ath9k: remove unnecessary IEEE80211_TX_CTL_NO_ACK checks
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "ath9k.h"
19
20 static const struct ath_rate_table ar5416_11na_ratetable = {
21 42,
22 {
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 2, 1, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 3, 1, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 4, 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 6, 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 10, 3, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 14, 3, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 20, 3, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 23, 3, 7, 7, 7, 7, 0 },
47 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 2, 3, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 4, 3, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 6, 3, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 10, 3, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 14, 3, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 20, 3, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 23, 3, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 25, 3, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 4, 3, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 6, 3, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 10, 3, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 14, 3, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 20, 3, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 23, 3, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 25, 3, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 2, 3, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 4, 3, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 6, 3, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 10, 3, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 14, 3, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 20, 3, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 23, 3, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 25, 3, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 25, 3, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 2, 3, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 4, 3, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 6, 3, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 10, 3, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 14, 3, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 20, 3, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 23, 3, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 25, 3, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 25, 3, 23, 40, 41, 41, 148400 },
149 },
150 50, /* probe interval */
151 50, /* rssi reduce interval */
152 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
153 };
154
155 /* 4ms frame limit not used for NG mode. The values filled
156 * for HT are the 64K max aggregate limit */
157
158 static const struct ath_rate_table ar5416_11ng_ratetable = {
159 46,
160 {
161 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
162 900, 0x1b, 0x00, 2,
163 0, 0, 1, 0, 0, 0, 0, 0 },
164 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
165 1900, 0x1a, 0x04, 4,
166 1, 1, 1, 1, 1, 1, 1, 0 },
167 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
168 4900, 0x19, 0x04, 11,
169 2, 2, 2, 2, 2, 2, 2, 0 },
170 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
171 8100, 0x18, 0x04, 22,
172 3, 3, 2, 3, 3, 3, 3, 0 },
173 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
174 5400, 0x0b, 0x00, 12,
175 4, 2, 1, 4, 4, 4, 4, 0 },
176 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
177 7800, 0x0f, 0x00, 18,
178 4, 3, 1, 5, 5, 5, 5, 0 },
179 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
180 10100, 0x0a, 0x00, 24,
181 6, 4, 1, 6, 6, 6, 6, 0 },
182 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
183 14100, 0x0e, 0x00, 36,
184 6, 6, 2, 7, 7, 7, 7, 0 },
185 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
186 17700, 0x09, 0x00, 48,
187 8, 10, 3, 8, 8, 8, 8, 0 },
188 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
189 23700, 0x0d, 0x00, 72,
190 8, 14, 3, 9, 9, 9, 9, 0 },
191 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
192 27400, 0x08, 0x00, 96,
193 8, 20, 3, 10, 10, 10, 10, 0 },
194 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
195 30900, 0x0c, 0x00, 108,
196 8, 23, 3, 11, 11, 11, 11, 0 },
197 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
198 6400, 0x80, 0x00, 0,
199 4, 2, 3, 12, 28, 12, 28, 3216 },
200 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
201 12700, 0x81, 0x00, 1,
202 6, 4, 3, 13, 29, 13, 29, 6434 },
203 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
204 18800, 0x82, 0x00, 2,
205 6, 6, 3, 14, 30, 14, 30, 9650 },
206 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
207 25000, 0x83, 0x00, 3,
208 8, 10, 3, 15, 31, 15, 31, 12868 },
209 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
210 36700, 0x84, 0x00, 4,
211 8, 14, 3, 16, 32, 16, 32, 19304 },
212 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
213 48100, 0x85, 0x00, 5,
214 8, 20, 3, 17, 33, 17, 33, 25740 },
215 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
216 53500, 0x86, 0x00, 6,
217 8, 23, 3, 18, 34, 18, 34, 28956 },
218 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
219 59000, 0x87, 0x00, 7,
220 8, 25, 3, 19, 35, 19, 36, 32180 },
221 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
222 12700, 0x88, 0x00, 8,
223 4, 2, 3, 20, 37, 20, 37, 6430 },
224 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
225 24800, 0x89, 0x00, 9,
226 6, 4, 3, 21, 38, 21, 38, 12860 },
227 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
228 36600, 0x8a, 0x00, 10,
229 6, 6, 3, 22, 39, 22, 39, 19300 },
230 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
231 48100, 0x8b, 0x00, 11,
232 8, 10, 3, 23, 40, 23, 40, 25736 },
233 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
234 69500, 0x8c, 0x00, 12,
235 8, 14, 3, 24, 41, 24, 41, 38600 },
236 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
237 89500, 0x8d, 0x00, 13,
238 8, 20, 3, 25, 42, 25, 42, 51472 },
239 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
240 98900, 0x8e, 0x00, 14,
241 8, 23, 3, 26, 43, 26, 44, 57890 },
242 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
243 108300, 0x8f, 0x00, 15,
244 8, 25, 3, 27, 44, 27, 45, 64320 },
245 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
