Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31
32
33 /******************\
34 * Helper functions *
35 \******************/
36
37 /*
38 * Get the PHY Chip revision
39 */
40 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41 {
42 unsigned int i;
43 u32 srev;
44 u16 ret;
45
46 /*
47 * Set the radio chip access register
48 */
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
58 }
59
60 mdelay(2);
61
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
75 }
76
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80 return ret;
81 }
82
83 /*
84 * Check if a channel is supported
85 */
86 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87 {
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
97
98 return false;
99 }
100
101 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
103 {
104 u8 refclk_freq;
105
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
112
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
119 }
120
121 /*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
127 {
128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
134 int i;
135
136 data = 0;
137 rfb = ah->ah_rf_banks;
138
139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
143 }
144 }
145
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
148 /* should not happen */
149 return 0;
150 }
151
152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
156
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
162
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
167 }
168
169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
171
172 if (set)
173 data = ath5k_hw_bitswap(val, num_bits);
174
175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
177
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
180
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
183
184 if (set) {
185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
187 data >>= (8 - position);
188 } else {
189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
192 }
193
194 bits_left -= 8 - position;
195 }
196
197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199 return data;
200 }
201
202 /**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
219 {
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
223
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
226
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
231 switch (ah->ah_bwmode) {
232 case AR5K_BWMODE_40MHZ:
233 clock = 40 * 2;
234 break;
235 case AR5K_BWMODE_10MHZ:
236 clock = 40 / 2;
237 break;
238 case AR5K_BWMODE_5MHZ:
239 clock = 40 / 4;
240 break;
241 default:
242 clock = 40;
243 break;
244 }
245 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247 /* Get exponent
248 * ALGO: coef_exp = 14 - highest set bit position */
249 coef_exp = ilog2(coef_scaled);
250
251 /* Doesn't make sense if it's zero*/
252 if (!coef_scaled || !coef_exp)
253 return -EINVAL;
254
255 /* Note: we've shifted coef_scaled by 24 */
256 coef_exp = 14 - (coef_exp - 24);
257
258
259 /* Get mantissa (significant digits)
260 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 coef_man = coef_scaled +
262 (1 << (24 - coef_exp - 1));
263
264 /* Calculate delta slope coefficient exponent
265 * and mantissa (remove scaling) and set them on hw */
266 ds_coef_man = coef_man >> (24 - coef_exp);
267 ds_coef_exp = coef_exp - 16;
268
269 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274 return 0;
275 }
276
277 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278 {
279 /*Just a try M.F.*/
280 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282 return 0;
283 }
284
285 /*
286 * Wait for synth to settle
287 */
288 static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
289 struct ieee80211_channel *channel)
290 {
291 /*
292 * On 5211+ read activation -> rx delay
293 * and use it (100ns steps).
294 */
295 if (ah->ah_version != AR5K_AR5210) {
296 u32 delay;
297 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
298 AR5K_PHY_RX_DELAY_M;
299 delay = (channel->hw_value & CHANNEL_CCK) ?
300 ((delay << 2) / 22) : (delay / 10);
301 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
302 delay = delay << 1;
303 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
304 delay = delay << 2;
305 /* XXX: /2 on turbo ? Let's be safe
306 * for now */
307 udelay(100 + delay);
308 } else {
309 mdelay(1);
310 }
311 }
312
313
314 /**********************\
315 * RF Gain optimization *
316 \**********************/
317
318 /*
319 * This code is used to optimize RF gain on different environments
320 * (temperature mostly) based on feedback from a power detector.
321 *
322 * It's only used on RF5111 and RF5112, later RF chips seem to have
323 * auto adjustment on hw -notice they have a much smaller BANK 7 and
324 * no gain optimization ladder-.
325 *
326 * For more infos check out this patent doc
327 * http://www.freepatentsonline.com/7400691.html
328 *
329 * This paper describes power drops as seen on the receiver due to
330 * probe packets
331 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
332 * %20of%20Power%20Control.pdf
333 *
334 * And this is the MadWiFi bug entry related to the above
335 * http://madwifi-project.org/ticket/1659
336 * with various measurements and diagrams
337 *
338 * TODO: Deal with power drops due to probes by setting an appropriate
339 * tx power on the probe packets ! Make this part of the calibration process.
340 */
341
342 /* Initialize ah_gain during attach */
343 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
344 {
345 /* Initialize the gain optimization values */
346 switch (ah->ah_radio) {
347 case AR5K_RF5111:
348 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
349 ah->ah_gain.g_low = 20;
350 ah->ah_gain.g_high = 35;
351 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
352 break;
353 case AR5K_RF5112:
354 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
355 ah->ah_gain.g_low = 20;
356 ah->ah_gain.g_high = 85;
357 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
358 break;
359 default:
360 return -EINVAL;
361 }
362
363 return 0;
364 }
365
366 /* Schedule a gain probe check on the next transmited packet.
367 * That means our next packet is going to be sent with lower
368 * tx power and a Peak to Average Power Detector (PAPD) will try
369 * to measure the gain.
370 *
371 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
372 * just after we enable the probe so that we don't mess with
373 * standard traffic ? Maybe it's time to use sw interrupts and
374 * a probe tasklet !!!
375 */
376 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
377 {
378
379 /* Skip if gain calibration is inactive or
380 * we already handle a probe request */
381 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
382 return;
383
384 /* Send the packet with 2dB below max power as
385 * patent doc suggest */
386 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387 AR5K_PHY_PAPD_PROBE_TXPOWER) |
388 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
389
390 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
391
392 }
393
394 /* Calculate gain_F measurement correction
395 * based on the current step for RF5112 rev. 2 */
396 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
397 {
398 u32 mix, step;
399 u32 *rf;
400 const struct ath5k_gain_opt *go;
401 const struct ath5k_gain_opt_step *g_step;
402 const struct ath5k_rf_reg *rf_regs;
403
404 /* Only RF5112 Rev. 2 supports it */
405 if ((ah->ah_radio != AR5K_RF5112) ||
406 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
407 return 0;
408
409 go = &rfgain_opt_5112;
410 rf_regs = rf_regs_5112a;
411 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
412
413 g_step = &go->go_step[ah->ah_gain.g_step_idx];
414
415 if (ah->ah_rf_banks == NULL)
416 return 0;
417
418 rf = ah->ah_rf_banks;
419 ah->ah_gain.g_f_corr = 0;
420
421 /* No VGA (Variable Gain Amplifier) override, skip */
422 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423 return 0;
424
425 /* Mix gain stepping */
426 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
427
428 /* Mix gain override */
429 mix = g_step->gos_param[0];
430
431 switch (mix) {
432 case 3:
433 ah->ah_gain.g_f_corr = step * 2;
434 break;
435 case 2:
436 ah->ah_gain.g_f_corr = (step - 5) * 2;
437 break;
438 case 1:
439 ah->ah_gain.g_f_corr = step;
440 break;
441 default:
442 ah->ah_gain.g_f_corr = 0;
443 break;
444 }
445
446 return ah->ah_gain.g_f_corr;
447 }
448
449 /* Check if current gain_F measurement is in the range of our
450 * power detector windows. If we get a measurement outside range
451 * we know it's not accurate (detectors can't measure anything outside
452 * their detection window) so we must ignore it */
453 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
454 {
455 const struct ath5k_rf_reg *rf_regs;
456 u32 step, mix_ovr, level[4];
457 u32 *rf;
458
459 if (ah->ah_rf_banks == NULL)
460 return false;
461
462 rf = ah->ah_rf_banks;
463
464 if (ah->ah_radio == AR5K_RF5111) {
465
466 rf_regs = rf_regs_5111;
467 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
468
469 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
470 false);
471
472 level[0] = 0;
473 level[1] = (step == 63) ? 50 : step + 4;
474 level[2] = (step != 63) ? 64 : level[0];
475 level[3] = level[2] + 50 ;
476
477 ah->ah_gain.g_high = level[3] -
478 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479 ah->ah_gain.g_low = level[0] +
480 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481 } else {
482
483 rf_regs = rf_regs_5112;
484 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
485
486 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
487 false);
488
489 level[0] = level[2] = 0;
490
491 if (mix_ovr == 1) {
492 level[1] = level[3] = 83;
493 } else {
494 level[1] = level[3] = 107;
495 ah->ah_gain.g_high = 55;
496 }
497 }
498
499 return (ah->ah_gain.g_current >= level[0] &&
500 ah->ah_gain.g_current <= level[1]) ||
501 (ah->ah_gain.g_current >= level[2] &&
502 ah->ah_gain.g_current <= level[3]);
503 }
504
505 /* Perform gain_F adjustment by choosing the right set
506 * of parameters from RF gain optimization ladder */
507 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
508 {
509 const struct ath5k_gain_opt *go;
510 const struct ath5k_gain_opt_step *g_step;
511 int ret = 0;
512
513 switch (ah->ah_radio) {
514 case AR5K_RF5111:
515 go = &rfgain_opt_5111;
516 break;
517 case AR5K_RF5112:
518 go = &rfgain_opt_5112;
519 break;
520 default:
521 return 0;
522 }
523
524 g_step = &go->go_step[ah->ah_gain.g_step_idx];
525
526 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
527
528 /* Reached maximum */
529 if (ah->ah_gain.g_step_idx == 0)
530 return -1;
531
532 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
533 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
534 ah->ah_gain.g_step_idx > 0;
535 g_step = &go->go_step[ah->ah_gain.g_step_idx])
536 ah->ah_gain.g_target -= 2 *
537 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538 g_step->gos_gain);
539
540 ret = 1;
541 goto done;
542 }
543
544 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
545
546 /* Reached minimum */
547 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
548 return -2;
549
550 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
551 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
552 ah->ah_gain.g_step_idx < go->go_steps_count-1;
553 g_step = &go->go_step[ah->ah_gain.g_step_idx])
554 ah->ah_gain.g_target -= 2 *
555 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556 g_step->gos_gain);
557
558 ret = 2;
559 goto done;
560 }
561
562 done:
563 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
564 "ret %d, gain step %u, current gain %u, target gain %u\n",
565 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
566 ah->ah_gain.g_target);
567
568 return ret;
569 }
570
571 /* Main callback for thermal RF gain calibration engine
572 * Check for a new gain reading and schedule an adjustment
573 * if needed.
