391def99314ce560bc2ddaac64d376e039142cab
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath9k / ar9003_eeprom.c
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
34 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
35 #define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
36 #define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
37 #define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
38
39 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
40 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
41
42 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
43
44 #define EEPROM_DATA_LEN_9485 1088
45
46 static int ar9003_hw_power_interpolate(int32_t x,
47 int32_t *px, int32_t *py, u_int16_t np);
48
49
50 static const struct ar9300_eeprom ar9300_default = {
51 .eepromVersion = 2,
52 .templateVersion = 2,
53 .macAddr = {0, 2, 3, 4, 5, 6},
54 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
55 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
56 .baseEepHeader = {
57 .regDmn = { LE16(0), LE16(0x1f) },
58 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
59 .opCapFlags = {
60 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
61 .eepMisc = 0,
62 },
63 .rfSilent = 0,
64 .blueToothOptions = 0,
65 .deviceCap = 0,
66 .deviceType = 5, /* takes lower byte in eeprom location */
67 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
68 .params_for_tuning_caps = {0, 0},
69 .featureEnable = 0x0c,
70 /*
71 * bit0 - enable tx temp comp - disabled
72 * bit1 - enable tx volt comp - disabled
73 * bit2 - enable fastClock - enabled
74 * bit3 - enable doubling - enabled
75 * bit4 - enable internal regulator - disabled
76 * bit5 - enable pa predistortion - disabled
77 */
78 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
79 .eepromWriteEnableGpio = 3,
80 .wlanDisableGpio = 0,
81 .wlanLedGpio = 8,
82 .rxBandSelectGpio = 0xff,
83 .txrxgain = 0,
84 .swreg = 0,
85 },
86 .modalHeader2G = {
87 /* ar9300_modal_eep_header 2g */
88 /* 4 idle,t1,t2,b(4 bits per setting) */
89 .antCtrlCommon = LE32(0x110),
90 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
91 .antCtrlCommon2 = LE32(0x22222),
92
93 /*
94 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
95 * rx1, rx12, b (2 bits each)
96 */
97 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
98
99 /*
100 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
101 * for ar9280 (0xa20c/b20c 5:0)
102 */
103 .xatten1DB = {0, 0, 0},
104
105 /*
106 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
107 * for ar9280 (0xa20c/b20c 16:12
108 */
109 .xatten1Margin = {0, 0, 0},
110 .tempSlope = 36,
111 .voltSlope = 0,
112
113 /*
114 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
115 * channels in usual fbin coding format
116 */
117 .spurChans = {0, 0, 0, 0, 0},
118
119 /*
120 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
121 * if the register is per chain
122 */
123 .noiseFloorThreshCh = {-1, 0, 0},
124 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
125 .quick_drop = 0,
126 .xpaBiasLvl = 0,
127 .txFrameToDataStart = 0x0e,
128 .txFrameToPaOn = 0x0e,
129 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
130 .antennaGain = 0,
131 .switchSettling = 0x2c,
132 .adcDesiredSize = -30,
133 .txEndToXpaOff = 0,
134 .txEndToRxOn = 0x2,
135 .txFrameToXpaOn = 0xe,
136 .thresh62 = 28,
137 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
138 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
139 .futureModal = {
140 0, 0, 0, 0, 0, 0, 0, 0,
141 },
142 },
143 .base_ext1 = {
144 .ant_div_control = 0,
145 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
146 },
147 .calFreqPier2G = {
148 FREQ2FBIN(2412, 1),
149 FREQ2FBIN(2437, 1),
150 FREQ2FBIN(2472, 1),
151 },
152 /* ar9300_cal_data_per_freq_op_loop 2g */
153 .calPierData2G = {
154 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
156 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
157 },
158 .calTarget_freqbin_Cck = {
159 FREQ2FBIN(2412, 1),
160 FREQ2FBIN(2484, 1),
161 },
162 .calTarget_freqbin_2G = {
163 FREQ2FBIN(2412, 1),
164 FREQ2FBIN(2437, 1),
165 FREQ2FBIN(2472, 1)
166 },
167 .calTarget_freqbin_2GHT20 = {
168 FREQ2FBIN(2412, 1),
169 FREQ2FBIN(2437, 1),
170 FREQ2FBIN(2472, 1)
171 },
172 .calTarget_freqbin_2GHT40 = {
173 FREQ2FBIN(2412, 1),
174 FREQ2FBIN(2437, 1),
175 FREQ2FBIN(2472, 1)
176 },
177 .calTargetPowerCck = {
178 /* 1L-5L,5S,11L,11S */
179 { {36, 36, 36, 36} },
180 { {36, 36, 36, 36} },
181 },
182 .calTargetPower2G = {
183 /* 6-24,36,48,54 */
184 { {32, 32, 28, 24} },
185 { {32, 32, 28, 24} },
186 { {32, 32, 28, 24} },
187 },
188 .calTargetPower2GHT20 = {
189 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 },
193 .calTargetPower2GHT40 = {
194 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
197 },
198 .ctlIndex_2G = {
199 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
200 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
201 },
202 .ctl_freqbin_2G = {
203 {
204 FREQ2FBIN(2412, 1),
205 FREQ2FBIN(2417, 1),
206 FREQ2FBIN(2457, 1),
207 FREQ2FBIN(2462, 1)
208 },
209 {
210 FREQ2FBIN(2412, 1),
211 FREQ2FBIN(2417, 1),
212 FREQ2FBIN(2462, 1),
213 0xFF,
214 },
215
216 {
217 FREQ2FBIN(2412, 1),
218 FREQ2FBIN(2417, 1),
219 FREQ2FBIN(2462, 1),
220 0xFF,
221 },
222 {
223 FREQ2FBIN(2422, 1),
224 FREQ2FBIN(2427, 1),
225 FREQ2FBIN(2447, 1),
226 FREQ2FBIN(2452, 1)
227 },
228
229 {
230 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
231 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
232 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
233 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
234 },
235
236 {
237 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
238 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
239 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
240 0,
241 },
242
243 {
244 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
245 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
246 FREQ2FBIN(2472, 1),
247 0,
248 },
249
250 {
251 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
252 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
253 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
254 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
255 },
256
257 {
258 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
259 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
260 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
261 },
262
263 {
264 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
265 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
266 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
267 0
268 },
269
270 {
271 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
272 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
273 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
274 0
275 },
276
277 {
278 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
279 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
280 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
281 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
282 }
283 },
284 .ctlPowerData_2G = {
285 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
287 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
288
289 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
290 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292
293 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
294 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
296
297 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
298 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
300 },
301 .modalHeader5G = {
302 /* 4 idle,t1,t2,b (4 bits per setting) */
303 .antCtrlCommon = LE32(0x110),
304 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
305 .antCtrlCommon2 = LE32(0x22222),
306 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
307 .antCtrlChain = {
308 LE16(0x000), LE16(0x000), LE16(0x000),
309 },
310 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
311 .xatten1DB = {0, 0, 0},
312
313 /*
314 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
315 * for merlin (0xa20c/b20c 16:12
316 */
317 .xatten1Margin = {0, 0, 0},
318 .tempSlope = 68,
319 .voltSlope = 0,
320 /* spurChans spur channels in usual fbin coding format */
321 .spurChans = {0, 0, 0, 0, 0},
322 /* noiseFloorThreshCh Check if the register is per chain */
323 .noiseFloorThreshCh = {-1, 0, 0},
324 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
325 .quick_drop = 0,
326 .xpaBiasLvl = 0,
327 .txFrameToDataStart = 0x0e,
328 .txFrameToPaOn = 0x0e,
329 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
330 .antennaGain = 0,
331 .switchSettling = 0x2d,
332 .adcDesiredSize = -30,
333 .txEndToXpaOff = 0,
334 .txEndToRxOn = 0x2,
335 .txFrameToXpaOn = 0xe,
336 .thresh62 = 28,
337 .papdRateMaskHt20 = LE32(0x0c80c080),
338 .papdRateMaskHt40 = LE32(0x0080c080),
339 .futureModal = {
340 0, 0, 0, 0, 0, 0, 0, 0,
341 },
342 },
343 .base_ext2 = {
344 .tempSlopeLow = 0,
345 .tempSlopeHigh = 0,
346 .xatten1DBLow = {0, 0, 0},
347 .xatten1MarginLow = {0, 0, 0},
348 .xatten1DBHigh = {0, 0, 0},
349 .xatten1MarginHigh = {0, 0, 0}
350 },
351 .calFreqPier5G = {
352 FREQ2FBIN(5180, 0),
353 FREQ2FBIN(5220, 0),
354 FREQ2FBIN(5320, 0),
355 FREQ2FBIN(5400, 0),
356 FREQ2FBIN(5500, 0),
357 FREQ2FBIN(5600, 0),
358 FREQ2FBIN(5725, 0),
359 FREQ2FBIN(5825, 0)
360 },
361 .calPierData5G = {
362 {
363 {0, 0, 0, 0, 0},
364 {0, 0, 0, 0, 0},
365 {0, 0, 0, 0, 0},
366 {0, 0, 0, 0, 0},
367 {0, 0, 0, 0, 0},
368 {0, 0, 0, 0, 0},
369 {0, 0, 0, 0, 0},
370 {0, 0, 0, 0, 0},
371 },
372 {
373 {0, 0, 0, 0, 0},
374 {0, 0, 0, 0, 0},
375 {0, 0, 0, 0, 0},
376 {0, 0, 0, 0, 0},
377 {0, 0, 0, 0, 0},
378 {0, 0, 0, 0, 0},
379 {0, 0, 0, 0, 0},
380 {0, 0, 0, 0, 0},
381 },
382 {
383 {0, 0, 0, 0, 0},
384 {0, 0, 0, 0, 0},
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 },
392
393 },
394 .calTarget_freqbin_5G = {
395 FREQ2FBIN(5180, 0),
396 FREQ2FBIN(5220, 0),
397 FREQ2FBIN(5320, 0),
398 FREQ2FBIN(5400, 0),
399 FREQ2FBIN(5500, 0),
400 FREQ2FBIN(5600, 0),
401 FREQ2FBIN(5725, 0),
402 FREQ2FBIN(5825, 0)
403 },
404 .calTarget_freqbin_5GHT20 = {
405 FREQ2FBIN(5180, 0),
406 FREQ2FBIN(5240, 0),
407 FREQ2FBIN(5320, 0),
408 FREQ2FBIN(5500, 0),
409 FREQ2FBIN(5700, 0),
410 FREQ2FBIN(5745, 0),
411 FREQ2FBIN(5725, 0),
412 FREQ2FBIN(5825, 0)
413 },
414 .calTarget_freqbin_5GHT40 = {
415 FREQ2FBIN(5180, 0),
416 FREQ2FBIN(5240, 0),
417 FREQ2FBIN(5320, 0),
418 FREQ2FBIN(5500, 0),
419 FREQ2FBIN(5700, 0),
420 FREQ2FBIN(5745, 0),
421 FREQ2FBIN(5725, 0),
422 FREQ2FBIN(5825, 0)
423 },
424 .calTargetPower5G = {
425 /* 6-24,36,48,54 */
426 { {20, 20, 20, 10} },
427 { {20, 20, 20, 10} },
428 { {20, 20, 20, 10} },
429 { {20, 20, 20, 10} },
430 { {20, 20, 20, 10} },
431 { {20, 20, 20, 10} },
432 { {20, 20, 20, 10} },
433 { {20, 20, 20, 10} },
434 },
435 .calTargetPower5GHT20 = {
436 /*
437 * 0_8_16,1-3_9-11_17-19,
438 * 4,5,6,7,12,13,14,15,20,21,22,23
439 */
440 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 },
449 .calTargetPower5GHT40 = {
450 /*
451 * 0_8_16,1-3_9-11_17-19,
452 * 4,5,6,7,12,13,14,15,20,21,22,23
453 */
454 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 },
463 .ctlIndex_5G = {
464 0x10, 0x16, 0x18, 0x40, 0x46,
465 0x48, 0x30, 0x36, 0x38
466 },
467 .ctl_freqbin_5G = {
468 {
469 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
470 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
471 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
472 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
473 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
474 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
475 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
476 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477 },
478 {
479 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
480 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
481 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
482 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
483 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
484 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
485 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
486 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
487 },
488
489 {
490 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
491 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
492 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
493 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
494 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
495 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
496 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
497 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
498 },
499
500 {
501 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
503 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
504 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
505 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
506 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
508 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
509 },
510
511 {
512 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
513 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
514 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
515 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
516 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
517 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
518 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
519 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
520 },
521
522 {
523 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
524 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
525 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
526 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
527 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
528 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
529 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
530 /* Data[5].ctlEdges[7].bChannel */ 0xFF
531 },
532
533 {
534 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
536 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
537 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
538 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
539 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
540 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
541 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
542 },
543
544 {
545 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
546 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
547 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
548 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
549 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
550 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
551 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
552 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
553 },
554
555 {
556 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
557 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
558 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
559 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
560 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
561 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
562 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
563 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
564 }
565 },
566 .ctlPowerData_5G = {
567 {
568 {
569 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
570 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
571 }
572 },
573 {
574 {
575 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
576 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
577 }
578 },
579 {
580 {
581 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
582 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
583 }
584 },
585 {
586 {
587 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
588 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
589 }
590 },
591 {
592 {
593 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
595 }
596 },
597 {
598 {
599 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
600 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
601 }
602 },
603 {
604 {
605 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 }
608 },
609 {
610 {
611 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
612 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
613 }
614 },
615 {
616 {
617 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
618 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
619 }
620 },
621 }
622 };
623
624 static const struct ar9300_eeprom ar9300_x113 = {
625 .eepromVersion = 2,
626 .templateVersion = 6,
627 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
628 .custData = {"x113-023-f0000"},
629 .baseEepHeader = {
630 .regDmn = { LE16(0), LE16(0x1f) },
631 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
632 .opCapFlags = {
633 .opFlags = AR5416_OPFLAGS_11A,
634 .eepMisc = 0,
635 },
636 .rfSilent = 0,
637 .blueToothOptions = 0,
638 .deviceCap = 0,
639 .deviceType = 5, /* takes lower byte in eeprom location */
640 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
641 .params_for_tuning_caps = {0, 0},
642 .featureEnable = 0x0d,
643 /*
644 * bit0 - enable tx temp comp - disabled
645 * bit1 - enable tx volt comp - disabled
646 * bit2 - enable fastClock - enabled
647 * bit3 - enable doubling - enabled
648 * bit4 - enable internal regulator - disabled
649 * bit5 - enable pa predistortion - disabled
650 */
651 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
652 .eepromWriteEnableGpio = 6,
653 .wlanDisableGpio = 0,
654 .wlanLedGpio = 8,
655 .rxBandSelectGpio = 0xff,
656 .txrxgain = 0x21,
657 .swreg = 0,
658 },
659 .modalHeader2G = {
660 /* ar9300_modal_eep_header 2g */
661 /* 4 idle,t1,t2,b(4 bits per setting) */
662 .antCtrlCommon = LE32(0x110),
663 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
664 .antCtrlCommon2 = LE32(0x44444),
665
666 /*
667 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
668 * rx1, rx12, b (2 bits each)
669 */
670 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
671
672 /*
673 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
674 * for ar9280 (0xa20c/b20c 5:0)
675 */
676 .xatten1DB = {0, 0, 0},
677
678 /*
679 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
680 * for ar9280 (0xa20c/b20c 16:12
681 */
682 .xatten1Margin = {0, 0, 0},
683 .tempSlope = 25,
684 .voltSlope = 0,
685
686 /*
687 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
688 * channels in usual fbin coding format
689 */
690 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691
692 /*
693 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
694 * if the register is per chain
695 */
696 .noiseFloorThreshCh = {-1, 0, 0},
697 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698 .quick_drop = 0,
699 .xpaBiasLvl = 0,
700 .txFrameToDataStart = 0x0e,
701 .txFrameToPaOn = 0x0e,
702 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
703 .antennaGain = 0,
704 .switchSettling = 0x2c,
705 .adcDesiredSize = -30,
706 .txEndToXpaOff = 0,
707 .txEndToRxOn = 0x2,
708 .txFrameToXpaOn = 0xe,
709 .thresh62 = 28,
710 .papdRateMaskHt20 = LE32(0x0c80c080),
711 .papdRateMaskHt40 = LE32(0x0080c080),
712 .futureModal = {
