drivers/net: Kill now superfluous ->last_rx stores.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / tehuti.c
1 /*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 /*
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels betwean driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
25 *
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
31 *
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
41 *
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
51 *
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
55
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
62 *
63 */
64
65 #include "tehuti.h"
66 #include "tehuti_fw.h"
67
68 static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
69 {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
70 {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
71 {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
72 {0}
73 };
74
75 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
76
77 /* Definitions needed by ISR or NAPI functions */
78 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
79 static void bdx_tx_cleanup(struct bdx_priv *priv);
80 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
81
82 /* Definitions needed by FW loading */
83 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
84
85 /* Definitions needed by hw_start */
86 static int bdx_tx_init(struct bdx_priv *priv);
87 static int bdx_rx_init(struct bdx_priv *priv);
88
89 /* Definitions needed by bdx_close */
90 static void bdx_rx_free(struct bdx_priv *priv);
91 static void bdx_tx_free(struct bdx_priv *priv);
92
93 /* Definitions needed by bdx_probe */
94 static void bdx_ethtool_ops(struct net_device *netdev);
95
96 /*************************************************************************
97 * Print Info *
98 *************************************************************************/
99
100 static void print_hw_id(struct pci_dev *pdev)
101 {
102 struct pci_nic *nic = pci_get_drvdata(pdev);
103 u16 pci_link_status = 0;
104 u16 pci_ctrl = 0;
105
106 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
107 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
108
109 printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
110 nic->port_num == 1 ? "" : ", 2-Port");
111 printk(KERN_INFO
112 "tehuti: srom 0x%x fpga %d build %u lane# %d"
113 " max_pl 0x%x mrrs 0x%x\n",
114 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
115 readl(nic->regs + FPGA_SEED),
116 GET_LINK_STATUS_LANES(pci_link_status),
117 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
118 }
119
120 static void print_fw_id(struct pci_nic *nic)
121 {
122 printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
123 }
124
125 static void print_eth_id(struct net_device *ndev)
126 {
127 printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
128 (ndev->if_port == 0) ? 'A' : 'B');
129
130 }
131
132 /*************************************************************************
133 * Code *
134 *************************************************************************/
135
136 #define bdx_enable_interrupts(priv) \
137 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
138 #define bdx_disable_interrupts(priv) \
139 do { WRITE_REG(priv, regIMR, 0); } while (0)
140
141 /* bdx_fifo_init
142 * create TX/RX descriptor fifo for host-NIC communication.
143 * 1K extra space is allocated at the end of the fifo to simplify
144 * processing of descriptors that wraps around fifo's end
145 * @priv - NIC private structure
146 * @f - fifo to initialize
147 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
148 * @reg_XXX - offsets of registers relative to base address
149 *
150 * Returns 0 on success, negative value on failure
151 *
152 */
153 static int
154 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
155 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156 {
157 u16 memsz = FIFO_SIZE * (1 << fsz_type);
158
159 memset(f, 0, sizeof(struct fifo));
160 /* pci_alloc_consistent gives us 4k-aligned memory */
161 f->va = pci_alloc_consistent(priv->pdev,
162 memsz + FIFO_EXTRA_SPACE, &f->da);
163 if (!f->va) {
164 ERR("pci_alloc_consistent failed\n");
165 RET(-ENOMEM);
166 }
167 f->reg_CFG0 = reg_CFG0;
168 f->reg_CFG1 = reg_CFG1;
169 f->reg_RPTR = reg_RPTR;
170 f->reg_WPTR = reg_WPTR;
171 f->rptr = 0;
172 f->wptr = 0;
173 f->memsz = memsz;
174 f->size_mask = memsz - 1;
175 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
176 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177
178 RET(0);
179 }
180
181 /* bdx_fifo_free - free all resources used by fifo
182 * @priv - NIC private structure
183 * @f - fifo to release
184 */
185 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
186 {
187 ENTER;
188 if (f->va) {
189 pci_free_consistent(priv->pdev,
190 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
191 f->va = NULL;
192 }
193 RET();
194 }
195
196 /*
197 * bdx_link_changed - notifies OS about hw link state.
198 * @bdx_priv - hw adapter structure
199 */
200 static void bdx_link_changed(struct bdx_priv *priv)
201 {
202 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
203
204 if (!link) {
205 if (netif_carrier_ok(priv->ndev)) {
206 netif_stop_queue(priv->ndev);
207 netif_carrier_off(priv->ndev);
208 ERR("%s: Link Down\n", priv->ndev->name);
209 }
210 } else {
211 if (!netif_carrier_ok(priv->ndev)) {
212 netif_wake_queue(priv->ndev);
213 netif_carrier_on(priv->ndev);
214 ERR("%s: Link Up\n", priv->ndev->name);
215 }
216 }
217 }
218
219 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
220 {
221 if (isr & IR_RX_FREE_0) {
222 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
223 DBG("RX_FREE_0\n");
224 }
225
226 if (isr & IR_LNKCHG0)
227 bdx_link_changed(priv);
228
229 if (isr & IR_PCIE_LINK)
230 ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
231
232 if (isr & IR_PCIE_TOUT)
233 ERR("%s: PCI-E Time Out\n", priv->ndev->name);
234
235 }
236
237 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
238 * @irq - interrupt number
239 * @ndev - network device
240 * @regs - CPU registers
241 *
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
243 *
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 * RX_FREE - number of free Rx buffers in RXF fifo gets low
248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
249 */
250
251 static irqreturn_t bdx_isr_napi(int irq, void *dev)
252 {
253 struct net_device *ndev = dev;
254 struct bdx_priv *priv = ndev->priv;
255 u32 isr;
256
257 ENTER;
258 isr = (READ_REG(priv, regISR) & IR_RUN);
259 if (unlikely(!isr)) {
260 bdx_enable_interrupts(priv);
261 return IRQ_NONE; /* Not our interrupt */
262 }
263
264 if (isr & IR_EXTRA)
265 bdx_isr_extra(priv, isr);
266
267 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
268 if (likely(netif_rx_schedule_prep(ndev, &priv->napi))) {
269 __netif_rx_schedule(ndev, &priv->napi);
270 RET(IRQ_HANDLED);
271 } else {
272 /* NOTE: we get here if intr has slipped into window
273 * between these lines in bdx_poll:
274 * bdx_enable_interrupts(priv);
275 * return 0;
276 * currently intrs are disabled (since we read ISR),
277 * and we have failed to register next poll.