574 *
575 * TODO: Use sw interrupt to schedule reset if gain_F needs
576 * adjustment */
577 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
578 {
579 u32 data, type;
580 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
581
582 if (ah->ah_rf_banks == NULL ||
583 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
584 return AR5K_RFGAIN_INACTIVE;
585
586 /* No check requested, either engine is inactive
587 * or an adjustment is already requested */
588 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
589 goto done;
590
591 /* Read the PAPD (Peak to Average Power Detector)
592 * register */
593 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
594
595 /* No probe is scheduled, read gain_F measurement */
596 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
597 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
598 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
599
600 /* If tx packet is CCK correct the gain_F measurement
601 * by cck ofdm gain delta */
602 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
603 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
604 ah->ah_gain.g_current +=
605 ee->ee_cck_ofdm_gain_delta;
606 else
607 ah->ah_gain.g_current +=
608 AR5K_GAIN_CCK_PROBE_CORR;
609 }
610
611 /* Further correct gain_F measurement for
612 * RF5112A radios */
613 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
614 ath5k_hw_rf_gainf_corr(ah);
615 ah->ah_gain.g_current =
616 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
617 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
618 0;
619 }
620
621 /* Check if measurement is ok and if we need
622 * to adjust gain, schedule a gain adjustment,
623 * else switch back to the acive state */
624 if (ath5k_hw_rf_check_gainf_readback(ah) &&
625 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
626 ath5k_hw_rf_gainf_adjust(ah)) {
627 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
628 } else {
629 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
630 }
631 }
632
633 done:
634 return ah->ah_gain.g_state;
635 }
636
637 /* Write initial RF gain table to set the RF sensitivity
638 * this one works on all RF chips and has nothing to do
639 * with gain_F calibration */
640 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
641 {
642 const struct ath5k_ini_rfgain *ath5k_rfg;
643 unsigned int i, size, index;
644
645 switch (ah->ah_radio) {
646 case AR5K_RF5111:
647 ath5k_rfg = rfgain_5111;
648 size = ARRAY_SIZE(rfgain_5111);
649 break;
650 case AR5K_RF5112:
651 ath5k_rfg = rfgain_5112;
652 size = ARRAY_SIZE(rfgain_5112);
653 break;
654 case AR5K_RF2413:
655 ath5k_rfg = rfgain_2413;
656 size = ARRAY_SIZE(rfgain_2413);
657 break;
658 case AR5K_RF2316:
659 ath5k_rfg = rfgain_2316;
660 size = ARRAY_SIZE(rfgain_2316);
661 break;
662 case AR5K_RF5413:
663 ath5k_rfg = rfgain_5413;
664 size = ARRAY_SIZE(rfgain_5413);
665 break;
666 case AR5K_RF2317:
667 case AR5K_RF2425:
668 ath5k_rfg = rfgain_2425;
669 size = ARRAY_SIZE(rfgain_2425);
670 break;
671 default:
672 return -EINVAL;
673 }
674
675 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
676
677 for (i = 0; i < size; i++) {
678 AR5K_REG_WAIT(i);
679 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
680 (u32)ath5k_rfg[i].rfg_register);
681 }
682
683 return 0;
684 }
685
686
687
688 /********************\
689 * RF Registers setup *
690 \********************/
691
692 /*
693 * Setup RF registers by writing RF buffer on hw
694 */
695 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
696 struct ieee80211_channel *channel, unsigned int mode)
697 {
698 const struct ath5k_rf_reg *rf_regs;
699 const struct ath5k_ini_rfbuffer *ini_rfb;
700 const struct ath5k_gain_opt *go = NULL;
701 const struct ath5k_gain_opt_step *g_step;
702 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
703 u8 ee_mode = 0;
704 u32 *rfb;
705 int i, obdb = -1, bank = -1;
706
707 switch (ah->ah_radio) {
708 case AR5K_RF5111:
709 rf_regs = rf_regs_5111;
710 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
711 ini_rfb = rfb_5111;
712 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
713 go = &rfgain_opt_5111;
714 break;
715 case AR5K_RF5112:
716 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
717 rf_regs = rf_regs_5112a;
718 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
719 ini_rfb = rfb_5112a;
720 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
721 } else {
722 rf_regs = rf_regs_5112;
723 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
724 ini_rfb = rfb_5112;
725 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
726 }
727 go = &rfgain_opt_5112;
728 break;
729 case AR5K_RF2413:
730 rf_regs = rf_regs_2413;
731 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
732 ini_rfb = rfb_2413;
733 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
734 break;
735 case AR5K_RF2316:
736 rf_regs = rf_regs_2316;
737 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
738 ini_rfb = rfb_2316;
739 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
740 break;
741 case AR5K_RF5413:
742 rf_regs = rf_regs_5413;
743 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
744 ini_rfb = rfb_5413;
745 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
746 break;
747 case AR5K_RF2317:
748 rf_regs = rf_regs_2425;
749 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
750 ini_rfb = rfb_2317;
751 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
752 break;
753 case AR5K_RF2425:
754 rf_regs = rf_regs_2425;
755 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
756 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
757 ini_rfb = rfb_2425;
758 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
759 } else {
760 ini_rfb = rfb_2417;
761 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
762 }
763 break;
764 default:
765 return -EINVAL;
766 }
767
768 /* If it's the first time we set RF buffer, allocate
769 * ah->ah_rf_banks based on ah->ah_rf_banks_size
770 * we set above */
771 if (ah->ah_rf_banks == NULL) {
772 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
773 GFP_KERNEL);
774 if (ah->ah_rf_banks == NULL) {
775 ATH5K_ERR(ah->ah_sc, "out of memory\n");
776 return -ENOMEM;
777 }
778 }
779
780 /* Copy values to modify them */
781 rfb = ah->ah_rf_banks;
782
783 for (i = 0; i < ah->ah_rf_banks_size; i++) {
784 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
785 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
786 return -EINVAL;
787 }
788
789 /* Bank changed, write down the offset */
790 if (bank != ini_rfb[i].rfb_bank) {
791 bank = ini_rfb[i].rfb_bank;
792 ah->ah_offset[bank] = i;
793 }
794
795 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
796 }
797
798 /* Set Output and Driver bias current (OB/DB) */
799 if (channel->hw_value & CHANNEL_2GHZ) {
800
801 if (channel->hw_value & CHANNEL_CCK)
802 ee_mode = AR5K_EEPROM_MODE_11B;
803 else
804 ee_mode = AR5K_EEPROM_MODE_11G;
805
806 /* For RF511X/RF211X combination we
807 * use b_OB and b_DB parameters stored
808 * in eeprom on ee->ee_ob[ee_mode][0]
809 *
810 * For all other chips we use OB/DB for 2Ghz
811 * stored in the b/g modal section just like
812 * 802.11a on ee->ee_ob[ee_mode][1] */
813 if ((ah->ah_radio == AR5K_RF5111) ||
814 (ah->ah_radio == AR5K_RF5112))
815 obdb = 0;
816 else
817 obdb = 1;
818
819 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
820 AR5K_RF_OB_2GHZ, true);
821
822 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
823 AR5K_RF_DB_2GHZ, true);
824
825 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
826 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
827 (ah->ah_radio == AR5K_RF5111)) {
828
829 /* For 11a, Turbo and XR we need to choose
830 * OB/DB based on frequency range */
831 ee_mode = AR5K_EEPROM_MODE_11A;
832 obdb = channel->center_freq >= 5725 ? 3 :
833 (channel->center_freq >= 5500 ? 2 :
834 (channel->center_freq >= 5260 ? 1 :
835 (channel->center_freq > 4000 ? 0 : -1)));
836
837 if (obdb < 0)
838 return -EINVAL;
839
840 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
841 AR5K_RF_OB_5GHZ, true);
842
843 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
844 AR5K_RF_DB_5GHZ, true);
845 }
846
847 g_step = &go->go_step[ah->ah_gain.g_step_idx];
848
849 /* Set turbo mode (N/A on RF5413) */
850 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
851 (ah->ah_radio != AR5K_RF5413))
852 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
853
854 /* Bank Modifications (chip-specific) */
855 if (ah->ah_radio == AR5K_RF5111) {
856
857 /* Set gain_F settings according to current step */
858 if (channel->hw_value & CHANNEL_OFDM) {
859
860 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
861 AR5K_PHY_FRAME_CTL_TX_CLIP,
862 g_step->gos_param[0]);
863
864 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
865 AR5K_RF_PWD_90, true);
866
867 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
868 AR5K_RF_PWD_84, true);
869
870 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
871 AR5K_RF_RFGAIN_SEL, true);
872
873 /* We programmed gain_F parameters, switch back
874 * to active state */
875 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
876
877 }
878
879 /* Bank 6/7 setup */
880
881 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
882 AR5K_RF_PWD_XPD, true);
883
884 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
885 AR5K_RF_XPD_GAIN, true);
886
887 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
888 AR5K_RF_GAIN_I, true);
889
890 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891 AR5K_RF_PLO_SEL, true);
892
893 /* Tweak power detectors for half/quarter rate support */
894 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
895 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
896 u8 wait_i;
897
898 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
899 AR5K_RF_WAIT_S, true);
900
901 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
902 0x1f : 0x10;
903
904 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
905 AR5K_RF_WAIT_I, true);
906 ath5k_hw_rfb_op(ah, rf_regs, 3,
907 AR5K_RF_MAX_TIME, true);
908
909 }
910 }
911
912 if (ah->ah_radio == AR5K_RF5112) {
913
914 /* Set gain_F settings according to current step */
915 if (channel->hw_value & CHANNEL_OFDM) {
916
917 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
918 AR5K_RF_MIXGAIN_OVR, true);
919
920 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
921 AR5K_RF_PWD_138, true);
922
923 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
924 AR5K_RF_PWD_137, true);
925
926 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
927 AR5K_RF_PWD_136, true);
928
929 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
930 AR5K_RF_PWD_132, true);
931
932 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
933 AR5K_RF_PWD_131, true);
934
935 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
936 AR5K_RF_PWD_130, true);
937
938 /* We programmed gain_F parameters, switch back
939 * to active state */
940 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
941 }
942
943 /* Bank 6/7 setup */
944
945 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
946 AR5K_RF_XPD_SEL, true);
947
948 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
949 /* Rev. 1 supports only one xpd */
950 ath5k_hw_rfb_op(ah, rf_regs,
951 ee->ee_x_gain[ee_mode],
952 AR5K_RF_XPD_GAIN, true);
953
954 } else {
955 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
956 if (ee->ee_pd_gains[ee_mode] > 1) {
957 ath5k_hw_rfb_op(ah, rf_regs,
958 pdg_curve_to_idx[0],
959 AR5K_RF_PD_GAIN_LO, true);
960 ath5k_hw_rfb_op(ah, rf_regs,
961 pdg_curve_to_idx[1],
962 AR5K_RF_PD_GAIN_HI, true);
963 } else {
964 ath5k_hw_rfb_op(ah, rf_regs,
965 pdg_curve_to_idx[0],
966 AR5K_RF_PD_GAIN_LO, true);
967 ath5k_hw_rfb_op(ah, rf_regs,
968 pdg_curve_to_idx[0],
969 AR5K_RF_PD_GAIN_HI, true);
970 }
971
972 /* Lower synth voltage on Rev 2 */
973 ath5k_hw_rfb_op(ah, rf_regs, 2,
974 AR5K_RF_HIGH_VC_CP, true);
975
976 ath5k_hw_rfb_op(ah, rf_regs, 2,
977 AR5K_RF_MID_VC_CP, true);
978
979 ath5k_hw_rfb_op(ah, rf_regs, 2,
980 AR5K_RF_LOW_VC_CP, true);
981
982 ath5k_hw_rfb_op(ah, rf_regs, 2,
983 AR5K_RF_PUSH_UP, true);
984
985 /* Decrease power consumption on 5213+ BaseBand */
986 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
987 ath5k_hw_rfb_op(ah, rf_regs, 1,
988 AR5K_RF_PAD2GND, true);
989
990 ath5k_hw_rfb_op(ah, rf_regs, 1,
991 AR5K_RF_XB2_LVL, true);
992
993 ath5k_hw_rfb_op(ah, rf_regs, 1,
994 AR5K_RF_XB5_LVL, true);
995
996 ath5k_hw_rfb_op(ah, rf_regs, 1,
997 AR5K_RF_PWD_167, true);
998
999 ath5k_hw_rfb_op(ah, rf_regs, 1,
1000 AR5K_RF_PWD_166, true);
1001 }
1002 }
1003
1004 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005 AR5K_RF_GAIN_I, true);
1006
1007 /* Tweak power detector for half/quarter rates */
1008 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1009 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1010 u8 pd_delay;
1011
1012 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1013 0xf : 0x8;
1014
1015 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1016 AR5K_RF_PD_PERIOD_A, true);
1017 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1018 AR5K_RF_PD_DELAY_A, true);
1019
1020 }
1021 }
1022
1023 if (ah->ah_radio == AR5K_RF5413 &&
1024 channel->hw_value & CHANNEL_2GHZ) {
1025
1026 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1027 true);
1028
1029 /* Set optimum value for early revisions (on pci-e chips) */
1030 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1031 ah->ah_mac_srev < AR5K_SREV_AR5413)
1032 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1033 AR5K_RF_PWD_ICLOBUF_2G, true);
1034
1035 }
1036
1037 /* Write RF banks on hw */
1038 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1039 AR5K_REG_WAIT(i);
1040 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1041 }
1042
1043 return 0;
1044 }
1045
1046
1047 /**************************\
1048 PHY/RF channel functions
1049 \**************************/
1050
1051 /*
1052 * Conversion needed for RF5110
1053 */
1054 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1055 {
1056 u32 athchan;
1057
1058 /*
1059 * Convert IEEE channel/MHz to an internal channel value used
1060 * by the AR5210 chipset. This has not been verified with
1061 * newer chipsets like the AR5212A who have a completely
1062 * different RF/PHY part.
