include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wan / farsync.c
1 /*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/ioport.h>
25 #include <linux/init.h>
26 #include <linux/if.h>
27 #include <linux/hdlc.h>
28 #include <asm/io.h>
29 #include <asm/uaccess.h>
30
31 #include "farsync.h"
32
33 /*
34 * Module info
35 */
36 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
37 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
38 MODULE_LICENSE("GPL");
39
40 /* Driver configuration and global parameters
41 * ==========================================
42 */
43
44 /* Number of ports (per card) and cards supported
45 */
46 #define FST_MAX_PORTS 4
47 #define FST_MAX_CARDS 32
48
49 /* Default parameters for the link
50 */
51 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
52 * useful */
53 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
54 * of frames on the way down to the card
55 * so that we can keep the card busy
56 * and maximise throughput
57 */
58 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
59 * network layer */
60 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
61 * control from network layer */
62 #define FST_MAX_MTU 8000 /* Huge but possible */
63 #define FST_DEF_MTU 1500 /* Common sane value */
64
65 #define FST_TX_TIMEOUT (2*HZ)
66
67 #ifdef ARPHRD_RAWHDLC
68 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
69 #else
70 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
71 #endif
72
73 /*
74 * Modules parameters and associated variables
75 */
76 static int fst_txq_low = FST_LOW_WATER_MARK;
77 static int fst_txq_high = FST_HIGH_WATER_MARK;
78 static int fst_max_reads = 7;
79 static int fst_excluded_cards = 0;
80 static int fst_excluded_list[FST_MAX_CARDS];
81
82 module_param(fst_txq_low, int, 0);
83 module_param(fst_txq_high, int, 0);
84 module_param(fst_max_reads, int, 0);
85 module_param(fst_excluded_cards, int, 0);
86 module_param_array(fst_excluded_list, int, NULL, 0);
87
88 /* Card shared memory layout
89 * =========================
90 */
91 #pragma pack(1)
92
93 /* This information is derived in part from the FarSite FarSync Smc.h
94 * file. Unfortunately various name clashes and the non-portability of the
95 * bit field declarations in that file have meant that I have chosen to
96 * recreate the information here.
97 *
98 * The SMC (Shared Memory Configuration) has a version number that is
99 * incremented every time there is a significant change. This number can
100 * be used to check that we have not got out of step with the firmware
101 * contained in the .CDE files.
102 */
103 #define SMC_VERSION 24
104
105 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
106
107 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
108 * configuration structure */
109 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
110 * buffers */
111
112 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
113 #define LEN_RX_BUFFER 8192
114
115 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
116 #define LEN_SMALL_RX_BUFFER 256
117
118 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
119 #define NUM_RX_BUFFER 8
120
121 /* Interrupt retry time in milliseconds */
122 #define INT_RETRY_TIME 2
123
124 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
125 * of buffer descriptors. The structure is almost identical to that used
126 * in the LANCE Ethernet controllers. Details available as PDF from the
127 * AMD web site: http://www.amd.com/products/epd/processors/\
128 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
129 */
130 struct txdesc { /* Transmit descriptor */
131 volatile u16 ladr; /* Low order address of packet. This is a
132 * linear address in the Am186 memory space
133 */
134 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
135 * bits must be zero
136 */
137 volatile u8 bits; /* Status and config */
138 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
139 * Transmit terminal count interrupt enable in
140 * top bit.
141 */
142 u16 unused; /* Not used in Tx */
143 };
144
145 struct rxdesc { /* Receive descriptor */
146 volatile u16 ladr; /* Low order address of packet */
147 volatile u8 hadr; /* High order address */
148 volatile u8 bits; /* Status and config */
149 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
150 * Receive terminal count interrupt enable in
151 * top bit.
152 */
153 volatile u16 mcnt; /* Message byte count (15 bits) */
154 };
155
156 /* Convert a length into the 15 bit 2's complement */
157 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
158 /* Since we need to set the high bit to enable the completion interrupt this
159 * can be made a lot simpler
160 */
161 #define cnv_bcnt(len) (-(len))
162
163 /* Status and config bits for the above */
164 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
165 #define TX_STP 0x02 /* Tx: start of packet */
166 #define TX_ENP 0x01 /* Tx: end of packet */
167 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
168 #define RX_FRAM 0x20 /* Rx: framing error */
169 #define RX_OFLO 0x10 /* Rx: overflow error */
170 #define RX_CRC 0x08 /* Rx: CRC error */
171 #define RX_HBUF 0x04 /* Rx: buffer error */
172 #define RX_STP 0x02 /* Rx: start of packet */
173 #define RX_ENP 0x01 /* Rx: end of packet */
174
175 /* Interrupts from the card are caused by various events which are presented
176 * in a circular buffer as several events may be processed on one physical int
177 */
178 #define MAX_CIRBUFF 32
179
180 struct cirbuff {
181 u8 rdindex; /* read, then increment and wrap */
182 u8 wrindex; /* write, then increment and wrap */
183 u8 evntbuff[MAX_CIRBUFF];
184 };
185
186 /* Interrupt event codes.
187 * Where appropriate the two low order bits indicate the port number
188 */
189 #define CTLA_CHG 0x18 /* Control signal changed */
190 #define CTLB_CHG 0x19
191 #define CTLC_CHG 0x1A
192 #define CTLD_CHG 0x1B
193
194 #define INIT_CPLT 0x20 /* Initialisation complete */
195 #define INIT_FAIL 0x21 /* Initialisation failed */
196
197 #define ABTA_SENT 0x24 /* Abort sent */
198 #define ABTB_SENT 0x25
199 #define ABTC_SENT 0x26
200 #define ABTD_SENT 0x27
201
202 #define TXA_UNDF 0x28 /* Transmission underflow */
203 #define TXB_UNDF 0x29
204 #define TXC_UNDF 0x2A
205 #define TXD_UNDF 0x2B
206
207 #define F56_INT 0x2C
208 #define M32_INT 0x2D
209
210 #define TE1_ALMA 0x30
211
212 /* Port physical configuration. See farsync.h for field values */
213 struct port_cfg {
214 u16 lineInterface; /* Physical interface type */
215 u8 x25op; /* Unused at present */
216 u8 internalClock; /* 1 => internal clock, 0 => external */
217 u8 transparentMode; /* 1 => on, 0 => off */
218 u8 invertClock; /* 0 => normal, 1 => inverted */
219 u8 padBytes[6]; /* Padding */
220 u32 lineSpeed; /* Speed in bps */
221 };
222
223 /* TE1 port physical configuration */
224 struct su_config {
225 u32 dataRate;
226 u8 clocking;
227 u8 framing;
228 u8 structure;
229 u8 interface;
230 u8 coding;
231 u8 lineBuildOut;
232 u8 equalizer;
233 u8 transparentMode;
234 u8 loopMode;
235 u8 range;
236 u8 txBufferMode;
237 u8 rxBufferMode;
238 u8 startingSlot;
239 u8 losThreshold;
240 u8 enableIdleCode;
241 u8 idleCode;
242 u8 spare[44];
243 };
244
245 /* TE1 Status */
246 struct su_status {
247 u32 receiveBufferDelay;
248 u32 framingErrorCount;
249 u32 codeViolationCount;
250 u32 crcErrorCount;
251 u32 lineAttenuation;
252 u8 portStarted;
253 u8 lossOfSignal;
254 u8 receiveRemoteAlarm;
255 u8 alarmIndicationSignal;
256 u8 spare[40];
257 };
258
259 /* Finally sling all the above together into the shared memory structure.
260 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
261 * evolving under NT for some time so I guess we're stuck with it.
262 * The structure starts at offset SMC_BASE.
263 * See farsync.h for some field values.
264 */
265 struct fst_shared {
266 /* DMA descriptor rings */
267 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
268 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
269
270 /* Obsolete small buffers */
271 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
272 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
273
274 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
275 * 0xFF => halted
276 */
277
278 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
279 * set to 0xEE by host to acknowledge interrupt
280 */
281
282 u16 smcVersion; /* Must match SMC_VERSION */
283
284 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
285 * version, RR = revision and BB = build
286 */
287
288 u16 txa_done; /* Obsolete completion flags */
289 u16 rxa_done;
290 u16 txb_done;
291 u16 rxb_done;
292 u16 txc_done;
293 u16 rxc_done;
294 u16 txd_done;
295 u16 rxd_done;
296
297 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
298
299 struct cirbuff interruptEvent; /* interrupt causes */
300
301 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
302 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
303
304 struct port_cfg portConfig[FST_MAX_PORTS];
305
306 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
307
308 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
309
310 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
311 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
312
313 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
314 u16 cardMailbox[4]; /* Not used */
315
316 /* Number of times the card thinks the host has
317 * missed an interrupt by not acknowledging
318 * within 2mS (I guess NT has problems)
319 */
320 u32 interruptRetryCount;
321
322 /* Driver private data used as an ID. We'll not
323 * use this as I'd rather keep such things
324 * in main memory rather than on the PCI bus
325 */
326 u32 portHandle[FST_MAX_PORTS];
327
328 /* Count of Tx underflows for stats */
329 u32 transmitBufferUnderflow[FST_MAX_PORTS];
330
331 /* Debounced V.24 control input status */
332 u32 v24DebouncedSts[FST_MAX_PORTS];
333
334 /* Adapter debounce timers. Don't touch */
335 u32 ctsTimer[FST_MAX_PORTS];
336 u32 ctsTimerRun[FST_MAX_PORTS];
337 u32 dcdTimer[FST_MAX_PORTS];
338 u32 dcdTimerRun[FST_MAX_PORTS];
339
340 u32 numberOfPorts; /* Number of ports detected at startup */
341
342 u16 _reserved[64];
343
344 u16 cardMode; /* Bit-mask to enable features:
345 * Bit 0: 1 enables LED identify mode
346 */
347
348 u16 portScheduleOffset;
349
350 struct su_config suConfig; /* TE1 Bits */
351 struct su_status suStatus;
352
353 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
354 * the structure and marks the end of shared
355 * memory. Adapter code initializes it as
356 * END_SIG.
