Staging: et131x: config is already zeroed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / vxge / vxge-traffic.c
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
15
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
19
20 /*
21 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22 * @vp: Virtual Path handle.
23 *
24 * Enable vpath interrupts. The function is to be executed the last in
25 * vpath initialization sequence.
26 *
27 * See also: vxge_hw_vpath_intr_disable()
28 */
29 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
30 {
31 u64 val64;
32
33 struct __vxge_hw_virtualpath *vpath;
34 struct vxge_hw_vpath_reg __iomem *vp_reg;
35 enum vxge_hw_status status = VXGE_HW_OK;
36 if (vp == NULL) {
37 status = VXGE_HW_ERR_INVALID_HANDLE;
38 goto exit;
39 }
40
41 vpath = vp->vpath;
42
43 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45 goto exit;
46 }
47
48 vp_reg = vpath->vp_reg;
49
50 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
51
52 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53 &vp_reg->general_errors_reg);
54
55 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56 &vp_reg->pci_config_errors_reg);
57
58 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59 &vp_reg->mrpcim_to_vpath_alarm_reg);
60
61 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62 &vp_reg->srpcim_to_vpath_alarm_reg);
63
64 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65 &vp_reg->vpath_ppif_int_status);
66
67 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68 &vp_reg->srpcim_msg_to_vpath_reg);
69
70 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71 &vp_reg->vpath_pcipif_int_status);
72
73 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74 &vp_reg->prc_alarm_reg);
75
76 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77 &vp_reg->wrdma_alarm_status);
78
79 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80 &vp_reg->asic_ntwk_vp_err_reg);
81
82 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83 &vp_reg->xgmac_vp_int_status);
84
85 val64 = readq(&vp_reg->vpath_general_int_status);
86
87 /* Mask unwanted interrupts */
88
89 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90 &vp_reg->vpath_pcipif_int_mask);
91
92 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93 &vp_reg->srpcim_msg_to_vpath_mask);
94
95 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96 &vp_reg->srpcim_to_vpath_alarm_mask);
97
98 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99 &vp_reg->mrpcim_to_vpath_alarm_mask);
100
101 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102 &vp_reg->pci_config_errors_mask);
103
104 /* Unmask the individual interrupts */
105
106 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110 &vp_reg->general_errors_mask);
111
112 __vxge_hw_pio_mem_write32_upper(
113 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119 &vp_reg->kdfcctl_errors_mask);
120
121 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
122
123 __vxge_hw_pio_mem_write32_upper(
124 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125 &vp_reg->prc_alarm_mask);
126
127 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
129
130 if (vpath->hldev->first_vp_id != vpath->vp_id)
131 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132 &vp_reg->asic_ntwk_vp_err_mask);
133 else
134 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137 &vp_reg->asic_ntwk_vp_err_mask);
138
139 __vxge_hw_pio_mem_write32_upper(0,
140 &vp_reg->vpath_general_int_mask);
141 exit:
142 return status;
143
144 }
145
146 /*
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
149 *
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
152 *
153 * See also: vxge_hw_vpath_intr_enable()
154 */
155 enum vxge_hw_status vxge_hw_vpath_intr_disable(
156 struct __vxge_hw_vpath_handle *vp)
157 {
158 u64 val64;
159
160 struct __vxge_hw_virtualpath *vpath;
161 enum vxge_hw_status status = VXGE_HW_OK;
162 struct vxge_hw_vpath_reg __iomem *vp_reg;
163 if (vp == NULL) {
164 status = VXGE_HW_ERR_INVALID_HANDLE;
165 goto exit;
166 }
167
168 vpath = vp->vpath;
169
170 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172 goto exit;
173 }
174 vp_reg = vpath->vp_reg;
175
176 __vxge_hw_pio_mem_write32_upper(
177 (u32)VXGE_HW_INTR_MASK_ALL,
178 &vp_reg->vpath_general_int_mask);
179
180 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
181
182 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
183
184 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185 &vp_reg->general_errors_mask);
186
187 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188 &vp_reg->pci_config_errors_mask);
189
190 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191 &vp_reg->mrpcim_to_vpath_alarm_mask);
192
193 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194 &vp_reg->srpcim_to_vpath_alarm_mask);
195
196 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197 &vp_reg->vpath_ppif_int_mask);
198
199 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200 &vp_reg->srpcim_msg_to_vpath_mask);
201
202 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203 &vp_reg->vpath_pcipif_int_mask);
204
205 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206 &vp_reg->wrdma_alarm_mask);
207
208 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209 &vp_reg->prc_alarm_mask);
210
211 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212 &vp_reg->xgmac_vp_int_mask);
213
214 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215 &vp_reg->asic_ntwk_vp_err_mask);
216
217 exit:
218 return status;
219 }
220
221 /**
222 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223 * @channeh: Channel for rx or tx handle
224 * @msix_id: MSIX ID
225 *
226 * The function masks the msix interrupt for the given msix_id
227 *
228 * Returns: 0
229 */
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
231 {
232
233 __vxge_hw_pio_mem_write32_upper(
234 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
235 0, 32),
236 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
237
238 return;
239 }
240
241 /**
242 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
243 * @channeh: Channel for rx or tx handle
244 * @msix_id: MSI ID
245 *
246 * The function unmasks the msix interrupt for the given msix_id
247 *
248 * Returns: 0
249 */
250 void
251 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
252 {
253
254 __vxge_hw_pio_mem_write32_upper(
255 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
256 0, 32),
257 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
258
259 return;
260 }
261
262 /**
263 * vxge_hw_device_set_intr_type - Updates the configuration
264 * with new interrupt type.
265 * @hldev: HW device handle.
266 * @intr_mode: New interrupt type
267 */
268 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
269 {
270
271 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
272 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
273 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
274 (intr_mode != VXGE_HW_INTR_MODE_DEF))
275 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
276
277 hldev->config.intr_mode = intr_mode;
278 return intr_mode;
279 }
280
281 /**
282 * vxge_hw_device_intr_enable - Enable interrupts.
283 * @hldev: HW device handle.
284 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
285 * the type(s) of interrupts to enable.
286 *
287 * Enable Titan interrupts. The function is to be executed the last in
288 * Titan initialization sequence.
289 *
290 * See also: vxge_hw_device_intr_disable()
291 */
292 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
293 {
294 u32 i;
295 u64 val64;
296 u32 val32;
297
298 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
299
300 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
301 continue;
302
303 vxge_hw_vpath_intr_enable(
304 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
305 }
306
307 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
308 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
309 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
310
311 if (val64 != 0) {
312 writeq(val64, &hldev->common_reg->tim_int_status0);
313
314 writeq(~val64, &hldev->common_reg->tim_int_mask0);
315 }
316
317 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
318 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
319
320 if (val32 != 0) {
321 __vxge_hw_pio_mem_write32_upper(val32,
322 &hldev->common_reg->tim_int_status1);
323
324 __vxge_hw_pio_mem_write32_upper(~val32,
325 &hldev->common_reg->tim_int_mask1);
326 }
327 }
328
329 val64 = readq(&hldev->common_reg->titan_general_int_status);
330
331 vxge_hw_device_unmask_all(hldev);
332
333 return;
334 }
335
336 /**
337 * vxge_hw_device_intr_disable - Disable Titan interrupts.
338 * @hldev: HW device handle.
339 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
340 * the type(s) of interrupts to disable.
341 *
342 * Disable Titan interrupts.
343 *
344 * See also: vxge_hw_device_intr_enable()
345 */
346 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
347 {
348 u32 i;
349
350 vxge_hw_device_mask_all(hldev);
351
352 /* mask all the tim interrupts */
353 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
354 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
355 &hldev->common_reg->tim_int_mask1);
356
357 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
358
359 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
360 continue;
361
362 vxge_hw_vpath_intr_disable(
363 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
364 }
365
366 return;
367 }
368
369 /**
370 * vxge_hw_device_mask_all - Mask all device interrupts.
371 * @hldev: HW device handle.
372 *
373 * Mask all device interrupts.
374 *
375 * See also: vxge_hw_device_unmask_all()
376 */
377 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
378 {
379 u64 val64;
380
381 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
382 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
383
384 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
385 &hldev->common_reg->titan_mask_all_int);
386
387 return;
388 }
389
390 /**
391 * vxge_hw_device_unmask_all - Unmask all device interrupts.