1063 */
1064 athchan = (ath5k_hw_bitswap(
1065 (ieee80211_frequency_to_channel(
1066 channel->center_freq) - 24) / 2, 5)
1067 << 1) | (1 << 6) | 0x1;
1068 return athchan;
1069 }
1070
1071 /*
1072 * Set channel on RF5110
1073 */
1074 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1075 struct ieee80211_channel *channel)
1076 {
1077 u32 data;
1078
1079 /*
1080 * Set the channel and wait
1081 */
1082 data = ath5k_hw_rf5110_chan2athchan(channel);
1083 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1084 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1085 mdelay(1);
1086
1087 return 0;
1088 }
1089
1090 /*
1091 * Conversion needed for 5111
1092 */
1093 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1094 struct ath5k_athchan_2ghz *athchan)
1095 {
1096 int channel;
1097
1098 /* Cast this value to catch negative channel numbers (>= -19) */
1099 channel = (int)ieee;
1100
1101 /*
1102 * Map 2GHz IEEE channel to 5GHz Atheros channel
1103 */
1104 if (channel <= 13) {
1105 athchan->a2_athchan = 115 + channel;
1106 athchan->a2_flags = 0x46;
1107 } else if (channel == 14) {
1108 athchan->a2_athchan = 124;
1109 athchan->a2_flags = 0x44;
1110 } else if (channel >= 15 && channel <= 26) {
1111 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1112 athchan->a2_flags = 0x46;
1113 } else
1114 return -EINVAL;
1115
1116 return 0;
1117 }
1118
1119 /*
1120 * Set channel on 5111
1121 */
1122 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1123 struct ieee80211_channel *channel)
1124 {
1125 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1126 unsigned int ath5k_channel =
1127 ieee80211_frequency_to_channel(channel->center_freq);
1128 u32 data0, data1, clock;
1129 int ret;
1130
1131 /*
1132 * Set the channel on the RF5111 radio
1133 */
1134 data0 = data1 = 0;
1135
1136 if (channel->hw_value & CHANNEL_2GHZ) {
1137 /* Map 2GHz channel to 5GHz Atheros channel ID */
1138 ret = ath5k_hw_rf5111_chan2athchan(
1139 ieee80211_frequency_to_channel(channel->center_freq),
1140 &ath5k_channel_2ghz);
1141 if (ret)
1142 return ret;
1143
1144 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1145 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1146 << 5) | (1 << 4);
1147 }
1148
1149 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1150 clock = 1;
1151 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1152 (clock << 1) | (1 << 10) | 1;
1153 } else {
1154 clock = 0;
1155 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1156 << 2) | (clock << 1) | (1 << 10) | 1;
1157 }
1158
1159 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1160 AR5K_RF_BUFFER);
1161 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1162 AR5K_RF_BUFFER_CONTROL_3);
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * Set channel on 5112 and newer
1169 */
1170 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1171 struct ieee80211_channel *channel)
1172 {
1173 u32 data, data0, data1, data2;
1174 u16 c;
1175
1176 data = data0 = data1 = data2 = 0;
1177 c = channel->center_freq;
1178
1179 if (c < 4800) {
1180 if (!((c - 2224) % 5)) {
1181 data0 = ((2 * (c - 704)) - 3040) / 10;
1182 data1 = 1;
1183 } else if (!((c - 2192) % 5)) {
1184 data0 = ((2 * (c - 672)) - 3040) / 10;
1185 data1 = 0;
1186 } else
1187 return -EINVAL;
1188
1189 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1190 } else if ((c % 5) != 2 || c > 5435) {
1191 if (!(c % 20) && c >= 5120) {
1192 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1193 data2 = ath5k_hw_bitswap(3, 2);
1194 } else if (!(c % 10)) {
1195 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1196 data2 = ath5k_hw_bitswap(2, 2);
1197 } else if (!(c % 5)) {
1198 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1199 data2 = ath5k_hw_bitswap(1, 2);
1200 } else
1201 return -EINVAL;
1202 } else {
1203 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1204 data2 = ath5k_hw_bitswap(0, 2);
1205 }
1206
1207 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1208
1209 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1210 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1211
1212 return 0;
1213 }
1214
1215 /*
1216 * Set the channel on the RF2425
1217 */
1218 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1219 struct ieee80211_channel *channel)
1220 {
1221 u32 data, data0, data2;
1222 u16 c;
1223
1224 data = data0 = data2 = 0;
1225 c = channel->center_freq;
1226
1227 if (c < 4800) {
1228 data0 = ath5k_hw_bitswap((c - 2272), 8);
1229 data2 = 0;
1230 /* ? 5GHz ? */
1231 } else if ((c % 5) != 2 || c > 5435) {
1232 if (!(c % 20) && c < 5120)
1233 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1234 else if (!(c % 10))
1235 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1236 else if (!(c % 5))
1237 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1238 else
1239 return -EINVAL;
1240 data2 = ath5k_hw_bitswap(1, 2);
1241 } else {
1242 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1243 data2 = ath5k_hw_bitswap(0, 2);
1244 }
1245
1246 data = (data0 << 4) | data2 << 2 | 0x1001;
1247
1248 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1249 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1250
1251 return 0;
1252 }
1253
1254 /*
1255 * Set a channel on the radio chip
1256 */
1257 static int ath5k_hw_channel(struct ath5k_hw *ah,
1258 struct ieee80211_channel *channel)
1259 {
1260 int ret;
1261 /*
1262 * Check bounds supported by the PHY (we don't care about regultory
1263 * restrictions at this point). Note: hw_value already has the band
1264 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1265 * of the band by that */
1266 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1267 ATH5K_ERR(ah->ah_sc,
1268 "channel frequency (%u MHz) out of supported "
1269 "band range\n",
1270 channel->center_freq);
1271 return -EINVAL;
1272 }
1273
1274 /*
1275 * Set the channel and wait
1276 */
1277 switch (ah->ah_radio) {
1278 case AR5K_RF5110:
1279 ret = ath5k_hw_rf5110_channel(ah, channel);
1280 break;
1281 case AR5K_RF5111:
1282 ret = ath5k_hw_rf5111_channel(ah, channel);
1283 break;
1284 case AR5K_RF2317:
1285 case AR5K_RF2425:
1286 ret = ath5k_hw_rf2425_channel(ah, channel);
1287 break;
1288 default:
1289 ret = ath5k_hw_rf5112_channel(ah, channel);
1290 break;
1291 }
1292
1293 if (ret)
1294 return ret;
1295
1296 /* Set JAPAN setting for channel 14 */
1297 if (channel->center_freq == 2484) {
1298 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1299 AR5K_PHY_CCKTXCTL_JAPAN);
1300 } else {
1301 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1302 AR5K_PHY_CCKTXCTL_WORLD);
1303 }
1304
1305 ah->ah_current_channel = channel;
1306
1307 return 0;
1308 }
1309
1310 /*****************\
1311 PHY calibration
1312 \*****************/
1313
1314 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1315 {
1316 s32 val;
1317
1318 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1319 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1320 }
1321
1322 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1323 {
1324 int i;
1325
1326 ah->ah_nfcal_hist.index = 0;
1327 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1328 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1329 }
1330
1331 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1332 {
1333 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1334 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1335 hist->nfval[hist->index] = noise_floor;
1336 }
1337
1338 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1339 {
1340 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1341 s16 tmp;
1342 int i, j;
1343
1344 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1345 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1346 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1347 if (sort[j] > sort[j-1]) {
1348 tmp = sort[j];
1349 sort[j] = sort[j-1];
1350 sort[j-1] = tmp;
1351 }
1352 }
1353 }
1354 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1355 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1356 "cal %d:%d\n", i, sort[i]);
1357 }
1358 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1359 }
1360
1361 /*
1362 * When we tell the hardware to perform a noise floor calibration
1363 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1364 * sample-and-hold the minimum noise level seen at the antennas.
1365 * This value is then stored in a ring buffer of recently measured
1366 * noise floor values so we have a moving window of the last few
1367 * samples.
1368 *
1369 * The median of the values in the history is then loaded into the
1370 * hardware for its own use for RSSI and CCA measurements.
1371 */
1372 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1373 {
1374 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1375 u32 val;
1376 s16 nf, threshold;
1377 u8 ee_mode;
1378
1379 /* keep last value if calibration hasn't completed */
1380 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1381 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1382 "NF did not complete in calibration window\n");
1383
1384 return;
1385 }
1386
1387 ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1388
1389 /* completed NF calibration, test threshold */
1390 nf = ath5k_hw_read_measured_noise_floor(ah);
1391 threshold = ee->ee_noise_floor_thr[ee_mode];
1392
1393 if (nf > threshold) {
1394 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1395 "noise floor failure detected; "
1396 "read %d, threshold %d\n",
1397 nf, threshold);
1398
1399 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1400 }
1401
1402 ath5k_hw_update_nfcal_hist(ah, nf);
1403 nf = ath5k_hw_get_median_noise_floor(ah);
1404
1405 /* load noise floor (in .5 dBm) so the hardware will use it */
1406 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1407 val |= (nf * 2) & AR5K_PHY_NF_M;
1408 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1409
1410 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1411 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1412
1413 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1414 0, false);
1415
1416 /*
1417 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1418 * so that we're not capped by the median we just loaded.
1419 * This will be used as the initial value for the next noise
1420 * floor calibration.