357 */
358 };
359
360 /* endOfSmcSignature value */
361 #define END_SIG 0x12345678
362
363 /* Mailbox values. (portMailbox) */
364 #define NOP 0 /* No operation */
365 #define ACK 1 /* Positive acknowledgement to PC driver */
366 #define NAK 2 /* Negative acknowledgement to PC driver */
367 #define STARTPORT 3 /* Start an HDLC port */
368 #define STOPPORT 4 /* Stop an HDLC port */
369 #define ABORTTX 5 /* Abort the transmitter for a port */
370 #define SETV24O 6 /* Set V24 outputs */
371
372 /* PLX Chip Register Offsets */
373 #define CNTRL_9052 0x50 /* Control Register */
374 #define CNTRL_9054 0x6c /* Control Register */
375
376 #define INTCSR_9052 0x4c /* Interrupt control/status register */
377 #define INTCSR_9054 0x68 /* Interrupt control/status register */
378
379 /* 9054 DMA Registers */
380 /*
381 * Note that we will be using DMA Channel 0 for copying rx data
382 * and Channel 1 for copying tx data
383 */
384 #define DMAMODE0 0x80
385 #define DMAPADR0 0x84
386 #define DMALADR0 0x88
387 #define DMASIZ0 0x8c
388 #define DMADPR0 0x90
389 #define DMAMODE1 0x94
390 #define DMAPADR1 0x98
391 #define DMALADR1 0x9c
392 #define DMASIZ1 0xa0
393 #define DMADPR1 0xa4
394 #define DMACSR0 0xa8
395 #define DMACSR1 0xa9
396 #define DMAARB 0xac
397 #define DMATHR 0xb0
398 #define DMADAC0 0xb4
399 #define DMADAC1 0xb8
400 #define DMAMARBR 0xac
401
402 #define FST_MIN_DMA_LEN 64
403 #define FST_RX_DMA_INT 0x01
404 #define FST_TX_DMA_INT 0x02
405 #define FST_CARD_INT 0x04
406
407 /* Larger buffers are positioned in memory at offset BFM_BASE */
408 struct buf_window {
409 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
410 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
411 };
412
413 /* Calculate offset of a buffer object within the shared memory window */
414 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
415
416 #pragma pack()
417
418 /* Device driver private information
419 * =================================
420 */
421 /* Per port (line or channel) information
422 */
423 struct fst_port_info {
424 struct net_device *dev; /* Device struct - must be first */
425 struct fst_card_info *card; /* Card we're associated with */
426 int index; /* Port index on the card */
427 int hwif; /* Line hardware (lineInterface copy) */
428 int run; /* Port is running */
429 int mode; /* Normal or FarSync raw */
430 int rxpos; /* Next Rx buffer to use */
431 int txpos; /* Next Tx buffer to use */
432 int txipos; /* Next Tx buffer to check for free */
433 int start; /* Indication of start/stop to network */
434 /*
435 * A sixteen entry transmit queue
436 */
437 int txqs; /* index to get next buffer to tx */
438 int txqe; /* index to queue next packet */
439 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
440 int rxqdepth;
441 };
442
443 /* Per card information
444 */
445 struct fst_card_info {
446 char __iomem *mem; /* Card memory mapped to kernel space */
447 char __iomem *ctlmem; /* Control memory for PCI cards */
448 unsigned int phys_mem; /* Physical memory window address */
449 unsigned int phys_ctlmem; /* Physical control memory address */
450 unsigned int irq; /* Interrupt request line number */
451 unsigned int nports; /* Number of serial ports */
452 unsigned int type; /* Type index of card */
453 unsigned int state; /* State of card */
454 spinlock_t card_lock; /* Lock for SMP access */
455 unsigned short pci_conf; /* PCI card config in I/O space */
456 /* Per port info */
457 struct fst_port_info ports[FST_MAX_PORTS];
458 struct pci_dev *device; /* Information about the pci device */
459 int card_no; /* Inst of the card on the system */
460 int family; /* TxP or TxU */
461 int dmarx_in_progress;
462 int dmatx_in_progress;
463 unsigned long int_count;
464 unsigned long int_time_ave;
465 void *rx_dma_handle_host;
466 dma_addr_t rx_dma_handle_card;
467 void *tx_dma_handle_host;
468 dma_addr_t tx_dma_handle_card;
469 struct sk_buff *dma_skb_rx;
470 struct fst_port_info *dma_port_rx;
471 struct fst_port_info *dma_port_tx;
472 int dma_len_rx;
473 int dma_len_tx;
474 int dma_txpos;
475 int dma_rxpos;
476 };
477
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P) ((P)->dev)
481
482
483 /*
484 * Shared memory window access macros
485 *
486 * We have a nice memory based structure above, which could be directly
487 * mapped on i386 but might not work on other architectures unless we use
488 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
489 * physical offsets so we have to convert. The only saving grace is that
490 * this should all collapse back to a simple indirection eventually.
491 */
492 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
493
494 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
495 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
497
498 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
499 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
501
502 /*
503 * Debug support
504 */
505 #if FST_DEBUG
506
507 static int fst_debug_mask = { FST_DEBUG };
508
509 /* Most common debug activity is to print something if the corresponding bit
510 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
511 * support variable numbers of macro parameters. The inverted if prevents us
512 * eating someone else's else clause.
513 */
514 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
515 ; \
516 else \
517 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
518
519 #else
520 #define dbg(X...) /* NOP */
521 #endif
522
523 /* Printing short cuts
524 */
525 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
526 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
527 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
528
529 /*
530 * PCI ID lookup table
531 */
532 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
533 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
534 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
535
536 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
537 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
538
539 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
540 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
541
542 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
543 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
544
545 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
546 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
547
548 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
549 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
550
551 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
552 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
553 {0,} /* End */
554 };
555
556 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
557
558 /*
559 * Device Driver Work Queues
560 *
561 * So that we don't spend too much time processing events in the
562 * Interrupt Service routine, we will declare a work queue per Card
563 * and make the ISR schedule a task in the queue for later execution.
564 * In the 2.4 Kernel we used to use the immediate queue for BH's
565 * Now that they are gone, tasklets seem to be much better than work
566 * queues.
567 */
568
569 static void do_bottom_half_tx(struct fst_card_info *card);
570 static void do_bottom_half_rx(struct fst_card_info *card);
571 static void fst_process_tx_work_q(unsigned long work_q);
572 static void fst_process_int_work_q(unsigned long work_q);
573
574 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
575 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
576
577 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
578 static spinlock_t fst_work_q_lock;
579 static u64 fst_work_txq;
580 static u64 fst_work_intq;
581
582 static void
583 fst_q_work_item(u64 * queue, int card_index)
584 {
585 unsigned long flags;
586 u64 mask;
587
588 /*
589 * Grab the queue exclusively
590 */
591 spin_lock_irqsave(&fst_work_q_lock, flags);
592
593 /*
594 * Making an entry in the queue is simply a matter of setting
595 * a bit for the card indicating that there is work to do in the
596 * bottom half for the card. Note the limitation of 64 cards.
597 * That ought to be enough
598 */
599 mask = 1 << card_index;
600 *queue |= mask;
601 spin_unlock_irqrestore(&fst_work_q_lock, flags);
602 }
603
604 static void
605 fst_process_tx_work_q(unsigned long /*void **/work_q)
606 {
607 unsigned long flags;
608 u64 work_txq;
609 int i;
610
611 /*
612 * Grab the queue exclusively
613 */
614 dbg(DBG_TX, "fst_process_tx_work_q\n");
615 spin_lock_irqsave(&fst_work_q_lock, flags);
616 work_txq = fst_work_txq;
617 fst_work_txq = 0;
618 spin_unlock_irqrestore(&fst_work_q_lock, flags);
619
620 /*
621 * Call the bottom half for each card with work waiting
622 */
623 for (i = 0; i < FST_MAX_CARDS; i++) {
624 if (work_txq & 0x01) {
625 if (fst_card_array[i] != NULL) {
626 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
627 do_bottom_half_tx(fst_card_array[i]);
628 }
629 }
630 work_txq = work_txq >> 1;
631 }
632 }
633
634 static void
635 fst_process_int_work_q(unsigned long /*void **/work_q)
636 {
637 unsigned long flags;
638 u64 work_intq;
639 int i;
640
641 /*
642 * Grab the queue exclusively
643 */
644 dbg(DBG_INTR, "fst_process_int_work_q\n");
645 spin_lock_irqsave(&fst_work_q_lock, flags);
646 work_intq = fst_work_intq;
647 fst_work_intq = 0;
648 spin_unlock_irqrestore(&fst_work_q_lock, flags);
649
650 /*
651 * Call the bottom half for each card with work waiting
652 */
653 for (i = 0; i < FST_MAX_CARDS; i++) {
654 if (work_intq & 0x01) {
655 if (fst_card_array[i] != NULL) {
656 dbg(DBG_INTR,
657 "Calling rx & tx bh for card %d\n", i);
658 do_bottom_half_rx(fst_card_array[i]);
659 do_bottom_half_tx(fst_card_array[i]);
660 }
661 }
662 work_intq = work_intq >> 1;
663 }
664 }
665
666 /* Card control functions
667 * ======================
668 */
669 /* Place the processor in reset state
670 *
671 * Used to be a simple write to card control space but a glitch in the latest
672 * AMD Am186CH processor means that we now have to do it by asserting and de-
673 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
674 * at offset 9052_CNTRL. Note the updates for the TXU.