392 * @hldev: HW device handle.
393 *
394 * Unmask all device interrupts.
395 *
396 * See also: vxge_hw_device_mask_all()
397 */
398 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
399 {
400 u64 val64 = 0;
401
402 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
403 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
404
405 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
406 &hldev->common_reg->titan_mask_all_int);
407
408 return;
409 }
410
411 /**
412 * vxge_hw_device_flush_io - Flush io writes.
413 * @hldev: HW device handle.
414 *
415 * The function performs a read operation to flush io writes.
416 *
417 * Returns: void
418 */
419 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
420 {
421 u32 val32;
422
423 val32 = readl(&hldev->common_reg->titan_general_int_status);
424 }
425
426 /**
427 * vxge_hw_device_begin_irq - Begin IRQ processing.
428 * @hldev: HW device handle.
429 * @skip_alarms: Do not clear the alarms
430 * @reason: "Reason" for the interrupt, the value of Titan's
431 * general_int_status register.
432 *
433 * The function performs two actions, It first checks whether (shared IRQ) the
434 * interrupt was raised by the device. Next, it masks the device interrupts.
435 *
436 * Note:
437 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
438 * bridge. Therefore, two back-to-back interrupts are potentially possible.
439 *
440 * Returns: 0, if the interrupt is not "ours" (note that in this case the
441 * device remain enabled).
442 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
443 * status.
444 */
445 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
446 u32 skip_alarms, u64 *reason)
447 {
448 u32 i;
449 u64 val64;
450 u64 adapter_status;
451 u64 vpath_mask;
452 enum vxge_hw_status ret = VXGE_HW_OK;
453
454 val64 = readq(&hldev->common_reg->titan_general_int_status);
455
456 if (unlikely(!val64)) {
457 /* not Titan interrupt */
458 *reason = 0;
459 ret = VXGE_HW_ERR_WRONG_IRQ;
460 goto exit;
461 }
462
463 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
464
465 adapter_status = readq(&hldev->common_reg->adapter_status);
466
467 if (adapter_status == VXGE_HW_ALL_FOXES) {
468
469 __vxge_hw_device_handle_error(hldev,
470 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
471 *reason = 0;
472 ret = VXGE_HW_ERR_SLOT_FREEZE;
473 goto exit;
474 }
475 }
476
477 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
478
479 *reason = val64;
480
481 vpath_mask = hldev->vpaths_deployed >>
482 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
483
484 if (val64 &
485 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
486 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
487
488 return VXGE_HW_OK;
489 }
490
491 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
492
493 if (unlikely(val64 &
494 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
495
496 enum vxge_hw_status error_level = VXGE_HW_OK;
497
498 hldev->stats.sw_dev_err_stats.vpath_alarms++;
499
500 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
501
502 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
503 continue;
504
505 ret = __vxge_hw_vpath_alarm_process(
506 &hldev->virtual_paths[i], skip_alarms);
507
508 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
509
510 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
511 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
512 break;
513 }
514
515 ret = error_level;
516 }
517 exit:
518 return ret;
519 }
520
521 /*
522 * __vxge_hw_device_handle_link_up_ind
523 * @hldev: HW device handle.
524 *
525 * Link up indication handler. The function is invoked by HW when
526 * Titan indicates that the link is up for programmable amount of time.
527 */
528 enum vxge_hw_status
529 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
530 {
531 /*
532 * If the previous link state is not down, return.
533 */
534 if (hldev->link_state == VXGE_HW_LINK_UP)
535 goto exit;
536
537 hldev->link_state = VXGE_HW_LINK_UP;
538
539 /* notify driver */
540 if (hldev->uld_callbacks.link_up)
541 hldev->uld_callbacks.link_up(hldev);
542 exit:
543 return VXGE_HW_OK;
544 }
545
546 /*
547 * __vxge_hw_device_handle_link_down_ind
548 * @hldev: HW device handle.
549 *
550 * Link down indication handler. The function is invoked by HW when
551 * Titan indicates that the link is down.
552 */
553 enum vxge_hw_status
554 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
555 {
556 /*
557 * If the previous link state is not down, return.
558 */
559 if (hldev->link_state == VXGE_HW_LINK_DOWN)
560 goto exit;
561
562 hldev->link_state = VXGE_HW_LINK_DOWN;
563
564 /* notify driver */
565 if (hldev->uld_callbacks.link_down)
566 hldev->uld_callbacks.link_down(hldev);
567 exit:
568 return VXGE_HW_OK;
569 }
570
571 /**
572 * __vxge_hw_device_handle_error - Handle error
573 * @hldev: HW device
574 * @vp_id: Vpath Id
575 * @type: Error type. Please see enum vxge_hw_event{}
576 *
577 * Handle error.
578 */
579 enum vxge_hw_status
580 __vxge_hw_device_handle_error(
581 struct __vxge_hw_device *hldev,
582 u32 vp_id,
583 enum vxge_hw_event type)
584 {
585 switch (type) {
586 case VXGE_HW_EVENT_UNKNOWN:
587 break;
588 case VXGE_HW_EVENT_RESET_START:
589 case VXGE_HW_EVENT_RESET_COMPLETE:
590 case VXGE_HW_EVENT_LINK_DOWN:
591 case VXGE_HW_EVENT_LINK_UP:
592 goto out;
593 case VXGE_HW_EVENT_ALARM_CLEARED:
594 goto out;
595 case VXGE_HW_EVENT_ECCERR:
596 case VXGE_HW_EVENT_MRPCIM_ECCERR:
597 goto out;
598 case VXGE_HW_EVENT_FIFO_ERR:
599 case VXGE_HW_EVENT_VPATH_ERR:
600 case VXGE_HW_EVENT_CRITICAL_ERR:
601 case VXGE_HW_EVENT_SERR:
602 break;
603 case VXGE_HW_EVENT_SRPCIM_SERR:
604 case VXGE_HW_EVENT_MRPCIM_SERR:
605 goto out;
606 case VXGE_HW_EVENT_SLOT_FREEZE:
607 break;
608 default:
609 vxge_assert(0);
610 goto out;
611 }
612
613 /* notify driver */
614 if (hldev->uld_callbacks.crit_err)
615 hldev->uld_callbacks.crit_err(
616 (struct __vxge_hw_device *)hldev,
617 type, vp_id);
618 out:
619
620 return VXGE_HW_OK;
621 }
622
623 /**
624 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
625 * condition that has caused the Tx and RX interrupt.
626 * @hldev: HW device.
627 *
628 * Acknowledge (that is, clear) the condition that has caused
629 * the Tx and Rx interrupt.
630 * See also: vxge_hw_device_begin_irq(),
631 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
632 */
633 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
634 {
635
636 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
637 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
638 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
639 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
640 &hldev->common_reg->tim_int_status0);
641 }
642
643 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
644 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
645 __vxge_hw_pio_mem_write32_upper(
646 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
647 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
648 &hldev->common_reg->tim_int_status1);
649 }
650
651 return;
652 }
653
654 /*
655 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
656 * @channel: Channel
657 * @dtrh: Buffer to return the DTR pointer
658 *
659 * Allocates a dtr from the reserve array. If the reserve array is empty,
660 * it swaps the reserve and free arrays.
661 *
662 */
663 enum vxge_hw_status
664 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
665 {
666 void **tmp_arr;
667
668 if (channel->reserve_ptr - channel->reserve_top > 0) {
669 _alloc_after_swap:
670 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
671
672 return VXGE_HW_OK;
673 }
674
675 /* switch between empty and full arrays */
676
677 /* the idea behind such a design is that by having free and reserved
678 * arrays separated we basically separated irq and non-irq parts.
679 * i.e. no additional lock need to be done when we free a resource */
680
681 if (channel->length - channel->free_ptr > 0) {
682
683 tmp_arr = channel->reserve_arr;
684 channel->reserve_arr = channel->free_arr;
685 channel->free_arr = tmp_arr;
686 channel->reserve_ptr = channel->length;
687 channel->reserve_top = channel->free_ptr;
688 channel->free_ptr = channel->length;
689
690 channel->stats->reserve_free_swaps_cnt++;
691
692 goto _alloc_after_swap;
693 }
694
695 channel->stats->full_cnt++;
696
697 *dtrh = NULL;
698 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
699 }
700
701 /*
702 * vxge_hw_channel_dtr_post - Post a dtr to the channel
703 * @channelh: Channel
704 * @dtrh: DTR pointer
705 *
706 * Posts a dtr to work array.