713 0, 0, 0, 0, 0, 0, 0, 0,
714 },
715 },
716 .base_ext1 = {
717 .ant_div_control = 0,
718 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
719 },
720 .calFreqPier2G = {
721 FREQ2FBIN(2412, 1),
722 FREQ2FBIN(2437, 1),
723 FREQ2FBIN(2472, 1),
724 },
725 /* ar9300_cal_data_per_freq_op_loop 2g */
726 .calPierData2G = {
727 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 },
731 .calTarget_freqbin_Cck = {
732 FREQ2FBIN(2412, 1),
733 FREQ2FBIN(2472, 1),
734 },
735 .calTarget_freqbin_2G = {
736 FREQ2FBIN(2412, 1),
737 FREQ2FBIN(2437, 1),
738 FREQ2FBIN(2472, 1)
739 },
740 .calTarget_freqbin_2GHT20 = {
741 FREQ2FBIN(2412, 1),
742 FREQ2FBIN(2437, 1),
743 FREQ2FBIN(2472, 1)
744 },
745 .calTarget_freqbin_2GHT40 = {
746 FREQ2FBIN(2412, 1),
747 FREQ2FBIN(2437, 1),
748 FREQ2FBIN(2472, 1)
749 },
750 .calTargetPowerCck = {
751 /* 1L-5L,5S,11L,11S */
752 { {34, 34, 34, 34} },
753 { {34, 34, 34, 34} },
754 },
755 .calTargetPower2G = {
756 /* 6-24,36,48,54 */
757 { {34, 34, 32, 32} },
758 { {34, 34, 32, 32} },
759 { {34, 34, 32, 32} },
760 },
761 .calTargetPower2GHT20 = {
762 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 },
766 .calTargetPower2GHT40 = {
767 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 },
771 .ctlIndex_2G = {
772 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 },
775 .ctl_freqbin_2G = {
776 {
777 FREQ2FBIN(2412, 1),
778 FREQ2FBIN(2417, 1),
779 FREQ2FBIN(2457, 1),
780 FREQ2FBIN(2462, 1)
781 },
782 {
783 FREQ2FBIN(2412, 1),
784 FREQ2FBIN(2417, 1),
785 FREQ2FBIN(2462, 1),
786 0xFF,
787 },
788
789 {
790 FREQ2FBIN(2412, 1),
791 FREQ2FBIN(2417, 1),
792 FREQ2FBIN(2462, 1),
793 0xFF,
794 },
795 {
796 FREQ2FBIN(2422, 1),
797 FREQ2FBIN(2427, 1),
798 FREQ2FBIN(2447, 1),
799 FREQ2FBIN(2452, 1)
800 },
801
802 {
803 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 },
808
809 {
810 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 0,
814 },
815
816 {
817 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 FREQ2FBIN(2472, 1),
820 0,
821 },
822
823 {
824 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 },
829
830 {
831 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 },
835
836 {
837 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 0
841 },
842
843 {
844 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 0
848 },
849
850 {
851 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 }
856 },
857 .ctlPowerData_2G = {
858 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861
862 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865
866 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869
870 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 },
874 .modalHeader5G = {
875 /* 4 idle,t1,t2,b (4 bits per setting) */
876 .antCtrlCommon = LE32(0x220),
877 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 .antCtrlCommon2 = LE32(0x11111),
879 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 .antCtrlChain = {
881 LE16(0x150), LE16(0x150), LE16(0x150),
882 },
883 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 .xatten1DB = {0, 0, 0},
885
886 /*
887 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 * for merlin (0xa20c/b20c 16:12
889 */
890 .xatten1Margin = {0, 0, 0},
891 .tempSlope = 68,
892 .voltSlope = 0,
893 /* spurChans spur channels in usual fbin coding format */
894 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 /* noiseFloorThreshCh Check if the register is per chain */
896 .noiseFloorThreshCh = {-1, 0, 0},
897 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 .quick_drop = 0,
899 .xpaBiasLvl = 0xf,
900 .txFrameToDataStart = 0x0e,
901 .txFrameToPaOn = 0x0e,
902 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 .antennaGain = 0,
904 .switchSettling = 0x2d,
905 .adcDesiredSize = -30,
906 .txEndToXpaOff = 0,
907 .txEndToRxOn = 0x2,
908 .txFrameToXpaOn = 0xe,
909 .thresh62 = 28,
910 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 .futureModal = {
913 0, 0, 0, 0, 0, 0, 0, 0,
914 },
915 },
916 .base_ext2 = {
917 .tempSlopeLow = 72,
918 .tempSlopeHigh = 105,
919 .xatten1DBLow = {0, 0, 0},
920 .xatten1MarginLow = {0, 0, 0},
921 .xatten1DBHigh = {0, 0, 0},
922 .xatten1MarginHigh = {0, 0, 0}
923 },
924 .calFreqPier5G = {
925 FREQ2FBIN(5180, 0),
926 FREQ2FBIN(5240, 0),
927 FREQ2FBIN(5320, 0),
928 FREQ2FBIN(5400, 0),
929 FREQ2FBIN(5500, 0),
930 FREQ2FBIN(5600, 0),
931 FREQ2FBIN(5745, 0),
932 FREQ2FBIN(5785, 0)
933 },
934 .calPierData5G = {
935 {
936 {0, 0, 0, 0, 0},
937 {0, 0, 0, 0, 0},
938 {0, 0, 0, 0, 0},
939 {0, 0, 0, 0, 0},
940 {0, 0, 0, 0, 0},
941 {0, 0, 0, 0, 0},
942 {0, 0, 0, 0, 0},
943 {0, 0, 0, 0, 0},
944 },
945 {
946 {0, 0, 0, 0, 0},
947 {0, 0, 0, 0, 0},
948 {0, 0, 0, 0, 0},
949 {0, 0, 0, 0, 0},
950 {0, 0, 0, 0, 0},
951 {0, 0, 0, 0, 0},
952 {0, 0, 0, 0, 0},
953 {0, 0, 0, 0, 0},
954 },
955 {
956 {0, 0, 0, 0, 0},
957 {0, 0, 0, 0, 0},
958 {0, 0, 0, 0, 0},
959 {0, 0, 0, 0, 0},
960 {0, 0, 0, 0, 0},
961 {0, 0, 0, 0, 0},
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 },
965
966 },
967 .calTarget_freqbin_5G = {
968 FREQ2FBIN(5180, 0),
969 FREQ2FBIN(5220, 0),
970 FREQ2FBIN(5320, 0),
971 FREQ2FBIN(5400, 0),
972 FREQ2FBIN(5500, 0),
973 FREQ2FBIN(5600, 0),
974 FREQ2FBIN(5745, 0),
975 FREQ2FBIN(5785, 0)
976 },
977 .calTarget_freqbin_5GHT20 = {
978 FREQ2FBIN(5180, 0),
979 FREQ2FBIN(5240, 0),
980 FREQ2FBIN(5320, 0),
981 FREQ2FBIN(5400, 0),
982 FREQ2FBIN(5500, 0),
983 FREQ2FBIN(5700, 0),
984 FREQ2FBIN(5745, 0),
985 FREQ2FBIN(5825, 0)
986 },
987 .calTarget_freqbin_5GHT40 = {
988 FREQ2FBIN(5190, 0),
989 FREQ2FBIN(5230, 0),
990 FREQ2FBIN(5320, 0),
991 FREQ2FBIN(5410, 0),
992 FREQ2FBIN(5510, 0),
993 FREQ2FBIN(5670, 0),
994 FREQ2FBIN(5755, 0),
995 FREQ2FBIN(5825, 0)
996 },
997 .calTargetPower5G = {
998 /* 6-24,36,48,54 */
999 { {42, 40, 40, 34} },
1000 { {42, 40, 40, 34} },
1001 { {42, 40, 40, 34} },
1002 { {42, 40, 40, 34} },
1003 { {42, 40, 40, 34} },
1004 { {42, 40, 40, 34} },
1005 { {42, 40, 40, 34} },
1006 { {42, 40, 40, 34} },
1007 },
1008 .calTargetPower5GHT20 = {
1009 /*
1010 * 0_8_16,1-3_9-11_17-19,
1011 * 4,5,6,7,12,13,14,15,20,21,22,23
1012 */
1013 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1014 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1020 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1021 },
1022 .calTargetPower5GHT40 = {
1023 /*
1024 * 0_8_16,1-3_9-11_17-19,
1025 * 4,5,6,7,12,13,14,15,20,21,22,23
1026 */
1027 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1028 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1034 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1035 },
1036 .ctlIndex_5G = {
1037 0x10, 0x16, 0x18, 0x40, 0x46,
1038 0x48, 0x30, 0x36, 0x38
1039 },
1040 .ctl_freqbin_5G = {
1041 {
1042 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1043 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1044 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1045 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1046 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1047 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1048 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1049 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1050 },
1051 {
1052 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1053 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1054 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1055 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1056 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1057 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1058 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1059 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1060 },
1061
1062 {
1063 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1064 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1065 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1066 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1067 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1068 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1069 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1070 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1071 },
1072
1073 {
1074 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1075 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1076 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1077 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1078 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1079 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1080 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1081 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1082 },
1083
1084 {
1085 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1086 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1087 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1088 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1089 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1090 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1091 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1092 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1093 },
1094
1095 {
1096 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1097 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1098 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1099 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1100 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1101 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1102 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1103 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1104 },
1105
1106 {
1107 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1108 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1109 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1110 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1111 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1112 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1113 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1114 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1115 },
1116
1117 {
1118 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1119 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1120 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1121 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1122 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1123 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1124 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1125 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1126 },
1127
1128 {
1129 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1130 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1131 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1132 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1133 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1134 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1135 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1136 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1137 }
1138 },
1139 .ctlPowerData_5G = {
1140 {
1141 {
1142 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1143 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1144 }
1145 },
1146 {
1147 {
1148 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1149 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1150 }
1151 },
1152 {
1153 {
1154 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1155 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1156 }
1157 },
1158 {
1159 {
1160 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1161 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1162 }
1163 },
1164 {
1165 {
1166 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1167 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1168 }
1169 },
1170 {
1171 {
1172 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1173 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1174 }
1175 },
1176 {
1177 {
1178 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 }
1181 },
1182 {
1183 {
1184 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1185 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1186 }
1187 },
1188 {
1189 {
1190 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1191 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1192 }
1193 },
1194 }
1195 };
1196
1197
1198 static const struct ar9300_eeprom ar9300_h112 = {
1199 .eepromVersion = 2,
1200 .templateVersion = 3,
1201 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1202 .custData = {"h112-241-f0000"},
1203 .baseEepHeader = {
1204 .regDmn = { LE16(0), LE16(0x1f) },
1205 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1206 .opCapFlags = {
1207 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1208 .eepMisc = 0,
1209 },
1210 .rfSilent = 0,
1211 .blueToothOptions = 0,
1212 .deviceCap = 0,
1213 .deviceType = 5, /* takes lower byte in eeprom location */
1214 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1215 .params_for_tuning_caps = {0, 0},
1216 .featureEnable = 0x0d,
1217 /*
1218 * bit0 - enable tx temp comp - disabled
1219 * bit1 - enable tx volt comp - disabled
1220 * bit2 - enable fastClock - enabled
1221 * bit3 - enable doubling - enabled
1222 * bit4 - enable internal regulator - disabled
1223 * bit5 - enable pa predistortion - disabled
1224 */
1225 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1226 .eepromWriteEnableGpio = 6,
1227 .wlanDisableGpio = 0,
1228 .wlanLedGpio = 8,
1229 .rxBandSelectGpio = 0xff,
1230 .txrxgain = 0x10,
1231 .swreg = 0,
1232 },
1233 .modalHeader2G = {
1234 /* ar9300_modal_eep_header 2g */
1235 /* 4 idle,t1,t2,b(4 bits per setting) */
1236 .antCtrlCommon = LE32(0x110),
1237 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1238 .antCtrlCommon2 = LE32(0x44444),
1239
1240 /*
1241 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1242 * rx1, rx12, b (2 bits each)
1243 */
1244 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1245
1246 /*
1247 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1248 * for ar9280 (0xa20c/b20c 5:0)
1249 */
1250 .xatten1DB = {0, 0, 0},
1251
1252 /*
1253 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1254 * for ar9280 (0xa20c/b20c 16:12
1255 */
1256 .xatten1Margin = {0, 0, 0},
1257 .tempSlope = 25,
1258 .voltSlope = 0,
1259
1260 /*
1261 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1262 * channels in usual fbin coding format
1263 */
1264 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1265
1266 /*
1267 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1268 * if the register is per chain
1269 */
1270 .noiseFloorThreshCh = {-1, 0, 0},
1271 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1272 .quick_drop = 0,
1273 .xpaBiasLvl = 0,
1274 .txFrameToDataStart = 0x0e,
1275 .txFrameToPaOn = 0x0e,
1276 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1277 .antennaGain = 0,
1278 .switchSettling = 0x2c,
1279 .adcDesiredSize = -30,
1280 .txEndToXpaOff = 0,
1281 .txEndToRxOn = 0x2,
1282 .txFrameToXpaOn = 0xe,
1283 .thresh62 = 28,
1284 .papdRateMaskHt20 = LE32(0x0c80c080),
1285 .papdRateMaskHt40 = LE32(0x0080c080),
1286 .futureModal = {
1287 0, 0, 0, 0, 0, 0, 0, 0,
1288 },
1289 },
1290 .base_ext1 = {
1291 .ant_div_control = 0,
1292 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1293 },
1294 .calFreqPier2G = {
1295 FREQ2FBIN(2412, 1),
1296 FREQ2FBIN(2437, 1),
1297 FREQ2FBIN(2462, 1),
1298 },
1299 /* ar9300_cal_data_per_freq_op_loop 2g */
1300 .calPierData2G = {
1301 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1302 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1303 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1304 },
1305 .calTarget_freqbin_Cck = {
1306 FREQ2FBIN(2412, 1),
1307 FREQ2FBIN(2472, 1),
1308 },
1309 .calTarget_freqbin_2G = {
1310 FREQ2FBIN(2412, 1),
1311 FREQ2FBIN(2437, 1),
1312 FREQ2FBIN(2472, 1)
1313 },
1314 .calTarget_freqbin_2GHT20 = {
1315 FREQ2FBIN(2412, 1),
1316 FREQ2FBIN(2437, 1),
1317 FREQ2FBIN(2472, 1)
1318 },
1319 .calTarget_freqbin_2GHT40 = {
1320 FREQ2FBIN(2412, 1),
1321 FREQ2FBIN(2437, 1),
1322 FREQ2FBIN(2472, 1)
1323 },
1324 .calTargetPowerCck = {
1325 /* 1L-5L,5S,11L,11S */
1326 { {34, 34, 34, 34} },
1327 { {34, 34, 34, 34} },
1328 },
1329 .calTargetPower2G = {
1330 /* 6-24,36,48,54 */
1331 { {34, 34, 32, 32} },
1332 { {34, 34, 32, 32} },
1333 { {34, 34, 32, 32} },
1334 },
1335 .calTargetPower2GHT20 = {
1336 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1337 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1338 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1339 },
1340 .calTargetPower2GHT40 = {
1341 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1342 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1343 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1344 },
1345 .ctlIndex_2G = {
1346 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1347 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1348 },
1349 .ctl_freqbin_2G = {
1350 {
1351 FREQ2FBIN(2412, 1),
1352 FREQ2FBIN(2417, 1),
1353 FREQ2FBIN(2457, 1),
1354 FREQ2FBIN(2462, 1)
1355 },
1356 {
1357 FREQ2FBIN(2412, 1),
1358 FREQ2FBIN(2417, 1),
1359 FREQ2FBIN(2462, 1),
1360 0xFF,
1361 },
1362
1363 {
1364 FREQ2FBIN(2412, 1),
1365 FREQ2FBIN(2417, 1),
1366 FREQ2FBIN(2462, 1),
1367 0xFF,
1368 },
1369 {
1370 FREQ2FBIN(2422, 1),
1371 FREQ2FBIN(2427, 1),
1372 FREQ2FBIN(2447, 1),
1373 FREQ2FBIN(2452, 1)
1374 },
1375
1376 {
1377 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1378 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1379 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1380 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1381 },
1382
1383 {
1384 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1385 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1386 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1387 0,
1388 },
1389
1390 {
1391 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1392 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1393 FREQ2FBIN(2472, 1),
1394 0,
1395 },
1396
1397 {
1398 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1399 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1400 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1401 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1402 },
1403
1404 {
1405 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 },
1409
1410 {
1411 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1412 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1413 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1414 0
1415 },
1416
1417 {
1418 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1419 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1420 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1421 0
1422 },
1423
1424 {
1425 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1426 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1427 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1428 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1429 }
1430 },
1431 .ctlPowerData_2G = {
1432 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1433 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1434 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1435
1436 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1437 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1438 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1439