278 * so we read the regs to trigger chip
279 * and allow further interupts. */
280 READ_REG(priv, regTXF_WPTR_0);
281 READ_REG(priv, regRXD_WPTR_0);
282 }
283 }
284
285 bdx_enable_interrupts(priv);
286 RET(IRQ_HANDLED);
287 }
288
289 static int bdx_poll(struct napi_struct *napi, int budget)
290 {
291 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
292 struct net_device *dev = priv->ndev;
293 int work_done;
294
295 ENTER;
296 bdx_tx_cleanup(priv);
297 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
298 if ((work_done < budget) ||
299 (priv->napi_stop++ >= 30)) {
300 DBG("rx poll is done. backing to isr-driven\n");
301
302 /* from time to time we exit to let NAPI layer release
303 * device lock and allow waiting tasks (eg rmmod) to advance) */
304 priv->napi_stop = 0;
305
306 netif_rx_complete(dev, napi);
307 bdx_enable_interrupts(priv);
308 }
309 return work_done;
310 }
311
312 /* bdx_fw_load - loads firmware to NIC
313 * @priv - NIC private structure
314 * Firmware is loaded via TXD fifo, so it must be initialized first.
315 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
316 * can have few of them). So all drivers use semaphore register to choose one
317 * that will actually load FW to NIC.
318 */
319
320 static int bdx_fw_load(struct bdx_priv *priv)
321 {
322 int master, i;
323
324 ENTER;
325 master = READ_REG(priv, regINIT_SEMAPHORE);
326 if (!READ_REG(priv, regINIT_STATUS) && master) {
327 bdx_tx_push_desc_safe(priv, s_firmLoad, sizeof(s_firmLoad));
328 mdelay(100);
329 }
330 for (i = 0; i < 200; i++) {
331 if (READ_REG(priv, regINIT_STATUS))
332 break;
333 mdelay(2);
334 }
335 if (master)
336 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
337
338 if (i == 200) {
339 ERR("%s: firmware loading failed\n", priv->ndev->name);
340 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
341 READ_REG(priv, regVPC),
342 READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i);
343 RET(-EIO);
344 } else {
345 DBG("%s: firmware loading success\n", priv->ndev->name);
346 RET(0);
347 }
348 }
349
350 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
351 {
352 u32 val;
353
354 ENTER;
355 DBG("mac0=%x mac1=%x mac2=%x\n",
356 READ_REG(priv, regUNC_MAC0_A),
357 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
358
359 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
360 WRITE_REG(priv, regUNC_MAC2_A, val);
361 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
362 WRITE_REG(priv, regUNC_MAC1_A, val);
363 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
364 WRITE_REG(priv, regUNC_MAC0_A, val);
365
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv, regUNC_MAC0_A),
368 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
369 RET();
370 }
371
372 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
373 * @priv - NIC private structure
374 */
375 static int bdx_hw_start(struct bdx_priv *priv)
376 {
377 int rc = -EIO;
378 struct net_device *ndev = priv->ndev;
379
380 ENTER;
381 bdx_link_changed(priv);
382
383 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
384 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
385 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
386 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
387 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
388 WRITE_REG(priv, regRX_FULLNESS, 0);
389 WRITE_REG(priv, regTX_FULLNESS, 0);
390 WRITE_REG(priv, regCTRLST,
391 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
392
393 WRITE_REG(priv, regVGLB, 0);
394 WRITE_REG(priv, regMAX_FRAME_A,
395 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
396
397 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
398 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
399 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
400
401 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
402 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
403
404 /* Enable timer interrupt once in 2 secs. */
405 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
406 bdx_restore_mac(priv->ndev, priv);
407
408 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
409 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
410
411 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
412 if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
413 ndev->name, ndev)))
414 goto err_irq;
415 bdx_enable_interrupts(priv);
416
417 RET(0);
418
419 err_irq:
420 RET(rc);
421 }
422
423 static void bdx_hw_stop(struct bdx_priv *priv)
424 {
425 ENTER;
426 bdx_disable_interrupts(priv);
427 free_irq(priv->pdev->irq, priv->ndev);
428
429 netif_carrier_off(priv->ndev);
430 netif_stop_queue(priv->ndev);
431
432 RET();
433 }
434
435 static int bdx_hw_reset_direct(void __iomem *regs)
436 {
437 u32 val, i;
438 ENTER;
439
440 /* reset sequences: read, write 1, read, write 0 */
441 val = readl(regs + regCLKPLL);
442 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
443 udelay(50);
444 val = readl(regs + regCLKPLL);
445 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
446
447 /* check that the PLLs are locked and reset ended */
448 for (i = 0; i < 70; i++, mdelay(10))
449 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
450 /* do any PCI-E read transaction */
451 readl(regs + regRXD_CFG0_0);
452 return 0;
453 }
454 ERR("tehuti: HW reset failed\n");
455 return 1; /* failure */
456 }
457
458 static int bdx_hw_reset(struct bdx_priv *priv)
459 {
460 u32 val, i;
461 ENTER;
462
463 if (priv->port == 0) {
464 /* reset sequences: read, write 1, read, write 0 */
465 val = READ_REG(priv, regCLKPLL);
466 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
467 udelay(50);
468 val = READ_REG(priv, regCLKPLL);
469 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
470 }
471 /* check that the PLLs are locked and reset ended */
472 for (i = 0; i < 70; i++, mdelay(10))
473 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
474 /* do any PCI-E read transaction */
475 READ_REG(priv, regRXD_CFG0_0);
476 return 0;
477 }
478 ERR("tehuti: HW reset failed\n");
479 return 1; /* failure */
480 }
481
482 static int bdx_sw_reset(struct bdx_priv *priv)
483 {
484 int i;
485
486 ENTER;
487 /* 1. load MAC (obsolete) */
488 /* 2. disable Rx (and Tx) */
489 WRITE_REG(priv, regGMAC_RXF_A, 0);
490 mdelay(100);
491 /* 3. disable port */
492 WRITE_REG(priv, regDIS_PORT, 1);
493 /* 4. disable queue */
494 WRITE_REG(priv, regDIS_QU, 1);
495 /* 5. wait until hw is disabled */
496 for (i = 0; i < 50; i++) {
497 if (READ_REG(priv, regRST_PORT) & 1)
498 break;
499 mdelay(10);
500 }
501 if (i == 50)
502 ERR("%s: SW reset timeout. continuing anyway\n",
503 priv->ndev->name);
504
505 /* 6. disable intrs */
506 WRITE_REG(priv, regRDINTCM0, 0);
507 WRITE_REG(priv, regTDINTCM0, 0);
508 WRITE_REG(priv, regIMR, 0);
509 READ_REG(priv, regISR);
510
511 /* 7. reset queue */
512 WRITE_REG(priv, regRST_QU, 1);
513 /* 8. reset port */
514 WRITE_REG(priv, regRST_PORT, 1);
515 /* 9. zero all read and write pointers */
516 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
517 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
518 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
519 WRITE_REG(priv, i, 0);
520 /* 10. unseet port disable */
521 WRITE_REG(priv, regDIS_PORT, 0);
522 /* 11. unset queue disable */
523 WRITE_REG(priv, regDIS_QU, 0);
524 /* 12. unset queue reset */
525 WRITE_REG(priv, regRST_QU, 0);
526 /* 13. unset port reset */
527 WRITE_REG(priv, regRST_PORT, 0);
528 /* 14. enable Rx */
529 /* skiped. will be done later */
530 /* 15. save MAC (obsolete) */
531 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
532 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
533
534 RET(0);
535 }
536
537 /* bdx_reset - performs right type of reset depending on hw type */
538 static int bdx_reset(struct bdx_priv *priv)
539 {
540 ENTER;
541 RET((priv->pdev->device == 0x3009)
542 ? bdx_hw_reset(priv)
543 : bdx_sw_reset(priv));
544 }
545
546 /**
547 * bdx_close - Disables a network interface
548 * @netdev: network interface device structure
549 *
550 * Returns 0, this is not allowed to fail
551 *
552 * The close entry point is called when an interface is de-activated
553 * by the OS. The hardware is still under the drivers control, but
554 * needs to be disabled. A global MAC reset is issued to stop the
555 * hardware, and all transmit and receive resources are freed.
