farsync: fix info leak in ioctl
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wan / farsync.c
1 /*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/if.h>
30 #include <linux/hdlc.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33
34 #include "farsync.h"
35
36 /*
37 * Module info
38 */
39 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
40 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
41 MODULE_LICENSE("GPL");
42
43 /* Driver configuration and global parameters
44 * ==========================================
45 */
46
47 /* Number of ports (per card) and cards supported
48 */
49 #define FST_MAX_PORTS 4
50 #define FST_MAX_CARDS 32
51
52 /* Default parameters for the link
53 */
54 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
55 * useful */
56 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
57 * of frames on the way down to the card
58 * so that we can keep the card busy
59 * and maximise throughput
60 */
61 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
62 * network layer */
63 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
64 * control from network layer */
65 #define FST_MAX_MTU 8000 /* Huge but possible */
66 #define FST_DEF_MTU 1500 /* Common sane value */
67
68 #define FST_TX_TIMEOUT (2*HZ)
69
70 #ifdef ARPHRD_RAWHDLC
71 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
72 #else
73 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
74 #endif
75
76 /*
77 * Modules parameters and associated variables
78 */
79 static int fst_txq_low = FST_LOW_WATER_MARK;
80 static int fst_txq_high = FST_HIGH_WATER_MARK;
81 static int fst_max_reads = 7;
82 static int fst_excluded_cards = 0;
83 static int fst_excluded_list[FST_MAX_CARDS];
84
85 module_param(fst_txq_low, int, 0);
86 module_param(fst_txq_high, int, 0);
87 module_param(fst_max_reads, int, 0);
88 module_param(fst_excluded_cards, int, 0);
89 module_param_array(fst_excluded_list, int, NULL, 0);
90
91 /* Card shared memory layout
92 * =========================
93 */
94 #pragma pack(1)
95
96 /* This information is derived in part from the FarSite FarSync Smc.h
97 * file. Unfortunately various name clashes and the non-portability of the
98 * bit field declarations in that file have meant that I have chosen to
99 * recreate the information here.
100 *
101 * The SMC (Shared Memory Configuration) has a version number that is
102 * incremented every time there is a significant change. This number can
103 * be used to check that we have not got out of step with the firmware
104 * contained in the .CDE files.
105 */
106 #define SMC_VERSION 24
107
108 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
109
110 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
111 * configuration structure */
112 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
113 * buffers */
114
115 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
116 #define LEN_RX_BUFFER 8192
117
118 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
119 #define LEN_SMALL_RX_BUFFER 256
120
121 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
122 #define NUM_RX_BUFFER 8
123
124 /* Interrupt retry time in milliseconds */
125 #define INT_RETRY_TIME 2
126
127 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
128 * of buffer descriptors. The structure is almost identical to that used
129 * in the LANCE Ethernet controllers. Details available as PDF from the
130 * AMD web site: http://www.amd.com/products/epd/processors/\
131 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
132 */
133 struct txdesc { /* Transmit descriptor */
134 volatile u16 ladr; /* Low order address of packet. This is a
135 * linear address in the Am186 memory space
136 */
137 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
138 * bits must be zero
139 */
140 volatile u8 bits; /* Status and config */
141 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
142 * Transmit terminal count interrupt enable in
143 * top bit.
144 */
145 u16 unused; /* Not used in Tx */
146 };
147
148 struct rxdesc { /* Receive descriptor */
149 volatile u16 ladr; /* Low order address of packet */
150 volatile u8 hadr; /* High order address */
151 volatile u8 bits; /* Status and config */
152 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
153 * Receive terminal count interrupt enable in
154 * top bit.
155 */
156 volatile u16 mcnt; /* Message byte count (15 bits) */
157 };
158
159 /* Convert a length into the 15 bit 2's complement */
160 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
161 /* Since we need to set the high bit to enable the completion interrupt this
162 * can be made a lot simpler
163 */
164 #define cnv_bcnt(len) (-(len))
165
166 /* Status and config bits for the above */
167 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
168 #define TX_STP 0x02 /* Tx: start of packet */
169 #define TX_ENP 0x01 /* Tx: end of packet */
170 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
171 #define RX_FRAM 0x20 /* Rx: framing error */
172 #define RX_OFLO 0x10 /* Rx: overflow error */
173 #define RX_CRC 0x08 /* Rx: CRC error */
174 #define RX_HBUF 0x04 /* Rx: buffer error */
175 #define RX_STP 0x02 /* Rx: start of packet */
176 #define RX_ENP 0x01 /* Rx: end of packet */
177
178 /* Interrupts from the card are caused by various events which are presented
179 * in a circular buffer as several events may be processed on one physical int
180 */
181 #define MAX_CIRBUFF 32
182
183 struct cirbuff {
184 u8 rdindex; /* read, then increment and wrap */
185 u8 wrindex; /* write, then increment and wrap */
186 u8 evntbuff[MAX_CIRBUFF];
187 };
188
189 /* Interrupt event codes.
190 * Where appropriate the two low order bits indicate the port number
191 */
192 #define CTLA_CHG 0x18 /* Control signal changed */
193 #define CTLB_CHG 0x19
194 #define CTLC_CHG 0x1A
195 #define CTLD_CHG 0x1B
196
197 #define INIT_CPLT 0x20 /* Initialisation complete */
198 #define INIT_FAIL 0x21 /* Initialisation failed */
199
200 #define ABTA_SENT 0x24 /* Abort sent */
201 #define ABTB_SENT 0x25
202 #define ABTC_SENT 0x26
203 #define ABTD_SENT 0x27
204
205 #define TXA_UNDF 0x28 /* Transmission underflow */
206 #define TXB_UNDF 0x29
207 #define TXC_UNDF 0x2A
208 #define TXD_UNDF 0x2B
209
210 #define F56_INT 0x2C
211 #define M32_INT 0x2D
212
213 #define TE1_ALMA 0x30
214
215 /* Port physical configuration. See farsync.h for field values */
216 struct port_cfg {
217 u16 lineInterface; /* Physical interface type */
218 u8 x25op; /* Unused at present */
219 u8 internalClock; /* 1 => internal clock, 0 => external */
220 u8 transparentMode; /* 1 => on, 0 => off */
221 u8 invertClock; /* 0 => normal, 1 => inverted */
222 u8 padBytes[6]; /* Padding */
223 u32 lineSpeed; /* Speed in bps */
224 };
225
226 /* TE1 port physical configuration */
227 struct su_config {
228 u32 dataRate;
229 u8 clocking;
230 u8 framing;
231 u8 structure;
232 u8 interface;
233 u8 coding;
234 u8 lineBuildOut;
235 u8 equalizer;
236 u8 transparentMode;
237 u8 loopMode;
238 u8 range;
239 u8 txBufferMode;
240 u8 rxBufferMode;
241 u8 startingSlot;
242 u8 losThreshold;
243 u8 enableIdleCode;
244 u8 idleCode;
245 u8 spare[44];
246 };
247
248 /* TE1 Status */
249 struct su_status {
250 u32 receiveBufferDelay;
251 u32 framingErrorCount;
252 u32 codeViolationCount;
253 u32 crcErrorCount;
254 u32 lineAttenuation;
255 u8 portStarted;
256 u8 lossOfSignal;
257 u8 receiveRemoteAlarm;
258 u8 alarmIndicationSignal;
259 u8 spare[40];
260 };
261
262 /* Finally sling all the above together into the shared memory structure.
263 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
264 * evolving under NT for some time so I guess we're stuck with it.
265 * The structure starts at offset SMC_BASE.
266 * See farsync.h for some field values.
267 */
268 struct fst_shared {
269 /* DMA descriptor rings */
270 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
271 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
272
273 /* Obsolete small buffers */
274 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
275 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
276
277 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
278 * 0xFF => halted
279 */
280
281 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
282 * set to 0xEE by host to acknowledge interrupt
283 */
284
285 u16 smcVersion; /* Must match SMC_VERSION */
286
287 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
288 * version, RR = revision and BB = build
289 */
290
291 u16 txa_done; /* Obsolete completion flags */
292 u16 rxa_done;
293 u16 txb_done;
294 u16 rxb_done;
295 u16 txc_done;
296 u16 rxc_done;
297 u16 txd_done;
298 u16 rxd_done;
299
300 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
301
302 struct cirbuff interruptEvent; /* interrupt causes */
303
304 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
305 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
306
307 struct port_cfg portConfig[FST_MAX_PORTS];
308
309 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
310
311 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
312
313 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
314 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
315
316 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
317 u16 cardMailbox[4]; /* Not used */
318
319 /* Number of times the card thinks the host has
320 * missed an interrupt by not acknowledging
321 * within 2mS (I guess NT has problems)
322 */
323 u32 interruptRetryCount;
324
325 /* Driver private data used as an ID. We'll not
326 * use this as I'd rather keep such things
327 * in main memory rather than on the PCI bus
328 */
329 u32 portHandle[FST_MAX_PORTS];
330
331 /* Count of Tx underflows for stats */
332 u32 transmitBufferUnderflow[FST_MAX_PORTS];
333
334 /* Debounced V.24 control input status */
335 u32 v24DebouncedSts[FST_MAX_PORTS];
336
337 /* Adapter debounce timers. Don't touch */
338 u32 ctsTimer[FST_MAX_PORTS];
339 u32 ctsTimerRun[FST_MAX_PORTS];
340 u32 dcdTimer[FST_MAX_PORTS];
341 u32 dcdTimerRun[FST_MAX_PORTS];
342
343 u32 numberOfPorts; /* Number of ports detected at startup */
344
345 u16 _reserved[64];
346
347 u16 cardMode; /* Bit-mask to enable features:
348 * Bit 0: 1 enables LED identify mode
349 */
350
351 u16 portScheduleOffset;
352
353 struct su_config suConfig; /* TE1 Bits */
354 struct su_status suStatus;
355
356 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
357 * the structure and marks the end of shared
358 * memory. Adapter code initializes it as
359 * END_SIG.
