Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath9k / phy.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 /**
18 * DOC: Programming Atheros 802.11n analog front end radios
19 *
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
24 *
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
28 *
29 * The following single-chips exist with a respective embedded radio:
30 *
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
35 *
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
38 *
39 * AR9287 - 11n single-band 1x1 MIMO for USB
40 */
41
42 #include "hw.h"
43
44 /**
45 * ath9k_hw_write_regs - ??
46 *
47 * @ah: atheros hardware structure
48 * @freqIndex:
49 * @regWrites:
50 *
51 * Used for both the chipsets with an external AR2133/AR5133 radios and
52 * single-chip devices.
53 */
54 void ath9k_hw_write_regs(struct ath_hw *ah, u32 freqIndex, int regWrites)
55 {
56 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
57 }
58
59 /**
60 * ath9k_hw_ar9280_set_channel - set channel on single-chip device
61 * @ah: atheros hardware structure
62 * @chan:
63 *
64 * This is the function to change channel on single-chip devices, that is
65 * all devices after ar9280.
66 *
67 * This function takes the channel value in MHz and sets
68 * hardware channel value. Assumes writes have been enabled to analog bus.
69 *
70 * Actual Expression,
71 *
72 * For 2GHz channel,
73 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
74 * (freq_ref = 40MHz)
75 *
76 * For 5GHz channel,
77 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
78 * (freq_ref = 40MHz/(24>>amodeRefSel))
79 */
80 int ath9k_hw_ar9280_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
81 {
82 u16 bMode, fracMode, aModeRefSel = 0;
83 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
84 struct chan_centers centers;
85 u32 refDivA = 24;
86
87 ath9k_hw_get_channel_centers(ah, chan, &centers);
88 freq = centers.synth_center;
89
90 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
91 reg32 &= 0xc0000000;
92
93 if (freq < 4800) { /* 2 GHz, fractional mode */
94 u32 txctl;
95 int regWrites = 0;
96
97 bMode = 1;
98 fracMode = 1;
99 aModeRefSel = 0;
100 channelSel = (freq * 0x10000) / 15;
101
102 if (AR_SREV_9287_11_OR_LATER(ah)) {
103 if (freq == 2484) {
104 /* Enable channel spreading for channel 14 */
105 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
106 1, regWrites);
107 } else {
108 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
109 1, regWrites);
110 }
111 } else {
112 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
113 if (freq == 2484) {
114 /* Enable channel spreading for channel 14 */
115 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
117 } else {
118 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
119 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
120 }
121 }
122 } else {
123 bMode = 0;
124 fracMode = 0;
125
126 switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
127 case 0:
128 if ((freq % 20) == 0) {
129 aModeRefSel = 3;
130 } else if ((freq % 10) == 0) {
131 aModeRefSel = 2;
132 }
133 if (aModeRefSel)
134 break;
135 case 1:
136 default:
137 aModeRefSel = 0;
138 /*
139 * Enable 2G (fractional) mode for channels
140 * which are 5MHz spaced.
141 */
142 fracMode = 1;
143 refDivA = 1;
144 channelSel = (freq * 0x8000) / 15;
145
146 /* RefDivA setting */
147 REG_RMW_FIELD(ah, AR_AN_SYNTH9,
148 AR_AN_SYNTH9_REFDIVA, refDivA);
149
150 }
151
152 if (!fracMode) {
153 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
154 channelSel = ndiv & 0x1ff;
155 channelFrac = (ndiv & 0xfffffe00) * 2;
156 channelSel = (channelSel << 17) | channelFrac;
157 }
158 }
159
160 reg32 = reg32 |
161 (bMode << 29) |
162 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
163
164 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
165
166 ah->curchan = chan;
167 ah->curchan_rad_index = -1;
168
169 return 0;
170 }
171
172 /**
173 * ath9k_hw_9280_spur_mitigate - convert baseband spur frequency
174 * @ah: atheros hardware structure
175 * @chan:
176 *
177 * For single-chip solutions. Converts to baseband spur frequency given the
178 * input channel frequency and compute register settings below.
