smsc9420: SMSC LAN9420 10/100 PCI ethernet adapter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
14 *
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
17 *
18 * This source has not been verified for use in safety critical systems.
19 *
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
22 *
23 * Original code:
24 *
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
27 *
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
32 *
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
37 *
38 * Author: Chuang Liang-Shing, AJ Jiang
39 *
40 * Date: Jan 24, 2003
41 *
42 * MODULE_LICENSE("GPL");
43 *
44 */
45
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <asm/io.h>
65 #include <linux/if.h>
66 #include <asm/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
80
81 #include "via-velocity.h"
82
83
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
86
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
91 *
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
94 */
95
96 static void mac_get_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
97 {
98 int i;
99
100 /* Select CAM mask */
101 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
102
103 writeb(0, &regs->CAMADDR);
104
105 /* read mask */
106 for (i = 0; i < 8; i++)
107 *mask++ = readb(&(regs->MARCAM[i]));
108
109 /* disable CAMEN */
110 writeb(0, &regs->CAMADDR);
111
112 /* Select mar */
113 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
114
115 }
116
117
118 /**
119 * mac_set_cam_mask - Set a CAM mask
120 * @regs: register block for this velocity
121 * @mask: CAM mask to load
122 *
123 * Store a new mask into a CAM
124 */
125
126 static void mac_set_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
127 {
128 int i;
129 /* Select CAM mask */
130 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131
132 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
133
134 for (i = 0; i < 8; i++) {
135 writeb(*mask++, &(regs->MARCAM[i]));
136 }
137 /* disable CAMEN */
138 writeb(0, &regs->CAMADDR);
139
140 /* Select mar */
141 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
142 }
143
144 static void mac_set_vlan_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
145 {
146 int i;
147 /* Select CAM mask */
148 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
149
150 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
151
152 for (i = 0; i < 8; i++) {
153 writeb(*mask++, &(regs->MARCAM[i]));
154 }
155 /* disable CAMEN */
156 writeb(0, &regs->CAMADDR);
157
158 /* Select mar */
159 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
160 }
161
162 /**
163 * mac_set_cam - set CAM data
164 * @regs: register block of this velocity
165 * @idx: Cam index
166 * @addr: 2 or 6 bytes of CAM data
167 *
168 * Load an address or vlan tag into a CAM
169 */
170
171 static void mac_set_cam(struct mac_regs __iomem * regs, int idx, const u8 *addr)
172 {
173 int i;
174
175 /* Select CAM mask */
176 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
177
178 idx &= (64 - 1);
179
180 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
181
182 for (i = 0; i < 6; i++) {
183 writeb(*addr++, &(regs->MARCAM[i]));
184 }
185 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
186
187 udelay(10);
188
189 writeb(0, &regs->CAMADDR);
190
191 /* Select mar */
192 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
193 }
194
195 static void mac_set_vlan_cam(struct mac_regs __iomem * regs, int idx,
196 const u8 *addr)
197 {
198
199 /* Select CAM mask */
200 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
201
202 idx &= (64 - 1);
203
204 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
205 writew(*((u16 *) addr), &regs->MARCAM[0]);
206
207 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
208
209 udelay(10);
210
211 writeb(0, &regs->CAMADDR);
212
213 /* Select mar */
214 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
215 }
216
217
218 /**
219 * mac_wol_reset - reset WOL after exiting low power
220 * @regs: register block of this velocity
221 *
222 * Called after we drop out of wake on lan mode in order to
223 * reset the Wake on lan features. This function doesn't restore
224 * the rest of the logic from the result of sleep/wakeup
225 */
226
227 static void mac_wol_reset(struct mac_regs __iomem * regs)
228 {
229
230 /* Turn off SWPTAG right after leaving power mode */
231 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
232 /* clear sticky bits */
233 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
234
235 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
236 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
237 /* disable force PME-enable */
238 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
239 /* disable power-event config bit */
240 writew(0xFFFF, &regs->WOLCRClr);
241 /* clear power status */
242 writew(0xFFFF, &regs->WOLSRClr);
243 }
244
245 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
246 static const struct ethtool_ops velocity_ethtool_ops;
247
248 /*
249 Define module options
250 */
251
252 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
253 MODULE_LICENSE("GPL");
254 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
255
256 #define VELOCITY_PARAM(N,D) \
257 static int N[MAX_UNITS]=OPTION_DEFAULT;\
258 module_param_array(N, int, NULL, 0); \
259 MODULE_PARM_DESC(N, D);
260
261 #define RX_DESC_MIN 64
262 #define RX_DESC_MAX 255
263 #define RX_DESC_DEF 64
264 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
265
266 #define TX_DESC_MIN 16
267 #define TX_DESC_MAX 256
268 #define TX_DESC_DEF 64
269 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
270
271 #define RX_THRESH_MIN 0
272 #define RX_THRESH_MAX 3
273 #define RX_THRESH_DEF 0
274 /* rx_thresh[] is used for controlling the receive fifo threshold.
275 0: indicate the rxfifo threshold is 128 bytes.
276 1: indicate the rxfifo threshold is 512 bytes.
277 2: indicate the rxfifo threshold is 1024 bytes.
278 3: indicate the rxfifo threshold is store & forward.
279 */
280 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
281
282 #define DMA_LENGTH_MIN 0
283 #define DMA_LENGTH_MAX 7
284 #define DMA_LENGTH_DEF 0
285
286 /* DMA_length[] is used for controlling the DMA length
287 0: 8 DWORDs
288 1: 16 DWORDs
289 2: 32 DWORDs
290 3: 64 DWORDs
291 4: 128 DWORDs
292 5: 256 DWORDs
293 6: SF(flush till emply)
294 7: SF(flush till emply)
295 */
296 VELOCITY_PARAM(DMA_length, "DMA length");
297
298 #define IP_ALIG_DEF 0
299 /* IP_byte_align[] is used for IP header DWORD byte aligned
300 0: indicate the IP header won't be DWORD byte aligned.(Default) .
301 1: indicate the IP header will be DWORD byte aligned.
302 In some enviroment, the IP header should be DWORD byte aligned,
303 or the packet will be droped when we receive it. (eg: IPVS)
304 */
305 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
306
307 #define TX_CSUM_DEF 1
308 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
309 (We only support RX checksum offload now)
310 0: disable csum_offload[checksum offload
311 1: enable checksum offload. (Default)
312 */
313 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
314
315 #define FLOW_CNTL_DEF 1
316 #define FLOW_CNTL_MIN 1
317 #define FLOW_CNTL_MAX 5
318
319 /* flow_control[] is used for setting the flow control ability of NIC.
320 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
321 2: enable TX flow control.
322 3: enable RX flow control.
323 4: enable RX/TX flow control.
324 5: disable
325 */
326 VELOCITY_PARAM(flow_control, "Enable flow control ability");
327
328 #define MED_LNK_DEF 0
329 #define MED_LNK_MIN 0
330 #define MED_LNK_MAX 4
331 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
332 0: indicate autonegotiation for both speed and duplex mode
333 1: indicate 100Mbps half duplex mode
334 2: indicate 100Mbps full duplex mode
335 3: indicate 10Mbps half duplex mode
336 4: indicate 10Mbps full duplex mode
337
338 Note:
339 if EEPROM have been set to the force mode, this option is ignored
340 by driver.
341 */
342 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
343
344 #define VAL_PKT_LEN_DEF 0
345 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
346 0: Receive frame with invalid layer 2 length (Default)
347 1: Drop frame with invalid layer 2 length
348 */
349 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
350
351 #define WOL_OPT_DEF 0
352 #define WOL_OPT_MIN 0
353 #define WOL_OPT_MAX 7
354 /* wol_opts[] is used for controlling wake on lan behavior.
355 0: Wake up if recevied a magic packet. (Default)
356 1: Wake up if link status is on/off.
357 2: Wake up if recevied an arp packet.
358 4: Wake up if recevied any unicast packet.
359 Those value can be sumed up to support more than one option.
360 */
361 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
362
363 #define INT_WORKS_DEF 20
364 #define INT_WORKS_MIN 10
365 #define INT_WORKS_MAX 64
366
367 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
368
369 static int rx_copybreak = 200;
370 module_param(rx_copybreak, int, 0644);
371 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
372
373 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
374 const struct velocity_info_tbl *info);
375 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
376 static void velocity_print_info(struct velocity_info *vptr);
377 static int velocity_open(struct net_device *dev);
378 static int velocity_change_mtu(struct net_device *dev, int mtu);
379 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
380 static int velocity_intr(int irq, void *dev_instance);
381 static void velocity_set_multi(struct net_device *dev);
382 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
383 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
384 static int velocity_close(struct net_device *dev);
385 static int velocity_receive_frame(struct velocity_info *, int idx);
386 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
387 static void velocity_free_rd_ring(struct velocity_info *vptr);
388 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
389 static int velocity_soft_reset(struct velocity_info *vptr);
390 static void mii_init(struct velocity_info *vptr, u32 mii_status);
391 static u32 velocity_get_link(struct net_device *dev);
392 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
393 static void velocity_print_link_status(struct velocity_info *vptr);
394 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
395 static void velocity_shutdown(struct velocity_info *vptr);
396 static void enable_flow_control_ability(struct velocity_info *vptr);
397 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
398 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
399 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
400 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
401 static u32 check_connection_type(struct mac_regs __iomem * regs);
402 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
403
404 #ifdef CONFIG_PM
405
406 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
407 static int velocity_resume(struct pci_dev *pdev);
408
409 static DEFINE_SPINLOCK(velocity_dev_list_lock);
410 static LIST_HEAD(velocity_dev_list);
411
412 #endif
413
414 #if defined(CONFIG_PM) && defined(CONFIG_INET)
415
416 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
417
418 static struct notifier_block velocity_inetaddr_notifier = {
419 .notifier_call = velocity_netdev_event,
420 };
421
422 static void velocity_register_notifier(void)
423 {
424 register_inetaddr_notifier(&velocity_inetaddr_notifier);
425 }
426
427 static void velocity_unregister_notifier(void)
428 {
429 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
430 }
431
432 #else
433
434 #define velocity_register_notifier() do {} while (0)
435 #define velocity_unregister_notifier() do {} while (0)
436
437 #endif
438
439 /*
440 * Internal board variants. At the moment we have only one
441 */
442
443 static struct velocity_info_tbl chip_info_table[] = {
444 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
445 { }
446 };
447
448 /*
449 * Describe the PCI device identifiers that we support in this
450 * device driver. Used for hotplug autoloading.
451 */
452
453 static const struct pci_device_id velocity_id_table[] __devinitdata = {
454 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
455 { }
456 };
457
458 MODULE_DEVICE_TABLE(pci, velocity_id_table);
459
460 /**
461 * get_chip_name - identifier to name
462 * @id: chip identifier
463 *
464 * Given a chip identifier return a suitable description. Returns
465 * a pointer a static string valid while the driver is loaded.
466 */
467
468 static const char __devinit *get_chip_name(enum chip_type chip_id)
469 {
470 int i;
471 for (i = 0; chip_info_table[i].name != NULL; i++)
472 if (chip_info_table[i].chip_id == chip_id)
473 break;
474 return chip_info_table[i].name;
475 }
476
477 /**
478 * velocity_remove1 - device unplug
479 * @pdev: PCI device being removed
480 *
481 * Device unload callback. Called on an unplug or on module
482 * unload for each active device that is present. Disconnects
483 * the device from the network layer and frees all the resources
484 */
485
486 static void __devexit velocity_remove1(struct pci_dev *pdev)
487 {
488 struct net_device *dev = pci_get_drvdata(pdev);
489 struct velocity_info *vptr = netdev_priv(dev);
490
491 #ifdef CONFIG_PM
492 unsigned long flags;
493
494 spin_lock_irqsave(&velocity_dev_list_lock, flags);
495 if (!list_empty(&velocity_dev_list))
496 list_del(&vptr->list);
497 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
498 #endif
499 unregister_netdev(dev);
500 iounmap(vptr->mac_regs);
501 pci_release_regions(pdev);
502 pci_disable_device(pdev);
503 pci_set_drvdata(pdev, NULL);
504 free_netdev(dev);
505
506 velocity_nics--;
507 }
508
509 /**
510 * velocity_set_int_opt - parser for integer options
511 * @opt: pointer to option value
512 * @val: value the user requested (or -1 for default)
513 * @min: lowest value allowed
514 * @max: highest value allowed
515 * @def: default value
516 * @name: property name
517 * @dev: device name
518 *
519 * Set an integer property in the module options. This function does
520 * all the verification and checking as well as reporting so that
521 * we don't duplicate code for each option.