1440 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443
1444 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1446 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1447 },
1448 .modalHeader5G = {
1449 /* 4 idle,t1,t2,b (4 bits per setting) */
1450 .antCtrlCommon = LE32(0x220),
1451 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1452 .antCtrlCommon2 = LE32(0x44444),
1453 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1454 .antCtrlChain = {
1455 LE16(0x150), LE16(0x150), LE16(0x150),
1456 },
1457 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1458 .xatten1DB = {0, 0, 0},
1459
1460 /*
1461 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1462 * for merlin (0xa20c/b20c 16:12
1463 */
1464 .xatten1Margin = {0, 0, 0},
1465 .tempSlope = 45,
1466 .voltSlope = 0,
1467 /* spurChans spur channels in usual fbin coding format */
1468 .spurChans = {0, 0, 0, 0, 0},
1469 /* noiseFloorThreshCh Check if the register is per chain */
1470 .noiseFloorThreshCh = {-1, 0, 0},
1471 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1472 .quick_drop = 0,
1473 .xpaBiasLvl = 0,
1474 .txFrameToDataStart = 0x0e,
1475 .txFrameToPaOn = 0x0e,
1476 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1477 .antennaGain = 0,
1478 .switchSettling = 0x2d,
1479 .adcDesiredSize = -30,
1480 .txEndToXpaOff = 0,
1481 .txEndToRxOn = 0x2,
1482 .txFrameToXpaOn = 0xe,
1483 .thresh62 = 28,
1484 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1485 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1486 .futureModal = {
1487 0, 0, 0, 0, 0, 0, 0, 0,
1488 },
1489 },
1490 .base_ext2 = {
1491 .tempSlopeLow = 40,
1492 .tempSlopeHigh = 50,
1493 .xatten1DBLow = {0, 0, 0},
1494 .xatten1MarginLow = {0, 0, 0},
1495 .xatten1DBHigh = {0, 0, 0},
1496 .xatten1MarginHigh = {0, 0, 0}
1497 },
1498 .calFreqPier5G = {
1499 FREQ2FBIN(5180, 0),
1500 FREQ2FBIN(5220, 0),
1501 FREQ2FBIN(5320, 0),
1502 FREQ2FBIN(5400, 0),
1503 FREQ2FBIN(5500, 0),
1504 FREQ2FBIN(5600, 0),
1505 FREQ2FBIN(5700, 0),
1506 FREQ2FBIN(5785, 0)
1507 },
1508 .calPierData5G = {
1509 {
1510 {0, 0, 0, 0, 0},
1511 {0, 0, 0, 0, 0},
1512 {0, 0, 0, 0, 0},
1513 {0, 0, 0, 0, 0},
1514 {0, 0, 0, 0, 0},
1515 {0, 0, 0, 0, 0},
1516 {0, 0, 0, 0, 0},
1517 {0, 0, 0, 0, 0},
1518 },
1519 {
1520 {0, 0, 0, 0, 0},
1521 {0, 0, 0, 0, 0},
1522 {0, 0, 0, 0, 0},
1523 {0, 0, 0, 0, 0},
1524 {0, 0, 0, 0, 0},
1525 {0, 0, 0, 0, 0},
1526 {0, 0, 0, 0, 0},
1527 {0, 0, 0, 0, 0},
1528 },
1529 {
1530 {0, 0, 0, 0, 0},
1531 {0, 0, 0, 0, 0},
1532 {0, 0, 0, 0, 0},
1533 {0, 0, 0, 0, 0},
1534 {0, 0, 0, 0, 0},
1535 {0, 0, 0, 0, 0},
1536 {0, 0, 0, 0, 0},
1537 {0, 0, 0, 0, 0},
1538 },
1539
1540 },
1541 .calTarget_freqbin_5G = {
1542 FREQ2FBIN(5180, 0),
1543 FREQ2FBIN(5240, 0),
1544 FREQ2FBIN(5320, 0),
1545 FREQ2FBIN(5400, 0),
1546 FREQ2FBIN(5500, 0),
1547 FREQ2FBIN(5600, 0),
1548 FREQ2FBIN(5700, 0),
1549 FREQ2FBIN(5825, 0)
1550 },
1551 .calTarget_freqbin_5GHT20 = {
1552 FREQ2FBIN(5180, 0),
1553 FREQ2FBIN(5240, 0),
1554 FREQ2FBIN(5320, 0),
1555 FREQ2FBIN(5400, 0),
1556 FREQ2FBIN(5500, 0),
1557 FREQ2FBIN(5700, 0),
1558 FREQ2FBIN(5745, 0),
1559 FREQ2FBIN(5825, 0)
1560 },
1561 .calTarget_freqbin_5GHT40 = {
1562 FREQ2FBIN(5180, 0),
1563 FREQ2FBIN(5240, 0),
1564 FREQ2FBIN(5320, 0),
1565 FREQ2FBIN(5400, 0),
1566 FREQ2FBIN(5500, 0),
1567 FREQ2FBIN(5700, 0),
1568 FREQ2FBIN(5745, 0),
1569 FREQ2FBIN(5825, 0)
1570 },
1571 .calTargetPower5G = {
1572 /* 6-24,36,48,54 */
1573 { {30, 30, 28, 24} },
1574 { {30, 30, 28, 24} },
1575 { {30, 30, 28, 24} },
1576 { {30, 30, 28, 24} },
1577 { {30, 30, 28, 24} },
1578 { {30, 30, 28, 24} },
1579 { {30, 30, 28, 24} },
1580 { {30, 30, 28, 24} },
1581 },
1582 .calTargetPower5GHT20 = {
1583 /*
1584 * 0_8_16,1-3_9-11_17-19,
1585 * 4,5,6,7,12,13,14,15,20,21,22,23
1586 */
1587 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1588 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1589 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1590 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1591 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1592 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1593 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1594 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1595 },
1596 .calTargetPower5GHT40 = {
1597 /*
1598 * 0_8_16,1-3_9-11_17-19,
1599 * 4,5,6,7,12,13,14,15,20,21,22,23
1600 */
1601 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1602 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1603 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1604 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1605 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1606 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1607 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1608 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1609 },
1610 .ctlIndex_5G = {
1611 0x10, 0x16, 0x18, 0x40, 0x46,
1612 0x48, 0x30, 0x36, 0x38
1613 },
1614 .ctl_freqbin_5G = {
1615 {
1616 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1617 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1618 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1619 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1620 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1621 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1622 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1623 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1624 },
1625 {
1626 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1627 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1628 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1629 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1630 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1631 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1632 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1633 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1634 },
1635
1636 {
1637 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1638 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1639 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1640 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1641 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1642 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1643 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1644 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1645 },
1646
1647 {
1648 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1649 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1650 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1651 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1652 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1653 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1654 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1655 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1656 },
1657
1658 {
1659 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1660 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1661 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1662 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1663 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1664 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1665 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1666 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1667 },
1668
1669 {
1670 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1671 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1672 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1673 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1674 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1675 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1676 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1677 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1678 },
1679
1680 {
1681 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1682 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1683 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1684 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1685 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1686 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1687 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1688 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1689 },
1690
1691 {
1692 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1693 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1694 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1695 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1696 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1697 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1698 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1699 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1700 },
1701
1702 {
1703 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1704 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1705 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1706 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1707 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1708 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1709 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1710 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1711 }
1712 },
1713 .ctlPowerData_5G = {
1714 {
1715 {
1716 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1717 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1718 }
1719 },
1720 {
1721 {
1722 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1723 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1724 }
1725 },
1726 {
1727 {
1728 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1729 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1730 }
1731 },
1732 {
1733 {
1734 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1735 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1736 }
1737 },
1738 {
1739 {
1740 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1741 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1742 }
1743 },
1744 {
1745 {
1746 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1747 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1748 }
1749 },
1750 {
1751 {
1752 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1753 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1754 }
1755 },
1756 {
1757 {
1758 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1759 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1760 }
1761 },
1762 {
1763 {
1764 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1765 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1766 }
1767 },
1768 }
1769 };
1770
1771
1772 static const struct ar9300_eeprom ar9300_x112 = {
1773 .eepromVersion = 2,
1774 .templateVersion = 5,
1775 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1776 .custData = {"x112-041-f0000"},
1777 .baseEepHeader = {
1778 .regDmn = { LE16(0), LE16(0x1f) },
1779 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1780 .opCapFlags = {
1781 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1782 .eepMisc = 0,
1783 },
1784 .rfSilent = 0,
1785 .blueToothOptions = 0,
1786 .deviceCap = 0,
1787 .deviceType = 5, /* takes lower byte in eeprom location */
1788 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1789 .params_for_tuning_caps = {0, 0},
1790 .featureEnable = 0x0d,
1791 /*
1792 * bit0 - enable tx temp comp - disabled
1793 * bit1 - enable tx volt comp - disabled
1794 * bit2 - enable fastclock - enabled
1795 * bit3 - enable doubling - enabled
1796 * bit4 - enable internal regulator - disabled
1797 * bit5 - enable pa predistortion - disabled
1798 */
1799 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1800 .eepromWriteEnableGpio = 6,
1801 .wlanDisableGpio = 0,
1802 .wlanLedGpio = 8,
1803 .rxBandSelectGpio = 0xff,
1804 .txrxgain = 0x0,
1805 .swreg = 0,
1806 },
1807 .modalHeader2G = {
1808 /* ar9300_modal_eep_header 2g */
1809 /* 4 idle,t1,t2,b(4 bits per setting) */
1810 .antCtrlCommon = LE32(0x110),
1811 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1812 .antCtrlCommon2 = LE32(0x22222),
1813
1814 /*
1815 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1816 * rx1, rx12, b (2 bits each)
1817 */
1818 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1819
1820 /*
1821 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1822 * for ar9280 (0xa20c/b20c 5:0)
1823 */
1824 .xatten1DB = {0x1b, 0x1b, 0x1b},
1825
1826 /*
1827 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1828 * for ar9280 (0xa20c/b20c 16:12
1829 */
1830 .xatten1Margin = {0x15, 0x15, 0x15},
1831 .tempSlope = 50,
1832 .voltSlope = 0,
1833
1834 /*
1835 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1836 * channels in usual fbin coding format
1837 */
1838 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1839
1840 /*
1841 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1842 * if the register is per chain
1843 */
1844 .noiseFloorThreshCh = {-1, 0, 0},
1845 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1846 .quick_drop = 0,
1847 .xpaBiasLvl = 0,
1848 .txFrameToDataStart = 0x0e,
1849 .txFrameToPaOn = 0x0e,
1850 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1851 .antennaGain = 0,
1852 .switchSettling = 0x2c,
1853 .adcDesiredSize = -30,
1854 .txEndToXpaOff = 0,
1855 .txEndToRxOn = 0x2,
1856 .txFrameToXpaOn = 0xe,
1857 .thresh62 = 28,
1858 .papdRateMaskHt20 = LE32(0x0c80c080),
1859 .papdRateMaskHt40 = LE32(0x0080c080),
1860 .futureModal = {
1861 0, 0, 0, 0, 0, 0, 0, 0,
1862 },
1863 },
1864 .base_ext1 = {
1865 .ant_div_control = 0,
1866 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1867 },
1868 .calFreqPier2G = {
1869 FREQ2FBIN(2412, 1),
1870 FREQ2FBIN(2437, 1),
1871 FREQ2FBIN(2472, 1),
1872 },
1873 /* ar9300_cal_data_per_freq_op_loop 2g */
1874 .calPierData2G = {
1875 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1876 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1877 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1878 },
1879 .calTarget_freqbin_Cck = {
1880 FREQ2FBIN(2412, 1),
1881 FREQ2FBIN(2472, 1),
1882 },
1883 .calTarget_freqbin_2G = {
1884 FREQ2FBIN(2412, 1),
1885 FREQ2FBIN(2437, 1),
1886 FREQ2FBIN(2472, 1)
1887 },
1888 .calTarget_freqbin_2GHT20 = {
1889 FREQ2FBIN(2412, 1),
1890 FREQ2FBIN(2437, 1),
1891 FREQ2FBIN(2472, 1)
1892 },
1893 .calTarget_freqbin_2GHT40 = {
1894 FREQ2FBIN(2412, 1),
1895 FREQ2FBIN(2437, 1),
1896 FREQ2FBIN(2472, 1)
1897 },
1898 .calTargetPowerCck = {
1899 /* 1L-5L,5S,11L,11s */
1900 { {38, 38, 38, 38} },
1901 { {38, 38, 38, 38} },
1902 },
1903 .calTargetPower2G = {
1904 /* 6-24,36,48,54 */
1905 { {38, 38, 36, 34} },
1906 { {38, 38, 36, 34} },
1907 { {38, 38, 34, 32} },
1908 },
1909 .calTargetPower2GHT20 = {
1910 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1911 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1912 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1913 },
1914 .calTargetPower2GHT40 = {
1915 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1916 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1917 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1918 },
1919 .ctlIndex_2G = {
1920 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1921 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1922 },
1923 .ctl_freqbin_2G = {
1924 {
1925 FREQ2FBIN(2412, 1),
1926 FREQ2FBIN(2417, 1),
1927 FREQ2FBIN(2457, 1),
1928 FREQ2FBIN(2462, 1)
1929 },
1930 {
1931 FREQ2FBIN(2412, 1),
1932 FREQ2FBIN(2417, 1),
1933 FREQ2FBIN(2462, 1),
1934 0xFF,
1935 },
1936
1937 {
1938 FREQ2FBIN(2412, 1),
1939 FREQ2FBIN(2417, 1),
1940 FREQ2FBIN(2462, 1),
1941 0xFF,
1942 },
1943 {
1944 FREQ2FBIN(2422, 1),
1945 FREQ2FBIN(2427, 1),
1946 FREQ2FBIN(2447, 1),
1947 FREQ2FBIN(2452, 1)
1948 },
1949
1950 {
1951 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1952 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1953 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1954 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1955 },
1956
1957 {
1958 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1959 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1960 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1961 0,
1962 },
1963
1964 {
1965 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 FREQ2FBIN(2472, 1),
1968 0,
1969 },
1970
1971 {
1972 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1973 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1974 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1975 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1976 },
1977
1978 {
1979 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1982 },
1983
1984 {
1985 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 0
1989 },
1990
1991 {
1992 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1993 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1994 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1995 0
1996 },
1997
1998 {
1999 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2000 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2001 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2002 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2003 }
2004 },
2005 .ctlPowerData_2G = {
2006 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2007 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2008 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2009
2010 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2011 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2012 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013
2014 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2015 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2016 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2017
2018 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2021 },
2022 .modalHeader5G = {
2023 /* 4 idle,t1,t2,b (4 bits per setting) */
2024 .antCtrlCommon = LE32(0x110),
2025 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2026 .antCtrlCommon2 = LE32(0x22222),
2027 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2028 .antCtrlChain = {
2029 LE16(0x0), LE16(0x0), LE16(0x0),
2030 },
2031 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2032 .xatten1DB = {0x13, 0x19, 0x17},
2033
2034 /*
2035 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2036 * for merlin (0xa20c/b20c 16:12
2037 */
2038 .xatten1Margin = {0x19, 0x19, 0x19},
2039 .tempSlope = 70,
2040 .voltSlope = 15,
2041 /* spurChans spur channels in usual fbin coding format */
2042 .spurChans = {0, 0, 0, 0, 0},
2043 /* noiseFloorThreshch check if the register is per chain */
2044 .noiseFloorThreshCh = {-1, 0, 0},
2045 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2046 .quick_drop = 0,
2047 .xpaBiasLvl = 0,
2048 .txFrameToDataStart = 0x0e,
2049 .txFrameToPaOn = 0x0e,
2050 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2051 .antennaGain = 0,
2052 .switchSettling = 0x2d,
2053 .adcDesiredSize = -30,
2054 .txEndToXpaOff = 0,
2055 .txEndToRxOn = 0x2,
2056 .txFrameToXpaOn = 0xe,
2057 .thresh62 = 28,
2058 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2059 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2060 .futureModal = {
2061 0, 0, 0, 0, 0, 0, 0, 0,
2062 },
2063 },
2064 .base_ext2 = {