179 */
180 void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
181 {
182 int bb_spur = AR_NO_SPUR;
183 int freq;
184 int bin, cur_bin;
185 int bb_spur_off, spur_subchannel_sd;
186 int spur_freq_sd;
187 int spur_delta_phase;
188 int denominator;
189 int upper, lower, cur_vit_mask;
190 int tmp, newVal;
191 int i;
192 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
193 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
194 };
195 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
196 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
197 };
198 int inc[4] = { 0, 100, 0, 0 };
199 struct chan_centers centers;
200
201 int8_t mask_m[123];
202 int8_t mask_p[123];
203 int8_t mask_amt;
204 int tmp_mask;
205 int cur_bb_spur;
206 bool is2GHz = IS_CHAN_2GHZ(chan);
207
208 memset(&mask_m, 0, sizeof(int8_t) * 123);
209 memset(&mask_p, 0, sizeof(int8_t) * 123);
210
211 ath9k_hw_get_channel_centers(ah, chan, &centers);
212 freq = centers.synth_center;
213
214 ah->config.spurmode = SPUR_ENABLE_EEPROM;
215 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
216 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
217
218 if (is2GHz)
219 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
220 else
221 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
222
223 if (AR_NO_SPUR == cur_bb_spur)
224 break;
225 cur_bb_spur = cur_bb_spur - freq;
226
227 if (IS_CHAN_HT40(chan)) {
228 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
229 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
230 bb_spur = cur_bb_spur;
231 break;
232 }
233 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
234 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
235 bb_spur = cur_bb_spur;
236 break;
237 }
238 }
239
240 if (AR_NO_SPUR == bb_spur) {
241 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
242 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
243 return;
244 } else {
245 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
246 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
247 }
248
249 bin = bb_spur * 320;
250
251 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
252
253 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
254 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
255 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
256 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
257 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
258
259 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
260 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
261 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
262 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
263 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
264 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
265
266 if (IS_CHAN_HT40(chan)) {
267 if (bb_spur < 0) {
268 spur_subchannel_sd = 1;
269 bb_spur_off = bb_spur + 10;
270 } else {
271 spur_subchannel_sd = 0;
272 bb_spur_off = bb_spur - 10;
273 }
274 } else {
275 spur_subchannel_sd = 0;
276 bb_spur_off = bb_spur;
277 }
278
279 if (IS_CHAN_HT40(chan))
280 spur_delta_phase =
281 ((bb_spur * 262144) /
282 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
283 else
284 spur_delta_phase =
285 ((bb_spur * 524288) /
286 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
287
288 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
289 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
290
291 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
292 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
293 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
294 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
295
296 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
297 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
298
299 cur_bin = -6000;
300 upper = bin + 100;
301 lower = bin - 100;
302
303 for (i = 0; i < 4; i++) {
304 int pilot_mask = 0;
305 int chan_mask = 0;
306 int bp = 0;
307 for (bp = 0; bp < 30; bp++) {
308 if ((cur_bin > lower) && (cur_bin < upper)) {
309 pilot_mask = pilot_mask | 0x1 << bp;
310 chan_mask = chan_mask | 0x1 << bp;
311 }
312 cur_bin += 100;
313 }
314 cur_bin += inc[i];
315 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
316 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
317 }
318
319 cur_vit_mask = 6100;
320 upper = bin + 120;
321 lower = bin - 120;
322
323 for (i = 0; i < 123; i++) {
324 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
325
326 /* workaround for gcc bug #37014 */
