;
1812 struct ath_buf *bf;
1813 u8 tidno;
1814
1815 spin_lock_bh(&txctl->txq->axq_lock);
1816 if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
1817 ieee80211_is_data_qos(hdr->frame_control)) {
1818 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1819 IEEE80211_QOS_CTL_TID_MASK;
1820 tid = ATH_AN_2_TID(txctl->an, tidno);
1821
1822 WARN_ON(tid->ac->txq != txctl->txq);
1823 }
1824
1825 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1826 /*
1827 * Try aggregation if it's a unicast data frame
1828 * and the destination is HT capable.
1829 */
1830 ath_tx_send_ampdu(sc, tid, skb, txctl);
1831 } else {
1832 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1833 if (!bf)
1834 goto out;
1835
1836 bf->bf_state.bfs_paprd = txctl->paprd;
1837
1838 if (txctl->paprd)
1839 bf->bf_state.bfs_paprd_timestamp = jiffies;
1840
1841 ath_tx_send_normal(sc, txctl->txq, tid, skb);
1842 }
1843
1844 out:
1845 spin_unlock_bh(&txctl->txq->axq_lock);
1846 }
1847
1848 /* Upon failure caller should free skb */
1849 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1850 struct ath_tx_control *txctl)
1851 {
1852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1853 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1854 struct ieee80211_sta *sta = info->control.sta;
1855 struct ieee80211_vif *vif = info->control.vif;
1856 struct ath_softc *sc = hw->priv;
1857 struct ath_txq *txq = txctl->txq;
1858 int padpos, padsize;
1859 int frmlen = skb->len + FCS_LEN;
1860 int q;
1861
1862 /* NOTE: sta can be NULL according to net/mac80211.h */
1863 if (sta)
1864 txctl->an = (struct ath_node *)sta->drv_priv;
1865
1866 if (info->control.hw_key)
1867 frmlen += info->control.hw_key->icv_len;
1868
1869 /*
1870 * As a temporary workaround, assign seq# here; this will likely need
1871 * to be cleaned up to work better with Beacon transmission and virtual
1872 * BSSes.
1873 */
1874 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1875 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1876 sc->tx.seq_no += 0x10;
1877 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1878 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1879 }
1880
1881 /* Add the padding after the header if this is not already done */
1882 padpos = ath9k_cmn_padpos(hdr->frame_control);
1883 padsize = padpos & 3;
1884 if (padsize && skb->len > padpos) {
1885 if (skb_headroom(skb) < padsize)
1886 return -ENOMEM;
1887
1888 skb_push(skb, padsize);
1889 memmove(skb->data, skb->data + padsize, padpos);
1890 }
1891
1892 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1893 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1894 !ieee80211_is_data(hdr->frame_control))
1895 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1896
1897 setup_frame_info(hw, skb, frmlen);
1898
1899 /*
1900 * At this point, the vif, hw_key and sta pointers in the tx control
1901 * info are no longer valid (overwritten by the ath_frame_info data.
1902 */
1903
1904 q = skb_get_queue_mapping(skb);
1905 spin_lock_bh(&txq->axq_lock);
1906 if (txq == sc->tx.txq_map[q] &&
1907 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1908 ieee80211_stop_queue(sc->hw, q);
1909 txq->stopped = 1;
1910 }
1911 spin_unlock_bh(&txq->axq_lock);
1912
1913 ath_tx_start_dma(sc, skb, txctl);
1914 return 0;
1915 }
1916
1917 /*****************/
1918 /* TX Completion */
1919 /*****************/
1920
1921 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1922 int tx_flags, struct ath_txq *txq)
1923 {
1924 struct ieee80211_hw *hw = sc->hw;
1925 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1926 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1927 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1928 int q, padpos, padsize;
1929
1930 ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1931
1932 if (tx_flags & ATH_TX_BAR)
1933 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1934
1935 if (!(tx_flags & ATH_TX_ERROR))
1936 /* Frame was ACKed */
1937 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1938
1939 padpos = ath9k_cmn_padpos(hdr->frame_control);
1940 padsize = padpos & 3;
1941 if (padsize && skb->len>padpos+padsize) {
1942 /*
1943 * Remove MAC header padding before giving the frame back to
1944 * mac80211.