522 */
523
524 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
525 {
526 if (val == -1)
527 *opt = def;
528 else if (val < min || val > max) {
529 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
530 devname, name, min, max);
531 *opt = def;
532 } else {
533 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
534 devname, name, val);
535 *opt = val;
536 }
537 }
538
539 /**
540 * velocity_set_bool_opt - parser for boolean options
541 * @opt: pointer to option value
542 * @val: value the user requested (or -1 for default)
543 * @def: default value (yes/no)
544 * @flag: numeric value to set for true.
545 * @name: property name
546 * @dev: device name
547 *
548 * Set a boolean property in the module options. This function does
549 * all the verification and checking as well as reporting so that
550 * we don't duplicate code for each option.
551 */
552
553 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, const char *devname)
554 {
555 (*opt) &= (~flag);
556 if (val == -1)
557 *opt |= (def ? flag : 0);
558 else if (val < 0 || val > 1) {
559 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
560 devname, name);
561 *opt |= (def ? flag : 0);
562 } else {
563 printk(KERN_INFO "%s: set parameter %s to %s\n",
564 devname, name, val ? "TRUE" : "FALSE");
565 *opt |= (val ? flag : 0);
566 }
567 }
568
569 /**
570 * velocity_get_options - set options on device
571 * @opts: option structure for the device
572 * @index: index of option to use in module options array
573 * @devname: device name
574 *
575 * Turn the module and command options into a single structure
576 * for the current device
577 */
578
579 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
580 {
581
582 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
583 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
584 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
585 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
586
587 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
588 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
589 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
590 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
591 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
592 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
593 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
594 opts->numrx = (opts->numrx & ~3);
595 }
596
597 /**
598 * velocity_init_cam_filter - initialise CAM
599 * @vptr: velocity to program
600 *
601 * Initialize the content addressable memory used for filters. Load
602 * appropriately according to the presence of VLAN
603 */
604
605 static void velocity_init_cam_filter(struct velocity_info *vptr)
606 {
607 struct mac_regs __iomem * regs = vptr->mac_regs;
608
609 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
610 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
611 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
612
613 /* Disable all CAMs */
614 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
615 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
616 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
617 mac_set_cam_mask(regs, vptr->mCAMmask);
618
619 /* Enable VCAMs */
620 if (vptr->vlgrp) {
621 unsigned int vid, i = 0;
622
623 if (!vlan_group_get_device(vptr->vlgrp, 0))
624 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
625
626 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
627 if (vlan_group_get_device(vptr->vlgrp, vid)) {
628 mac_set_vlan_cam(regs, i, (u8 *) &vid);
629 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
630 if (++i >= VCAM_SIZE)
631 break;
632 }
633 }
634 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
635 }
636 }
637
638 static void velocity_vlan_rx_register(struct net_device *dev,
639 struct vlan_group *grp)
640 {
641 struct velocity_info *vptr = netdev_priv(dev);
642
643 vptr->vlgrp = grp;
644 }
645
646 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
647 {
648 struct velocity_info *vptr = netdev_priv(dev);
649
650 spin_lock_irq(&vptr->lock);
651 velocity_init_cam_filter(vptr);
652 spin_unlock_irq(&vptr->lock);
653 }
654
655 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
656 {
657 struct velocity_info *vptr = netdev_priv(dev);
658
659 spin_lock_irq(&vptr->lock);
660 vlan_group_set_device(vptr->vlgrp, vid, NULL);
661 velocity_init_cam_filter(vptr);
662 spin_unlock_irq(&vptr->lock);
663 }
664
665 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
666 {
667 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
668 }
669
670 /**
671 * velocity_rx_reset - handle a receive reset
672 * @vptr: velocity we are resetting
673 *
674 * Reset the ownership and status for the receive ring side.
675 * Hand all the receive queue to the NIC.
676 */
677
678 static void velocity_rx_reset(struct velocity_info *vptr)
679 {
680
681 struct mac_regs __iomem * regs = vptr->mac_regs;
682 int i;
683
684 velocity_init_rx_ring_indexes(vptr);
685
686 /*
687 * Init state, all RD entries belong to the NIC
688 */
689 for (i = 0; i < vptr->options.numrx; ++i)
690 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
691
692 writew(vptr->options.numrx, &regs->RBRDU);
693 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
694 writew(0, &regs->RDIdx);
695 writew(vptr->options.numrx - 1, &regs->RDCSize);
696 }
697
698 /**
699 * velocity_init_registers - initialise MAC registers
700 * @vptr: velocity to init
701 * @type: type of initialisation (hot or cold)
702 *
703 * Initialise the MAC on a reset or on first set up on the
704 * hardware.
705 */
706
707 static void velocity_init_registers(struct velocity_info *vptr,
708 enum velocity_init_type type)
709 {
710 struct mac_regs __iomem * regs = vptr->mac_regs;
711 int i, mii_status;
712
713 mac_wol_reset(regs);
714
715 switch (type) {
716 case VELOCITY_INIT_RESET:
717 case VELOCITY_INIT_WOL:
718
719 netif_stop_queue(vptr->dev);
720
721 /*
722 * Reset RX to prevent RX pointer not on the 4X location
723 */
724 velocity_rx_reset(vptr);
725 mac_rx_queue_run(regs);
726 mac_rx_queue_wake(regs);
727
728 mii_status = velocity_get_opt_media_mode(vptr);
729 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
730 velocity_print_link_status(vptr);
731 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
732 netif_wake_queue(vptr->dev);
733 }
734
735 enable_flow_control_ability(vptr);
736
737 mac_clear_isr(regs);
738 writel(CR0_STOP, &regs->CR0Clr);
739 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
740 &regs->CR0Set);
741
742 break;
743
744 case VELOCITY_INIT_COLD:
745 default:
746 /*
747 * Do reset
748 */
749 velocity_soft_reset(vptr);
750 mdelay(5);
751
752 mac_eeprom_reload(regs);
753 for (i = 0; i < 6; i++) {
754 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
755 }
756 /*
757 * clear Pre_ACPI bit.
758 */
759 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
760 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
761 mac_set_dma_length(regs, vptr->options.DMA_length);
762
763 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
764 /*
765 * Back off algorithm use original IEEE standard
766 */
767 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
768
769 /*
770 * Init CAM filter
771 */
772 velocity_init_cam_filter(vptr);
773
774 /*
775 * Set packet filter: Receive directed and broadcast address
776 */
777 velocity_set_multi(vptr->dev);
778
779 /*
780 * Enable MII auto-polling
781 */
782 enable_mii_autopoll(regs);
783
784 vptr->int_mask = INT_MASK_DEF;
785
786 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
787 writew(vptr->options.numrx - 1, &regs->RDCSize);
788 mac_rx_queue_run(regs);
789 mac_rx_queue_wake(regs);
790
791 writew(vptr->options.numtx - 1, &regs->TDCSize);
792
793 for (i = 0; i < vptr->tx.numq; i++) {
794 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
795 mac_tx_queue_run(regs, i);
796 }
797
798 init_flow_control_register(vptr);
799
800 writel(CR0_STOP, &regs->CR0Clr);
801 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
802
803 mii_status = velocity_get_opt_media_mode(vptr);
804 netif_stop_queue(vptr->dev);
805
806 mii_init(vptr, mii_status);
807
808 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
809 velocity_print_link_status(vptr);
810 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
811 netif_wake_queue(vptr->dev);
812 }
813
814 enable_flow_control_ability(vptr);
815 mac_hw_mibs_init(regs);
816 mac_write_int_mask(vptr->int_mask, regs);
817 mac_clear_isr(regs);
818
819 }
820 }
821
822 /**
823 * velocity_soft_reset - soft reset
824 * @vptr: velocity to reset
825 *
826 * Kick off a soft reset of the velocity adapter and then poll
827 * until the reset sequence has completed before returning.
828 */
829
830 static int velocity_soft_reset(struct velocity_info *vptr)
831 {
832 struct mac_regs __iomem * regs = vptr->mac_regs;
833 int i = 0;
834
835 writel(CR0_SFRST, &regs->CR0Set);
836
837 for (i = 0; i < W_MAX_TIMEOUT; i++) {
838 udelay(5);
839 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
840 break;
841 }
842
843 if (i == W_MAX_TIMEOUT) {
844 writel(CR0_FORSRST, &regs->CR0Set);
845 /* FIXME: PCI POSTING */
846 /* delay 2ms */
847 mdelay(2);
848 }
849 return 0;
850 }
851
852 static const struct net_device_ops velocity_netdev_ops = {
853 .ndo_open = velocity_open,
854 .ndo_stop = velocity_close,
855 .ndo_start_xmit = velocity_xmit,
856 .ndo_get_stats = velocity_get_stats,
857 .ndo_validate_addr = eth_validate_addr,
858 .ndo_set_multicast_list = velocity_set_multi,
859 .ndo_change_mtu = velocity_change_mtu,
860 .ndo_do_ioctl = velocity_ioctl,
861 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
862 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
863 .ndo_vlan_rx_register = velocity_vlan_rx_register,
864 };
865
866 /**
867 * velocity_found1 - set up discovered velocity card
868 * @pdev: PCI device
869 * @ent: PCI device table entry that matched
870 *
871 * Configure a discovered adapter from scratch. Return a negative
872 * errno error code on failure paths.
873 */
874
875 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
876 {
877 static int first = 1;
878 struct net_device *dev;
879 int i;
880 const char *drv_string;
881 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
882 struct velocity_info *vptr;
883 struct mac_regs __iomem * regs;
884 int ret = -ENOMEM;
885
886 /* FIXME: this driver, like almost all other ethernet drivers,
887 * can support more than MAX_UNITS.