2065 .tempSlopeLow = 72,
2066 .tempSlopeHigh = 105,
2067 .xatten1DBLow = {0x10, 0x14, 0x10},
2068 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2069 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2070 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2071 },
2072 .calFreqPier5G = {
2073 FREQ2FBIN(5180, 0),
2074 FREQ2FBIN(5220, 0),
2075 FREQ2FBIN(5320, 0),
2076 FREQ2FBIN(5400, 0),
2077 FREQ2FBIN(5500, 0),
2078 FREQ2FBIN(5600, 0),
2079 FREQ2FBIN(5700, 0),
2080 FREQ2FBIN(5785, 0)
2081 },
2082 .calPierData5G = {
2083 {
2084 {0, 0, 0, 0, 0},
2085 {0, 0, 0, 0, 0},
2086 {0, 0, 0, 0, 0},
2087 {0, 0, 0, 0, 0},
2088 {0, 0, 0, 0, 0},
2089 {0, 0, 0, 0, 0},
2090 {0, 0, 0, 0, 0},
2091 {0, 0, 0, 0, 0},
2092 },
2093 {
2094 {0, 0, 0, 0, 0},
2095 {0, 0, 0, 0, 0},
2096 {0, 0, 0, 0, 0},
2097 {0, 0, 0, 0, 0},
2098 {0, 0, 0, 0, 0},
2099 {0, 0, 0, 0, 0},
2100 {0, 0, 0, 0, 0},
2101 {0, 0, 0, 0, 0},
2102 },
2103 {
2104 {0, 0, 0, 0, 0},
2105 {0, 0, 0, 0, 0},
2106 {0, 0, 0, 0, 0},
2107 {0, 0, 0, 0, 0},
2108 {0, 0, 0, 0, 0},
2109 {0, 0, 0, 0, 0},
2110 {0, 0, 0, 0, 0},
2111 {0, 0, 0, 0, 0},
2112 },
2113
2114 },
2115 .calTarget_freqbin_5G = {
2116 FREQ2FBIN(5180, 0),
2117 FREQ2FBIN(5220, 0),
2118 FREQ2FBIN(5320, 0),
2119 FREQ2FBIN(5400, 0),
2120 FREQ2FBIN(5500, 0),
2121 FREQ2FBIN(5600, 0),
2122 FREQ2FBIN(5725, 0),
2123 FREQ2FBIN(5825, 0)
2124 },
2125 .calTarget_freqbin_5GHT20 = {
2126 FREQ2FBIN(5180, 0),
2127 FREQ2FBIN(5220, 0),
2128 FREQ2FBIN(5320, 0),
2129 FREQ2FBIN(5400, 0),
2130 FREQ2FBIN(5500, 0),
2131 FREQ2FBIN(5600, 0),
2132 FREQ2FBIN(5725, 0),
2133 FREQ2FBIN(5825, 0)
2134 },
2135 .calTarget_freqbin_5GHT40 = {
2136 FREQ2FBIN(5180, 0),
2137 FREQ2FBIN(5220, 0),
2138 FREQ2FBIN(5320, 0),
2139 FREQ2FBIN(5400, 0),
2140 FREQ2FBIN(5500, 0),
2141 FREQ2FBIN(5600, 0),
2142 FREQ2FBIN(5725, 0),
2143 FREQ2FBIN(5825, 0)
2144 },
2145 .calTargetPower5G = {
2146 /* 6-24,36,48,54 */
2147 { {32, 32, 28, 26} },
2148 { {32, 32, 28, 26} },
2149 { {32, 32, 28, 26} },
2150 { {32, 32, 26, 24} },
2151 { {32, 32, 26, 24} },
2152 { {32, 32, 24, 22} },
2153 { {30, 30, 24, 22} },
2154 { {30, 30, 24, 22} },
2155 },
2156 .calTargetPower5GHT20 = {
2157 /*
2158 * 0_8_16,1-3_9-11_17-19,
2159 * 4,5,6,7,12,13,14,15,20,21,22,23
2160 */
2161 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2162 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2163 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2164 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2165 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2166 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2167 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2168 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2169 },
2170 .calTargetPower5GHT40 = {
2171 /*
2172 * 0_8_16,1-3_9-11_17-19,
2173 * 4,5,6,7,12,13,14,15,20,21,22,23
2174 */
2175 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2176 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2177 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2178 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2179 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2180 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2181 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2182 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2183 },
2184 .ctlIndex_5G = {
2185 0x10, 0x16, 0x18, 0x40, 0x46,
2186 0x48, 0x30, 0x36, 0x38
2187 },
2188 .ctl_freqbin_5G = {
2189 {
2190 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2191 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2192 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2193 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2194 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2195 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2196 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2197 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2198 },
2199 {
2200 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2201 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2202 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2203 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2204 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2205 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2206 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2207 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2208 },
2209
2210 {
2211 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2212 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2213 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2214 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2215 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2216 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2217 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2218 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2219 },
2220
2221 {
2222 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2223 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2224 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2225 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2226 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2227 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2228 /* Data[3].ctledges[6].bchannel */ 0xFF,
2229 /* Data[3].ctledges[7].bchannel */ 0xFF,
2230 },
2231
2232 {
2233 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2234 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2235 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2236 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2237 /* Data[4].ctledges[4].bchannel */ 0xFF,
2238 /* Data[4].ctledges[5].bchannel */ 0xFF,
2239 /* Data[4].ctledges[6].bchannel */ 0xFF,
2240 /* Data[4].ctledges[7].bchannel */ 0xFF,
2241 },
2242
2243 {
2244 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2245 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2246 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2247 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2248 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2249 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2250 /* Data[5].ctledges[6].bchannel */ 0xFF,
2251 /* Data[5].ctledges[7].bchannel */ 0xFF
2252 },
2253
2254 {
2255 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2256 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2257 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2258 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2259 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2260 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2261 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2262 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2263 },
2264
2265 {
2266 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2267 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2268 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2269 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2270 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2271 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2272 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2273 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2274 },
2275
2276 {
2277 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2278 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2279 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2280 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2281 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2282 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2283 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2284 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2285 }
2286 },
2287 .ctlPowerData_5G = {
2288 {
2289 {
2290 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2291 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2292 }
2293 },
2294 {
2295 {
2296 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2297 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2298 }
2299 },
2300 {
2301 {
2302 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2303 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 }
2305 },
2306 {
2307 {
2308 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2309 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2310 }
2311 },
2312 {
2313 {
2314 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2315 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2316 }
2317 },
2318 {
2319 {
2320 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2321 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2322 }
2323 },
2324 {
2325 {
2326 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2327 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 }
2329 },
2330 {
2331 {
2332 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2333 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2334 }
2335 },
2336 {
2337 {
2338 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2339 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 }
2341 },
2342 }
2343 };
2344
2345 static const struct ar9300_eeprom ar9300_h116 = {
2346 .eepromVersion = 2,
2347 .templateVersion = 4,
2348 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2349 .custData = {"h116-041-f0000"},
2350 .baseEepHeader = {
2351 .regDmn = { LE16(0), LE16(0x1f) },
2352 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2353 .opCapFlags = {
2354 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2355 .eepMisc = 0,
2356 },
2357 .rfSilent = 0,
2358 .blueToothOptions = 0,
2359 .deviceCap = 0,
2360 .deviceType = 5, /* takes lower byte in eeprom location */
2361 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2362 .params_for_tuning_caps = {0, 0},
2363 .featureEnable = 0x0d,
2364 /*
2365 * bit0 - enable tx temp comp - disabled
2366 * bit1 - enable tx volt comp - disabled
2367 * bit2 - enable fastClock - enabled
2368 * bit3 - enable doubling - enabled
2369 * bit4 - enable internal regulator - disabled
2370 * bit5 - enable pa predistortion - disabled
2371 */
2372 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2373 .eepromWriteEnableGpio = 6,
2374 .wlanDisableGpio = 0,
2375 .wlanLedGpio = 8,
2376 .rxBandSelectGpio = 0xff,
2377 .txrxgain = 0x10,
2378 .swreg = 0,
2379 },
2380 .modalHeader2G = {
2381 /* ar9300_modal_eep_header 2g */
2382 /* 4 idle,t1,t2,b(4 bits per setting) */
2383 .antCtrlCommon = LE32(0x110),
2384 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2385 .antCtrlCommon2 = LE32(0x44444),
2386
2387 /*
2388 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2389 * rx1, rx12, b (2 bits each)
2390 */
2391 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2392
2393 /*
2394 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2395 * for ar9280 (0xa20c/b20c 5:0)
2396 */
2397 .xatten1DB = {0x1f, 0x1f, 0x1f},
2398
2399 /*
2400 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2401 * for ar9280 (0xa20c/b20c 16:12
2402 */
2403 .xatten1Margin = {0x12, 0x12, 0x12},
2404 .tempSlope = 25,
2405 .voltSlope = 0,
2406
2407 /*
2408 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2409 * channels in usual fbin coding format
2410 */
2411 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2412
2413 /*
2414 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2415 * if the register is per chain
2416 */
2417 .noiseFloorThreshCh = {-1, 0, 0},
2418 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2419 .quick_drop = 0,
2420 .xpaBiasLvl = 0,
2421 .txFrameToDataStart = 0x0e,
2422 .txFrameToPaOn = 0x0e,
2423 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2424 .antennaGain = 0,
2425 .switchSettling = 0x2c,
2426 .adcDesiredSize = -30,
2427 .txEndToXpaOff = 0,
2428 .txEndToRxOn = 0x2,
2429 .txFrameToXpaOn = 0xe,
2430 .thresh62 = 28,
2431 .papdRateMaskHt20 = LE32(0x0c80C080),
2432 .papdRateMaskHt40 = LE32(0x0080C080),
2433 .futureModal = {
2434 0, 0, 0, 0, 0, 0, 0, 0,
2435 },
2436 },
2437 .base_ext1 = {
2438 .ant_div_control = 0,
2439 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2440 },
2441 .calFreqPier2G = {
2442 FREQ2FBIN(2412, 1),
2443 FREQ2FBIN(2437, 1),
2444 FREQ2FBIN(2462, 1),
2445 },
2446 /* ar9300_cal_data_per_freq_op_loop 2g */
2447 .calPierData2G = {
2448 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2449 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2450 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2451 },
2452 .calTarget_freqbin_Cck = {
2453 FREQ2FBIN(2412, 1),
2454 FREQ2FBIN(2472, 1),
2455 },
2456 .calTarget_freqbin_2G = {
2457 FREQ2FBIN(2412, 1),
2458 FREQ2FBIN(2437, 1),
2459 FREQ2FBIN(2472, 1)
2460 },
2461 .calTarget_freqbin_2GHT20 = {
2462 FREQ2FBIN(2412, 1),
2463 FREQ2FBIN(2437, 1),
2464 FREQ2FBIN(2472, 1)
2465 },
2466 .calTarget_freqbin_2GHT40 = {
2467 FREQ2FBIN(2412, 1),
2468 FREQ2FBIN(2437, 1),
2469 FREQ2FBIN(2472, 1)
2470 },
2471 .calTargetPowerCck = {
2472 /* 1L-5L,5S,11L,11S */
2473 { {34, 34, 34, 34} },
2474 { {34, 34, 34, 34} },
2475 },
2476 .calTargetPower2G = {
2477 /* 6-24,36,48,54 */
2478 { {34, 34, 32, 32} },
2479 { {34, 34, 32, 32} },
2480 { {34, 34, 32, 32} },
2481 },
2482 .calTargetPower2GHT20 = {
2483 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2484 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2485 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2486 },
2487 .calTargetPower2GHT40 = {
2488 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2489 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2490 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2491 },
2492 .ctlIndex_2G = {
2493 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2494 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2495 },
2496 .ctl_freqbin_2G = {
2497 {
2498 FREQ2FBIN(2412, 1),
2499 FREQ2FBIN(2417, 1),
2500 FREQ2FBIN(2457, 1),
2501 FREQ2FBIN(2462, 1)
2502 },
2503 {
2504 FREQ2FBIN(2412, 1),
2505 FREQ2FBIN(2417, 1),
2506 FREQ2FBIN(2462, 1),
2507 0xFF,
2508 },
2509
2510 {
2511 FREQ2FBIN(2412, 1),
2512 FREQ2FBIN(2417, 1),
2513 FREQ2FBIN(2462, 1),
2514 0xFF,
2515 },
2516 {
2517 FREQ2FBIN(2422, 1),
2518 FREQ2FBIN(2427, 1),
2519 FREQ2FBIN(2447, 1),
2520 FREQ2FBIN(2452, 1)
2521 },
2522
2523 {
2524 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2525 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2526 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2527 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2528 },
2529
2530 {
2531 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2532 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2533 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2534 0,
2535 },
2536
2537 {
2538 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2539 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2540 FREQ2FBIN(2472, 1),
2541 0,
2542 },
2543
2544 {
2545 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2546 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2547 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2548 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2549 },
2550
2551 {
2552 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2553 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2554 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2555 },
2556
2557 {
2558 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2559 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2560 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2561 0
2562 },
2563
2564 {
2565 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2566 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2567 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2568 0
2569 },
2570
2571 {
2572 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2573 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2574 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2575 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2576 }
2577 },
2578 .ctlPowerData_2G = {
2579 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2580 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2581 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2582
2583 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2584 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2585 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2586
2587 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2588 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590
2591 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2592 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2593 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2594 },
2595 .modalHeader5G = {
2596 /* 4 idle,t1,t2,b (4 bits per setting) */
2597 .antCtrlCommon = LE32(0x220),
2598 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2599 .antCtrlCommon2 = LE32(0x44444),
2600 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2601 .antCtrlChain = {
2602 LE16(0x150), LE16(0x150), LE16(0x150),
2603 },
2604 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2605 .xatten1DB = {0x19, 0x19, 0x19},
2606
2607 /*
2608 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2609 * for merlin (0xa20c/b20c 16:12
2610 */
2611 .xatten1Margin = {0x14, 0x14, 0x14},
2612 .tempSlope = 70,
2613 .voltSlope = 0,
2614 /* spurChans spur channels in usual fbin coding format */
2615 .spurChans = {0, 0, 0, 0, 0},
2616 /* noiseFloorThreshCh Check if the register is per chain */
2617 .noiseFloorThreshCh = {-1, 0, 0},
2618 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2619 .quick_drop = 0,
2620 .xpaBiasLvl = 0,
2621 .txFrameToDataStart = 0x0e,
2622 .txFrameToPaOn = 0x0e,
2623 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2624 .antennaGain = 0,
2625 .switchSettling = 0x2d,
2626 .adcDesiredSize = -30,
2627 .txEndToXpaOff = 0,
2628 .txEndToRxOn = 0x2,
2629 .txFrameToXpaOn = 0xe,
2630 .thresh62 = 28,
2631 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2632 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2633 .futureModal = {
2634 0, 0, 0, 0, 0, 0, 0, 0,
2635 },
2636 },
2637 .base_ext2 = {
2638 .tempSlopeLow = 35,
2639 .tempSlopeHigh = 50,
2640 .xatten1DBLow = {0, 0, 0},
2641 .xatten1MarginLow = {0, 0, 0},
2642 .xatten1DBHigh = {0, 0, 0},
2643 .xatten1MarginHigh = {0, 0, 0}
2644 },
2645 .calFreqPier5G = {
2646 FREQ2FBIN(5160, 0),
2647 FREQ2FBIN(5220, 0),
2648 FREQ2FBIN(5320, 0),
2649 FREQ2FBIN(5400, 0),
2650 FREQ2FBIN(5500, 0),
2651 FREQ2FBIN(5600, 0),
2652 FREQ2FBIN(5700, 0),
2653 FREQ2FBIN(5785, 0)
2654 },
2655 .calPierData5G = {
2656 {
2657 {0, 0, 0, 0, 0},
2658 {0, 0, 0, 0, 0},
2659 {0, 0, 0, 0, 0},
2660 {0, 0, 0, 0, 0},
2661 {0, 0, 0, 0, 0},
2662 {0, 0, 0, 0, 0},
2663 {0, 0, 0, 0, 0},
2664 {0, 0, 0, 0, 0},
2665 },
2666 {
2667 {0, 0, 0, 0, 0},
2668 {0, 0, 0, 0, 0},
2669 {0, 0, 0, 0, 0},
2670 {0, 0, 0, 0, 0},
2671 {0, 0, 0, 0, 0},
2672 {0, 0, 0, 0, 0},
2673 {0, 0, 0, 0, 0},
2674 {0, 0, 0, 0, 0},
2675 },
2676 {
2677 {0, 0, 0, 0, 0},
2678 {0, 0, 0, 0, 0},
2679 {0, 0, 0, 0, 0},
2680 {0, 0, 0, 0, 0},
2681 {0, 0, 0, 0, 0},
2682 {0, 0, 0, 0, 0},
2683 {0, 0, 0, 0, 0},
2684 {0, 0, 0, 0, 0},
2685 },
2686
2687 },
2688 .calTarget_freqbin_5G = {
2689 FREQ2FBIN(5180, 0),
2690 FREQ2FBIN(5240, 0),
2691 FREQ2FBIN(5320, 0),
2692 FREQ2FBIN(5400, 0),
2693 FREQ2FBIN(5500, 0),
2694 FREQ2FBIN(5600, 0),
2695 FREQ2FBIN(5700, 0),
2696 FREQ2FBIN(5825, 0)
2697 },
2698 .calTarget_freqbin_5GHT20 = {
2699 FREQ2FBIN(5180, 0),