246 13200, 0x80, 0x00, 0,
247 8, 2, 3, 12, 28, 28, 28, 6684 },
248 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
249 25900, 0x81, 0x00, 1,
250 8, 4, 3, 13, 29, 29, 29, 13368 },
251 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
252 38600, 0x82, 0x00, 2,
253 8, 6, 3, 14, 30, 30, 30, 20052 },
254 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
255 49800, 0x83, 0x00, 3,
256 8, 10, 3, 15, 31, 31, 31, 26738 },
257 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
258 72200, 0x84, 0x00, 4,
259 8, 14, 3, 16, 32, 32, 32, 40104 },
260 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
261 92900, 0x85, 0x00, 5,
262 8, 20, 3, 17, 33, 33, 33, 53476 },
263 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
264 102700, 0x86, 0x00, 6,
265 8, 23, 3, 18, 34, 34, 34, 60156 },
266 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
267 112000, 0x87, 0x00, 7,
268 8, 23, 3, 19, 35, 36, 36, 66840 },
269 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
270 122000, 0x87, 0x00, 7,
271 8, 25, 3, 19, 35, 36, 36, 74200 },
272 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
273 25800, 0x88, 0x00, 8,
274 8, 2, 3, 20, 37, 37, 37, 13360 },
275 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
276 49800, 0x89, 0x00, 9,
277 8, 4, 3, 21, 38, 38, 38, 26720 },
278 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
279 71900, 0x8a, 0x00, 10,
280 8, 6, 3, 22, 39, 39, 39, 40080 },
281 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
282 92500, 0x8b, 0x00, 11,
283 8, 10, 3, 23, 40, 40, 40, 53440 },
284 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
285 130300, 0x8c, 0x00, 12,
286 8, 14, 3, 24, 41, 41, 41, 80160 },
287 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
288 162800, 0x8d, 0x00, 13,
289 8, 20, 3, 25, 42, 42, 42, 106880 },
290 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
291 178200, 0x8e, 0x00, 14,
292 8, 23, 3, 26, 43, 43, 43, 120240 },
293 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
294 192100, 0x8f, 0x00, 15,
295 8, 23, 3, 27, 44, 45, 45, 133600 },
296 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
297 207000, 0x8f, 0x00, 15,
298 8, 25, 3, 27, 44, 45, 45, 148400 },
299 },
300 50, /* probe interval */
301 50, /* rssi reduce interval */
302 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
303 };
304
305 static const struct ath_rate_table ar5416_11a_ratetable = {
306 8,
307 {
308 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
309 5400, 0x0b, 0x00, (0x80|12),
310 0, 2, 1, 0, 0 },
311 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
312 7800, 0x0f, 0x00, 18,
313 0, 3, 1, 1, 0 },
314 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
315 10000, 0x0a, 0x00, (0x80|24),
316 2, 4, 2, 2, 0 },
317 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
318 13900, 0x0e, 0x00, 36,
319 2, 6, 2, 3, 0 },
320 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
321 17300, 0x09, 0x00, (0x80|48),
322 4, 10, 3, 4, 0 },
323 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
324 23000, 0x0d, 0x00, 72,
325 4, 14, 3, 5, 0 },
326 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
327 27400, 0x08, 0x00, 96,
328 4, 19, 3, 6, 0 },
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
330 29300, 0x0c, 0x00, 108,
331 4, 23, 3, 7, 0 },
332 },
333 50, /* probe interval */
334 50, /* rssi reduce interval */
335 0, /* Phy rates allowed initially */
336 };
337
338 static const struct ath_rate_table ar5416_11g_ratetable = {
339 12,
340 {
341 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
342 900, 0x1b, 0x00, 2,
343 0, 0, 1, 0, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
345 1900, 0x1a, 0x04, 4,
346 1, 1, 1, 1, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
348 4900, 0x19, 0x04, 11,
349 2, 2, 2, 2, 0 },
350 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
351 8100, 0x18, 0x04, 22,
352 3, 3, 2, 3, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
354 5400, 0x0b, 0x00, 12,
355 4, 2, 1, 4, 0 },
356 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
357 7800, 0x0f, 0x00, 18,
358 4, 3, 1, 5, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
360 10000, 0x0a, 0x00, 24,
361 6, 4, 1, 6, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
363 13900, 0x0e, 0x00, 36,
364 6, 6, 2, 7, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
366 17300, 0x09, 0x00, 48,
367 8, 10, 3, 8, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
369 23000, 0x0d, 0x00, 72,
370 8, 14, 3, 9, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
372 27400, 0x08, 0x00, 96,
373 8, 19, 3, 10, 0 },
374 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 0x0c, 0x00, 108,
376 8, 23, 3, 11, 0 },
377 },
378 50, /* probe interval */
379 50, /* rssi reduce interval */
380 0, /* Phy rates allowed initially */
381 };
382
383 static inline int8_t median(int8_t a, int8_t b, int8_t c)
384 {
385 if (a >= b) {
386 if (b >= c)
387 return b;
388 else if (a > c)
389 return c;
390 else
391 return a;
392 } else {
393 if (a >= c)
394 return a;
395 else if (b >= c)
396 return c;
397 else
398 return b;
399 }
400 }
401
402 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
403 struct ath_rate_priv *ath_rc_priv)
404 {
405 u8 i, j, idx, idx_next;
406
407 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
408 for (j = 0; j <= i-1; j++) {
409 idx = ath_rc_priv->valid_rate_index[j];
410 idx_next = ath_rc_priv->valid_rate_index[j+1];
411
412 if (rate_table->info[idx].ratekbps >
413 rate_table->info[idx_next].ratekbps) {
414 ath_rc_priv->valid_rate_index[j] = idx_next;
415 ath_rc_priv->valid_rate_index[j+1] = idx;
416 }
417 }
418 }
419 }
420
421 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
422 {
423 u8 i;
424
425 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
426 ath_rc_priv->valid_rate_index[i] = 0;
427 }
428
429 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
430 u8 index, int valid_tx_rate)
431 {
432 ASSERT(index <= ath_rc_priv->rate_table_size);
433 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
434 }
435
436 static inline
437 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
438 struct ath_rate_priv *ath_rc_priv,
439 u8 cur_valid_txrate,
440 u8 *next_idx)
441 {
442 u8 i;
443
444 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
445 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
446 *next_idx = ath_rc_priv->valid_rate_index[i+1];
447 return 1;
448 }
449 }
450
451 /* No more valid rates */
452 *next_idx = 0;
453
454 return 0;
455 }
456