1945 */
1946 memmove(skb->data + padsize, skb->data, padpos);
1947 skb_pull(skb, padsize);
1948 }
1949
1950 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1951 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1952 ath_dbg(common, ATH_DBG_PS,
1953 "Going back to sleep after having received TX status (0x%lx)\n",
1954 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1955 PS_WAIT_FOR_CAB |
1956 PS_WAIT_FOR_PSPOLL_DATA |
1957 PS_WAIT_FOR_TX_ACK));
1958 }
1959
1960 q = skb_get_queue_mapping(skb);
1961 if (txq == sc->tx.txq_map[q]) {
1962 spin_lock_bh(&txq->axq_lock);
1963 if (WARN_ON(--txq->pending_frames < 0))
1964 txq->pending_frames = 0;
1965
1966 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
1967 ieee80211_wake_queue(sc->hw, q);
1968 txq->stopped = 0;
1969 }
1970 spin_unlock_bh(&txq->axq_lock);
1971 }
1972
1973 ieee80211_tx_status(hw, skb);
1974 }
1975
1976 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1977 struct ath_txq *txq, struct list_head *bf_q,
1978 struct ath_tx_status *ts, int txok, int sendbar)
1979 {
1980 struct sk_buff *skb = bf->bf_mpdu;
1981 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1982 unsigned long flags;
1983 int tx_flags = 0;
1984
1985 if (sendbar)
1986 tx_flags = ATH_TX_BAR;
1987
1988 if (!txok)
1989 tx_flags |= ATH_TX_ERROR;
1990
1991 if (ts->ts_status & ATH9K_TXERR_FILT)
1992 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1993
1994 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
1995 bf->bf_buf_addr = 0;
1996
1997 if (bf->bf_state.bfs_paprd) {
1998 if (time_after(jiffies,
1999 bf->bf_state.bfs_paprd_timestamp +
2000 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2001 dev_kfree_skb_any(skb);
2002 else
2003 complete(&sc->paprd_complete);
2004 } else {
2005 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2006 ath_tx_complete(sc, skb, tx_flags, txq);
2007 }
2008 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2009 * accidentally reference it later.
2010 */
2011 bf->bf_mpdu = NULL;
2012
2013 /*
2014 * Return the list of ath_buf of this mpdu to free queue
2015 */
2016 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2017 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2018 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2019 }
2020
2021 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2022 struct ath_tx_status *ts, int nframes, int nbad,
2023 int txok)
2024 {
2025 struct sk_buff *skb = bf->bf_mpdu;
2026 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2027 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2028 struct ieee80211_hw *hw = sc->hw;
2029 struct ath_hw *ah = sc->sc_ah;
2030 u8 i, tx_rateindex;
2031
2032 if (txok)
2033 tx_info->status.ack_signal = ts->ts_rssi;
2034
2035 tx_rateindex = ts->ts_rateindex;
2036 WARN_ON(tx_rateindex >= hw->max_rates);
2037
2038 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2039 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2040
2041 BUG_ON(nbad > nframes);
2042
2043 tx_info->status.ampdu_len = nframes;
2044 tx_info->status.ampdu_ack_len = nframes - nbad;
2045 }
2046
2047 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2048 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2049 /*
2050 * If an underrun error is seen assume it as an excessive
2051 * retry only if max frame trigger level has been reached
2052 * (2 KB for single stream, and 4 KB for dual stream).
2053 * Adjust the long retry as if the frame was tried
2054 * hw->max_rate_tries times to affect how rate control updates
2055 * PER for the failed rate.
2056 * In case of congestion on the bus penalizing this type of
2057 * underruns should help hardware actually transmit new frames
2058 * successfully by eventually preferring slower rates.
2059 * This itself should also alleviate congestion on the bus.
2060 */
2061 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2062 ATH9K_TX_DELIM_UNDERRUN)) &&
2063 ieee80211_is_data(hdr->frame_control) &&
2064 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2065 tx_info->status.rates[tx_rateindex].count =
2066 hw->max_rate_tries;
2067 }
2068
2069 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2070 tx_info->status.rates[i].count = 0;
2071 tx_info->status.rates[i].idx = -1;
2072 }
2073
2074 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2075 }
2076
2077 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2078 struct ath_tx_status *ts, struct ath_buf *bf,
2079 struct list_head *bf_head)
2080 __releases(txq->axq_lock)
2081 __acquires(txq->axq_lock)
2082 {
2083 int txok;
2084
2085 txq->axq_depth--;
2086 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2087 txq->axq_tx_inprogress = false;
2088 if (bf_is_ampdu_not_probing(bf))
2089 txq->axq_ampdu_depth--;
2090
2091 spin_unlock_bh(&txq->axq_lock);
2092
2093 if (!bf_isampdu(bf)) {
2094 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2095 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok, 0);
2096 } else
2097 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2098
2099 spin_lock_bh(&txq->axq_lock);
2100
2101 if (sc->sc_flags & SC_OP_TXAGGR)
2102 ath_txq_schedule(sc, txq);
2103 }
2104
2105 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2106 {
2107 struct ath_hw *ah = sc->sc_ah;
2108 struct ath_common *common = ath9k_hw_common(ah);
2109 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2110 struct list_head bf_head;
2111 struct ath_desc *ds;
2112 struct ath_tx_status ts;
2113 int status;
2114
2115 ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2116 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2117 txq->axq_link);
2118
2119 spin_lock_bh(&txq->axq_lock);
2120 for (;;) {
2121 if (work_pending(&sc->hw_reset_work))
2122 break;
2123
2124 if (list_empty(&txq->axq_q)) {
2125 txq->axq_link = NULL;
2126 if (sc->sc_flags & SC_OP_TXAGGR)
2127 ath_txq_schedule(sc, txq);
2128 break;
2129 }
2130 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2131
2132 /*
2133 * There is a race condition that a BH gets scheduled
2134 * after sw writes TxE and before hw re-load the last
2135 * descriptor to get the newly chained one.
