Merge branch 'master' into for-davem
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wimax / i2400m / rx.c
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
43 *
44 * This handles the RX path.
45 *
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
49 *
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
54 *
55 * PROTOCOL FORMAT
56 *
57 * The format of the buffer is:
58 *
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
68 *
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
71 *
72 * DATA PACKETS
73 *
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
76 *
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
81 *
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
84 *
85 * DATA RX REORDERING
86 *
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
91 *
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
96 *
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
100 *
101 * - reset queue: send all queued packets to the OS
102 *
103 * - queue: queue a packet
104 *
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
107 *
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
110 *
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
113 *
114 * See the i2400m_roq_*() functions for details.
115 *
116 * ROADMAP
117 *
118 * i2400m_rx
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
121 * i2400m_rx_payload
122 * i2400m_net_rx
123 * i2400m_rx_edata
124 * i2400m_net_erx
125 * i2400m_roq_reset
126 * i2400m_net_erx
127 * i2400m_roq_queue
128 * __i2400m_roq_queue
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
131 * i2400m_net_erx
132 * i2400m_roq_queue_update_ws
133 * __i2400m_roq_queue
134 * __i2400m_roq_update_ws
135 * i2400m_net_erx
136 * i2400m_rx_ctl
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
139 * i2400m_report_hook
140 * wimax_msg_to_user
141 * i2400m_rx_ctl_ack
142 * wimax_msg_to_user_alloc
143 * i2400m_rx_trace
144 * i2400m_msg_size_check
145 * wimax_msg
146 */
147 #include <linux/slab.h>
148 #include <linux/kernel.h>
149 #include <linux/if_arp.h>
150 #include <linux/netdevice.h>
151 #include <linux/workqueue.h>
152 #include "i2400m.h"
153
154
155 #define D_SUBMODULE rx
156 #include "debug-levels.h"
157
158 struct i2400m_report_hook_args {
159 struct sk_buff *skb_rx;
160 const struct i2400m_l3l4_hdr *l3l4_hdr;
161 size_t size;
162 struct list_head list_node;
163 };
164
165
166 /*
167 * Execute i2400m_report_hook in a workqueue
168 *
169 * Goes over the list of queued reports in i2400m->rx_reports and
170 * processes them.
171 *
172 * NOTE: refcounts on i2400m are not needed because we flush the
173 * workqueue this runs on (i2400m->work_queue) before destroying
174 * i2400m.
175 */
176 void i2400m_report_hook_work(struct work_struct *ws)
177 {
178 struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
179 struct device *dev = i2400m_dev(i2400m);
180 struct i2400m_report_hook_args *args, *args_next;
181 LIST_HEAD(list);
182 unsigned long flags;
183
184 while (1) {
185 spin_lock_irqsave(&i2400m->rx_lock, flags);
186 list_splice_init(&i2400m->rx_reports, &list);
187 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
188 if (list_empty(&list))
189 break;
190 else
191 d_printf(1, dev, "processing queued reports\n");
192 list_for_each_entry_safe(args, args_next, &list, list_node) {
193 d_printf(2, dev, "processing queued report %p\n", args);
194 i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
195 kfree_skb(args->skb_rx);
196 list_del(&args->list_node);
197 kfree(args);
198 }
199 }
200 }
201
202
203 /*
204 * Flush the list of queued reports
205 */
206 static
207 void i2400m_report_hook_flush(struct i2400m *i2400m)
208 {
209 struct device *dev = i2400m_dev(i2400m);
210 struct i2400m_report_hook_args *args, *args_next;
211 LIST_HEAD(list);
212 unsigned long flags;
213
214 d_printf(1, dev, "flushing queued reports\n");
215 spin_lock_irqsave(&i2400m->rx_lock, flags);
216 list_splice_init(&i2400m->rx_reports, &list);
217 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
218 list_for_each_entry_safe(args, args_next, &list, list_node) {
219 d_printf(2, dev, "flushing queued report %p\n", args);
220 kfree_skb(args->skb_rx);
221 list_del(&args->list_node);
222 kfree(args);
223 }
224 }
225
226
227 /*
228 * Queue a report for later processing
229 *
230 * @i2400m: device descriptor
231 * @skb_rx: skb that contains the payload (for reference counting)
232 * @l3l4_hdr: pointer to the control
233 * @size: size of the message
234 */
235 static
236 void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
237 const void *l3l4_hdr, size_t size)
238 {
239 struct device *dev = i2400m_dev(i2400m);
240 unsigned long flags;
241 struct i2400m_report_hook_args *args;
242
243 args = kzalloc(sizeof(*args), GFP_NOIO);
244 if (args) {
245 args->skb_rx = skb_get(skb_rx);
246 args->l3l4_hdr = l3l4_hdr;
247 args->size = size;
248 spin_lock_irqsave(&i2400m->rx_lock, flags);
249 list_add_tail(&args->list_node, &i2400m->rx_reports);
250 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
251 d_printf(2, dev, "queued report %p\n", args);
252 rmb(); /* see i2400m->ready's documentation */
253 if (likely(i2400m->ready)) /* only send if up */
254 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
255 } else {
256 if (printk_ratelimit())
257 dev_err(dev, "%s:%u: Can't allocate %zu B\n",
258 __func__, __LINE__, sizeof(*args));
259 }
260 }
261
262
263 /*
264 * Process an ack to a command
265 *
266 * @i2400m: device descriptor
267 * @payload: pointer to message
268 * @size: size of the message
269 *
270 * Pass the acknodledgment (in an skb) to the thread that is waiting
271 * for it in i2400m->msg_completion.