1421 */
1422 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1423 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1424 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1425 AR5K_PHY_AGCCTL_NF_EN |
1426 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1427 AR5K_PHY_AGCCTL_NF);
1428
1429 ah->ah_noise_floor = nf;
1430
1431 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1432 "noise floor calibrated: %d\n", nf);
1433 }
1434
1435 /*
1436 * Perform a PHY calibration on RF5110
1437 * -Fix BPSK/QAM Constellation (I/Q correction)
1438 */
1439 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1440 struct ieee80211_channel *channel)
1441 {
1442 u32 phy_sig, phy_agc, phy_sat, beacon;
1443 int ret;
1444
1445 /*
1446 * Disable beacons and RX/TX queues, wait
1447 */
1448 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1449 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1450 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1451 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1452
1453 mdelay(2);
1454
1455 /*
1456 * Set the channel (with AGC turned off)
1457 */
1458 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1459 udelay(10);
1460 ret = ath5k_hw_channel(ah, channel);
1461
1462 /*
1463 * Activate PHY and wait
1464 */
1465 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1466 mdelay(1);
1467
1468 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1469
1470 if (ret)
1471 return ret;
1472
1473 /*
1474 * Calibrate the radio chip
1475 */
1476
1477 /* Remember normal state */
1478 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1479 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1480 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1481
1482 /* Update radio registers */
1483 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1484 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1485
1486 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1487 AR5K_PHY_AGCCOARSE_LO)) |
1488 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1489 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1490
1491 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1492 AR5K_PHY_ADCSAT_THR)) |
1493 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1494 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1495
1496 udelay(20);
1497
1498 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1499 udelay(10);
1500 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1501 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1502
1503 mdelay(1);
1504
1505 /*
1506 * Enable calibration and wait until completion
1507 */
1508 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1509
1510 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1511 AR5K_PHY_AGCCTL_CAL, 0, false);
1512
1513 /* Reset to normal state */
1514 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1515 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1516 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1517
1518 if (ret) {
1519 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1520 channel->center_freq);
1521 return ret;
1522 }
1523
1524 /*
1525 * Re-enable RX/TX and beacons
1526 */
1527 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1528 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1529 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1530
1531 return 0;
1532 }
1533
1534 /*
1535 * Perform I/Q calibration on RF5111/5112 and newer chips
1536 */
1537 static int
1538 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1539 {
1540 u32 i_pwr, q_pwr;
1541 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1542 int i;
1543
1544 if (!ah->ah_calibration ||
1545 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1546 return 0;
1547
1548 /* Calibration has finished, get the results and re-run */
1549 /* work around empty results which can apparently happen on 5212 */
1550 for (i = 0; i <= 10; i++) {
1551 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1552 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1553 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1554 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1555 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1556 if (i_pwr && q_pwr)
1557 break;
1558 }
1559
1560 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1561
1562 if (ah->ah_version == AR5K_AR5211)
1563 q_coffd = q_pwr >> 6;
1564 else
1565 q_coffd = q_pwr >> 7;
1566
1567 /* protect against divide by 0 and loss of sign bits */
1568 if (i_coffd == 0 || q_coffd < 2)
1569 return 0;
1570
1571 i_coff = (-iq_corr) / i_coffd;
1572 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1573
1574 if (ah->ah_version == AR5K_AR5211)
1575 q_coff = (i_pwr / q_coffd) - 64;
1576 else
1577 q_coff = (i_pwr / q_coffd) - 128;
1578 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1579
1580 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1581 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1582 i_coff, q_coff, i_coffd, q_coffd);
1583
1584 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1585 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1586 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1587 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1588
1589 /* Re-enable calibration -if we don't we'll commit
1590 * the same values again and again */
1591 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1592 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1593 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1594
1595 return 0;
1596 }
1597
1598 /*
1599 * Perform a PHY calibration
1600 */
1601 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1602 struct ieee80211_channel *channel)
1603 {
1604 int ret;
1605
1606 if (ah->ah_radio == AR5K_RF5110)
1607 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1608 else {
1609 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1610 ath5k_hw_request_rfgain_probe(ah);
1611 }
1612
1613 return ret;
1614 }
1615
1616
1617 /***************************\
1618 * Spur mitigation functions *
1619 \***************************/
1620
1621 static void
1622 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1623 struct ieee80211_channel *channel)
1624 {
1625 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1626 u32 mag_mask[4] = {0, 0, 0, 0};
1627 u32 pilot_mask[2] = {0, 0};
1628 /* Note: fbin values are scaled up by 2 */
1629 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1630 s32 spur_delta_phase, spur_freq_sigma_delta;
1631 s32 spur_offset, num_symbols_x16;
1632 u8 num_symbol_offsets, i, freq_band;
1633
1634 /* Convert current frequency to fbin value (the same way channels
1635 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1636 * up by 2 so we can compare it later */
1637 if (channel->hw_value & CHANNEL_2GHZ) {
1638 chan_fbin = (channel->center_freq - 2300) * 10;
1639 freq_band = AR5K_EEPROM_BAND_2GHZ;
1640 } else {
1641 chan_fbin = (channel->center_freq - 4900) * 10;
1642 freq_band = AR5K_EEPROM_BAND_5GHZ;
1643 }
1644
1645 /* Check if any spur_chan_fbin from EEPROM is
1646 * within our current channel's spur detection range */
1647 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1648 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1649 /* XXX: Half/Quarter channels ?*/
1650 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1651 spur_detection_window *= 2;
1652
1653 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1654 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1655
1656 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1657 * so it's zero if we got nothing from EEPROM */
1658 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1659 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1660 break;
1661 }
1662
1663 if ((chan_fbin - spur_detection_window <=
1664 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1665 (chan_fbin + spur_detection_window >=
1666 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1667 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1668 break;
1669 }
1670 }
1671
1672 /* We need to enable spur filter for this channel */
1673 if (spur_chan_fbin) {
1674 spur_offset = spur_chan_fbin - chan_fbin;
1675 /*
1676 * Calculate deltas:
1677 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1678 * spur_delta_phase -> spur_offset / chip_freq << 11
1679 * Note: Both values have 100Hz resolution
1680 */
1681 switch (ah->ah_bwmode) {
1682 case AR5K_BWMODE_40MHZ:
1683 /* Both sample_freq and chip_freq are 80MHz */
1684 spur_delta_phase = (spur_offset << 16) / 25;
1685 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1686 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1687 break;
1688 case AR5K_BWMODE_10MHZ:
1689 /* Both sample_freq and chip_freq are 20MHz (?) */
1690 spur_delta_phase = (spur_offset << 18) / 25;
1691 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1692 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1693 case AR5K_BWMODE_5MHZ:
1694 /* Both sample_freq and chip_freq are 10MHz (?) */
1695 spur_delta_phase = (spur_offset << 19) / 25;
1696 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1697 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1698 default:
1699 if (channel->hw_value == CHANNEL_A) {
1700 /* Both sample_freq and chip_freq are 40MHz */
1701 spur_delta_phase = (spur_offset << 17) / 25;
1702 spur_freq_sigma_delta =
1703 (spur_delta_phase >> 10);
1704 symbol_width =
1705 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1706 } else {
1707 /* sample_freq -> 40MHz chip_freq -> 44MHz
1708 * (for b compatibility) */
1709 spur_delta_phase = (spur_offset << 17) / 25;
1710 spur_freq_sigma_delta =
1711 (spur_offset << 8) / 55;
1712 symbol_width =
1713 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1714 }
1715 break;
1716 }
1717
1718 /* Calculate pilot and magnitude masks */
1719
1720 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1721 * and divide by symbol_width to find how many symbols we have
1722 * Note: number of symbols is scaled up by 16 */
1723 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1724
1725 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1726 if (!(num_symbols_x16 & 0xF))
1727 /* _X_ */
1728 num_symbol_offsets = 3;
1729 else
1730 /* _xx_ */
1731 num_symbol_offsets = 4;
1732
1733 for (i = 0; i < num_symbol_offsets; i++) {
1734
1735 /* Calculate pilot mask */
1736 s32 curr_sym_off =
1737 (num_symbols_x16 / 16) + i + 25;
1738
1739 /* Pilot magnitude mask seems to be a way to
1740 * declare the boundaries for our detection
1741 * window or something, it's 2 for the middle
1742 * value(s) where the symbol is expected to be
1743 * and 1 on the boundary values */
1744 u8 plt_mag_map =
1745 (i == 0 || i == (num_symbol_offsets - 1))
1746 ? 1 : 2;
1747
1748 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1749 if (curr_sym_off <= 25)
1750 pilot_mask[0] |= 1 << curr_sym_off;
1751 else if (curr_sym_off >= 27)
1752 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1753 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1754 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1755
1756 /* Calculate magnitude mask (for viterbi decoder) */
1757 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1758 mag_mask[0] |=
1759 plt_mag_map << (curr_sym_off + 1) * 2;
1760 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1761 mag_mask[1] |=
1762 plt_mag_map << (curr_sym_off - 15) * 2;
1763 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1764 mag_mask[2] |=
1765 plt_mag_map << (curr_sym_off - 31) * 2;
1766 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1767 mag_mask[3] |=
1768 plt_mag_map << (curr_sym_off - 47) * 2;
1769
1770 }
1771
1772 /* Write settings on hw to enable spur filter */
1773 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1774 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1775 /* XXX: Self correlator also ? */
1776 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1777 AR5K_PHY_IQ_PILOT_MASK_EN |
1778 AR5K_PHY_IQ_CHAN_MASK_EN |
1779 AR5K_PHY_IQ_SPUR_FILT_EN);
1780
1781 /* Set delta phase and freq sigma delta */
1782 ath5k_hw_reg_write(ah,
1783 AR5K_REG_SM(spur_delta_phase,
1784 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1785 AR5K_REG_SM(spur_freq_sigma_delta,
1786 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1787 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1788 AR5K_PHY_TIMING_11);
1789
1790 /* Write pilot masks */
1791 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1792 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1793 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1794 pilot_mask[1]);
1795
1796 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1797 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1798 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1799 pilot_mask[1]);
1800
1801 /* Write magnitude masks */
1802 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1803 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1804 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1805 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1806 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1807 mag_mask[3]);
1808
1809 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1810 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1811 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1812 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1813 AR5K_PHY_BIN_MASK2_4_MASK_4,
1814 mag_mask[3]);
1815
1816 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1817 AR5K_PHY_IQ_SPUR_FILT_EN) {
1818 /* Clean up spur mitigation settings and disable fliter */
1819 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1820 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1821 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1822 AR5K_PHY_IQ_PILOT_MASK_EN |
1823 AR5K_PHY_IQ_CHAN_MASK_EN |
1824 AR5K_PHY_IQ_SPUR_FILT_EN);
1825 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1826
1827 /* Clear pilot masks */
1828 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1829 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1830 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1831 0);
1832
1833 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1834 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1835 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1836 0);
1837
1838 /* Clear magnitude masks */
1839 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1840 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1841 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1842 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1843 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1844 0);
1845
1846 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1847 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1848 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1849 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1850 AR5K_PHY_BIN_MASK2_4_MASK_4,
1851 0);
1852 }
1853 }
1854
1855
1856 /*****************\
1857 * Antenna control *
1858 \*****************/
1859
1860 static void /*TODO:Boundary check*/
1861 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1862 {
1863 if (ah->ah_version != AR5K_AR5210)
1864 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1865 }
1866
1867 /*
1868 * Enable/disable fast rx antenna diversity
1869 */
1870 static void
1871 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1872 {
1873 switch (ee_mode) {
1874 case AR5K_EEPROM_MODE_11G:
1875 /* XXX: This is set to
1876 * disabled on initvals !!! */
1877 case AR5K_EEPROM_MODE_11A:
1878 if (enable)
1879 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1880 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1881 else
1882 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1883 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1884 break;
1885 case AR5K_EEPROM_MODE_11B:
1886 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1887 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1888 break;
1889 default:
1890 return;
1891 }
1892
1893 if (enable) {
1894 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1895 AR5K_PHY_RESTART_DIV_GC, 4);
1896
1897 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1898 AR5K_PHY_FAST_ANT_DIV_EN);
1899 } else {
1900 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1901 AR5K_PHY_RESTART_DIV_GC, 0);
1902
1903 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1904 AR5K_PHY_FAST_ANT_DIV_EN);
1905 }
1906 }
1907
1908 void
1909 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1910 {
1911 u8 ant0, ant1;
1912
1913 /*
1914 * In case a fixed antenna was set as default
1915 * use the same switch table twice.