360 */
361 };
362
363 /* endOfSmcSignature value */
364 #define END_SIG 0x12345678
365
366 /* Mailbox values. (portMailbox) */
367 #define NOP 0 /* No operation */
368 #define ACK 1 /* Positive acknowledgement to PC driver */
369 #define NAK 2 /* Negative acknowledgement to PC driver */
370 #define STARTPORT 3 /* Start an HDLC port */
371 #define STOPPORT 4 /* Stop an HDLC port */
372 #define ABORTTX 5 /* Abort the transmitter for a port */
373 #define SETV24O 6 /* Set V24 outputs */
374
375 /* PLX Chip Register Offsets */
376 #define CNTRL_9052 0x50 /* Control Register */
377 #define CNTRL_9054 0x6c /* Control Register */
378
379 #define INTCSR_9052 0x4c /* Interrupt control/status register */
380 #define INTCSR_9054 0x68 /* Interrupt control/status register */
381
382 /* 9054 DMA Registers */
383 /*
384 * Note that we will be using DMA Channel 0 for copying rx data
385 * and Channel 1 for copying tx data
386 */
387 #define DMAMODE0 0x80
388 #define DMAPADR0 0x84
389 #define DMALADR0 0x88
390 #define DMASIZ0 0x8c
391 #define DMADPR0 0x90
392 #define DMAMODE1 0x94
393 #define DMAPADR1 0x98
394 #define DMALADR1 0x9c
395 #define DMASIZ1 0xa0
396 #define DMADPR1 0xa4
397 #define DMACSR0 0xa8
398 #define DMACSR1 0xa9
399 #define DMAARB 0xac
400 #define DMATHR 0xb0
401 #define DMADAC0 0xb4
402 #define DMADAC1 0xb8
403 #define DMAMARBR 0xac
404
405 #define FST_MIN_DMA_LEN 64
406 #define FST_RX_DMA_INT 0x01
407 #define FST_TX_DMA_INT 0x02
408 #define FST_CARD_INT 0x04
409
410 /* Larger buffers are positioned in memory at offset BFM_BASE */
411 struct buf_window {
412 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
413 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
414 };
415
416 /* Calculate offset of a buffer object within the shared memory window */
417 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
418
419 #pragma pack()
420
421 /* Device driver private information
422 * =================================
423 */
424 /* Per port (line or channel) information
425 */
426 struct fst_port_info {
427 struct net_device *dev; /* Device struct - must be first */
428 struct fst_card_info *card; /* Card we're associated with */
429 int index; /* Port index on the card */
430 int hwif; /* Line hardware (lineInterface copy) */
431 int run; /* Port is running */
432 int mode; /* Normal or FarSync raw */
433 int rxpos; /* Next Rx buffer to use */
434 int txpos; /* Next Tx buffer to use */
435 int txipos; /* Next Tx buffer to check for free */
436 int start; /* Indication of start/stop to network */
437 /*
438 * A sixteen entry transmit queue
439 */
440 int txqs; /* index to get next buffer to tx */
441 int txqe; /* index to queue next packet */
442 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
443 int rxqdepth;
444 };
445
446 /* Per card information
447 */
448 struct fst_card_info {
449 char __iomem *mem; /* Card memory mapped to kernel space */
450 char __iomem *ctlmem; /* Control memory for PCI cards */
451 unsigned int phys_mem; /* Physical memory window address */
452 unsigned int phys_ctlmem; /* Physical control memory address */
453 unsigned int irq; /* Interrupt request line number */
454 unsigned int nports; /* Number of serial ports */
455 unsigned int type; /* Type index of card */
456 unsigned int state; /* State of card */
457 spinlock_t card_lock; /* Lock for SMP access */
458 unsigned short pci_conf; /* PCI card config in I/O space */
459 /* Per port info */
460 struct fst_port_info ports[FST_MAX_PORTS];
461 struct pci_dev *device; /* Information about the pci device */
462 int card_no; /* Inst of the card on the system */
463 int family; /* TxP or TxU */
464 int dmarx_in_progress;
465 int dmatx_in_progress;
466 unsigned long int_count;
467 unsigned long int_time_ave;
468 void *rx_dma_handle_host;
469 dma_addr_t rx_dma_handle_card;
470 void *tx_dma_handle_host;
471 dma_addr_t tx_dma_handle_card;
472 struct sk_buff *dma_skb_rx;
473 struct fst_port_info *dma_port_rx;
474 struct fst_port_info *dma_port_tx;
475 int dma_len_rx;
476 int dma_len_tx;
477 int dma_txpos;
478 int dma_rxpos;
479 };
480
481 /* Convert an HDLC device pointer into a port info pointer and similar */
482 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
483 #define port_to_dev(P) ((P)->dev)
484
485
486 /*
487 * Shared memory window access macros
488 *
489 * We have a nice memory based structure above, which could be directly
490 * mapped on i386 but might not work on other architectures unless we use
491 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
492 * physical offsets so we have to convert. The only saving grace is that
493 * this should all collapse back to a simple indirection eventually.
494 */
495 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
496
497 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
498 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
500
501 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
502 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
504
505 /*
506 * Debug support
507 */
508 #if FST_DEBUG
509
510 static int fst_debug_mask = { FST_DEBUG };
511
512 /* Most common debug activity is to print something if the corresponding bit
513 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
514 * support variable numbers of macro parameters. The inverted if prevents us
515 * eating someone else's else clause.
516 */
517 #define dbg(F, fmt, args...) \
518 do { \
519 if (fst_debug_mask & (F)) \
520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
521 } while (0)
522 #else
523 #define dbg(F, fmt, args...) \
524 do { \
525 if (0) \
526 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
527 } while (0)
528 #endif
529
530 /*
531 * PCI ID lookup table
532 */
533 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551
552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 {0,} /* End */
555 };
556
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558
559 /*
560 * Device Driver Work Queues
561 *
562 * So that we don't spend too much time processing events in the
563 * Interrupt Service routine, we will declare a work queue per Card
564 * and make the ISR schedule a task in the queue for later execution.
565 * In the 2.4 Kernel we used to use the immediate queue for BH's
566 * Now that they are gone, tasklets seem to be much better than work
567 * queues.
568 */
569
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
574
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
582
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
585 {
586 unsigned long flags;
587 u64 mask;
588
589 /*
590 * Grab the queue exclusively
591 */
592 spin_lock_irqsave(&fst_work_q_lock, flags);
593
594 /*
595 * Making an entry in the queue is simply a matter of setting
596 * a bit for the card indicating that there is work to do in the
597 * bottom half for the card. Note the limitation of 64 cards.
598 * That ought to be enough
599 */
600 mask = (u64)1 << card_index;
601 *queue |= mask;
602 spin_unlock_irqrestore(&fst_work_q_lock, flags);
603 }
604
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
607 {
608 unsigned long flags;
609 u64 work_txq;
610 int i;
611
612 /*
613 * Grab the queue exclusively
614 */
615 dbg(DBG_TX, "fst_process_tx_work_q\n");
616 spin_lock_irqsave(&fst_work_q_lock, flags);
617 work_txq = fst_work_txq;
618 fst_work_txq = 0;
619 spin_unlock_irqrestore(&fst_work_q_lock, flags);
620
621 /*
622 * Call the bottom half for each card with work waiting
623 */
624 for (i = 0; i < FST_MAX_CARDS; i++) {
625 if (work_txq & 0x01) {
626 if (fst_card_array[i] != NULL) {
627 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 do_bottom_half_tx(fst_card_array[i]);
629 }
630 }
631 work_txq = work_txq >> 1;
632 }
633 }
634
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
637 {
638 unsigned long flags;
639 u64 work_intq;
640 int i;
641
642 /*
643 * Grab the queue exclusively
644 */
645 dbg(DBG_INTR, "fst_process_int_work_q\n");
646 spin_lock_irqsave(&fst_work_q_lock, flags);
647 work_intq = fst_work_intq;
648 fst_work_intq = 0;
649 spin_unlock_irqrestore(&fst_work_q_lock, flags);
650
651 /*
652 * Call the bottom half for each card with work waiting
653 */
654 for (i = 0; i < FST_MAX_CARDS; i++) {
655 if (work_intq & 0x01) {
656 if (fst_card_array[i] != NULL) {
657 dbg(DBG_INTR,
658 "Calling rx & tx bh for card %d\n", i);
659 do_bottom_half_rx(fst_card_array[i]);
660 do_bottom_half_tx(fst_card_array[i]);
661 }
662 }
663 work_intq = work_intq >> 1;
664 }
665 }
666
667 /* Card control functions
668 * ======================
669 */
670 /* Place the processor in reset state
671 *
672 * Used to be a simple write to card control space but a glitch in the latest
673 * AMD Am186CH processor means that we now have to do it by asserting and de-
674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675 * at offset 9052_CNTRL. Note the updates for the TXU.