457 /* Return true only for single stream */
458
459 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
460 {
461 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
462 return 0;
463 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
464 return 0;
465 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
466 return 0;
467 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
468 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
469 return 0;
470 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
471 return 0;
472 return 1;
473 }
474
475 static inline int
476 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
477 struct ath_rate_priv *ath_rc_priv,
478 u8 cur_valid_txrate, u8 *next_idx)
479 {
480 int8_t i;
481
482 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
483 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
484 *next_idx = ath_rc_priv->valid_rate_index[i-1];
485 return 1;
486 }
487 }
488
489 return 0;
490 }
491
492 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
493 const struct ath_rate_table *rate_table,
494 u32 capflag)
495 {
496 u8 i, hi = 0;
497 u32 valid;
498
499 for (i = 0; i < rate_table->rate_cnt; i++) {
500 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
501 rate_table->info[i].valid_single_stream :
502 rate_table->info[i].valid);
503 if (valid == 1) {
504 u32 phy = rate_table->info[i].phy;
505 u8 valid_rate_count = 0;
506
507 if (!ath_rc_valid_phyrate(phy, capflag, 0))
508 continue;
509
510 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
511
512 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
513 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
514 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
515 hi = A_MAX(hi, i);
516 }
517 }
518
519 return hi;
520 }
521
522 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
523 const struct ath_rate_table *rate_table,
524 struct ath_rateset *rateset,
525 u32 capflag)
526 {
527 u8 i, j, hi = 0;
528
529 /* Use intersection of working rates and valid rates */
530 for (i = 0; i < rateset->rs_nrates; i++) {
531 for (j = 0; j < rate_table->rate_cnt; j++) {
532 u32 phy = rate_table->info[j].phy;
533 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
534 rate_table->info[j].valid_single_stream :
535 rate_table->info[j].valid);
536 u8 rate = rateset->rs_rates[i];
537 u8 dot11rate = rate_table->info[j].dot11rate;
538
539 /* We allow a rate only if its valid and the
540 * capflag matches one of the validity
541 * (VALID/VALID_20/VALID_40) flags */
542
543 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
544 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
545 WLAN_RC_CAP_MODE(capflag)) &&
546 !WLAN_RC_PHY_HT(phy)) {
547 u8 valid_rate_count = 0;
548
549 if (!ath_rc_valid_phyrate(phy, capflag, 0))
550 continue;
551
552 valid_rate_count =
553 ath_rc_priv->valid_phy_ratecnt[phy];
554
555 ath_rc_priv->valid_phy_rateidx[phy]
556 [valid_rate_count] = j;
557 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
558 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
559 hi = A_MAX(hi, j);
560 }
561 }
562 }
563
564 return hi;
565 }
566
567 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
568 const struct ath_rate_table *rate_table,
569 u8 *mcs_set, u32 capflag)
570 {
571 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
572
573 u8 i, j, hi = 0;
574
575 /* Use intersection of working rates and valid rates */
576 for (i = 0; i < rateset->rs_nrates; i++) {
577 for (j = 0; j < rate_table->rate_cnt; j++) {
578 u32 phy = rate_table->info[j].phy;
579 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
580 rate_table->info[j].valid_single_stream :
581 rate_table->info[j].valid);
582 u8 rate = rateset->rs_rates[i];
583 u8 dot11rate = rate_table->info[j].dot11rate;
584
585 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
586 !WLAN_RC_PHY_HT(phy) ||
587 !WLAN_RC_PHY_HT_VALID(valid, capflag))
588 continue;
589
590 if (!ath_rc_valid_phyrate(phy, capflag, 0))
591 continue;
592
593 ath_rc_priv->valid_phy_rateidx[phy]
594 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
595 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
596 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
597 hi = A_MAX(hi, j);
598 }
599 }
600
601 return hi;
602 }
603
604 /* Finds the highest rate index we can use */
605 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
606 struct ath_rate_priv *ath_rc_priv,
607 const struct ath_rate_table *rate_table,
608 int *is_probing)
609 {
610 u32 dt, best_thruput, this_thruput, now_msec;
611 u8 rate, next_rate, best_rate, maxindex, minindex;
612 int8_t rssi_last, rssi_reduce = 0, index = 0;
613
614 *is_probing = 0;
615
616 rssi_last = median(ath_rc_priv->rssi_last,
617 ath_rc_priv->rssi_last_prev,
618 ath_rc_priv->rssi_last_prev2);
619
620 /*
621 * Age (reduce) last ack rssi based on how old it is.
622 * The bizarre numbers are so the delta is 160msec,
623 * meaning we divide by 16.
624 * 0msec <= dt <= 25msec: don't derate
625 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
626 * 185msec <= dt: derate by 10dB
627 */
628
629 now_msec = jiffies_to_msecs(jiffies);
630 dt = now_msec - ath_rc_priv->rssi_time;
631
632 if (dt >= 185)
633 rssi_reduce = 10;
634 else if (dt >= 25)
635 rssi_reduce = (u8)((dt - 25) >> 4);
636
637 /* Now reduce rssi_last by rssi_reduce */
638 if (rssi_last < rssi_reduce)
639 rssi_last = 0;
640 else
641 rssi_last -= rssi_reduce;
642
643 /*
644 * Now look up the rate in the rssi table and return it.
645 * If no rates match then we return 0 (lowest rate)
646 */
647
648 best_thruput = 0;
649 maxindex = ath_rc_priv->max_valid_rate-1;
650
651 minindex = 0;
652 best_rate = minindex;
653
654 /*
655 * Try the higher rate first. It will reduce memory moving time
656 * if we have very good channel characteristics.
657 */
658 for (index = maxindex; index >= minindex ; index--) {
659 u8 per_thres;
660
661 rate = ath_rc_priv->valid_rate_index[index];
662 if (rate > ath_rc_priv->rate_max_phy)
663 continue;
664
665 /*
666 * For TCP the average collision rate is around 11%,
667 * so we ignore PERs less than this. This is to
668 * prevent the rate we are currently using (whose
669 * PER might be in the 10-15 range because of TCP
670 * collisions) looking worse than the next lower
671 * rate whose PER has decayed close to 0. If we
672 * used to next lower rate, its PER would grow to
673 * 10-15 and we would be worse off then staying
674 * at the current rate.