1916 */
1917 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1918 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1919 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1920 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1921 else {
1922 ant0 = AR5K_ANT_SWTABLE_A;
1923 ant1 = AR5K_ANT_SWTABLE_B;
1924 }
1925
1926 /* Set antenna idle switch table */
1927 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1928 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1929 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1930 AR5K_PHY_ANT_CTL_TXRX_EN));
1931
1932 /* Set antenna switch tables */
1933 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1934 AR5K_PHY_ANT_SWITCH_TABLE_0);
1935 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1936 AR5K_PHY_ANT_SWITCH_TABLE_1);
1937 }
1938
1939 /*
1940 * Set antenna operating mode
1941 */
1942 void
1943 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1944 {
1945 struct ieee80211_channel *channel = ah->ah_current_channel;
1946 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1947 bool use_def_for_sg;
1948 int ee_mode;
1949 u8 def_ant, tx_ant;
1950 u32 sta_id1 = 0;
1951
1952 /* if channel is not initialized yet we can't set the antennas
1953 * so just store the mode. it will be set on the next reset */
1954 if (channel == NULL) {
1955 ah->ah_ant_mode = ant_mode;
1956 return;
1957 }
1958
1959 def_ant = ah->ah_def_ant;
1960
1961 ee_mode = ath5k_eeprom_mode_from_channel(channel);
1962 if (ee_mode < 0) {
1963 ATH5K_ERR(ah->ah_sc,
1964 "invalid channel: %d\n", channel->center_freq);
1965 return;
1966 }
1967
1968 switch (ant_mode) {
1969 case AR5K_ANTMODE_DEFAULT:
1970 tx_ant = 0;
1971 use_def_for_tx = false;
1972 update_def_on_tx = false;
1973 use_def_for_rts = false;
1974 use_def_for_sg = false;
1975 fast_div = true;
1976 break;
1977 case AR5K_ANTMODE_FIXED_A:
1978 def_ant = 1;
1979 tx_ant = 1;
1980 use_def_for_tx = true;
1981 update_def_on_tx = false;
1982 use_def_for_rts = true;
1983 use_def_for_sg = true;
1984 fast_div = false;
1985 break;
1986 case AR5K_ANTMODE_FIXED_B:
1987 def_ant = 2;
1988 tx_ant = 2;
1989 use_def_for_tx = true;
1990 update_def_on_tx = false;
1991 use_def_for_rts = true;
1992 use_def_for_sg = true;
1993 fast_div = false;
1994 break;
1995 case AR5K_ANTMODE_SINGLE_AP:
1996 def_ant = 1; /* updated on tx */
1997 tx_ant = 0;
1998 use_def_for_tx = true;
1999 update_def_on_tx = true;
2000 use_def_for_rts = true;
2001 use_def_for_sg = true;
2002 fast_div = true;
2003 break;
2004 case AR5K_ANTMODE_SECTOR_AP:
2005 tx_ant = 1; /* variable */
2006 use_def_for_tx = false;
2007 update_def_on_tx = false;
2008 use_def_for_rts = true;
2009 use_def_for_sg = false;
2010 fast_div = false;
2011 break;
2012 case AR5K_ANTMODE_SECTOR_STA:
2013 tx_ant = 1; /* variable */
2014 use_def_for_tx = true;
2015 update_def_on_tx = false;
2016 use_def_for_rts = true;
2017 use_def_for_sg = false;
2018 fast_div = true;
2019 break;
2020 case AR5K_ANTMODE_DEBUG:
2021 def_ant = 1;
2022 tx_ant = 2;
2023 use_def_for_tx = false;
2024 update_def_on_tx = false;
2025 use_def_for_rts = false;
2026 use_def_for_sg = false;
2027 fast_div = false;
2028 break;
2029 default:
2030 return;
2031 }
2032
2033 ah->ah_tx_ant = tx_ant;
2034 ah->ah_ant_mode = ant_mode;
2035 ah->ah_def_ant = def_ant;
2036
2037 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2038 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2039 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2040 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2041
2042 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2043
2044 if (sta_id1)
2045 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2046
2047 ath5k_hw_set_antenna_switch(ah, ee_mode);
2048 /* Note: set diversity before default antenna
2049 * because it won't work correctly */
2050 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2051 ath5k_hw_set_def_antenna(ah, def_ant);
2052 }
2053
2054
2055 /****************\
2056 * TX power setup *
2057 \****************/
2058
2059 /*
2060 * Helper functions
2061 */
2062
2063 /*
2064 * Do linear interpolation between two given (x, y) points
2065 */
2066 static s16
2067 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2068 s16 y_left, s16 y_right)
2069 {
2070 s16 ratio, result;
2071
2072 /* Avoid divide by zero and skip interpolation
2073 * if we have the same point */
2074 if ((x_left == x_right) || (y_left == y_right))
2075 return y_left;
2076
2077 /*
2078 * Since we use ints and not fps, we need to scale up in
2079 * order to get a sane ratio value (or else we 'll eg. get
2080 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2081 * to have some accuracy both for 0.5 and 0.25 steps.
2082 */
2083 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2084
2085 /* Now scale down to be in range */
2086 result = y_left + (ratio * (target - x_left) / 100);
2087
2088 return result;
2089 }
2090
2091 /*
2092 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2093 *
2094 * Since we have the top of the curve and we draw the line below
2095 * until we reach 1 (1 pcdac step) we need to know which point
2096 * (x value) that is so that we don't go below y axis and have negative
2097 * pcdac values when creating the curve, or fill the table with zeroes.
2098 */
2099 static s16
2100 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2101 const s16 *pwrL, const s16 *pwrR)
2102 {
2103 s8 tmp;
2104 s16 min_pwrL, min_pwrR;
2105 s16 pwr_i;
2106
2107 /* Some vendors write the same pcdac value twice !!! */
2108 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2109 return max(pwrL[0], pwrR[0]);
2110
2111 if (pwrL[0] == pwrL[1])
2112 min_pwrL = pwrL[0];
2113 else {
2114 pwr_i = pwrL[0];
2115 do {
2116 pwr_i--;
2117 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2118 pwrL[0], pwrL[1],
2119 stepL[0], stepL[1]);
2120 } while (tmp > 1);
2121
2122 min_pwrL = pwr_i;
2123 }
2124
2125 if (pwrR[0] == pwrR[1])
2126 min_pwrR = pwrR[0];
2127 else {
2128 pwr_i = pwrR[0];
2129 do {
2130 pwr_i--;
2131 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2132 pwrR[0], pwrR[1],
2133 stepR[0], stepR[1]);
2134 } while (tmp > 1);
2135
2136 min_pwrR = pwr_i;
2137 }
2138
2139 /* Keep the right boundary so that it works for both curves */
2140 return max(min_pwrL, min_pwrR);
2141 }
2142
2143 /*
2144 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2145 * Power to PCDAC curve.
2146 *
2147 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2148 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2149 * PCDAC/PDADC step for each curve is 64 but we can write more than
2150 * one curves on hw so we can go up to 128 (which is the max step we
2151 * can write on the final table).
2152 *
2153 * We write y values (PCDAC/PDADC steps) on hw.
2154 */
2155 static void
2156 ath5k_create_power_curve(s16 pmin, s16 pmax,
2157 const s16 *pwr, const u8 *vpd,
2158 u8 num_points,
2159 u8 *vpd_table, u8 type)
2160 {
2161 u8 idx[2] = { 0, 1 };
2162 s16 pwr_i = 2*pmin;
2163 int i;
2164
2165 if (num_points < 2)
2166 return;
2167
2168 /* We want the whole line, so adjust boundaries
2169 * to cover the entire power range. Note that
2170 * power values are already 0.25dB so no need
2171 * to multiply pwr_i by 2 */
2172 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2173 pwr_i = pmin;
2174 pmin = 0;
2175 pmax = 63;
2176 }
2177
2178 /* Find surrounding turning points (TPs)
2179 * and interpolate between them */
2180 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2181 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2182
2183 /* We passed the right TP, move to the next set of TPs
2184 * if we pass the last TP, extrapolate above using the last
2185 * two TPs for ratio */
2186 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2187 idx[0]++;
2188 idx[1]++;
2189 }
2190
2191 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2192 pwr[idx[0]], pwr[idx[1]],
2193 vpd[idx[0]], vpd[idx[1]]);
2194
2195 /* Increase by 0.5dB
2196 * (0.25 dB units) */
2197 pwr_i += 2;
2198 }
2199 }
2200
2201 /*
2202 * Get the surrounding per-channel power calibration piers
2203 * for a given frequency so that we can interpolate between
2204 * them and come up with an appropriate dataset for our current
2205 * channel.
2206 */
2207 static void
2208 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2209 struct ieee80211_channel *channel,
2210 struct ath5k_chan_pcal_info **pcinfo_l,
2211 struct ath5k_chan_pcal_info **pcinfo_r)
2212 {
2213 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2214 struct ath5k_chan_pcal_info *pcinfo;
2215 u8 idx_l, idx_r;
2216 u8 mode, max, i;
2217 u32 target = channel->center_freq;
2218
2219 idx_l = 0;
2220 idx_r = 0;
2221
2222 if (!(channel->hw_value & CHANNEL_OFDM)) {
2223 pcinfo = ee->ee_pwr_cal_b;
2224 mode = AR5K_EEPROM_MODE_11B;
2225 } else if (channel->hw_value & CHANNEL_2GHZ) {
2226 pcinfo = ee->ee_pwr_cal_g;
2227 mode = AR5K_EEPROM_MODE_11G;
2228 } else {
2229 pcinfo = ee->ee_pwr_cal_a;
2230 mode = AR5K_EEPROM_MODE_11A;
2231 }
2232 max = ee->ee_n_piers[mode] - 1;
2233
2234 /* Frequency is below our calibrated
2235 * range. Use the lowest power curve
2236 * we have */
2237 if (target < pcinfo[0].freq) {
2238 idx_l = idx_r = 0;
2239 goto done;
2240 }
2241
2242 /* Frequency is above our calibrated
2243 * range. Use the highest power curve
2244 * we have */
2245 if (target > pcinfo[max].freq) {
2246 idx_l = idx_r = max;
2247 goto done;
2248 }
2249
2250 /* Frequency is inside our calibrated
2251 * channel range. Pick the surrounding
2252 * calibration piers so that we can
2253 * interpolate */
2254 for (i = 0; i <= max; i++) {
2255
2256 /* Frequency matches one of our calibration
2257 * piers, no need to interpolate, just use
2258 * that calibration pier */
2259 if (pcinfo[i].freq == target) {
2260 idx_l = idx_r = i;
2261 goto done;
2262 }
2263
2264 /* We found a calibration pier that's above
2265 * frequency, use this pier and the previous
2266 * one to interpolate */
2267 if (target < pcinfo[i].freq) {
2268 idx_r = i;
2269 idx_l = idx_r - 1;
2270 goto done;
2271 }
2272 }
2273
2274 done:
2275 *pcinfo_l = &pcinfo[idx_l];
2276 *pcinfo_r = &pcinfo[idx_r];
2277 }
2278
2279 /*
2280 * Get the surrounding per-rate power calibration data
2281 * for a given frequency and interpolate between power
2282 * values to set max target power supported by hw for
2283 * each rate.