707 *
708 */
709 void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
710 {
711 vxge_assert(channel->work_arr[channel->post_index] == NULL);
712
713 channel->work_arr[channel->post_index++] = dtrh;
714
715 /* wrap-around */
716 if (channel->post_index == channel->length)
717 channel->post_index = 0;
718 }
719
720 /*
721 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
722 * @channel: Channel
723 * @dtr: Buffer to return the next completed DTR pointer
724 *
725 * Returns the next completed dtr with out removing it from work array
726 *
727 */
728 void
729 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
730 {
731 vxge_assert(channel->compl_index < channel->length);
732
733 *dtrh = channel->work_arr[channel->compl_index];
734 prefetch(*dtrh);
735 }
736
737 /*
738 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
739 * @channel: Channel handle
740 *
741 * Removes the next completed dtr from work array
742 *
743 */
744 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
745 {
746 channel->work_arr[channel->compl_index] = NULL;
747
748 /* wrap-around */
749 if (++channel->compl_index == channel->length)
750 channel->compl_index = 0;
751
752 channel->stats->total_compl_cnt++;
753 }
754
755 /*
756 * vxge_hw_channel_dtr_free - Frees a dtr
757 * @channel: Channel handle
758 * @dtr: DTR pointer
759 *
760 * Returns the dtr to free array
761 *
762 */
763 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
764 {
765 channel->free_arr[--channel->free_ptr] = dtrh;
766 }
767
768 /*
769 * vxge_hw_channel_dtr_count
770 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
771 *
772 * Retreive number of DTRs available. This function can not be called
773 * from data path. ring_initial_replenishi() is the only user.
774 */
775 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
776 {
777 return (channel->reserve_ptr - channel->reserve_top) +
778 (channel->length - channel->free_ptr);
779 }
780
781 /**
782 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
783 * @ring: Handle to the ring object used for receive
784 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
785 * with a valid handle.
786 *
787 * Reserve Rx descriptor for the subsequent filling-in driver
788 * and posting on the corresponding channel (@channelh)
789 * via vxge_hw_ring_rxd_post().
790 *
791 * Returns: VXGE_HW_OK - success.
792 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
793 *
794 */
795 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
796 void **rxdh)
797 {
798 enum vxge_hw_status status;
799 struct __vxge_hw_channel *channel;
800
801 channel = &ring->channel;
802
803 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
804
805 if (status == VXGE_HW_OK) {
806 struct vxge_hw_ring_rxd_1 *rxdp =
807 (struct vxge_hw_ring_rxd_1 *)*rxdh;
808
809 rxdp->control_0 = rxdp->control_1 = 0;
810 }
811
812 return status;
813 }
814
815 /**
816 * vxge_hw_ring_rxd_free - Free descriptor.
817 * @ring: Handle to the ring object used for receive
818 * @rxdh: Descriptor handle.
819 *
820 * Free the reserved descriptor. This operation is "symmetrical" to
821 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
822 * lifecycle.
823 *
824 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
825 * be:
826 *
827 * - reserved (vxge_hw_ring_rxd_reserve);
828 *
829 * - posted (vxge_hw_ring_rxd_post);
830 *
831 * - completed (vxge_hw_ring_rxd_next_completed);
832 *
833 * - and recycled again (vxge_hw_ring_rxd_free).
834 *
835 * For alternative state transitions and more details please refer to
836 * the design doc.
837 *
838 */
839 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
840 {
841 struct __vxge_hw_channel *channel;
842
843 channel = &ring->channel;
844
845 vxge_hw_channel_dtr_free(channel, rxdh);
846
847 }
848
849 /**
850 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
851 * @ring: Handle to the ring object used for receive
852 * @rxdh: Descriptor handle.
853 *
854 * This routine prepares a rxd and posts
855 */
856 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
857 {
858 struct __vxge_hw_channel *channel;
859
860 channel = &ring->channel;
861
862 vxge_hw_channel_dtr_post(channel, rxdh);
863 }
864
865 /**
866 * vxge_hw_ring_rxd_post_post - Process rxd after post.
867 * @ring: Handle to the ring object used for receive
868 * @rxdh: Descriptor handle.
869 *
870 * Processes rxd after post
871 */
872 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
873 {
874 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
875 struct __vxge_hw_channel *channel;
876
877 channel = &ring->channel;
878
879 rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
880
881 if (ring->stats->common_stats.usage_cnt > 0)
882 ring->stats->common_stats.usage_cnt--;
883 }
884
885 /**
886 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
887 * @ring: Handle to the ring object used for receive
888 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
889 *
890 * Post descriptor on the ring.
891 * Prior to posting the descriptor should be filled in accordance with
892 * Host/Titan interface specification for a given service (LL, etc.).
893 *
894 */
895 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
896 {
897 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
898 struct __vxge_hw_channel *channel;
899
900 channel = &ring->channel;
901
902 wmb();
903 rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
904
905 vxge_hw_channel_dtr_post(channel, rxdh);
906
907 if (ring->stats->common_stats.usage_cnt > 0)
908 ring->stats->common_stats.usage_cnt--;
909 }
910
911 /**
912 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
913 * @ring: Handle to the ring object used for receive
914 * @rxdh: Descriptor handle.
915 *
916 * Processes rxd after post with memory barrier.
917 */
918 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
919 {
920 struct __vxge_hw_channel *channel;
921
922 channel = &ring->channel;
923
924 wmb();
925 vxge_hw_ring_rxd_post_post(ring, rxdh);
926 }
927
928 /**
929 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
930 * @ring: Handle to the ring object used for receive
931 * @rxdh: Descriptor handle. Returned by HW.
932 * @t_code: Transfer code, as per Titan User Guide,
933 * Receive Descriptor Format. Returned by HW.
934 *
935 * Retrieve the _next_ completed descriptor.
936 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
937 * driver of new completed descriptors. After that
938 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
939 * completions (the very first completion is passed by HW via
940 * vxge_hw_ring_callback_f).
941 *
942 * Implementation-wise, the driver is free to call
943 * vxge_hw_ring_rxd_next_completed either immediately from inside the
944 * ring callback, or in a deferred fashion and separate (from HW)
945 * context.
946 *
947 * Non-zero @t_code means failure to fill-in receive buffer(s)
948 * of the descriptor.
949 * For instance, parity error detected during the data transfer.
950 * In this case Titan will complete the descriptor and indicate
951 * for the host that the received data is not to be used.
952 * For details please refer to Titan User Guide.
953 *
954 * Returns: VXGE_HW_OK - success.
955 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
956 * are currently available for processing.
957 *
958 * See also: vxge_hw_ring_callback_f{},
959 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
960 */
961 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
962 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
963 {
964 struct __vxge_hw_channel *channel;
965 struct vxge_hw_ring_rxd_1 *rxdp;
966 enum vxge_hw_status status = VXGE_HW_OK;
967
968 channel = &ring->channel;
969
970 vxge_hw_channel_dtr_try_complete(channel, rxdh);
971
972 rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
973 if (rxdp == NULL) {
974 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
975 goto exit;
976 }
977
978 /* check whether it is not the end */
979 if (!(rxdp->control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER)) {
980
981 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
982 0);
983
984 ++ring->cmpl_cnt;
985 vxge_hw_channel_dtr_complete(channel);
986
987 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(rxdp->control_0);
988
989 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
990
991 ring->stats->common_stats.usage_cnt++;
992 if (ring->stats->common_stats.usage_max <
993 ring->stats->common_stats.usage_cnt)
994 ring->stats->common_stats.usage_max =
995 ring->stats->common_stats.usage_cnt;
996
997 status = VXGE_HW_OK;
998 goto exit;
999 }
1000
1001 /* reset it. since we don't want to return
1002 * garbage to the driver */
1003 *rxdh = NULL;
1004 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1005 exit:
1006 return status;
1007 }
1008
1009 /**
1010 * vxge_hw_ring_handle_tcode - Handle transfer code.
1011 * @ring: Handle to the ring object used for receive
1012 * @rxdh: Descriptor handle.
1013 * @t_code: One of the enumerated (and documented in the Titan user guide)
1014 * "transfer codes".
1015 *
1016 * Handle descriptor's transfer code. The latter comes with each completed
1017 * descriptor.