676 */
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
679 {
680 unsigned char interrupt_line_register;
681 unsigned long j = jiffies + 1;
682 unsigned int regval;
683
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
689 }
690 /*
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
693 */
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 /*
697 * We are delaying here to allow the 9054 to reset itself
698 */
699 j = jiffies + 1;
700 while (jiffies < j)
701 /* Do nothing */ ;
702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703 /*
704 * We are delaying here to allow the 9054 to reload its eeprom
705 */
706 j = jiffies + 1;
707 while (jiffies < j)
708 /* Do nothing */ ;
709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710
711 if (pci_write_config_byte
712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 dbg(DBG_ASS,
714 "Error in writing interrupt line register\n");
715 }
716
717 } else {
718 regval = inl(card->pci_conf + CNTRL_9052);
719
720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722 }
723 }
724
725 /* Release the processor from reset
726 */
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
729 {
730 if (card->family == FST_FAMILY_TXU) {
731 /*
732 * Force posted writes to complete
733 */
734 (void) readb(card->mem);
735
736 /*
737 * Release LRESET DO = 1
738 * Then release Local Hold, DO = 1
739 */
740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 } else {
743 (void) readb(card->ctlmem);
744 }
745 }
746
747 /* Clear the cards interrupt flag
748 */
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
751 {
752 if (card->family == FST_FAMILY_TXU) {
753 (void) readb(card->ctlmem);
754 } else {
755 /* Poke the appropriate PLX chip register (same as enabling interrupts)
756 */
757 outw(0x0543, card->pci_conf + INTCSR_9052);
758 }
759 }
760
761 /* Enable card interrupts
762 */
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
765 {
766 if (card->family == FST_FAMILY_TXU) {
767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 } else {
769 outw(0x0543, card->pci_conf + INTCSR_9052);
770 }
771 }
772
773 /* Disable card interrupts
774 */
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
777 {
778 if (card->family == FST_FAMILY_TXU) {
779 outl(0x00000000, card->pci_conf + INTCSR_9054);
780 } else {
781 outw(0x0000, card->pci_conf + INTCSR_9052);
782 }
783 }
784
785 /* Process the result of trying to pass a received frame up the stack
786 */
787 static void
788 fst_process_rx_status(int rx_status, char *name)
789 {
790 switch (rx_status) {
791 case NET_RX_SUCCESS:
792 {
793 /*
794 * Nothing to do here
795 */
796 break;
797 }
798 case NET_RX_DROP:
799 {
800 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
801 break;
802 }
803 }
804 }
805
806 /* Initilaise DMA for PLX 9054
807 */
808 static inline void
809 fst_init_dma(struct fst_card_info *card)
810 {
811 /*
812 * This is only required for the PLX 9054
813 */
814 if (card->family == FST_FAMILY_TXU) {
815 pci_set_master(card->device);
816 outl(0x00020441, card->pci_conf + DMAMODE0);
817 outl(0x00020441, card->pci_conf + DMAMODE1);
818 outl(0x0, card->pci_conf + DMATHR);
819 }
820 }
821
822 /* Tx dma complete interrupt
823 */
824 static void
825 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826 int len, int txpos)
827 {
828 struct net_device *dev = port_to_dev(port);
829
830 /*
831 * Everything is now set, just tell the card to go
832 */
833 dbg(DBG_TX, "fst_tx_dma_complete\n");
834 FST_WRB(card, txDescrRing[port->index][txpos].bits,
835 DMA_OWN | TX_STP | TX_ENP);
836 dev->stats.tx_packets++;
837 dev->stats.tx_bytes += len;
838 dev->trans_start = jiffies;
839 }
840
841 /*
842 * Mark it for our own raw sockets interface
843 */
844 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
845 {
846 skb->dev = dev;
847 skb_reset_mac_header(skb);
848 skb->pkt_type = PACKET_HOST;
849 return htons(ETH_P_CUST);
850 }
851
852 /* Rx dma complete interrupt
853 */
854 static void
855 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
856 int len, struct sk_buff *skb, int rxp)
857 {
858 struct net_device *dev = port_to_dev(port);
859 int pi;
860 int rx_status;
861
862 dbg(DBG_TX, "fst_rx_dma_complete\n");
863 pi = port->index;
864 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
865
866 /* Reset buffer descriptor */
867 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
868
869 /* Update stats */
870 dev->stats.rx_packets++;
871 dev->stats.rx_bytes += len;
872
873 /* Push upstream */
874 dbg(DBG_RX, "Pushing the frame up the stack\n");
875 if (port->mode == FST_RAW)
876 skb->protocol = farsync_type_trans(skb, dev);
877 else
878 skb->protocol = hdlc_type_trans(skb, dev);
879 rx_status = netif_rx(skb);
880 fst_process_rx_status(rx_status, port_to_dev(port)->name);
881 if (rx_status == NET_RX_DROP)
882 dev->stats.rx_dropped++;
883 }
884
885 /*
886 * Receive a frame through the DMA
887 */
888 static inline void
889 fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
890 dma_addr_t mem, int len)
891 {
892 /*
893 * This routine will setup the DMA and start it
894 */
895
896 dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
897 (unsigned long) skb, (unsigned long) mem, len);
898 if (card->dmarx_in_progress) {
899 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
900 }
901
902 outl(skb, card->pci_conf + DMAPADR0); /* Copy to here */
903 outl(mem, card->pci_conf + DMALADR0); /* from here */
904 outl(len, card->pci_conf + DMASIZ0); /* for this length */
905 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
906
907 /*
908 * We use the dmarx_in_progress flag to flag the channel as busy
909 */
910 card->dmarx_in_progress = 1;
911 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
912 }
913
914 /*
915 * Send a frame through the DMA
916 */
917 static inline void
918 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
919 unsigned char *mem, int len)
920 {
921 /*
922 * This routine will setup the DMA and start it.
923 */
924
925 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
926 if (card->dmatx_in_progress) {
927 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
928 }
929
930 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
931 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
932 outl(len, card->pci_conf + DMASIZ1); /* for this length */
933 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
934
935 /*
936 * We use the dmatx_in_progress to flag the channel as busy
937 */
938 card->dmatx_in_progress = 1;
939 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
940 }
941
942 /* Issue a Mailbox command for a port.
943 * Note we issue them on a fire and forget basis, not expecting to see an
944 * error and not waiting for completion.
945 */
946 static void
947 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
948 {
949 struct fst_card_info *card;
950 unsigned short mbval;
951 unsigned long flags;
952 int safety;
953
954 card = port->card;
955 spin_lock_irqsave(&card->card_lock, flags);
956 mbval = FST_RDW(card, portMailbox[port->index][0]);
957
958 safety = 0;
959 /* Wait for any previous command to complete */
960 while (mbval > NAK) {
961 spin_unlock_irqrestore(&card->card_lock, flags);
962 schedule_timeout_uninterruptible(1);
963 spin_lock_irqsave(&card->card_lock, flags);
964
965 if (++safety > 2000) {
966 pr_err("Mailbox safety timeout\n");
967 break;
968 }
969
970 mbval = FST_RDW(card, portMailbox[port->index][0]);
971 }
972 if (safety > 0) {
973 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
974 }
975 if (mbval == NAK) {
976 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
977 }
978
979 FST_WRW(card, portMailbox[port->index][0], cmd);
980
981 if (cmd == ABORTTX || cmd == STARTPORT) {
982 port->txpos = 0;
983 port->txipos = 0;
984 port->start = 0;
985 }
986
987 spin_unlock_irqrestore(&card->card_lock, flags);
988 }
989
990 /* Port output signals control
991 */
992 static inline void
993 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
994 {
995 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
996 FST_WRL(port->card, v24OpSts[port->index], outputs);
997
998 if (port->run)
999 fst_issue_cmd(port, SETV24O);
1000 }
1001
1002 static inline void
1003 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004 {
1005 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006 FST_WRL(port->card, v24OpSts[port->index], outputs);
1007
1008 if (port->run)
1009 fst_issue_cmd(port, SETV24O);
1010 }
1011
1012 /*
1013 * Setup port Rx buffers
1014 */
1015 static void
1016 fst_rx_config(struct fst_port_info *port)
1017 {
1018 int i;
1019 int pi;
1020 unsigned int offset;
1021 unsigned long flags;
1022 struct fst_card_info *card;
1023
1024 pi = port->index;
1025 card = port->card;
1026 spin_lock_irqsave(&card->card_lock, flags);
1027 for (i = 0; i < NUM_RX_BUFFER; i++) {
1028 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029
1030 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035 }
1036 port->rxpos = 0;
1037 spin_unlock_irqrestore(&card->card_lock, flags);
1038 }
1039
1040 /*
1041 * Setup port Tx buffers
1042 */
1043 static void
1044 fst_tx_config(struct fst_port_info *port)
1045 {
1046 int i;
1047 int pi;
1048 unsigned int offset;
1049 unsigned long flags;
1050 struct fst_card_info *card;
1051
1052 pi = port->index;
1053 card = port->card;
1054 spin_lock_irqsave(&card->card_lock, flags);
1055 for (i = 0; i < NUM_TX_BUFFER; i++) {
1056 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057
1058 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062 }
1063 port->txpos = 0;
1064 port->txipos = 0;
1065 port->start = 0;
1066 spin_unlock_irqrestore(&card->card_lock, flags);
1067 }
1068
1069 /* TE1 Alarm change interrupt event
1070 */
1071 static void
1072 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073 {
1074 u8 los;
1075 u8 rra;
1076 u8 ais;
1077
1078 los = FST_RDB(card, suStatus.lossOfSignal);
1079 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081
1082 if (los) {
1083 /*
1084 * Lost the link
1085 */
1086 if (netif_carrier_ok(port_to_dev(port))) {
1087 dbg(DBG_INTR, "Net carrier off\n");
1088 netif_carrier_off(port_to_dev(port));
1089 }
1090 } else {
1091 /*
1092 * Link available
1093 */
1094 if (!netif_carrier_ok(port_to_dev(port))) {
1095 dbg(DBG_INTR, "Net carrier on\n");
1096 netif_carrier_on(port_to_dev(port));
1097 }
1098 }
1099
1100 if (los)
1101 dbg(DBG_INTR, "Assert LOS Alarm\n");
1102 else
1103 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104 if (rra)
1105 dbg(DBG_INTR, "Assert RRA Alarm\n");
1106 else
1107 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108
1109 if (ais)
1110 dbg(DBG_INTR, "Assert AIS Alarm\n");
1111 else
1112 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113 }
1114
1115 /* Control signal change interrupt event
1116 */
1117 static void
1118 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119 {
1120 int signals;
1121
1122 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123
1124 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125 ? IPSTS_INDICATE : IPSTS_DCD)) {
1126 if (!netif_carrier_ok(port_to_dev(port))) {
1127 dbg(DBG_INTR, "DCD active\n");
1128 netif_carrier_on(port_to_dev(port));
1129 }
1130 } else {
1131 if (netif_carrier_ok(port_to_dev(port))) {
1132 dbg(DBG_INTR, "DCD lost\n");
1133 netif_carrier_off(port_to_dev(port));
1134 }
1135 }
1136 }
1137
1138 /* Log Rx Errors
1139 */
1140 static void
1141 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142 unsigned char dmabits, int rxp, unsigned short len)
1143 {
1144 struct net_device *dev = port_to_dev(port);
1145
1146 /*
1147 * Increment the appropriate error counter
1148 */
1149 dev->stats.rx_errors++;
1150 if (dmabits & RX_OFLO) {
1151 dev->stats.rx_fifo_errors++;
1152 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153 card->card_no, port->index, rxp);
1154 }
1155 if (dmabits & RX_CRC) {
1156 dev->stats.rx_crc_errors++;
1157 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158 card->card_no, port->index);
1159 }
1160 if (dmabits & RX_FRAM) {
1161 dev->stats.rx_frame_errors++;
1162 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163 card->card_no, port->index);
1164 }
1165 if (dmabits == (RX_STP | RX_ENP)) {
1166 dev->stats.rx_length_errors++;
1167 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168 len, card->card_no, port->index);
1169 }
1170 }
1171
1172 /* Rx Error Recovery
1173 */
1174 static void
1175 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176 unsigned char dmabits, int rxp, unsigned short len)
1177 {
1178 int i;
1179 int pi;
1180
1181 pi = port->index;
1182 /*
1183 * Discard buffer descriptors until we see the start of the
1184 * next frame. Note that for long frames this could be in
1185 * a subsequent interrupt.