888 */
889 if (velocity_nics >= MAX_UNITS) {
890 dev_notice(&pdev->dev, "already found %d NICs.\n",
891 velocity_nics);
892 return -ENODEV;
893 }
894
895 dev = alloc_etherdev(sizeof(struct velocity_info));
896 if (!dev) {
897 dev_err(&pdev->dev, "allocate net device failed.\n");
898 goto out;
899 }
900
901 /* Chain it all together */
902
903 SET_NETDEV_DEV(dev, &pdev->dev);
904 vptr = netdev_priv(dev);
905
906
907 if (first) {
908 printk(KERN_INFO "%s Ver. %s\n",
909 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
910 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
911 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
912 first = 0;
913 }
914
915 velocity_init_info(pdev, vptr, info);
916
917 vptr->dev = dev;
918
919 dev->irq = pdev->irq;
920
921 ret = pci_enable_device(pdev);
922 if (ret < 0)
923 goto err_free_dev;
924
925 ret = velocity_get_pci_info(vptr, pdev);
926 if (ret < 0) {
927 /* error message already printed */
928 goto err_disable;
929 }
930
931 ret = pci_request_regions(pdev, VELOCITY_NAME);
932 if (ret < 0) {
933 dev_err(&pdev->dev, "No PCI resources.\n");
934 goto err_disable;
935 }
936
937 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
938 if (regs == NULL) {
939 ret = -EIO;
940 goto err_release_res;
941 }
942
943 vptr->mac_regs = regs;
944
945 mac_wol_reset(regs);
946
947 dev->base_addr = vptr->ioaddr;
948
949 for (i = 0; i < 6; i++)
950 dev->dev_addr[i] = readb(&regs->PAR[i]);
951
952
953 drv_string = dev_driver_string(&pdev->dev);
954
955 velocity_get_options(&vptr->options, velocity_nics, drv_string);
956
957 /*
958 * Mask out the options cannot be set to the chip
959 */
960
961 vptr->options.flags &= info->flags;
962
963 /*
964 * Enable the chip specified capbilities
965 */
966
967 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
968
969 vptr->wol_opts = vptr->options.wol_opts;
970 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
971
972 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
973
974 dev->irq = pdev->irq;
975 dev->netdev_ops = &velocity_netdev_ops;
976 dev->ethtool_ops = &velocity_ethtool_ops;
977
978 #ifdef VELOCITY_ZERO_COPY_SUPPORT
979 dev->features |= NETIF_F_SG;
980 #endif
981 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
982 NETIF_F_HW_VLAN_RX;
983
984 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
985 dev->features |= NETIF_F_IP_CSUM;
986
987 ret = register_netdev(dev);
988 if (ret < 0)
989 goto err_iounmap;
990
991 if (velocity_get_link(dev))
992 netif_carrier_off(dev);
993
994 velocity_print_info(vptr);
995 pci_set_drvdata(pdev, dev);
996
997 /* and leave the chip powered down */
998
999 pci_set_power_state(pdev, PCI_D3hot);
1000 #ifdef CONFIG_PM
1001 {
1002 unsigned long flags;
1003
1004 spin_lock_irqsave(&velocity_dev_list_lock, flags);
1005 list_add(&vptr->list, &velocity_dev_list);
1006 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
1007 }
1008 #endif
1009 velocity_nics++;
1010 out:
1011 return ret;
1012
1013 err_iounmap:
1014 iounmap(regs);
1015 err_release_res:
1016 pci_release_regions(pdev);
1017 err_disable:
1018 pci_disable_device(pdev);
1019 err_free_dev:
1020 free_netdev(dev);
1021 goto out;
1022 }
1023
1024 /**
1025 * velocity_print_info - per driver data
1026 * @vptr: velocity
1027 *
1028 * Print per driver data as the kernel driver finds Velocity
1029 * hardware
1030 */
1031
1032 static void __devinit velocity_print_info(struct velocity_info *vptr)
1033 {
1034 struct net_device *dev = vptr->dev;
1035
1036 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
1037 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
1038 dev->name,
1039 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1040 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1041 }
1042
1043 /**
1044 * velocity_init_info - init private data
1045 * @pdev: PCI device
1046 * @vptr: Velocity info
1047 * @info: Board type
1048 *
1049 * Set up the initial velocity_info struct for the device that has been
1050 * discovered.
1051 */
1052
1053 static void __devinit velocity_init_info(struct pci_dev *pdev,
1054 struct velocity_info *vptr,
1055 const struct velocity_info_tbl *info)
1056 {
1057 memset(vptr, 0, sizeof(struct velocity_info));
1058
1059 vptr->pdev = pdev;
1060 vptr->chip_id = info->chip_id;
1061 vptr->tx.numq = info->txqueue;
1062 vptr->multicast_limit = MCAM_SIZE;
1063 spin_lock_init(&vptr->lock);
1064 INIT_LIST_HEAD(&vptr->list);
1065 }
1066
1067 /**
1068 * velocity_get_pci_info - retrieve PCI info for device
1069 * @vptr: velocity device
1070 * @pdev: PCI device it matches
1071 *
1072 * Retrieve the PCI configuration space data that interests us from
1073 * the kernel PCI layer
1074 */
1075
1076 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
1077 {
1078 vptr->rev_id = pdev->revision;
1079
1080 pci_set_master(pdev);
1081
1082 vptr->ioaddr = pci_resource_start(pdev, 0);
1083 vptr->memaddr = pci_resource_start(pdev, 1);
1084
1085 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
1086 dev_err(&pdev->dev,
1087 "region #0 is not an I/O resource, aborting.\n");
1088 return -EINVAL;
1089 }
1090
1091 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
1092 dev_err(&pdev->dev,
1093 "region #1 is an I/O resource, aborting.\n");
1094 return -EINVAL;
1095 }
1096
1097 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
1098 dev_err(&pdev->dev, "region #1 is too small.\n");
1099 return -EINVAL;
1100 }
1101 vptr->pdev = pdev;
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * velocity_init_dma_rings - set up DMA rings
1108 * @vptr: Velocity to set up
1109 *
1110 * Allocate PCI mapped DMA rings for the receive and transmit layer
1111 * to use.
1112 */
1113
1114 static int velocity_init_dma_rings(struct velocity_info *vptr)
1115 {
1116 struct velocity_opt *opt = &vptr->options;
1117 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1118 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1119 struct pci_dev *pdev = vptr->pdev;
1120 dma_addr_t pool_dma;
1121 void *pool;
1122 unsigned int i;
1123
1124 /*
1125 * Allocate all RD/TD rings a single pool.
1126 *
1127 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1128 * alignment
1129 */
1130 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1131 rx_ring_size, &pool_dma);
1132 if (!pool) {
1133 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1134 vptr->dev->name);
1135 return -ENOMEM;
1136 }
1137
1138 vptr->rx.ring = pool;
1139 vptr->rx.pool_dma = pool_dma;
1140
1141 pool += rx_ring_size;
1142 pool_dma += rx_ring_size;
1143
1144 for (i = 0; i < vptr->tx.numq; i++) {
1145 vptr->tx.rings[i] = pool;
1146 vptr->tx.pool_dma[i] = pool_dma;
1147 pool += tx_ring_size;
1148 pool_dma += tx_ring_size;
1149 }
1150
1151 return 0;
1152 }
1153
1154 /**
1155 * velocity_free_dma_rings - free PCI ring pointers
1156 * @vptr: Velocity to free from
1157 *
1158 * Clean up the PCI ring buffers allocated to this velocity.
1159 */
1160
1161 static void velocity_free_dma_rings(struct velocity_info *vptr)
1162 {
1163 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1164 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1165
1166 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1167 }
1168
1169 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1170 {
1171 struct mac_regs __iomem *regs = vptr->mac_regs;
1172 int avail, dirty, unusable;
1173
1174 /*
1175 * RD number must be equal to 4X per hardware spec
1176 * (programming guide rev 1.20, p.13)
1177 */
1178 if (vptr->rx.filled < 4)
1179 return;
1180
1181 wmb();
1182
1183 unusable = vptr->rx.filled & 0x0003;
1184 dirty = vptr->rx.dirty - unusable;
1185 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1186 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1187 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1188 }
1189
1190 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1191 vptr->rx.filled = unusable;
1192 }
1193
1194 static int velocity_rx_refill(struct velocity_info *vptr)
1195 {
1196 int dirty = vptr->rx.dirty, done = 0;
1197
1198 do {
1199 struct rx_desc *rd = vptr->rx.ring + dirty;
1200
1201 /* Fine for an all zero Rx desc at init time as well */
1202 if (rd->rdesc0.len & OWNED_BY_NIC)
1203 break;
1204
1205 if (!vptr->rx.info[dirty].skb) {
1206 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1207 break;
1208 }
1209 done++;
1210 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1211 } while (dirty != vptr->rx.curr);
1212
1213 if (done) {
1214 vptr->rx.dirty = dirty;
1215 vptr->rx.filled += done;
1216 }
1217
1218 return done;
1219 }
1220
1221 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1222 {
1223 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1224 }
1225
1226 /**
1227 * velocity_init_rd_ring - set up receive ring
1228 * @vptr: velocity to configure
1229 *
1230 * Allocate and set up the receive buffers for each ring slot and
1231 * assign them to the network adapter.
1232 */
1233
1234 static int velocity_init_rd_ring(struct velocity_info *vptr)
1235 {
1236 int ret = -ENOMEM;
1237
1238 vptr->rx.info = kcalloc(vptr->options.numrx,
1239 sizeof(struct velocity_rd_info), GFP_KERNEL);
1240 if (!vptr->rx.info)
1241 goto out;
1242
1243 velocity_init_rx_ring_indexes(vptr);
1244
1245 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1246 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1247 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1248 velocity_free_rd_ring(vptr);
1249 goto out;
1250 }
1251
1252 ret = 0;
1253 out:
1254 return ret;
1255 }
1256
1257 /**
1258 * velocity_free_rd_ring - free receive ring
1259 * @vptr: velocity to clean up
1260 *
1261 * Free the receive buffers for each ring slot and any
1262 * attached socket buffers that need to go away.
1263 */
1264
1265 static void velocity_free_rd_ring(struct velocity_info *vptr)
1266 {
1267 int i;
1268
1269 if (vptr->rx.info == NULL)
1270 return;
1271
1272 for (i = 0; i < vptr->options.numrx; i++) {
1273 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1274 struct rx_desc *rd = vptr->rx.ring + i;
1275
1276 memset(rd, 0, sizeof(*rd));
1277
1278 if (!rd_info->skb)
1279 continue;
1280 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1281 PCI_DMA_FROMDEVICE);
1282 rd_info->skb_dma = 0;
1283
1284 dev_kfree_skb(rd_info->skb);
1285 rd_info->skb = NULL;
1286 }
1287
1288 kfree(vptr->rx.info);
1289 vptr->rx.info = NULL;
1290 }
1291
1292 /**
1293 * velocity_init_td_ring - set up transmit ring
1294 * @vptr: velocity
1295 *
1296 * Set up the transmit ring and chain the ring pointers together.
1297 * Returns zero on success or a negative posix errno code for
1298 * failure.
1299 */
1300
1301 static int velocity_init_td_ring(struct velocity_info *vptr)
1302 {
1303 dma_addr_t curr;
1304 unsigned int j;
1305
1306 /* Init the TD ring entries */
1307 for (j = 0; j < vptr->tx.numq; j++) {
1308 curr = vptr->tx.pool_dma[j];
1309
1310 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1311 sizeof(struct velocity_td_info),
1312 GFP_KERNEL);
1313 if (!vptr->tx.infos[j]) {
1314 while(--j >= 0)
1315 kfree(vptr->tx.infos[j]);
1316 return -ENOMEM;
1317 }
1318
1319 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1320 }
1321 return 0;
1322 }
1323
1324 /*
1325 * FIXME: could we merge this with velocity_free_tx_buf ?
1326 */
1327
1328 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1329 int q, int n)
1330 {
1331 struct velocity_td_info * td_info = &(vptr->tx.infos[q][n]);
1332 int i;
1333
1334 if (td_info == NULL)
1335 return;
1336
1337 if (td_info->skb) {
1338 for (i = 0; i < td_info->nskb_dma; i++)
1339 {
1340 if (td_info->skb_dma[i]) {
1341 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1342 td_info->skb->len, PCI_DMA_TODEVICE);
1343 td_info->skb_dma[i] = 0;
1344 }
1345 }
1346 dev_kfree_skb(td_info->skb);
1347 td_info->skb = NULL;
1348 }
1349 }
1350
1351 /**
1352 * velocity_free_td_ring - free td ring
1353 * @vptr: velocity
1354 *
1355 * Free up the transmit ring for this particular velocity adapter.
1356 * We free the ring contents but not the ring itself.
1357 */
1358
1359 static void velocity_free_td_ring(struct velocity_info *vptr)
1360 {
1361 int i, j;
1362
1363 for (j = 0; j < vptr->tx.numq; j++) {
1364 if (vptr->tx.infos[j] == NULL)
1365 continue;
1366 for (i = 0; i < vptr->options.numtx; i++) {
1367 velocity_free_td_ring_entry(vptr, j, i);
1368
1369 }
1370 kfree(vptr->tx.infos[j]);
1371 vptr->tx.infos[j] = NULL;
1372 }
1373 }
1374
1375 /**
1376 * velocity_rx_srv - service RX interrupt
1377 * @vptr: velocity
1378 * @status: adapter status (unused)
1379 *
1380 * Walk the receive ring of the velocity adapter and remove
1381 * any received packets from the receive queue. Hand the ring
1382 * slots back to the adapter for reuse.