675 */
676 per_thres = ath_rc_priv->state[rate].per;
677 if (per_thres < 12)
678 per_thres = 12;
679
680 this_thruput = rate_table->info[rate].user_ratekbps *
681 (100 - per_thres);
682
683 if (best_thruput <= this_thruput) {
684 best_thruput = this_thruput;
685 best_rate = rate;
686 }
687 }
688
689 rate = best_rate;
690 ath_rc_priv->rssi_last_lookup = rssi_last;
691
692 /*
693 * Must check the actual rate (ratekbps) to account for
694 * non-monoticity of 11g's rate table
695 */
696
697 if (rate >= ath_rc_priv->rate_max_phy) {
698 rate = ath_rc_priv->rate_max_phy;
699
700 /* Probe the next allowed phy state */
701 if (ath_rc_get_nextvalid_txrate(rate_table,
702 ath_rc_priv, rate, &next_rate) &&
703 (now_msec - ath_rc_priv->probe_time >
704 rate_table->probe_interval) &&
705 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
706 rate = next_rate;
707 ath_rc_priv->probe_rate = rate;
708 ath_rc_priv->probe_time = now_msec;
709 ath_rc_priv->hw_maxretry_pktcnt = 0;
710 *is_probing = 1;
711 }
712 }
713
714 if (rate > (ath_rc_priv->rate_table_size - 1))
715 rate = ath_rc_priv->rate_table_size - 1;
716
717 if (rate_table->info[rate].valid &&
718 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
719 return rate;
720
721 if (rate_table->info[rate].valid_single_stream &&
722 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG));
723 return rate;
724
725 /* This should not happen */
726 WARN_ON(1);
727
728 rate = ath_rc_priv->valid_rate_index[0];
729
730 return rate;
731 }
732
733 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
734 struct ieee80211_tx_rate *rate,
735 struct ieee80211_tx_rate_control *txrc,
736 u8 tries, u8 rix, int rtsctsenable)
737 {
738 rate->count = tries;
739 rate->idx = rix;
740
741 if (txrc->short_preamble)
742 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
743 if (txrc->rts || rtsctsenable)
744 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
745 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
746 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
747 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
748 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
749 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
750 rate->flags |= IEEE80211_TX_RC_MCS;
751 }
752
753 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
754 const struct ath_rate_table *rate_table,
755 struct ieee80211_tx_info *tx_info)
756 {
757 struct ieee80211_tx_rate *rates = tx_info->control.rates;
758 int i = 0, rix = 0, cix, enable_g_protection = 0;
759
760 /* get the cix for the lowest valid rix */
761 for (i = 3; i >= 0; i--) {
762 if (rates[i].count && (rates[i].idx >= 0)) {
763 rix = rates[i].idx;
764 break;
765 }
766 }
767 cix = rate_table->info[rix].ctrl_rate;
768
769 /* All protection frames are transmited at 2Mb/s for 802.11g,
770 * otherwise we transmit them at 1Mb/s */
771 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
772 !conf_is_ht(&sc->hw->conf))
773 enable_g_protection = 1;
774
775 /*
776 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
777 * just CTS. Note that this is only done for OFDM/HT unicast frames.
778 */
779 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
780 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
781 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
782 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
783 cix = rate_table->info[enable_g_protection].ctrl_rate;
784 }
785
786 tx_info->control.rts_cts_rate_idx = cix;
787 }
788
789 static void ath_rc_ratefind(struct ath_softc *sc,
790 struct ath_rate_priv *ath_rc_priv,
791 struct ieee80211_tx_rate_control *txrc)
792 {
793 const struct ath_rate_table *rate_table;
794 struct sk_buff *skb = txrc->skb;
795 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
796 struct ieee80211_tx_rate *rates = tx_info->control.rates;
797 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
798 __le16 fc = hdr->frame_control;
799 u8 try_per_rate, i = 0, rix, nrix;
800 int is_probe = 0;
801
802 /*
803 * For Multi Rate Retry we use a different number of
804 * retry attempt counts. This ends up looking like this:
805 *
806 * MRR[0] = 2
807 * MRR[1] = 2
808 * MRR[2] = 2
809 * MRR[3] = 4
810 *
811 */
812 try_per_rate = sc->hw->max_rate_tries;
813
814 rate_table = sc->cur_rate_table;
815 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
816 nrix = rix;
817
818 if (is_probe) {
819 /* set one try for probe rates. For the
820 * probes don't enable rts */
821 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
822 1, nrix, 0);
823
824 /* Get the next tried/allowed rate. No RTS for the next series
825 * after the probe rate
826 */
827 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
828 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
829 try_per_rate, nrix, 0);
830
831 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
832 } else {
833 /* Set the choosen rate. No RTS for first series entry. */
834 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
835 try_per_rate, nrix, 0);
836 }
837
838 /* Fill in the other rates for multirate retry */
839 for ( ; i < 4; i++) {
840 /* Use twice the number of tries for the last MRR segment. */
841 if (i + 1 == 4)
842 try_per_rate = 4;
843
844 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
845 /* All other rates in the series have RTS enabled */
846 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
847 try_per_rate, nrix, 1);
848 }
849
850 /*
851 * NB:Change rate series to enable aggregation when operating
852 * at lower MCS rates. When first rate in series is MCS2
853 * in HT40 @ 2.4GHz, series should look like:
854 *
855 * {MCS2, MCS1, MCS0, MCS0}.
856 *
857 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
858 * look like:
859 *
860 * {MCS3, MCS2, MCS1, MCS1}
861 *
862 * So, set fourth rate in series to be same as third one for
863 * above conditions.
864 */
865 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
866 (conf_is_ht(&sc->hw->conf))) {
867 u8 dot11rate = rate_table->info[rix].dot11rate;
868 u8 phy = rate_table->info[rix].phy;
869 if (i == 4 &&
870 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
871 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
872 rates[3].idx = rates[2].idx;
873 rates[3].flags = rates[2].flags;
874 }
875 }
876
877 /*
878 * Force hardware to use computed duration for next
879 * fragment by disabling multi-rate retry, which
880 * updates duration based on the multi-rate duration table.
881 *
882 * FIXME: Fix duration
883 */
884 if (ieee80211_has_morefrags(fc) ||
885 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
886 rates[1].count = rates[2].count = rates[3].count = 0;
887 rates[1].idx = rates[2].idx = rates[3].idx = 0;
888 rates[0].count = ATH_TXMAXTRY;
889 }
890
891 /* Setup RTS/CTS */
892 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
893 }
894
895 static bool ath_rc_update_per(struct ath_softc *sc,
896 const struct ath_rate_table *rate_table,
897 struct ath_rate_priv *ath_rc_priv,
898 struct ath_tx_info_priv *tx_info_priv,
899 int tx_rate, int xretries, int retries,
900 u32 now_msec)
901 {
902 bool state_change = false;
903 int count;
904 u8 last_per;
905 static u32 nretry_to_per_lookup[10] = {
906 100 * 0 / 1,
907 100 * 1 / 4,
908 100 * 1 / 2,
909 100 * 3 / 4,
910 100 * 4 / 5,
911 100 * 5 / 6,
912 100 * 6 / 7,
913 100 * 7 / 8,
914 100 * 8 / 9,
915 100 * 9 / 10
916 };
917
918 last_per = ath_rc_priv->state[tx_rate].per;
919
920 if (xretries) {
921 if (xretries == 1) {
922 ath_rc_priv->state[tx_rate].per += 30;
923 if (ath_rc_priv->state[tx_rate].per > 100)
924 ath_rc_priv->state[tx_rate].per = 100;
925 } else {
926 /* xretries == 2 */
927 count = ARRAY_SIZE(nretry_to_per_lookup);
928 if (retries >= count)
929 retries = count - 1;
930
931 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
932 ath_rc_priv->state[tx_rate].per =
933 (u8)(last_per - (last_per >> 3) + (100 >> 3));
934 }
935
936 /* xretries == 1 or 2 */
937
938 if (ath_rc_priv->probe_rate == tx_rate)
939 ath_rc_priv->probe_rate = 0;
940
941 } else { /* xretries == 0 */
942 count = ARRAY_SIZE(nretry_to_per_lookup);
943 if (retries >= count)
944 retries = count - 1;
945
946 if (tx_info_priv->n_bad_frames) {
947 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
948 * Assuming that n_frames is not 0. The current PER
949 * from the retries is 100 * retries / (retries+1),
950 * since the first retries attempts failed, and the
951 * next one worked. For the one that worked,
952 * n_bad_frames subframes out of n_frames wored,
953 * so the PER for that part is
954 * 100 * n_bad_frames / n_frames, and it contributes
955 * 100 * n_bad_frames / (n_frames * (retries+1)) to
956 * the above PER. The expression below is a
957 * simplified version of the sum of these two terms.