1186 */
1187 i = 0;
1188 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190 rxp = (rxp+1) % NUM_RX_BUFFER;
1191 if (++i > NUM_RX_BUFFER) {
1192 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193 " than we have\n");
1194 break;
1195 }
1196 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198 }
1199 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200
1201 /* Discard the terminal buffer */
1202 if (!(dmabits & DMA_OWN)) {
1203 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204 rxp = (rxp+1) % NUM_RX_BUFFER;
1205 }
1206 port->rxpos = rxp;
1207 return;
1208
1209 }
1210
1211 /* Rx complete interrupt
1212 */
1213 static void
1214 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215 {
1216 unsigned char dmabits;
1217 int pi;
1218 int rxp;
1219 int rx_status;
1220 unsigned short len;
1221 struct sk_buff *skb;
1222 struct net_device *dev = port_to_dev(port);
1223
1224 /* Check we have a buffer to process */
1225 pi = port->index;
1226 rxp = port->rxpos;
1227 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228 if (dmabits & DMA_OWN) {
1229 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230 pi, rxp);
1231 return;
1232 }
1233 if (card->dmarx_in_progress) {
1234 return;
1235 }
1236
1237 /* Get buffer length */
1238 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239 /* Discard the CRC */
1240 len -= 2;
1241 if (len == 0) {
1242 /*
1243 * This seems to happen on the TE1 interface sometimes
1244 * so throw the frame away and log the event.
1245 */
1246 pr_err("Frame received with 0 length. Card %d Port %d\n",
1247 card->card_no, port->index);
1248 /* Return descriptor to card */
1249 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250
1251 rxp = (rxp+1) % NUM_RX_BUFFER;
1252 port->rxpos = rxp;
1253 return;
1254 }
1255
1256 /* Check buffer length and for other errors. We insist on one packet
1257 * in one buffer. This simplifies things greatly and since we've
1258 * allocated 8K it shouldn't be a real world limitation
1259 */
1260 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262 fst_log_rx_error(card, port, dmabits, rxp, len);
1263 fst_recover_rx_error(card, port, dmabits, rxp, len);
1264 return;
1265 }
1266
1267 /* Allocate SKB */
1268 if ((skb = dev_alloc_skb(len)) == NULL) {
1269 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270
1271 dev->stats.rx_dropped++;
1272
1273 /* Return descriptor to card */
1274 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276 rxp = (rxp+1) % NUM_RX_BUFFER;
1277 port->rxpos = rxp;
1278 return;
1279 }
1280
1281 /*
1282 * We know the length we need to receive, len.
1283 * It's not worth using the DMA for reads of less than
1284 * FST_MIN_DMA_LEN
1285 */
1286
1287 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288 memcpy_fromio(skb_put(skb, len),
1289 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290 len);
1291
1292 /* Reset buffer descriptor */
1293 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295 /* Update stats */
1296 dev->stats.rx_packets++;
1297 dev->stats.rx_bytes += len;
1298
1299 /* Push upstream */
1300 dbg(DBG_RX, "Pushing frame up the stack\n");
1301 if (port->mode == FST_RAW)
1302 skb->protocol = farsync_type_trans(skb, dev);
1303 else
1304 skb->protocol = hdlc_type_trans(skb, dev);
1305 rx_status = netif_rx(skb);
1306 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307 if (rx_status == NET_RX_DROP)
1308 dev->stats.rx_dropped++;
1309 } else {
1310 card->dma_skb_rx = skb;
1311 card->dma_port_rx = port;
1312 card->dma_len_rx = len;
1313 card->dma_rxpos = rxp;
1314 fst_rx_dma(card, card->rx_dma_handle_card,
1315 BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316 }
1317 if (rxp != port->rxpos) {
1318 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320 }
1321 rxp = (rxp+1) % NUM_RX_BUFFER;
1322 port->rxpos = rxp;
1323 }
1324
1325 /*
1326 * The bottom halfs to the ISR
1327 *
1328 */
1329
1330 static void
1331 do_bottom_half_tx(struct fst_card_info *card)
1332 {
1333 struct fst_port_info *port;
1334 int pi;
1335 int txq_length;
1336 struct sk_buff *skb;
1337 unsigned long flags;
1338 struct net_device *dev;
1339
1340 /*
1341 * Find a free buffer for the transmit
1342 * Step through each port on this card
1343 */
1344
1345 dbg(DBG_TX, "do_bottom_half_tx\n");
1346 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347 if (!port->run)
1348 continue;
1349
1350 dev = port_to_dev(port);
1351 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352 DMA_OWN) &&
1353 !(card->dmatx_in_progress)) {
1354 /*
1355 * There doesn't seem to be a txdone event per-se
1356 * We seem to have to deduce it, by checking the DMA_OWN
1357 * bit on the next buffer we think we can use
1358 */
1359 spin_lock_irqsave(&card->card_lock, flags);
1360 if ((txq_length = port->txqe - port->txqs) < 0) {
1361 /*
1362 * This is the case where one has wrapped and the
1363 * maths gives us a negative number
1364 */
1365 txq_length = txq_length + FST_TXQ_DEPTH;
1366 }
1367 spin_unlock_irqrestore(&card->card_lock, flags);
1368 if (txq_length > 0) {
1369 /*
1370 * There is something to send
1371 */
1372 spin_lock_irqsave(&card->card_lock, flags);
1373 skb = port->txq[port->txqs];
1374 port->txqs++;
1375 if (port->txqs == FST_TXQ_DEPTH) {
1376 port->txqs = 0;
1377 }
1378 spin_unlock_irqrestore(&card->card_lock, flags);
1379 /*
1380 * copy the data and set the required indicators on the
1381 * card.
1382 */
1383 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384 cnv_bcnt(skb->len));
1385 if ((skb->len < FST_MIN_DMA_LEN) ||
1386 (card->family == FST_FAMILY_TXP)) {
1387 /* Enqueue the packet with normal io */
1388 memcpy_toio(card->mem +
1389 BUF_OFFSET(txBuffer[pi]
1390 [port->
1391 txpos][0]),
1392 skb->data, skb->len);
1393 FST_WRB(card,
1394 txDescrRing[pi][port->txpos].
1395 bits,
1396 DMA_OWN | TX_STP | TX_ENP);
1397 dev->stats.tx_packets++;
1398 dev->stats.tx_bytes += skb->len;
1399 dev->trans_start = jiffies;
1400 } else {
1401 /* Or do it through dma */
1402 memcpy(card->tx_dma_handle_host,
1403 skb->data, skb->len);
1404 card->dma_port_tx = port;
1405 card->dma_len_tx = skb->len;
1406 card->dma_txpos = port->txpos;
1407 fst_tx_dma(card,
1408 (char *) card->
1409 tx_dma_handle_card,
1410 (char *)
1411 BUF_OFFSET(txBuffer[pi]
1412 [port->txpos][0]),
1413 skb->len);
1414 }
1415 if (++port->txpos >= NUM_TX_BUFFER)
1416 port->txpos = 0;
1417 /*
1418 * If we have flow control on, can we now release it?