556 **/
557 static int bdx_close(struct net_device *ndev)
558 {
559 struct bdx_priv *priv = NULL;
560
561 ENTER;
562 priv = ndev->priv;
563
564 napi_disable(&priv->napi);
565
566 bdx_reset(priv);
567 bdx_hw_stop(priv);
568 bdx_rx_free(priv);
569 bdx_tx_free(priv);
570 RET(0);
571 }
572
573 /**
574 * bdx_open - Called when a network interface is made active
575 * @netdev: network interface device structure
576 *
577 * Returns 0 on success, negative value on failure
578 *
579 * The open entry point is called when a network interface is made
580 * active by the system (IFF_UP). At this point all resources needed
581 * for transmit and receive operations are allocated, the interrupt
582 * handler is registered with the OS, the watchdog timer is started,
583 * and the stack is notified that the interface is ready.
584 **/
585 static int bdx_open(struct net_device *ndev)
586 {
587 struct bdx_priv *priv;
588 int rc;
589
590 ENTER;
591 priv = ndev->priv;
592 bdx_reset(priv);
593 if (netif_running(ndev))
594 netif_stop_queue(priv->ndev);
595
596 if ((rc = bdx_tx_init(priv)))
597 goto err;
598
599 if ((rc = bdx_rx_init(priv)))
600 goto err;
601
602 if ((rc = bdx_fw_load(priv)))
603 goto err;
604
605 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
606
607 if ((rc = bdx_hw_start(priv)))
608 goto err;
609
610 napi_enable(&priv->napi);
611
612 print_fw_id(priv->nic);
613
614 RET(0);
615
616 err:
617 bdx_close(ndev);
618 RET(rc);
619 }
620
621 static void __init bdx_firmware_endianess(void)
622 {
623 int i;
624 for (i = 0; i < ARRAY_SIZE(s_firmLoad); i++)
625 s_firmLoad[i] = CPU_CHIP_SWAP32(s_firmLoad[i]);
626 }
627
628 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
629 {
630 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
631 -EINVAL : 0;
632 }
633
634 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
635 {
636 struct bdx_priv *priv = ndev->priv;
637 u32 data[3];
638 int error;
639
640 ENTER;
641
642 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
643 if (cmd != SIOCDEVPRIVATE) {
644 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
645 if (error) {
646 ERR("cant copy from user\n");
647 RET(error);
648 }
649 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
650 }
651
652 if (!capable(CAP_SYS_RAWIO))
653 return -EPERM;
654
655 switch (data[0]) {
656
657 case BDX_OP_READ:
658 error = bdx_range_check(priv, data[1]);
659 if (error < 0)
660 return error;
661 data[2] = READ_REG(priv, data[1]);
662 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
663 data[2]);
664 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
665 if (error)
666 RET(error);
667 break;
668
669 case BDX_OP_WRITE:
670 error = bdx_range_check(priv, data[1]);
671 if (error < 0)
672 return error;
673 WRITE_REG(priv, data[1], data[2]);
674 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
675 break;
676
677 default:
678 RET(-EOPNOTSUPP);
679 }
680 return 0;
681 }
682
683 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
684 {
685 ENTER;
686 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
687 RET(bdx_ioctl_priv(ndev, ifr, cmd));
688 else
689 RET(-EOPNOTSUPP);
690 }
691
692 /*
693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
694 * by passing VLAN filter table to hardware
695 * @ndev network device
696 * @vid VLAN vid
697 * @op add or kill operation
698 */
699 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
700 {
701 struct bdx_priv *priv = ndev->priv;
702 u32 reg, bit, val;
703
704 ENTER;
705 DBG2("vid=%d value=%d\n", (int)vid, enable);
706 if (unlikely(vid >= 4096)) {
707 ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
708 RET();
709 }
710 reg = regVLAN_0 + (vid / 32) * 4;
711 bit = 1 << vid % 32;
712 val = READ_REG(priv, reg);
713 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
714 if (enable)
715 val |= bit;
716 else
717 val &= ~bit;
718 DBG2("new val %x\n", val);
719 WRITE_REG(priv, reg, val);
720 RET();
721 }
722
723 /*
724 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
725 * @ndev network device
726 * @vid VLAN vid to add
727 */
728 static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
729 {
730 __bdx_vlan_rx_vid(ndev, vid, 1);
731 }
732
733 /*
734 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
735 * @ndev network device
736 * @vid VLAN vid to kill
737 */
738 static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
739 {
740 __bdx_vlan_rx_vid(ndev, vid, 0);
741 }
742
743 /*
744 * bdx_vlan_rx_register - kernel hook for adding VLAN group
745 * @ndev network device
746 * @grp VLAN group
747 */
748 static void
749 bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
750 {
751 struct bdx_priv *priv = ndev->priv;
752
753 ENTER;
754 DBG("device='%s', group='%p'\n", ndev->name, grp);
755 priv->vlgrp = grp;
756 RET();
757 }
758
759 /**
760 * bdx_change_mtu - Change the Maximum Transfer Unit
761 * @netdev: network interface device structure
762 * @new_mtu: new value for maximum frame size
763 *
764 * Returns 0 on success, negative on failure
765 */
766 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
767 {
768 ENTER;
769
770 if (new_mtu == ndev->mtu)
771 RET(0);
772
773 /* enforce minimum frame size */
774 if (new_mtu < ETH_ZLEN) {
775 ERR("%s: %s mtu %d is less then minimal %d\n",
776 BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
777 RET(-EINVAL);
778 }
779
780 ndev->mtu = new_mtu;
781 if (netif_running(ndev)) {
782 bdx_close(ndev);
783 bdx_open(ndev);
784 }
785 RET(0);
786 }
787
788 static void bdx_setmulti(struct net_device *ndev)
789 {
790 struct bdx_priv *priv = ndev->priv;
791
792 u32 rxf_val =
793 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
794 int i;
795
796 ENTER;
797 /* IMF - imperfect (hash) rx multicat filter */
798 /* PMF - perfect rx multicat filter */
799
800 /* FIXME: RXE(OFF) */
801 if (ndev->flags & IFF_PROMISC) {
802 rxf_val |= GMAC_RX_FILTER_PRM;
803 } else if (ndev->flags & IFF_ALLMULTI) {
804 /* set IMF to accept all multicast frmaes */
805 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
806 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
807 } else if (ndev->mc_count) {
808 u8 hash;
809 struct dev_mc_list *mclist;
810 u32 reg, val;
811
812 /* set IMF to deny all multicast frames */