1383 */
1384
1385 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1386 {
1387 struct net_device_stats *stats = &vptr->stats;
1388 int rd_curr = vptr->rx.curr;
1389 int works = 0;
1390
1391 do {
1392 struct rx_desc *rd = vptr->rx.ring + rd_curr;
1393
1394 if (!vptr->rx.info[rd_curr].skb)
1395 break;
1396
1397 if (rd->rdesc0.len & OWNED_BY_NIC)
1398 break;
1399
1400 rmb();
1401
1402 /*
1403 * Don't drop CE or RL error frame although RXOK is off
1404 */
1405 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
1406 if (velocity_receive_frame(vptr, rd_curr) < 0)
1407 stats->rx_dropped++;
1408 } else {
1409 if (rd->rdesc0.RSR & RSR_CRC)
1410 stats->rx_crc_errors++;
1411 if (rd->rdesc0.RSR & RSR_FAE)
1412 stats->rx_frame_errors++;
1413
1414 stats->rx_dropped++;
1415 }
1416
1417 rd->size |= RX_INTEN;
1418
1419 rd_curr++;
1420 if (rd_curr >= vptr->options.numrx)
1421 rd_curr = 0;
1422 } while (++works <= 15);
1423
1424 vptr->rx.curr = rd_curr;
1425
1426 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
1427 velocity_give_many_rx_descs(vptr);
1428
1429 VAR_USED(stats);
1430 return works;
1431 }
1432
1433 /**
1434 * velocity_rx_csum - checksum process
1435 * @rd: receive packet descriptor
1436 * @skb: network layer packet buffer
1437 *
1438 * Process the status bits for the received packet and determine
1439 * if the checksum was computed and verified by the hardware
1440 */
1441
1442 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1443 {
1444 skb->ip_summed = CHECKSUM_NONE;
1445
1446 if (rd->rdesc1.CSM & CSM_IPKT) {
1447 if (rd->rdesc1.CSM & CSM_IPOK) {
1448 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1449 (rd->rdesc1.CSM & CSM_UDPKT)) {
1450 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1451 return;
1452 }
1453 }
1454 skb->ip_summed = CHECKSUM_UNNECESSARY;
1455 }
1456 }
1457 }
1458
1459 /**
1460 * velocity_rx_copy - in place Rx copy for small packets
1461 * @rx_skb: network layer packet buffer candidate
1462 * @pkt_size: received data size
1463 * @rd: receive packet descriptor
1464 * @dev: network device
1465 *
1466 * Replace the current skb that is scheduled for Rx processing by a
1467 * shorter, immediatly allocated skb, if the received packet is small
1468 * enough. This function returns a negative value if the received
1469 * packet is too big or if memory is exhausted.
1470 */
1471 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1472 struct velocity_info *vptr)
1473 {
1474 int ret = -1;
1475 if (pkt_size < rx_copybreak) {
1476 struct sk_buff *new_skb;
1477
1478 new_skb = netdev_alloc_skb(vptr->dev, pkt_size + 2);
1479 if (new_skb) {
1480 new_skb->ip_summed = rx_skb[0]->ip_summed;
1481 skb_reserve(new_skb, 2);
1482 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1483 *rx_skb = new_skb;
1484 ret = 0;
1485 }
1486
1487 }
1488 return ret;
1489 }
1490
1491 /**
1492 * velocity_iph_realign - IP header alignment
1493 * @vptr: velocity we are handling
1494 * @skb: network layer packet buffer
1495 * @pkt_size: received data size
1496 *
1497 * Align IP header on a 2 bytes boundary. This behavior can be
1498 * configured by the user.
1499 */
1500 static inline void velocity_iph_realign(struct velocity_info *vptr,
1501 struct sk_buff *skb, int pkt_size)
1502 {
1503 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1504 memmove(skb->data + 2, skb->data, pkt_size);
1505 skb_reserve(skb, 2);
1506 }
1507 }
1508
1509 /**
1510 * velocity_receive_frame - received packet processor
1511 * @vptr: velocity we are handling
1512 * @idx: ring index
1513 *
1514 * A packet has arrived. We process the packet and if appropriate
1515 * pass the frame up the network stack
1516 */
1517
1518 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1519 {
1520 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1521 struct net_device_stats *stats = &vptr->stats;
1522 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1523 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1524 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1525 struct sk_buff *skb;
1526
1527 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1528 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1529 stats->rx_length_errors++;
1530 return -EINVAL;
1531 }
1532
1533 if (rd->rdesc0.RSR & RSR_MAR)
1534 vptr->stats.multicast++;
1535
1536 skb = rd_info->skb;
1537
1538 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1539 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1540
1541 /*
1542 * Drop frame not meeting IEEE 802.3
1543 */
1544
1545 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1546 if (rd->rdesc0.RSR & RSR_RL) {
1547 stats->rx_length_errors++;
1548 return -EINVAL;
1549 }
1550 }
1551
1552 pci_action = pci_dma_sync_single_for_device;
1553
1554 velocity_rx_csum(rd, skb);
1555
1556 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1557 velocity_iph_realign(vptr, skb, pkt_len);
1558 pci_action = pci_unmap_single;
1559 rd_info->skb = NULL;
1560 }
1561
1562 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1563 PCI_DMA_FROMDEVICE);
1564
1565 skb_put(skb, pkt_len - 4);
1566 skb->protocol = eth_type_trans(skb, vptr->dev);
1567
1568 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
1569 vlan_hwaccel_rx(skb, vptr->vlgrp,
1570 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
1571 } else
1572 netif_rx(skb);
1573
1574 stats->rx_bytes += pkt_len;
1575
1576 return 0;
1577 }
1578
1579 /**
1580 * velocity_alloc_rx_buf - allocate aligned receive buffer
1581 * @vptr: velocity
1582 * @idx: ring index
1583 *
1584 * Allocate a new full sized buffer for the reception of a frame and
1585 * map it into PCI space for the hardware to use. The hardware
1586 * requires *64* byte alignment of the buffer which makes life
1587 * less fun than would be ideal.
1588 */
1589
1590 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1591 {
1592 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1593 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1594
1595 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1596 if (rd_info->skb == NULL)
1597 return -ENOMEM;
1598
1599 /*
1600 * Do the gymnastics to get the buffer head for data at
1601 * 64byte alignment.
1602 */
1603 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1604 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1605 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1606
1607 /*
1608 * Fill in the descriptor to match
1609 */
1610
1611 *((u32 *) & (rd->rdesc0)) = 0;
1612 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1613 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1614 rd->pa_high = 0;
1615 return 0;
1616 }
1617
1618 /**
1619 * tx_srv - transmit interrupt service
1620 * @vptr; Velocity
1621 * @status:
1622 *
1623 * Scan the queues looking for transmitted packets that
1624 * we can complete and clean up. Update any statistics as
1625 * necessary/
1626 */
1627
1628 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1629 {
1630 struct tx_desc *td;
1631 int qnum;
1632 int full = 0;
1633 int idx;
1634 int works = 0;
1635 struct velocity_td_info *tdinfo;
1636 struct net_device_stats *stats = &vptr->stats;
1637
1638 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1639 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1640 idx = (idx + 1) % vptr->options.numtx) {
1641
1642 /*
1643 * Get Tx Descriptor
1644 */
1645 td = &(vptr->tx.rings[qnum][idx]);
1646 tdinfo = &(vptr->tx.infos[qnum][idx]);
1647
1648 if (td->tdesc0.len & OWNED_BY_NIC)
1649 break;
1650
1651 if ((works++ > 15))
1652 break;
1653
1654 if (td->tdesc0.TSR & TSR0_TERR) {
1655 stats->tx_errors++;
1656 stats->tx_dropped++;
1657 if (td->tdesc0.TSR & TSR0_CDH)
1658 stats->tx_heartbeat_errors++;
1659 if (td->tdesc0.TSR & TSR0_CRS)
1660 stats->tx_carrier_errors++;
1661 if (td->tdesc0.TSR & TSR0_ABT)
1662 stats->tx_aborted_errors++;
1663 if (td->tdesc0.TSR & TSR0_OWC)
1664 stats->tx_window_errors++;
1665 } else {
1666 stats->tx_packets++;
1667 stats->tx_bytes += tdinfo->skb->len;
1668 }
1669 velocity_free_tx_buf(vptr, tdinfo);
1670 vptr->tx.used[qnum]--;
1671 }
1672 vptr->tx.tail[qnum] = idx;
1673
1674 if (AVAIL_TD(vptr, qnum) < 1) {
1675 full = 1;
1676 }
1677 }
1678 /*
1679 * Look to see if we should kick the transmit network
1680 * layer for more work.
1681 */
1682 if (netif_queue_stopped(vptr->dev) && (full == 0)
1683 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1684 netif_wake_queue(vptr->dev);
1685 }
1686 return works;
1687 }
1688
1689 /**
1690 * velocity_print_link_status - link status reporting
1691 * @vptr: velocity to report on
1692 *
1693 * Turn the link status of the velocity card into a kernel log
1694 * description of the new link state, detailing speed and duplex
1695 * status
1696 */
1697
1698 static void velocity_print_link_status(struct velocity_info *vptr)
1699 {
1700
1701 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1702 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1703 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1704 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1705
1706 if (vptr->mii_status & VELOCITY_SPEED_1000)
1707 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1708 else if (vptr->mii_status & VELOCITY_SPEED_100)
1709 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1710 else
1711 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1712
1713 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1714 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1715 else
1716 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1717 } else {
1718 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1719 switch (vptr->options.spd_dpx) {
1720 case SPD_DPX_100_HALF:
1721 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1722 break;
1723 case SPD_DPX_100_FULL:
1724 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1725 break;
1726 case SPD_DPX_10_HALF:
1727 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1728 break;
1729 case SPD_DPX_10_FULL:
1730 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1731 break;
1732 default:
1733 break;
1734 }
1735 }
1736 }
1737
1738 /**
1739 * velocity_error - handle error from controller
1740 * @vptr: velocity
1741 * @status: card status
1742 *
1743 * Process an error report from the hardware and attempt to recover
1744 * the card itself. At the moment we cannot recover from some
1745 * theoretically impossible errors but this could be fixed using
1746 * the pci_device_failed logic to bounce the hardware
1747 *
1748 */
1749
1750 static void velocity_error(struct velocity_info *vptr, int status)
1751 {
1752
1753 if (status & ISR_TXSTLI) {
1754 struct mac_regs __iomem * regs = vptr->mac_regs;
1755
1756 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1757 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1758 writew(TRDCSR_RUN, &regs->TDCSRClr);
1759 netif_stop_queue(vptr->dev);
1760
1761 /* FIXME: port over the pci_device_failed code and use it
1762 here */
1763 }
1764
1765 if (status & ISR_SRCI) {
1766 struct mac_regs __iomem * regs = vptr->mac_regs;
1767 int linked;
1768
1769 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1770 vptr->mii_status = check_connection_type(regs);
1771
1772 /*
1773 * If it is a 3119, disable frame bursting in
1774 * halfduplex mode and enable it in fullduplex
1775 * mode
1776 */
1777 if (vptr->rev_id < REV_ID_VT3216_A0) {
1778 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1779 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1780 else
1781 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1782 }
1783 /*
1784 * Only enable CD heart beat counter in 10HD mode
1785 */
1786 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1787 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1788 } else {
1789 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1790 }
1791 }
1792 /*
1793 * Get link status from PHYSR0
1794 */
1795 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1796
1797 if (linked) {
1798 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1799 netif_carrier_on(vptr->dev);
1800 } else {
1801 vptr->mii_status |= VELOCITY_LINK_FAIL;
1802 netif_carrier_off(vptr->dev);
1803 }
1804
1805 velocity_print_link_status(vptr);
1806 enable_flow_control_ability(vptr);
1807
1808 /*
1809 * Re-enable auto-polling because SRCI will disable
1810 * auto-polling
1811 */
1812
1813 enable_mii_autopoll(regs);
1814
1815 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1816 netif_stop_queue(vptr->dev);
1817 else
1818 netif_wake_queue(vptr->dev);
1819
1820 };
1821 if (status & ISR_MIBFI)
1822 velocity_update_hw_mibs(vptr);
1823 if (status & ISR_LSTEI)
1824 mac_rx_queue_wake(vptr->mac_regs);
1825 }
1826
1827 /**
1828 * velocity_free_tx_buf - free transmit buffer
1829 * @vptr: velocity
1830 * @tdinfo: buffer
1831 *
1832 * Release an transmit buffer. If the buffer was preallocated then
1833 * recycle it, if not then unmap the buffer.