675 */
676 static inline void
677 fst_cpureset(struct fst_card_info *card)
678 {
679 unsigned char interrupt_line_register;
680 unsigned long j = jiffies + 1;
681 unsigned int regval;
682
683 if (card->family == FST_FAMILY_TXU) {
684 if (pci_read_config_byte
685 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
686 dbg(DBG_ASS,
687 "Error in reading interrupt line register\n");
688 }
689 /*
690 * Assert PLX software reset and Am186 hardware reset
691 * and then deassert the PLX software reset but 186 still in reset
692 */
693 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
694 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
695 /*
696 * We are delaying here to allow the 9054 to reset itself
697 */
698 j = jiffies + 1;
699 while (jiffies < j)
700 /* Do nothing */ ;
701 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
702 /*
703 * We are delaying here to allow the 9054 to reload its eeprom
704 */
705 j = jiffies + 1;
706 while (jiffies < j)
707 /* Do nothing */ ;
708 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
709
710 if (pci_write_config_byte
711 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
712 dbg(DBG_ASS,
713 "Error in writing interrupt line register\n");
714 }
715
716 } else {
717 regval = inl(card->pci_conf + CNTRL_9052);
718
719 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
720 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
721 }
722 }
723
724 /* Release the processor from reset
725 */
726 static inline void
727 fst_cpurelease(struct fst_card_info *card)
728 {
729 if (card->family == FST_FAMILY_TXU) {
730 /*
731 * Force posted writes to complete
732 */
733 (void) readb(card->mem);
734
735 /*
736 * Release LRESET DO = 1
737 * Then release Local Hold, DO = 1
738 */
739 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
740 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
741 } else {
742 (void) readb(card->ctlmem);
743 }
744 }
745
746 /* Clear the cards interrupt flag
747 */
748 static inline void
749 fst_clear_intr(struct fst_card_info *card)
750 {
751 if (card->family == FST_FAMILY_TXU) {
752 (void) readb(card->ctlmem);
753 } else {
754 /* Poke the appropriate PLX chip register (same as enabling interrupts)
755 */
756 outw(0x0543, card->pci_conf + INTCSR_9052);
757 }
758 }
759
760 /* Enable card interrupts
761 */
762 static inline void
763 fst_enable_intr(struct fst_card_info *card)
764 {
765 if (card->family == FST_FAMILY_TXU) {
766 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
767 } else {
768 outw(0x0543, card->pci_conf + INTCSR_9052);
769 }
770 }
771
772 /* Disable card interrupts
773 */
774 static inline void
775 fst_disable_intr(struct fst_card_info *card)
776 {
777 if (card->family == FST_FAMILY_TXU) {
778 outl(0x00000000, card->pci_conf + INTCSR_9054);
779 } else {
780 outw(0x0000, card->pci_conf + INTCSR_9052);
781 }
782 }
783
784 /* Process the result of trying to pass a received frame up the stack
785 */
786 static void
787 fst_process_rx_status(int rx_status, char *name)
788 {
789 switch (rx_status) {
790 case NET_RX_SUCCESS:
791 {
792 /*
793 * Nothing to do here
794 */
795 break;
796 }
797 case NET_RX_DROP:
798 {
799 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
800 break;
801 }
802 }
803 }
804
805 /* Initilaise DMA for PLX 9054
806 */
807 static inline void
808 fst_init_dma(struct fst_card_info *card)
809 {
810 /*
811 * This is only required for the PLX 9054
812 */
813 if (card->family == FST_FAMILY_TXU) {
814 pci_set_master(card->device);
815 outl(0x00020441, card->pci_conf + DMAMODE0);
816 outl(0x00020441, card->pci_conf + DMAMODE1);
817 outl(0x0, card->pci_conf + DMATHR);
818 }
819 }
820
821 /* Tx dma complete interrupt
822 */
823 static void
824 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
825 int len, int txpos)
826 {
827 struct net_device *dev = port_to_dev(port);
828
829 /*
830 * Everything is now set, just tell the card to go
831 */
832 dbg(DBG_TX, "fst_tx_dma_complete\n");
833 FST_WRB(card, txDescrRing[port->index][txpos].bits,
834 DMA_OWN | TX_STP | TX_ENP);
835 dev->stats.tx_packets++;
836 dev->stats.tx_bytes += len;
837 dev->trans_start = jiffies;
838 }
839
840 /*
841 * Mark it for our own raw sockets interface
842 */
843 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
844 {
845 skb->dev = dev;
846 skb_reset_mac_header(skb);
847 skb->pkt_type = PACKET_HOST;
848 return htons(ETH_P_CUST);
849 }
850
851 /* Rx dma complete interrupt
852 */
853 static void
854 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
855 int len, struct sk_buff *skb, int rxp)
856 {
857 struct net_device *dev = port_to_dev(port);
858 int pi;
859 int rx_status;
860
861 dbg(DBG_TX, "fst_rx_dma_complete\n");
862 pi = port->index;
863 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
864
865 /* Reset buffer descriptor */
866 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
867
868 /* Update stats */
869 dev->stats.rx_packets++;
870 dev->stats.rx_bytes += len;
871
872 /* Push upstream */
873 dbg(DBG_RX, "Pushing the frame up the stack\n");
874 if (port->mode == FST_RAW)
875 skb->protocol = farsync_type_trans(skb, dev);
876 else
877 skb->protocol = hdlc_type_trans(skb, dev);
878 rx_status = netif_rx(skb);
879 fst_process_rx_status(rx_status, port_to_dev(port)->name);
880 if (rx_status == NET_RX_DROP)
881 dev->stats.rx_dropped++;
882 }
883
884 /*
885 * Receive a frame through the DMA
886 */
887 static inline void
888 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
889 unsigned char *mem, int len)
890 {
891 /*
892 * This routine will setup the DMA and start it
893 */
894
895 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
896 if (card->dmarx_in_progress) {
897 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
898 }
899
900 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
901 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
902 outl(len, card->pci_conf + DMASIZ0); /* for this length */
903 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
904
905 /*
906 * We use the dmarx_in_progress flag to flag the channel as busy
907 */
908 card->dmarx_in_progress = 1;
909 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
910 }
911
912 /*
913 * Send a frame through the DMA
914 */
915 static inline void
916 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
917 unsigned char *mem, int len)
918 {
919 /*
920 * This routine will setup the DMA and start it.
921 */
922
923 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
924 if (card->dmatx_in_progress) {
925 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
926 }
927
928 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
929 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
930 outl(len, card->pci_conf + DMASIZ1); /* for this length */
931 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
932
933 /*
934 * We use the dmatx_in_progress to flag the channel as busy
935 */
936 card->dmatx_in_progress = 1;
937 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
938 }
939
940 /* Issue a Mailbox command for a port.
941 * Note we issue them on a fire and forget basis, not expecting to see an
942 * error and not waiting for completion.
943 */
944 static void
945 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
946 {
947 struct fst_card_info *card;
948 unsigned short mbval;
949 unsigned long flags;
950 int safety;
951
952 card = port->card;
953 spin_lock_irqsave(&card->card_lock, flags);
954 mbval = FST_RDW(card, portMailbox[port->index][0]);
955
956 safety = 0;
957 /* Wait for any previous command to complete */
958 while (mbval > NAK) {
959 spin_unlock_irqrestore(&card->card_lock, flags);
960 schedule_timeout_uninterruptible(1);
961 spin_lock_irqsave(&card->card_lock, flags);
962
963 if (++safety > 2000) {
964 printk_err("Mailbox safety timeout\n");
965 break;
966 }
967
968 mbval = FST_RDW(card, portMailbox[port->index][0]);
969 }
970 if (safety > 0) {
971 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
972 }
973 if (mbval == NAK) {
974 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
975 }
976
977 FST_WRW(card, portMailbox[port->index][0], cmd);
978
979 if (cmd == ABORTTX || cmd == STARTPORT) {
980 port->txpos = 0;
981 port->txipos = 0;
982 port->start = 0;
983 }
984
985 spin_unlock_irqrestore(&card->card_lock, flags);
986 }
987
988 /* Port output signals control
989 */
990 static inline void
991 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
992 {
993 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
994 FST_WRL(port->card, v24OpSts[port->index], outputs);
995
996 if (port->run)
997 fst_issue_cmd(port, SETV24O);
998 }
999
1000 static inline void
1001 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1002 {
1003 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1004 FST_WRL(port->card, v24OpSts[port->index], outputs);
1005
1006 if (port->run)
1007 fst_issue_cmd(port, SETV24O);
1008 }
1009
1010 /*
1011 * Setup port Rx buffers
1012 */
1013 static void
1014 fst_rx_config(struct fst_port_info *port)
1015 {
1016 int i;
1017 int pi;
1018 unsigned int offset;
1019 unsigned long flags;
1020 struct fst_card_info *card;
1021
1022 pi = port->index;
1023 card = port->card;
1024 spin_lock_irqsave(&card->card_lock, flags);
1025 for (i = 0; i < NUM_RX_BUFFER; i++) {
1026 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1027
1028 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1029 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1030 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1031 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1032 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1033 }
1034 port->rxpos = 0;
1035 spin_unlock_irqrestore(&card->card_lock, flags);
1036 }
1037
1038 /*
1039 * Setup port Tx buffers
1040 */
1041 static void
1042 fst_tx_config(struct fst_port_info *port)
1043 {
1044 int i;
1045 int pi;
1046 unsigned int offset;
1047 unsigned long flags;
1048 struct fst_card_info *card;
1049
1050 pi = port->index;
1051 card = port->card;
1052 spin_lock_irqsave(&card->card_lock, flags);
1053 for (i = 0; i < NUM_TX_BUFFER; i++) {
1054 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1055
1056 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1057 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1058 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1059 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1060 }
1061 port->txpos = 0;
1062 port->txipos = 0;
1063 port->start = 0;
1064 spin_unlock_irqrestore(&card->card_lock, flags);
1065 }
1066
1067 /* TE1 Alarm change interrupt event
1068 */
1069 static void
1070 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1071 {
1072 u8 los;
1073 u8 rra;
1074 u8 ais;
1075
1076 los = FST_RDB(card, suStatus.lossOfSignal);
1077 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1078 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1079
1080 if (los) {
1081 /*
1082 * Lost the link
1083 */
1084 if (netif_carrier_ok(port_to_dev(port))) {
1085 dbg(DBG_INTR, "Net carrier off\n");
1086 netif_carrier_off(port_to_dev(port));
1087 }
1088 } else {
1089 /*
1090 * Link available
1091 */
1092 if (!netif_carrier_ok(port_to_dev(port))) {
1093 dbg(DBG_INTR, "Net carrier on\n");
1094 netif_carrier_on(port_to_dev(port));
1095 }
1096 }
1097
1098 if (los)
1099 dbg(DBG_INTR, "Assert LOS Alarm\n");
1100 else
1101 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1102 if (rra)
1103 dbg(DBG_INTR, "Assert RRA Alarm\n");
1104 else
1105 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1106
1107 if (ais)
1108 dbg(DBG_INTR, "Assert AIS Alarm\n");
1109 else
1110 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1111 }
1112
1113 /* Control signal change interrupt event
1114 */
1115 static void
1116 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1117 {
1118 int signals;
1119
1120 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1121
1122 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1123 ? IPSTS_INDICATE : IPSTS_DCD)) {
1124 if (!netif_carrier_ok(port_to_dev(port))) {
1125 dbg(DBG_INTR, "DCD active\n");
1126 netif_carrier_on(port_to_dev(port));
1127 }
1128 } else {
1129 if (netif_carrier_ok(port_to_dev(port))) {
1130 dbg(DBG_INTR, "DCD lost\n");
1131 netif_carrier_off(port_to_dev(port));
1132 }
1133 }
1134 }
1135
1136 /* Log Rx Errors
1137 */
1138 static void
1139 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1140 unsigned char dmabits, int rxp, unsigned short len)
1141 {
1142 struct net_device *dev = port_to_dev(port);
1143
1144 /*
1145 * Increment the appropriate error counter
1146 */
1147 dev->stats.rx_errors++;
1148 if (dmabits & RX_OFLO) {
1149 dev->stats.rx_fifo_errors++;
1150 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1151 card->card_no, port->index, rxp);
1152 }
1153 if (dmabits & RX_CRC) {
1154 dev->stats.rx_crc_errors++;
1155 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1156 card->card_no, port->index);
1157 }
1158 if (dmabits & RX_FRAM) {
1159 dev->stats.rx_frame_errors++;
1160 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1161 card->card_no, port->index);
1162 }
1163 if (dmabits == (RX_STP | RX_ENP)) {
1164 dev->stats.rx_length_errors++;
1165 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1166 len, card->card_no, port->index);
1167 }
1168 }
1169
1170 /* Rx Error Recovery
1171 */
1172 static void
1173 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1174 unsigned char dmabits, int rxp, unsigned short len)
1175 {
1176 int i;
1177 int pi;
1178
1179 pi = port->index;
1180 /*
1181 * Discard buffer descriptors until we see the start of the
1182 * next frame. Note that for long frames this could be in
1183 * a subsequent interrupt.