958 */
959 if (tx_info_priv->n_frames > 0) {
960 int n_frames, n_bad_frames;
961 u8 cur_per, new_per;
962
963 n_bad_frames = retries * tx_info_priv->n_frames +
964 tx_info_priv->n_bad_frames;
965 n_frames = tx_info_priv->n_frames * (retries + 1);
966 cur_per = (100 * n_bad_frames / n_frames) >> 3;
967 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
968 ath_rc_priv->state[tx_rate].per = new_per;
969 }
970 } else {
971 ath_rc_priv->state[tx_rate].per =
972 (u8)(last_per - (last_per >> 3) +
973 (nretry_to_per_lookup[retries] >> 3));
974 }
975
976 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
977 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
978 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
979 ath_rc_priv->rssi_time = now_msec;
980
981 /*
982 * If we got at most one retry then increase the max rate if
983 * this was a probe. Otherwise, ignore the probe.
984 */
985 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
986 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
987 tx_info_priv->n_frames) {
988 /*
989 * Since we probed with just a single attempt,
990 * any retries means the probe failed. Also,
991 * if the attempt worked, but more than half
992 * the subframes were bad then also consider
993 * the probe a failure.
994 */
995 ath_rc_priv->probe_rate = 0;
996 } else {
997 u8 probe_rate = 0;
998
999 ath_rc_priv->rate_max_phy =
1000 ath_rc_priv->probe_rate;
1001 probe_rate = ath_rc_priv->probe_rate;
1002
1003 if (ath_rc_priv->state[probe_rate].per > 30)
1004 ath_rc_priv->state[probe_rate].per = 20;
1005
1006 ath_rc_priv->probe_rate = 0;
1007
1008 /*
1009 * Since this probe succeeded, we allow the next
1010 * probe twice as soon. This allows the maxRate
1011 * to move up faster if the probes are
1012 * succesful.
1013 */
1014 ath_rc_priv->probe_time =
1015 now_msec - rate_table->probe_interval / 2;
1016 }
1017 }
1018
1019 if (retries > 0) {
1020 /*
1021 * Don't update anything. We don't know if
1022 * this was because of collisions or poor signal.
1023 *
1024 * Later: if rssi_ack is close to
1025 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1026 * of retries, then we could increase
1027 * ath_rc_priv->state[txRate].rssi_thres.
1028 */
1029 ath_rc_priv->hw_maxretry_pktcnt = 0;
1030 } else {
1031 int32_t rssi_ackAvg;
1032 int8_t rssi_thres;
1033 int8_t rssi_ack_vmin;
1034
1035 /*
1036 * It worked with no retries. First ignore bogus (small)
1037 * rssi_ack values.
1038 */
1039 if (tx_rate == ath_rc_priv->rate_max_phy &&
1040 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1041 ath_rc_priv->hw_maxretry_pktcnt++;
1042 }
1043
1044 if (tx_info_priv->tx.ts_rssi <
1045 rate_table->info[tx_rate].rssi_ack_validmin)
1046 goto exit;
1047
1048 /* Average the rssi */
1049 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1050 ath_rc_priv->rssi_sum_rate = tx_rate;
1051 ath_rc_priv->rssi_sum =
1052 ath_rc_priv->rssi_sum_cnt = 0;
1053 }
1054
1055 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1056 ath_rc_priv->rssi_sum_cnt++;
1057
1058 if (ath_rc_priv->rssi_sum_cnt < 4)
1059 goto exit;
1060
1061 rssi_ackAvg =
1062 (ath_rc_priv->rssi_sum + 2) / 4;
1063 rssi_thres =
1064 ath_rc_priv->state[tx_rate].rssi_thres;
1065 rssi_ack_vmin =
1066 rate_table->info[tx_rate].rssi_ack_validmin;
1067
1068 ath_rc_priv->rssi_sum =
1069 ath_rc_priv->rssi_sum_cnt = 0;
1070
1071 /* Now reduce the current rssi threshold */
1072 if ((rssi_ackAvg < rssi_thres + 2) &&
1073 (rssi_thres > rssi_ack_vmin)) {
1074 ath_rc_priv->state[tx_rate].rssi_thres--;
1075 }
1076
1077 state_change = true;
1078 }
1079 }
1080 exit:
1081 return state_change;
1082 }
1083
1084 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1085 If you can make sense of all this, you really need to go out more. */
1086
1087 static void ath_rc_update_ht(struct ath_softc *sc,
1088 struct ath_rate_priv *ath_rc_priv,
1089 struct ath_tx_info_priv *tx_info_priv,
1090 int tx_rate, int xretries, int retries)
1091 {
1092 #define CHK_RSSI(rate) \
1093 ((ath_rc_priv->state[(rate)].rssi_thres + \
1094 rate_table->info[(rate)].rssi_ack_deltamin) > \
1095 ath_rc_priv->state[(rate)+1].rssi_thres)
1096
1097 u32 now_msec = jiffies_to_msecs(jiffies);
1098 int rate;
1099 u8 last_per;
1100 bool state_change = false;
1101 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1102 int size = ath_rc_priv->rate_table_size;
1103
1104 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1105 return;
1106
1107 /* To compensate for some imbalance between ctrl and ext. channel */
1108
1109 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1110 tx_info_priv->tx.ts_rssi =
1111 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1112 tx_info_priv->tx.ts_rssi - 3;
1113
1114 last_per = ath_rc_priv->state[tx_rate].per;
1115
1116 /* Update PER first */
1117 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1118 tx_info_priv, tx_rate, xretries,
1119 retries, now_msec);
1120
1121 /*
1122 * If this rate looks bad (high PER) then stop using it for
1123 * a while (except if we are probing).