327 volatile int tmp_v = abs(cur_vit_mask - bin);
328
329 if (tmp_v < 75)
330 mask_amt = 1;
331 else
332 mask_amt = 0;
333 if (cur_vit_mask < 0)
334 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
335 else
336 mask_p[cur_vit_mask / 100] = mask_amt;
337 }
338 cur_vit_mask -= 100;
339 }
340
341 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
342 | (mask_m[48] << 26) | (mask_m[49] << 24)
343 | (mask_m[50] << 22) | (mask_m[51] << 20)
344 | (mask_m[52] << 18) | (mask_m[53] << 16)
345 | (mask_m[54] << 14) | (mask_m[55] << 12)
346 | (mask_m[56] << 10) | (mask_m[57] << 8)
347 | (mask_m[58] << 6) | (mask_m[59] << 4)
348 | (mask_m[60] << 2) | (mask_m[61] << 0);
349 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
350 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
351
352 tmp_mask = (mask_m[31] << 28)
353 | (mask_m[32] << 26) | (mask_m[33] << 24)
354 | (mask_m[34] << 22) | (mask_m[35] << 20)
355 | (mask_m[36] << 18) | (mask_m[37] << 16)
356 | (mask_m[48] << 14) | (mask_m[39] << 12)
357 | (mask_m[40] << 10) | (mask_m[41] << 8)
358 | (mask_m[42] << 6) | (mask_m[43] << 4)
359 | (mask_m[44] << 2) | (mask_m[45] << 0);
360 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
361 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
362
363 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
364 | (mask_m[18] << 26) | (mask_m[18] << 24)
365 | (mask_m[20] << 22) | (mask_m[20] << 20)
366 | (mask_m[22] << 18) | (mask_m[22] << 16)
367 | (mask_m[24] << 14) | (mask_m[24] << 12)
368 | (mask_m[25] << 10) | (mask_m[26] << 8)
369 | (mask_m[27] << 6) | (mask_m[28] << 4)
370 | (mask_m[29] << 2) | (mask_m[30] << 0);
371 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
372 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
373
374 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
375 | (mask_m[2] << 26) | (mask_m[3] << 24)
376 | (mask_m[4] << 22) | (mask_m[5] << 20)
377 | (mask_m[6] << 18) | (mask_m[7] << 16)
378 | (mask_m[8] << 14) | (mask_m[9] << 12)
379 | (mask_m[10] << 10) | (mask_m[11] << 8)
380 | (mask_m[12] << 6) | (mask_m[13] << 4)
381 | (mask_m[14] << 2) | (mask_m[15] << 0);
382 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
383 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
384
385 tmp_mask = (mask_p[15] << 28)
386 | (mask_p[14] << 26) | (mask_p[13] << 24)
387 | (mask_p[12] << 22) | (mask_p[11] << 20)
388 | (mask_p[10] << 18) | (mask_p[9] << 16)
389 | (mask_p[8] << 14) | (mask_p[7] << 12)
390 | (mask_p[6] << 10) | (mask_p[5] << 8)
391 | (mask_p[4] << 6) | (mask_p[3] << 4)
392 | (mask_p[2] << 2) | (mask_p[1] << 0);
393 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
394 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
395
396 tmp_mask = (mask_p[30] << 28)
397 | (mask_p[29] << 26) | (mask_p[28] << 24)
398 | (mask_p[27] << 22) | (mask_p[26] << 20)
399 | (mask_p[25] << 18) | (mask_p[24] << 16)
400 | (mask_p[23] << 14) | (mask_p[22] << 12)
401 | (mask_p[21] << 10) | (mask_p[20] << 8)
402 | (mask_p[19] << 6) | (mask_p[18] << 4)
403 | (mask_p[17] << 2) | (mask_p[16] << 0);
404 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
405 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
406
407 tmp_mask = (mask_p[45] << 28)
408 | (mask_p[44] << 26) | (mask_p[43] << 24)
409 | (mask_p[42] << 22) | (mask_p[41] << 20)
410 | (mask_p[40] << 18) | (mask_p[39] << 16)
411 | (mask_p[38] << 14) | (mask_p[37] << 12)
412 | (mask_p[36] << 10) | (mask_p[35] << 8)
413 | (mask_p[34] << 6) | (mask_p[33] << 4)
414 | (mask_p[32] << 2) | (mask_p[31] << 0);
415 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
416 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
417
418 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
419 | (mask_p[59] << 26) | (mask_p[58] << 24)
420 | (mask_p[57] << 22) | (mask_p[56] << 20)
421 | (mask_p[55] << 18) | (mask_p[54] << 16)
422 | (mask_p[53] << 14) | (mask_p[52] << 12)
423 | (mask_p[51] << 10) | (mask_p[50] << 8)
424 | (mask_p[49] << 6) | (mask_p[48] << 4)
425 | (mask_p[47] << 2) | (mask_p[46] << 0);
426 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
427 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
428 }
429
430 /* All code below is for non single-chip solutions */
431
432 /**
433 * ath9k_phy_modify_rx_buffer() - perform analog swizzling of parameters
434 * @rfbuf:
435 * @reg32:
436 * @numBits:
437 * @firstBit:
438 * @column:
439 *
440 * Performs analog "swizzling" of parameters into their location.