1184 */
1185 i = 0;
1186 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1187 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1188 rxp = (rxp+1) % NUM_RX_BUFFER;
1189 if (++i > NUM_RX_BUFFER) {
1190 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1191 " than we have\n");
1192 break;
1193 }
1194 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1195 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1196 }
1197 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1198
1199 /* Discard the terminal buffer */
1200 if (!(dmabits & DMA_OWN)) {
1201 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1202 rxp = (rxp+1) % NUM_RX_BUFFER;
1203 }
1204 port->rxpos = rxp;
1205 return;
1206
1207 }
1208
1209 /* Rx complete interrupt
1210 */
1211 static void
1212 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1213 {
1214 unsigned char dmabits;
1215 int pi;
1216 int rxp;
1217 int rx_status;
1218 unsigned short len;
1219 struct sk_buff *skb;
1220 struct net_device *dev = port_to_dev(port);
1221
1222 /* Check we have a buffer to process */
1223 pi = port->index;
1224 rxp = port->rxpos;
1225 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1226 if (dmabits & DMA_OWN) {
1227 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1228 pi, rxp);
1229 return;
1230 }
1231 if (card->dmarx_in_progress) {
1232 return;
1233 }
1234
1235 /* Get buffer length */
1236 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1237 /* Discard the CRC */
1238 len -= 2;
1239 if (len == 0) {
1240 /*
1241 * This seems to happen on the TE1 interface sometimes
1242 * so throw the frame away and log the event.
1243 */
1244 printk_err("Frame received with 0 length. Card %d Port %d\n",
1245 card->card_no, port->index);
1246 /* Return descriptor to card */
1247 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1248
1249 rxp = (rxp+1) % NUM_RX_BUFFER;
1250 port->rxpos = rxp;
1251 return;
1252 }
1253
1254 /* Check buffer length and for other errors. We insist on one packet
1255 * in one buffer. This simplifies things greatly and since we've
1256 * allocated 8K it shouldn't be a real world limitation
1257 */
1258 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1259 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1260 fst_log_rx_error(card, port, dmabits, rxp, len);
1261 fst_recover_rx_error(card, port, dmabits, rxp, len);
1262 return;
1263 }
1264
1265 /* Allocate SKB */
1266 if ((skb = dev_alloc_skb(len)) == NULL) {
1267 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1268
1269 dev->stats.rx_dropped++;
1270
1271 /* Return descriptor to card */
1272 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1273
1274 rxp = (rxp+1) % NUM_RX_BUFFER;
1275 port->rxpos = rxp;
1276 return;
1277 }
1278
1279 /*
1280 * We know the length we need to receive, len.
1281 * It's not worth using the DMA for reads of less than
1282 * FST_MIN_DMA_LEN
1283 */
1284
1285 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1286 memcpy_fromio(skb_put(skb, len),
1287 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1288 len);
1289
1290 /* Reset buffer descriptor */
1291 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1292
1293 /* Update stats */
1294 dev->stats.rx_packets++;
1295 dev->stats.rx_bytes += len;
1296
1297 /* Push upstream */
1298 dbg(DBG_RX, "Pushing frame up the stack\n");
1299 if (port->mode == FST_RAW)
1300 skb->protocol = farsync_type_trans(skb, dev);
1301 else
1302 skb->protocol = hdlc_type_trans(skb, dev);
1303 rx_status = netif_rx(skb);
1304 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1305 if (rx_status == NET_RX_DROP)
1306 dev->stats.rx_dropped++;
1307 } else {
1308 card->dma_skb_rx = skb;
1309 card->dma_port_rx = port;
1310 card->dma_len_rx = len;
1311 card->dma_rxpos = rxp;
1312 fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1313 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1314 }
1315 if (rxp != port->rxpos) {
1316 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1317 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1318 }
1319 rxp = (rxp+1) % NUM_RX_BUFFER;
1320 port->rxpos = rxp;
1321 }
1322
1323 /*
1324 * The bottom halfs to the ISR
1325 *
1326 */
1327
1328 static void
1329 do_bottom_half_tx(struct fst_card_info *card)
1330 {
1331 struct fst_port_info *port;
1332 int pi;
1333 int txq_length;
1334 struct sk_buff *skb;
1335 unsigned long flags;
1336 struct net_device *dev;
1337
1338 /*
1339 * Find a free buffer for the transmit
1340 * Step through each port on this card
1341 */
1342
1343 dbg(DBG_TX, "do_bottom_half_tx\n");
1344 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1345 if (!port->run)
1346 continue;
1347
1348 dev = port_to_dev(port);
1349 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1350 DMA_OWN) &&
1351 !(card->dmatx_in_progress)) {
1352 /*
1353 * There doesn't seem to be a txdone event per-se
1354 * We seem to have to deduce it, by checking the DMA_OWN
1355 * bit on the next buffer we think we can use
1356 */
1357 spin_lock_irqsave(&card->card_lock, flags);
1358 if ((txq_length = port->txqe - port->txqs) < 0) {
1359 /*
1360 * This is the case where one has wrapped and the
1361 * maths gives us a negative number
1362 */
1363 txq_length = txq_length + FST_TXQ_DEPTH;
1364 }
1365 spin_unlock_irqrestore(&card->card_lock, flags);
1366 if (txq_length > 0) {
1367 /*
1368 * There is something to send
1369 */
1370 spin_lock_irqsave(&card->card_lock, flags);
1371 skb = port->txq[port->txqs];
1372 port->txqs++;
1373 if (port->txqs == FST_TXQ_DEPTH) {
1374 port->txqs = 0;
1375 }
1376 spin_unlock_irqrestore(&card->card_lock, flags);
1377 /*
1378 * copy the data and set the required indicators on the
1379 * card.
1380 */
1381 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1382 cnv_bcnt(skb->len));
1383 if ((skb->len < FST_MIN_DMA_LEN) ||
1384 (card->family == FST_FAMILY_TXP)) {
1385 /* Enqueue the packet with normal io */
1386 memcpy_toio(card->mem +
1387 BUF_OFFSET(txBuffer[pi]
1388 [port->
1389 txpos][0]),
1390 skb->data, skb->len);
1391 FST_WRB(card,
1392 txDescrRing[pi][port->txpos].
1393 bits,
1394 DMA_OWN | TX_STP | TX_ENP);
1395 dev->stats.tx_packets++;
1396 dev->stats.tx_bytes += skb->len;
1397 dev->trans_start = jiffies;
1398 } else {
1399 /* Or do it through dma */
1400 memcpy(card->tx_dma_handle_host,
1401 skb->data, skb->len);
1402 card->dma_port_tx = port;
1403 card->dma_len_tx = skb->len;
1404 card->dma_txpos = port->txpos;
1405 fst_tx_dma(card,
1406 (char *) card->
1407 tx_dma_handle_card,
1408 (char *)
1409 BUF_OFFSET(txBuffer[pi]
1410 [port->txpos][0]),
1411 skb->len);
1412 }
1413 if (++port->txpos >= NUM_TX_BUFFER)
1414 port->txpos = 0;
1415 /*
1416 * If we have flow control on, can we now release it?