1124 */
1125 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1126 rate_table->info[tx_rate].ratekbps <=
1127 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1128 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1129 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1130
1131 /* Don't probe for a little while. */
1132 ath_rc_priv->probe_time = now_msec;
1133 }
1134
1135 if (state_change) {
1136 /*
1137 * Make sure the rates above this have higher rssi thresholds.
1138 * (Note: Monotonicity is kept within the OFDM rates and
1139 * within the CCK rates. However, no adjustment is
1140 * made to keep the rssi thresholds monotonically
1141 * increasing between the CCK and OFDM rates.)
1142 */
1143 for (rate = tx_rate; rate < size - 1; rate++) {
1144 if (rate_table->info[rate+1].phy !=
1145 rate_table->info[tx_rate].phy)
1146 break;
1147
1148 if (CHK_RSSI(rate)) {
1149 ath_rc_priv->state[rate+1].rssi_thres =
1150 ath_rc_priv->state[rate].rssi_thres +
1151 rate_table->info[rate].rssi_ack_deltamin;
1152 }
1153 }
1154
1155 /* Make sure the rates below this have lower rssi thresholds. */
1156 for (rate = tx_rate - 1; rate >= 0; rate--) {
1157 if (rate_table->info[rate].phy !=
1158 rate_table->info[tx_rate].phy)
1159 break;
1160
1161 if (CHK_RSSI(rate)) {
1162 if (ath_rc_priv->state[rate+1].rssi_thres <
1163 rate_table->info[rate].rssi_ack_deltamin)
1164 ath_rc_priv->state[rate].rssi_thres = 0;
1165 else {
1166 ath_rc_priv->state[rate].rssi_thres =
1167 ath_rc_priv->state[rate+1].rssi_thres -
1168 rate_table->info[rate].rssi_ack_deltamin;
1169 }
1170
1171 if (ath_rc_priv->state[rate].rssi_thres <
1172 rate_table->info[rate].rssi_ack_validmin) {
1173 ath_rc_priv->state[rate].rssi_thres =
1174 rate_table->info[rate].rssi_ack_validmin;
1175 }
1176 }
1177 }
1178 }
1179
1180 /* Make sure the rates below this have lower PER */
1181 /* Monotonicity is kept only for rates below the current rate. */
1182 if (ath_rc_priv->state[tx_rate].per < last_per) {
1183 for (rate = tx_rate - 1; rate >= 0; rate--) {
1184 if (rate_table->info[rate].phy !=
1185 rate_table->info[tx_rate].phy)
1186 break;
1187
1188 if (ath_rc_priv->state[rate].per >
1189 ath_rc_priv->state[rate+1].per) {
1190 ath_rc_priv->state[rate].per =
1191 ath_rc_priv->state[rate+1].per;
1192 }
1193 }
1194 }
1195
1196 /* Maintain monotonicity for rates above the current rate */
1197 for (rate = tx_rate; rate < size - 1; rate++) {
1198 if (ath_rc_priv->state[rate+1].per <
1199 ath_rc_priv->state[rate].per)
1200 ath_rc_priv->state[rate+1].per =
1201 ath_rc_priv->state[rate].per;
1202 }
1203
1204 /* Every so often, we reduce the thresholds and
1205 * PER (different for CCK and OFDM). */
1206 if (now_msec - ath_rc_priv->rssi_down_time >=
1207 rate_table->rssi_reduce_interval) {
1208
1209 for (rate = 0; rate < size; rate++) {
1210 if (ath_rc_priv->state[rate].rssi_thres >
1211 rate_table->info[rate].rssi_ack_validmin)
1212 ath_rc_priv->state[rate].rssi_thres -= 1;
1213 }
1214 ath_rc_priv->rssi_down_time = now_msec;
1215 }
1216
1217 /* Every so often, we reduce the thresholds
1218 * and PER (different for CCK and OFDM). */
1219 if (now_msec - ath_rc_priv->per_down_time >=
1220 rate_table->rssi_reduce_interval) {
1221 for (rate = 0; rate < size; rate++) {
1222 ath_rc_priv->state[rate].per =
1223 7 * ath_rc_priv->state[rate].per / 8;
1224 }
1225
1226 ath_rc_priv->per_down_time = now_msec;
1227 }
1228
1229 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
1230 ath_rc_priv->state[tx_rate].per);
1231
1232 #undef CHK_RSSI
1233 }
1234
1235 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
1236 struct ieee80211_tx_rate *rate)
1237 {
1238 int rix;
1239
1240 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1241 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1242 rix = rate_table->info[rate->idx].ht_index;
1243 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1244 rix = rate_table->info[rate->idx].sgi_index;
1245 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1246 rix = rate_table->info[rate->idx].cw40index;
1247 else
1248 rix = rate_table->info[rate->idx].base_index;
1249
1250 return rix;
1251 }
1252
1253 static void ath_rc_tx_status(struct ath_softc *sc,
1254 struct ath_rate_priv *ath_rc_priv,
1255 struct ieee80211_tx_info *tx_info,
1256 int final_ts_idx, int xretries, int long_retry)
1257 {
1258 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1259 const struct ath_rate_table *rate_table;
1260 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1261 u8 flags;
1262 u32 i = 0, rix;
1263
1264 rate_table = sc->cur_rate_table;
1265
1266 /*
1267 * If the first rate is not the final index, there
1268 * are intermediate rate failures to be processed.
1269 */
1270 if (final_ts_idx != 0) {
1271 /* Process intermediate rates that failed.*/
1272 for (i = 0; i < final_ts_idx ; i++) {
1273 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1274 flags = rates[i].flags;
1275
1276 /* If HT40 and we have switched mode from
1277 * 40 to 20 => don't update */
1278
1279 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1280 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1281 return;
1282
1283 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1284 ath_rc_update_ht(sc, ath_rc_priv,
1285 tx_info_priv, rix,
1286 xretries ? 1 : 2,
1287 rates[i].count);
1288 }
1289 }
1290 } else {
1291 /*
1292 * Handle the special case of MIMO PS burst, where the second
1293 * aggregate is sent out with only one rate and one try.