2700 FREQ2FBIN(5240, 0),
2701 FREQ2FBIN(5320, 0),
2702 FREQ2FBIN(5400, 0),
2703 FREQ2FBIN(5500, 0),
2704 FREQ2FBIN(5700, 0),
2705 FREQ2FBIN(5745, 0),
2706 FREQ2FBIN(5825, 0)
2707 },
2708 .calTarget_freqbin_5GHT40 = {
2709 FREQ2FBIN(5180, 0),
2710 FREQ2FBIN(5240, 0),
2711 FREQ2FBIN(5320, 0),
2712 FREQ2FBIN(5400, 0),
2713 FREQ2FBIN(5500, 0),
2714 FREQ2FBIN(5700, 0),
2715 FREQ2FBIN(5745, 0),
2716 FREQ2FBIN(5825, 0)
2717 },
2718 .calTargetPower5G = {
2719 /* 6-24,36,48,54 */
2720 { {30, 30, 28, 24} },
2721 { {30, 30, 28, 24} },
2722 { {30, 30, 28, 24} },
2723 { {30, 30, 28, 24} },
2724 { {30, 30, 28, 24} },
2725 { {30, 30, 28, 24} },
2726 { {30, 30, 28, 24} },
2727 { {30, 30, 28, 24} },
2728 },
2729 .calTargetPower5GHT20 = {
2730 /*
2731 * 0_8_16,1-3_9-11_17-19,
2732 * 4,5,6,7,12,13,14,15,20,21,22,23
2733 */
2734 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2735 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2736 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2737 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2738 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2739 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2740 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2741 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2742 },
2743 .calTargetPower5GHT40 = {
2744 /*
2745 * 0_8_16,1-3_9-11_17-19,
2746 * 4,5,6,7,12,13,14,15,20,21,22,23
2747 */
2748 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2749 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2750 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2751 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2752 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2753 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2754 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2755 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2756 },
2757 .ctlIndex_5G = {
2758 0x10, 0x16, 0x18, 0x40, 0x46,
2759 0x48, 0x30, 0x36, 0x38
2760 },
2761 .ctl_freqbin_5G = {
2762 {
2763 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2764 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2765 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2766 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2767 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2768 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2769 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2770 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2771 },
2772 {
2773 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2778 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 },
2782
2783 {
2784 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2785 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2786 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2787 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2788 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2789 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2790 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2791 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2792 },
2793
2794 {
2795 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2796 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2797 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2798 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2799 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2800 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2801 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2802 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2803 },
2804
2805 {
2806 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2807 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2808 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2809 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2810 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2811 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2812 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2813 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2814 },
2815
2816 {
2817 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2818 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2819 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2820 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2821 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2822 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2823 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2824 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2825 },
2826
2827 {
2828 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2829 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2830 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2831 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2832 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2833 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2834 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2835 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2836 },
2837
2838 {
2839 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2840 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2841 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2842 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2843 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2844 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2845 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2846 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2847 },
2848
2849 {
2850 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2851 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2852 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2853 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2854 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2855 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2856 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2857 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2858 }
2859 },
2860 .ctlPowerData_5G = {
2861 {
2862 {
2863 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2864 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2865 }
2866 },
2867 {
2868 {
2869 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2870 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2871 }
2872 },
2873 {
2874 {
2875 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2876 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2877 }
2878 },
2879 {
2880 {
2881 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2882 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2883 }
2884 },
2885 {
2886 {
2887 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2888 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2889 }
2890 },
2891 {
2892 {
2893 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2894 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2895 }
2896 },
2897 {
2898 {
2899 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2900 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2901 }
2902 },
2903 {
2904 {
2905 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2906 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2907 }
2908 },
2909 {
2910 {
2911 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2912 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2913 }
2914 },
2915 }
2916 };
2917
2918
2919 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2920 &ar9300_default,
2921 &ar9300_x112,
2922 &ar9300_h116,
2923 &ar9300_h112,
2924 &ar9300_x113,
2925 };
2926
2927 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2928 {
2929 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2930 int it;
2931
2932 for (it = 0; it < N_LOOP; it++)
2933 if (ar9300_eep_templates[it]->templateVersion == id)
2934 return ar9300_eep_templates[it];
2935 return NULL;
2936 #undef N_LOOP
2937 }
2938
2939
2940 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2941 {
2942 if (fbin == AR5416_BCHAN_UNUSED)
2943 return fbin;
2944
2945 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2946 }
2947
2948 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2949 {
2950 return 0;
2951 }
2952
2953 static int interpolate(int x, int xa, int xb, int ya, int yb)
2954 {
2955 int bf, factor, plus;
2956
2957 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2958 factor = bf / 2;
2959 plus = bf % 2;
2960 return ya + factor + plus;
2961 }
2962
2963 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2964 enum eeprom_param param)
2965 {
2966 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2967 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2968
2969 switch (param) {
2970 case EEP_MAC_LSW:
2971 return get_unaligned_be16(eep->macAddr);
2972 case EEP_MAC_MID:
2973 return get_unaligned_be16(eep->macAddr + 2);
2974 case EEP_MAC_MSW:
2975 return get_unaligned_be16(eep->macAddr + 4);
2976 case EEP_REG_0:
2977 return le16_to_cpu(pBase->regDmn[0]);
2978 case EEP_OP_CAP:
2979 return pBase->deviceCap;
2980 case EEP_OP_MODE:
2981 return pBase->opCapFlags.opFlags;
2982 case EEP_RF_SILENT:
2983 return pBase->rfSilent;
2984 case EEP_TX_MASK:
2985 return (pBase->txrxMask >> 4) & 0xf;
2986 case EEP_RX_MASK:
2987 return pBase->txrxMask & 0xf;
2988 case EEP_DRIVE_STRENGTH:
2989 #define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
2990 return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
2991 case EEP_INTERNAL_REGULATOR:
2992 /* Bit 4 is internal regulator flag */
2993 return (pBase->featureEnable & 0x10) >> 4;
2994 case EEP_SWREG:
2995 return le32_to_cpu(pBase->swreg);
2996 case EEP_PAPRD:
2997 return !!(pBase->featureEnable & BIT(5));
2998 case EEP_CHAIN_MASK_REDUCE:
2999 return (pBase->miscConfiguration >> 0x3) & 0x1;
3000 case EEP_ANT_DIV_CTL1:
3001 return eep->base_ext1.ant_div_control;
3002 case EEP_ANTENNA_GAIN_5G:
3003 return eep->modalHeader5G.antennaGain;
3004 case EEP_ANTENNA_GAIN_2G:
3005 return eep->modalHeader2G.antennaGain;
3006 case EEP_QUICK_DROP:
3007 return pBase->miscConfiguration & BIT(1);
3008 default:
3009 return 0;
3010 }
3011 }
3012
3013 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3014 u8 *buffer)
3015 {
3016 u16 val;
3017
3018 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3019 return false;
3020
3021 *buffer = (val >> (8 * (address % 2))) & 0xff;
3022 return true;
3023 }
3024
3025 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3026 u8 *buffer)
3027 {
3028 u16 val;
3029
3030 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3031 return false;
3032
3033 buffer[0] = val >> 8;
3034 buffer[1] = val & 0xff;
3035
3036 return true;
3037 }
3038
3039 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3040 int count)
3041 {
3042 struct ath_common *common = ath9k_hw_common(ah);
3043 int i;
3044
3045 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3046 ath_dbg(common, EEPROM, "eeprom address not in range\n");
3047 return false;
3048 }
3049
3050 /*
3051 * Since we're reading the bytes in reverse order from a little-endian
3052 * word stream, an even address means we only use the lower half of
3053 * the 16-bit word at that address
3054 */
3055 if (address % 2 == 0) {
3056 if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3057 goto error;
3058
3059 count--;
3060 }
3061
3062 for (i = 0; i < count / 2; i++) {
3063 if (!ar9300_eeprom_read_word(common, address, buffer))
3064 goto error;
3065
3066 address -= 2;
3067 buffer += 2;
3068 }
3069
3070 if (count % 2)
3071 if (!ar9300_eeprom_read_byte(common, address, buffer))
3072 goto error;
3073
3074 return true;
3075
3076 error:
3077 ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3078 address);
3079 return false;
3080 }
3081
3082 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3083 {
3084 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3085
3086 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3087 AR9300_OTP_STATUS_VALID, 1000))
3088 return false;
3089
3090 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3091 return true;
3092 }
3093
3094 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3095 int count)
3096 {
3097 u32 data;
3098 int i;
3099
3100 for (i = 0; i < count; i++) {
3101 int offset = 8 * ((address - i) % 4);
3102 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3103 return false;
3104
3105 buffer[i] = (data >> offset) & 0xff;
3106 }
3107
3108 return true;
3109 }
3110
3111
3112 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3113 int *length, int *major, int *minor)
3114 {
3115 unsigned long value[4];
3116
3117 value[0] = best[0];
3118 value[1] = best[1];
3119 value[2] = best[2];
3120 value[3] = best[3];
3121 *code = ((value[0] >> 5) & 0x0007);
3122 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3123 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3124 *major = (value[2] & 0x000f);
3125 *minor = (value[3] & 0x00ff);
3126 }
3127
3128 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3129 {
3130 int it, checksum = 0;
3131
3132 for (it = 0; it < dsize; it++) {
3133 checksum += data[it];
3134 checksum &= 0xffff;
3135 }
3136
3137 return checksum;
3138 }
3139
3140 static bool ar9300_uncompress_block(struct ath_hw *ah,
3141 u8 *mptr,
3142 int mdataSize,
3143 u8 *block,
3144 int size)
3145 {
3146 int it;
3147 int spot;
3148 int offset;
3149 int length;
3150 struct ath_common *common = ath9k_hw_common(ah);
3151
3152 spot = 0;
3153
3154 for (it = 0; it < size; it += (length+2)) {
3155 offset = block[it];
3156 offset &= 0xff;
3157 spot += offset;
3158 length = block[it+1];
3159 length &= 0xff;
3160
3161 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3162 ath_dbg(common, EEPROM,
3163 "Restore at %d: spot=%d offset=%d length=%d\n",
3164 it, spot, offset, length);
3165 memcpy(&mptr[spot], &block[it+2], length);
3166 spot += length;
3167 } else if (length > 0) {
3168 ath_dbg(common, EEPROM,
3169 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3170 it, spot, offset, length);
3171 return false;
3172 }
3173 }
3174 return true;
3175 }
3176
3177 static int ar9300_compress_decision(struct ath_hw *ah,
3178 int it,
3179 int code,
3180 int reference,
3181 u8 *mptr,
3182 u8 *word, int length, int mdata_size)
3183 {
3184 struct ath_common *common = ath9k_hw_common(ah);
3185 const struct ar9300_eeprom *eep = NULL;
3186
3187 switch (code) {
3188 case _CompressNone:
3189 if (length != mdata_size) {
3190 ath_dbg(common, EEPROM,
3191 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3192 mdata_size, length);
3193 return -1;
3194 }
3195 memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3196 ath_dbg(common, EEPROM,
3197 "restored eeprom %d: uncompressed, length %d\n",
3198 it, length);
3199 break;
3200 case _CompressBlock:
3201 if (reference == 0) {
3202 } else {
3203 eep = ar9003_eeprom_struct_find_by_id(reference);
3204 if (eep == NULL) {
3205 ath_dbg(common, EEPROM,
3206 "can't find reference eeprom struct %d\n",
3207 reference);
3208 return -1;
3209 }
3210 memcpy(mptr, eep, mdata_size);
3211 }
3212 ath_dbg(common, EEPROM,
3213 "restore eeprom %d: block, reference %d, length %d\n",
3214 it, reference, length);
3215 ar9300_uncompress_block(ah, mptr, mdata_size,
3216 (u8 *) (word + COMP_HDR_LEN), length);
3217 break;
3218 default:
3219 ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3220 return -1;
3221 }
3222 return 0;
3223 }
3224
3225 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3226 int count);
3227
3228 static bool ar9300_check_header(void *data)
3229 {
3230 u32 *word = data;
3231 return !(*word == 0 || *word == ~0);
3232 }
3233
3234 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3235 int base_addr)
3236 {
3237 u8 header[4];
3238
3239 if (!read(ah, base_addr, header, 4))
3240 return false;
3241
3242 return ar9300_check_header(header);
3243 }
3244
3245 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3246 int mdata_size)
3247 {
3248 struct ath_common *common = ath9k_hw_common(ah);
3249 u16 *data = (u16 *) mptr;
3250 int i;
3251
3252 for (i = 0; i < mdata_size / 2; i++, data++)
3253 ath9k_hw_nvram_read(common, i, data);
3254
3255 return 0;
3256 }
3257 /*
3258 * Read the configuration data from the eeprom.
3259 * The data can be put in any specified memory buffer.
3260 *
3261 * Returns -1 on error.
3262 * Returns address of next memory location on success.
3263 */
3264 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3265 u8 *mptr, int mdata_size)
3266 {
3267 #define MDEFAULT 15
3268 #define MSTATE 100
3269 int cptr;
3270 u8 *word;
3271 int code;
3272 int reference, length, major, minor;
3273 int osize;
3274 int it;
3275 u16 checksum, mchecksum;
3276 struct ath_common *common = ath9k_hw_common(ah);
3277 eeprom_read_op read;
3278
3279 if (ath9k_hw_use_flash(ah))
3280 return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3281
3282 word = kzalloc(2048, GFP_KERNEL);
3283 if (!word)
3284 return -ENOMEM;
3285
3286 memcpy(mptr, &ar9300_default, mdata_size);
3287
3288 read = ar9300_read_eeprom;
3289 if (AR_SREV_9485(ah))
3290 cptr = AR9300_BASE_ADDR_4K;
3291 else if (AR_SREV_9330(ah))
3292 cptr = AR9300_BASE_ADDR_512;
3293 else
3294 cptr = AR9300_BASE_ADDR;
3295 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3296 cptr);
3297 if (ar9300_check_eeprom_header(ah, read, cptr))
3298 goto found;
3299
3300 cptr = AR9300_BASE_ADDR_512;
3301 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3302 cptr);
3303 if (ar9300_check_eeprom_header(ah, read, cptr))
3304 goto found;
3305
3306 read = ar9300_read_otp;
3307 cptr = AR9300_BASE_ADDR;
3308 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3309 if (ar9300_check_eeprom_header(ah, read, cptr))
3310 goto found;
3311
3312 cptr = AR9300_BASE_ADDR_512;
3313 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3314 if (ar9300_check_eeprom_header(ah, read, cptr))
3315 goto found;
3316
3317 goto fail;
3318
3319 found:
3320 ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3321
3322 for (it = 0; it < MSTATE; it++) {
3323 if (!read(ah, cptr, word, COMP_HDR_LEN))
3324 goto fail;
3325
3326 if (!ar9300_check_header(word))
3327 break;
3328
3329 ar9300_comp_hdr_unpack(word, &code, &reference,
3330 &length, &major, &minor);
3331 ath_dbg(common, EEPROM,
3332 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3333 cptr, code, reference, length, major, minor);
3334 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3335 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3336 ath_dbg(common, EEPROM, "Skipping bad header\n");
3337 cptr -= COMP_HDR_LEN;
3338 continue;
3339 }
3340
3341 osize = length;
3342 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3343 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3344 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3345 ath_dbg(common, EEPROM, "checksum %x %x\n",
3346 checksum, mchecksum);
3347 if (checksum == mchecksum) {
3348 ar9300_compress_decision(ah, it, code, reference, mptr,
3349 word, length, mdata_size);
3350 } else {
3351 ath_dbg(common, EEPROM,
3352 "skipping block with bad checksum\n");
3353 }
3354 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3355 }
3356
3357 kfree(word);
3358 return cptr;
3359
3360 fail:
3361 kfree(word);
3362 return -1;
3363 }
3364
3365 /*
3366 * Restore the configuration structure by reading the eeprom.
3367 * This function destroys any existing in-memory structure
3368 * content.