1417 */
1418 if (port->start) {
1419 if (txq_length < fst_txq_low) {
1420 netif_wake_queue(port_to_dev
1421 (port));
1422 port->start = 0;
1423 }
1424 }
1425 dev_kfree_skb(skb);
1426 } else {
1427 /*
1428 * Nothing to send so break out of the while loop
1429 */
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 static void
1437 do_bottom_half_rx(struct fst_card_info *card)
1438 {
1439 struct fst_port_info *port;
1440 int pi;
1441 int rx_count = 0;
1442
1443 /* Check for rx completions on all ports on this card */
1444 dbg(DBG_RX, "do_bottom_half_rx\n");
1445 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1446 if (!port->run)
1447 continue;
1448
1449 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1450 & DMA_OWN) && !(card->dmarx_in_progress)) {
1451 if (rx_count > fst_max_reads) {
1452 /*
1453 * Don't spend forever in receive processing
1454 * Schedule another event
1455 */
1456 fst_q_work_item(&fst_work_intq, card->card_no);
1457 tasklet_schedule(&fst_int_task);
1458 break; /* Leave the loop */
1459 }
1460 fst_intr_rx(card, port);
1461 rx_count++;
1462 }
1463 }
1464 }
1465
1466 /*
1467 * The interrupt service routine
1468 * Dev_id is our fst_card_info pointer
1469 */
1470 static irqreturn_t
1471 fst_intr(int dummy, void *dev_id)
1472 {
1473 struct fst_card_info *card = dev_id;
1474 struct fst_port_info *port;
1475 int rdidx; /* Event buffer indices */
1476 int wridx;
1477 int event; /* Actual event for processing */
1478 unsigned int dma_intcsr = 0;
1479 unsigned int do_card_interrupt;
1480 unsigned int int_retry_count;
1481
1482 /*
1483 * Check to see if the interrupt was for this card
1484 * return if not
1485 * Note that the call to clear the interrupt is important
1486 */
1487 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1488 if (card->state != FST_RUNNING) {
1489 printk_err
1490 ("Interrupt received for card %d in a non running state (%d)\n",
1491 card->card_no, card->state);
1492
1493 /*
1494 * It is possible to really be running, i.e. we have re-loaded
1495 * a running card
1496 * Clear and reprime the interrupt source
1497 */
1498 fst_clear_intr(card);
1499 return IRQ_HANDLED;
1500 }
1501
1502 /* Clear and reprime the interrupt source */
1503 fst_clear_intr(card);
1504
1505 /*
1506 * Is the interrupt for this card (handshake == 1)
1507 */
1508 do_card_interrupt = 0;
1509 if (FST_RDB(card, interruptHandshake) == 1) {
1510 do_card_interrupt += FST_CARD_INT;
1511 /* Set the software acknowledge */
1512 FST_WRB(card, interruptHandshake, 0xEE);
1513 }
1514 if (card->family == FST_FAMILY_TXU) {
1515 /*
1516 * Is it a DMA Interrupt
1517 */
1518 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1519 if (dma_intcsr & 0x00200000) {
1520 /*
1521 * DMA Channel 0 (Rx transfer complete)
1522 */
1523 dbg(DBG_RX, "DMA Rx xfer complete\n");
1524 outb(0x8, card->pci_conf + DMACSR0);
1525 fst_rx_dma_complete(card, card->dma_port_rx,
1526 card->dma_len_rx, card->dma_skb_rx,
1527 card->dma_rxpos);
1528 card->dmarx_in_progress = 0;
1529 do_card_interrupt += FST_RX_DMA_INT;
1530 }
1531 if (dma_intcsr & 0x00400000) {
1532 /*
1533 * DMA Channel 1 (Tx transfer complete)
1534 */
1535 dbg(DBG_TX, "DMA Tx xfer complete\n");
1536 outb(0x8, card->pci_conf + DMACSR1);
1537 fst_tx_dma_complete(card, card->dma_port_tx,
1538 card->dma_len_tx, card->dma_txpos);
1539 card->dmatx_in_progress = 0;
1540 do_card_interrupt += FST_TX_DMA_INT;
1541 }
1542 }
1543
1544 /*
1545 * Have we been missing Interrupts
1546 */
1547 int_retry_count = FST_RDL(card, interruptRetryCount);
1548 if (int_retry_count) {
1549 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1550 card->card_no, int_retry_count);
1551 FST_WRL(card, interruptRetryCount, 0);
1552 }
1553
1554 if (!do_card_interrupt) {
1555 return IRQ_HANDLED;
1556 }
1557
1558 /* Scehdule the bottom half of the ISR */
1559 fst_q_work_item(&fst_work_intq, card->card_no);
1560 tasklet_schedule(&fst_int_task);
1561
1562 /* Drain the event queue */
1563 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1564 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1565 while (rdidx != wridx) {
1566 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1567 port = &card->ports[event & 0x03];
1568
1569 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1570
1571 switch (event) {
1572 case TE1_ALMA:
1573 dbg(DBG_INTR, "TE1 Alarm intr\n");
1574 if (port->run)
1575 fst_intr_te1_alarm(card, port);
1576 break;
1577
1578 case CTLA_CHG:
1579 case CTLB_CHG:
1580 case CTLC_CHG:
1581 case CTLD_CHG:
1582 if (port->run)
1583 fst_intr_ctlchg(card, port);
1584 break;
1585
1586 case ABTA_SENT:
1587 case ABTB_SENT:
1588 case ABTC_SENT:
1589 case ABTD_SENT:
1590 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1591 break;
1592
1593 case TXA_UNDF:
1594 case TXB_UNDF:
1595 case TXC_UNDF:
1596 case TXD_UNDF:
1597 /* Difficult to see how we'd get this given that we
1598 * always load up the entire packet for DMA.
1599 */
1600 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1601 port_to_dev(port)->stats.tx_errors++;
1602 port_to_dev(port)->stats.tx_fifo_errors++;
1603 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1604 card->card_no, port->index);
1605 break;
1606
1607 case INIT_CPLT:
1608 dbg(DBG_INIT, "Card init OK intr\n");
1609 break;
1610
1611 case INIT_FAIL:
1612 dbg(DBG_INIT, "Card init FAILED intr\n");
1613 card->state = FST_IFAILED;
1614 break;
1615
1616 default:
1617 printk_err("intr: unknown card event %d. ignored\n",
1618 event);
1619 break;
1620 }
1621
1622 /* Bump and wrap the index */
1623 if (++rdidx >= MAX_CIRBUFF)
1624 rdidx = 0;
1625 }
1626 FST_WRB(card, interruptEvent.rdindex, rdidx);
1627 return IRQ_HANDLED;
1628 }
1629
1630 /* Check that the shared memory configuration is one that we can handle
1631 * and that some basic parameters are correct
1632 */
1633 static void
1634 check_started_ok(struct fst_card_info *card)
1635 {
1636 int i;
1637
1638 /* Check structure version and end marker */
1639 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640 printk_err("Bad shared memory version %d expected %d\n",
1641 FST_RDW(card, smcVersion), SMC_VERSION);
1642 card->state = FST_BADVERSION;
1643 return;
1644 }
1645 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646 printk_err("Missing shared memory signature\n");
1647 card->state = FST_BADVERSION;
1648 return;
1649 }
1650 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652 card->state = FST_RUNNING;
1653 } else if (i == 0xFF) {
1654 printk_err("Firmware initialisation failed. Card halted\n");
1655 card->state = FST_HALTED;
1656 return;
1657 } else if (i != 0x00) {
1658 printk_err("Unknown firmware status 0x%x\n", i);
1659 card->state = FST_HALTED;
1660 return;
1661 }
1662
1663 /* Finally check the number of ports reported by firmware against the
1664 * number we assumed at card detection. Should never happen with
1665 * existing firmware etc so we just report it for the moment.
1666 */
1667 if (FST_RDL(card, numberOfPorts) != card->nports) {
1668 printk_warn("Port count mismatch on card %d."
1669 " Firmware thinks %d we say %d\n", card->card_no,
1670 FST_RDL(card, numberOfPorts), card->nports);
1671 }
1672 }
1673
1674 static int
1675 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676 struct fstioc_info *info)
1677 {
1678 int err;
1679 unsigned char my_framing;
1680
1681 /* Set things according to the user set valid flags
1682 * Several of the old options have been invalidated/replaced by the
1683 * generic hdlc package.