1834 */
1835
1836 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1837 {
1838 struct sk_buff *skb = tdinfo->skb;
1839 int i;
1840
1841 /*
1842 * Don't unmap the pre-allocated tx_bufs
1843 */
1844 if (tdinfo->skb_dma) {
1845
1846 for (i = 0; i < tdinfo->nskb_dma; i++) {
1847 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1848 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], le16_to_cpu(td->tdesc1.len), PCI_DMA_TODEVICE);
1849 #else
1850 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1851 #endif
1852 tdinfo->skb_dma[i] = 0;
1853 }
1854 }
1855 dev_kfree_skb_irq(skb);
1856 tdinfo->skb = NULL;
1857 }
1858
1859 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1860 {
1861 int ret;
1862
1863 velocity_set_rxbufsize(vptr, mtu);
1864
1865 ret = velocity_init_dma_rings(vptr);
1866 if (ret < 0)
1867 goto out;
1868
1869 ret = velocity_init_rd_ring(vptr);
1870 if (ret < 0)
1871 goto err_free_dma_rings_0;
1872
1873 ret = velocity_init_td_ring(vptr);
1874 if (ret < 0)
1875 goto err_free_rd_ring_1;
1876 out:
1877 return ret;
1878
1879 err_free_rd_ring_1:
1880 velocity_free_rd_ring(vptr);
1881 err_free_dma_rings_0:
1882 velocity_free_dma_rings(vptr);
1883 goto out;
1884 }
1885
1886 static void velocity_free_rings(struct velocity_info *vptr)
1887 {
1888 velocity_free_td_ring(vptr);
1889 velocity_free_rd_ring(vptr);
1890 velocity_free_dma_rings(vptr);
1891 }
1892
1893 /**
1894 * velocity_open - interface activation callback
1895 * @dev: network layer device to open
1896 *
1897 * Called when the network layer brings the interface up. Returns
1898 * a negative posix error code on failure, or zero on success.
1899 *
1900 * All the ring allocation and set up is done on open for this
1901 * adapter to minimise memory usage when inactive
1902 */
1903
1904 static int velocity_open(struct net_device *dev)
1905 {
1906 struct velocity_info *vptr = netdev_priv(dev);
1907 int ret;
1908
1909 ret = velocity_init_rings(vptr, dev->mtu);
1910 if (ret < 0)
1911 goto out;
1912
1913 /* Ensure chip is running */
1914 pci_set_power_state(vptr->pdev, PCI_D0);
1915
1916 velocity_give_many_rx_descs(vptr);
1917
1918 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1919
1920 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1921 dev->name, dev);
1922 if (ret < 0) {
1923 /* Power down the chip */
1924 pci_set_power_state(vptr->pdev, PCI_D3hot);
1925 velocity_free_rings(vptr);
1926 goto out;
1927 }
1928
1929 mac_enable_int(vptr->mac_regs);
1930 netif_start_queue(dev);
1931 vptr->flags |= VELOCITY_FLAGS_OPENED;
1932 out:
1933 return ret;
1934 }
1935
1936 /**
1937 * velocity_change_mtu - MTU change callback
1938 * @dev: network device
1939 * @new_mtu: desired MTU
1940 *
1941 * Handle requests from the networking layer for MTU change on
1942 * this interface. It gets called on a change by the network layer.
1943 * Return zero for success or negative posix error code.
1944 */
1945
1946 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1947 {
1948 struct velocity_info *vptr = netdev_priv(dev);
1949 int ret = 0;
1950
1951 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1952 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1953 vptr->dev->name);
1954 ret = -EINVAL;
1955 goto out_0;
1956 }
1957
1958 if (!netif_running(dev)) {
1959 dev->mtu = new_mtu;
1960 goto out_0;
1961 }
1962
1963 if (dev->mtu != new_mtu) {
1964 struct velocity_info *tmp_vptr;
1965 unsigned long flags;
1966 struct rx_info rx;
1967 struct tx_info tx;
1968
1969 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
1970 if (!tmp_vptr) {
1971 ret = -ENOMEM;
1972 goto out_0;
1973 }
1974
1975 tmp_vptr->dev = dev;
1976 tmp_vptr->pdev = vptr->pdev;
1977 tmp_vptr->options = vptr->options;
1978 tmp_vptr->tx.numq = vptr->tx.numq;
1979
1980 ret = velocity_init_rings(tmp_vptr, new_mtu);
1981 if (ret < 0)
1982 goto out_free_tmp_vptr_1;
1983
1984 spin_lock_irqsave(&vptr->lock, flags);
1985
1986 netif_stop_queue(dev);
1987 velocity_shutdown(vptr);
1988
1989 rx = vptr->rx;
1990 tx = vptr->tx;
1991
1992 vptr->rx = tmp_vptr->rx;
1993 vptr->tx = tmp_vptr->tx;
1994
1995 tmp_vptr->rx = rx;
1996 tmp_vptr->tx = tx;
1997
1998 dev->mtu = new_mtu;
1999
2000 velocity_give_many_rx_descs(vptr);
2001
2002 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2003
2004 mac_enable_int(vptr->mac_regs);
2005 netif_start_queue(dev);
2006
2007 spin_unlock_irqrestore(&vptr->lock, flags);
2008
2009 velocity_free_rings(tmp_vptr);
2010
2011 out_free_tmp_vptr_1:
2012 kfree(tmp_vptr);
2013 }
2014 out_0:
2015 return ret;
2016 }
2017
2018 /**
2019 * velocity_shutdown - shut down the chip
2020 * @vptr: velocity to deactivate
2021 *
2022 * Shuts down the internal operations of the velocity and
2023 * disables interrupts, autopolling, transmit and receive
2024 */
2025
2026 static void velocity_shutdown(struct velocity_info *vptr)
2027 {
2028 struct mac_regs __iomem * regs = vptr->mac_regs;
2029 mac_disable_int(regs);
2030 writel(CR0_STOP, &regs->CR0Set);
2031 writew(0xFFFF, &regs->TDCSRClr);
2032 writeb(0xFF, &regs->RDCSRClr);
2033 safe_disable_mii_autopoll(regs);
2034 mac_clear_isr(regs);
2035 }
2036
2037 /**
2038 * velocity_close - close adapter callback
2039 * @dev: network device
2040 *
2041 * Callback from the network layer when the velocity is being
2042 * deactivated by the network layer
2043 */
2044
2045 static int velocity_close(struct net_device *dev)
2046 {
2047 struct velocity_info *vptr = netdev_priv(dev);
2048
2049 netif_stop_queue(dev);
2050 velocity_shutdown(vptr);
2051
2052 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2053 velocity_get_ip(vptr);
2054 if (dev->irq != 0)
2055 free_irq(dev->irq, dev);
2056
2057 /* Power down the chip */
2058 pci_set_power_state(vptr->pdev, PCI_D3hot);
2059
2060 velocity_free_rings(vptr);
2061
2062 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2063 return 0;
2064 }
2065
2066 /**
2067 * velocity_xmit - transmit packet callback
2068 * @skb: buffer to transmit
2069 * @dev: network device
2070 *
2071 * Called by the networ layer to request a packet is queued to
2072 * the velocity. Returns zero on success.
2073 */
2074
2075 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
2076 {
2077 struct velocity_info *vptr = netdev_priv(dev);
2078 int qnum = 0;
2079 struct tx_desc *td_ptr;
2080 struct velocity_td_info *tdinfo;
2081 unsigned long flags;
2082 int pktlen = skb->len;
2083 __le16 len;
2084 int index;
2085
2086
2087
2088 if (skb->len < ETH_ZLEN) {
2089 if (skb_padto(skb, ETH_ZLEN))
2090 goto out;
2091 pktlen = ETH_ZLEN;
2092 }
2093
2094 len = cpu_to_le16(pktlen);
2095
2096 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2097 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2098 kfree_skb(skb);
2099 return 0;
2100 }
2101 #endif
2102
2103 spin_lock_irqsave(&vptr->lock, flags);
2104
2105 index = vptr->tx.curr[qnum];
2106 td_ptr = &(vptr->tx.rings[qnum][index]);
2107 tdinfo = &(vptr->tx.infos[qnum][index]);
2108
2109 td_ptr->tdesc1.TCR = TCR0_TIC;
2110 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2111
2112 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2113 if (skb_shinfo(skb)->nr_frags > 0) {
2114 int nfrags = skb_shinfo(skb)->nr_frags;
2115 tdinfo->skb = skb;
2116 if (nfrags > 6) {
2117 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2118 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2119 td_ptr->tdesc0.len = len;
2120 td_ptr->tx.buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2121 td_ptr->tx.buf[0].pa_high = 0;
2122 td_ptr->tx.buf[0].size = len; /* queue is 0 anyway */
2123 tdinfo->nskb_dma = 1;
2124 } else {
2125 int i = 0;
2126 tdinfo->nskb_dma = 0;
2127 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data,
2128 skb_headlen(skb), PCI_DMA_TODEVICE);
2129
2130 td_ptr->tdesc0.len = len;
2131
2132 /* FIXME: support 48bit DMA later */
2133 td_ptr->tx.buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
2134 td_ptr->tx.buf[i].pa_high = 0;
2135 td_ptr->tx.buf[i].size = cpu_to_le16(skb_headlen(skb));
2136
2137 for (i = 0; i < nfrags; i++) {
2138 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2139 void *addr = (void *)page_address(frag->page) + frag->page_offset;
2140
2141 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
2142
2143 td_ptr->tx.buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2144 td_ptr->tx.buf[i + 1].pa_high = 0;
2145 td_ptr->tx.buf[i + 1].size = cpu_to_le16(frag->size);
2146 }
2147 tdinfo->nskb_dma = i - 1;
2148 }
2149
2150 } else
2151 #endif
2152 {
2153 /*
2154 * Map the linear network buffer into PCI space and
2155 * add it to the transmit ring.