272 *
273 * We need to coordinate properly with the thread waiting for the
274 * ack. Check if it is waiting or if it is gone. We loose the spinlock
275 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
276 * but this is not so speed critical).
277 */
278 static
279 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
280 const void *payload, size_t size)
281 {
282 struct device *dev = i2400m_dev(i2400m);
283 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
284 unsigned long flags;
285 struct sk_buff *ack_skb;
286
287 /* Anyone waiting for an answer? */
288 spin_lock_irqsave(&i2400m->rx_lock, flags);
289 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
290 dev_err(dev, "Huh? reply to command with no waiters\n");
291 goto error_no_waiter;
292 }
293 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
294
295 ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
296
297 /* Check waiter didn't time out waiting for the answer... */
298 spin_lock_irqsave(&i2400m->rx_lock, flags);
299 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
300 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
301 goto error_waiter_cancelled;
302 }
303 if (ack_skb == NULL) {
304 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
305 i2400m->ack_skb = ERR_PTR(-ENOMEM);
306 } else
307 i2400m->ack_skb = ack_skb;
308 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
309 complete(&i2400m->msg_completion);
310 return;
311
312 error_waiter_cancelled:
313 kfree_skb(ack_skb);
314 error_no_waiter:
315 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
316 return;
317 }
318
319
320 /*
321 * Receive and process a control payload
322 *
323 * @i2400m: device descriptor
324 * @skb_rx: skb that contains the payload (for reference counting)
325 * @payload: pointer to message
326 * @size: size of the message
327 *
328 * There are two types of control RX messages: reports (asynchronous,
329 * like your every day interrupts) and 'acks' (reponses to a command,
330 * get or set request).
331 *
332 * If it is a report, we run hooks on it (to extract information for
333 * things we need to do in the driver) and then pass it over to the
334 * WiMAX stack to send it to user space.
335 *
336 * NOTE: report processing is done in a workqueue specific to the
337 * generic driver, to avoid deadlocks in the system.
338 *
339 * If it is not a report, it is an ack to a previously executed
340 * command, set or get, so wake up whoever is waiting for it from
341 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
342 *
343 * Note that the sizes we pass to other functions from here are the
344 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
345 * verified in _msg_size_check() that they are congruent.
346 *
347 * For reports: We can't clone the original skb where the data is
348 * because we need to send this up via netlink; netlink has to add
349 * headers and we can't overwrite what's preceeding the payload...as
350 * it is another message. So we just dup them.
351 */
352 static
353 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
354 const void *payload, size_t size)
355 {
356 int result;
357 struct device *dev = i2400m_dev(i2400m);
358 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
359 unsigned msg_type;
360
361 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
362 if (result < 0) {
363 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
364 result);
365 goto error_check;
366 }
367 msg_type = le16_to_cpu(l3l4_hdr->type);
368 d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
369 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
370 msg_type, size);
371 d_dump(2, dev, l3l4_hdr, size);
372 if (msg_type & I2400M_MT_REPORT_MASK) {
373 /*
374 * Process each report
375 *
376 * - has to be ran serialized as well
377 *
378 * - the handling might force the execution of
379 * commands. That might cause reentrancy issues with
380 * bus-specific subdrivers and workqueues, so the we
381 * run it in a separate workqueue.
382 *
383 * - when the driver is not yet ready to handle them,
384 * they are queued and at some point the queue is
385 * restarted [NOTE: we can't queue SKBs directly, as
386 * this might be a piece of a SKB, not the whole
387 * thing, and this is cheaper than cloning the
388 * SKB].
389 *
390 * Note we don't do refcounting for the device
391 * structure; this is because before destroying
392 * 'i2400m', we make sure to flush the
393 * i2400m->work_queue, so there are no issues.
394 */
395 i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
396 if (unlikely(i2400m->trace_msg_from_user))
397 wimax_msg(&i2400m->wimax_dev, "echo",
398 l3l4_hdr, size, GFP_KERNEL);
399 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
400 GFP_KERNEL);
401 if (result < 0)
402 dev_err(dev, "error sending report to userspace: %d\n",
403 result);
404 } else /* an ack to a CMD, GET or SET */
405 i2400m_rx_ctl_ack(i2400m, payload, size);
406 error_check:
407 return;
408 }
409
410
411 /*
412 * Receive and send up a trace
413 *
414 * @i2400m: device descriptor
415 * @skb_rx: skb that contains the trace (for reference counting)
416 * @payload: pointer to trace message inside the skb
417 * @size: size of the message
418 *
419 * THe i2400m might produce trace information (diagnostics) and we
420 * send them through a different kernel-to-user pipe (to avoid
421 * clogging it).