3369 */
3370 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3371 {
3372 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3373
3374 if (ar9300_eeprom_restore_internal(ah, mptr,
3375 sizeof(struct ar9300_eeprom)) < 0)
3376 return false;
3377
3378 return true;
3379 }
3380
3381 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3382 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3383 struct ar9300_modal_eep_header *modal_hdr)
3384 {
3385 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3386 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3387 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3388 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3389 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3390 PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3391 PR_EEP("Switch Settle", modal_hdr->switchSettling);
3392 PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3393 PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3394 PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3395 PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3396 PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3397 PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3398 PR_EEP("Temp Slope", modal_hdr->tempSlope);
3399 PR_EEP("Volt Slope", modal_hdr->voltSlope);
3400 PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3401 PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3402 PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3403 PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3404 PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3405 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3406 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3407 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3408 PR_EEP("Quick Drop", modal_hdr->quick_drop);
3409 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3410 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3411 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3412 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3413 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3414 PR_EEP("txClip", modal_hdr->txClip);
3415 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3416
3417 return len;
3418 }
3419
3420 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3421 u8 *buf, u32 len, u32 size)
3422 {
3423 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3424 struct ar9300_base_eep_hdr *pBase;
3425
3426 if (!dump_base_hdr) {
3427 len += snprintf(buf + len, size - len,
3428 "%20s :\n", "2GHz modal Header");
3429 len += ar9003_dump_modal_eeprom(buf, len, size,
3430 &eep->modalHeader2G);
3431 len += snprintf(buf + len, size - len,
3432 "%20s :\n", "5GHz modal Header");
3433 len += ar9003_dump_modal_eeprom(buf, len, size,
3434 &eep->modalHeader5G);
3435 goto out;
3436 }
3437
3438 pBase = &eep->baseEepHeader;
3439
3440 PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3441 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3442 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3443 PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3444 PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3445 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3446 AR5416_OPFLAGS_11A));
3447 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3448 AR5416_OPFLAGS_11G));
3449 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3450 AR5416_OPFLAGS_N_2G_HT20));
3451 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3452 AR5416_OPFLAGS_N_2G_HT40));
3453 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3454 AR5416_OPFLAGS_N_5G_HT20));
3455 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3456 AR5416_OPFLAGS_N_5G_HT40));
3457 PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3458 PR_EEP("RF Silent", pBase->rfSilent);
3459 PR_EEP("BT option", pBase->blueToothOptions);
3460 PR_EEP("Device Cap", pBase->deviceCap);
3461 PR_EEP("Device Type", pBase->deviceType);
3462 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3463 PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3464 PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3465 PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3466 PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3467 PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3468 PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3469 PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3470 PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3471 PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3472 PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3473 PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3474 PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3475 PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3476 PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3477 PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3478 PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3479 PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3480 PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3481
3482 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3483 ah->eeprom.ar9300_eep.macAddr);
3484 out:
3485 if (len > size)
3486 len = size;
3487
3488 return len;
3489 }
3490 #else
3491 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3492 u8 *buf, u32 len, u32 size)
3493 {
3494 return 0;
3495 }
3496 #endif
3497
3498 /* XXX: review hardware docs */
3499 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3500 {
3501 return ah->eeprom.ar9300_eep.eepromVersion;
3502 }
3503
3504 /* XXX: could be read from the eepromVersion, not sure yet */
3505 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3506 {
3507 return 0;
3508 }
3509
3510 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3511 {
3512 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3513
3514 if (is2ghz)
3515 return eep->modalHeader2G.xpaBiasLvl;
3516 else
3517 return eep->modalHeader5G.xpaBiasLvl;
3518 }
3519
3520 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3521 {
3522 int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3523
3524 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3525 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3526 else if (AR_SREV_9462(ah))
3527 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3528 else {
3529 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3530 REG_RMW_FIELD(ah, AR_CH0_THERM,
3531 AR_CH0_THERM_XPABIASLVL_MSB,
3532 bias >> 2);
3533 REG_RMW_FIELD(ah, AR_CH0_THERM,
3534 AR_CH0_THERM_XPASHORT2GND, 1);
3535 }
3536 }
3537
3538 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is_2ghz)
3539 {
3540 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3541 __le32 val;
3542
3543 if (is_2ghz)
3544 val = eep->modalHeader2G.switchcomspdt;
3545 else
3546 val = eep->modalHeader5G.switchcomspdt;
3547 return le32_to_cpu(val);
3548 }
3549
3550
3551 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3552 {
3553 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3554 __le32 val;
3555
3556 if (is2ghz)
3557 val = eep->modalHeader2G.antCtrlCommon;
3558 else
3559 val = eep->modalHeader5G.antCtrlCommon;
3560 return le32_to_cpu(val);
3561 }
3562
3563 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3564 {
3565 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3566 __le32 val;
3567
3568 if (is2ghz)
3569 val = eep->modalHeader2G.antCtrlCommon2;
3570 else
3571 val = eep->modalHeader5G.antCtrlCommon2;
3572 return le32_to_cpu(val);
3573 }
3574
3575 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3576 int chain,
3577 bool is2ghz)
3578 {
3579 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3580 __le16 val = 0;
3581
3582 if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3583 if (is2ghz)
3584 val = eep->modalHeader2G.antCtrlChain[chain];
3585 else
3586 val = eep->modalHeader5G.antCtrlChain[chain];
3587 }
3588
3589 return le16_to_cpu(val);
3590 }
3591
3592 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3593 {
3594 int chain;
3595 u32 regval;
3596 u32 ant_div_ctl1;
3597 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3598 AR_PHY_SWITCH_CHAIN_0,
3599 AR_PHY_SWITCH_CHAIN_1,
3600 AR_PHY_SWITCH_CHAIN_2,
3601 };
3602
3603 u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3604
3605 if (AR_SREV_9462(ah)) {
3606 if (AR_SREV_9462_10(ah)) {
3607 value &= ~AR_SWITCH_TABLE_COM_SPDT;
3608 value |= 0x00100000;
3609 }
3610 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3611 AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3612 } else
3613 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3614 AR_SWITCH_TABLE_COM_ALL, value);
3615
3616
3617 /*
3618 * AR9462 defines new switch table for BT/WLAN,
3619 * here's new field name in XXX.ref for both 2G and 5G.
3620 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3621 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
3622 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3623 *
3624 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
3625 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3626 *
3627 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3628 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3629 */
3630 if (AR_SREV_9462_20_OR_LATER(ah)) {
3631 value = ar9003_switch_com_spdt_get(ah, is2ghz);
3632 REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3633 AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3634 }
3635
3636 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3637 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3638
3639 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3640 if ((ah->rxchainmask & BIT(chain)) ||
3641 (ah->txchainmask & BIT(chain))) {
3642 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3643 is2ghz);
3644 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3645 AR_SWITCH_TABLE_ALL, value);
3646 }
3647 }
3648
3649 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3650 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3651 /*
3652 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3653 * are the fields present
3654 */
3655 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3656 regval &= (~AR_ANT_DIV_CTRL_ALL);
3657 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3658 /* enable_lnadiv */
3659 regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3660 regval |= ((value >> 6) & 0x1) <<
3661 AR_PHY_9485_ANT_DIV_LNADIV_S;
3662 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3663
3664 /*enable fast_div */
3665 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3666 regval &= (~AR_FAST_DIV_ENABLE);
3667 regval |= ((value >> 7) & 0x1) <<
3668 AR_FAST_DIV_ENABLE_S;
3669 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3670 ant_div_ctl1 =
3671 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3672 /* check whether antenna diversity is enabled */
3673 if ((ant_div_ctl1 >> 0x6) == 0x3) {
3674 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3675 /*
3676 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3677 * main_tb, alt_tb
3678 */
3679 regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3680 AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3681 AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3682 AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3683 /* by default use LNA1 for the main antenna */
3684 regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3685 AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3686 regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3687 AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3688 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3689 }
3690
3691
3692 }
3693
3694 }
3695
3696 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3697 {
3698 int drive_strength;
3699 unsigned long reg;
3700
3701 drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3702
3703 if (!drive_strength)
3704 return;
3705
3706 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3707 reg &= ~0x00ffffc0;
3708 reg |= 0x5 << 21;
3709 reg |= 0x5 << 18;
3710 reg |= 0x5 << 15;
3711 reg |= 0x5 << 12;
3712 reg |= 0x5 << 9;
3713 reg |= 0x5 << 6;
3714 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3715
3716 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3717 reg &= ~0xffffffe0;
3718 reg |= 0x5 << 29;
3719 reg |= 0x5 << 26;
3720 reg |= 0x5 << 23;
3721 reg |= 0x5 << 20;
3722 reg |= 0x5 << 17;
3723 reg |= 0x5 << 14;
3724 reg |= 0x5 << 11;
3725 reg |= 0x5 << 8;
3726 reg |= 0x5 << 5;
3727 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3728
3729 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3730 reg &= ~0xff800000;
3731 reg |= 0x5 << 29;
3732 reg |= 0x5 << 26;
3733 reg |= 0x5 << 23;
3734 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3735 }
3736
3737 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3738 struct ath9k_channel *chan)
3739 {
3740 int f[3], t[3];
3741 u16 value;
3742 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3743
3744 if (chain >= 0 && chain < 3) {
3745 if (IS_CHAN_2GHZ(chan))
3746 return eep->modalHeader2G.xatten1DB[chain];
3747 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3748 t[0] = eep->base_ext2.xatten1DBLow[chain];
3749 f[0] = 5180;
3750 t[1] = eep->modalHeader5G.xatten1DB[chain];
3751 f[1] = 5500;
3752 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3753 f[2] = 5785;
3754 value = ar9003_hw_power_interpolate((s32) chan->channel,
3755 f, t, 3);
3756 return value;
3757 } else
3758 return eep->modalHeader5G.xatten1DB[chain];
3759 }
3760
3761 return 0;
3762 }
3763
3764
3765 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3766 struct ath9k_channel *chan)
3767 {
3768 int f[3], t[3];
3769 u16 value;
3770 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3771
3772 if (chain >= 0 && chain < 3) {
3773 if (IS_CHAN_2GHZ(chan))
3774 return eep->modalHeader2G.xatten1Margin[chain];
3775 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3776 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3777 f[0] = 5180;
3778 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3779 f[1] = 5500;
3780 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3781 f[2] = 5785;
3782 value = ar9003_hw_power_interpolate((s32) chan->channel,
3783 f, t, 3);
3784 return value;
3785 } else
3786 return eep->modalHeader5G.xatten1Margin[chain];
3787 }
3788
3789 return 0;
3790 }
3791
3792 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3793 {
3794 int i;
3795 u16 value;
3796 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3797 AR_PHY_EXT_ATTEN_CTL_1,
3798 AR_PHY_EXT_ATTEN_CTL_2,
3799 };
3800
3801 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3802 for (i = 0; i < 3; i++) {
3803 if (ah->txchainmask & BIT(i)) {
3804 value = ar9003_hw_atten_chain_get(ah, i, chan);
3805 REG_RMW_FIELD(ah, ext_atten_reg[i],
3806 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3807
3808 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3809 REG_RMW_FIELD(ah, ext_atten_reg[i],
3810 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3811 value);
3812 }
3813 }
3814 }
3815
3816 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3817 {
3818 int timeout = 100;
3819
3820 while (pmu_set != REG_READ(ah, pmu_reg)) {
3821 if (timeout-- == 0)
3822 return false;
3823 REG_WRITE(ah, pmu_reg, pmu_set);
3824 udelay(10);
3825 }
3826
3827 return true;
3828 }
3829
3830 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3831 {
3832 int internal_regulator =
3833 ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3834 u32 reg_val;
3835
3836 if (internal_regulator) {
3837 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3838 int reg_pmu_set;
3839
3840 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3841 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3842 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3843 return;
3844
3845 if (AR_SREV_9330(ah)) {
3846 if (ah->is_clk_25mhz) {
3847 reg_pmu_set = (3 << 1) | (8 << 4) |
3848 (3 << 8) | (1 << 14) |
3849 (6 << 17) | (1 << 20) |
3850 (3 << 24);
3851 } else {
3852 reg_pmu_set = (4 << 1) | (7 << 4) |
3853 (3 << 8) | (1 << 14) |
3854 (6 << 17) | (1 << 20) |
3855 (3 << 24);
3856 }
3857 } else {
3858 reg_pmu_set = (5 << 1) | (7 << 4) |
3859 (2 << 8) | (2 << 14) |
3860 (6 << 17) | (1 << 20) |
3861 (3 << 24) | (1 << 28);
3862 }
3863
3864 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3865 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3866 return;
3867
3868 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3869 | (4 << 26);
3870 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3871 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3872 return;
3873
3874 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3875 | (1 << 21);
3876 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3877 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3878 return;
3879 } else if (AR_SREV_9462(ah)) {
3880 reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3881 REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3882 } else {
3883 /* Internal regulator is ON. Write swreg register. */
3884 reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3885 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3886 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3887 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3888 REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3889 /* Set REG_CONTROL1.SWREG_PROGRAM */
3890 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3891 REG_READ(ah,
3892 AR_RTC_REG_CONTROL1) |
3893 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3894 }
3895 } else {
3896 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3897 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3898 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3899 AR_PHY_PMU2_PGM))
3900 udelay(10);
3901
3902 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3903 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3904 AR_PHY_PMU1_PWD))
3905 udelay(10);
3906 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3907 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3908 AR_PHY_PMU2_PGM))
3909 udelay(10);
3910 } else if (AR_SREV_9462(ah))
3911 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3912 else {
3913 reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3914 AR_RTC_FORCE_SWREG_PRD;
3915 REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3916 }
3917 }
3918
3919 }
3920
3921 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3922 {
3923 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3924 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3925
3926 if (eep->baseEepHeader.featureEnable & 0x40) {
3927 tuning_caps_param &= 0x7f;
3928 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3929 tuning_caps_param);
3930 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3931 tuning_caps_param);
3932 }
3933 }
3934
3935 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3936 {
3937 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3938 int quick_drop = ath9k_hw_ar9300_get_eeprom(ah, EEP_QUICK_DROP);
3939 s32 t[3], f[3] = {5180, 5500, 5785};
3940
3941 if (!quick_drop)
3942 return;
3943
3944 if (freq < 4000)
3945 quick_drop = eep->modalHeader2G.quick_drop;
3946 else {
3947 t[0] = eep->base_ext1.quick_drop_low;
3948 t[1] = eep->modalHeader5G.quick_drop;
3949 t[2] = eep->base_ext1.quick_drop_high;
3950 quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3951 }
3952 REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3953 }
3954
3955 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, u16 freq)
3956 {
3957 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3958 u32 value;
3959
3960 value = (freq < 4000) ? eep->modalHeader2G.txEndToXpaOff :
3961 eep->modalHeader5G.txEndToXpaOff;
3962
3963 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3964 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3965 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3966 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3967 }
3968
3969 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3970 struct ath9k_channel *chan)
3971 {
3972 ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3973 ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3974 ar9003_hw_drive_strength_apply(ah);
3975 ar9003_hw_atten_apply(ah, chan);
3976 ar9003_hw_quick_drop_apply(ah, chan->channel);
3977 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3978 ar9003_hw_internal_regulator_apply(ah);
3979 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3980 ar9003_hw_apply_tuning_caps(ah);
3981 ar9003_hw_txend_to_xpa_off_apply(ah, chan->channel);
3982 }
3983
3984 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3985 struct ath9k_channel *chan)
3986 {
3987 }
3988
3989 /*
3990 * Returns the interpolated y value corresponding to the specified x value
3991 * from the np ordered pairs of data (px,py).
3992 * The pairs do not have to be in any order.
3993 * If the specified x value is less than any of the px,
3994 * the returned y value is equal to the py for the lowest px.
3995 * If the specified x value is greater than any of the px,
3996 * the returned y value is equal to the py for the highest px.