2156 */
2157 tdinfo->skb = skb;
2158 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2159 td_ptr->tdesc0.len = len;
2160 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2161 td_ptr->td_buf[0].pa_high = 0;
2162 td_ptr->td_buf[0].size = len;
2163 tdinfo->nskb_dma = 1;
2164 }
2165 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2166
2167 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2168 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2169 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2170 }
2171
2172 /*
2173 * Handle hardware checksum
2174 */
2175 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2176 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2177 const struct iphdr *ip = ip_hdr(skb);
2178 if (ip->protocol == IPPROTO_TCP)
2179 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2180 else if (ip->protocol == IPPROTO_UDP)
2181 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2182 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2183 }
2184 {
2185
2186 int prev = index - 1;
2187
2188 if (prev < 0)
2189 prev = vptr->options.numtx - 1;
2190 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2191 vptr->tx.used[qnum]++;
2192 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2193
2194 if (AVAIL_TD(vptr, qnum) < 1)
2195 netif_stop_queue(dev);
2196
2197 td_ptr = &(vptr->tx.rings[qnum][prev]);
2198 td_ptr->td_buf[0].size |= TD_QUEUE;
2199 mac_tx_queue_wake(vptr->mac_regs, qnum);
2200 }
2201 dev->trans_start = jiffies;
2202 spin_unlock_irqrestore(&vptr->lock, flags);
2203 out:
2204 return NETDEV_TX_OK;
2205 }
2206
2207 /**
2208 * velocity_intr - interrupt callback
2209 * @irq: interrupt number
2210 * @dev_instance: interrupting device
2211 *
2212 * Called whenever an interrupt is generated by the velocity
2213 * adapter IRQ line. We may not be the source of the interrupt
2214 * and need to identify initially if we are, and if not exit as
2215 * efficiently as possible.
2216 */
2217
2218 static int velocity_intr(int irq, void *dev_instance)
2219 {
2220 struct net_device *dev = dev_instance;
2221 struct velocity_info *vptr = netdev_priv(dev);
2222 u32 isr_status;
2223 int max_count = 0;
2224
2225
2226 spin_lock(&vptr->lock);
2227 isr_status = mac_read_isr(vptr->mac_regs);
2228
2229 /* Not us ? */
2230 if (isr_status == 0) {
2231 spin_unlock(&vptr->lock);
2232 return IRQ_NONE;
2233 }
2234
2235 mac_disable_int(vptr->mac_regs);
2236
2237 /*
2238 * Keep processing the ISR until we have completed
2239 * processing and the isr_status becomes zero
2240 */
2241
2242 while (isr_status != 0) {
2243 mac_write_isr(vptr->mac_regs, isr_status);
2244 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2245 velocity_error(vptr, isr_status);
2246 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2247 max_count += velocity_rx_srv(vptr, isr_status);
2248 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2249 max_count += velocity_tx_srv(vptr, isr_status);
2250 isr_status = mac_read_isr(vptr->mac_regs);
2251 if (max_count > vptr->options.int_works)
2252 {
2253 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2254 dev->name);
2255 max_count = 0;
2256 }
2257 }
2258 spin_unlock(&vptr->lock);
2259 mac_enable_int(vptr->mac_regs);
2260 return IRQ_HANDLED;
2261
2262 }
2263
2264
2265 /**
2266 * velocity_set_multi - filter list change callback
2267 * @dev: network device
2268 *
2269 * Called by the network layer when the filter lists need to change
2270 * for a velocity adapter. Reload the CAMs with the new address
2271 * filter ruleset.
2272 */
2273
2274 static void velocity_set_multi(struct net_device *dev)
2275 {
2276 struct velocity_info *vptr = netdev_priv(dev);
2277 struct mac_regs __iomem * regs = vptr->mac_regs;
2278 u8 rx_mode;
2279 int i;
2280 struct dev_mc_list *mclist;
2281
2282 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2283 writel(0xffffffff, &regs->MARCAM[0]);
2284 writel(0xffffffff, &regs->MARCAM[4]);
2285 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2286 } else if ((dev->mc_count > vptr->multicast_limit)
2287 || (dev->flags & IFF_ALLMULTI)) {
2288 writel(0xffffffff, &regs->MARCAM[0]);
2289 writel(0xffffffff, &regs->MARCAM[4]);
2290 rx_mode = (RCR_AM | RCR_AB);
2291 } else {
2292 int offset = MCAM_SIZE - vptr->multicast_limit;
2293 mac_get_cam_mask(regs, vptr->mCAMmask);
2294
2295 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2296 mac_set_cam(regs, i + offset, mclist->dmi_addr);
2297 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2298 }
2299
2300 mac_set_cam_mask(regs, vptr->mCAMmask);
2301 rx_mode = RCR_AM | RCR_AB | RCR_AP;
2302 }
2303 if (dev->mtu > 1500)
2304 rx_mode |= RCR_AL;
2305
2306 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2307
2308 }
2309
2310 /**
2311 * velocity_get_status - statistics callback
2312 * @dev: network device
2313 *
2314 * Callback from the network layer to allow driver statistics
2315 * to be resynchronized with hardware collected state. In the
2316 * case of the velocity we need to pull the MIB counters from
2317 * the hardware into the counters before letting the network
2318 * layer display them.
2319 */
2320
2321 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2322 {
2323 struct velocity_info *vptr = netdev_priv(dev);
2324
2325 /* If the hardware is down, don't touch MII */
2326 if(!netif_running(dev))
2327 return &vptr->stats;
2328
2329 spin_lock_irq(&vptr->lock);
2330 velocity_update_hw_mibs(vptr);
2331 spin_unlock_irq(&vptr->lock);
2332
2333 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2334 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2335 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2336
2337 // unsigned long rx_dropped; /* no space in linux buffers */
2338 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2339 /* detailed rx_errors: */
2340 // unsigned long rx_length_errors;
2341 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2342 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2343 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2344 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2345 // unsigned long rx_missed_errors; /* receiver missed packet */
2346
2347 /* detailed tx_errors */
2348 // unsigned long tx_fifo_errors;
2349
2350 return &vptr->stats;
2351 }
2352
2353
2354 /**
2355 * velocity_ioctl - ioctl entry point
2356 * @dev: network device
2357 * @rq: interface request ioctl
2358 * @cmd: command code
2359 *
2360 * Called when the user issues an ioctl request to the network
2361 * device in question. The velocity interface supports MII.
2362 */
2363
2364 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2365 {
2366 struct velocity_info *vptr = netdev_priv(dev);
2367 int ret;
2368
2369 /* If we are asked for information and the device is power
2370 saving then we need to bring the device back up to talk to it */
2371
2372 if (!netif_running(dev))
2373 pci_set_power_state(vptr->pdev, PCI_D0);
2374
2375 switch (cmd) {
2376 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2377 case SIOCGMIIREG: /* Read MII PHY register. */
2378 case SIOCSMIIREG: /* Write to MII PHY register. */
2379 ret = velocity_mii_ioctl(dev, rq, cmd);
2380 break;
2381
2382 default:
2383 ret = -EOPNOTSUPP;
2384 }
2385 if (!netif_running(dev))
2386 pci_set_power_state(vptr->pdev, PCI_D3hot);
2387
2388
2389 return ret;
2390 }
2391
2392 /*
2393 * Definition for our device driver. The PCI layer interface
2394 * uses this to handle all our card discover and plugging
2395 */
2396
2397 static struct pci_driver velocity_driver = {
2398 .name = VELOCITY_NAME,
2399 .id_table = velocity_id_table,
2400 .probe = velocity_found1,
2401 .remove = __devexit_p(velocity_remove1),
2402 #ifdef CONFIG_PM
2403 .suspend = velocity_suspend,
2404 .resume = velocity_resume,
2405 #endif
2406 };
2407
2408 /**
2409 * velocity_init_module - load time function
2410 *
2411 * Called when the velocity module is loaded. The PCI driver
2412 * is registered with the PCI layer, and in turn will call
2413 * the probe functions for each velocity adapter installed
2414 * in the system.
2415 */
2416
2417 static int __init velocity_init_module(void)
2418 {
2419 int ret;
2420
2421 velocity_register_notifier();
2422 ret = pci_register_driver(&velocity_driver);
2423 if (ret < 0)
2424 velocity_unregister_notifier();
2425 return ret;
2426 }
2427
2428 /**
2429 * velocity_cleanup - module unload
2430 *
2431 * When the velocity hardware is unloaded this function is called.
2432 * It will clean up the notifiers and the unregister the PCI
2433 * driver interface for this hardware. This in turn cleans up
2434 * all discovered interfaces before returning from the function
2435 */
2436
2437 static void __exit velocity_cleanup_module(void)
2438 {
2439 velocity_unregister_notifier();
2440 pci_unregister_driver(&velocity_driver);
2441 }
2442
2443 module_init(velocity_init_module);
2444 module_exit(velocity_cleanup_module);
2445
2446
2447 /*
2448 * MII access , media link mode setting functions
2449 */
2450
2451
2452 /**
2453 * mii_init - set up MII
2454 * @vptr: velocity adapter
2455 * @mii_status: links tatus
2456 *
2457 * Set up the PHY for the current link state.
2458 */
2459
2460 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2461 {
2462 u16 BMCR;
2463
2464 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2465 case PHYID_CICADA_CS8201:
2466 /*
2467 * Reset to hardware default
2468 */
2469 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2470 /*
2471 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2472 * off it in NWay-forced half mode for NWay-forced v.s.
2473 * legacy-forced issue.
2474 */
2475 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2476 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2477 else
2478 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2479 /*
2480 * Turn on Link/Activity LED enable bit for CIS8201
2481 */
2482 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2483 break;
2484 case PHYID_VT3216_32BIT:
2485 case PHYID_VT3216_64BIT:
2486 /*
2487 * Reset to hardware default
2488 */
2489 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2490 /*
2491 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2492 * off it in NWay-forced half mode for NWay-forced v.s.
2493 * legacy-forced issue
2494 */
2495 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2496 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2497 else
2498 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2499 break;
2500
2501 case PHYID_MARVELL_1000:
2502 case PHYID_MARVELL_1000S:
2503 /*
2504 * Assert CRS on Transmit
2505 */
2506 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2507 /*
2508 * Reset to hardware default
2509 */
2510 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2511 break;
2512 default:
2513 ;
2514 }
2515 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2516 if (BMCR & BMCR_ISO) {
2517 BMCR &= ~BMCR_ISO;
2518 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2519 }
2520 }
2521
2522 /**
2523 * safe_disable_mii_autopoll - autopoll off
2524 * @regs: velocity registers
2525 *
2526 * Turn off the autopoll and wait for it to disable on the chip
2527 */
2528
2529 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2530 {
2531 u16 ww;
2532
2533 /* turn off MAUTO */
2534 writeb(0, &regs->MIICR);
2535 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2536 udelay(1);
2537 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2538 break;
2539 }
2540 }
2541
2542 /**
2543 * enable_mii_autopoll - turn on autopolling
2544 * @regs: velocity registers
2545 *
2546 * Enable the MII link status autopoll feature on the Velocity
2547 * hardware. Wait for it to enable.
2548 */
2549
2550 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2551 {
2552 int ii;
2553
2554 writeb(0, &(regs->MIICR));
2555 writeb(MIIADR_SWMPL, &regs->MIIADR);
2556
2557 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2558 udelay(1);
2559 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2560 break;
2561 }
2562
2563 writeb(MIICR_MAUTO, &regs->MIICR);
2564
2565 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2566 udelay(1);
2567 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2568 break;
2569 }
2570
2571 }
2572
2573 /**
2574 * velocity_mii_read - read MII data
2575 * @regs: velocity registers
2576 * @index: MII register index
2577 * @data: buffer for received data
2578 *
2579 * Perform a single read of an MII 16bit register. Returns zero
2580 * on success or -ETIMEDOUT if the PHY did not respond.
2581 */
2582
2583 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2584 {
2585 u16 ww;
2586
2587 /*
2588 * Disable MIICR_MAUTO, so that mii addr can be set normally
2589 */
2590 safe_disable_mii_autopoll(regs);
2591
2592 writeb(index, &regs->MIIADR);
2593
2594 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2595
2596 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2597 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2598 break;
2599 }
2600
2601 *data = readw(&regs->MIIDATA);
2602
2603 enable_mii_autopoll(regs);
2604 if (ww == W_MAX_TIMEOUT)
2605 return -ETIMEDOUT;
2606 return 0;
2607 }
2608
2609 /**
2610 * velocity_mii_write - write MII data
2611 * @regs: velocity registers
2612 * @index: MII register index
2613 * @data: 16bit data for the MII register
2614 *
2615 * Perform a single write to an MII 16bit register. Returns zero
2616 * on success or -ETIMEDOUT if the PHY did not respond.