441 * Used on external AR2133/AR5133 radios.
442 */
443 static void ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
444 u32 numBits, u32 firstBit,
445 u32 column)
446 {
447 u32 tmp32, mask, arrayEntry, lastBit;
448 int32_t bitPosition, bitsLeft;
449
450 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
451 arrayEntry = (firstBit - 1) / 8;
452 bitPosition = (firstBit - 1) % 8;
453 bitsLeft = numBits;
454 while (bitsLeft > 0) {
455 lastBit = (bitPosition + bitsLeft > 8) ?
456 8 : bitPosition + bitsLeft;
457 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
458 (column * 8);
459 rfBuf[arrayEntry] &= ~mask;
460 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
461 (column * 8)) & mask;
462 bitsLeft -= 8 - bitPosition;
463 tmp32 = tmp32 >> (8 - bitPosition);
464 bitPosition = 0;
465 arrayEntry++;
466 }
467 }
468
469 /*
470 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
471 * rf_pwd_icsyndiv.
472 *
473 * Theoretical Rules:
474 * if 2 GHz band
475 * if forceBiasAuto
476 * if synth_freq < 2412
477 * bias = 0
478 * else if 2412 <= synth_freq <= 2422
479 * bias = 1
480 * else // synth_freq > 2422
481 * bias = 2
482 * else if forceBias > 0
483 * bias = forceBias & 7
484 * else
485 * no change, use value from ini file
486 * else
487 * no change, invalid band
488 *
489 * 1st Mod:
490 * 2422 also uses value of 2
491 * <approved>
492 *
493 * 2nd Mod:
494 * Less than 2412 uses value of 0, 2412 and above uses value of 2
495 */
496 static void ath9k_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
497 {
498 struct ath_common *common = ath9k_hw_common(ah);
499 u32 tmp_reg;
500 int reg_writes = 0;
501 u32 new_bias = 0;
502
503 if (!AR_SREV_5416(ah) || synth_freq >= 3000) {
504 return;
505 }
506
507 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
508
509 if (synth_freq < 2412)
510 new_bias = 0;
511 else if (synth_freq < 2422)
512 new_bias = 1;
513 else
514 new_bias = 2;
515
516 /* pre-reverse this field */
517 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
518
519 ath_print(common, ATH_DBG_CONFIG,
520 "Force rf_pwd_icsyndiv to %1d on %4d\n",
521 new_bias, synth_freq);
522
523 /* swizzle rf_pwd_icsyndiv */
524 ath9k_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
525
526 /* write Bank 6 with new params */
527 REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
528 }
529
530 /**
531 * ath9k_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
532 * @ah: atheros hardware stucture
533 * @chan:
534 *
535 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
536 * the channel value. Assumes writes enabled to analog bus and bank6 register
537 * cache in ah->analogBank6Data.