813 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
814 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
815 /* set PMF to deny all multicast frames */
816 for (i = 0; i < MAC_MCST_NUM; i++) {
817 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
818 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
819 }
820
821 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
822 /* TBD: sort addreses and write them in ascending order
823 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
824 * multicast frames throu IMF */
825 mclist = ndev->mc_list;
826
827 /* accept the rest of addresses throu IMF */
828 for (; mclist; mclist = mclist->next) {
829 hash = 0;
830 for (i = 0; i < ETH_ALEN; i++)
831 hash ^= mclist->dmi_addr[i];
832 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
833 val = READ_REG(priv, reg);
834 val |= (1 << (hash % 32));
835 WRITE_REG(priv, reg, val);
836 }
837
838 } else {
839 DBG("only own mac %d\n", ndev->mc_count);
840 rxf_val |= GMAC_RX_FILTER_AB;
841 }
842 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
843 /* enable RX */
844 /* FIXME: RXE(ON) */
845 RET();
846 }
847
848 static int bdx_set_mac(struct net_device *ndev, void *p)
849 {
850 struct bdx_priv *priv = ndev->priv;
851 struct sockaddr *addr = p;
852
853 ENTER;
854 /*
855 if (netif_running(dev))
856 return -EBUSY
857 */
858 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
859 bdx_restore_mac(ndev, priv);
860 RET(0);
861 }
862
863 static int bdx_read_mac(struct bdx_priv *priv)
864 {
865 u16 macAddress[3], i;
866 ENTER;
867
868 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
869 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
870 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
871 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
872 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
873 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
874 for (i = 0; i < 3; i++) {
875 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
876 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
877 }
878 RET(0);
879 }
880
881 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
882 {
883 u64 val;
884
885 val = READ_REG(priv, reg);
886 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
887 return val;
888 }
889
890 /*Do the statistics-update work*/
891 static void bdx_update_stats(struct bdx_priv *priv)
892 {
893 struct bdx_stats *stats = &priv->hw_stats;
894 u64 *stats_vector = (u64 *) stats;
895 int i;
896 int addr;
897
898 /*Fill HW structure */
899 addr = 0x7200;
900 /*First 12 statistics - 0x7200 - 0x72B0 */
901 for (i = 0; i < 12; i++) {
902 stats_vector[i] = bdx_read_l2stat(priv, addr);
903 addr += 0x10;
904 }
905 BDX_ASSERT(addr != 0x72C0);
906 /* 0x72C0-0x72E0 RSRV */
907 addr = 0x72F0;
908 for (; i < 16; i++) {
909 stats_vector[i] = bdx_read_l2stat(priv, addr);
910 addr += 0x10;
911 }
912 BDX_ASSERT(addr != 0x7330);
913 /* 0x7330-0x7360 RSRV */
914 addr = 0x7370;
915 for (; i < 19; i++) {
916 stats_vector[i] = bdx_read_l2stat(priv, addr);
917 addr += 0x10;
918 }
919 BDX_ASSERT(addr != 0x73A0);
920 /* 0x73A0-0x73B0 RSRV */
921 addr = 0x73C0;
922 for (; i < 23; i++) {
923 stats_vector[i] = bdx_read_l2stat(priv, addr);
924 addr += 0x10;
925 }
926 BDX_ASSERT(addr != 0x7400);
927 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
928 }
929
930 static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
931 {
932 struct bdx_priv *priv = ndev->priv;
933 struct net_device_stats *net_stat = &priv->net_stats;
934 return net_stat;
935 }
936
937 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
938 u16 rxd_vlan);
939 static void print_rxfd(struct rxf_desc *rxfd);
940
941 /*************************************************************************
942 * Rx DB *
943 *************************************************************************/
944
945 static void bdx_rxdb_destroy(struct rxdb *db)
946 {
947 if (db)
948 vfree(db);
949 }
950
951 static struct rxdb *bdx_rxdb_create(int nelem)
952 {
953 struct rxdb *db;
954 int i;
955
956 db = vmalloc(sizeof(struct rxdb)
957 + (nelem * sizeof(int))
958 + (nelem * sizeof(struct rx_map)));
959 if (likely(db != NULL)) {
960 db->stack = (int *)(db + 1);
961 db->elems = (void *)(db->stack + nelem);
962 db->nelem = nelem;
963 db->top = nelem;
964 for (i = 0; i < nelem; i++)
965 db->stack[i] = nelem - i - 1; /* to make first allocs
966 close to db struct*/
967 }
968
969 return db;
970 }
971
972 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
973 {
974 BDX_ASSERT(db->top <= 0);
975 return db->stack[--(db->top)];
976 }
977
978 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
979 {
980 BDX_ASSERT((n < 0) || (n >= db->nelem));
981 return db->elems + n;
982 }
983
984 static inline int bdx_rxdb_available(struct rxdb *db)
985 {
986 return db->top;
987 }
988
989 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
990 {
991 BDX_ASSERT((n >= db->nelem) || (n < 0));
992 db->stack[(db->top)++] = n;
993 }
994
995 /*************************************************************************
996 * Rx Init *
997 *************************************************************************/
998
999 /* bdx_rx_init - initialize RX all related HW and SW resources
1000 * @priv - NIC private structure
1001 *
1002 * Returns 0 on success, negative value on failure
1003 *
1004 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
1005 * skb for rx. It assumes that Rx is desabled in HW
1006 * funcs are grouped for better cache usage
1007 *
1008 * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
1009 * filled and packets will be dropped by nic without getting into host or
1010 * cousing interrupt. Anyway, in that condition, host has no chance to proccess
1011 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
1012 */
1013
1014 /* TBD: ensure proper packet size */
1015
1016 static int bdx_rx_init(struct bdx_priv *priv)
1017 {
1018 ENTER;
1019
1020 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1021 regRXD_CFG0_0, regRXD_CFG1_0,
1022 regRXD_RPTR_0, regRXD_WPTR_0))
1023 goto err_mem;
1024 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1025 regRXF_CFG0_0, regRXF_CFG1_0,
1026 regRXF_RPTR_0, regRXF_WPTR_0))
1027 goto err_mem;
1028 if (!