1018 *
1019 * Returns: one of the enum vxge_hw_status{} enumerated types.
1020 * VXGE_HW_OK - for success.
1021 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1022 */
1023 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1024 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1025 {
1026 struct __vxge_hw_channel *channel;
1027 enum vxge_hw_status status = VXGE_HW_OK;
1028
1029 channel = &ring->channel;
1030
1031 /* If the t_code is not supported and if the
1032 * t_code is other than 0x5 (unparseable packet
1033 * such as unknown UPV6 header), Drop it !!!
1034 */
1035
1036 if (t_code == 0 || t_code == 5) {
1037 status = VXGE_HW_OK;
1038 goto exit;
1039 }
1040
1041 if (t_code > 0xF) {
1042 status = VXGE_HW_ERR_INVALID_TCODE;
1043 goto exit;
1044 }
1045
1046 ring->stats->rxd_t_code_err_cnt[t_code]++;
1047 exit:
1048 return status;
1049 }
1050
1051 /**
1052 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1053 *
1054 * @fifo: fifohandle
1055 * @txdl_ptr: The starting location of the TxDL in host memory
1056 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1057 * @no_snoop: No snoop flags
1058 *
1059 * This function posts a non-offload doorbell to doorbell FIFO
1060 *
1061 */
1062 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1063 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1064 {
1065 struct __vxge_hw_channel *channel;
1066
1067 channel = &fifo->channel;
1068
1069 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1070 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1071 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1072 &fifo->nofl_db->control_0);
1073
1074 mmiowb();
1075
1076 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1077
1078 mmiowb();
1079 }
1080
1081 /**
1082 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1083 * the fifo
1084 * @fifoh: Handle to the fifo object used for non offload send
1085 */
1086 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1087 {
1088 return vxge_hw_channel_dtr_count(&fifoh->channel);
1089 }
1090
1091 /**
1092 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1093 * @fifoh: Handle to the fifo object used for non offload send
1094 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1095 * with a valid handle.
1096 * @txdl_priv: Buffer to return the pointer to per txdl space
1097 *
1098 * Reserve a single TxDL (that is, fifo descriptor)
1099 * for the subsequent filling-in by driver)
1100 * and posting on the corresponding channel (@channelh)
1101 * via vxge_hw_fifo_txdl_post().
1102 *
1103 * Note: it is the responsibility of driver to reserve multiple descriptors
1104 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1105 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1106 *
1107 * Returns: VXGE_HW_OK - success;
1108 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1109 *
1110 */
1111 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1112 struct __vxge_hw_fifo *fifo,
1113 void **txdlh, void **txdl_priv)
1114 {
1115 struct __vxge_hw_channel *channel;
1116 enum vxge_hw_status status;
1117 int i;
1118
1119 channel = &fifo->channel;
1120
1121 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1122
1123 if (status == VXGE_HW_OK) {
1124 struct vxge_hw_fifo_txd *txdp =
1125 (struct vxge_hw_fifo_txd *)*txdlh;
1126 struct __vxge_hw_fifo_txdl_priv *priv;
1127
1128 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1129
1130 /* reset the TxDL's private */
1131 priv->align_dma_offset = 0;
1132 priv->align_vaddr_start = priv->align_vaddr;
1133 priv->align_used_frags = 0;
1134 priv->frags = 0;
1135 priv->alloc_frags = fifo->config->max_frags;
1136 priv->next_txdl_priv = NULL;
1137
1138 *txdl_priv = (void *)(size_t)txdp->host_control;
1139
1140 for (i = 0; i < fifo->config->max_frags; i++) {
1141 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1142 txdp->control_0 = txdp->control_1 = 0;
1143 }
1144 }
1145
1146 return status;
1147 }
1148
1149 /**
1150 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1151 * descriptor.
1152 * @fifo: Handle to the fifo object used for non offload send
1153 * @txdlh: Descriptor handle.
1154 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1155 * (of buffers).
1156 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1157 * @size: Size of the data buffer (in bytes).
1158 *
1159 * This API is part of the preparation of the transmit descriptor for posting
1160 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1161 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1162 * All three APIs fill in the fields of the fifo descriptor,
1163 * in accordance with the Titan specification.
1164 *
1165 */
1166 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1167 void *txdlh, u32 frag_idx,
1168 dma_addr_t dma_pointer, u32 size)
1169 {
1170 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1171 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1172 struct __vxge_hw_channel *channel;
1173
1174 channel = &fifo->channel;
1175
1176 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1177 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1178
1179 if (frag_idx != 0)
1180 txdp->control_0 = txdp->control_1 = 0;
1181 else {
1182 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1183 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1184 txdp->control_1 |= fifo->interrupt_type;
1185 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1186 fifo->tx_intr_num);
1187 if (txdl_priv->frags) {
1188 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1189 (txdl_priv->frags - 1);
1190 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1191 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1192 }
1193 }
1194
1195 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1196
1197 txdp->buffer_pointer = (u64)dma_pointer;
1198 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1199 fifo->stats->total_buffers++;
1200 txdl_priv->frags++;
1201 }
1202
1203 /**
1204 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1205 * @fifo: Handle to the fifo object used for non offload send
1206 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1207 * @frags: Number of contiguous buffers that are part of a single
1208 * transmit operation.
1209 *
1210 * Post descriptor on the 'fifo' type channel for transmission.
1211 * Prior to posting the descriptor should be filled in accordance with
1212 * Host/Titan interface specification for a given service (LL, etc.).
1213 *
1214 */
1215 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1216 {
1217 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1218 struct vxge_hw_fifo_txd *txdp_last;
1219 struct vxge_hw_fifo_txd *txdp_first;
1220 struct __vxge_hw_channel *channel;
1221
1222 channel = &fifo->channel;
1223
1224 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1225 txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1226
1227 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1228 txdp_last->control_0 |=
1229 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1230 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1231
1232 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1233
1234 __vxge_hw_non_offload_db_post(fifo,
1235 (u64)(size_t)txdl_priv->dma_addr,
1236 txdl_priv->frags - 1,
1237 fifo->no_snoop_bits);
1238
1239 fifo->stats->total_posts++;
1240 fifo->stats->common_stats.usage_cnt++;
1241 if (fifo->stats->common_stats.usage_max <
1242 fifo->stats->common_stats.usage_cnt)
1243 fifo->stats->common_stats.usage_max =
1244 fifo->stats->common_stats.usage_cnt;
1245 }
1246
1247 /**
1248 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1249 * @fifo: Handle to the fifo object used for non offload send
1250 * @txdlh: Descriptor handle. Returned by HW.
1251 * @t_code: Transfer code, as per Titan User Guide,
1252 * Transmit Descriptor Format.
1253 * Returned by HW.
1254 *
1255 * Retrieve the _next_ completed descriptor.
1256 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1257 * driver of new completed descriptors. After that
1258 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1259 * completions (the very first completion is passed by HW via
1260 * vxge_hw_channel_callback_f).
1261 *
1262 * Implementation-wise, the driver is free to call
1263 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1264 * channel callback, or in a deferred fashion and separate (from HW)
1265 * context.
1266 *
1267 * Non-zero @t_code means failure to process the descriptor.
1268 * The failure could happen, for instance, when the link is
1269 * down, in which case Titan completes the descriptor because it
1270 * is not able to send the data out.
1271 *
1272 * For details please refer to Titan User Guide.
1273 *
1274 * Returns: VXGE_HW_OK - success.
1275 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1276 * are currently available for processing.
1277 *
1278 */
1279 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1280 struct __vxge_hw_fifo *fifo, void **txdlh,
1281 enum vxge_hw_fifo_tcode *t_code)
1282 {
1283 struct __vxge_hw_channel *channel;
1284 struct vxge_hw_fifo_txd *txdp;
1285 enum vxge_hw_status status = VXGE_HW_OK;
1286
1287 channel = &fifo->channel;
1288
1289 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1290
1291 txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1292 if (txdp == NULL) {
1293 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1294 goto exit;
1295 }
1296
1297 /* check whether host owns it */
1298 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1299
1300 vxge_assert(txdp->host_control != 0);
1301
1302 vxge_hw_channel_dtr_complete(channel);
1303
1304 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1305
1306 if (fifo->stats->common_stats.usage_cnt > 0)
1307 fifo->stats->common_stats.usage_cnt--;
1308
1309 status = VXGE_HW_OK;
1310 goto exit;
1311 }
1312
1313 /* no more completions */
1314 *txdlh = NULL;
1315 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1316 exit:
1317 return status;
1318 }
1319
1320 /**
1321 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1322 * @fifo: Handle to the fifo object used for non offload send
1323 * @txdlh: Descriptor handle.