2284 */
2285 static void
2286 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2287 struct ieee80211_channel *channel,
2288 struct ath5k_rate_pcal_info *rates)
2289 {
2290 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2291 struct ath5k_rate_pcal_info *rpinfo;
2292 u8 idx_l, idx_r;
2293 u8 mode, max, i;
2294 u32 target = channel->center_freq;
2295
2296 idx_l = 0;
2297 idx_r = 0;
2298
2299 if (!(channel->hw_value & CHANNEL_OFDM)) {
2300 rpinfo = ee->ee_rate_tpwr_b;
2301 mode = AR5K_EEPROM_MODE_11B;
2302 } else if (channel->hw_value & CHANNEL_2GHZ) {
2303 rpinfo = ee->ee_rate_tpwr_g;
2304 mode = AR5K_EEPROM_MODE_11G;
2305 } else {
2306 rpinfo = ee->ee_rate_tpwr_a;
2307 mode = AR5K_EEPROM_MODE_11A;
2308 }
2309 max = ee->ee_rate_target_pwr_num[mode] - 1;
2310
2311 /* Get the surrounding calibration
2312 * piers - same as above */
2313 if (target < rpinfo[0].freq) {
2314 idx_l = idx_r = 0;
2315 goto done;
2316 }
2317
2318 if (target > rpinfo[max].freq) {
2319 idx_l = idx_r = max;
2320 goto done;
2321 }
2322
2323 for (i = 0; i <= max; i++) {
2324
2325 if (rpinfo[i].freq == target) {
2326 idx_l = idx_r = i;
2327 goto done;
2328 }
2329
2330 if (target < rpinfo[i].freq) {
2331 idx_r = i;
2332 idx_l = idx_r - 1;
2333 goto done;
2334 }
2335 }
2336
2337 done:
2338 /* Now interpolate power value, based on the frequency */
2339 rates->freq = target;
2340
2341 rates->target_power_6to24 =
2342 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2343 rpinfo[idx_r].freq,
2344 rpinfo[idx_l].target_power_6to24,
2345 rpinfo[idx_r].target_power_6to24);
2346
2347 rates->target_power_36 =
2348 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2349 rpinfo[idx_r].freq,
2350 rpinfo[idx_l].target_power_36,
2351 rpinfo[idx_r].target_power_36);
2352
2353 rates->target_power_48 =
2354 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2355 rpinfo[idx_r].freq,
2356 rpinfo[idx_l].target_power_48,
2357 rpinfo[idx_r].target_power_48);
2358
2359 rates->target_power_54 =
2360 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2361 rpinfo[idx_r].freq,
2362 rpinfo[idx_l].target_power_54,
2363 rpinfo[idx_r].target_power_54);
2364 }
2365
2366 /*
2367 * Get the max edge power for this channel if
2368 * we have such data from EEPROM's Conformance Test
2369 * Limits (CTL), and limit max power if needed.
2370 */
2371 static void
2372 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2373 struct ieee80211_channel *channel)
2374 {
2375 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2376 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2377 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2378 u8 *ctl_val = ee->ee_ctl;
2379 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2380 s16 edge_pwr = 0;
2381 u8 rep_idx;
2382 u8 i, ctl_mode;
2383 u8 ctl_idx = 0xFF;
2384 u32 target = channel->center_freq;
2385
2386 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2387
2388 switch (channel->hw_value & CHANNEL_MODES) {
2389 case CHANNEL_A:
2390 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2391 ctl_mode |= AR5K_CTL_TURBO;
2392 else
2393 ctl_mode |= AR5K_CTL_11A;
2394 break;
2395 case CHANNEL_G:
2396 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2397 ctl_mode |= AR5K_CTL_TURBOG;
2398 else
2399 ctl_mode |= AR5K_CTL_11G;
2400 break;
2401 case CHANNEL_B:
2402 ctl_mode |= AR5K_CTL_11B;
2403 break;
2404 case CHANNEL_XR:
2405 /* Fall through */
2406 default:
2407 return;
2408 }
2409
2410 for (i = 0; i < ee->ee_ctls; i++) {
2411 if (ctl_val[i] == ctl_mode) {
2412 ctl_idx = i;
2413 break;
2414 }
2415 }
2416
2417 /* If we have a CTL dataset available grab it and find the
2418 * edge power for our frequency */
2419 if (ctl_idx == 0xFF)
2420 return;
2421
2422 /* Edge powers are sorted by frequency from lower
2423 * to higher. Each CTL corresponds to 8 edge power
2424 * measurements. */
2425 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2426
2427 /* Don't do boundaries check because we
2428 * might have more that one bands defined
2429 * for this mode */
2430
2431 /* Get the edge power that's closer to our
2432 * frequency */
2433 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2434 rep_idx += i;
2435 if (target <= rep[rep_idx].freq)
2436 edge_pwr = (s16) rep[rep_idx].edge;
2437 }
2438
2439 if (edge_pwr)
2440 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2441 }
2442
2443
2444 /*
2445 * Power to PCDAC table functions
2446 */
2447
2448 /*
2449 * Fill Power to PCDAC table on RF5111
2450 *
2451 * No further processing is needed for RF5111, the only thing we have to
2452 * do is fill the values below and above calibration range since eeprom data
2453 * may not cover the entire PCDAC table.
2454 */
2455 static void
2456 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2457 s16 *table_max)
2458 {
2459 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2460 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2461 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2462 s16 min_pwr, max_pwr;
2463
2464 /* Get table boundaries */
2465 min_pwr = table_min[0];
2466 pcdac_0 = pcdac_tmp[0];
2467
2468 max_pwr = table_max[0];
2469 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2470
2471 /* Extrapolate below minimum using pcdac_0 */
2472 pcdac_i = 0;
2473 for (i = 0; i < min_pwr; i++)
2474 pcdac_out[pcdac_i++] = pcdac_0;
2475
2476 /* Copy values from pcdac_tmp */
2477 pwr_idx = min_pwr;
2478 for (i = 0 ; pwr_idx <= max_pwr &&
2479 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2480 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2481 pwr_idx++;
2482 }
2483
2484 /* Extrapolate above maximum */
2485 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2486 pcdac_out[pcdac_i++] = pcdac_n;
2487
2488 }
2489
2490 /*
2491 * Combine available XPD Curves and fill Linear Power to PCDAC table
2492 * on RF5112
2493 *
2494 * RFX112 can have up to 2 curves (one for low txpower range and one for
2495 * higher txpower range). We need to put them both on pcdac_out and place
2496 * them in the correct location. In case we only have one curve available
2497 * just fit it on pcdac_out (it's supposed to cover the entire range of
2498 * available pwr levels since it's always the higher power curve). Extrapolate
2499 * below and above final table if needed.
2500 */
2501 static void
2502 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2503 s16 *table_max, u8 pdcurves)
2504 {
2505 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2506 u8 *pcdac_low_pwr;
2507 u8 *pcdac_high_pwr;
2508 u8 *pcdac_tmp;
2509 u8 pwr;
2510 s16 max_pwr_idx;
2511 s16 min_pwr_idx;
2512 s16 mid_pwr_idx = 0;
2513 /* Edge flag turs on the 7nth bit on the PCDAC
2514 * to delcare the higher power curve (force values
2515 * to be greater than 64). If we only have one curve
2516 * we don't need to set this, if we have 2 curves and
2517 * fill the table backwards this can also be used to
2518 * switch from higher power curve to lower power curve */
2519 u8 edge_flag;
2520 int i;
2521
2522 /* When we have only one curve available
2523 * that's the higher power curve. If we have
2524 * two curves the first is the high power curve
2525 * and the next is the low power curve. */
2526 if (pdcurves > 1) {
2527 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2528 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2529 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2530 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2531
2532 /* If table size goes beyond 31.5dB, keep the
2533 * upper 31.5dB range when setting tx power.
2534 * Note: 126 = 31.5 dB in quarter dB steps */
2535 if (table_max[0] - table_min[1] > 126)
2536 min_pwr_idx = table_max[0] - 126;
2537 else
2538 min_pwr_idx = table_min[1];
2539
2540 /* Since we fill table backwards
2541 * start from high power curve */
2542 pcdac_tmp = pcdac_high_pwr;
2543
2544 edge_flag = 0x40;
2545 } else {
2546 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2547 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2548 min_pwr_idx = table_min[0];
2549 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2550 pcdac_tmp = pcdac_high_pwr;
2551 edge_flag = 0;
2552 }
2553
2554 /* This is used when setting tx power*/
2555 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2556
2557 /* Fill Power to PCDAC table backwards */
2558 pwr = max_pwr_idx;
2559 for (i = 63; i >= 0; i--) {
2560 /* Entering lower power range, reset
2561 * edge flag and set pcdac_tmp to lower
2562 * power curve.*/
2563 if (edge_flag == 0x40 &&
2564 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2565 edge_flag = 0x00;
2566 pcdac_tmp = pcdac_low_pwr;
2567 pwr = mid_pwr_idx/2;
2568 }
2569
2570 /* Don't go below 1, extrapolate below if we have
2571 * already swithced to the lower power curve -or
2572 * we only have one curve and edge_flag is zero
2573 * anyway */
2574 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2575 while (i >= 0) {
2576 pcdac_out[i] = pcdac_out[i + 1];
2577 i--;
2578 }
2579 break;
2580 }
2581
2582 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2583
2584 /* Extrapolate above if pcdac is greater than
2585 * 126 -this can happen because we OR pcdac_out
2586 * value with edge_flag on high power curve */
2587 if (pcdac_out[i] > 126)
2588 pcdac_out[i] = 126;
2589
2590 /* Decrease by a 0.5dB step */
2591 pwr--;
2592 }
2593 }
2594
2595 /* Write PCDAC values on hw */
2596 static void
2597 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2598 {
2599 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2600 int i;
2601
2602 /*
2603 * Write TX power values
2604 */
2605 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2606 ath5k_hw_reg_write(ah,
2607 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2608 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2609 AR5K_PHY_PCDAC_TXPOWER(i));
2610 }
2611 }
2612
2613
2614 /*
2615 * Power to PDADC table functions
2616 */
2617
2618 /*
2619 * Set the gain boundaries and create final Power to PDADC table
2620 *
2621 * We can have up to 4 pd curves, we need to do a similar process
2622 * as we do for RF5112. This time we don't have an edge_flag but we
2623 * set the gain boundaries on a separate register.
2624 */
2625 static void
2626 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2627 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2628 {
2629 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2630 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2631 u8 *pdadc_tmp;
2632 s16 pdadc_0;
2633 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2634 u8 pd_gain_overlap;
2635
2636 /* Note: Register value is initialized on initvals
2637 * there is no feedback from hw.