1684 */
1685 err = 0;
1686 if (info->valid & FSTVAL_PROTO) {
1687 if (info->proto == FST_RAW)
1688 port->mode = FST_RAW;
1689 else
1690 port->mode = FST_GEN_HDLC;
1691 }
1692
1693 if (info->valid & FSTVAL_CABLE)
1694 err = -EINVAL;
1695
1696 if (info->valid & FSTVAL_SPEED)
1697 err = -EINVAL;
1698
1699 if (info->valid & FSTVAL_PHASE)
1700 FST_WRB(card, portConfig[port->index].invertClock,
1701 info->invertClock);
1702 if (info->valid & FSTVAL_MODE)
1703 FST_WRW(card, cardMode, info->cardMode);
1704 if (info->valid & FSTVAL_TE1) {
1705 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706 FST_WRB(card, suConfig.clocking, info->clockSource);
1707 my_framing = FRAMING_E1;
1708 if (info->framing == E1)
1709 my_framing = FRAMING_E1;
1710 if (info->framing == T1)
1711 my_framing = FRAMING_T1;
1712 if (info->framing == J1)
1713 my_framing = FRAMING_J1;
1714 FST_WRB(card, suConfig.framing, my_framing);
1715 FST_WRB(card, suConfig.structure, info->structure);
1716 FST_WRB(card, suConfig.interface, info->interface);
1717 FST_WRB(card, suConfig.coding, info->coding);
1718 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719 FST_WRB(card, suConfig.equalizer, info->equalizer);
1720 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721 FST_WRB(card, suConfig.loopMode, info->loopMode);
1722 FST_WRB(card, suConfig.range, info->range);
1723 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727 if (info->idleCode)
1728 FST_WRB(card, suConfig.enableIdleCode, 1);
1729 else
1730 FST_WRB(card, suConfig.enableIdleCode, 0);
1731 FST_WRB(card, suConfig.idleCode, info->idleCode);
1732 #if FST_DEBUG
1733 if (info->valid & FSTVAL_TE1) {
1734 printk("Setting TE1 data\n");
1735 printk("Line Speed = %d\n", info->lineSpeed);
1736 printk("Start slot = %d\n", info->startingSlot);
1737 printk("Clock source = %d\n", info->clockSource);
1738 printk("Framing = %d\n", my_framing);
1739 printk("Structure = %d\n", info->structure);
1740 printk("interface = %d\n", info->interface);
1741 printk("Coding = %d\n", info->coding);
1742 printk("Line build out = %d\n", info->lineBuildOut);
1743 printk("Equaliser = %d\n", info->equalizer);
1744 printk("Transparent mode = %d\n",
1745 info->transparentMode);
1746 printk("Loop mode = %d\n", info->loopMode);
1747 printk("Range = %d\n", info->range);
1748 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750 printk("LOS Threshold = %d\n", info->losThreshold);
1751 printk("Idle Code = %d\n", info->idleCode);
1752 }
1753 #endif
1754 }
1755 #if FST_DEBUG
1756 if (info->valid & FSTVAL_DEBUG) {
1757 fst_debug_mask = info->debug;
1758 }
1759 #endif
1760
1761 return err;
1762 }
1763
1764 static void
1765 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766 struct fstioc_info *info)
1767 {
1768 int i;
1769
1770 memset(info, 0, sizeof (struct fstioc_info));
1771
1772 i = port->index;
1773 info->kernelVersion = LINUX_VERSION_CODE;
1774 info->nports = card->nports;
1775 info->type = card->type;
1776 info->state = card->state;
1777 info->proto = FST_GEN_HDLC;
1778 info->index = i;
1779 #if FST_DEBUG
1780 info->debug = fst_debug_mask;
1781 #endif
1782
1783 /* Only mark information as valid if card is running.
1784 * Copy the data anyway in case it is useful for diagnostics
1785 */
1786 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787 #if FST_DEBUG
1788 | FSTVAL_DEBUG
1789 #endif
1790 ;
1791
1792 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798 info->clockStatus = FST_RDW(card, clockStatus[i]);
1799 info->cableStatus = FST_RDW(card, cableStatus);
1800 info->cardMode = FST_RDW(card, cardMode);
1801 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803 /*
1804 * The T2U can report cable presence for both A or B
1805 * in bits 0 and 1 of cableStatus. See which port we are and
1806 * do the mapping.
1807 */
1808 if (card->family == FST_FAMILY_TXU) {
1809 if (port->index == 0) {
1810 /*
1811 * Port A
1812 */
1813 info->cableStatus = info->cableStatus & 1;
1814 } else {
1815 /*
1816 * Port B
1817 */
1818 info->cableStatus = info->cableStatus >> 1;
1819 info->cableStatus = info->cableStatus & 1;
1820 }
1821 }
1822 /*
1823 * Some additional bits if we are TE1
1824 */
1825 if (card->type == FST_TYPE_TE1) {
1826 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827 info->clockSource = FST_RDB(card, suConfig.clocking);
1828 info->framing = FST_RDB(card, suConfig.framing);
1829 info->structure = FST_RDB(card, suConfig.structure);
1830 info->interface = FST_RDB(card, suConfig.interface);
1831 info->coding = FST_RDB(card, suConfig.coding);
1832 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833 info->equalizer = FST_RDB(card, suConfig.equalizer);
1834 info->loopMode = FST_RDB(card, suConfig.loopMode);
1835 info->range = FST_RDB(card, suConfig.range);
1836 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840 if (FST_RDB(card, suConfig.enableIdleCode))
1841 info->idleCode = FST_RDB(card, suConfig.idleCode);
1842 else
1843 info->idleCode = 0;
1844 info->receiveBufferDelay =
1845 FST_RDL(card, suStatus.receiveBufferDelay);
1846 info->framingErrorCount =
1847 FST_RDL(card, suStatus.framingErrorCount);
1848 info->codeViolationCount =
1849 FST_RDL(card, suStatus.codeViolationCount);
1850 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853 info->receiveRemoteAlarm =
1854 FST_RDB(card, suStatus.receiveRemoteAlarm);
1855 info->alarmIndicationSignal =
1856 FST_RDB(card, suStatus.alarmIndicationSignal);
1857 }
1858 }
1859
1860 static int
1861 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862 struct ifreq *ifr)
1863 {
1864 sync_serial_settings sync;
1865 int i;
1866
1867 if (ifr->ifr_settings.size != sizeof (sync)) {
1868 return -ENOMEM;
1869 }
1870
1871 if (copy_from_user
1872 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873 return -EFAULT;
1874 }
1875
1876 if (sync.loopback)
1877 return -EINVAL;
1878
1879 i = port->index;
1880
1881 switch (ifr->ifr_settings.type) {
1882 case IF_IFACE_V35:
1883 FST_WRW(card, portConfig[i].lineInterface, V35);
1884 port->hwif = V35;
1885 break;
1886
1887 case IF_IFACE_V24:
1888 FST_WRW(card, portConfig[i].lineInterface, V24);
1889 port->hwif = V24;
1890 break;
1891
1892 case IF_IFACE_X21:
1893 FST_WRW(card, portConfig[i].lineInterface, X21);
1894 port->hwif = X21;
1895 break;
1896
1897 case IF_IFACE_X21D:
1898 FST_WRW(card, portConfig[i].lineInterface, X21D);
1899 port->hwif = X21D;
1900 break;
1901
1902 case IF_IFACE_T1:
1903 FST_WRW(card, portConfig[i].lineInterface, T1);
1904 port->hwif = T1;
1905 break;
1906
1907 case IF_IFACE_E1:
1908 FST_WRW(card, portConfig[i].lineInterface, E1);
1909 port->hwif = E1;
1910 break;
1911
1912 case IF_IFACE_SYNC_SERIAL:
1913 break;
1914
1915 default:
1916 return -EINVAL;
1917 }
1918
1919 switch (sync.clock_type) {
1920 case CLOCK_EXT:
1921 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922 break;
1923
1924 case CLOCK_INT:
1925 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926 break;
1927
1928 default:
1929 return -EINVAL;
1930 }
1931 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932 return 0;
1933 }
1934
1935 static int
1936 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937 struct ifreq *ifr)
1938 {
1939 sync_serial_settings sync;
1940 int i;
1941
1942 /* First check what line type is set, we'll default to reporting X.21
1943 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944 * changed
1945 */
1946 switch (port->hwif) {
1947 case E1:
1948 ifr->ifr_settings.type = IF_IFACE_E1;
1949 break;
1950 case T1:
1951 ifr->ifr_settings.type = IF_IFACE_T1;
1952 break;
1953 case V35:
1954 ifr->ifr_settings.type = IF_IFACE_V35;
1955 break;
1956 case V24:
1957 ifr->ifr_settings.type = IF_IFACE_V24;
1958 break;
1959 case X21D:
1960 ifr->ifr_settings.type = IF_IFACE_X21D;
1961 break;
1962 case X21:
1963 default:
1964 ifr->ifr_settings.type = IF_IFACE_X21;
1965 break;
1966 }
1967 if (ifr->ifr_settings.size == 0) {
1968 return 0; /* only type requested */
1969 }
1970 if (ifr->ifr_settings.size < sizeof (sync)) {
1971 return -ENOMEM;
1972 }
1973
1974 i = port->index;
1975 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976 /* Lucky card and linux use same encoding here */
1977 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978 INTCLK ? CLOCK_INT : CLOCK_EXT;
1979 sync.loopback = 0;
1980
1981 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982 return -EFAULT;
1983 }
1984
1985 ifr->ifr_settings.size = sizeof (sync);
1986 return 0;
1987 }
1988
1989 static int
1990 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991 {
1992 struct fst_card_info *card;
1993 struct fst_port_info *port;
1994 struct fstioc_write wrthdr;
1995 struct fstioc_info info;
1996 unsigned long flags;
1997 void *buf;
1998
1999 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001 port = dev_to_port(dev);
2002 card = port->card;
2003
2004 if (!capable(CAP_NET_ADMIN))
2005 return -EPERM;
2006
2007 switch (cmd) {
2008 case FSTCPURESET:
2009 fst_cpureset(card);
2010 card->state = FST_RESET;
2011 return 0;
2012
2013 case FSTCPURELEASE:
2014 fst_cpurelease(card);
2015 card->state = FST_STARTING;
2016 return 0;
2017
2018 case FSTWRITE: /* Code write (download) */
2019
2020 /* First copy in the header with the length and offset of data
2021 * to write
2022 */
2023 if (ifr->ifr_data == NULL) {
2024 return -EINVAL;
2025 }
2026 if (copy_from_user(&wrthdr, ifr->ifr_data,
2027 sizeof (struct fstioc_write))) {
2028 return -EFAULT;