2617 */
2618
2619 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2620 {
2621 u16 ww;
2622
2623 /*
2624 * Disable MIICR_MAUTO, so that mii addr can be set normally
2625 */
2626 safe_disable_mii_autopoll(regs);
2627
2628 /* MII reg offset */
2629 writeb(mii_addr, &regs->MIIADR);
2630 /* set MII data */
2631 writew(data, &regs->MIIDATA);
2632
2633 /* turn on MIICR_WCMD */
2634 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2635
2636 /* W_MAX_TIMEOUT is the timeout period */
2637 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2638 udelay(5);
2639 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2640 break;
2641 }
2642 enable_mii_autopoll(regs);
2643
2644 if (ww == W_MAX_TIMEOUT)
2645 return -ETIMEDOUT;
2646 return 0;
2647 }
2648
2649 /**
2650 * velocity_get_opt_media_mode - get media selection
2651 * @vptr: velocity adapter
2652 *
2653 * Get the media mode stored in EEPROM or module options and load
2654 * mii_status accordingly. The requested link state information
2655 * is also returned.
2656 */
2657
2658 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2659 {
2660 u32 status = 0;
2661
2662 switch (vptr->options.spd_dpx) {
2663 case SPD_DPX_AUTO:
2664 status = VELOCITY_AUTONEG_ENABLE;
2665 break;
2666 case SPD_DPX_100_FULL:
2667 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2668 break;
2669 case SPD_DPX_10_FULL:
2670 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2671 break;
2672 case SPD_DPX_100_HALF:
2673 status = VELOCITY_SPEED_100;
2674 break;
2675 case SPD_DPX_10_HALF:
2676 status = VELOCITY_SPEED_10;
2677 break;
2678 }
2679 vptr->mii_status = status;
2680 return status;
2681 }
2682
2683 /**
2684 * mii_set_auto_on - autonegotiate on
2685 * @vptr: velocity
2686 *
2687 * Enable autonegotation on this interface
2688 */
2689
2690 static void mii_set_auto_on(struct velocity_info *vptr)
2691 {
2692 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2693 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2694 else
2695 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2696 }
2697
2698
2699 /*
2700 static void mii_set_auto_off(struct velocity_info * vptr)
2701 {
2702 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2703 }
2704 */
2705
2706 /**
2707 * set_mii_flow_control - flow control setup
2708 * @vptr: velocity interface
2709 *
2710 * Set up the flow control on this interface according to
2711 * the supplied user/eeprom options.
2712 */
2713
2714 static void set_mii_flow_control(struct velocity_info *vptr)
2715 {
2716 /*Enable or Disable PAUSE in ANAR */
2717 switch (vptr->options.flow_cntl) {
2718 case FLOW_CNTL_TX:
2719 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2720 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2721 break;
2722
2723 case FLOW_CNTL_RX:
2724 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2725 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2726 break;
2727
2728 case FLOW_CNTL_TX_RX:
2729 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2730 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2731 break;
2732
2733 case FLOW_CNTL_DISABLE:
2734 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2735 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2736 break;
2737 default:
2738 break;
2739 }
2740 }
2741
2742 /**
2743 * velocity_set_media_mode - set media mode
2744 * @mii_status: old MII link state
2745 *
2746 * Check the media link state and configure the flow control
2747 * PHY and also velocity hardware setup accordingly. In particular
2748 * we need to set up CD polling and frame bursting.
2749 */
2750
2751 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2752 {
2753 u32 curr_status;
2754 struct mac_regs __iomem * regs = vptr->mac_regs;
2755
2756 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2757 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2758
2759 /* Set mii link status */
2760 set_mii_flow_control(vptr);
2761
2762 /*
2763 Check if new status is consisent with current status
2764 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2765 || (mii_status==curr_status)) {
2766 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2767 vptr->mii_status=check_connection_type(vptr->mac_regs);
2768 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2769 return 0;
2770 }
2771 */
2772
2773 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2774 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2775 }
2776
2777 /*
2778 * If connection type is AUTO
2779 */
2780 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2781 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2782 /* clear force MAC mode bit */
2783 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2784 /* set duplex mode of MAC according to duplex mode of MII */
2785 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2786 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2787 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2788
2789 /* enable AUTO-NEGO mode */
2790 mii_set_auto_on(vptr);
2791 } else {
2792 u16 ANAR;
2793 u8 CHIPGCR;
2794
2795 /*
2796 * 1. if it's 3119, disable frame bursting in halfduplex mode
2797 * and enable it in fullduplex mode
2798 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2799 * 3. only enable CD heart beat counter in 10HD mode
2800 */
2801
2802 /* set force MAC mode bit */
2803 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2804
2805 CHIPGCR = readb(&regs->CHIPGCR);
2806 CHIPGCR &= ~CHIPGCR_FCGMII;
2807
2808 if (mii_status & VELOCITY_DUPLEX_FULL) {
2809 CHIPGCR |= CHIPGCR_FCFDX;
2810 writeb(CHIPGCR, &regs->CHIPGCR);
2811 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2812 if (vptr->rev_id < REV_ID_VT3216_A0)
2813 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2814 } else {
2815 CHIPGCR &= ~CHIPGCR_FCFDX;
2816 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2817 writeb(CHIPGCR, &regs->CHIPGCR);
2818 if (vptr->rev_id < REV_ID_VT3216_A0)
2819 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2820 }
2821
2822 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2823
2824 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2825 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2826 } else {
2827 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2828 }
2829 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2830 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2831 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2832 if (mii_status & VELOCITY_SPEED_100) {
2833 if (mii_status & VELOCITY_DUPLEX_FULL)
2834 ANAR |= ANAR_TXFD;
2835 else
2836 ANAR |= ANAR_TX;
2837 } else {
2838 if (mii_status & VELOCITY_DUPLEX_FULL)
2839 ANAR |= ANAR_10FD;
2840 else
2841 ANAR |= ANAR_10;
2842 }
2843 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2844 /* enable AUTO-NEGO mode */
2845 mii_set_auto_on(vptr);
2846 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2847 }
2848 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2849 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2850 return VELOCITY_LINK_CHANGE;
2851 }
2852
2853 /**
2854 * mii_check_media_mode - check media state
2855 * @regs: velocity registers
2856 *
2857 * Check the current MII status and determine the link status
2858 * accordingly
2859 */
2860
2861 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2862 {
2863 u32 status = 0;
2864 u16 ANAR;
2865
2866 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2867 status |= VELOCITY_LINK_FAIL;
2868
2869 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2870 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2871 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2872 status |= (VELOCITY_SPEED_1000);
2873 else {
2874 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2875 if (ANAR & ANAR_TXFD)
2876 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2877 else if (ANAR & ANAR_TX)
2878 status |= VELOCITY_SPEED_100;
2879 else if (ANAR & ANAR_10FD)
2880 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2881 else
2882 status |= (VELOCITY_SPEED_10);
2883 }
2884
2885 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2886 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2887 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2888 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2889 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2890 status |= VELOCITY_AUTONEG_ENABLE;
2891 }
2892 }
2893
2894 return status;
2895 }
2896
2897 static u32 check_connection_type(struct mac_regs __iomem * regs)
2898 {
2899 u32 status = 0;
2900 u8 PHYSR0;
2901 u16 ANAR;
2902 PHYSR0 = readb(&regs->PHYSR0);
2903
2904 /*
2905 if (!(PHYSR0 & PHYSR0_LINKGD))
2906 status|=VELOCITY_LINK_FAIL;
2907 */
2908
2909 if (PHYSR0 & PHYSR0_FDPX)
2910 status |= VELOCITY_DUPLEX_FULL;
2911
2912 if (PHYSR0 & PHYSR0_SPDG)
2913 status |= VELOCITY_SPEED_1000;
2914 else if (PHYSR0 & PHYSR0_SPD10)
2915 status |= VELOCITY_SPEED_10;
2916 else
2917 status |= VELOCITY_SPEED_100;
2918
2919 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2920 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2921 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2922 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2923 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2924 status |= VELOCITY_AUTONEG_ENABLE;
2925 }
2926 }
2927
2928 return status;
2929 }
2930
2931 /**
2932 * enable_flow_control_ability - flow control
2933 * @vptr: veloity to configure
2934 *
2935 * Set up flow control according to the flow control options
2936 * determined by the eeprom/configuration.
2937 */
2938
2939 static void enable_flow_control_ability(struct velocity_info *vptr)
2940 {
2941
2942 struct mac_regs __iomem * regs = vptr->mac_regs;
2943
2944 switch (vptr->options.flow_cntl) {
2945
2946 case FLOW_CNTL_DEFAULT:
2947 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2948 writel(CR0_FDXRFCEN, &regs->CR0Set);
2949 else
2950 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2951
2952 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2953 writel(CR0_FDXTFCEN, &regs->CR0Set);
2954 else
2955 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2956 break;
2957
2958 case FLOW_CNTL_TX:
2959 writel(CR0_FDXTFCEN, &regs->CR0Set);
2960 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2961 break;
2962
2963 case FLOW_CNTL_RX:
2964 writel(CR0_FDXRFCEN, &regs->CR0Set);
2965 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2966 break;
2967
2968 case FLOW_CNTL_TX_RX:
2969 writel(CR0_FDXTFCEN, &regs->CR0Set);
2970 writel(CR0_FDXRFCEN, &regs->CR0Set);
2971 break;
2972
2973 case FLOW_CNTL_DISABLE:
2974 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2975 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2976 break;
2977
2978 default:
2979 break;
2980 }
2981
2982 }
2983
2984
2985 /**
2986 * velocity_ethtool_up - pre hook for ethtool
2987 * @dev: network device
2988 *
2989 * Called before an ethtool operation. We need to make sure the
2990 * chip is out of D3 state before we poke at it.
2991 */
2992
2993 static int velocity_ethtool_up(struct net_device *dev)
2994 {
2995 struct velocity_info *vptr = netdev_priv(dev);
2996 if (!netif_running(dev))
2997 pci_set_power_state(vptr->pdev, PCI_D0);
2998 return 0;
2999 }
3000
3001 /**
3002 * velocity_ethtool_down - post hook for ethtool
3003 * @dev: network device
3004 *
3005 * Called after an ethtool operation. Restore the chip back to D3
3006 * state if it isn't running.