422 *
423 * As in i2400m_rx_ctl(), we can't clone the original skb where the
424 * data is because we need to send this up via netlink; netlink has to
425 * add headers and we can't overwrite what's preceeding the
426 * payload...as it is another message. So we just dup them.
427 */
428 static
429 void i2400m_rx_trace(struct i2400m *i2400m,
430 const void *payload, size_t size)
431 {
432 int result;
433 struct device *dev = i2400m_dev(i2400m);
434 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
435 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
436 unsigned msg_type;
437
438 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
439 if (result < 0) {
440 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
441 result);
442 goto error_check;
443 }
444 msg_type = le16_to_cpu(l3l4_hdr->type);
445 d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
446 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
447 msg_type, size);
448 d_dump(2, dev, l3l4_hdr, size);
449 result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
450 if (result < 0)
451 dev_err(dev, "error sending trace to userspace: %d\n",
452 result);
453 error_check:
454 return;
455 }
456
457
458 /*
459 * Reorder queue data stored on skb->cb while the skb is queued in the
460 * reorder queues.
461 */
462 struct i2400m_roq_data {
463 unsigned sn; /* Serial number for the skb */
464 enum i2400m_cs cs; /* packet type for the skb */
465 };
466
467
468 /*
469 * ReOrder Queue
470 *
471 * @ws: Window Start; sequence number where the current window start
472 * is for this queue
473 * @queue: the skb queue itself
474 * @log: circular ring buffer used to log information about the
475 * reorder process in this queue that can be displayed in case of
476 * error to help diagnose it.
477 *
478 * This is the head for a list of skbs. In the skb->cb member of the
479 * skb when queued here contains a 'struct i2400m_roq_data' were we
480 * store the sequence number (sn) and the cs (packet type) coming from
481 * the RX payload header from the device.
482 */
483 struct i2400m_roq
484 {
485 unsigned ws;
486 struct sk_buff_head queue;
487 struct i2400m_roq_log *log;
488 };
489
490
491 static
492 void __i2400m_roq_init(struct i2400m_roq *roq)
493 {
494 roq->ws = 0;
495 skb_queue_head_init(&roq->queue);
496 }
497
498
499 static
500 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
501 {
502 return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
503 / sizeof(*roq);
504 }
505
506
507 /*
508 * Normalize a sequence number based on the queue's window start
509 *
510 * nsn = (sn - ws) % 2048
511 *
512 * Note that if @sn < @roq->ws, we still need a positive number; %'s
513 * sign is implementation specific, so we normalize it by adding 2048
514 * to bring it to be positive.
515 */
516 static
517 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
518 {
519 int r;
520 r = ((int) sn - (int) roq->ws) % 2048;
521 if (r < 0)
522 r += 2048;
523 return r;
524 }
525
526
527 /*
528 * Circular buffer to keep the last N reorder operations
529 *
530 * In case something fails, dumb then to try to come up with what
531 * happened.
532 */
533 enum {
534 I2400M_ROQ_LOG_LENGTH = 32,
535 };
536
537 struct i2400m_roq_log {
538 struct i2400m_roq_log_entry {
539 enum i2400m_ro_type type;
540 unsigned ws, count, sn, nsn, new_ws;
541 } entry[I2400M_ROQ_LOG_LENGTH];
542 unsigned in, out;
543 };
544
545
546 /* Print a log entry */
547 static
548 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
549 unsigned e_index,
550 struct i2400m_roq_log_entry *e)
551 {
552 struct device *dev = i2400m_dev(i2400m);
553
554 switch(e->type) {
555 case I2400M_RO_TYPE_RESET:
556 dev_err(dev, "q#%d reset ws %u cnt %u sn %u/%u"
557 " - new nws %u\n",
558 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
559 break;
560 case I2400M_RO_TYPE_PACKET:
561 dev_err(dev, "q#%d queue ws %u cnt %u sn %u/%u\n",
562 index, e->ws, e->count, e->sn, e->nsn);
563 break;
564 case I2400M_RO_TYPE_WS:
565 dev_err(dev, "q#%d update_ws ws %u cnt %u sn %u/%u"
566 " - new nws %u\n",
567 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
568 break;
569 case I2400M_RO_TYPE_PACKET_WS:
570 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
571 " - new nws %u\n",
572 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
573 break;
574 default:
575 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
576 index, e_index, e->type);
577 break;
578 }
579 }
580
581
582 static
583 void i2400m_roq_log_add(struct i2400m *i2400m,
584 struct i2400m_roq *roq, enum i2400m_ro_type type,
585 unsigned ws, unsigned count, unsigned sn,
586 unsigned nsn, unsigned new_ws)
587 {
588 struct i2400m_roq_log_entry *e;
589 unsigned cnt_idx;
590 int index = __i2400m_roq_index(i2400m, roq);
591
592 /* if we run out of space, we eat from the end */
593 if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
594 roq->log->out++;
595 cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
596 e = &roq->log->entry[cnt_idx];
597
598 e->type = type;
599 e->ws = ws;
600 e->count = count;
601 e->sn = sn;
602 e->nsn = nsn;
603 e->new_ws = new_ws;
604
605 if (d_test(1))
606 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
607 }
608
609
610 /* Dump all the entries in the FIFO and reinitialize it */
611 static
612 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
613 {
614 unsigned cnt, cnt_idx;
615 struct i2400m_roq_log_entry *e;
616 int index = __i2400m_roq_index(i2400m, roq);
617
618 BUG_ON(roq->log->out > roq->log->in);
619 for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
620 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
621 e = &roq->log->entry[cnt_idx];
622 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
623 memset(e, 0, sizeof(*e));
624 }
625 roq->log->in = roq->log->out = 0;
626 }
627
628
629 /*
630 * Backbone for the queuing of an skb (by normalized sequence number)
631 *
632 * @i2400m: device descriptor
633 * @roq: reorder queue where to add
634 * @skb: the skb to add
635 * @sn: the sequence number of the skb
636 * @nsn: the normalized sequence number of the skb (pre-computed by the
637 * caller from the @sn and @roq->ws).