1294 * Treating it as an excessive retry penalizes the rate
1295 * inordinately.
1296 */
1297 if (rates[0].count == 1 && xretries == 1)
1298 xretries = 2;
1299 }
1300
1301 flags = rates[i].flags;
1302
1303 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1304 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1305 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1306 return;
1307
1308 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1309 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1310 xretries, long_retry);
1311 }
1312
1313 static const
1314 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1315 enum ieee80211_band band,
1316 bool is_ht,
1317 bool is_cw_40)
1318 {
1319 int mode = 0;
1320
1321 switch(band) {
1322 case IEEE80211_BAND_2GHZ:
1323 mode = ATH9K_MODE_11G;
1324 if (is_ht)
1325 mode = ATH9K_MODE_11NG_HT20;
1326 if (is_cw_40)
1327 mode = ATH9K_MODE_11NG_HT40PLUS;
1328 break;
1329 case IEEE80211_BAND_5GHZ:
1330 mode = ATH9K_MODE_11A;
1331 if (is_ht)
1332 mode = ATH9K_MODE_11NA_HT20;
1333 if (is_cw_40)
1334 mode = ATH9K_MODE_11NA_HT40PLUS;
1335 break;
1336 default:
1337 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1338 return NULL;
1339 }
1340
1341 BUG_ON(mode >= ATH9K_MODE_MAX);
1342
1343 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1344 return sc->hw_rate_table[mode];
1345 }
1346
1347 static void ath_rc_init(struct ath_softc *sc,
1348 struct ath_rate_priv *ath_rc_priv,
1349 struct ieee80211_supported_band *sband,
1350 struct ieee80211_sta *sta,
1351 const struct ath_rate_table *rate_table)
1352 {
1353 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1354 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1355 u8 i, j, k, hi = 0, hthi = 0;
1356
1357 if (!rate_table) {
1358 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1359 return;
1360 }
1361
1362 /* Initial rate table size. Will change depending
1363 * on the working rate set */
1364 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1365
1366 /* Initialize thresholds according to the global rate table */
1367 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1368 ath_rc_priv->state[i].rssi_thres =
1369 rate_table->info[i].rssi_ack_validmin;
1370 ath_rc_priv->state[i].per = 0;
1371 }
1372
1373 /* Determine the valid rates */
1374 ath_rc_init_valid_txmask(ath_rc_priv);
1375
1376 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1377 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1378 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1379 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1380 }
1381
1382 if (!rateset->rs_nrates) {
1383 /* No working rate, just initialize valid rates */
1384 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1385 ath_rc_priv->ht_cap);
1386 } else {
1387 /* Use intersection of working rates and valid rates */
1388 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1389 rateset, ath_rc_priv->ht_cap);
1390 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1391 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1392 rate_table,
1393 ht_mcs,
1394 ath_rc_priv->ht_cap);
1395 }
1396 hi = A_MAX(hi, hthi);
1397 }
1398
1399 ath_rc_priv->rate_table_size = hi + 1;
1400 ath_rc_priv->rate_max_phy = 0;
1401 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1402
1403 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1404 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1405 ath_rc_priv->valid_rate_index[k++] =
1406 ath_rc_priv->valid_phy_rateidx[i][j];
1407 }
1408
1409 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1410 || !ath_rc_priv->valid_phy_ratecnt[i])
1411 continue;
1412
1413 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1414 }
1415 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1416 ASSERT(k <= RATE_TABLE_SIZE);
1417
1418 ath_rc_priv->max_valid_rate = k;
1419 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1420 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1421 sc->cur_rate_table = rate_table;
1422
1423 DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n",
1424 ath_rc_priv->ht_cap);
1425 }
1426
1427 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1428 bool is_cw40, bool is_sgi40)
1429 {
1430 u8 caps = 0;
1431
1432 if (sta->ht_cap.ht_supported) {
1433 caps = WLAN_RC_HT_FLAG;
1434 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1435 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1436 if (sta->ht_cap.mcs.rx_mask[1])
1437 caps |= WLAN_RC_DS_FLAG;
1438 }
1439 if (is_cw40)
1440 caps |= WLAN_RC_40_FLAG;
1441 if (is_sgi40)
1442 caps |= WLAN_RC_SGI_FLAG;
1443 }
1444
1445 return caps;
1446 }
1447
1448 /***********************************/
1449 /* mac80211 Rate Control callbacks */
1450 /***********************************/
1451
1452 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1453 struct ieee80211_sta *sta, void *priv_sta,
1454 struct sk_buff *skb)
1455 {
1456 struct ath_softc *sc = priv;
1457 struct ath_rate_priv *ath_rc_priv = priv_sta;
1458 struct ath_tx_info_priv *tx_info_priv = NULL;
1459 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1460 struct ieee80211_hdr *hdr;
1461 int final_ts_idx, tx_status = 0, is_underrun = 0;
1462 __le16 fc;
1463
1464 hdr = (struct ieee80211_hdr *)skb->data;
1465 fc = hdr->frame_control;
1466 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1467 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1468
1469 if (!priv_sta || !ieee80211_is_data(fc) ||
1470 !tx_info_priv->update_rc)
1471 goto exit;
1472
1473 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1474 goto exit;
1475
1476 /*
1477 * If underrun error is seen assume it as an excessive retry only
1478 * if prefetch trigger level have reached the max (0x3f for 5416)
1479 * Adjust the long retry as if the frame was tried hw->max_rate_tries
1480 * times. This affects how ratectrl updates PER for the failed rate.