2029 }
2030
2031 /* Sanity check the parameters. We don't support partial writes
2032 * when going over the top
2033 */
2034 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035 wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036 return -ENXIO;
2037 }
2038
2039 /* Now copy the data to the card. */
2040
2041 buf = kmalloc(wrthdr.size, GFP_KERNEL);
2042 if (!buf)
2043 return -ENOMEM;
2044
2045 if (copy_from_user(buf,
2046 ifr->ifr_data + sizeof (struct fstioc_write),
2047 wrthdr.size)) {
2048 kfree(buf);
2049 return -EFAULT;
2050 }
2051
2052 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2053 kfree(buf);
2054
2055 /* Writes to the memory of a card in the reset state constitute
2056 * a download
2057 */
2058 if (card->state == FST_RESET) {
2059 card->state = FST_DOWNLOAD;
2060 }
2061 return 0;
2062
2063 case FSTGETCONF:
2064
2065 /* If card has just been started check the shared memory config
2066 * version and marker
2067 */
2068 if (card->state == FST_STARTING) {
2069 check_started_ok(card);
2070
2071 /* If everything checked out enable card interrupts */
2072 if (card->state == FST_RUNNING) {
2073 spin_lock_irqsave(&card->card_lock, flags);
2074 fst_enable_intr(card);
2075 FST_WRB(card, interruptHandshake, 0xEE);
2076 spin_unlock_irqrestore(&card->card_lock, flags);
2077 }
2078 }
2079
2080 if (ifr->ifr_data == NULL) {
2081 return -EINVAL;
2082 }
2083
2084 gather_conf_info(card, port, &info);
2085
2086 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2087 return -EFAULT;
2088 }
2089 return 0;
2090
2091 case FSTSETCONF:
2092
2093 /*
2094 * Most of the settings have been moved to the generic ioctls
2095 * this just covers debug and board ident now
2096 */
2097
2098 if (card->state != FST_RUNNING) {
2099 printk_err
2100 ("Attempt to configure card %d in non-running state (%d)\n",
2101 card->card_no, card->state);
2102 return -EIO;
2103 }
2104 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2105 return -EFAULT;
2106 }
2107
2108 return set_conf_from_info(card, port, &info);
2109
2110 case SIOCWANDEV:
2111 switch (ifr->ifr_settings.type) {
2112 case IF_GET_IFACE:
2113 return fst_get_iface(card, port, ifr);
2114
2115 case IF_IFACE_SYNC_SERIAL:
2116 case IF_IFACE_V35:
2117 case IF_IFACE_V24:
2118 case IF_IFACE_X21:
2119 case IF_IFACE_X21D:
2120 case IF_IFACE_T1:
2121 case IF_IFACE_E1:
2122 return fst_set_iface(card, port, ifr);
2123
2124 case IF_PROTO_RAW:
2125 port->mode = FST_RAW;
2126 return 0;
2127
2128 case IF_GET_PROTO:
2129 if (port->mode == FST_RAW) {
2130 ifr->ifr_settings.type = IF_PROTO_RAW;
2131 return 0;
2132 }
2133 return hdlc_ioctl(dev, ifr, cmd);
2134
2135 default:
2136 port->mode = FST_GEN_HDLC;
2137 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2138 ifr->ifr_settings.type);
2139 return hdlc_ioctl(dev, ifr, cmd);
2140 }
2141
2142 default:
2143 /* Not one of ours. Pass through to HDLC package */
2144 return hdlc_ioctl(dev, ifr, cmd);
2145 }
2146 }
2147
2148 static void
2149 fst_openport(struct fst_port_info *port)
2150 {
2151 int signals;
2152 int txq_length;
2153
2154 /* Only init things if card is actually running. This allows open to
2155 * succeed for downloads etc.
2156 */
2157 if (port->card->state == FST_RUNNING) {
2158 if (port->run) {
2159 dbg(DBG_OPEN, "open: found port already running\n");
2160
2161 fst_issue_cmd(port, STOPPORT);
2162 port->run = 0;
2163 }
2164
2165 fst_rx_config(port);
2166 fst_tx_config(port);
2167 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2168
2169 fst_issue_cmd(port, STARTPORT);
2170 port->run = 1;
2171
2172 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2173 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2174 ? IPSTS_INDICATE : IPSTS_DCD))
2175 netif_carrier_on(port_to_dev(port));
2176 else
2177 netif_carrier_off(port_to_dev(port));
2178
2179 txq_length = port->txqe - port->txqs;
2180 port->txqe = 0;
2181 port->txqs = 0;
2182 }
2183
2184 }
2185
2186 static void
2187 fst_closeport(struct fst_port_info *port)
2188 {
2189 if (port->card->state == FST_RUNNING) {
2190 if (port->run) {
2191 port->run = 0;
2192 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2193
2194 fst_issue_cmd(port, STOPPORT);
2195 } else {
2196 dbg(DBG_OPEN, "close: port not running\n");
2197 }
2198 }
2199 }
2200
2201 static int
2202 fst_open(struct net_device *dev)
2203 {
2204 int err;
2205 struct fst_port_info *port;
2206
2207 port = dev_to_port(dev);
2208 if (!try_module_get(THIS_MODULE))
2209 return -EBUSY;
2210
2211 if (port->mode != FST_RAW) {
2212 err = hdlc_open(dev);
2213 if (err)
2214 return err;
2215 }
2216
2217 fst_openport(port);
2218 netif_wake_queue(dev);
2219 return 0;
2220 }
2221
2222 static int
2223 fst_close(struct net_device *dev)
2224 {
2225 struct fst_port_info *port;
2226 struct fst_card_info *card;
2227 unsigned char tx_dma_done;
2228 unsigned char rx_dma_done;
2229
2230 port = dev_to_port(dev);
2231 card = port->card;
2232
2233 tx_dma_done = inb(card->pci_conf + DMACSR1);
2234 rx_dma_done = inb(card->pci_conf + DMACSR0);
2235 dbg(DBG_OPEN,
2236 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2237 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2238 rx_dma_done);
2239
2240 netif_stop_queue(dev);
2241 fst_closeport(dev_to_port(dev));
2242 if (port->mode != FST_RAW) {
2243 hdlc_close(dev);
2244 }
2245 module_put(THIS_MODULE);
2246 return 0;
2247 }
2248
2249 static int
2250 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2251 {
2252 /*
2253 * Setting currently fixed in FarSync card so we check and forget
2254 */
2255 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2256 return -EINVAL;
2257 return 0;
2258 }
2259
2260 static void
2261 fst_tx_timeout(struct net_device *dev)
2262 {
2263 struct fst_port_info *port;
2264 struct fst_card_info *card;
2265
2266 port = dev_to_port(dev);
2267 card = port->card;
2268 dev->stats.tx_errors++;
2269 dev->stats.tx_aborted_errors++;
2270 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2271 card->card_no, port->index);
2272 fst_issue_cmd(port, ABORTTX);
2273
2274 dev->trans_start = jiffies;
2275 netif_wake_queue(dev);
2276 port->start = 0;
2277 }
2278
2279 static netdev_tx_t
2280 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2281 {
2282 struct fst_card_info *card;
2283 struct fst_port_info *port;
2284 unsigned long flags;
2285 int txq_length;
2286
2287 port = dev_to_port(dev);
2288 card = port->card;
2289 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2290
2291 /* Drop packet with error if we don't have carrier */
2292 if (!netif_carrier_ok(dev)) {
2293 dev_kfree_skb(skb);
2294 dev->stats.tx_errors++;
2295 dev->stats.tx_carrier_errors++;
2296 dbg(DBG_ASS,
2297 "Tried to transmit but no carrier on card %d port %d\n",
2298 card->card_no, port->index);
2299 return NETDEV_TX_OK;
2300 }
2301
2302 /* Drop it if it's too big! MTU failure ? */
2303 if (skb->len > LEN_TX_BUFFER) {
2304 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2305 LEN_TX_BUFFER);
2306 dev_kfree_skb(skb);
2307 dev->stats.tx_errors++;
2308 return NETDEV_TX_OK;
2309 }
2310
2311 /*
2312 * We are always going to queue the packet
2313 * so that the bottom half is the only place we tx from
2314 * Check there is room in the port txq
2315 */
2316 spin_lock_irqsave(&card->card_lock, flags);
2317 if ((txq_length = port->txqe - port->txqs) < 0) {
2318 /*
2319 * This is the case where the next free has wrapped but the
2320 * last used hasn't
2321 */
2322 txq_length = txq_length + FST_TXQ_DEPTH;
2323 }
2324 spin_unlock_irqrestore(&card->card_lock, flags);
2325 if (txq_length > fst_txq_high) {
2326 /*
2327 * We have got enough buffers in the pipeline. Ask the network
2328 * layer to stop sending frames down
2329 */
2330 netif_stop_queue(dev);
2331 port->start = 1; /* I'm using this to signal stop sent up */
2332 }
2333
2334 if (txq_length == FST_TXQ_DEPTH - 1) {
2335 /*
2336 * This shouldn't have happened but such is life
2337 */
2338 dev_kfree_skb(skb);
2339 dev->stats.tx_errors++;
2340 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2341 card->card_no, port->index);
2342 return NETDEV_TX_OK;
2343 }
2344
2345 /*
2346 * queue the buffer
2347 */
2348 spin_lock_irqsave(&card->card_lock, flags);
2349 port->txq[port->txqe] = skb;
2350 port->txqe++;
2351 if (port->txqe == FST_TXQ_DEPTH)
2352 port->txqe = 0;
2353 spin_unlock_irqrestore(&card->card_lock, flags);
2354
2355 /* Scehdule the bottom half which now does transmit processing */
2356 fst_q_work_item(&fst_work_txq, card->card_no);
2357 tasklet_schedule(&fst_tx_task);
2358
2359 return NETDEV_TX_OK;
2360 }
2361
2362 /*
2363 * Card setup having checked hardware resources.
2364 * Should be pretty bizarre if we get an error here (kernel memory
2365 * exhaustion is one possibility). If we do see a problem we report it
2366 * via a printk and leave the corresponding interface and all that follow
2367 * disabled.
2368 */
2369 static char *type_strings[] __devinitdata = {
2370 "no hardware", /* Should never be seen */
2371 "FarSync T2P",
2372 "FarSync T4P",
2373 "FarSync T1U",
2374 "FarSync T2U",
2375 "FarSync T4U",
2376 "FarSync TE1"
2377 };
2378
2379 static void __devinit
2380 fst_init_card(struct fst_card_info *card)
2381 {
2382 int i;
2383 int err;
2384
2385 /* We're working on a number of ports based on the card ID. If the
2386 * firmware detects something different later (should never happen)
2387 * we'll have to revise it in some way then.