638 *
639 * We try first a couple of quick cases:
640 *
641 * - the queue is empty
642 * - the skb would be appended to the queue
643 *
644 * These will be the most common operations.
645 *
646 * If these fail, then we have to do a sorted insertion in the queue,
647 * which is the slowest path.
648 *
649 * We don't have to acquire a reference count as we are going to own it.
650 */
651 static
652 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
653 struct sk_buff *skb, unsigned sn, unsigned nsn)
654 {
655 struct device *dev = i2400m_dev(i2400m);
656 struct sk_buff *skb_itr;
657 struct i2400m_roq_data *roq_data_itr, *roq_data;
658 unsigned nsn_itr;
659
660 d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
661 i2400m, roq, skb, sn, nsn);
662
663 roq_data = (struct i2400m_roq_data *) &skb->cb;
664 BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
665 roq_data->sn = sn;
666 d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
667 roq, roq->ws, nsn, roq_data->sn);
668
669 /* Queues will be empty on not-so-bad environments, so try
670 * that first */
671 if (skb_queue_empty(&roq->queue)) {
672 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
673 __skb_queue_head(&roq->queue, skb);
674 goto out;
675 }
676 /* Now try append, as most of the operations will be that */
677 skb_itr = skb_peek_tail(&roq->queue);
678 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
679 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
680 /* NSN bounds assumed correct (checked when it was queued) */
681 if (nsn >= nsn_itr) {
682 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
683 roq, skb_itr, nsn_itr, roq_data_itr->sn);
684 __skb_queue_tail(&roq->queue, skb);
685 goto out;
686 }
687 /* None of the fast paths option worked. Iterate to find the
688 * right spot where to insert the packet; we know the queue is
689 * not empty, so we are not the first ones; we also know we
690 * are not going to be the last ones. The list is sorted, so
691 * we have to insert before the the first guy with an nsn_itr
692 * greater that our nsn. */
693 skb_queue_walk(&roq->queue, skb_itr) {
694 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
695 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
696 /* NSN bounds assumed correct (checked when it was queued) */
697 if (nsn_itr > nsn) {
698 d_printf(2, dev, "ERX: roq %p - queued before %p "
699 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
700 roq_data_itr->sn);
701 __skb_queue_before(&roq->queue, skb_itr, skb);
702 goto out;
703 }
704 }
705 /* If we get here, that is VERY bad -- print info to help
706 * diagnose and crash it */
707 dev_err(dev, "SW BUG? failed to insert packet\n");
708 dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
709 roq, roq->ws, skb, nsn, roq_data->sn);
710 skb_queue_walk(&roq->queue, skb_itr) {
711 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
712 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
713 /* NSN bounds assumed correct (checked when it was queued) */
714 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
715 roq, skb_itr, nsn_itr, roq_data_itr->sn);
716 }
717 BUG();
718 out:
719 d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
720 i2400m, roq, skb, sn, nsn);
721 return;
722 }
723
724
725 /*
726 * Backbone for the update window start operation
727 *
728 * @i2400m: device descriptor
729 * @roq: Reorder queue
730 * @sn: New sequence number
731 *
732 * Updates the window start of a queue; when doing so, it must deliver
733 * to the networking stack all the queued skb's whose normalized
734 * sequence number is lower than the new normalized window start.