1481 */
1482 if (tx_info_priv->tx.ts_flags &
1483 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1484 ((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) {
1485 tx_status = 1;
1486 is_underrun = 1;
1487 }
1488
1489 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1490 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1491 tx_status = 1;
1492
1493 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1494 (is_underrun) ? sc->hw->max_rate_tries :
1495 tx_info_priv->tx.ts_longretry);
1496
1497 /* Check if aggregation has to be enabled for this tid */
1498 if (conf_is_ht(&sc->hw->conf) &&
1499 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1500 if (ieee80211_is_data_qos(fc)) {
1501 u8 *qc, tid;
1502 struct ath_node *an;
1503
1504 qc = ieee80211_get_qos_ctl(hdr);
1505 tid = qc[0] & 0xf;
1506 an = (struct ath_node *)sta->drv_priv;
1507
1508 if(ath_tx_aggr_check(sc, an, tid))
1509 ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
1510 }
1511 }
1512
1513 ath_debug_stat_rc(sc, skb);
1514 exit:
1515 kfree(tx_info_priv);
1516 }
1517
1518 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1519 struct ieee80211_tx_rate_control *txrc)
1520 {
1521 struct ieee80211_supported_band *sband = txrc->sband;
1522 struct sk_buff *skb = txrc->skb;
1523 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1524 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1525 struct ath_softc *sc = priv;
1526 struct ath_rate_priv *ath_rc_priv = priv_sta;
1527 __le16 fc = hdr->frame_control;
1528
1529 /* lowest rate for management and NO_ACK frames */
1530 if (!ieee80211_is_data(fc) ||
1531 tx_info->flags & IEEE80211_TX_CTL_NO_ACK || !sta) {
1532 tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
1533 tx_info->control.rates[0].count =
1534 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) ?
1535 1 : ATH_MGT_TXMAXTRY;
1536 return;
1537 }
1538
1539 /* Find tx rate for unicast frames */
1540 ath_rc_ratefind(sc, ath_rc_priv, txrc);
1541 }
1542
1543 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1544 struct ieee80211_sta *sta, void *priv_sta)
1545 {
1546 struct ath_softc *sc = priv;
1547 struct ath_rate_priv *ath_rc_priv = priv_sta;
1548 const struct ath_rate_table *rate_table = NULL;
1549 bool is_cw40, is_sgi40;
1550 int i, j = 0;
1551
1552 for (i = 0; i < sband->n_bitrates; i++) {
1553 if (sta->supp_rates[sband->band] & BIT(i)) {
1554 ath_rc_priv->neg_rates.rs_rates[j]
1555 = (sband->bitrates[i].bitrate * 2) / 10;
1556 j++;
1557 }
1558 }
1559 ath_rc_priv->neg_rates.rs_nrates = j;
1560
1561 if (sta->ht_cap.ht_supported) {
1562 for (i = 0, j = 0; i < 77; i++) {
1563 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1564 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1565 if (j == ATH_RATE_MAX)
1566 break;
1567 }
1568 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1569 }
1570
1571 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1572 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1573
1574 /* Choose rate table first */
1575
1576 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1577 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1578 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1579 rate_table = ath_choose_rate_table(sc, sband->band,
1580 sta->ht_cap.ht_supported,
1581 is_cw40);
1582 } else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) {
1583 /* cur_rate_table would be set on init through config() */
1584 rate_table = sc->cur_rate_table;
1585 }
1586
1587 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1588 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1589 }
1590
1591 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1592 struct ieee80211_sta *sta, void *priv_sta,
1593 u32 changed)
1594 {
1595 struct ath_softc *sc = priv;
1596 struct ath_rate_priv *ath_rc_priv = priv_sta;
1597 const struct ath_rate_table *rate_table = NULL;
1598 bool oper_cw40 = false, oper_sgi40;
1599 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1600 true : false;
1601 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1602 true : false;
1603
1604 /* FIXME: Handle AP mode later when we support CWM */
1605
1606 if (changed & IEEE80211_RC_HT_CHANGED) {
1607 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1608 return;
1609
1610 if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
1611 sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
1612 oper_cw40 = true;
1613
1614 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1615 true : false;
1616
1617 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1618 rate_table = ath_choose_rate_table(sc, sband->band,
1619 sta->ht_cap.ht_supported,
1620 oper_cw40);
1621 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1622 oper_cw40, oper_sgi40);
1623 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1624
1625 DPRINTF(sc, ATH_DBG_CONFIG,
1626 "Operating HT Bandwidth changed to: %d\n",
1627 sc->hw->conf.channel_type);
1628 }
1629 }
1630 }
1631
1632 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1633 {
1634 struct ath_wiphy *aphy = hw->priv;
1635 return aphy->sc;
1636 }
1637
1638 static void ath_rate_free(void *priv)
1639 {
1640 return;
1641 }
1642
1643 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1644 {
1645 struct ath_softc *sc = priv;
1646 struct ath_rate_priv *rate_priv;
1647
1648 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1649 if (!rate_priv) {
1650 DPRINTF(sc, ATH_DBG_FATAL,
1651 "Unable to allocate private rc structure\n");
1652 return NULL;
1653 }
1654
1655 rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1656 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1657
1658 return rate_priv;
1659 }
1660
1661 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1662 void *priv_sta)
1663 {
1664 struct ath_rate_priv *rate_priv = priv_sta;
1665 kfree(rate_priv);
1666 }
1667
1668 static struct rate_control_ops ath_rate_ops = {
1669 .module = NULL,
1670 .name = "ath9k_rate_control",
1671 .tx_status = ath_tx_status,
1672 .get_rate = ath_get_rate,
1673 .rate_init = ath_rate_init,
1674 .rate_update = ath_rate_update,
1675 .alloc = ath_rate_alloc,
1676 .free = ath_rate_free,
1677 .alloc_sta = ath_rate_alloc_sta,
1678 .free_sta = ath_rate_free_sta,
1679 };
1680
1681 void ath_rate_attach(struct ath_softc *sc)
1682 {
1683 sc->hw_rate_table[ATH9K_MODE_11A] =
1684 &ar5416_11a_ratetable;
1685 sc->hw_rate_table[ATH9K_MODE_11G] =
1686 &ar5416_11g_ratetable;
1687 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1688 &ar5416_11na_ratetable;
1689 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1690 &ar5416_11ng_ratetable;
1691 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1692 &ar5416_11na_ratetable;
1693 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1694 &ar5416_11na_ratetable;
1695 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1696 &ar5416_11ng_ratetable;
1697 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1698 &ar5416_11ng_ratetable;
1699 }
1700
1701 int ath_rate_control_register(void)
1702 {
1703 return ieee80211_rate_control_register(&ath_rate_ops);
1704 }
1705
1706 void ath_rate_control_unregister(void)
1707 {
1708 ieee80211_rate_control_unregister(&ath_rate_ops);
1709 }