2136 * Software must keep the last DONE descriptor as a
2137 * holding descriptor - software does so by marking
2138 * it with the STALE flag.
2139 */
2140 bf_held = NULL;
2141 if (bf->bf_stale) {
2142 bf_held = bf;
2143 if (list_is_last(&bf_held->list, &txq->axq_q))
2144 break;
2145
2146 bf = list_entry(bf_held->list.next, struct ath_buf,
2147 list);
2148 }
2149
2150 lastbf = bf->bf_lastbf;
2151 ds = lastbf->bf_desc;
2152
2153 memset(&ts, 0, sizeof(ts));
2154 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2155 if (status == -EINPROGRESS)
2156 break;
2157
2158 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2159
2160 /*
2161 * Remove ath_buf's of the same transmit unit from txq,
2162 * however leave the last descriptor back as the holding
2163 * descriptor for hw.
2164 */
2165 lastbf->bf_stale = true;
2166 INIT_LIST_HEAD(&bf_head);
2167 if (!list_is_singular(&lastbf->list))
2168 list_cut_position(&bf_head,
2169 &txq->axq_q, lastbf->list.prev);
2170
2171 if (bf_held) {
2172 list_del(&bf_held->list);
2173 ath_tx_return_buffer(sc, bf_held);
2174 }
2175
2176 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2177 }
2178 spin_unlock_bh(&txq->axq_lock);
2179 }
2180
2181 static void ath_tx_complete_poll_work(struct work_struct *work)
2182 {
2183 struct ath_softc *sc = container_of(work, struct ath_softc,
2184 tx_complete_work.work);
2185 struct ath_txq *txq;
2186 int i;
2187 bool needreset = false;
2188 #ifdef CONFIG_ATH9K_DEBUGFS
2189 sc->tx_complete_poll_work_seen++;
2190 #endif
2191
2192 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2193 if (ATH_TXQ_SETUP(sc, i)) {
2194 txq = &sc->tx.txq[i];
2195 spin_lock_bh(&txq->axq_lock);
2196 if (txq->axq_depth) {
2197 if (txq->axq_tx_inprogress) {
2198 needreset = true;
2199 spin_unlock_bh(&txq->axq_lock);
2200 break;
2201 } else {
2202 txq->axq_tx_inprogress = true;
2203 }
2204 }
2205 spin_unlock_bh(&txq->axq_lock);
2206 }
2207
2208 if (needreset) {
2209 ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2210 "tx hung, resetting the chip\n");
2211 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
2212 }
2213
2214 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2215 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2216 }
2217
2218
2219
2220 void ath_tx_tasklet(struct ath_softc *sc)
2221 {
2222 int i;
2223 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2224
2225 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2226
2227 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2228 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2229 ath_tx_processq(sc, &sc->tx.txq[i]);
2230 }
2231 }
2232
2233 void ath_tx_edma_tasklet(struct ath_softc *sc)
2234 {
2235 struct ath_tx_status ts;
2236 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2237 struct ath_hw *ah = sc->sc_ah;
2238 struct ath_txq *txq;
2239 struct ath_buf *bf, *lastbf;
2240 struct list_head bf_head;
2241 int status;
2242
2243 for (;;) {
2244 if (work_pending(&sc->hw_reset_work))
2245 break;
2246
2247 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2248 if (status == -EINPROGRESS)
2249 break;
2250 if (status == -EIO) {
2251 ath_dbg(common, ATH_DBG_XMIT,
2252 "Error processing tx status\n");
2253 break;
2254 }
2255
2256 /* Skip beacon completions */
2257 if (ts.qid == sc->beacon.beaconq)
2258 continue;
2259
2260 txq = &sc->tx.txq[ts.qid];
2261
2262 spin_lock_bh(&txq->axq_lock);
2263
2264 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2265 spin_unlock_bh(&txq->axq_lock);
2266 return;
2267 }
2268
2269 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2270 struct ath_buf, list);
2271 lastbf = bf->bf_lastbf;
2272
2273 INIT_LIST_HEAD(&bf_head);
2274 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2275 &lastbf->list);
2276
2277 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2278 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2279
2280 if (!list_empty(&txq->axq_q)) {
2281 struct list_head bf_q;
2282
2283 INIT_LIST_HEAD(&bf_q);
2284 txq->axq_link = NULL;
2285 list_splice_tail_init(&txq->axq_q, &bf_q);