735 */
736 static
737 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
738 unsigned sn)
739 {
740 struct device *dev = i2400m_dev(i2400m);
741 struct sk_buff *skb_itr, *tmp_itr;
742 struct i2400m_roq_data *roq_data_itr;
743 unsigned new_nws, nsn_itr;
744
745 new_nws = __i2400m_roq_nsn(roq, sn);
746 if (unlikely(new_nws >= 1024) && d_test(1)) {
747 dev_err(dev, "SW BUG? __update_ws new_nws %u (sn %u ws %u)\n",
748 new_nws, sn, roq->ws);
749 WARN_ON(1);
750 i2400m_roq_log_dump(i2400m, roq);
751 }
752 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
753 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
754 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
755 /* NSN bounds assumed correct (checked when it was queued) */
756 if (nsn_itr < new_nws) {
757 d_printf(2, dev, "ERX: roq %p - release skb %p "
758 "(nsn %u/%u new nws %u)\n",
759 roq, skb_itr, nsn_itr, roq_data_itr->sn,
760 new_nws);
761 __skb_unlink(skb_itr, &roq->queue);
762 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
763 }
764 else
765 break; /* rest of packets all nsn_itr > nws */
766 }
767 roq->ws = sn;
768 return new_nws;
769 }
770
771
772 /*
773 * Reset a queue
774 *
775 * @i2400m: device descriptor
776 * @cin: Queue Index
777 *
778 * Deliver all the packets and reset the window-start to zero. Name is
779 * kind of misleading.
780 */
781 static
782 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
783 {
784 struct device *dev = i2400m_dev(i2400m);
785 struct sk_buff *skb_itr, *tmp_itr;
786 struct i2400m_roq_data *roq_data_itr;
787
788 d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
789 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
790 roq->ws, skb_queue_len(&roq->queue),
791 ~0, ~0, 0);
792 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
793 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
794 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
795 roq, skb_itr, roq_data_itr->sn);
796 __skb_unlink(skb_itr, &roq->queue);
797 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
798 }
799 roq->ws = 0;
800 d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
801 return;
802 }
803
804
805 /*
806 * Queue a packet
807 *
808 * @i2400m: device descriptor
809 * @cin: Queue Index
810 * @skb: containing the packet data
811 * @fbn: First block number of the packet in @skb
812 * @lbn: Last block number of the packet in @skb
813 *
814 * The hardware is asking the driver to queue a packet for later
815 * delivery to the networking stack.
816 */
817 static
818 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
819 struct sk_buff * skb, unsigned lbn)
820 {
821 struct device *dev = i2400m_dev(i2400m);
822 unsigned nsn, len;
823
824 d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
825 i2400m, roq, skb, lbn);
826 len = skb_queue_len(&roq->queue);
827 nsn = __i2400m_roq_nsn(roq, lbn);
828 if (unlikely(nsn >= 1024)) {
829 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
830 nsn, lbn, roq->ws);
831 i2400m_roq_log_dump(i2400m, roq);
832 i2400m_reset(i2400m, I2400M_RT_WARM);
833 } else {
834 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
835 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
836 roq->ws, len, lbn, nsn, ~0);
837 }
838 d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
839 i2400m, roq, skb, lbn);
840 return;
841 }
842
843
844 /*
845 * Update the window start in a reorder queue and deliver all skbs
846 * with a lower window start
847 *
848 * @i2400m: device descriptor
849 * @roq: Reorder queue
850 * @sn: New sequence number
851 */
852 static
853 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
854 unsigned sn)
855 {
856 struct device *dev = i2400m_dev(i2400m);
857 unsigned old_ws, nsn, len;
858
859 d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
860 old_ws = roq->ws;
861 len = skb_queue_len(&roq->queue);
862 nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
863 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
864 old_ws, len, sn, nsn, roq->ws);
865 d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
866 return;
867 }
868
869
870 /*
871 * Queue a packet and update the window start
872 *
873 * @i2400m: device descriptor
874 * @cin: Queue Index
875 * @skb: containing the packet data
876 * @fbn: First block number of the packet in @skb
877 * @sn: Last block number of the packet in @skb
878 *
879 * Note that unlike i2400m_roq_update_ws(), which sets the new window
880 * start to @sn, in here we'll set it to @sn + 1.
881 */
882 static
883 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
884 struct sk_buff * skb, unsigned sn)
885 {
886 struct device *dev = i2400m_dev(i2400m);
887 unsigned nsn, old_ws, len;
888
889 d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
890 i2400m, roq, skb, sn);
891 len = skb_queue_len(&roq->queue);
892 nsn = __i2400m_roq_nsn(roq, sn);
893 old_ws = roq->ws;
894 if (unlikely(nsn >= 1024)) {
895 dev_err(dev, "SW BUG? queue_update_ws nsn %u (sn %u ws %u)\n",
896 nsn, sn, roq->ws);
897 i2400m_roq_log_dump(i2400m, roq);
898 i2400m_reset(i2400m, I2400M_RT_WARM);
899 } else {
900 /* if the queue is empty, don't bother as we'd queue
901 * it and inmediately unqueue it -- just deliver it */
902 if (len == 0) {
903 struct i2400m_roq_data *roq_data;
904 roq_data = (struct i2400m_roq_data *) &skb->cb;
905 i2400m_net_erx(i2400m, skb, roq_data->cs);
906 }
907 else
908 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
909 __i2400m_roq_update_ws(i2400m, roq, sn + 1);
910 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
911 old_ws, len, sn, nsn, roq->ws);
912 }
913 d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
914 i2400m, roq, skb, sn);
915 return;
916 }
917
918
919 /*
920 * Receive and send up an extended data packet
921 *
922 * @i2400m: device descriptor
923 * @skb_rx: skb that contains the extended data packet
924 * @single_last: 1 if the payload is the only one or the last one of
925 * the skb.