1324 * @t_code: One of the enumerated (and documented in the Titan user guide)
1325 * "transfer codes".
1326 *
1327 * Handle descriptor's transfer code. The latter comes with each completed
1328 * descriptor.
1329 *
1330 * Returns: one of the enum vxge_hw_status{} enumerated types.
1331 * VXGE_HW_OK - for success.
1332 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1333 */
1334 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1335 void *txdlh,
1336 enum vxge_hw_fifo_tcode t_code)
1337 {
1338 struct __vxge_hw_channel *channel;
1339
1340 enum vxge_hw_status status = VXGE_HW_OK;
1341 channel = &fifo->channel;
1342
1343 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1344 status = VXGE_HW_ERR_INVALID_TCODE;
1345 goto exit;
1346 }
1347
1348 fifo->stats->txd_t_code_err_cnt[t_code]++;
1349 exit:
1350 return status;
1351 }
1352
1353 /**
1354 * vxge_hw_fifo_txdl_free - Free descriptor.
1355 * @fifo: Handle to the fifo object used for non offload send
1356 * @txdlh: Descriptor handle.
1357 *
1358 * Free the reserved descriptor. This operation is "symmetrical" to
1359 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1360 * lifecycle.
1361 *
1362 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1363 * be:
1364 *
1365 * - reserved (vxge_hw_fifo_txdl_reserve);
1366 *
1367 * - posted (vxge_hw_fifo_txdl_post);
1368 *
1369 * - completed (vxge_hw_fifo_txdl_next_completed);
1370 *
1371 * - and recycled again (vxge_hw_fifo_txdl_free).
1372 *
1373 * For alternative state transitions and more details please refer to
1374 * the design doc.
1375 *
1376 */
1377 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1378 {
1379 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1380 u32 max_frags;
1381 struct __vxge_hw_channel *channel;
1382
1383 channel = &fifo->channel;
1384
1385 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1386 (struct vxge_hw_fifo_txd *)txdlh);
1387
1388 max_frags = fifo->config->max_frags;
1389
1390 vxge_hw_channel_dtr_free(channel, txdlh);
1391 }
1392
1393 /**
1394 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1395 * to MAC address table.
1396 * @vp: Vpath handle.
1397 * @macaddr: MAC address to be added for this vpath into the list
1398 * @macaddr_mask: MAC address mask for macaddr
1399 * @duplicate_mode: Duplicate MAC address add mode. Please see
1400 * enum vxge_hw_vpath_mac_addr_add_mode{}
1401 *
1402 * Adds the given mac address and mac address mask into the list for this
1403 * vpath.
1404 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1405 * vxge_hw_vpath_mac_addr_get_next
1406 *
1407 */
1408 enum vxge_hw_status
1409 vxge_hw_vpath_mac_addr_add(
1410 struct __vxge_hw_vpath_handle *vp,
1411 u8 (macaddr)[ETH_ALEN],
1412 u8 (macaddr_mask)[ETH_ALEN],
1413 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1414 {
1415 u32 i;
1416 u64 data1 = 0ULL;
1417 u64 data2 = 0ULL;
1418 enum vxge_hw_status status = VXGE_HW_OK;
1419
1420 if (vp == NULL) {
1421 status = VXGE_HW_ERR_INVALID_HANDLE;
1422 goto exit;
1423 }
1424
1425 for (i = 0; i < ETH_ALEN; i++) {
1426 data1 <<= 8;
1427 data1 |= (u8)macaddr[i];
1428
1429 data2 <<= 8;
1430 data2 |= (u8)macaddr_mask[i];
1431 }
1432
1433 switch (duplicate_mode) {
1434 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1435 i = 0;
1436 break;
1437 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1438 i = 1;
1439 break;
1440 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1441 i = 2;
1442 break;
1443 default:
1444 i = 0;
1445 break;
1446 }
1447
1448 status = __vxge_hw_vpath_rts_table_set(vp,
1449 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1450 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1451 0,
1452 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1453 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1454 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1455 exit:
1456 return status;
1457 }
1458
1459 /**
1460 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1461 * from MAC address table.
1462 * @vp: Vpath handle.
1463 * @macaddr: First MAC address entry for this vpath in the list
1464 * @macaddr_mask: MAC address mask for macaddr
1465 *
1466 * Returns the first mac address and mac address mask in the list for this
1467 * vpath.
1468 * see also: vxge_hw_vpath_mac_addr_get_next
1469 *
1470 */
1471 enum vxge_hw_status
1472 vxge_hw_vpath_mac_addr_get(
1473 struct __vxge_hw_vpath_handle *vp,
1474 u8 (macaddr)[ETH_ALEN],
1475 u8 (macaddr_mask)[ETH_ALEN])
1476 {
1477 u32 i;
1478 u64 data1 = 0ULL;
1479 u64 data2 = 0ULL;
1480 enum vxge_hw_status status = VXGE_HW_OK;
1481
1482 if (vp == NULL) {
1483 status = VXGE_HW_ERR_INVALID_HANDLE;
1484 goto exit;
1485 }
1486
1487 status = __vxge_hw_vpath_rts_table_get(vp,
1488 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1489 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1490 0, &data1, &data2);
1491
1492 if (status != VXGE_HW_OK)
1493 goto exit;
1494
1495 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1496
1497 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1498
1499 for (i = ETH_ALEN; i > 0; i--) {
1500 macaddr[i-1] = (u8)(data1 & 0xFF);
1501 data1 >>= 8;
1502
1503 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1504 data2 >>= 8;
1505 }
1506 exit:
1507 return status;
1508 }
1509
1510 /**
1511 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1512 * vpath
1513 * from MAC address table.
1514 * @vp: Vpath handle.
1515 * @macaddr: Next MAC address entry for this vpath in the list
1516 * @macaddr_mask: MAC address mask for macaddr
1517 *
1518 * Returns the next mac address and mac address mask in the list for this
1519 * vpath.
1520 * see also: vxge_hw_vpath_mac_addr_get
1521 *
1522 */
1523 enum vxge_hw_status
1524 vxge_hw_vpath_mac_addr_get_next(
1525 struct __vxge_hw_vpath_handle *vp,
1526 u8 (macaddr)[ETH_ALEN],
1527 u8 (macaddr_mask)[ETH_ALEN])
1528 {
1529 u32 i;
1530 u64 data1 = 0ULL;
1531 u64 data2 = 0ULL;
1532 enum vxge_hw_status status = VXGE_HW_OK;
1533
1534 if (vp == NULL) {
1535 status = VXGE_HW_ERR_INVALID_HANDLE;
1536 goto exit;
1537 }
1538
1539 status = __vxge_hw_vpath_rts_table_get(vp,
1540 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1541 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1542 0, &data1, &data2);
1543
1544 if (status != VXGE_HW_OK)
1545 goto exit;
1546
1547 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1548
1549 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1550
1551 for (i = ETH_ALEN; i > 0; i--) {
1552 macaddr[i-1] = (u8)(data1 & 0xFF);
1553 data1 >>= 8;
1554
1555 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1556 data2 >>= 8;
1557 }
1558
1559 exit:
1560 return status;
1561 }
1562
1563 /**
1564 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1565 * to MAC address table.
1566 * @vp: Vpath handle.
1567 * @macaddr: MAC address to be added for this vpath into the list
1568 * @macaddr_mask: MAC address mask for macaddr
1569 *
1570 * Delete the given mac address and mac address mask into the list for this
1571 * vpath.