1029 (priv->rxdb =
1030 bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1031 sizeof(struct rxf_desc))))
1032 goto err_mem;
1033
1034 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1035 return 0;
1036
1037 err_mem:
1038 ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
1039 return -ENOMEM;
1040 }
1041
1042 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1043 * @priv - NIC private structure
1044 * @f - RXF fifo
1045 */
1046 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1047 {
1048 struct rx_map *dm;
1049 struct rxdb *db = priv->rxdb;
1050 u16 i;
1051
1052 ENTER;
1053 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1054 db->nelem - bdx_rxdb_available(db));
1055 while (bdx_rxdb_available(db) > 0) {
1056 i = bdx_rxdb_alloc_elem(db);
1057 dm = bdx_rxdb_addr_elem(db, i);
1058 dm->dma = 0;
1059 }
1060 for (i = 0; i < db->nelem; i++) {
1061 dm = bdx_rxdb_addr_elem(db, i);
1062 if (dm->dma) {
1063 pci_unmap_single(priv->pdev,
1064 dm->dma, f->m.pktsz,
1065 PCI_DMA_FROMDEVICE);
1066 dev_kfree_skb(dm->skb);
1067 }
1068 }
1069 }
1070
1071 /* bdx_rx_free - release all Rx resources
1072 * @priv - NIC private structure
1073 * It assumes that Rx is desabled in HW
1074 */
1075 static void bdx_rx_free(struct bdx_priv *priv)
1076 {
1077 ENTER;
1078 if (priv->rxdb) {
1079 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1080 bdx_rxdb_destroy(priv->rxdb);
1081 priv->rxdb = NULL;
1082 }
1083 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1084 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1085
1086 RET();
1087 }
1088
1089 /*************************************************************************
1090 * Rx Engine *
1091 *************************************************************************/
1092
1093 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1094 * @priv - nic's private structure
1095 * @f - RXF fifo that needs skbs
1096 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1097 * skb's virtual and physical addresses are stored in skb db.
1098 * To calculate free space, func uses cached values of RPTR and WPTR
1099 * When needed, it also updates RPTR and WPTR.
1100 */
1101
1102 /* TBD: do not update WPTR if no desc were written */
1103
1104 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1105 {
1106 struct sk_buff *skb;
1107 struct rxf_desc *rxfd;
1108 struct rx_map *dm;
1109 int dno, delta, idx;
1110 struct rxdb *db = priv->rxdb;
1111
1112 ENTER;
1113 dno = bdx_rxdb_available(db) - 1;
1114 while (dno > 0) {
1115 if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
1116 ERR("NO MEM: dev_alloc_skb failed\n");
1117 break;
1118 }
1119 skb->dev = priv->ndev;
1120 skb_reserve(skb, NET_IP_ALIGN);
1121
1122 idx = bdx_rxdb_alloc_elem(db);
1123 dm = bdx_rxdb_addr_elem(db, idx);
1124 dm->dma = pci_map_single(priv->pdev,
1125 skb->data, f->m.pktsz,
1126 PCI_DMA_FROMDEVICE);
1127 dm->skb = skb;
1128 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1129 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1130 rxfd->va_lo = idx;
1131 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1132 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1133 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1134 print_rxfd(rxfd);
1135
1136 f->m.wptr += sizeof(struct rxf_desc);
1137 delta = f->m.wptr - f->m.memsz;
1138 if (unlikely(delta >= 0)) {
1139 f->m.wptr = delta;
1140 if (delta > 0) {
1141 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1142 DBG("wrapped descriptor\n");
1143 }
1144 }
1145 dno--;
1146 }
1147 /*TBD: to do - delayed rxf wptr like in txd */
1148 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1149 RET();
1150 }
1151
1152 static inline void
1153 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1154 struct sk_buff *skb)
1155 {
1156 ENTER;
1157 DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
1158 priv->vlgrp);
1159 if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
1160 DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
1161 priv->ndev->name,
1162 GET_RXD_VLAN_ID(rxd_vlan),
1163 GET_RXD_VTAG(rxd_val1),
1164 vlan_group_get_device(priv->vlgrp,
1165 GET_RXD_VLAN_ID(rxd_vlan))->name);
1166 /* NAPI variant of receive functions */
1167 vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1168 GET_RXD_VLAN_TCI(rxd_vlan));
1169 } else {
1170 netif_receive_skb(skb);
1171 }
1172 }
1173
1174 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1175 {
1176 struct rxf_desc *rxfd;
1177 struct rx_map *dm;
1178 struct rxf_fifo *f;
1179 struct rxdb *db;
1180 struct sk_buff *skb;
1181 int delta;
1182
1183 ENTER;
1184 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1185 f = &priv->rxf_fifo0;
1186 db = priv->rxdb;
1187 DBG("db=%p f=%p\n", db, f);
1188 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1189 DBG("dm=%p\n", dm);
1190 skb = dm->skb;
1191 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1192 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1193 rxfd->va_lo = rxdd->va_lo;
1194 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1195 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1196 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1197 print_rxfd(rxfd);
1198
1199 f->m.wptr += sizeof(struct rxf_desc);
1200 delta = f->m.wptr - f->m.memsz;
1201 if (unlikely(delta >= 0)) {
1202 f->m.wptr = delta;
1203 if (delta > 0) {
1204 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1205 DBG("wrapped descriptor\n");
1206 }
1207 }
1208 RET();
1209 }
1210
1211 /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
1212 * NOTE: a special treatment is given to non-continous descriptors
1213 * that start near the end, wraps around and continue at the beginning. a second
1214 * part is copied right after the first, and then descriptor is interpreted as
1215 * normal. fifo has an extra space to allow such operations
1216 * @priv - nic's private structure
1217 * @f - RXF fifo that needs skbs
1218 */
1219
1220 /* TBD: replace memcpy func call by explicite inline asm */
1221
1222 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1223 {
1224 struct sk_buff *skb, *skb2;
1225 struct rxd_desc *rxdd;
1226 struct rx_map *dm;
1227 struct rxf_fifo *rxf_fifo;
1228 int tmp_len, size;
1229 int done = 0;
1230 int max_done = BDX_MAX_RX_DONE;
1231 struct rxdb *db = NULL;
1232 /* Unmarshalled descriptor - copy of descriptor in host order */
1233 u32 rxd_val1;
1234 u16 len;
1235 u16 rxd_vlan;
1236
1237 ENTER;
1238 max_done = budget;
1239
1240 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1241
1242 size = f->m.wptr - f->m.rptr;
1243 if (size < 0)
1244 size = f->m.memsz + size; /* size is negative :-) */
1245
1246 while (size > 0) {
1247
1248 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1249 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1250
1251 len = CPU_CHIP_SWAP16(rxdd->len);
1252
1253 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1254
1255 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1256
1257 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1258 BDX_ASSERT(tmp_len <= 0);
1259 size -= tmp_len;
1260 if (size < 0) /* test for partially arrived descriptor */
1261 break;
1262
1263 f->m.rptr += tmp_len;
1264
1265 tmp_len = f->m.rptr - f->m.memsz;
1266 if (unlikely(tmp_len >= 0)) {
1267 f->m.rptr = tmp_len;
1268 if (tmp_len > 0) {
1269 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1270 f->m.rptr, tmp_len);
1271 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1272 }