2638 * XXX: What about pd_gain_overlap from EEPROM ? */
2639 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2640 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2641
2642 /* Create final PDADC table */
2643 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2644 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2645
2646 if (pdg == pdcurves - 1)
2647 /* 2 dB boundary stretch for last
2648 * (higher power) curve */
2649 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2650 else
2651 /* Set gain boundary in the middle
2652 * between this curve and the next one */
2653 gain_boundaries[pdg] =
2654 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2655
2656 /* Sanity check in case our 2 db stretch got out of
2657 * range. */
2658 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2659 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2660
2661 /* For the first curve (lower power)
2662 * start from 0 dB */
2663 if (pdg == 0)
2664 pdadc_0 = 0;
2665 else
2666 /* For the other curves use the gain overlap */
2667 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2668 pd_gain_overlap;
2669
2670 /* Force each power step to be at least 0.5 dB */
2671 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2672 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2673 else
2674 pwr_step = 1;
2675
2676 /* If pdadc_0 is negative, we need to extrapolate
2677 * below this pdgain by a number of pwr_steps */
2678 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2679 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2680 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2681 pdadc_0++;
2682 }
2683
2684 /* Set last pwr level, using gain boundaries */
2685 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2686 /* Limit it to be inside pwr range */
2687 table_size = pwr_max[pdg] - pwr_min[pdg];
2688 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2689
2690 /* Fill pdadc_out table */
2691 while (pdadc_0 < max_idx && pdadc_i < 128)
2692 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2693
2694 /* Need to extrapolate above this pdgain? */
2695 if (pdadc_n <= max_idx)
2696 continue;
2697
2698 /* Force each power step to be at least 0.5 dB */
2699 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2700 pwr_step = pdadc_tmp[table_size - 1] -
2701 pdadc_tmp[table_size - 2];
2702 else
2703 pwr_step = 1;
2704
2705 /* Extrapolate above */
2706 while ((pdadc_0 < (s16) pdadc_n) &&
2707 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2708 s16 tmp = pdadc_tmp[table_size - 1] +
2709 (pdadc_0 - max_idx) * pwr_step;
2710 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2711 pdadc_0++;
2712 }
2713 }
2714
2715 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2716 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2717 pdg++;
2718 }
2719
2720 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2721 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2722 pdadc_i++;
2723 }
2724
2725 /* Set gain boundaries */
2726 ath5k_hw_reg_write(ah,
2727 AR5K_REG_SM(pd_gain_overlap,
2728 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2729 AR5K_REG_SM(gain_boundaries[0],
2730 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2731 AR5K_REG_SM(gain_boundaries[1],
2732 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2733 AR5K_REG_SM(gain_boundaries[2],
2734 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2735 AR5K_REG_SM(gain_boundaries[3],
2736 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2737 AR5K_PHY_TPC_RG5);
2738
2739 /* Used for setting rate power table */
2740 ah->ah_txpower.txp_min_idx = pwr_min[0];
2741
2742 }
2743
2744 /* Write PDADC values on hw */
2745 static void
2746 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2747 {
2748 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2749 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2750 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2751 u8 pdcurves = ee->ee_pd_gains[ee_mode];
2752 u32 reg;
2753 u8 i;
2754
2755 /* Select the right pdgain curves */
2756
2757 /* Clear current settings */
2758 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2759 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2760 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2761 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2762 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2763
2764 /*
2765 * Use pd_gains curve from eeprom
2766 *
2767 * This overrides the default setting from initvals
2768 * in case some vendors (e.g. Zcomax) don't use the default
2769 * curves. If we don't honor their settings we 'll get a
2770 * 5dB (1 * gain overlap ?) drop.
2771 */
2772 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2773
2774 switch (pdcurves) {
2775 case 3:
2776 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2777 /* Fall through */
2778 case 2:
2779 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2780 /* Fall through */
2781 case 1:
2782 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2783 break;
2784 }
2785 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2786
2787 /*
2788 * Write TX power values
2789 */
2790 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2791 ath5k_hw_reg_write(ah,
2792 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2793 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2794 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2795 ((pdadc_out[4*i + 3] & 0xff) << 24),
2796 AR5K_PHY_PDADC_TXPOWER(i));
2797 }
2798 }
2799
2800
2801 /*
2802 * Common code for PCDAC/PDADC tables
2803 */
2804
2805 /*
2806 * This is the main function that uses all of the above
2807 * to set PCDAC/PDADC table on hw for the current channel.
2808 * This table is used for tx power calibration on the basband,
2809 * without it we get weird tx power levels and in some cases
2810 * distorted spectral mask
2811 */
2812 static int
2813 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2814 struct ieee80211_channel *channel,
2815 u8 ee_mode, u8 type)
2816 {
2817 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2818 struct ath5k_chan_pcal_info *pcinfo_L;
2819 struct ath5k_chan_pcal_info *pcinfo_R;
2820 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2821 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2822 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2823 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2824 u8 *tmpL;
2825 u8 *tmpR;
2826 u32 target = channel->center_freq;
2827 int pdg, i;
2828
2829 /* Get surrounding freq piers for this channel */
2830 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2831 &pcinfo_L,
2832 &pcinfo_R);
2833
2834 /* Loop over pd gain curves on
2835 * surrounding freq piers by index */
2836 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2837
2838 /* Fill curves in reverse order
2839 * from lower power (max gain)
2840 * to higher power. Use curve -> idx
2841 * backmapping we did on eeprom init */
2842 u8 idx = pdg_curve_to_idx[pdg];
2843
2844 /* Grab the needed curves by index */
2845 pdg_L = &pcinfo_L->pd_curves[idx];
2846 pdg_R = &pcinfo_R->pd_curves[idx];
2847
2848 /* Initialize the temp tables */
2849 tmpL = ah->ah_txpower.tmpL[pdg];
2850 tmpR = ah->ah_txpower.tmpR[pdg];
2851
2852 /* Set curve's x boundaries and create
2853 * curves so that they cover the same
2854 * range (if we don't do that one table
2855 * will have values on some range and the
2856 * other one won't have any so interpolation
2857 * will fail) */
2858 table_min[pdg] = min(pdg_L->pd_pwr[0],
2859 pdg_R->pd_pwr[0]) / 2;
2860
2861 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2862 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2863
2864 /* Now create the curves on surrounding channels
2865 * and interpolate if needed to get the final
2866 * curve for this gain on this channel */
2867 switch (type) {
2868 case AR5K_PWRTABLE_LINEAR_PCDAC:
2869 /* Override min/max so that we don't loose
2870 * accuracy (don't divide by 2) */
2871 table_min[pdg] = min(pdg_L->pd_pwr[0],
2872 pdg_R->pd_pwr[0]);
2873
2874 table_max[pdg] =
2875 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2876 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2877
2878 /* Override minimum so that we don't get
2879 * out of bounds while extrapolating
2880 * below. Don't do this when we have 2
2881 * curves and we are on the high power curve
2882 * because table_min is ok in this case */
2883 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2884
2885 table_min[pdg] =
2886 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2887 pdg_R->pd_step,
2888 pdg_L->pd_pwr,
2889 pdg_R->pd_pwr);
2890
2891 /* Don't go too low because we will
2892 * miss the upper part of the curve.
2893 * Note: 126 = 31.5dB (max power supported)
2894 * in 0.25dB units */
2895 if (table_max[pdg] - table_min[pdg] > 126)
2896 table_min[pdg] = table_max[pdg] - 126;
2897 }
2898
2899 /* Fall through */
2900 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2901 case AR5K_PWRTABLE_PWR_TO_PDADC:
2902
2903 ath5k_create_power_curve(table_min[pdg],
2904 table_max[pdg],
2905 pdg_L->pd_pwr,
2906 pdg_L->pd_step,
2907 pdg_L->pd_points, tmpL, type);
2908
2909 /* We are in a calibration
2910 * pier, no need to interpolate
2911 * between freq piers */
2912 if (pcinfo_L == pcinfo_R)
2913 continue;
2914
2915 ath5k_create_power_curve(table_min[pdg],
2916 table_max[pdg],
2917 pdg_R->pd_pwr,
2918 pdg_R->pd_step,
2919 pdg_R->pd_points, tmpR, type);
2920 break;
2921 default:
2922 return -EINVAL;
2923 }
2924
2925 /* Interpolate between curves
2926 * of surrounding freq piers to
2927 * get the final curve for this
2928 * pd gain. Re-use tmpL for interpolation
2929 * output */
2930 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2931 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2932 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2933 (s16) pcinfo_L->freq,
2934 (s16) pcinfo_R->freq,
2935 (s16) tmpL[i],
2936 (s16) tmpR[i]);
2937 }
2938 }
2939
2940 /* Now we have a set of curves for this
2941 * channel on tmpL (x range is table_max - table_min
2942 * and y values are tmpL[pdg][]) sorted in the same
2943 * order as EEPROM (because we've used the backmapping).
2944 * So for RF5112 it's from higher power to lower power
2945 * and for RF2413 it's from lower power to higher power.
2946 * For RF5111 we only have one curve. */
2947
2948 /* Fill min and max power levels for this
2949 * channel by interpolating the values on
2950 * surrounding channels to complete the dataset */
2951 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2952 (s16) pcinfo_L->freq,
2953 (s16) pcinfo_R->freq,
2954 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2955
2956 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2957 (s16) pcinfo_L->freq,
2958 (s16) pcinfo_R->freq,
2959 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2960
2961 /* Fill PCDAC/PDADC table */
2962 switch (type) {
2963 case AR5K_PWRTABLE_LINEAR_PCDAC:
2964 /* For RF5112 we can have one or two curves
2965 * and each curve covers a certain power lvl
2966 * range so we need to do some more processing */
2967 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2968 ee->ee_pd_gains[ee_mode]);
2969
2970 /* Set txp.offset so that we can
2971 * match max power value with max
2972 * table index */
2973 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2974 break;
2975 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2976 /* We are done for RF5111 since it has only
2977 * one curve, just fit the curve on the table */
2978 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2979
2980 /* No rate powertable adjustment for RF5111 */
2981 ah->ah_txpower.txp_min_idx = 0;
2982 ah->ah_txpower.txp_offset = 0;
2983 break;
2984 case AR5K_PWRTABLE_PWR_TO_PDADC:
2985 /* Set PDADC boundaries and fill
2986 * final PDADC table */
2987 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2988 ee->ee_pd_gains[ee_mode]);
2989
2990 /* Set txp.offset, note that table_min
2991 * can be negative */
2992 ah->ah_txpower.txp_offset = table_min[0];
2993 break;
2994 default:
2995 return -EINVAL;
2996 }
2997
2998 ah->ah_txpower.txp_setup = true;
2999
3000 return 0;
3001 }
3002
3003 /* Write power table for current channel to hw */
3004 static void
3005 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3006 {
3007 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3008 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3009 else
3010 ath5k_write_pcdac_table(ah);
3011 }
3012
3013 /*
3014 * Per-rate tx power setting
3015 *
3016 * This is the code that sets the desired tx power (below
3017 * maximum) on hw for each rate (we also have TPC that sets
3018 * power per packet). We do that by providing an index on the
3019 * PCDAC/PDADC table we set up.
3020 */
3021
3022 /*
3023 * Set rate power table
3024 *
3025 * For now we only limit txpower based on maximum tx power
3026 * supported by hw (what's inside rate_info). We need to limit
3027 * this even more, based on regulatory domain etc.