926 * @payload: pointer to the packet's data inside the skb
927 * @size: size of the payload
928 *
929 * Starting in v1.4 of the i2400m's firmware, the device can send data
930 * packets to the host in an extended format that; this incudes a 16
931 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
932 * we can fake ethernet headers for ethernet device emulation without
933 * having to copy packets around.
934 *
935 * This function handles said path.
936 *
937 *
938 * Receive and send up an extended data packet that requires no reordering
939 *
940 * @i2400m: device descriptor
941 * @skb_rx: skb that contains the extended data packet
942 * @single_last: 1 if the payload is the only one or the last one of
943 * the skb.
944 * @payload: pointer to the packet's data (past the actual extended
945 * data payload header).
946 * @size: size of the payload
947 *
948 * Pass over to the networking stack a data packet that might have
949 * reordering requirements.
950 *
951 * This needs to the decide if the skb in which the packet is
952 * contained can be reused or if it needs to be cloned. Then it has to
953 * be trimmed in the edges so that the beginning is the space for eth
954 * header and then pass it to i2400m_net_erx() for the stack
955 *
956 * Assumes the caller has verified the sanity of the payload (size,
957 * etc) already.
958 */
959 static
960 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
961 unsigned single_last, const void *payload, size_t size)
962 {
963 struct device *dev = i2400m_dev(i2400m);
964 const struct i2400m_pl_edata_hdr *hdr = payload;
965 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
966 struct sk_buff *skb;
967 enum i2400m_cs cs;
968 u32 reorder;
969 unsigned ro_needed, ro_type, ro_cin, ro_sn;
970 struct i2400m_roq *roq;
971 struct i2400m_roq_data *roq_data;
972
973 BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
974
975 d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
976 "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
977 if (size < sizeof(*hdr)) {
978 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
979 "vs %zu bytes expected)\n", size, sizeof(*hdr));
980 goto error;
981 }
982
983 if (single_last) {
984 skb = skb_get(skb_rx);
985 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
986 } else {
987 skb = skb_clone(skb_rx, GFP_KERNEL);
988 if (skb == NULL) {
989 dev_err(dev, "ERX: no memory to clone skb\n");
990 net_dev->stats.rx_dropped++;
991 goto error_skb_clone;
992 }
993 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
994 }
995 /* now we have to pull and trim so that the skb points to the
996 * beginning of the IP packet; the netdev part will add the
997 * ethernet header as needed - we know there is enough space
998 * because we checked in i2400m_rx_edata(). */
999 skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1000 skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1001
1002 reorder = le32_to_cpu(hdr->reorder);
1003 ro_needed = reorder & I2400M_RO_NEEDED;
1004 cs = hdr->cs;
1005 if (ro_needed) {
1006 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1007 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1008 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1009
1010 roq = &i2400m->rx_roq[ro_cin];
1011 roq_data = (struct i2400m_roq_data *) &skb->cb;
1012 roq_data->sn = ro_sn;
1013 roq_data->cs = cs;
1014 d_printf(2, dev, "ERX: reorder needed: "
1015 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1016 ro_type, ro_cin, roq->ws, ro_sn,
1017 __i2400m_roq_nsn(roq, ro_sn), size);
1018 d_dump(2, dev, payload, size);
1019 switch(ro_type) {
1020 case I2400M_RO_TYPE_RESET:
1021 i2400m_roq_reset(i2400m, roq);
1022 kfree_skb(skb); /* no data here */
1023 break;
1024 case I2400M_RO_TYPE_PACKET:
1025 i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1026 break;
1027 case I2400M_RO_TYPE_WS:
1028 i2400m_roq_update_ws(i2400m, roq, ro_sn);
1029 kfree_skb(skb); /* no data here */
1030 break;
1031 case I2400M_RO_TYPE_PACKET_WS:
1032 i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1033 break;
1034 default:
1035 dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1036 }
1037 }
1038 else
1039 i2400m_net_erx(i2400m, skb, cs);
1040 error_skb_clone:
1041 error:
1042 d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1043 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1044 return;
1045 }
1046
1047
1048 /*
1049 * Act on a received payload
1050 *
1051 * @i2400m: device instance
1052 * @skb_rx: skb where the transaction was received
1053 * @single_last: 1 this is the only payload or the last one (so the
1054 * skb can be reused instead of cloned).
1055 * @pld: payload descriptor
1056 * @payload: payload data
1057 *
1058 * Upon reception of a payload, look at its guts in the payload
1059 * descriptor and decide what to do with it. If it is a single payload
1060 * skb or if the last skb is a data packet, the skb will be referenced
1061 * and modified (so it doesn't have to be cloned).