1273 }
1274
1275 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1276 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1277 priv->net_stats.rx_errors++;
1278 bdx_recycle_skb(priv, rxdd);
1279 continue;
1280 }
1281
1282 rxf_fifo = &priv->rxf_fifo0;
1283 db = priv->rxdb;
1284 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1285 skb = dm->skb;
1286
1287 if (len < BDX_COPYBREAK &&
1288 (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
1289 skb_reserve(skb2, NET_IP_ALIGN);
1290 /*skb_put(skb2, len); */
1291 pci_dma_sync_single_for_cpu(priv->pdev,
1292 dm->dma, rxf_fifo->m.pktsz,
1293 PCI_DMA_FROMDEVICE);
1294 memcpy(skb2->data, skb->data, len);
1295 bdx_recycle_skb(priv, rxdd);
1296 skb = skb2;
1297 } else {
1298 pci_unmap_single(priv->pdev,
1299 dm->dma, rxf_fifo->m.pktsz,
1300 PCI_DMA_FROMDEVICE);
1301 bdx_rxdb_free_elem(db, rxdd->va_lo);
1302 }
1303
1304 priv->net_stats.rx_bytes += len;
1305
1306 skb_put(skb, len);
1307 skb->dev = priv->ndev;
1308 skb->ip_summed = CHECKSUM_UNNECESSARY;
1309 skb->protocol = eth_type_trans(skb, priv->ndev);
1310
1311 /* Non-IP packets aren't checksum-offloaded */
1312 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1313 skb->ip_summed = CHECKSUM_NONE;
1314
1315 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1316
1317 if (++done >= max_done)
1318 break;
1319 }
1320
1321 priv->net_stats.rx_packets += done;
1322
1323 /* FIXME: do smth to minimize pci accesses */
1324 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1325
1326 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1327
1328 RET(done);
1329 }
1330
1331 /*************************************************************************
1332 * Debug / Temprorary Code *
1333 *************************************************************************/
1334 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1335 u16 rxd_vlan)
1336 {
1337 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
1338 "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
1339 "va_lo %d va_hi %d\n",
1340 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1341 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1342 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1343 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1344 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1345 rxdd->va_hi);
1346 }
1347
1348 static void print_rxfd(struct rxf_desc *rxfd)
1349 {
1350 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1351 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1352 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1353 }
1354
1355 /*
1356 * TX HW/SW interaction overview
1357 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1358 * There are 2 types of TX communication channels betwean driver and NIC.
1359 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1360 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1361 *
1362 * Currently NIC supports TSO, checksuming and gather DMA
1363 * UFO and IP fragmentation is on the way
1364 *
1365 * RX SW Data Structures
1366 * ~~~~~~~~~~~~~~~~~~~~~
1367 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1368 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1369 * acknowledges sent by TXF descriptors.
1370 * Implemented as cyclic buffer.
1371 * fifo - keeps info about fifo's size and location, relevant HW registers,
1372 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1373 * Implemented as simple struct.
1374 *
1375 * TX SW Execution Flow
1376 * ~~~~~~~~~~~~~~~~~~~~
1377 * OS calls driver's hard_xmit method with packet to sent.
1378 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1379 * by updating TXD WPTR.
1380 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1381 * To prevent TXD fifo overflow without reading HW registers every time,
1382 * SW deploys "tx level" technique.
1383 * Upon strart up, tx level is initialized to TXD fifo length.
1384 * For every sent packet, SW gets its TXD descriptor sizei
1385 * (from precalculated array) and substructs it from tx level.
1386 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1387 * original TXD descriptor from txdb and adds it to tx level.
1388 * When Tx level drops under some predefined treshhold, the driver
1389 * stops the TX queue. When TX level rises above that level,
1390 * the tx queue is enabled again.
1391 *
1392 * This technique avoids eccessive reading of RPTR and WPTR registers.
1393 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1394 */
1395
1396 /*************************************************************************
1397 * Tx DB *
1398 *************************************************************************/
1399 static inline int bdx_tx_db_size(struct txdb *db)
1400 {
1401 int taken = db->wptr - db->rptr;
1402 if (taken < 0)
1403 taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1404
1405 return db->size - taken;
1406 }
1407
1408 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1409 * @d - tx data base
1410 * @ptr - read or write pointer
1411 */
1412 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1413 {
1414 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1415
1416 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1417 *pptr != db->wptr); /* or write pointer */
1418
1419 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1420 *pptr >= db->end); /* in range */
1421
1422 ++*pptr;
1423 if (unlikely(*pptr == db->end))
1424 *pptr = db->start;
1425 }
1426
1427 /* bdx_tx_db_inc_rptr - increment read pointer
1428 * @d - tx data base
1429 */
1430 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1431 {
1432 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1433 __bdx_tx_db_ptr_next(db, &db->rptr);
1434 }
1435
1436 /* bdx_tx_db_inc_rptr - increment write pointer
1437 * @d - tx data base
1438 */
1439 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1440 {
1441 __bdx_tx_db_ptr_next(db, &db->wptr);
1442 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1443 a result of write */
1444 }
1445
1446 /* bdx_tx_db_init - creates and initializes tx db
1447 * @d - tx data base
1448 * @sz_type - size of tx fifo
1449 * Returns 0 on success, error code otherwise
1450 */
1451 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1452 {
1453 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1454
1455 d->start = vmalloc(memsz);
1456 if (!d->start)
1457 return -ENOMEM;
1458
1459 /*
1460 * In order to differentiate between db is empty and db is full
1461 * states at least one element should always be empty in order to
1462 * avoid rptr == wptr which means db is empty
1463 */
1464 d->size = memsz / sizeof(struct tx_map) - 1;
1465 d->end = d->start + d->size + 1; /* just after last element */
1466
1467 /* all dbs are created equally empty */
1468 d->rptr = d->start;
1469 d->wptr = d->start;
1470
1471 return 0;
1472 }
1473
1474 /* bdx_tx_db_close - closes tx db and frees all memory
1475 * @d - tx data base
1476 */
1477 static void bdx_tx_db_close(struct txdb *d)
1478 {
1479 BDX_ASSERT(d == NULL);
1480
1481 if (d->start) {
1482 vfree(d->start);
1483 d->start = NULL;
1484 }
1485 }
1486
1487 /*************************************************************************
1488 * Tx Engine *
1489 *************************************************************************/
1490
1491 /* sizes of tx desc (including padding if needed) as function
1492 * of skb's frag number */