3028 *
3029 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3030 * and is indexed as follows:
3031 * rates[0] - rates[7] -> OFDM rates
3032 * rates[8] - rates[14] -> CCK rates
3033 * rates[15] -> XR rates (they all have the same power)
3034 */
3035 static void
3036 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3037 struct ath5k_rate_pcal_info *rate_info,
3038 u8 ee_mode)
3039 {
3040 unsigned int i;
3041 u16 *rates;
3042
3043 /* max_pwr is power level we got from driver/user in 0.5dB
3044 * units, switch to 0.25dB units so we can compare */
3045 max_pwr *= 2;
3046 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3047
3048 /* apply rate limits */
3049 rates = ah->ah_txpower.txp_rates_power_table;
3050
3051 /* OFDM rates 6 to 24Mb/s */
3052 for (i = 0; i < 5; i++)
3053 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3054
3055 /* Rest OFDM rates */
3056 rates[5] = min(rates[0], rate_info->target_power_36);
3057 rates[6] = min(rates[0], rate_info->target_power_48);
3058 rates[7] = min(rates[0], rate_info->target_power_54);
3059
3060 /* CCK rates */
3061 /* 1L */
3062 rates[8] = min(rates[0], rate_info->target_power_6to24);
3063 /* 2L */
3064 rates[9] = min(rates[0], rate_info->target_power_36);
3065 /* 2S */
3066 rates[10] = min(rates[0], rate_info->target_power_36);
3067 /* 5L */
3068 rates[11] = min(rates[0], rate_info->target_power_48);
3069 /* 5S */
3070 rates[12] = min(rates[0], rate_info->target_power_48);
3071 /* 11L */
3072 rates[13] = min(rates[0], rate_info->target_power_54);
3073 /* 11S */
3074 rates[14] = min(rates[0], rate_info->target_power_54);
3075
3076 /* XR rates */
3077 rates[15] = min(rates[0], rate_info->target_power_6to24);
3078
3079 /* CCK rates have different peak to average ratio
3080 * so we have to tweak their power so that gainf
3081 * correction works ok. For this we use OFDM to
3082 * CCK delta from eeprom */
3083 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3084 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3085 for (i = 8; i <= 15; i++)
3086 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3087
3088 /* Now that we have all rates setup use table offset to
3089 * match the power range set by user with the power indices
3090 * on PCDAC/PDADC table */
3091 for (i = 0; i < 16; i++) {
3092 rates[i] += ah->ah_txpower.txp_offset;
3093 /* Don't get out of bounds */
3094 if (rates[i] > 63)
3095 rates[i] = 63;
3096 }
3097
3098 /* Min/max in 0.25dB units */
3099 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3100 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3101 ah->ah_txpower.txp_ofdm = rates[7];
3102 }
3103
3104
3105 /*
3106 * Set transmission power
3107 */
3108 static int
3109 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3110 u8 txpower)
3111 {
3112 struct ath5k_rate_pcal_info rate_info;
3113 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3114 int ee_mode;
3115 u8 type;
3116 int ret;
3117
3118 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3119 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3120 return -EINVAL;
3121 }
3122
3123 ee_mode = ath5k_eeprom_mode_from_channel(channel);
3124 if (ee_mode < 0) {
3125 ATH5K_ERR(ah->ah_sc,
3126 "invalid channel: %d\n", channel->center_freq);
3127 return -EINVAL;
3128 }
3129
3130 /* Initialize TX power table */
3131 switch (ah->ah_radio) {
3132 case AR5K_RF5110:
3133 /* TODO */
3134 return 0;
3135 case AR5K_RF5111:
3136 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3137 break;
3138 case AR5K_RF5112:
3139 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3140 break;
3141 case AR5K_RF2413:
3142 case AR5K_RF5413:
3143 case AR5K_RF2316:
3144 case AR5K_RF2317:
3145 case AR5K_RF2425:
3146 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3147 break;
3148 default:
3149 return -EINVAL;
3150 }
3151
3152 /*
3153 * If we don't change channel/mode skip tx powertable calculation
3154 * and use the cached one.
3155 */
3156 if (!ah->ah_txpower.txp_setup ||
3157 (channel->hw_value != curr_channel->hw_value) ||
3158 (channel->center_freq != curr_channel->center_freq)) {
3159 /* Reset TX power values */
3160 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3161 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3162
3163 /* Calculate the powertable */
3164 ret = ath5k_setup_channel_powertable(ah, channel,
3165 ee_mode, type);
3166 if (ret)
3167 return ret;
3168 }
3169
3170 /* Write table on hw */
3171 ath5k_write_channel_powertable(ah, ee_mode, type);
3172
3173 /* Limit max power if we have a CTL available */
3174 ath5k_get_max_ctl_power(ah, channel);
3175
3176 /* FIXME: Antenna reduction stuff */
3177
3178 /* FIXME: Limit power on turbo modes */
3179
3180 /* FIXME: TPC scale reduction */
3181
3182 /* Get surrounding channels for per-rate power table
3183 * calibration */
3184 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3185
3186 /* Setup rate power table */
3187 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3188
3189 /* Write rate power table on hw */
3190 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3191 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3192 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3193
3194 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3195 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3196 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3197
3198 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3199 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3200 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3201
3202 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3203 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3204 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3205
3206 /* FIXME: TPC support */
3207 if (ah->ah_txpower.txp_tpc) {
3208 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3209 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3210
3211 ath5k_hw_reg_write(ah,
3212 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3213 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3214 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3215 AR5K_TPC);
3216 } else {
3217 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3218 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3219 }
3220
3221 return 0;
3222 }
3223
3224 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3225 {
3226 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3227 "changing txpower to %d\n", txpower);
3228
3229 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3230 }
3231
3232 /*************\
3233 Init function
3234 \*************/
3235
3236 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3237 u8 mode, bool fast)
3238 {
3239 struct ieee80211_channel *curr_channel;
3240 int ret, i;
3241 u32 phy_tst1;
3242 ret = 0;
3243
3244 /*
3245 * Sanity check for fast flag
3246 * Don't try fast channel change when changing modulation
3247 * mode/band. We check for chip compatibility on
3248 * ath5k_hw_reset.
3249 */
3250 curr_channel = ah->ah_current_channel;
3251 if (fast && (channel->hw_value != curr_channel->hw_value))
3252 return -EINVAL;
3253
3254 /*
3255 * On fast channel change we only set the synth parameters
3256 * while PHY is running, enable calibration and skip the rest.
3257 */
3258 if (fast) {
3259 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3260 AR5K_PHY_RFBUS_REQ_REQUEST);
3261 for (i = 0; i < 100; i++) {
3262 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3263 break;
3264 udelay(5);
3265 }
3266 /* Failed */
3267 if (i >= 100)
3268 return -EIO;
3269
3270 /* Set channel and wait for synth */
3271 ret = ath5k_hw_channel(ah, channel);
3272 if (ret)
3273 return ret;
3274
3275 ath5k_hw_wait_for_synth(ah, channel);
3276 }
3277
3278 /*
3279 * Set TX power
3280 *
3281 * Note: We need to do that before we set
3282 * RF buffer settings on 5211/5212+ so that we
3283 * properly set curve indices.
3284 */
3285 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3286 ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3287 if (ret)
3288 return ret;
3289
3290 /* Write OFDM timings on 5212*/
3291 if (ah->ah_version == AR5K_AR5212 &&
3292 channel->hw_value & CHANNEL_OFDM) {
3293
3294 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3295 if (ret)
3296 return ret;
3297
3298 /* Spur info is available only from EEPROM versions
3299 * greater than 5.3, but the EEPROM routines will use
3300 * static values for older versions */
3301 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3302 ath5k_hw_set_spur_mitigation_filter(ah,
3303 channel);
3304 }
3305
3306 /* If we used fast channel switching
3307 * we are done, release RF bus and
3308 * fire up NF calibration.
3309 *
3310 * Note: Only NF calibration due to
3311 * channel change, not AGC calibration
3312 * since AGC is still running !
3313 */
3314 if (fast) {
3315 /*
3316 * Release RF Bus grant
3317 */
3318 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3319 AR5K_PHY_RFBUS_REQ_REQUEST);
3320
3321 /*
3322 * Start NF calibration
3323 */
3324 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3325 AR5K_PHY_AGCCTL_NF);
3326
3327 return ret;
3328 }
3329
3330 /*
3331 * For 5210 we do all initialization using
3332 * initvals, so we don't have to modify
3333 * any settings (5210 also only supports
3334 * a/aturbo modes)
3335 */
3336 if (ah->ah_version != AR5K_AR5210) {
3337
3338 /*
3339 * Write initial RF gain settings
3340 * This should work for both 5111/5112
3341 */
3342 ret = ath5k_hw_rfgain_init(ah, channel->band);
3343 if (ret)
3344 return ret;
3345
3346 mdelay(1);
3347
3348 /*
3349 * Write RF buffer
3350 */
3351 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3352 if (ret)
3353 return ret;
3354
3355 /*Enable/disable 802.11b mode on 5111
3356 (enable 2111 frequency converter + CCK)*/
3357 if (ah->ah_radio == AR5K_RF5111) {
3358 if (mode == AR5K_MODE_11B)
3359 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3360 AR5K_TXCFG_B_MODE);
3361 else
3362 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3363 AR5K_TXCFG_B_MODE);
3364 }
3365
3366 } else if (ah->ah_version == AR5K_AR5210) {
3367 mdelay(1);
3368 /* Disable phy and wait */
3369 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3370 mdelay(1);
3371 }
3372
3373 /* Set channel on PHY */
3374 ret = ath5k_hw_channel(ah, channel);
3375 if (ret)
3376 return ret;
3377
3378 /*
3379 * Enable the PHY and wait until completion
3380 * This includes BaseBand and Synthesizer
3381 * activation.
3382 */
3383 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3384
3385 ath5k_hw_wait_for_synth(ah, channel);
3386
3387 /*
3388 * Perform ADC test to see if baseband is ready
3389 * Set tx hold and check adc test register
3390 */
3391 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3392 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3393 for (i = 0; i <= 20; i++) {
3394 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3395 break;
3396 udelay(200);
3397 }
3398 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3399
3400 /*
3401 * Start automatic gain control calibration
3402 *
3403 * During AGC calibration RX path is re-routed to
3404 * a power detector so we don't receive anything.
3405 *
3406 * This method is used to calibrate some static offsets
3407 * used together with on-the fly I/Q calibration (the
3408 * one performed via ath5k_hw_phy_calibrate), which doesn't
3409 * interrupt rx path.
3410 *
3411 * While rx path is re-routed to the power detector we also
3412 * start a noise floor calibration to measure the
3413 * card's noise floor (the noise we measure when we are not
3414 * transmitting or receiving anything).
3415 *
3416 * If we are in a noisy environment, AGC calibration may time
3417 * out and/or noise floor calibration might timeout.
3418 */
3419 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3420 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3421
3422 /* At the same time start I/Q calibration for QAM constellation
3423 * -no need for CCK- */
3424 ah->ah_calibration = false;
3425 if (!(mode == AR5K_MODE_11B)) {
3426 ah->ah_calibration = true;
3427 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3428 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3429 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3430 AR5K_PHY_IQ_RUN);
3431 }
3432
3433 /* Wait for gain calibration to finish (we check for I/Q calibration
3434 * during ath5k_phy_calibrate) */
3435 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3436 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3437 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3438 channel->center_freq);
3439 }
3440
3441 /* Restore antenna mode */
3442 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3443
3444 return ret;
3445 }