3007 */
3008
3009 static void velocity_ethtool_down(struct net_device *dev)
3010 {
3011 struct velocity_info *vptr = netdev_priv(dev);
3012 if (!netif_running(dev))
3013 pci_set_power_state(vptr->pdev, PCI_D3hot);
3014 }
3015
3016 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3017 {
3018 struct velocity_info *vptr = netdev_priv(dev);
3019 struct mac_regs __iomem * regs = vptr->mac_regs;
3020 u32 status;
3021 status = check_connection_type(vptr->mac_regs);
3022
3023 cmd->supported = SUPPORTED_TP |
3024 SUPPORTED_Autoneg |
3025 SUPPORTED_10baseT_Half |
3026 SUPPORTED_10baseT_Full |
3027 SUPPORTED_100baseT_Half |
3028 SUPPORTED_100baseT_Full |
3029 SUPPORTED_1000baseT_Half |
3030 SUPPORTED_1000baseT_Full;
3031 if (status & VELOCITY_SPEED_1000)
3032 cmd->speed = SPEED_1000;
3033 else if (status & VELOCITY_SPEED_100)
3034 cmd->speed = SPEED_100;
3035 else
3036 cmd->speed = SPEED_10;
3037 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3038 cmd->port = PORT_TP;
3039 cmd->transceiver = XCVR_INTERNAL;
3040 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3041
3042 if (status & VELOCITY_DUPLEX_FULL)
3043 cmd->duplex = DUPLEX_FULL;
3044 else
3045 cmd->duplex = DUPLEX_HALF;
3046
3047 return 0;
3048 }
3049
3050 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3051 {
3052 struct velocity_info *vptr = netdev_priv(dev);
3053 u32 curr_status;
3054 u32 new_status = 0;
3055 int ret = 0;
3056
3057 curr_status = check_connection_type(vptr->mac_regs);
3058 curr_status &= (~VELOCITY_LINK_FAIL);
3059
3060 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3061 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3062 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3063 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3064
3065 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3066 ret = -EINVAL;
3067 else
3068 velocity_set_media_mode(vptr, new_status);
3069
3070 return ret;
3071 }
3072
3073 static u32 velocity_get_link(struct net_device *dev)
3074 {
3075 struct velocity_info *vptr = netdev_priv(dev);
3076 struct mac_regs __iomem * regs = vptr->mac_regs;
3077 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
3078 }
3079
3080 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3081 {
3082 struct velocity_info *vptr = netdev_priv(dev);
3083 strcpy(info->driver, VELOCITY_NAME);
3084 strcpy(info->version, VELOCITY_VERSION);
3085 strcpy(info->bus_info, pci_name(vptr->pdev));
3086 }
3087
3088 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3089 {
3090 struct velocity_info *vptr = netdev_priv(dev);
3091 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3092 wol->wolopts |= WAKE_MAGIC;
3093 /*
3094 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3095 wol.wolopts|=WAKE_PHY;
3096 */
3097 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3098 wol->wolopts |= WAKE_UCAST;
3099 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3100 wol->wolopts |= WAKE_ARP;
3101 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3102 }
3103
3104 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3105 {
3106 struct velocity_info *vptr = netdev_priv(dev);
3107
3108 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3109 return -EFAULT;
3110 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3111
3112 /*
3113 if (wol.wolopts & WAKE_PHY) {
3114 vptr->wol_opts|=VELOCITY_WOL_PHY;
3115 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3116 }
3117 */
3118
3119 if (wol->wolopts & WAKE_MAGIC) {
3120 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3121 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3122 }
3123 if (wol->wolopts & WAKE_UCAST) {
3124 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3125 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3126 }
3127 if (wol->wolopts & WAKE_ARP) {
3128 vptr->wol_opts |= VELOCITY_WOL_ARP;
3129 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3130 }
3131 memcpy(vptr->wol_passwd, wol->sopass, 6);
3132 return 0;
3133 }
3134
3135 static u32 velocity_get_msglevel(struct net_device *dev)
3136 {
3137 return msglevel;
3138 }
3139
3140 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3141 {
3142 msglevel = value;
3143 }
3144
3145 static const struct ethtool_ops velocity_ethtool_ops = {
3146 .get_settings = velocity_get_settings,
3147 .set_settings = velocity_set_settings,
3148 .get_drvinfo = velocity_get_drvinfo,
3149 .get_wol = velocity_ethtool_get_wol,
3150 .set_wol = velocity_ethtool_set_wol,
3151 .get_msglevel = velocity_get_msglevel,
3152 .set_msglevel = velocity_set_msglevel,
3153 .get_link = velocity_get_link,
3154 .begin = velocity_ethtool_up,
3155 .complete = velocity_ethtool_down
3156 };
3157
3158 /**
3159 * velocity_mii_ioctl - MII ioctl handler
3160 * @dev: network device
3161 * @ifr: the ifreq block for the ioctl
3162 * @cmd: the command
3163 *
3164 * Process MII requests made via ioctl from the network layer. These
3165 * are used by tools like kudzu to interrogate the link state of the
3166 * hardware
3167 */
3168
3169 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3170 {
3171 struct velocity_info *vptr = netdev_priv(dev);
3172 struct mac_regs __iomem * regs = vptr->mac_regs;
3173 unsigned long flags;
3174 struct mii_ioctl_data *miidata = if_mii(ifr);
3175 int err;
3176
3177 switch (cmd) {
3178 case SIOCGMIIPHY:
3179 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3180 break;
3181 case SIOCGMIIREG:
3182 if (!capable(CAP_NET_ADMIN))
3183 return -EPERM;
3184 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3185 return -ETIMEDOUT;
3186 break;
3187 case SIOCSMIIREG:
3188 if (!capable(CAP_NET_ADMIN))
3189 return -EPERM;
3190 spin_lock_irqsave(&vptr->lock, flags);
3191 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3192 spin_unlock_irqrestore(&vptr->lock, flags);
3193 check_connection_type(vptr->mac_regs);
3194 if(err)
3195 return err;
3196 break;
3197 default:
3198 return -EOPNOTSUPP;
3199 }
3200 return 0;
3201 }
3202
3203 #ifdef CONFIG_PM
3204
3205 /**
3206 * velocity_save_context - save registers
3207 * @vptr: velocity
3208 * @context: buffer for stored context
3209 *
3210 * Retrieve the current configuration from the velocity hardware
3211 * and stash it in the context structure, for use by the context
3212 * restore functions. This allows us to save things we need across
3213 * power down states
3214 */
3215
3216 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3217 {
3218 struct mac_regs __iomem * regs = vptr->mac_regs;
3219 u16 i;
3220 u8 __iomem *ptr = (u8 __iomem *)regs;
3221
3222 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3223 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3224
3225 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3226 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3227
3228 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3229 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3230
3231 }
3232
3233 /**
3234 * velocity_restore_context - restore registers
3235 * @vptr: velocity
3236 * @context: buffer for stored context
3237 *
3238 * Reload the register configuration from the velocity context
3239 * created by velocity_save_context.
3240 */
3241
3242 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3243 {
3244 struct mac_regs __iomem * regs = vptr->mac_regs;
3245 int i;
3246 u8 __iomem *ptr = (u8 __iomem *)regs;
3247
3248 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3249 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3250 }
3251
3252 /* Just skip cr0 */
3253 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3254 /* Clear */
3255 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3256 /* Set */
3257 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3258 }
3259
3260 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3261 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3262 }
3263
3264 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3265 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3266 }
3267
3268 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3269 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3270 }
3271
3272 }
3273
3274 /**
3275 * wol_calc_crc - WOL CRC
3276 * @pattern: data pattern
3277 * @mask_pattern: mask
3278 *
3279 * Compute the wake on lan crc hashes for the packet header
3280 * we are interested in.
3281 */
3282
3283 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3284 {
3285 u16 crc = 0xFFFF;
3286 u8 mask;
3287 int i, j;
3288
3289 for (i = 0; i < size; i++) {
3290 mask = mask_pattern[i];
3291
3292 /* Skip this loop if the mask equals to zero */
3293 if (mask == 0x00)
3294 continue;
3295
3296 for (j = 0; j < 8; j++) {
3297 if ((mask & 0x01) == 0) {
3298 mask >>= 1;
3299 continue;
3300 }
3301 mask >>= 1;
3302 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3303 }
3304 }
3305 /* Finally, invert the result once to get the correct data */
3306 crc = ~crc;
3307 return bitrev32(crc) >> 16;
3308 }
3309
3310 /**
3311 * velocity_set_wol - set up for wake on lan
3312 * @vptr: velocity to set WOL status on
3313 *
3314 * Set a card up for wake on lan either by unicast or by
3315 * ARP packet.
3316 *
3317 * FIXME: check static buffer is safe here
3318 */
3319
3320 static int velocity_set_wol(struct velocity_info *vptr)
3321 {
3322 struct mac_regs __iomem * regs = vptr->mac_regs;
3323 static u8 buf[256];
3324 int i;
3325
3326 static u32 mask_pattern[2][4] = {
3327 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3328 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3329 };
3330
3331 writew(0xFFFF, &regs->WOLCRClr);
3332 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3333 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3334
3335 /*
3336 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3337 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3338 */
3339
3340 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3341 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3342 }
3343
3344 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3345 struct arp_packet *arp = (struct arp_packet *) buf;
3346 u16 crc;
3347 memset(buf, 0, sizeof(struct arp_packet) + 7);
3348
3349 for (i = 0; i < 4; i++)
3350 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3351
3352 arp->type = htons(ETH_P_ARP);
3353 arp->ar_op = htons(1);
3354
3355 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3356
3357 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3358 (u8 *) & mask_pattern[0][0]);
3359
3360 writew(crc, &regs->PatternCRC[0]);
3361 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3362 }
3363
3364 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3365 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3366
3367 writew(0x0FFF, &regs->WOLSRClr);
3368
3369 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3370 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3371 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3372
3373 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3374 }
3375
3376 if (vptr->mii_status & VELOCITY_SPEED_1000)
3377 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3378
3379 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3380
3381 {
3382 u8 GCR;
3383 GCR = readb(&regs->CHIPGCR);
3384 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3385 writeb(GCR, &regs->CHIPGCR);
3386 }
3387
3388 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3389 /* Turn on SWPTAG just before entering power mode */
3390 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3391 /* Go to bed ..... */
3392 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3393
3394 return 0;
3395 }
3396
3397 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3398 {
3399 struct net_device *dev = pci_get_drvdata(pdev);
3400 struct velocity_info *vptr = netdev_priv(dev);
3401 unsigned long flags;
3402
3403 if(!netif_running(vptr->dev))
3404 return 0;
3405
3406 netif_device_detach(vptr->dev);
3407
3408 spin_lock_irqsave(&vptr->lock, flags);
3409 pci_save_state(pdev);
3410 #ifdef ETHTOOL_GWOL
3411 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3412 velocity_get_ip(vptr);
3413 velocity_save_context(vptr, &vptr->context);
3414 velocity_shutdown(vptr);
3415 velocity_set_wol(vptr);
3416 pci_enable_wake(pdev, PCI_D3hot, 1);
3417 pci_set_power_state(pdev, PCI_D3hot);
3418 } else {
3419 velocity_save_context(vptr, &vptr->context);
3420 velocity_shutdown(vptr);
3421 pci_disable_device(pdev);
3422 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3423 }
3424 #else
3425 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3426 #endif
3427 spin_unlock_irqrestore(&vptr->lock, flags);
3428 return 0;
3429 }
3430
3431 static int velocity_resume(struct pci_dev *pdev)
3432 {
3433 struct net_device *dev = pci_get_drvdata(pdev);
3434 struct velocity_info *vptr = netdev_priv(dev);
3435 unsigned long flags;
3436 int i;
3437
3438 if(!netif_running(vptr->dev))
3439 return 0;
3440
3441 pci_set_power_state(pdev, PCI_D0);
3442 pci_enable_wake(pdev, 0, 0);
3443 pci_restore_state(pdev);
3444
3445 mac_wol_reset(vptr->mac_regs);
3446
3447 spin_lock_irqsave(&vptr->lock, flags);
3448 velocity_restore_context(vptr, &vptr->context);
3449 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3450 mac_disable_int(vptr->mac_regs);
3451
3452 velocity_tx_srv(vptr, 0);
3453
3454 for (i = 0; i < vptr->tx.numq; i++) {
3455 if (vptr->tx.used[i]) {
3456 mac_tx_queue_wake(vptr->mac_regs, i);
3457 }
3458 }
3459
3460 mac_enable_int(vptr->mac_regs);
3461 spin_unlock_irqrestore(&vptr->lock, flags);
3462 netif_device_attach(vptr->dev);
3463
3464 return 0;
3465 }
3466
3467 #ifdef CONFIG_INET
3468
3469 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3470 {
3471 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3472 struct net_device *dev = ifa->ifa_dev->dev;
3473 struct velocity_info *vptr;
3474 unsigned long flags;
3475
3476 if (dev_net(dev) != &init_net)
3477 return NOTIFY_DONE;
3478
3479 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3480 list_for_each_entry(vptr, &velocity_dev_list, list) {
3481 if (vptr->dev == dev) {
3482 velocity_get_ip(vptr);
3483 break;
3484 }
3485 }
3486 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3487
3488 return NOTIFY_DONE;
3489 }
3490
3491 #endif
3492 #endif