1419 */
1420 if (port->start) {
1421 if (txq_length < fst_txq_low) {
1422 netif_wake_queue(port_to_dev
1423 (port));
1424 port->start = 0;
1425 }
1426 }
1427 dev_kfree_skb(skb);
1428 } else {
1429 /*
1430 * Nothing to send so break out of the while loop
1431 */
1432 break;
1433 }
1434 }
1435 }
1436 }
1437
1438 static void
1439 do_bottom_half_rx(struct fst_card_info *card)
1440 {
1441 struct fst_port_info *port;
1442 int pi;
1443 int rx_count = 0;
1444
1445 /* Check for rx completions on all ports on this card */
1446 dbg(DBG_RX, "do_bottom_half_rx\n");
1447 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448 if (!port->run)
1449 continue;
1450
1451 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452 & DMA_OWN) && !(card->dmarx_in_progress)) {
1453 if (rx_count > fst_max_reads) {
1454 /*
1455 * Don't spend forever in receive processing
1456 * Schedule another event
1457 */
1458 fst_q_work_item(&fst_work_intq, card->card_no);
1459 tasklet_schedule(&fst_int_task);
1460 break; /* Leave the loop */
1461 }
1462 fst_intr_rx(card, port);
1463 rx_count++;
1464 }
1465 }
1466 }
1467
1468 /*
1469 * The interrupt service routine
1470 * Dev_id is our fst_card_info pointer
1471 */
1472 static irqreturn_t
1473 fst_intr(int dummy, void *dev_id)
1474 {
1475 struct fst_card_info *card = dev_id;
1476 struct fst_port_info *port;
1477 int rdidx; /* Event buffer indices */
1478 int wridx;
1479 int event; /* Actual event for processing */
1480 unsigned int dma_intcsr = 0;
1481 unsigned int do_card_interrupt;
1482 unsigned int int_retry_count;
1483
1484 /*
1485 * Check to see if the interrupt was for this card
1486 * return if not
1487 * Note that the call to clear the interrupt is important
1488 */
1489 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490 if (card->state != FST_RUNNING) {
1491 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492 card->card_no, card->state);
1493
1494 /*
1495 * It is possible to really be running, i.e. we have re-loaded
1496 * a running card
1497 * Clear and reprime the interrupt source
1498 */
1499 fst_clear_intr(card);
1500 return IRQ_HANDLED;
1501 }
1502
1503 /* Clear and reprime the interrupt source */
1504 fst_clear_intr(card);
1505
1506 /*
1507 * Is the interrupt for this card (handshake == 1)
1508 */
1509 do_card_interrupt = 0;
1510 if (FST_RDB(card, interruptHandshake) == 1) {
1511 do_card_interrupt += FST_CARD_INT;
1512 /* Set the software acknowledge */
1513 FST_WRB(card, interruptHandshake, 0xEE);
1514 }
1515 if (card->family == FST_FAMILY_TXU) {
1516 /*
1517 * Is it a DMA Interrupt
1518 */
1519 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520 if (dma_intcsr & 0x00200000) {
1521 /*
1522 * DMA Channel 0 (Rx transfer complete)
1523 */
1524 dbg(DBG_RX, "DMA Rx xfer complete\n");
1525 outb(0x8, card->pci_conf + DMACSR0);
1526 fst_rx_dma_complete(card, card->dma_port_rx,
1527 card->dma_len_rx, card->dma_skb_rx,
1528 card->dma_rxpos);
1529 card->dmarx_in_progress = 0;
1530 do_card_interrupt += FST_RX_DMA_INT;
1531 }
1532 if (dma_intcsr & 0x00400000) {
1533 /*
1534 * DMA Channel 1 (Tx transfer complete)
1535 */
1536 dbg(DBG_TX, "DMA Tx xfer complete\n");
1537 outb(0x8, card->pci_conf + DMACSR1);
1538 fst_tx_dma_complete(card, card->dma_port_tx,
1539 card->dma_len_tx, card->dma_txpos);
1540 card->dmatx_in_progress = 0;
1541 do_card_interrupt += FST_TX_DMA_INT;
1542 }
1543 }
1544
1545 /*
1546 * Have we been missing Interrupts
1547 */
1548 int_retry_count = FST_RDL(card, interruptRetryCount);
1549 if (int_retry_count) {
1550 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1551 card->card_no, int_retry_count);
1552 FST_WRL(card, interruptRetryCount, 0);
1553 }
1554
1555 if (!do_card_interrupt) {
1556 return IRQ_HANDLED;
1557 }
1558
1559 /* Scehdule the bottom half of the ISR */
1560 fst_q_work_item(&fst_work_intq, card->card_no);
1561 tasklet_schedule(&fst_int_task);
1562
1563 /* Drain the event queue */
1564 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566 while (rdidx != wridx) {
1567 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568 port = &card->ports[event & 0x03];
1569
1570 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571
1572 switch (event) {
1573 case TE1_ALMA:
1574 dbg(DBG_INTR, "TE1 Alarm intr\n");
1575 if (port->run)
1576 fst_intr_te1_alarm(card, port);
1577 break;
1578
1579 case CTLA_CHG:
1580 case CTLB_CHG:
1581 case CTLC_CHG:
1582 case CTLD_CHG:
1583 if (port->run)
1584 fst_intr_ctlchg(card, port);
1585 break;
1586
1587 case ABTA_SENT:
1588 case ABTB_SENT:
1589 case ABTC_SENT:
1590 case ABTD_SENT:
1591 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592 break;
1593
1594 case TXA_UNDF:
1595 case TXB_UNDF:
1596 case TXC_UNDF:
1597 case TXD_UNDF:
1598 /* Difficult to see how we'd get this given that we
1599 * always load up the entire packet for DMA.
1600 */
1601 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602 port_to_dev(port)->stats.tx_errors++;
1603 port_to_dev(port)->stats.tx_fifo_errors++;
1604 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605 card->card_no, port->index);
1606 break;
1607
1608 case INIT_CPLT:
1609 dbg(DBG_INIT, "Card init OK intr\n");
1610 break;
1611
1612 case INIT_FAIL:
1613 dbg(DBG_INIT, "Card init FAILED intr\n");
1614 card->state = FST_IFAILED;
1615 break;
1616
1617 default:
1618 pr_err("intr: unknown card event %d. ignored\n", event);
1619 break;
1620 }
1621
1622 /* Bump and wrap the index */
1623 if (++rdidx >= MAX_CIRBUFF)
1624 rdidx = 0;
1625 }
1626 FST_WRB(card, interruptEvent.rdindex, rdidx);
1627 return IRQ_HANDLED;
1628 }
1629
1630 /* Check that the shared memory configuration is one that we can handle
1631 * and that some basic parameters are correct
1632 */
1633 static void
1634 check_started_ok(struct fst_card_info *card)
1635 {
1636 int i;
1637
1638 /* Check structure version and end marker */
1639 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640 pr_err("Bad shared memory version %d expected %d\n",
1641 FST_RDW(card, smcVersion), SMC_VERSION);
1642 card->state = FST_BADVERSION;
1643 return;
1644 }
1645 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646 pr_err("Missing shared memory signature\n");
1647 card->state = FST_BADVERSION;
1648 return;
1649 }
1650 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652 card->state = FST_RUNNING;
1653 } else if (i == 0xFF) {
1654 pr_err("Firmware initialisation failed. Card halted\n");
1655 card->state = FST_HALTED;
1656 return;
1657 } else if (i != 0x00) {
1658 pr_err("Unknown firmware status 0x%x\n", i);
1659 card->state = FST_HALTED;
1660 return;
1661 }
1662
1663 /* Finally check the number of ports reported by firmware against the
1664 * number we assumed at card detection. Should never happen with
1665 * existing firmware etc so we just report it for the moment.
1666 */
1667 if (FST_RDL(card, numberOfPorts) != card->nports) {
1668 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1669 card->card_no,
1670 FST_RDL(card, numberOfPorts), card->nports);
1671 }
1672 }
1673
1674 static int
1675 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676 struct fstioc_info *info)
1677 {
1678 int err;
1679 unsigned char my_framing;
1680
1681 /* Set things according to the user set valid flags
1682 * Several of the old options have been invalidated/replaced by the
1683 * generic hdlc package.