3997 */
3998 static int ar9003_hw_power_interpolate(int32_t x,
3999 int32_t *px, int32_t *py, u_int16_t np)
4000 {
4001 int ip = 0;
4002 int lx = 0, ly = 0, lhave = 0;
4003 int hx = 0, hy = 0, hhave = 0;
4004 int dx = 0;
4005 int y = 0;
4006
4007 lhave = 0;
4008 hhave = 0;
4009
4010 /* identify best lower and higher x calibration measurement */
4011 for (ip = 0; ip < np; ip++) {
4012 dx = x - px[ip];
4013
4014 /* this measurement is higher than our desired x */
4015 if (dx <= 0) {
4016 if (!hhave || dx > (x - hx)) {
4017 /* new best higher x measurement */
4018 hx = px[ip];
4019 hy = py[ip];
4020 hhave = 1;
4021 }
4022 }
4023 /* this measurement is lower than our desired x */
4024 if (dx >= 0) {
4025 if (!lhave || dx < (x - lx)) {
4026 /* new best lower x measurement */
4027 lx = px[ip];
4028 ly = py[ip];
4029 lhave = 1;
4030 }
4031 }
4032 }
4033
4034 /* the low x is good */
4035 if (lhave) {
4036 /* so is the high x */
4037 if (hhave) {
4038 /* they're the same, so just pick one */
4039 if (hx == lx)
4040 y = ly;
4041 else /* interpolate */
4042 y = interpolate(x, lx, hx, ly, hy);
4043 } else /* only low is good, use it */
4044 y = ly;
4045 } else if (hhave) /* only high is good, use it */
4046 y = hy;
4047 else /* nothing is good,this should never happen unless np=0, ???? */
4048 y = -(1 << 30);
4049 return y;
4050 }
4051
4052 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4053 u16 rateIndex, u16 freq, bool is2GHz)
4054 {
4055 u16 numPiers, i;
4056 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4057 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4058 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4059 struct cal_tgt_pow_legacy *pEepromTargetPwr;
4060 u8 *pFreqBin;
4061
4062 if (is2GHz) {
4063 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4064 pEepromTargetPwr = eep->calTargetPower2G;
4065 pFreqBin = eep->calTarget_freqbin_2G;
4066 } else {
4067 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4068 pEepromTargetPwr = eep->calTargetPower5G;
4069 pFreqBin = eep->calTarget_freqbin_5G;
4070 }
4071
4072 /*
4073 * create array of channels and targetpower from
4074 * targetpower piers stored on eeprom
4075 */
4076 for (i = 0; i < numPiers; i++) {
4077 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4078 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4079 }
4080
4081 /* interpolate to get target power for given frequency */
4082 return (u8) ar9003_hw_power_interpolate((s32) freq,
4083 freqArray,
4084 targetPowerArray, numPiers);
4085 }
4086
4087 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4088 u16 rateIndex,
4089 u16 freq, bool is2GHz)
4090 {
4091 u16 numPiers, i;
4092 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4093 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4094 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4095 struct cal_tgt_pow_ht *pEepromTargetPwr;
4096 u8 *pFreqBin;
4097
4098 if (is2GHz) {
4099 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4100 pEepromTargetPwr = eep->calTargetPower2GHT20;
4101 pFreqBin = eep->calTarget_freqbin_2GHT20;
4102 } else {
4103 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4104 pEepromTargetPwr = eep->calTargetPower5GHT20;
4105 pFreqBin = eep->calTarget_freqbin_5GHT20;
4106 }
4107
4108 /*
4109 * create array of channels and targetpower
4110 * from targetpower piers stored on eeprom
4111 */
4112 for (i = 0; i < numPiers; i++) {
4113 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4114 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4115 }
4116
4117 /* interpolate to get target power for given frequency */
4118 return (u8) ar9003_hw_power_interpolate((s32) freq,
4119 freqArray,
4120 targetPowerArray, numPiers);
4121 }
4122
4123 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4124 u16 rateIndex,
4125 u16 freq, bool is2GHz)
4126 {
4127 u16 numPiers, i;
4128 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4129 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4130 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4131 struct cal_tgt_pow_ht *pEepromTargetPwr;
4132 u8 *pFreqBin;
4133
4134 if (is2GHz) {
4135 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4136 pEepromTargetPwr = eep->calTargetPower2GHT40;
4137 pFreqBin = eep->calTarget_freqbin_2GHT40;
4138 } else {
4139 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4140 pEepromTargetPwr = eep->calTargetPower5GHT40;
4141 pFreqBin = eep->calTarget_freqbin_5GHT40;
4142 }
4143
4144 /*
4145 * create array of channels and targetpower from
4146 * targetpower piers stored on eeprom
4147 */
4148 for (i = 0; i < numPiers; i++) {
4149 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4150 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4151 }
4152
4153 /* interpolate to get target power for given frequency */
4154 return (u8) ar9003_hw_power_interpolate((s32) freq,
4155 freqArray,
4156 targetPowerArray, numPiers);
4157 }
4158
4159 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4160 u16 rateIndex, u16 freq)
4161 {
4162 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4163 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4164 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4165 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4166 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4167 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4168
4169 /*
4170 * create array of channels and targetpower from
4171 * targetpower piers stored on eeprom
4172 */
4173 for (i = 0; i < numPiers; i++) {
4174 freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4175 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4176 }
4177
4178 /* interpolate to get target power for given frequency */
4179 return (u8) ar9003_hw_power_interpolate((s32) freq,
4180 freqArray,
4181 targetPowerArray, numPiers);
4182 }
4183
4184 /* Set tx power registers to array of values passed in */
4185 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4186 {
4187 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4188 /* make sure forced gain is not set */
4189 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4190
4191 /* Write the OFDM power per rate set */
4192
4193 /* 6 (LSB), 9, 12, 18 (MSB) */
4194 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4195 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4196 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4197 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4198 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4199
4200 /* 24 (LSB), 36, 48, 54 (MSB) */
4201 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4202 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4203 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4204 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4205 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4206
4207 /* Write the CCK power per rate set */
4208
4209 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4210 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4211 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4212 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4213 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4214 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4215
4216 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4217 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4218 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4219 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4220 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4221 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4222 );
4223
4224 /* Write the power for duplicated frames - HT40 */
4225
4226 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4227 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4228 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4229 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4230 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4231 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4232 );
4233
4234 /* Write the HT20 power per rate set */
4235
4236 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4237 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4238 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4239 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4240 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4241 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4242 );
4243
4244 /* 6 (LSB), 7, 12, 13 (MSB) */
4245 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4246 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4247 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4248 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4249 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4250 );
4251
4252 /* 14 (LSB), 15, 20, 21 */
4253 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4254 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4255 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4256 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4257 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4258 );
4259
4260 /* Mixed HT20 and HT40 rates */
4261
4262 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4263 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4264 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4265 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4266 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4267 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4268 );
4269
4270 /*
4271 * Write the HT40 power per rate set
4272 * correct PAR difference between HT40 and HT20/LEGACY
4273 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4274 */
4275 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4276 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4277 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4278 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4279 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4280 );
4281
4282 /* 6 (LSB), 7, 12, 13 (MSB) */
4283 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4284 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4285 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4286 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4287 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4288 );
4289
4290 /* 14 (LSB), 15, 20, 21 */
4291 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4292 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4293 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4294 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4295 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4296 );
4297
4298 return 0;
4299 #undef POW_SM
4300 }
4301
4302 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4303 u8 *targetPowerValT2)
4304 {
4305 /* XXX: hard code for now, need to get from eeprom struct */
4306 u8 ht40PowerIncForPdadc = 0;
4307 bool is2GHz = false;
4308 unsigned int i = 0;
4309 struct ath_common *common = ath9k_hw_common(ah);
4310
4311 if (freq < 4000)
4312 is2GHz = true;
4313
4314 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4315 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4316 is2GHz);
4317 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4318 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4319 is2GHz);
4320 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4321 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4322 is2GHz);
4323 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4324 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4325 is2GHz);
4326 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4327 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4328 freq);
4329 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4330 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4331 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4332 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4333 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4334 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4335 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4336 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4337 is2GHz);
4338 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4339 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4340 freq, is2GHz);
4341 targetPowerValT2[ALL_TARGET_HT20_4] =
4342 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4343 is2GHz);
4344 targetPowerValT2[ALL_TARGET_HT20_5] =
4345 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4346 is2GHz);
4347 targetPowerValT2[ALL_TARGET_HT20_6] =
4348 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4349 is2GHz);
4350 targetPowerValT2[ALL_TARGET_HT20_7] =
4351 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4352 is2GHz);
4353 targetPowerValT2[ALL_TARGET_HT20_12] =
4354 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4355 is2GHz);
4356 targetPowerValT2[ALL_TARGET_HT20_13] =
4357 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4358 is2GHz);
4359 targetPowerValT2[ALL_TARGET_HT20_14] =
4360 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4361 is2GHz);
4362 targetPowerValT2[ALL_TARGET_HT20_15] =
4363 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4364 is2GHz);
4365 targetPowerValT2[ALL_TARGET_HT20_20] =
4366 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4367 is2GHz);
4368 targetPowerValT2[ALL_TARGET_HT20_21] =
4369 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4370 is2GHz);
4371 targetPowerValT2[ALL_TARGET_HT20_22] =
4372 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4373 is2GHz);
4374 targetPowerValT2[ALL_TARGET_HT20_23] =
4375 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4376 is2GHz);
4377 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4378 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4379 is2GHz) + ht40PowerIncForPdadc;
4380 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4381 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4382 freq,
4383 is2GHz) + ht40PowerIncForPdadc;
4384 targetPowerValT2[ALL_TARGET_HT40_4] =
4385 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4386 is2GHz) + ht40PowerIncForPdadc;
4387 targetPowerValT2[ALL_TARGET_HT40_5] =
4388 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4389 is2GHz) + ht40PowerIncForPdadc;
4390 targetPowerValT2[ALL_TARGET_HT40_6] =
4391 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4392 is2GHz) + ht40PowerIncForPdadc;
4393 targetPowerValT2[ALL_TARGET_HT40_7] =
4394 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4395 is2GHz) + ht40PowerIncForPdadc;
4396 targetPowerValT2[ALL_TARGET_HT40_12] =
4397 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4398 is2GHz) + ht40PowerIncForPdadc;
4399 targetPowerValT2[ALL_TARGET_HT40_13] =
4400 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4401 is2GHz) + ht40PowerIncForPdadc;
4402 targetPowerValT2[ALL_TARGET_HT40_14] =
4403 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4404 is2GHz) + ht40PowerIncForPdadc;
4405 targetPowerValT2[ALL_TARGET_HT40_15] =
4406 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4407 is2GHz) + ht40PowerIncForPdadc;
4408 targetPowerValT2[ALL_TARGET_HT40_20] =
4409 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4410 is2GHz) + ht40PowerIncForPdadc;
4411 targetPowerValT2[ALL_TARGET_HT40_21] =
4412 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4413 is2GHz) + ht40PowerIncForPdadc;
4414 targetPowerValT2[ALL_TARGET_HT40_22] =
4415 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4416 is2GHz) + ht40PowerIncForPdadc;
4417 targetPowerValT2[ALL_TARGET_HT40_23] =
4418 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4419 is2GHz) + ht40PowerIncForPdadc;
4420
4421 for (i = 0; i < ar9300RateSize; i++) {
4422 ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4423 i, targetPowerValT2[i]);
4424 }
4425 }
4426
4427 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4428 int mode,
4429 int ipier,
4430 int ichain,
4431 int *pfrequency,
4432 int *pcorrection,
4433 int *ptemperature, int *pvoltage)
4434 {
4435 u8 *pCalPier;
4436 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4437 int is2GHz;
4438 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4439 struct ath_common *common = ath9k_hw_common(ah);
4440
4441 if (ichain >= AR9300_MAX_CHAINS) {
4442 ath_dbg(common, EEPROM,
4443 "Invalid chain index, must be less than %d\n",
4444 AR9300_MAX_CHAINS);
4445 return -1;
4446 }
4447
4448 if (mode) { /* 5GHz */
4449 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4450 ath_dbg(common, EEPROM,
4451 "Invalid 5GHz cal pier index, must be less than %d\n",
4452 AR9300_NUM_5G_CAL_PIERS);
4453 return -1;
4454 }
4455 pCalPier = &(eep->calFreqPier5G[ipier]);
4456 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4457 is2GHz = 0;
4458 } else {
4459 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4460 ath_dbg(common, EEPROM,
4461 "Invalid 2GHz cal pier index, must be less than %d\n",
4462 AR9300_NUM_2G_CAL_PIERS);
4463 return -1;
4464 }
4465
4466 pCalPier = &(eep->calFreqPier2G[ipier]);
4467 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4468 is2GHz = 1;
4469 }
4470
4471 *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4472 *pcorrection = pCalPierStruct->refPower;
4473 *ptemperature = pCalPierStruct->tempMeas;
4474 *pvoltage = pCalPierStruct->voltMeas;
4475
4476 return 0;
4477 }
4478
4479 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4480 int frequency,
4481 int *correction,
4482 int *voltage, int *temperature)
4483 {
4484 int tempSlope = 0;
4485 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4486 int f[3], t[3];
4487
4488 REG_RMW(ah, AR_PHY_TPC_11_B0,
4489 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4490 AR_PHY_TPC_OLPC_GAIN_DELTA);
4491 if (ah->caps.tx_chainmask & BIT(1))
4492 REG_RMW(ah, AR_PHY_TPC_11_B1,
4493 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4494 AR_PHY_TPC_OLPC_GAIN_DELTA);
4495 if (ah->caps.tx_chainmask & BIT(2))
4496 REG_RMW(ah, AR_PHY_TPC_11_B2,
4497 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4498 AR_PHY_TPC_OLPC_GAIN_DELTA);
4499
4500 /* enable open loop power control on chip */
4501 REG_RMW(ah, AR_PHY_TPC_6_B0,
4502 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4503 AR_PHY_TPC_6_ERROR_EST_MODE);
4504 if (ah->caps.tx_chainmask & BIT(1))
4505 REG_RMW(ah, AR_PHY_TPC_6_B1,
4506 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4507 AR_PHY_TPC_6_ERROR_EST_MODE);
4508 if (ah->caps.tx_chainmask & BIT(2))
4509 REG_RMW(ah, AR_PHY_TPC_6_B2,
4510 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4511 AR_PHY_TPC_6_ERROR_EST_MODE);
4512
4513 /*
4514 * enable temperature compensation
4515 * Need to use register names
4516 */
4517 if (frequency < 4000)
4518 tempSlope = eep->modalHeader2G.tempSlope;
4519 else if (eep->base_ext2.tempSlopeLow != 0) {
4520 t[0] = eep->base_ext2.tempSlopeLow;
4521 f[0] = 5180;
4522 t[1] = eep->modalHeader5G.tempSlope;
4523 f[1] = 5500;
4524 t[2] = eep->base_ext2.tempSlopeHigh;
4525 f[2] = 5785;
4526 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4527 f, t, 3);
4528 } else
4529 tempSlope = eep->modalHeader5G.tempSlope;
4530
4531 REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4532
4533 if (AR_SREV_9462_20(ah))
4534 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4535 AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4536
4537
4538 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4539 temperature[0]);
4540
4541 return 0;
4542 }
4543
4544 /* Apply the recorded correction values. */
4545 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4546 {
4547 int ichain, ipier, npier;
4548 int mode;
4549 int lfrequency[AR9300_MAX_CHAINS],
4550 lcorrection[AR9300_MAX_CHAINS],
4551 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4552 int hfrequency[AR9300_MAX_CHAINS],
4553 hcorrection[AR9300_MAX_CHAINS],
4554 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4555 int fdiff;
4556 int correction[AR9300_MAX_CHAINS],
4557 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4558 int pfrequency, pcorrection, ptemperature, pvoltage;
4559 struct ath_common *common = ath9k_hw_common(ah);
4560
4561 mode = (frequency >= 4000);
4562 if (mode)
4563 npier = AR9300_NUM_5G_CAL_PIERS;
4564 else
4565 npier = AR9300_NUM_2G_CAL_PIERS;
4566
4567 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4568 lfrequency[ichain] = 0;
4569 hfrequency[ichain] = 100000;
4570 }
4571 /* identify best lower and higher frequency calibration measurement */
4572 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4573 for (ipier = 0; ipier < npier; ipier++) {
4574 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4575 &pfrequency, &pcorrection,
4576 &ptemperature, &pvoltage)) {
4577 fdiff = frequency - pfrequency;
4578
4579 /*
4580 * this measurement is higher than
4581 * our desired frequency
4582 */
4583 if (fdiff <= 0) {
4584 if (hfrequency[ichain] <= 0 ||
4585 hfrequency[ichain] >= 100000 ||
4586 fdiff >
4587 (frequency - hfrequency[ichain])) {
4588 /*
4589 * new best higher
4590 * frequency measurement
4591 */
4592 hfrequency[ichain] = pfrequency;
4593 hcorrection[ichain] =
4594 pcorrection;
4595 htemperature[ichain] =
4596 ptemperature;
4597 hvoltage[ichain] = pvoltage;
4598 }
4599 }
4600 if (fdiff >= 0) {
4601 if (lfrequency[ichain] <= 0
4602 || fdiff <
4603 (frequency - lfrequency[ichain])) {
4604 /*
4605 * new best lower
4606 * frequency measurement
4607 */
4608 lfrequency[ichain] = pfrequency;
4609 lcorrection[ichain] =
4610 pcorrection;
4611 ltemperature[ichain] =
4612 ptemperature;
4613 lvoltage[ichain] = pvoltage;
4614 }
4615 }
4616 }
4617 }
4618 }
4619
4620 /* interpolate */
4621 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4622 ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4623 ichain, frequency, lfrequency[ichain],
4624 lcorrection[ichain], hfrequency[ichain],
4625 hcorrection[ichain]);
4626 /* they're the same, so just pick one */
4627 if (hfrequency[ichain] == lfrequency[ichain]) {
4628 correction[ichain] = lcorrection[ichain];
4629 voltage[ichain] = lvoltage[ichain];
4630 temperature[ichain] = ltemperature[ichain];
4631 }
4632 /* the low frequency is good */
4633 else if (frequency - lfrequency[ichain] < 1000) {
4634 /* so is the high frequency, interpolate */
4635 if (hfrequency[ichain] - frequency < 1000) {
4636
4637 correction[ichain] = interpolate(frequency,
4638 lfrequency[ichain],
4639 hfrequency[ichain],
4640 lcorrection[ichain],
4641 hcorrection[ichain]);
4642
4643 temperature[ichain] = interpolate(frequency,
4644 lfrequency[ichain],
4645 hfrequency[ichain],
4646 ltemperature[ichain],
4647 htemperature[ichain]);
4648
4649 voltage[ichain] = interpolate(frequency,
4650 lfrequency[ichain],
4651 hfrequency[ichain],
4652 lvoltage[ichain],
4653 hvoltage[ichain]);
4654 }
4655 /* only low is good, use it */
4656 else {
4657 correction[ichain] = lcorrection[ichain];
4658 temperature[ichain] = ltemperature[ichain];
4659 voltage[ichain] = lvoltage[ichain];
4660 }
4661 }
4662 /* only high is good, use it */
4663 else if (hfrequency[ichain] - frequency < 1000) {
4664 correction[ichain] = hcorrection[ichain];
4665 temperature[ichain] = htemperature[ichain];
4666 voltage[ichain] = hvoltage[ichain];
4667 } else { /* nothing is good, presume 0???? */
4668 correction[ichain] = 0;
4669 temperature[ichain] = 0;
4670 voltage[ichain] = 0;
4671 }
4672 }
4673
4674 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4675 temperature);
4676
4677 ath_dbg(common, EEPROM,
4678 "for frequency=%d, calibration correction = %d %d %d\n",
4679 frequency, correction[0], correction[1], correction[2]);
4680
4681 return 0;
4682 }
4683
4684 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4685 int idx,
4686 int edge,
4687 bool is2GHz)
4688 {
4689 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4690 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4691
4692 if (is2GHz)
4693 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4694 else
4695 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4696 }
4697
4698 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4699 int idx,
4700 unsigned int edge,
4701 u16 freq,
4702 bool is2GHz)
4703 {
4704 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4705 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4706
4707 u8 *ctl_freqbin = is2GHz ?