2388 */
2389 for (i = 0; i < card->nports; i++) {
2390 err = register_hdlc_device(card->ports[i].dev);
2391 if (err < 0) {
2392 int j;
2393 printk_err ("Cannot register HDLC device for port %d"
2394 " (errno %d)\n", i, -err );
2395 for (j = i; j < card->nports; j++) {
2396 free_netdev(card->ports[j].dev);
2397 card->ports[j].dev = NULL;
2398 }
2399 card->nports = i;
2400 break;
2401 }
2402 }
2403
2404 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2405 port_to_dev(&card->ports[0])->name,
2406 port_to_dev(&card->ports[card->nports - 1])->name,
2407 type_strings[card->type], card->irq, card->nports);
2408 }
2409
2410 static const struct net_device_ops fst_ops = {
2411 .ndo_open = fst_open,
2412 .ndo_stop = fst_close,
2413 .ndo_change_mtu = hdlc_change_mtu,
2414 .ndo_start_xmit = hdlc_start_xmit,
2415 .ndo_do_ioctl = fst_ioctl,
2416 .ndo_tx_timeout = fst_tx_timeout,
2417 };
2418
2419 /*
2420 * Initialise card when detected.
2421 * Returns 0 to indicate success, or errno otherwise.
2422 */
2423 static int __devinit
2424 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2425 {
2426 static int firsttime_done = 0;
2427 static int no_of_cards_added = 0;
2428 struct fst_card_info *card;
2429 int err = 0;
2430 int i;
2431
2432 if (!firsttime_done) {
2433 printk_info("FarSync WAN driver " FST_USER_VERSION
2434 " (c) 2001-2004 FarSite Communications Ltd.\n");
2435 firsttime_done = 1;
2436 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2437 }
2438
2439 /*
2440 * We are going to be clever and allow certain cards not to be
2441 * configured. An exclude list can be provided in /etc/modules.conf
2442 */
2443 if (fst_excluded_cards != 0) {
2444 /*
2445 * There are cards to exclude
2446 *
2447 */
2448 for (i = 0; i < fst_excluded_cards; i++) {
2449 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2450 printk_info("FarSync PCI device %d not assigned\n",
2451 (pdev->devfn) >> 3);
2452 return -EBUSY;
2453 }
2454 }
2455 }
2456
2457 /* Allocate driver private data */
2458 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2459 if (card == NULL) {
2460 printk_err("FarSync card found but insufficient memory for"
2461 " driver storage\n");
2462 return -ENOMEM;
2463 }
2464
2465 /* Try to enable the device */
2466 if ((err = pci_enable_device(pdev)) != 0) {
2467 printk_err("Failed to enable card. Err %d\n", -err);
2468 kfree(card);
2469 return err;
2470 }
2471
2472 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2473 printk_err("Failed to allocate regions. Err %d\n", -err);
2474 pci_disable_device(pdev);
2475 kfree(card);
2476 return err;
2477 }
2478
2479 /* Get virtual addresses of memory regions */
2480 card->pci_conf = pci_resource_start(pdev, 1);
2481 card->phys_mem = pci_resource_start(pdev, 2);
2482 card->phys_ctlmem = pci_resource_start(pdev, 3);
2483 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2484 printk_err("Physical memory remap failed\n");
2485 pci_release_regions(pdev);
2486 pci_disable_device(pdev);
2487 kfree(card);
2488 return -ENODEV;
2489 }
2490 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2491 printk_err("Control memory remap failed\n");
2492 pci_release_regions(pdev);
2493 pci_disable_device(pdev);
2494 kfree(card);
2495 return -ENODEV;
2496 }
2497 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2498
2499 /* Register the interrupt handler */
2500 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2501 printk_err("Unable to register interrupt %d\n", card->irq);
2502 pci_release_regions(pdev);
2503 pci_disable_device(pdev);
2504 iounmap(card->ctlmem);
2505 iounmap(card->mem);
2506 kfree(card);
2507 return -ENODEV;
2508 }
2509
2510 /* Record info we need */
2511 card->irq = pdev->irq;
2512 card->type = ent->driver_data;
2513 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2514 (ent->driver_data == FST_TYPE_T4P))
2515 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2516 if ((ent->driver_data == FST_TYPE_T1U) ||
2517 (ent->driver_data == FST_TYPE_TE1))
2518 card->nports = 1;
2519 else
2520 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2521 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2522
2523 card->state = FST_UNINIT;
2524 spin_lock_init ( &card->card_lock );
2525
2526 for ( i = 0 ; i < card->nports ; i++ ) {
2527 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2528 hdlc_device *hdlc;
2529 if (!dev) {
2530 while (i--)
2531 free_netdev(card->ports[i].dev);
2532 printk_err ("FarSync: out of memory\n");
2533 free_irq(card->irq, card);
2534 pci_release_regions(pdev);
2535 pci_disable_device(pdev);
2536 iounmap(card->ctlmem);
2537 iounmap(card->mem);
2538 kfree(card);
2539 return -ENODEV;
2540 }
2541 card->ports[i].dev = dev;
2542 card->ports[i].card = card;
2543 card->ports[i].index = i;
2544 card->ports[i].run = 0;
2545
2546 hdlc = dev_to_hdlc(dev);
2547
2548 /* Fill in the net device info */
2549 /* Since this is a PCI setup this is purely
2550 * informational. Give them the buffer addresses
2551 * and basic card I/O.
2552 */
2553 dev->mem_start = card->phys_mem
2554 + BUF_OFFSET ( txBuffer[i][0][0]);
2555 dev->mem_end = card->phys_mem
2556 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2557 dev->base_addr = card->pci_conf;
2558 dev->irq = card->irq;
2559
2560 dev->netdev_ops = &fst_ops;
2561 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2562 dev->watchdog_timeo = FST_TX_TIMEOUT;
2563 hdlc->attach = fst_attach;
2564 hdlc->xmit = fst_start_xmit;
2565 }
2566
2567 card->device = pdev;
2568
2569 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2570 card->nports, card->irq);
2571 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2572 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2573
2574 /* Reset the card's processor */
2575 fst_cpureset(card);
2576 card->state = FST_RESET;
2577
2578 /* Initialise DMA (if required) */
2579 fst_init_dma(card);
2580
2581 /* Record driver data for later use */
2582 pci_set_drvdata(pdev, card);
2583
2584 /* Remainder of card setup */
2585 fst_card_array[no_of_cards_added] = card;
2586 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2587 fst_init_card(card);
2588 if (card->family == FST_FAMILY_TXU) {
2589 /*
2590 * Allocate a dma buffer for transmit and receives
2591 */
2592 card->rx_dma_handle_host =
2593 pci_alloc_consistent(card->device, FST_MAX_MTU,
2594 &card->rx_dma_handle_card);
2595 if (card->rx_dma_handle_host == NULL) {
2596 printk_err("Could not allocate rx dma buffer\n");
2597 fst_disable_intr(card);
2598 pci_release_regions(pdev);
2599 pci_disable_device(pdev);
2600 iounmap(card->ctlmem);
2601 iounmap(card->mem);
2602 kfree(card);
2603 return -ENOMEM;
2604 }
2605 card->tx_dma_handle_host =
2606 pci_alloc_consistent(card->device, FST_MAX_MTU,
2607 &card->tx_dma_handle_card);
2608 if (card->tx_dma_handle_host == NULL) {
2609 printk_err("Could not allocate tx dma buffer\n");
2610 fst_disable_intr(card);
2611 pci_release_regions(pdev);
2612 pci_disable_device(pdev);
2613 iounmap(card->ctlmem);
2614 iounmap(card->mem);
2615 kfree(card);
2616 return -ENOMEM;
2617 }
2618 }
2619 return 0; /* Success */
2620 }
2621
2622 /*
2623 * Cleanup and close down a card
2624 */
2625 static void __devexit
2626 fst_remove_one(struct pci_dev *pdev)
2627 {
2628 struct fst_card_info *card;
2629 int i;
2630
2631 card = pci_get_drvdata(pdev);
2632
2633 for (i = 0; i < card->nports; i++) {
2634 struct net_device *dev = port_to_dev(&card->ports[i]);
2635 unregister_hdlc_device(dev);
2636 }
2637
2638 fst_disable_intr(card);
2639 free_irq(card->irq, card);
2640
2641 iounmap(card->ctlmem);
2642 iounmap(card->mem);
2643 pci_release_regions(pdev);
2644 if (card->family == FST_FAMILY_TXU) {
2645 /*
2646 * Free dma buffers
2647 */
2648 pci_free_consistent(card->device, FST_MAX_MTU,
2649 card->rx_dma_handle_host,
2650 card->rx_dma_handle_card);
2651 pci_free_consistent(card->device, FST_MAX_MTU,
2652 card->tx_dma_handle_host,
2653 card->tx_dma_handle_card);
2654 }
2655 fst_card_array[card->card_no] = NULL;
2656 }
2657
2658 static struct pci_driver fst_driver = {
2659 .name = FST_NAME,
2660 .id_table = fst_pci_dev_id,
2661 .probe = fst_add_one,
2662 .remove = __devexit_p(fst_remove_one),
2663 .suspend = NULL,
2664 .resume = NULL,
2665 };
2666
2667 static int __init
2668 fst_init(void)
2669 {
2670 int i;
2671
2672 for (i = 0; i < FST_MAX_CARDS; i++)
2673 fst_card_array[i] = NULL;
2674 spin_lock_init(&fst_work_q_lock);
2675 return pci_register_driver(&fst_driver);
2676 }
2677
2678 static void __exit
2679 fst_cleanup_module(void)
2680 {
2681 printk_info("FarSync WAN driver unloading\n");
2682 pci_unregister_driver(&fst_driver);
2683 }
2684
2685 module_init(fst_init);
2686 module_exit(fst_cleanup_module);