1684 */
1685 err = 0;
1686 if (info->valid & FSTVAL_PROTO) {
1687 if (info->proto == FST_RAW)
1688 port->mode = FST_RAW;
1689 else
1690 port->mode = FST_GEN_HDLC;
1691 }
1692
1693 if (info->valid & FSTVAL_CABLE)
1694 err = -EINVAL;
1695
1696 if (info->valid & FSTVAL_SPEED)
1697 err = -EINVAL;
1698
1699 if (info->valid & FSTVAL_PHASE)
1700 FST_WRB(card, portConfig[port->index].invertClock,
1701 info->invertClock);
1702 if (info->valid & FSTVAL_MODE)
1703 FST_WRW(card, cardMode, info->cardMode);
1704 if (info->valid & FSTVAL_TE1) {
1705 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706 FST_WRB(card, suConfig.clocking, info->clockSource);
1707 my_framing = FRAMING_E1;
1708 if (info->framing == E1)
1709 my_framing = FRAMING_E1;
1710 if (info->framing == T1)
1711 my_framing = FRAMING_T1;
1712 if (info->framing == J1)
1713 my_framing = FRAMING_J1;
1714 FST_WRB(card, suConfig.framing, my_framing);
1715 FST_WRB(card, suConfig.structure, info->structure);
1716 FST_WRB(card, suConfig.interface, info->interface);
1717 FST_WRB(card, suConfig.coding, info->coding);
1718 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719 FST_WRB(card, suConfig.equalizer, info->equalizer);
1720 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721 FST_WRB(card, suConfig.loopMode, info->loopMode);
1722 FST_WRB(card, suConfig.range, info->range);
1723 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727 if (info->idleCode)
1728 FST_WRB(card, suConfig.enableIdleCode, 1);
1729 else
1730 FST_WRB(card, suConfig.enableIdleCode, 0);
1731 FST_WRB(card, suConfig.idleCode, info->idleCode);
1732 #if FST_DEBUG
1733 if (info->valid & FSTVAL_TE1) {
1734 printk("Setting TE1 data\n");
1735 printk("Line Speed = %d\n", info->lineSpeed);
1736 printk("Start slot = %d\n", info->startingSlot);
1737 printk("Clock source = %d\n", info->clockSource);
1738 printk("Framing = %d\n", my_framing);
1739 printk("Structure = %d\n", info->structure);
1740 printk("interface = %d\n", info->interface);
1741 printk("Coding = %d\n", info->coding);
1742 printk("Line build out = %d\n", info->lineBuildOut);
1743 printk("Equaliser = %d\n", info->equalizer);
1744 printk("Transparent mode = %d\n",
1745 info->transparentMode);
1746 printk("Loop mode = %d\n", info->loopMode);
1747 printk("Range = %d\n", info->range);
1748 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750 printk("LOS Threshold = %d\n", info->losThreshold);
1751 printk("Idle Code = %d\n", info->idleCode);
1752 }
1753 #endif
1754 }
1755 #if FST_DEBUG
1756 if (info->valid & FSTVAL_DEBUG) {
1757 fst_debug_mask = info->debug;
1758 }
1759 #endif
1760
1761 return err;
1762 }
1763
1764 static void
1765 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766 struct fstioc_info *info)
1767 {
1768 int i;
1769
1770 memset(info, 0, sizeof (struct fstioc_info));
1771
1772 i = port->index;
1773 info->kernelVersion = LINUX_VERSION_CODE;
1774 info->nports = card->nports;
1775 info->type = card->type;
1776 info->state = card->state;
1777 info->proto = FST_GEN_HDLC;
1778 info->index = i;
1779 #if FST_DEBUG
1780 info->debug = fst_debug_mask;
1781 #endif
1782
1783 /* Only mark information as valid if card is running.
1784 * Copy the data anyway in case it is useful for diagnostics
1785 */
1786 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787 #if FST_DEBUG
1788 | FSTVAL_DEBUG
1789 #endif
1790 ;
1791
1792 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798 info->clockStatus = FST_RDW(card, clockStatus[i]);
1799 info->cableStatus = FST_RDW(card, cableStatus);
1800 info->cardMode = FST_RDW(card, cardMode);
1801 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803 /*
1804 * The T2U can report cable presence for both A or B
1805 * in bits 0 and 1 of cableStatus. See which port we are and
1806 * do the mapping.
1807 */
1808 if (card->family == FST_FAMILY_TXU) {
1809 if (port->index == 0) {
1810 /*
1811 * Port A
1812 */
1813 info->cableStatus = info->cableStatus & 1;
1814 } else {
1815 /*
1816 * Port B
1817 */
1818 info->cableStatus = info->cableStatus >> 1;
1819 info->cableStatus = info->cableStatus & 1;
1820 }
1821 }
1822 /*
1823 * Some additional bits if we are TE1
1824 */
1825 if (card->type == FST_TYPE_TE1) {
1826 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827 info->clockSource = FST_RDB(card, suConfig.clocking);
1828 info->framing = FST_RDB(card, suConfig.framing);
1829 info->structure = FST_RDB(card, suConfig.structure);
1830 info->interface = FST_RDB(card, suConfig.interface);
1831 info->coding = FST_RDB(card, suConfig.coding);
1832 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833 info->equalizer = FST_RDB(card, suConfig.equalizer);
1834 info->loopMode = FST_RDB(card, suConfig.loopMode);
1835 info->range = FST_RDB(card, suConfig.range);
1836 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840 if (FST_RDB(card, suConfig.enableIdleCode))
1841 info->idleCode = FST_RDB(card, suConfig.idleCode);
1842 else
1843 info->idleCode = 0;
1844 info->receiveBufferDelay =
1845 FST_RDL(card, suStatus.receiveBufferDelay);
1846 info->framingErrorCount =
1847 FST_RDL(card, suStatus.framingErrorCount);
1848 info->codeViolationCount =
1849 FST_RDL(card, suStatus.codeViolationCount);
1850 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853 info->receiveRemoteAlarm =
1854 FST_RDB(card, suStatus.receiveRemoteAlarm);
1855 info->alarmIndicationSignal =
1856 FST_RDB(card, suStatus.alarmIndicationSignal);
1857 }
1858 }
1859
1860 static int
1861 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862 struct ifreq *ifr)
1863 {
1864 sync_serial_settings sync;
1865 int i;
1866
1867 if (ifr->ifr_settings.size != sizeof (sync)) {
1868 return -ENOMEM;
1869 }
1870
1871 if (copy_from_user
1872 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873 return -EFAULT;
1874 }
1875
1876 if (sync.loopback)
1877 return -EINVAL;
1878
1879 i = port->index;
1880
1881 switch (ifr->ifr_settings.type) {
1882 case IF_IFACE_V35:
1883 FST_WRW(card, portConfig[i].lineInterface, V35);
1884 port->hwif = V35;
1885 break;
1886
1887 case IF_IFACE_V24:
1888 FST_WRW(card, portConfig[i].lineInterface, V24);
1889 port->hwif = V24;
1890 break;
1891
1892 case IF_IFACE_X21:
1893 FST_WRW(card, portConfig[i].lineInterface, X21);
1894 port->hwif = X21;
1895 break;
1896
1897 case IF_IFACE_X21D:
1898 FST_WRW(card, portConfig[i].lineInterface, X21D);
1899 port->hwif = X21D;
1900 break;
1901
1902 case IF_IFACE_T1:
1903 FST_WRW(card, portConfig[i].lineInterface, T1);
1904 port->hwif = T1;
1905 break;
1906
1907 case IF_IFACE_E1:
1908 FST_WRW(card, portConfig[i].lineInterface, E1);
1909 port->hwif = E1;
1910 break;
1911
1912 case IF_IFACE_SYNC_SERIAL:
1913 break;
1914
1915 default:
1916 return -EINVAL;
1917 }
1918
1919 switch (sync.clock_type) {
1920 case CLOCK_EXT:
1921 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922 break;
1923
1924 case CLOCK_INT:
1925 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926 break;
1927
1928 default:
1929 return -EINVAL;
1930 }
1931 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932 return 0;
1933 }
1934
1935 static int
1936 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937 struct ifreq *ifr)
1938 {
1939 sync_serial_settings sync;
1940 int i;
1941
1942 /* First check what line type is set, we'll default to reporting X.21
1943 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944 * changed
1945 */
1946 switch (port->hwif) {
1947 case E1:
1948 ifr->ifr_settings.type = IF_IFACE_E1;
1949 break;
1950 case T1:
1951 ifr->ifr_settings.type = IF_IFACE_T1;
1952 break;
1953 case V35:
1954 ifr->ifr_settings.type = IF_IFACE_V35;
1955 break;
1956 case V24:
1957 ifr->ifr_settings.type = IF_IFACE_V24;
1958 break;
1959 case X21D:
1960 ifr->ifr_settings.type = IF_IFACE_X21D;
1961 break;
1962 case X21:
1963 default:
1964 ifr->ifr_settings.type = IF_IFACE_X21;
1965 break;
1966 }
1967 if (ifr->ifr_settings.size == 0) {
1968 return 0; /* only type requested */
1969 }
1970 if (ifr->ifr_settings.size < sizeof (sync)) {
1971 return -ENOMEM;
1972 }
1973
1974 i = port->index;
1975 memset(&sync, 0, sizeof(sync));
1976 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1977 /* Lucky card and linux use same encoding here */
1978 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1979 INTCLK ? CLOCK_INT : CLOCK_EXT;
1980 sync.loopback = 0;
1981
1982 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1983 return -EFAULT;
1984 }
1985
1986 ifr->ifr_settings.size = sizeof (sync);
1987 return 0;
1988 }
1989
1990 static int
1991 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1992 {
1993 struct fst_card_info *card;
1994 struct fst_port_info *port;
1995 struct fstioc_write wrthdr;
1996 struct fstioc_info info;
1997 unsigned long flags;
1998 void *buf;
1999
2000 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2001
2002 port = dev_to_port(dev);
2003 card = port->card;
2004
2005 if (!capable(CAP_NET_ADMIN))
2006 return -EPERM;
2007
2008 switch (cmd) {
2009 case FSTCPURESET:
2010 fst_cpureset(card);
2011 card->state = FST_RESET;
2012 return 0;
2013
2014 case FSTCPURELEASE:
2015 fst_cpurelease(card);
2016 card->state = FST_STARTING;
2017 return 0;
2018
2019 case FSTWRITE: /* Code write (download) */
2020
2021 /* First copy in the header with the length and offset of data
2022 * to write
2023 */
2024 if (ifr->ifr_data == NULL) {
2025 return -EINVAL;
2026 }
2027 if (copy_from_user(&wrthdr, ifr->ifr_data,
2028 sizeof (struct fstioc_write))) {
2029 return -EFAULT;
2030 }
2031
2032 /* Sanity check the parameters. We don't support partial writes
2033 * when going over the top
2034 */
2035 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2036 wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2037 return -ENXIO;
2038 }
2039
2040 /* Now copy the data to the card. */
2041
2042 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2043 wrthdr.size);
2044 if (IS_ERR(buf))
2045 return PTR_ERR(buf);
2046
2047 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2048 kfree(buf);
2049
2050 /* Writes to the memory of a card in the reset state constitute
2051 * a download
2052 */
2053 if (card->state == FST_RESET) {
2054 card->state = FST_DOWNLOAD;
2055 }
2056 return 0;
2057
2058 case FSTGETCONF:
2059
2060 /* If card has just been started check the shared memory config
2061 * version and marker
2062 */
2063 if (card->state == FST_STARTING) {
2064 check_started_ok(card);
2065
2066 /* If everything checked out enable card interrupts */
2067 if (card->state == FST_RUNNING) {
2068 spin_lock_irqsave(&card->card_lock, flags);
2069 fst_enable_intr(card);
2070 FST_WRB(card, interruptHandshake, 0xEE);
2071 spin_unlock_irqrestore(&card->card_lock, flags);
2072 }
2073 }
2074
2075 if (ifr->ifr_data == NULL) {
2076 return -EINVAL;
2077 }
2078
2079 gather_conf_info(card, port, &info);
2080
2081 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2082 return -EFAULT;
2083 }
2084 return 0;
2085
2086 case FSTSETCONF:
2087
2088 /*
2089 * Most of the settings have been moved to the generic ioctls
2090 * this just covers debug and board ident now
2091 */
2092
2093 if (card->state != FST_RUNNING) {
2094 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2095 card->card_no, card->state);
2096 return -EIO;
2097 }
2098 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2099 return -EFAULT;
2100 }
2101
2102 return set_conf_from_info(card, port, &info);
2103
2104 case SIOCWANDEV:
2105 switch (ifr->ifr_settings.type) {
2106 case IF_GET_IFACE:
2107 return fst_get_iface(card, port, ifr);
2108
2109 case IF_IFACE_SYNC_SERIAL:
2110 case IF_IFACE_V35:
2111 case IF_IFACE_V24:
2112 case IF_IFACE_X21:
2113 case IF_IFACE_X21D:
2114 case IF_IFACE_T1:
2115 case IF_IFACE_E1:
2116 return fst_set_iface(card, port, ifr);
2117
2118 case IF_PROTO_RAW:
2119 port->mode = FST_RAW;
2120 return 0;
2121
2122 case IF_GET_PROTO:
2123 if (port->mode == FST_RAW) {
2124 ifr->ifr_settings.type = IF_PROTO_RAW;
2125 return 0;
2126 }
2127 return hdlc_ioctl(dev, ifr, cmd);
2128
2129 default:
2130 port->mode = FST_GEN_HDLC;
2131 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2132 ifr->ifr_settings.type);
2133 return hdlc_ioctl(dev, ifr, cmd);
2134 }
2135
2136 default:
2137 /* Not one of ours. Pass through to HDLC package */
2138 return hdlc_ioctl(dev, ifr, cmd);
2139 }
2140 }
2141
2142 static void
2143 fst_openport(struct fst_port_info *port)
2144 {
2145 int signals;
2146 int txq_length;
2147
2148 /* Only init things if card is actually running. This allows open to
2149 * succeed for downloads etc.