4708 &eep->ctl_freqbin_2G[idx][0] :
4709 &eep->ctl_freqbin_5G[idx][0];
4710
4711 if (is2GHz) {
4712 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4713 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4714 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4715 } else {
4716 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4717 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4718 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4719 }
4720
4721 return MAX_RATE_POWER;
4722 }
4723
4724 /*
4725 * Find the maximum conformance test limit for the given channel and CTL info
4726 */
4727 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4728 u16 freq, int idx, bool is2GHz)
4729 {
4730 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4731 u8 *ctl_freqbin = is2GHz ?
4732 &eep->ctl_freqbin_2G[idx][0] :
4733 &eep->ctl_freqbin_5G[idx][0];
4734 u16 num_edges = is2GHz ?
4735 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4736 unsigned int edge;
4737
4738 /* Get the edge power */
4739 for (edge = 0;
4740 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4741 edge++) {
4742 /*
4743 * If there's an exact channel match or an inband flag set
4744 * on the lower channel use the given rdEdgePower
4745 */
4746 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4747 twiceMaxEdgePower =
4748 ar9003_hw_get_direct_edge_power(eep, idx,
4749 edge, is2GHz);
4750 break;
4751 } else if ((edge > 0) &&
4752 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4753 is2GHz))) {
4754 twiceMaxEdgePower =
4755 ar9003_hw_get_indirect_edge_power(eep, idx,
4756 edge, freq,
4757 is2GHz);
4758 /*
4759 * Leave loop - no more affecting edges possible in
4760 * this monotonic increasing list
4761 */
4762 break;
4763 }
4764 }
4765 return twiceMaxEdgePower;
4766 }
4767
4768 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4769 struct ath9k_channel *chan,
4770 u8 *pPwrArray, u16 cfgCtl,
4771 u8 antenna_reduction,
4772 u16 powerLimit)
4773 {
4774 struct ath_common *common = ath9k_hw_common(ah);
4775 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4776 u16 twiceMaxEdgePower;
4777 int i;
4778 u16 scaledPower = 0, minCtlPower;
4779 static const u16 ctlModesFor11a[] = {
4780 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4781 };
4782 static const u16 ctlModesFor11g[] = {
4783 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4784 CTL_11G_EXT, CTL_2GHT40
4785 };
4786 u16 numCtlModes;
4787 const u16 *pCtlMode;
4788 u16 ctlMode, freq;
4789 struct chan_centers centers;
4790 u8 *ctlIndex;
4791 u8 ctlNum;
4792 u16 twiceMinEdgePower;
4793 bool is2ghz = IS_CHAN_2GHZ(chan);
4794
4795 ath9k_hw_get_channel_centers(ah, chan, &centers);
4796 scaledPower = powerLimit - antenna_reduction;
4797
4798 /*
4799 * Reduce scaled Power by number of chains active to get
4800 * to per chain tx power level
4801 */
4802 switch (ar5416_get_ntxchains(ah->txchainmask)) {
4803 case 1:
4804 break;
4805 case 2:
4806 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4807 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4808 else
4809 scaledPower = 0;
4810 break;
4811 case 3:
4812 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4813 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4814 else
4815 scaledPower = 0;
4816 break;
4817 }
4818
4819 scaledPower = max((u16)0, scaledPower);
4820
4821 /*
4822 * Get target powers from EEPROM - our baseline for TX Power
4823 */
4824 if (is2ghz) {
4825 /* Setup for CTL modes */
4826 /* CTL_11B, CTL_11G, CTL_2GHT20 */
4827 numCtlModes =
4828 ARRAY_SIZE(ctlModesFor11g) -
4829 SUB_NUM_CTL_MODES_AT_2G_40;
4830 pCtlMode = ctlModesFor11g;
4831 if (IS_CHAN_HT40(chan))
4832 /* All 2G CTL's */
4833 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4834 } else {
4835 /* Setup for CTL modes */
4836 /* CTL_11A, CTL_5GHT20 */
4837 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4838 SUB_NUM_CTL_MODES_AT_5G_40;
4839 pCtlMode = ctlModesFor11a;
4840 if (IS_CHAN_HT40(chan))
4841 /* All 5G CTL's */
4842 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4843 }
4844
4845 /*
4846 * For MIMO, need to apply regulatory caps individually across
4847 * dynamically running modes: CCK, OFDM, HT20, HT40
4848 *
4849 * The outer loop walks through each possible applicable runtime mode.
4850 * The inner loop walks through each ctlIndex entry in EEPROM.
4851 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4852 */
4853 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4854 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4855 (pCtlMode[ctlMode] == CTL_2GHT40);
4856 if (isHt40CtlMode)
4857 freq = centers.synth_center;
4858 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4859 freq = centers.ext_center;
4860 else
4861 freq = centers.ctl_center;
4862
4863 ath_dbg(common, REGULATORY,
4864 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4865 ctlMode, numCtlModes, isHt40CtlMode,
4866 (pCtlMode[ctlMode] & EXT_ADDITIVE));
4867
4868 /* walk through each CTL index stored in EEPROM */
4869 if (is2ghz) {
4870 ctlIndex = pEepData->ctlIndex_2G;
4871 ctlNum = AR9300_NUM_CTLS_2G;
4872 } else {
4873 ctlIndex = pEepData->ctlIndex_5G;
4874 ctlNum = AR9300_NUM_CTLS_5G;
4875 }
4876
4877 twiceMaxEdgePower = MAX_RATE_POWER;
4878 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4879 ath_dbg(common, REGULATORY,
4880 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4881 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4882 chan->channel);
4883
4884 /*
4885 * compare test group from regulatory
4886 * channel list with test mode from pCtlMode
4887 * list
4888 */
4889 if ((((cfgCtl & ~CTL_MODE_M) |
4890 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4891 ctlIndex[i]) ||
4892 (((cfgCtl & ~CTL_MODE_M) |
4893 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4894 ((ctlIndex[i] & CTL_MODE_M) |
4895 SD_NO_CTL))) {
4896 twiceMinEdgePower =
4897 ar9003_hw_get_max_edge_power(pEepData,
4898 freq, i,
4899 is2ghz);
4900
4901 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4902 /*
4903 * Find the minimum of all CTL
4904 * edge powers that apply to
4905 * this channel
4906 */
4907 twiceMaxEdgePower =
4908 min(twiceMaxEdgePower,
4909 twiceMinEdgePower);
4910 else {
4911 /* specific */
4912 twiceMaxEdgePower =
4913 twiceMinEdgePower;
4914 break;
4915 }
4916 }
4917 }
4918
4919 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4920
4921 ath_dbg(common, REGULATORY,
4922 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4923 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4924 scaledPower, minCtlPower);
4925
4926 /* Apply ctl mode to correct target power set */
4927 switch (pCtlMode[ctlMode]) {
4928 case CTL_11B:
4929 for (i = ALL_TARGET_LEGACY_1L_5L;
4930 i <= ALL_TARGET_LEGACY_11S; i++)
4931 pPwrArray[i] =
4932 (u8)min((u16)pPwrArray[i],
4933 minCtlPower);
4934 break;
4935 case CTL_11A:
4936 case CTL_11G:
4937 for (i = ALL_TARGET_LEGACY_6_24;
4938 i <= ALL_TARGET_LEGACY_54; i++)
4939 pPwrArray[i] =
4940 (u8)min((u16)pPwrArray[i],
4941 minCtlPower);
4942 break;
4943 case CTL_5GHT20:
4944 case CTL_2GHT20:
4945 for (i = ALL_TARGET_HT20_0_8_16;
4946 i <= ALL_TARGET_HT20_21; i++)
4947 pPwrArray[i] =
4948 (u8)min((u16)pPwrArray[i],
4949 minCtlPower);
4950 pPwrArray[ALL_TARGET_HT20_22] =
4951 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4952 minCtlPower);
4953 pPwrArray[ALL_TARGET_HT20_23] =
4954 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4955 minCtlPower);
4956 break;
4957 case CTL_5GHT40:
4958 case CTL_2GHT40:
4959 for (i = ALL_TARGET_HT40_0_8_16;
4960 i <= ALL_TARGET_HT40_23; i++)
4961 pPwrArray[i] =
4962 (u8)min((u16)pPwrArray[i],
4963 minCtlPower);
4964 break;
4965 default:
4966 break;
4967 }
4968 } /* end ctl mode checking */
4969 }
4970
4971 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4972 {
4973 u8 mod_idx = mcs_idx % 8;
4974
4975 if (mod_idx <= 3)
4976 return mod_idx ? (base_pwridx + 1) : base_pwridx;
4977 else
4978 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4979 }
4980
4981 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4982 struct ath9k_channel *chan, u16 cfgCtl,
4983 u8 twiceAntennaReduction,
4984 u8 powerLimit, bool test)
4985 {
4986 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4987 struct ath_common *common = ath9k_hw_common(ah);
4988 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4989 struct ar9300_modal_eep_header *modal_hdr;
4990 u8 targetPowerValT2[ar9300RateSize];
4991 u8 target_power_val_t2_eep[ar9300RateSize];
4992 unsigned int i = 0, paprd_scale_factor = 0;
4993 u8 pwr_idx, min_pwridx = 0;
4994
4995 ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4996
4997 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4998 if (IS_CHAN_2GHZ(chan))
4999 modal_hdr = &eep->modalHeader2G;
5000 else
5001 modal_hdr = &eep->modalHeader5G;
5002
5003 ah->paprd_ratemask =
5004 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5005 AR9300_PAPRD_RATE_MASK;
5006
5007 ah->paprd_ratemask_ht40 =
5008 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5009 AR9300_PAPRD_RATE_MASK;
5010
5011 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5012 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5013 ALL_TARGET_HT20_0_8_16;
5014
5015 if (!ah->paprd_table_write_done) {
5016 memcpy(target_power_val_t2_eep, targetPowerValT2,
5017 sizeof(targetPowerValT2));
5018 for (i = 0; i < 24; i++) {
5019 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5020 if (ah->paprd_ratemask & (1 << i)) {
5021 if (targetPowerValT2[pwr_idx] &&
5022 targetPowerValT2[pwr_idx] ==
5023 target_power_val_t2_eep[pwr_idx])
5024 targetPowerValT2[pwr_idx] -=
5025 paprd_scale_factor;
5026 }
5027 }
5028 }
5029 memcpy(target_power_val_t2_eep, targetPowerValT2,
5030 sizeof(targetPowerValT2));
5031 }
5032
5033 ar9003_hw_set_power_per_rate_table(ah, chan,
5034 targetPowerValT2, cfgCtl,
5035 twiceAntennaReduction,
5036 powerLimit);
5037
5038 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5039 for (i = 0; i < ar9300RateSize; i++) {
5040 if ((ah->paprd_ratemask & (1 << i)) &&
5041 (abs(targetPowerValT2[i] -
5042 target_power_val_t2_eep[i]) >
5043 paprd_scale_factor)) {
5044 ah->paprd_ratemask &= ~(1 << i);
5045 ath_dbg(common, EEPROM,
5046 "paprd disabled for mcs %d\n", i);
5047 }
5048 }
5049 }
5050
5051 regulatory->max_power_level = 0;
5052 for (i = 0; i < ar9300RateSize; i++) {
5053 if (targetPowerValT2[i] > regulatory->max_power_level)
5054 regulatory->max_power_level = targetPowerValT2[i];
5055 }
5056
5057 ath9k_hw_update_regulatory_maxpower(ah);
5058
5059 if (test)
5060 return;
5061
5062 for (i = 0; i < ar9300RateSize; i++) {
5063 ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5064 i, targetPowerValT2[i]);
5065 }
5066
5067 ah->txpower_limit = regulatory->max_power_level;
5068
5069 /* Write target power array to registers */
5070 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5071 ar9003_hw_calibration_apply(ah, chan->channel);
5072
5073 if (IS_CHAN_2GHZ(chan)) {
5074 if (IS_CHAN_HT40(chan))
5075 i = ALL_TARGET_HT40_0_8_16;
5076 else
5077 i = ALL_TARGET_HT20_0_8_16;
5078 } else {
5079 if (IS_CHAN_HT40(chan))
5080 i = ALL_TARGET_HT40_7;
5081 else
5082 i = ALL_TARGET_HT20_7;
5083 }
5084 ah->paprd_target_power = targetPowerValT2[i];
5085 }
5086
5087 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5088 u16 i, bool is2GHz)
5089 {
5090 return AR_NO_SPUR;
5091 }
5092
5093 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5094 {
5095 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5096
5097 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5098 }
5099
5100 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5101 {
5102 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5103
5104 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5105 }
5106
5107 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
5108 {
5109 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5110
5111 if (is_2ghz)
5112 return eep->modalHeader2G.spurChans;
5113 else
5114 return eep->modalHeader5G.spurChans;
5115 }
5116
5117 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5118 struct ath9k_channel *chan)
5119 {
5120 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5121
5122 if (IS_CHAN_2GHZ(chan))
5123 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5124 AR9300_PAPRD_SCALE_1);
5125 else {
5126 if (chan->channel >= 5700)
5127 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5128 AR9300_PAPRD_SCALE_1);
5129 else if (chan->channel >= 5400)
5130 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5131 AR9300_PAPRD_SCALE_2);
5132 else
5133 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5134 AR9300_PAPRD_SCALE_1);
5135 }
5136 }
5137
5138 const struct eeprom_ops eep_ar9300_ops = {
5139 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
5140 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5141 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5142 .dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5143 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5144 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5145 .set_board_values = ath9k_hw_ar9300_set_board_values,
5146 .set_addac = ath9k_hw_ar9300_set_addac,
5147 .set_txpower = ath9k_hw_ar9300_set_txpower,
5148 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5149 };