538 */
539 int ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
540 {
541 struct ath_common *common = ath9k_hw_common(ah);
542 u32 channelSel = 0;
543 u32 bModeSynth = 0;
544 u32 aModeRefSel = 0;
545 u32 reg32 = 0;
546 u16 freq;
547 struct chan_centers centers;
548
549 ath9k_hw_get_channel_centers(ah, chan, &centers);
550 freq = centers.synth_center;
551
552 if (freq < 4800) {
553 u32 txctl;
554
555 if (((freq - 2192) % 5) == 0) {
556 channelSel = ((freq - 672) * 2 - 3040) / 10;
557 bModeSynth = 0;
558 } else if (((freq - 2224) % 5) == 0) {
559 channelSel = ((freq - 704) * 2 - 3040) / 10;
560 bModeSynth = 1;
561 } else {
562 ath_print(common, ATH_DBG_FATAL,
563 "Invalid channel %u MHz\n", freq);
564 return -EINVAL;
565 }
566
567 channelSel = (channelSel << 2) & 0xff;
568 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
569
570 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
571 if (freq == 2484) {
572
573 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
574 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
575 } else {
576 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
577 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
578 }
579
580 } else if ((freq % 20) == 0 && freq >= 5120) {
581 channelSel =
582 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
583 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
584 } else if ((freq % 10) == 0) {
585 channelSel =
586 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
587 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
588 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
589 else
590 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
591 } else if ((freq % 5) == 0) {
592 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
593 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
594 } else {
595 ath_print(common, ATH_DBG_FATAL,
596 "Invalid channel %u MHz\n", freq);
597 return -EINVAL;
598 }
599
600 ath9k_hw_force_bias(ah, freq);
601
602 reg32 =
603 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
604 (1 << 5) | 0x1;
605
606 REG_WRITE(ah, AR_PHY(0x37), reg32);
607
608 ah->curchan = chan;
609 ah->curchan_rad_index = -1;
610
611 return 0;
612 }
613
614 /**
615 * ath9k_hw_spur_mitigate - convert baseband spur frequency for external radios
616 * @ah: atheros hardware structure
617 * @chan:
618 *
619 * For non single-chip solutions. Converts to baseband spur frequency given the
620 * input channel frequency and compute register settings below.
621 */
622 void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
623 {
624 int bb_spur = AR_NO_SPUR;
625 int bin, cur_bin;
626 int spur_freq_sd;
627 int spur_delta_phase;
628 int denominator;
629 int upper, lower, cur_vit_mask;
630 int tmp, new;
631 int i;
632 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
633 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
634 };
635 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
636 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
637 };
638 int inc[4] = { 0, 100, 0, 0 };
639
640 int8_t mask_m[123];
641 int8_t mask_p[123];
642 int8_t mask_amt;
643 int tmp_mask;
644 int cur_bb_spur;
645 bool is2GHz = IS_CHAN_2GHZ(chan);
646
647 memset(&mask_m, 0, sizeof(int8_t) * 123);
648 memset(&mask_p, 0, sizeof(int8_t) * 123);
649
650 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
651 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
652 if (AR_NO_SPUR == cur_bb_spur)
653 break;
654 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
655 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
656 bb_spur = cur_bb_spur;
657 break;
658 }
659 }
660
661 if (AR_NO_SPUR == bb_spur)
662 return;
663
664 bin = bb_spur * 32;
665
666 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
667 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
668 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
669 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
670 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
671
672 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
673
674 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
675 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
676 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
677 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
678 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
679 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
680
681 spur_delta_phase = ((bb_spur * 524288) / 100) &
682 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
683
684 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
685 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
686
687 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
688 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
689 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
690 REG_WRITE(ah, AR_PHY_TIMING11, new);
691
692 cur_bin = -6000;
693 upper = bin + 100;
694 lower = bin - 100;
695
696 for (i = 0; i < 4; i++) {
697 int pilot_mask = 0;