2150 */
2151 if (port->card->state == FST_RUNNING) {
2152 if (port->run) {
2153 dbg(DBG_OPEN, "open: found port already running\n");
2154
2155 fst_issue_cmd(port, STOPPORT);
2156 port->run = 0;
2157 }
2158
2159 fst_rx_config(port);
2160 fst_tx_config(port);
2161 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2162
2163 fst_issue_cmd(port, STARTPORT);
2164 port->run = 1;
2165
2166 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2167 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2168 ? IPSTS_INDICATE : IPSTS_DCD))
2169 netif_carrier_on(port_to_dev(port));
2170 else
2171 netif_carrier_off(port_to_dev(port));
2172
2173 txq_length = port->txqe - port->txqs;
2174 port->txqe = 0;
2175 port->txqs = 0;
2176 }
2177
2178 }
2179
2180 static void
2181 fst_closeport(struct fst_port_info *port)
2182 {
2183 if (port->card->state == FST_RUNNING) {
2184 if (port->run) {
2185 port->run = 0;
2186 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2187
2188 fst_issue_cmd(port, STOPPORT);
2189 } else {
2190 dbg(DBG_OPEN, "close: port not running\n");
2191 }
2192 }
2193 }
2194
2195 static int
2196 fst_open(struct net_device *dev)
2197 {
2198 int err;
2199 struct fst_port_info *port;
2200
2201 port = dev_to_port(dev);
2202 if (!try_module_get(THIS_MODULE))
2203 return -EBUSY;
2204
2205 if (port->mode != FST_RAW) {
2206 err = hdlc_open(dev);
2207 if (err) {
2208 module_put(THIS_MODULE);
2209 return err;
2210 }
2211 }
2212
2213 fst_openport(port);
2214 netif_wake_queue(dev);
2215 return 0;
2216 }
2217
2218 static int
2219 fst_close(struct net_device *dev)
2220 {
2221 struct fst_port_info *port;
2222 struct fst_card_info *card;
2223 unsigned char tx_dma_done;
2224 unsigned char rx_dma_done;
2225
2226 port = dev_to_port(dev);
2227 card = port->card;
2228
2229 tx_dma_done = inb(card->pci_conf + DMACSR1);
2230 rx_dma_done = inb(card->pci_conf + DMACSR0);
2231 dbg(DBG_OPEN,
2232 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2233 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2234 rx_dma_done);
2235
2236 netif_stop_queue(dev);
2237 fst_closeport(dev_to_port(dev));
2238 if (port->mode != FST_RAW) {
2239 hdlc_close(dev);
2240 }
2241 module_put(THIS_MODULE);
2242 return 0;
2243 }
2244
2245 static int
2246 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2247 {
2248 /*
2249 * Setting currently fixed in FarSync card so we check and forget
2250 */
2251 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2252 return -EINVAL;
2253 return 0;
2254 }
2255
2256 static void
2257 fst_tx_timeout(struct net_device *dev)
2258 {
2259 struct fst_port_info *port;
2260 struct fst_card_info *card;
2261
2262 port = dev_to_port(dev);
2263 card = port->card;
2264 dev->stats.tx_errors++;
2265 dev->stats.tx_aborted_errors++;
2266 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2267 card->card_no, port->index);
2268 fst_issue_cmd(port, ABORTTX);
2269
2270 dev->trans_start = jiffies;
2271 netif_wake_queue(dev);
2272 port->start = 0;
2273 }
2274
2275 static netdev_tx_t
2276 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2277 {
2278 struct fst_card_info *card;
2279 struct fst_port_info *port;
2280 unsigned long flags;
2281 int txq_length;
2282
2283 port = dev_to_port(dev);
2284 card = port->card;
2285 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2286
2287 /* Drop packet with error if we don't have carrier */
2288 if (!netif_carrier_ok(dev)) {
2289 dev_kfree_skb(skb);
2290 dev->stats.tx_errors++;
2291 dev->stats.tx_carrier_errors++;
2292 dbg(DBG_ASS,
2293 "Tried to transmit but no carrier on card %d port %d\n",
2294 card->card_no, port->index);
2295 return NETDEV_TX_OK;
2296 }
2297
2298 /* Drop it if it's too big! MTU failure ? */
2299 if (skb->len > LEN_TX_BUFFER) {
2300 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2301 LEN_TX_BUFFER);
2302 dev_kfree_skb(skb);
2303 dev->stats.tx_errors++;
2304 return NETDEV_TX_OK;
2305 }
2306
2307 /*
2308 * We are always going to queue the packet
2309 * so that the bottom half is the only place we tx from
2310 * Check there is room in the port txq
2311 */
2312 spin_lock_irqsave(&card->card_lock, flags);
2313 if ((txq_length = port->txqe - port->txqs) < 0) {
2314 /*
2315 * This is the case where the next free has wrapped but the
2316 * last used hasn't
2317 */
2318 txq_length = txq_length + FST_TXQ_DEPTH;
2319 }
2320 spin_unlock_irqrestore(&card->card_lock, flags);
2321 if (txq_length > fst_txq_high) {
2322 /*
2323 * We have got enough buffers in the pipeline. Ask the network
2324 * layer to stop sending frames down
2325 */
2326 netif_stop_queue(dev);
2327 port->start = 1; /* I'm using this to signal stop sent up */
2328 }
2329
2330 if (txq_length == FST_TXQ_DEPTH - 1) {
2331 /*
2332 * This shouldn't have happened but such is life
2333 */
2334 dev_kfree_skb(skb);
2335 dev->stats.tx_errors++;
2336 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2337 card->card_no, port->index);
2338 return NETDEV_TX_OK;
2339 }
2340
2341 /*
2342 * queue the buffer
2343 */
2344 spin_lock_irqsave(&card->card_lock, flags);
2345 port->txq[port->txqe] = skb;
2346 port->txqe++;
2347 if (port->txqe == FST_TXQ_DEPTH)
2348 port->txqe = 0;
2349 spin_unlock_irqrestore(&card->card_lock, flags);
2350
2351 /* Scehdule the bottom half which now does transmit processing */
2352 fst_q_work_item(&fst_work_txq, card->card_no);
2353 tasklet_schedule(&fst_tx_task);
2354
2355 return NETDEV_TX_OK;
2356 }
2357
2358 /*
2359 * Card setup having checked hardware resources.
2360 * Should be pretty bizarre if we get an error here (kernel memory
2361 * exhaustion is one possibility). If we do see a problem we report it
2362 * via a printk and leave the corresponding interface and all that follow
2363 * disabled.
2364 */
2365 static char *type_strings[] = {
2366 "no hardware", /* Should never be seen */
2367 "FarSync T2P",
2368 "FarSync T4P",
2369 "FarSync T1U",
2370 "FarSync T2U",
2371 "FarSync T4U",
2372 "FarSync TE1"
2373 };
2374
2375 static void
2376 fst_init_card(struct fst_card_info *card)
2377 {
2378 int i;
2379 int err;
2380
2381 /* We're working on a number of ports based on the card ID. If the
2382 * firmware detects something different later (should never happen)
2383 * we'll have to revise it in some way then.