1572 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1573 * vxge_hw_vpath_mac_addr_get_next
1574 *
1575 */
1576 enum vxge_hw_status
1577 vxge_hw_vpath_mac_addr_delete(
1578 struct __vxge_hw_vpath_handle *vp,
1579 u8 (macaddr)[ETH_ALEN],
1580 u8 (macaddr_mask)[ETH_ALEN])
1581 {
1582 u32 i;
1583 u64 data1 = 0ULL;
1584 u64 data2 = 0ULL;
1585 enum vxge_hw_status status = VXGE_HW_OK;
1586
1587 if (vp == NULL) {
1588 status = VXGE_HW_ERR_INVALID_HANDLE;
1589 goto exit;
1590 }
1591
1592 for (i = 0; i < ETH_ALEN; i++) {
1593 data1 <<= 8;
1594 data1 |= (u8)macaddr[i];
1595
1596 data2 <<= 8;
1597 data2 |= (u8)macaddr_mask[i];
1598 }
1599
1600 status = __vxge_hw_vpath_rts_table_set(vp,
1601 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1602 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1603 0,
1604 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1605 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1606 exit:
1607 return status;
1608 }
1609
1610 /**
1611 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1612 * to vlan id table.
1613 * @vp: Vpath handle.
1614 * @vid: vlan id to be added for this vpath into the list
1615 *
1616 * Adds the given vlan id into the list for this vpath.
1617 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1618 * vxge_hw_vpath_vid_get_next
1619 *
1620 */
1621 enum vxge_hw_status
1622 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1623 {
1624 enum vxge_hw_status status = VXGE_HW_OK;
1625
1626 if (vp == NULL) {
1627 status = VXGE_HW_ERR_INVALID_HANDLE;
1628 goto exit;
1629 }
1630
1631 status = __vxge_hw_vpath_rts_table_set(vp,
1632 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1633 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1634 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1635 exit:
1636 return status;
1637 }
1638
1639 /**
1640 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1641 * from vlan id table.
1642 * @vp: Vpath handle.
1643 * @vid: Buffer to return vlan id
1644 *
1645 * Returns the first vlan id in the list for this vpath.
1646 * see also: vxge_hw_vpath_vid_get_next
1647 *
1648 */
1649 enum vxge_hw_status
1650 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1651 {
1652 u64 data;
1653 enum vxge_hw_status status = VXGE_HW_OK;
1654
1655 if (vp == NULL) {
1656 status = VXGE_HW_ERR_INVALID_HANDLE;
1657 goto exit;
1658 }
1659
1660 status = __vxge_hw_vpath_rts_table_get(vp,
1661 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1662 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1663 0, vid, &data);
1664
1665 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1666 exit:
1667 return status;
1668 }
1669
1670 /**
1671 * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1672 * from vlan id table.
1673 * @vp: Vpath handle.
1674 * @vid: Buffer to return vlan id
1675 *
1676 * Returns the next vlan id in the list for this vpath.
1677 * see also: vxge_hw_vpath_vid_get
1678 *
1679 */
1680 enum vxge_hw_status
1681 vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1682 {
1683 u64 data;
1684 enum vxge_hw_status status = VXGE_HW_OK;
1685
1686 if (vp == NULL) {
1687 status = VXGE_HW_ERR_INVALID_HANDLE;
1688 goto exit;
1689 }
1690
1691 status = __vxge_hw_vpath_rts_table_get(vp,
1692 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1693 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1694 0, vid, &data);
1695
1696 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1697 exit:
1698 return status;
1699 }
1700
1701 /**
1702 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1703 * to vlan id table.
1704 * @vp: Vpath handle.
1705 * @vid: vlan id to be added for this vpath into the list
1706 *
1707 * Adds the given vlan id into the list for this vpath.
1708 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1709 * vxge_hw_vpath_vid_get_next
1710 *
1711 */
1712 enum vxge_hw_status
1713 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1714 {
1715 enum vxge_hw_status status = VXGE_HW_OK;
1716
1717 if (vp == NULL) {
1718 status = VXGE_HW_ERR_INVALID_HANDLE;
1719 goto exit;
1720 }
1721
1722 status = __vxge_hw_vpath_rts_table_set(vp,
1723 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1724 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1725 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1726 exit:
1727 return status;
1728 }
1729
1730 /**
1731 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1732 * @vp: Vpath handle.
1733 *
1734 * Enable promiscuous mode of Titan-e operation.
1735 *
1736 * See also: vxge_hw_vpath_promisc_disable().
1737 */
1738 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1739 struct __vxge_hw_vpath_handle *vp)
1740 {
1741 u64 val64;
1742 struct __vxge_hw_virtualpath *vpath;
1743 enum vxge_hw_status status = VXGE_HW_OK;
1744
1745 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1746 status = VXGE_HW_ERR_INVALID_HANDLE;
1747 goto exit;
1748 }
1749
1750 vpath = vp->vpath;
1751
1752 /* Enable promiscous mode for function 0 only */
1753 if (!(vpath->hldev->access_rights &
1754 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1755 return VXGE_HW_OK;
1756
1757 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1758
1759 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1760
1761 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1762 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1763 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1764 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1765
1766 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1767 }
1768 exit:
1769 return status;
1770 }
1771
1772 /**
1773 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1774 * @vp: Vpath handle.
1775 *
1776 * Disable promiscuous mode of Titan-e operation.
1777 *
1778 * See also: vxge_hw_vpath_promisc_enable().
1779 */
1780 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
1781 struct __vxge_hw_vpath_handle *vp)
1782 {
1783 u64 val64;
1784 struct __vxge_hw_virtualpath *vpath;
1785 enum vxge_hw_status status = VXGE_HW_OK;
1786
1787 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1788 status = VXGE_HW_ERR_INVALID_HANDLE;
1789 goto exit;
1790 }
1791
1792 vpath = vp->vpath;
1793
1794 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1795
1796 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
1797
1798 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1799 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1800 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
1801
1802 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1803 }
1804 exit:
1805 return status;
1806 }
1807
1808 /*
1809 * vxge_hw_vpath_bcast_enable - Enable broadcast
1810 * @vp: Vpath handle.
1811 *
1812 * Enable receiving broadcasts.
1813 */
1814 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
1815 struct __vxge_hw_vpath_handle *vp)
1816 {
1817 u64 val64;
1818 struct __vxge_hw_virtualpath *vpath;
1819 enum vxge_hw_status status = VXGE_HW_OK;
1820
1821 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1822 status = VXGE_HW_ERR_INVALID_HANDLE;
1823 goto exit;
1824 }
1825
1826 vpath = vp->vpath;
1827
1828 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1829
1830 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
1831 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
1832 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1833 }
1834 exit:
1835 return status;
1836 }
1837
1838 /**
1839 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1840 * @vp: Vpath handle.
1841 *
1842 * Enable Titan-e multicast addresses.
1843 * Returns: VXGE_HW_OK on success.
1844 *
1845 */
1846 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
1847 struct __vxge_hw_vpath_handle *vp)
1848 {
1849 u64 val64;
1850 struct __vxge_hw_virtualpath *vpath;
1851 enum vxge_hw_status status = VXGE_HW_OK;
1852
1853 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1854 status = VXGE_HW_ERR_INVALID_HANDLE;
1855 goto exit;
1856 }
1857
1858 vpath = vp->vpath;
1859
1860 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1861
1862 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
1863 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1864 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1865 }
1866 exit:
1867 return status;
1868 }
1869
1870 /**
1871 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
1872 * @vp: Vpath handle.
1873 *
1874 * Disable Titan-e multicast addresses.
1875 * Returns: VXGE_HW_OK - success.
1876 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1877 *
1878 */
1879 enum vxge_hw_status
1880 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
1881 {
1882 u64 val64;
1883 struct __vxge_hw_virtualpath *vpath;
1884 enum vxge_hw_status status = VXGE_HW_OK;
1885
1886 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1887 status = VXGE_HW_ERR_INVALID_HANDLE;
1888 goto exit;
1889 }
1890
1891 vpath = vp->vpath;
1892
1893 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1894
1895 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
1896 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1897 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1898 }
1899 exit:
1900 return status;
1901 }
1902
1903 /*
1904 * __vxge_hw_vpath_alarm_process - Process Alarms.
1905 * @vpath: Virtual Path.
1906 * @skip_alarms: Do not clear the alarms
1907 *
1908 * Process vpath alarms.