698 int chan_mask = 0;
699 int bp = 0;
700 for (bp = 0; bp < 30; bp++) {
701 if ((cur_bin > lower) && (cur_bin < upper)) {
702 pilot_mask = pilot_mask | 0x1 << bp;
703 chan_mask = chan_mask | 0x1 << bp;
704 }
705 cur_bin += 100;
706 }
707 cur_bin += inc[i];
708 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
709 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
710 }
711
712 cur_vit_mask = 6100;
713 upper = bin + 120;
714 lower = bin - 120;
715
716 for (i = 0; i < 123; i++) {
717 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
718
719 /* workaround for gcc bug #37014 */
720 volatile int tmp_v = abs(cur_vit_mask - bin);
721
722 if (tmp_v < 75)
723 mask_amt = 1;
724 else
725 mask_amt = 0;
726 if (cur_vit_mask < 0)
727 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
728 else
729 mask_p[cur_vit_mask / 100] = mask_amt;
730 }
731 cur_vit_mask -= 100;
732 }
733
734 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
735 | (mask_m[48] << 26) | (mask_m[49] << 24)
736 | (mask_m[50] << 22) | (mask_m[51] << 20)
737 | (mask_m[52] << 18) | (mask_m[53] << 16)
738 | (mask_m[54] << 14) | (mask_m[55] << 12)
739 | (mask_m[56] << 10) | (mask_m[57] << 8)
740 | (mask_m[58] << 6) | (mask_m[59] << 4)
741 | (mask_m[60] << 2) | (mask_m[61] << 0);
742 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
743 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
744
745 tmp_mask = (mask_m[31] << 28)
746 | (mask_m[32] << 26) | (mask_m[33] << 24)
747 | (mask_m[34] << 22) | (mask_m[35] << 20)
748 | (mask_m[36] << 18) | (mask_m[37] << 16)
749 | (mask_m[48] << 14) | (mask_m[39] << 12)
750 | (mask_m[40] << 10) | (mask_m[41] << 8)
751 | (mask_m[42] << 6) | (mask_m[43] << 4)
752 | (mask_m[44] << 2) | (mask_m[45] << 0);
753 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
754 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
755
756 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
757 | (mask_m[18] << 26) | (mask_m[18] << 24)
758 | (mask_m[20] << 22) | (mask_m[20] << 20)
759 | (mask_m[22] << 18) | (mask_m[22] << 16)
760 | (mask_m[24] << 14) | (mask_m[24] << 12)
761 | (mask_m[25] << 10) | (mask_m[26] << 8)
762 | (mask_m[27] << 6) | (mask_m[28] << 4)
763 | (mask_m[29] << 2) | (mask_m[30] << 0);
764 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
765 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
766
767 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
768 | (mask_m[2] << 26) | (mask_m[3] << 24)
769 | (mask_m[4] << 22) | (mask_m[5] << 20)
770 | (mask_m[6] << 18) | (mask_m[7] << 16)
771 | (mask_m[8] << 14) | (mask_m[9] << 12)
772 | (mask_m[10] << 10) | (mask_m[11] << 8)
773 | (mask_m[12] << 6) | (mask_m[13] << 4)
774 | (mask_m[14] << 2) | (mask_m[15] << 0);
775 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
776 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
777
778 tmp_mask = (mask_p[15] << 28)
779 | (mask_p[14] << 26) | (mask_p[13] << 24)
780 | (mask_p[12] << 22) | (mask_p[11] << 20)
781 | (mask_p[10] << 18) | (mask_p[9] << 16)
782 | (mask_p[8] << 14) | (mask_p[7] << 12)
783 | (mask_p[6] << 10) | (mask_p[5] << 8)
784 | (mask_p[4] << 6) | (mask_p[3] << 4)
785 | (mask_p[2] << 2) | (mask_p[1] << 0);
786 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
787 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
788
789 tmp_mask = (mask_p[30] << 28)
790 | (mask_p[29] << 26) | (mask_p[28] << 24)
791 | (mask_p[27] << 22) | (mask_p[26] << 20)
792 | (mask_p[25] << 18) | (mask_p[24] << 16)
793 | (mask_p[23] << 14) | (mask_p[22] << 12)
794 | (mask_p[21] << 10) | (mask_p[20] << 8)
795 | (mask_p[19] << 6) | (mask_p[18] << 4)
796 | (mask_p[17] << 2) | (mask_p[16] << 0);
797 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
798 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
799
800 tmp_mask = (mask_p[45] << 28)
801 | (mask_p[44] << 26) | (mask_p[43] << 24)
802 | (mask_p[42] << 22) | (mask_p[41] << 20)
803 | (mask_p[40] << 18) | (mask_p[39] << 16)
804 | (mask_p[38] << 14) | (mask_p[37] << 12)
805 | (mask_p[36] << 10) | (mask_p[35] << 8)
806 | (mask_p[34] << 6) | (mask_p[33] << 4)
807 | (mask_p[32] << 2) | (mask_p[31] << 0);
808 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
809 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
810
811 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
812 | (mask_p[59] << 26) | (mask_p[58] << 24)
813 | (mask_p[57] << 22) | (mask_p[56] << 20)
814 | (mask_p[55] << 18) | (mask_p[54] << 16)
815 | (mask_p[53] << 14) | (mask_p[52] << 12)
816 | (mask_p[51] << 10) | (mask_p[50] << 8)
817 | (mask_p[49] << 6) | (mask_p[48] << 4)
818 | (mask_p[47] << 2) | (mask_p[46] << 0);
819 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
820 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
821 }
822
823 /**
824 * ath9k_hw_rf_alloc_ext_banks - allocates banks for external radio programming
825 * @ah: atheros hardware structure
826 *
827 * Only required for older devices with external AR2133/AR5133 radios.