2286 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2287 }
2288 }
2289
2290 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2291 spin_unlock_bh(&txq->axq_lock);
2292 }
2293 }
2294
2295 /*****************/
2296 /* Init, Cleanup */
2297 /*****************/
2298
2299 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2300 {
2301 struct ath_descdma *dd = &sc->txsdma;
2302 u8 txs_len = sc->sc_ah->caps.txs_len;
2303
2304 dd->dd_desc_len = size * txs_len;
2305 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2306 &dd->dd_desc_paddr, GFP_KERNEL);
2307 if (!dd->dd_desc)
2308 return -ENOMEM;
2309
2310 return 0;
2311 }
2312
2313 static int ath_tx_edma_init(struct ath_softc *sc)
2314 {
2315 int err;
2316
2317 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2318 if (!err)
2319 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2320 sc->txsdma.dd_desc_paddr,
2321 ATH_TXSTATUS_RING_SIZE);
2322
2323 return err;
2324 }
2325
2326 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2327 {
2328 struct ath_descdma *dd = &sc->txsdma;
2329
2330 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2331 dd->dd_desc_paddr);
2332 }
2333
2334 int ath_tx_init(struct ath_softc *sc, int nbufs)
2335 {
2336 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2337 int error = 0;
2338
2339 spin_lock_init(&sc->tx.txbuflock);
2340
2341 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2342 "tx", nbufs, 1, 1);
2343 if (error != 0) {
2344 ath_err(common,
2345 "Failed to allocate tx descriptors: %d\n", error);
2346 goto err;
2347 }
2348
2349 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2350 "beacon", ATH_BCBUF, 1, 1);
2351 if (error != 0) {
2352 ath_err(common,
2353 "Failed to allocate beacon descriptors: %d\n", error);
2354 goto err;
2355 }
2356
2357 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2358
2359 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2360 error = ath_tx_edma_init(sc);
2361 if (error)
2362 goto err;
2363 }
2364
2365 err:
2366 if (error != 0)
2367 ath_tx_cleanup(sc);
2368
2369 return error;
2370 }
2371
2372 void ath_tx_cleanup(struct ath_softc *sc)
2373 {
2374 if (sc->beacon.bdma.dd_desc_len != 0)
2375 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2376
2377 if (sc->tx.txdma.dd_desc_len != 0)
2378 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2379
2380 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2381 ath_tx_edma_cleanup(sc);
2382 }
2383
2384 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2385 {
2386 struct ath_atx_tid *tid;
2387 struct ath_atx_ac *ac;
2388 int tidno, acno;
2389
2390 for (tidno = 0, tid = &an->tid[tidno];
2391 tidno < WME_NUM_TID;
2392 tidno++, tid++) {
2393 tid->an = an;
2394 tid->tidno = tidno;
2395 tid->seq_start = tid->seq_next = 0;
2396 tid->baw_size = WME_MAX_BA;
2397 tid->baw_head = tid->baw_tail = 0;
2398 tid->sched = false;
2399 tid->paused = false;
2400 tid->state &= ~AGGR_CLEANUP;
2401 __skb_queue_head_init(&tid->buf_q);
2402 acno = TID_TO_WME_AC(tidno);
2403 tid->ac = &an->ac[acno];
2404 tid->state &= ~AGGR_ADDBA_COMPLETE;
2405 tid->state &= ~AGGR_ADDBA_PROGRESS;
2406 }
2407
2408 for (acno = 0, ac = &an->ac[acno];
2409 acno < WME_NUM_AC; acno++, ac++) {
2410 ac->sched = false;
2411 ac->txq = sc->tx.txq_map[acno];
2412 INIT_LIST_HEAD(&ac->tid_q);
2413 }
2414 }
2415
2416 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2417 {
2418 struct ath_atx_ac *ac;
2419 struct ath_atx_tid *tid;
2420 struct ath_txq *txq;
2421 int tidno;
2422
2423 for (tidno = 0, tid = &an->tid[tidno];
2424 tidno < WME_NUM_TID; tidno++, tid++) {
2425
2426 ac = tid->ac;
2427 txq = ac->txq;
2428
2429 spin_lock_bh(&txq->axq_lock);
2430
2431 if (tid->sched) {
2432 list_del(&tid->list);
2433 tid->sched = false;
2434 }
2435
2436 if (ac->sched) {
2437 list_del(&ac->list);
2438 tid->ac->sched = false;
2439 }
2440
2441 ath_tid_drain(sc, txq, tid);
2442 tid->state &= ~AGGR_ADDBA_COMPLETE;
2443 tid->state &= ~AGGR_CLEANUP;
2444
2445 spin_unlock_bh(&txq->axq_lock);
2446 }
2447 }