1909 *
1910 */
1911 enum vxge_hw_status __vxge_hw_vpath_alarm_process(
1912 struct __vxge_hw_virtualpath *vpath,
1913 u32 skip_alarms)
1914 {
1915 u64 val64;
1916 u64 alarm_status;
1917 u64 pic_status;
1918 struct __vxge_hw_device *hldev = NULL;
1919 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
1920 u64 mask64;
1921 struct vxge_hw_vpath_stats_sw_info *sw_stats;
1922 struct vxge_hw_vpath_reg __iomem *vp_reg;
1923
1924 if (vpath == NULL) {
1925 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1926 alarm_event);
1927 goto out2;
1928 }
1929
1930 hldev = vpath->hldev;
1931 vp_reg = vpath->vp_reg;
1932 alarm_status = readq(&vp_reg->vpath_general_int_status);
1933
1934 if (alarm_status == VXGE_HW_ALL_FOXES) {
1935 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
1936 alarm_event);
1937 goto out;
1938 }
1939
1940 sw_stats = vpath->sw_stats;
1941
1942 if (alarm_status & ~(
1943 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
1944 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
1945 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
1946 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
1947 sw_stats->error_stats.unknown_alarms++;
1948
1949 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1950 alarm_event);
1951 goto out;
1952 }
1953
1954 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
1955
1956 val64 = readq(&vp_reg->xgmac_vp_int_status);
1957
1958 if (val64 &
1959 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
1960
1961 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
1962
1963 if (((val64 &
1964 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
1965 (!(val64 &
1966 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
1967 ((val64 &
1968 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1969 && (!(val64 &
1970 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1971 ))) {
1972 sw_stats->error_stats.network_sustained_fault++;
1973
1974 writeq(
1975 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
1976 &vp_reg->asic_ntwk_vp_err_mask);
1977
1978 __vxge_hw_device_handle_link_down_ind(hldev);
1979 alarm_event = VXGE_HW_SET_LEVEL(
1980 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
1981 }
1982
1983 if (((val64 &
1984 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
1985 (!(val64 &
1986 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
1987 ((val64 &
1988 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1989 && (!(val64 &
1990 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1991 ))) {
1992
1993 sw_stats->error_stats.network_sustained_ok++;
1994
1995 writeq(
1996 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
1997 &vp_reg->asic_ntwk_vp_err_mask);
1998
1999 __vxge_hw_device_handle_link_up_ind(hldev);
2000 alarm_event = VXGE_HW_SET_LEVEL(
2001 VXGE_HW_EVENT_LINK_UP, alarm_event);
2002 }
2003
2004 writeq(VXGE_HW_INTR_MASK_ALL,
2005 &vp_reg->asic_ntwk_vp_err_reg);
2006
2007 alarm_event = VXGE_HW_SET_LEVEL(
2008 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
2009
2010 if (skip_alarms)
2011 return VXGE_HW_OK;
2012 }
2013 }
2014
2015 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
2016
2017 pic_status = readq(&vp_reg->vpath_ppif_int_status);
2018
2019 if (pic_status &
2020 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
2021
2022 val64 = readq(&vp_reg->general_errors_reg);
2023 mask64 = readq(&vp_reg->general_errors_mask);
2024
2025 if ((val64 &
2026 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
2027 ~mask64) {
2028 sw_stats->error_stats.ini_serr_det++;
2029
2030 alarm_event = VXGE_HW_SET_LEVEL(
2031 VXGE_HW_EVENT_SERR, alarm_event);
2032 }
2033
2034 if ((val64 &
2035 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
2036 ~mask64) {
2037 sw_stats->error_stats.dblgen_fifo0_overflow++;
2038
2039 alarm_event = VXGE_HW_SET_LEVEL(
2040 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
2041 }
2042
2043 if ((val64 &
2044 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
2045 ~mask64)
2046 sw_stats->error_stats.statsb_pif_chain_error++;
2047
2048 if ((val64 &
2049 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
2050 ~mask64)
2051 sw_stats->error_stats.statsb_drop_timeout++;
2052
2053 if ((val64 &
2054 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
2055 ~mask64)
2056 sw_stats->error_stats.target_illegal_access++;
2057
2058 if (!skip_alarms) {
2059 writeq(VXGE_HW_INTR_MASK_ALL,
2060 &vp_reg->general_errors_reg);
2061 alarm_event = VXGE_HW_SET_LEVEL(
2062 VXGE_HW_EVENT_ALARM_CLEARED,
2063 alarm_event);
2064 }
2065 }
2066
2067 if (pic_status &
2068 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
2069
2070 val64 = readq(&vp_reg->kdfcctl_errors_reg);
2071 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
2072
2073 if ((val64 &
2074 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
2075 ~mask64) {
2076 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
2077
2078 alarm_event = VXGE_HW_SET_LEVEL(
2079 VXGE_HW_EVENT_FIFO_ERR,
2080 alarm_event);
2081 }
2082
2083 if ((val64 &
2084 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
2085 ~mask64) {
2086 sw_stats->error_stats.kdfcctl_fifo0_poison++;
2087
2088 alarm_event = VXGE_HW_SET_LEVEL(
2089 VXGE_HW_EVENT_FIFO_ERR,
2090 alarm_event);
2091 }
2092
2093 if ((val64 &
2094 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
2095 ~mask64) {
2096 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
2097
2098 alarm_event = VXGE_HW_SET_LEVEL(
2099 VXGE_HW_EVENT_FIFO_ERR,
2100 alarm_event);
2101 }
2102
2103 if (!skip_alarms) {
2104 writeq(VXGE_HW_INTR_MASK_ALL,
2105 &vp_reg->kdfcctl_errors_reg);
2106 alarm_event = VXGE_HW_SET_LEVEL(
2107 VXGE_HW_EVENT_ALARM_CLEARED,
2108 alarm_event);
2109 }
2110 }
2111
2112 }
2113
2114 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
2115
2116 val64 = readq(&vp_reg->wrdma_alarm_status);
2117
2118 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
2119
2120 val64 = readq(&vp_reg->prc_alarm_reg);
2121 mask64 = readq(&vp_reg->prc_alarm_mask);
2122
2123 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
2124 ~mask64)
2125 sw_stats->error_stats.prc_ring_bumps++;
2126
2127 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
2128 ~mask64) {
2129 sw_stats->error_stats.prc_rxdcm_sc_err++;
2130
2131 alarm_event = VXGE_HW_SET_LEVEL(
2132 VXGE_HW_EVENT_VPATH_ERR,
2133 alarm_event);
2134 }
2135
2136 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
2137 & ~mask64) {
2138 sw_stats->error_stats.prc_rxdcm_sc_abort++;
2139
2140 alarm_event = VXGE_HW_SET_LEVEL(
2141 VXGE_HW_EVENT_VPATH_ERR,
2142 alarm_event);
2143 }
2144
2145 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
2146 & ~mask64) {
2147 sw_stats->error_stats.prc_quanta_size_err++;
2148
2149 alarm_event = VXGE_HW_SET_LEVEL(
2150 VXGE_HW_EVENT_VPATH_ERR,
2151 alarm_event);
2152 }
2153
2154 if (!skip_alarms) {
2155 writeq(VXGE_HW_INTR_MASK_ALL,
2156 &vp_reg->prc_alarm_reg);
2157 alarm_event = VXGE_HW_SET_LEVEL(
2158 VXGE_HW_EVENT_ALARM_CLEARED,
2159 alarm_event);
2160 }
2161 }
2162 }
2163 out:
2164 hldev->stats.sw_dev_err_stats.vpath_alarms++;
2165 out2:
2166 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
2167 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
2168 return VXGE_HW_OK;
2169
2170 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
2171
2172 if (alarm_event == VXGE_HW_EVENT_SERR)
2173 return VXGE_HW_ERR_CRITICAL;
2174
2175 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
2176 VXGE_HW_ERR_SLOT_FREEZE :
2177 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
2178 VXGE_HW_ERR_VPATH;
2179 }
2180
2181 /*
2182 * vxge_hw_vpath_alarm_process - Process Alarms.
2183 * @vpath: Virtual Path.
2184 * @skip_alarms: Do not clear the alarms
2185 *
2186 * Process vpath alarms.
2187 *
2188 */
2189 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2190 struct __vxge_hw_vpath_handle *vp,
2191 u32 skip_alarms)
2192 {
2193 enum vxge_hw_status status = VXGE_HW_OK;
2194
2195 if (vp == NULL) {
2196 status = VXGE_HW_ERR_INVALID_HANDLE;
2197 goto exit;
2198 }
2199
2200 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2201 exit:
2202 return status;
2203 }
2204
2205 /**
2206 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2207 * alrms
2208 * @vp: Virtual Path handle.
2209 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2210 * interrupts(Can be repeated). If fifo or ring are not enabled
2211 * the MSIX vector for that should be set to 0
2212 * @alarm_msix_id: MSIX vector for alarm.