828 */
829 int ath9k_hw_rf_alloc_ext_banks(struct ath_hw *ah)
830 {
831 #define ATH_ALLOC_BANK(bank, size) do { \
832 bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
833 if (!bank) { \
834 ath_print(common, ATH_DBG_FATAL, \
835 "Cannot allocate RF banks\n"); \
836 return -ENOMEM; \
837 } \
838 } while (0);
839
840 struct ath_common *common = ath9k_hw_common(ah);
841
842 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
843
844 ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
845 ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
846 ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
847 ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
848 ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
849 ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
850 ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
851 ATH_ALLOC_BANK(ah->addac5416_21,
852 ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
853 ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
854
855 return 0;
856 #undef ATH_ALLOC_BANK
857 }
858
859
860 /**
861 * ath9k_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
862 * @ah: atheros hardware struture
863 * For the external AR2133/AR5133 radios banks.
864 */
865 void
866 ath9k_hw_rf_free_ext_banks(struct ath_hw *ah)
867 {
868 #define ATH_FREE_BANK(bank) do { \
869 kfree(bank); \
870 bank = NULL; \
871 } while (0);
872
873 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
874
875 ATH_FREE_BANK(ah->analogBank0Data);
876 ATH_FREE_BANK(ah->analogBank1Data);
877 ATH_FREE_BANK(ah->analogBank2Data);
878 ATH_FREE_BANK(ah->analogBank3Data);
879 ATH_FREE_BANK(ah->analogBank6Data);
880 ATH_FREE_BANK(ah->analogBank6TPCData);
881 ATH_FREE_BANK(ah->analogBank7Data);
882 ATH_FREE_BANK(ah->addac5416_21);
883 ATH_FREE_BANK(ah->bank6Temp);
884
885 #undef ATH_FREE_BANK
886 }
887
888 /* *
889 * ath9k_hw_set_rf_regs - programs rf registers based on EEPROM
890 * @ah: atheros hardware structure
891 * @chan:
892 * @modesIndex:
893 *
894 * Used for the external AR2133/AR5133 radios.
895 *
896 * Reads the EEPROM header info from the device structure and programs
897 * all rf registers. This routine requires access to the analog
898 * rf device. This is not required for single-chip devices.
899 */
900 bool ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
901 u16 modesIndex)
902 {
903 u32 eepMinorRev;
904 u32 ob5GHz = 0, db5GHz = 0;
905 u32 ob2GHz = 0, db2GHz = 0;
906 int regWrites = 0;
907
908 /*
909 * Software does not need to program bank data
910 * for single chip devices, that is AR9280 or anything
911 * after that.
912 */
913 if (AR_SREV_9280_10_OR_LATER(ah))
914 return true;
915
916 /* Setup rf parameters */
917 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
918
919 /* Setup Bank 0 Write */
920 RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
921
922 /* Setup Bank 1 Write */
923 RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
924
925 /* Setup Bank 2 Write */
926 RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
927
928 /* Setup Bank 6 Write */
929 RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
930 modesIndex);
931 {
932 int i;
933 for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
934 ah->analogBank6Data[i] =
935 INI_RA(&ah->iniBank6TPC, i, modesIndex);
936 }
937 }
938
939 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
940 if (eepMinorRev >= 2) {
941 if (IS_CHAN_2GHZ(chan)) {
942 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
943 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
944 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
945 ob2GHz, 3, 197, 0);
946 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
947 db2GHz, 3, 194, 0);
948 } else {
949 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
950 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
951 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
952 ob5GHz, 3, 203, 0);
953 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
954 db5GHz, 3, 200, 0);
955 }
956 }
957
958 /* Setup Bank 7 Setup */
959 RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
960
961 /* Write Analog registers */
962 REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
963 regWrites);
964 REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
965 regWrites);
966 REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
967 regWrites);
968 REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
969 regWrites);
970 REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
971 regWrites);
972 REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
973 regWrites);
974
975 return true;
976 }