1493 static struct {
1494 u16 bytes;
1495 u16 qwords; /* qword = 64 bit */
1496 } txd_sizes[MAX_SKB_FRAGS + 1];
1497
1498 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1499 * @priv - NIC private structure
1500 * @skb - socket buffer to map
1501 *
1502 * It makes dma mappings for skb's data blocks and writes them to PBL of
1503 * new tx descriptor. It also stores them in the tx db, so they could be
1504 * unmaped after data was sent. It is reponsibility of a caller to make
1505 * sure that there is enough space in the tx db. Last element holds pointer
1506 * to skb itself and marked with zero length
1507 */
1508 static inline void
1509 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1510 struct txd_desc *txdd)
1511 {
1512 struct txdb *db = &priv->txdb;
1513 struct pbl *pbl = &txdd->pbl[0];
1514 int nr_frags = skb_shinfo(skb)->nr_frags;
1515 int i;
1516
1517 db->wptr->len = skb->len - skb->data_len;
1518 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1519 db->wptr->len, PCI_DMA_TODEVICE);
1520 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1521 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1522 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1523 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1524 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1525 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1526 bdx_tx_db_inc_wptr(db);
1527
1528 for (i = 0; i < nr_frags; i++) {
1529 struct skb_frag_struct *frag;
1530
1531 frag = &skb_shinfo(skb)->frags[i];
1532 db->wptr->len = frag->size;
1533 db->wptr->addr.dma =
1534 pci_map_page(priv->pdev, frag->page, frag->page_offset,
1535 frag->size, PCI_DMA_TODEVICE);
1536
1537 pbl++;
1538 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1539 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1540 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1541 bdx_tx_db_inc_wptr(db);
1542 }
1543
1544 /* add skb clean up info. */
1545 db->wptr->len = -txd_sizes[nr_frags].bytes;
1546 db->wptr->addr.skb = skb;
1547 bdx_tx_db_inc_wptr(db);
1548 }
1549
1550 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1551 * number of frags is used as index to fetch correct descriptors size,
1552 * instead of calculating it each time */
1553 static void __init init_txd_sizes(void)
1554 {
1555 int i, lwords;
1556
1557 /* 7 - is number of lwords in txd with one phys buffer
1558 * 3 - is number of lwords used for every additional phys buffer */
1559 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1560 lwords = 7 + (i * 3);
1561 if (lwords & 1)
1562 lwords++; /* pad it with 1 lword */
1563 txd_sizes[i].qwords = lwords >> 1;
1564 txd_sizes[i].bytes = lwords << 2;
1565 }
1566 }
1567
1568 /* bdx_tx_init - initialize all Tx related stuff.
1569 * Namely, TXD and TXF fifos, database etc */
1570 static int bdx_tx_init(struct bdx_priv *priv)
1571 {
1572 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1573 regTXD_CFG0_0,
1574 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1575 goto err_mem;
1576 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1577 regTXF_CFG0_0,
1578 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1579 goto err_mem;
1580
1581 /* The TX db has to keep mappings for all packets sent (on TxD)
1582 * and not yet reclaimed (on TxF) */
1583 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1584 goto err_mem;
1585
1586 priv->tx_level = BDX_MAX_TX_LEVEL;
1587 #ifdef BDX_DELAY_WPTR
1588 priv->tx_update_mark = priv->tx_level - 1024;
1589 #endif
1590 return 0;
1591
1592 err_mem:
1593 ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
1594 return -ENOMEM;
1595 }
1596
1597 /*
1598 * bdx_tx_space - calculates avalable space in TX fifo
1599 * @priv - NIC private structure
1600 * Returns avaliable space in TX fifo in bytes
1601 */
1602 static inline int bdx_tx_space(struct bdx_priv *priv)
1603 {
1604 struct txd_fifo *f = &priv->txd_fifo0;
1605 int fsize;
1606
1607 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1608 fsize = f->m.rptr - f->m.wptr;
1609 if (fsize <= 0)
1610 fsize = f->m.memsz + fsize;
1611 return (fsize);
1612 }
1613
1614 /* bdx_tx_transmit - send packet to NIC
1615 * @skb - packet to send
1616 * ndev - network device assigned to NIC
1617 * Return codes:
1618 * o NETDEV_TX_OK everything ok.
1619 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1620 * Usually a bug, means queue start/stop flow control is broken in
1621 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1622 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1623 */
1624 static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
1625 {
1626 struct bdx_priv *priv = ndev->priv;
1627 struct txd_fifo *f = &priv->txd_fifo0;
1628 int txd_checksum = 7; /* full checksum */
1629 int txd_lgsnd = 0;
1630 int txd_vlan_id = 0;
1631 int txd_vtag = 0;
1632 int txd_mss = 0;
1633
1634 int nr_frags = skb_shinfo(skb)->nr_frags;
1635 struct txd_desc *txdd;
1636 int len;
1637 unsigned long flags;
1638
1639 ENTER;
1640 local_irq_save(flags);
1641 if (!spin_trylock(&priv->tx_lock)) {
1642 local_irq_restore(flags);
1643 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1644 BDX_DRV_NAME, ndev->name);
1645 return NETDEV_TX_LOCKED;
1646 }
1647
1648 /* build tx descriptor */
1649 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1650 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1651 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1652 txd_checksum = 0;
1653
1654 if (skb_shinfo(skb)->gso_size) {
1655 txd_mss = skb_shinfo(skb)->gso_size;
1656 txd_lgsnd = 1;
1657 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1658 txd_mss);
1659 }
1660
1661 if (vlan_tx_tag_present(skb)) {
1662 /*Cut VLAN ID to 12 bits */
1663 txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1664 txd_vtag = 1;
1665 }
1666
1667 txdd->length = CPU_CHIP_SWAP16(skb->len);
1668 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1669 txdd->txd_val1 =
1670 CPU_CHIP_SWAP32(TXD_W1_VAL
1671 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1672 txd_lgsnd, txd_vlan_id));
1673 DBG("=== TxD desc =====================\n");
1674 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1675 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1676
1677 bdx_tx_map_skb(priv, skb, txdd);
1678
1679 /* increment TXD write pointer. In case of
1680 fifo wrapping copy reminder of the descriptor
1681 to the beginning */
1682 f->m.wptr += txd_sizes[nr_frags].bytes;
1683 len = f->m.wptr - f->m.memsz;
1684 if (unlikely(len >= 0)) {
1685 f->m.wptr = len;
1686 if (len > 0) {
1687 BDX_ASSERT(len > f->m.memsz);
1688 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1689 }
1690 }
1691 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1692
1693 priv->tx_level -= txd_sizes[nr_frags].bytes;
1694 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1695 #ifdef BDX_DELAY_WPTR
1696 if (priv->tx_level > priv->tx_update_mark) {
1697 /* Force memory writes to complete before letting h/w
1698 know there are new descriptors to fetch.
1699 (might be needed on platforms like IA64)
1700 wmb(); */
1701 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1702 } else {
1703 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1704 priv->tx_noupd = 0;
1705 WRITE_REG(priv, f->m.reg_WPTR,
1706 f->m.wptr & TXF_WPTR_WR_PTR);
1707 }
1708 }
1709 #else
1710 /* Force memory writes to complete before letting h/w
1711 know there are new descriptors to fetch.