1062 */
1063 static
1064 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1065 unsigned single_last, const struct i2400m_pld *pld,
1066 const void *payload)
1067 {
1068 struct device *dev = i2400m_dev(i2400m);
1069 size_t pl_size = i2400m_pld_size(pld);
1070 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1071
1072 d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1073 pl_type, pl_size);
1074 d_dump(8, dev, payload, pl_size);
1075
1076 switch (pl_type) {
1077 case I2400M_PT_DATA:
1078 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1079 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1080 break;
1081 case I2400M_PT_CTRL:
1082 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1083 break;
1084 case I2400M_PT_TRACE:
1085 i2400m_rx_trace(i2400m, payload, pl_size);
1086 break;
1087 case I2400M_PT_EDATA:
1088 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1089 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1090 break;
1091 default: /* Anything else shouldn't come to the host */
1092 if (printk_ratelimit())
1093 dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1094 pl_type);
1095 }
1096 }
1097
1098
1099 /*
1100 * Check a received transaction's message header
1101 *
1102 * @i2400m: device descriptor
1103 * @msg_hdr: message header
1104 * @buf_size: size of the received buffer
1105 *
1106 * Check that the declarations done by a RX buffer message header are
1107 * sane and consistent with the amount of data that was received.
1108 */
1109 static
1110 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1111 const struct i2400m_msg_hdr *msg_hdr,
1112 size_t buf_size)
1113 {
1114 int result = -EIO;
1115 struct device *dev = i2400m_dev(i2400m);
1116 if (buf_size < sizeof(*msg_hdr)) {
1117 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1118 "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1119 goto error;
1120 }
1121 if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1122 dev_err(dev, "RX: HW BUG? message received with unknown "
1123 "barker 0x%08x (buf_size %zu bytes)\n",
1124 le32_to_cpu(msg_hdr->barker), buf_size);
1125 goto error;
1126 }
1127 if (msg_hdr->num_pls == 0) {
1128 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1129 goto error;
1130 }
1131 if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1132 dev_err(dev, "RX: HW BUG? message contains more payload "
1133 "than maximum; ignoring.\n");
1134 goto error;
1135 }
1136 result = 0;
1137 error:
1138 return result;
1139 }
1140
1141
1142 /*
1143 * Check a payload descriptor against the received data
1144 *
1145 * @i2400m: device descriptor
1146 * @pld: payload descriptor
1147 * @pl_itr: offset (in bytes) in the received buffer the payload is
1148 * located
1149 * @buf_size: size of the received buffer
1150 *
1151 * Given a payload descriptor (part of a RX buffer), check it is sane
1152 * and that the data it declares fits in the buffer.
1153 */
1154 static
1155 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1156 const struct i2400m_pld *pld,
1157 size_t pl_itr, size_t buf_size)
1158 {
1159 int result = -EIO;
1160 struct device *dev = i2400m_dev(i2400m);
1161 size_t pl_size = i2400m_pld_size(pld);
1162 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1163
1164 if (pl_size > i2400m->bus_pl_size_max) {
1165 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1166 "bigger than maximum %zu; ignoring message\n",
1167 pl_itr, pl_size, i2400m->bus_pl_size_max);
1168 goto error;
1169 }
1170 if (pl_itr + pl_size > buf_size) { /* enough? */
1171 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1172 "goes beyond the received buffer "
1173 "size (%zu bytes); ignoring message\n",
1174 pl_itr, pl_size, buf_size);
1175 goto error;
1176 }
1177 if (pl_type >= I2400M_PT_ILLEGAL) {
1178 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1179 "ignoring message\n", pl_type);
1180 goto error;
1181 }
1182 result = 0;
1183 error:
1184 return result;
1185 }
1186
1187
1188 /**
1189 * i2400m_rx - Receive a buffer of data from the device
1190 *
1191 * @i2400m: device descriptor
1192 * @skb: skbuff where the data has been received
1193 *
1194 * Parse in a buffer of data that contains an RX message sent from the
1195 * device. See the file header for the format. Run all checks on the
1196 * buffer header, then run over each payload's descriptors, verify
1197 * their consistency and act on each payload's contents. If
1198 * everything is successful, update the device's statistics.
1199 *
1200 * Note: You need to set the skb to contain only the length of the
1201 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1202 *
1203 * Returns:
1204 *
1205 * 0 if ok, < 0 errno on error
1206 *
1207 * If ok, this function owns now the skb and the caller DOESN'T have
1208 * to run kfree_skb() on it. However, on error, the caller still owns
1209 * the skb and it is responsible for releasing it.