2384 */
2385 for (i = 0; i < card->nports; i++) {
2386 err = register_hdlc_device(card->ports[i].dev);
2387 if (err < 0) {
2388 int j;
2389 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2390 i, -err);
2391 for (j = i; j < card->nports; j++) {
2392 free_netdev(card->ports[j].dev);
2393 card->ports[j].dev = NULL;
2394 }
2395 card->nports = i;
2396 break;
2397 }
2398 }
2399
2400 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2401 port_to_dev(&card->ports[0])->name,
2402 port_to_dev(&card->ports[card->nports - 1])->name,
2403 type_strings[card->type], card->irq, card->nports);
2404 }
2405
2406 static const struct net_device_ops fst_ops = {
2407 .ndo_open = fst_open,
2408 .ndo_stop = fst_close,
2409 .ndo_change_mtu = hdlc_change_mtu,
2410 .ndo_start_xmit = hdlc_start_xmit,
2411 .ndo_do_ioctl = fst_ioctl,
2412 .ndo_tx_timeout = fst_tx_timeout,
2413 };
2414
2415 /*
2416 * Initialise card when detected.
2417 * Returns 0 to indicate success, or errno otherwise.
2418 */
2419 static int
2420 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2421 {
2422 static int no_of_cards_added = 0;
2423 struct fst_card_info *card;
2424 int err = 0;
2425 int i;
2426
2427 printk_once(KERN_INFO
2428 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2429 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2430 #if FST_DEBUG
2431 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2432 #endif
2433 /*
2434 * We are going to be clever and allow certain cards not to be
2435 * configured. An exclude list can be provided in /etc/modules.conf
2436 */
2437 if (fst_excluded_cards != 0) {
2438 /*
2439 * There are cards to exclude
2440 *
2441 */
2442 for (i = 0; i < fst_excluded_cards; i++) {
2443 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2444 pr_info("FarSync PCI device %d not assigned\n",
2445 (pdev->devfn) >> 3);
2446 return -EBUSY;
2447 }
2448 }
2449 }
2450
2451 /* Allocate driver private data */
2452 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2453 if (card == NULL)
2454 return -ENOMEM;
2455
2456 /* Try to enable the device */
2457 if ((err = pci_enable_device(pdev)) != 0) {
2458 pr_err("Failed to enable card. Err %d\n", -err);
2459 kfree(card);
2460 return err;
2461 }
2462
2463 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2464 pr_err("Failed to allocate regions. Err %d\n", -err);
2465 pci_disable_device(pdev);
2466 kfree(card);
2467 return err;
2468 }
2469
2470 /* Get virtual addresses of memory regions */
2471 card->pci_conf = pci_resource_start(pdev, 1);
2472 card->phys_mem = pci_resource_start(pdev, 2);
2473 card->phys_ctlmem = pci_resource_start(pdev, 3);
2474 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2475 pr_err("Physical memory remap failed\n");
2476 pci_release_regions(pdev);
2477 pci_disable_device(pdev);
2478 kfree(card);
2479 return -ENODEV;
2480 }
2481 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2482 pr_err("Control memory remap failed\n");
2483 pci_release_regions(pdev);
2484 pci_disable_device(pdev);
2485 iounmap(card->mem);
2486 kfree(card);
2487 return -ENODEV;
2488 }
2489 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2490
2491 /* Register the interrupt handler */
2492 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2493 pr_err("Unable to register interrupt %d\n", card->irq);
2494 pci_release_regions(pdev);
2495 pci_disable_device(pdev);
2496 iounmap(card->ctlmem);
2497 iounmap(card->mem);
2498 kfree(card);
2499 return -ENODEV;
2500 }
2501
2502 /* Record info we need */
2503 card->irq = pdev->irq;
2504 card->type = ent->driver_data;
2505 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2506 (ent->driver_data == FST_TYPE_T4P))
2507 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2508 if ((ent->driver_data == FST_TYPE_T1U) ||
2509 (ent->driver_data == FST_TYPE_TE1))
2510 card->nports = 1;
2511 else
2512 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2513 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2514
2515 card->state = FST_UNINIT;
2516 spin_lock_init ( &card->card_lock );
2517
2518 for ( i = 0 ; i < card->nports ; i++ ) {
2519 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2520 hdlc_device *hdlc;
2521 if (!dev) {
2522 while (i--)
2523 free_netdev(card->ports[i].dev);
2524 pr_err("FarSync: out of memory\n");
2525 free_irq(card->irq, card);
2526 pci_release_regions(pdev);
2527 pci_disable_device(pdev);
2528 iounmap(card->ctlmem);
2529 iounmap(card->mem);
2530 kfree(card);
2531 return -ENODEV;
2532 }
2533 card->ports[i].dev = dev;
2534 card->ports[i].card = card;
2535 card->ports[i].index = i;
2536 card->ports[i].run = 0;
2537
2538 hdlc = dev_to_hdlc(dev);
2539
2540 /* Fill in the net device info */
2541 /* Since this is a PCI setup this is purely
2542 * informational. Give them the buffer addresses
2543 * and basic card I/O.
2544 */
2545 dev->mem_start = card->phys_mem
2546 + BUF_OFFSET ( txBuffer[i][0][0]);
2547 dev->mem_end = card->phys_mem
2548 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2549 dev->base_addr = card->pci_conf;
2550 dev->irq = card->irq;
2551
2552 dev->netdev_ops = &fst_ops;
2553 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2554 dev->watchdog_timeo = FST_TX_TIMEOUT;
2555 hdlc->attach = fst_attach;
2556 hdlc->xmit = fst_start_xmit;
2557 }
2558
2559 card->device = pdev;
2560
2561 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2562 card->nports, card->irq);
2563 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2564 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2565
2566 /* Reset the card's processor */
2567 fst_cpureset(card);
2568 card->state = FST_RESET;
2569
2570 /* Initialise DMA (if required) */
2571 fst_init_dma(card);
2572
2573 /* Record driver data for later use */
2574 pci_set_drvdata(pdev, card);
2575
2576 /* Remainder of card setup */
2577 fst_card_array[no_of_cards_added] = card;
2578 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2579 fst_init_card(card);
2580 if (card->family == FST_FAMILY_TXU) {
2581 /*
2582 * Allocate a dma buffer for transmit and receives
2583 */
2584 card->rx_dma_handle_host =
2585 pci_alloc_consistent(card->device, FST_MAX_MTU,
2586 &card->rx_dma_handle_card);
2587 if (card->rx_dma_handle_host == NULL) {
2588 pr_err("Could not allocate rx dma buffer\n");
2589 fst_disable_intr(card);
2590 pci_release_regions(pdev);
2591 pci_disable_device(pdev);
2592 iounmap(card->ctlmem);
2593 iounmap(card->mem);
2594 kfree(card);
2595 return -ENOMEM;
2596 }
2597 card->tx_dma_handle_host =
2598 pci_alloc_consistent(card->device, FST_MAX_MTU,
2599 &card->tx_dma_handle_card);
2600 if (card->tx_dma_handle_host == NULL) {
2601 pr_err("Could not allocate tx dma buffer\n");
2602 fst_disable_intr(card);
2603 pci_release_regions(pdev);
2604 pci_disable_device(pdev);
2605 iounmap(card->ctlmem);
2606 iounmap(card->mem);
2607 kfree(card);
2608 return -ENOMEM;
2609 }
2610 }
2611 return 0; /* Success */
2612 }
2613
2614 /*
2615 * Cleanup and close down a card
2616 */
2617 static void
2618 fst_remove_one(struct pci_dev *pdev)
2619 {
2620 struct fst_card_info *card;
2621 int i;
2622
2623 card = pci_get_drvdata(pdev);
2624
2625 for (i = 0; i < card->nports; i++) {
2626 struct net_device *dev = port_to_dev(&card->ports[i]);
2627 unregister_hdlc_device(dev);
2628 }
2629
2630 fst_disable_intr(card);
2631 free_irq(card->irq, card);
2632
2633 iounmap(card->ctlmem);
2634 iounmap(card->mem);
2635 pci_release_regions(pdev);
2636 if (card->family == FST_FAMILY_TXU) {
2637 /*
2638 * Free dma buffers
2639 */
2640 pci_free_consistent(card->device, FST_MAX_MTU,
2641 card->rx_dma_handle_host,
2642 card->rx_dma_handle_card);
2643 pci_free_consistent(card->device, FST_MAX_MTU,
2644 card->tx_dma_handle_host,
2645 card->tx_dma_handle_card);
2646 }
2647 fst_card_array[card->card_no] = NULL;
2648 }
2649
2650 static struct pci_driver fst_driver = {
2651 .name = FST_NAME,
2652 .id_table = fst_pci_dev_id,
2653 .probe = fst_add_one,
2654 .remove = fst_remove_one,
2655 .suspend = NULL,
2656 .resume = NULL,
2657 };
2658
2659 static int __init
2660 fst_init(void)
2661 {
2662 int i;
2663
2664 for (i = 0; i < FST_MAX_CARDS; i++)
2665 fst_card_array[i] = NULL;
2666 spin_lock_init(&fst_work_q_lock);
2667 return pci_register_driver(&fst_driver);
2668 }
2669
2670 static void __exit
2671 fst_cleanup_module(void)
2672 {
2673 pr_info("FarSync WAN driver unloading\n");
2674 pci_unregister_driver(&fst_driver);
2675 }
2676
2677 module_init(fst_init);
2678 module_exit(fst_cleanup_module);