2213 *
2214 * This API will associate a given MSIX vector numbers with the four TIM
2215 * interrupts and alarm interrupt.
2216 */
2217 enum vxge_hw_status
2218 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2219 int alarm_msix_id)
2220 {
2221 u64 val64;
2222 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2223 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2224 u32 first_vp_id = vpath->hldev->first_vp_id;
2225
2226 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2227 (first_vp_id * 4) + tim_msix_id[0]) |
2228 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2229 (first_vp_id * 4) + tim_msix_id[1]) |
2230 VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
2231 (first_vp_id * 4) + tim_msix_id[2]);
2232
2233 val64 |= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
2234 (first_vp_id * 4) + tim_msix_id[3]);
2235
2236 writeq(val64, &vp_reg->interrupt_cfg0);
2237
2238 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2239 (first_vp_id * 4) + alarm_msix_id),
2240 &vp_reg->interrupt_cfg2);
2241
2242 if (vpath->hldev->config.intr_mode ==
2243 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2244 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2245 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2246 0, 32), &vp_reg->one_shot_vect1_en);
2247 }
2248
2249 if (vpath->hldev->config.intr_mode ==
2250 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2251 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2252 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2253 0, 32), &vp_reg->one_shot_vect2_en);
2254
2255 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2256 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
2257 0, 32), &vp_reg->one_shot_vect3_en);
2258 }
2259
2260 return VXGE_HW_OK;
2261 }
2262
2263 /**
2264 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2265 * @vp: Virtual Path handle.
2266 * @msix_id: MSIX ID
2267 *
2268 * The function masks the msix interrupt for the given msix_id
2269 *
2270 * Returns: 0,
2271 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2272 * status.
2273 * See also:
2274 */
2275 void
2276 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2277 {
2278 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2279 __vxge_hw_pio_mem_write32_upper(
2280 (u32) vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2281 (msix_id / 4)), 0, 32),
2282 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2283
2284 return;
2285 }
2286
2287 /**
2288 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2289 * @vp: Virtual Path handle.
2290 * @msix_id: MSI ID
2291 *
2292 * The function clears the msix interrupt for the given msix_id
2293 *
2294 * Returns: 0,
2295 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2296 * status.
2297 * See also:
2298 */
2299 void
2300 vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2301 {
2302 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2303 if (hldev->config.intr_mode ==
2304 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2305 __vxge_hw_pio_mem_write32_upper(
2306 (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2307 (msix_id/4)), 0, 32),
2308 &hldev->common_reg->
2309 clr_msix_one_shot_vec[msix_id%4]);
2310 } else {
2311 __vxge_hw_pio_mem_write32_upper(
2312 (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2313 (msix_id/4)), 0, 32),
2314 &hldev->common_reg->
2315 clear_msix_mask_vect[msix_id%4]);
2316 }
2317
2318 return;
2319 }
2320
2321 /**
2322 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2323 * @vp: Virtual Path handle.
2324 * @msix_id: MSI ID
2325 *
2326 * The function unmasks the msix interrupt for the given msix_id
2327 *
2328 * Returns: 0,
2329 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2330 * status.
2331 * See also:
2332 */
2333 void
2334 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2335 {
2336 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2337 __vxge_hw_pio_mem_write32_upper(
2338 (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2339 (msix_id/4)), 0, 32),
2340 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2341
2342 return;
2343 }
2344
2345 /**
2346 * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2347 * @vp: Virtual Path handle.
2348 *
2349 * The function masks all msix interrupt for the given vpath
2350 *
2351 */
2352 void
2353 vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
2354 {
2355
2356 __vxge_hw_pio_mem_write32_upper(
2357 (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
2358 &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
2359
2360 return;
2361 }
2362
2363 /**
2364 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2365 * @vp: Virtual Path handle.
2366 *
2367 * Mask Tx and Rx vpath interrupts.
2368 *
2369 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2370 */
2371 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2372 {
2373 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2374 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2375 u64 val64;
2376 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2377
2378 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2379 tim_int_mask1, vp->vpath->vp_id);
2380
2381 val64 = readq(&hldev->common_reg->tim_int_mask0);
2382
2383 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2384 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2385 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2386 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2387 &hldev->common_reg->tim_int_mask0);
2388 }
2389
2390 val64 = readl(&hldev->common_reg->tim_int_mask1);
2391
2392 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2393 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2394 __vxge_hw_pio_mem_write32_upper(
2395 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2396 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2397 &hldev->common_reg->tim_int_mask1);
2398 }
2399
2400 return;
2401 }
2402
2403 /**
2404 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2405 * @vp: Virtual Path handle.
2406 *
2407 * Unmask Tx and Rx vpath interrupts.
2408 *
2409 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2410 */
2411 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2412 {
2413 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2414 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2415 u64 val64;
2416 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2417
2418 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2419 tim_int_mask1, vp->vpath->vp_id);
2420
2421 val64 = readq(&hldev->common_reg->tim_int_mask0);
2422
2423 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2424 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2425 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2426 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2427 &hldev->common_reg->tim_int_mask0);
2428 }
2429
2430 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2431 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2432 __vxge_hw_pio_mem_write32_upper(
2433 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2434 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2435 &hldev->common_reg->tim_int_mask1);
2436 }
2437
2438 return;
2439 }
2440
2441 /**
2442 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2443 * descriptors and process the same.
2444 * @ring: Handle to the ring object used for receive
2445 *
2446 * The function polls the Rx for the completed descriptors and calls
2447 * the driver via supplied completion callback.
2448 *
2449 * Returns: VXGE_HW_OK, if the polling is completed successful.
2450 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2451 * descriptors available which are yet to be processed.
2452 *
2453 * See also: vxge_hw_vpath_poll_rx()
2454 */
2455 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2456 {
2457 u8 t_code;
2458 enum vxge_hw_status status = VXGE_HW_OK;
2459 void *first_rxdh;
2460 u64 val64 = 0;
2461 int new_count = 0;
2462
2463 ring->cmpl_cnt = 0;
2464
2465 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2466 if (status == VXGE_HW_OK)
2467 ring->callback(ring, first_rxdh,
2468 t_code, ring->channel.userdata);
2469
2470 if (ring->cmpl_cnt != 0) {
2471 ring->doorbell_cnt += ring->cmpl_cnt;
2472 if (ring->doorbell_cnt >= ring->rxds_limit) {
2473 /*
2474 * Each RxD is of 4 qwords, update the number of
2475 * qwords replenished
2476 */
2477 new_count = (ring->doorbell_cnt * 4);
2478
2479 /* For each block add 4 more qwords */
2480 ring->total_db_cnt += ring->doorbell_cnt;
2481 if (ring->total_db_cnt >= ring->rxds_per_block) {
2482 new_count += 4;
2483 /* Reset total count */
2484 ring->total_db_cnt %= ring->rxds_per_block;
2485 }
2486 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2487 &ring->vp_reg->prc_rxd_doorbell);
2488 val64 =
2489 readl(&ring->common_reg->titan_general_int_status);
2490 ring->doorbell_cnt = 0;
2491 }
2492 }
2493
2494 return status;
2495 }
2496
2497 /**
2498 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2499 * the same.
2500 * @fifo: Handle to the fifo object used for non offload send
2501 *
2502 * The function polls the Tx for the completed descriptors and calls
2503 * the driver via supplied completion callback.
2504 *
2505 * Returns: VXGE_HW_OK, if the polling is completed successful.
2506 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2507 * descriptors available which are yet to be processed.
2508 *
2509 * See also: vxge_hw_vpath_poll_tx().
2510 */
2511 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2512 struct sk_buff ***skb_ptr, int nr_skb,
2513 int *more)
2514 {
2515 enum vxge_hw_fifo_tcode t_code;
2516 void *first_txdlh;
2517 enum vxge_hw_status status = VXGE_HW_OK;
2518 struct __vxge_hw_channel *channel;
2519
2520 channel = &fifo->channel;
2521
2522 status = vxge_hw_fifo_txdl_next_completed(fifo,
2523 &first_txdlh, &t_code);
2524 if (status == VXGE_HW_OK)
2525 if (fifo->callback(fifo, first_txdlh, t_code,
2526 channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2527 status = VXGE_HW_COMPLETIONS_REMAIN;
2528
2529 return status;
2530 }