1210 */
1211 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1212 {
1213 int i, result;
1214 struct device *dev = i2400m_dev(i2400m);
1215 const struct i2400m_msg_hdr *msg_hdr;
1216 size_t pl_itr, pl_size, skb_len;
1217 unsigned long flags;
1218 unsigned num_pls, single_last;
1219
1220 skb_len = skb->len;
1221 d_fnstart(4, dev, "(i2400m %p skb %p [size %zu])\n",
1222 i2400m, skb, skb_len);
1223 result = -EIO;
1224 msg_hdr = (void *) skb->data;
1225 result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb->len);
1226 if (result < 0)
1227 goto error_msg_hdr_check;
1228 result = -EIO;
1229 num_pls = le16_to_cpu(msg_hdr->num_pls);
1230 pl_itr = sizeof(*msg_hdr) + /* Check payload descriptor(s) */
1231 num_pls * sizeof(msg_hdr->pld[0]);
1232 pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1233 if (pl_itr > skb->len) { /* got all the payload descriptors? */
1234 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1235 "%u payload descriptors (%zu each, total %zu)\n",
1236 skb->len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1237 goto error_pl_descr_short;
1238 }
1239 /* Walk each payload payload--check we really got it */
1240 for (i = 0; i < num_pls; i++) {
1241 /* work around old gcc warnings */
1242 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1243 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1244 pl_itr, skb->len);
1245 if (result < 0)
1246 goto error_pl_descr_check;
1247 single_last = num_pls == 1 || i == num_pls - 1;
1248 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1249 skb->data + pl_itr);
1250 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1251 cond_resched(); /* Don't monopolize */
1252 }
1253 kfree_skb(skb);
1254 /* Update device statistics */
1255 spin_lock_irqsave(&i2400m->rx_lock, flags);
1256 i2400m->rx_pl_num += i;
1257 if (i > i2400m->rx_pl_max)
1258 i2400m->rx_pl_max = i;
1259 if (i < i2400m->rx_pl_min)
1260 i2400m->rx_pl_min = i;
1261 i2400m->rx_num++;
1262 i2400m->rx_size_acc += skb->len;
1263 if (skb->len < i2400m->rx_size_min)
1264 i2400m->rx_size_min = skb->len;
1265 if (skb->len > i2400m->rx_size_max)
1266 i2400m->rx_size_max = skb->len;
1267 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1268 error_pl_descr_check:
1269 error_pl_descr_short:
1270 error_msg_hdr_check:
1271 d_fnend(4, dev, "(i2400m %p skb %p [size %zu]) = %d\n",
1272 i2400m, skb, skb_len, result);
1273 return result;
1274 }
1275 EXPORT_SYMBOL_GPL(i2400m_rx);
1276
1277
1278 void i2400m_unknown_barker(struct i2400m *i2400m,
1279 const void *buf, size_t size)
1280 {
1281 struct device *dev = i2400m_dev(i2400m);
1282 char prefix[64];
1283 const __le32 *barker = buf;
1284 dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1285 "dropping %zu bytes\n", le32_to_cpu(*barker), size);
1286 snprintf(prefix, sizeof(prefix), "%s %s: ",
1287 dev_driver_string(dev), dev_name(dev));
1288 if (size > 64) {
1289 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1290 8, 4, buf, 64, 0);
1291 printk(KERN_ERR "%s... (only first 64 bytes "
1292 "dumped)\n", prefix);
1293 } else
1294 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1295 8, 4, buf, size, 0);
1296 }
1297 EXPORT_SYMBOL(i2400m_unknown_barker);
1298
1299
1300 /*
1301 * Initialize the RX queue and infrastructure
1302 *
1303 * This sets up all the RX reordering infrastructures, which will not
1304 * be used if reordering is not enabled or if the firmware does not
1305 * support it. The device is told to do reordering in
1306 * i2400m_dev_initialize(), where it also looks at the value of the
1307 * i2400m->rx_reorder switch before taking a decission.
1308 *
1309 * Note we allocate the roq queues in one chunk and the actual logging
1310 * support for it (logging) in another one and then we setup the
1311 * pointers from the first to the last.
1312 */
1313 int i2400m_rx_setup(struct i2400m *i2400m)
1314 {
1315 int result = 0;
1316 struct device *dev = i2400m_dev(i2400m);
1317
1318 i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1319 if (i2400m->rx_reorder) {
1320 unsigned itr;
1321 size_t size;
1322 struct i2400m_roq_log *rd;
1323
1324 result = -ENOMEM;
1325
1326 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1327 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1328 if (i2400m->rx_roq == NULL) {
1329 dev_err(dev, "RX: cannot allocate %zu bytes for "
1330 "reorder queues\n", size);
1331 goto error_roq_alloc;
1332 }
1333
1334 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1335 rd = kzalloc(size, GFP_KERNEL);
1336 if (rd == NULL) {
1337 dev_err(dev, "RX: cannot allocate %zu bytes for "
1338 "reorder queues log areas\n", size);
1339 result = -ENOMEM;
1340 goto error_roq_log_alloc;
1341 }
1342
1343 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1344 __i2400m_roq_init(&i2400m->rx_roq[itr]);
1345 i2400m->rx_roq[itr].log = &rd[itr];
1346 }
1347 }
1348 return 0;
1349
1350 error_roq_log_alloc:
1351 kfree(i2400m->rx_roq);
1352 error_roq_alloc:
1353 return result;
1354 }
1355
1356
1357 /* Tear down the RX queue and infrastructure */
1358 void i2400m_rx_release(struct i2400m *i2400m)
1359 {
1360 if (i2400m->rx_reorder) {
1361 unsigned itr;
1362 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++)
1363 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
1364 kfree(i2400m->rx_roq[0].log);
1365 kfree(i2400m->rx_roq);
1366 }
1367 /* at this point, nothing can be received... */
1368 i2400m_report_hook_flush(i2400m);
1369 }