1712 (might be needed on platforms like IA64)
1713 wmb(); */
1714 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1715
1716 #endif
1717 ndev->trans_start = jiffies;
1718
1719 priv->net_stats.tx_packets++;
1720 priv->net_stats.tx_bytes += skb->len;
1721
1722 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1723 DBG("%s: %s: TX Q STOP level %d\n",
1724 BDX_DRV_NAME, ndev->name, priv->tx_level);
1725 netif_stop_queue(ndev);
1726 }
1727
1728 spin_unlock_irqrestore(&priv->tx_lock, flags);
1729 return NETDEV_TX_OK;
1730 }
1731
1732 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1733 * @priv - bdx adapter
1734 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1735 * that those packets were sent
1736 */
1737 static void bdx_tx_cleanup(struct bdx_priv *priv)
1738 {
1739 struct txf_fifo *f = &priv->txf_fifo0;
1740 struct txdb *db = &priv->txdb;
1741 int tx_level = 0;
1742
1743 ENTER;
1744 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1745 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1746
1747 while (f->m.wptr != f->m.rptr) {
1748 f->m.rptr += BDX_TXF_DESC_SZ;
1749 f->m.rptr &= f->m.size_mask;
1750
1751 /* unmap all the fragments */
1752 /* first has to come tx_maps containing dma */
1753 BDX_ASSERT(db->rptr->len == 0);
1754 do {
1755 BDX_ASSERT(db->rptr->addr.dma == 0);
1756 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1757 db->rptr->len, PCI_DMA_TODEVICE);
1758 bdx_tx_db_inc_rptr(db);
1759 } while (db->rptr->len > 0);
1760 tx_level -= db->rptr->len; /* '-' koz len is negative */
1761
1762 /* now should come skb pointer - free it */
1763 dev_kfree_skb_irq(db->rptr->addr.skb);
1764 bdx_tx_db_inc_rptr(db);
1765 }
1766
1767 /* let h/w know which TXF descriptors were cleaned */
1768 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1769 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1770
1771 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1772 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1773 spin_lock(&priv->tx_lock);
1774 priv->tx_level += tx_level;
1775 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1776 #ifdef BDX_DELAY_WPTR
1777 if (priv->tx_noupd) {
1778 priv->tx_noupd = 0;
1779 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1780 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1781 }
1782 #endif
1783
1784 if (unlikely(netif_queue_stopped(priv->ndev)
1785 && netif_carrier_ok(priv->ndev)
1786 && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1787 DBG("%s: %s: TX Q WAKE level %d\n",
1788 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1789 netif_wake_queue(priv->ndev);
1790 }
1791 spin_unlock(&priv->tx_lock);
1792 }
1793
1794 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1795 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1796 */
1797 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1798 {
1799 struct txdb *db = &priv->txdb;
1800
1801 ENTER;
1802 while (db->rptr != db->wptr) {
1803 if (likely(db->rptr->len))
1804 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1805 db->rptr->len, PCI_DMA_TODEVICE);
1806 else
1807 dev_kfree_skb(db->rptr->addr.skb);
1808 bdx_tx_db_inc_rptr(db);
1809 }
1810 RET();
1811 }
1812
1813 /* bdx_tx_free - frees all Tx resources */
1814 static void bdx_tx_free(struct bdx_priv *priv)
1815 {
1816 ENTER;
1817 bdx_tx_free_skbs(priv);
1818 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1819 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1820 bdx_tx_db_close(&priv->txdb);
1821 }
1822
1823 /* bdx_tx_push_desc - push descriptor to TxD fifo
1824 * @priv - NIC private structure
1825 * @data - desc's data
1826 * @size - desc's size
1827 *
1828 * Pushes desc to TxD fifo and overlaps it if needed.
1829 * NOTE: this func does not check for available space. this is responsibility
1830 * of the caller. Neither does it check that data size is smaller then
1831 * fifo size.
1832 */
1833 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1834 {
1835 struct txd_fifo *f = &priv->txd_fifo0;
1836 int i = f->m.memsz - f->m.wptr;
1837
1838 if (size == 0)
1839 return;
1840
1841 if (i > size) {
1842 memcpy(f->m.va + f->m.wptr, data, size);
1843 f->m.wptr += size;
1844 } else {
1845 memcpy(f->m.va + f->m.wptr, data, i);
1846 f->m.wptr = size - i;
1847 memcpy(f->m.va, data + i, f->m.wptr);
1848 }
1849 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1850 }
1851
1852 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1853 * @priv - NIC private structure
1854 * @data - desc's data
1855 * @size - desc's size
1856 *
1857 * NOTE: this func does check for available space and, if neccessary, waits for
1858 * NIC to read existing data before writing new one.
1859 */
1860 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1861 {
1862 int timer = 0;
1863 ENTER;
1864
1865 while (size > 0) {
1866 /* we substruct 8 because when fifo is full rptr == wptr
1867 which also means that fifo is empty, we can understand
1868 the difference, but could hw do the same ??? :) */
1869 int avail = bdx_tx_space(priv) - 8;
1870 if (avail <= 0) {
1871 if (timer++ > 300) { /* prevent endless loop */
1872 DBG("timeout while writing desc to TxD fifo\n");
1873 break;
1874 }
1875 udelay(50); /* give hw a chance to clean fifo */
1876 continue;
1877 }
1878 avail = MIN(avail, size);
1879 DBG("about to push %d bytes starting %p size %d\n", avail,
1880 data, size);
1881 bdx_tx_push_desc(priv, data, avail);
1882 size -= avail;
1883 data += avail;
1884 }
1885 RET();
1886 }
1887
1888 /**
1889 * bdx_probe - Device Initialization Routine
1890 * @pdev: PCI device information struct
1891 * @ent: entry in bdx_pci_tbl
1892 *
1893 * Returns 0 on success, negative on failure
1894 *
1895 * bdx_probe initializes an adapter identified by a pci_dev structure.
1896 * The OS initialization, configuring of the adapter private structure,
1897 * and a hardware reset occur.
1898 *
1899 * functions and their order used as explained in
1900 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1901 *
1902 */
1903
1904 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1905 static int __devinit
1906 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1907 {
1908 struct net_device *ndev;
1909 struct bdx_priv *priv;
1910 int err, pci_using_dac, port;
1911 unsigned long pciaddr;
1912 u32 regionSize;
1913 struct pci_nic *nic;
1914
1915 ENTER;
1916
1917 nic = vmalloc(sizeof(*nic));
1918 if (!nic)
1919 RET(-ENOMEM);
1920
1921 /************** pci *****************/
1922 if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
1923 goto err_pci; /* it's not a problem though */
1924
1925 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
1926 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
1927 pci_using_dac = 1;
1928 } else {
1929 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
1930 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
1931 printk(KERN_ERR "tehuti: No usable DMA configuration"
1932 ", aborting\n");
1933 goto err_dma;
1934 }
1935 pci_using_dac = 0;
1936 }
1937
1938 if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
1939 goto err_dma;
1940
1941 pci_set_master(pdev);
1942
1943 pciaddr = pci_resource_start(pdev, 0);
1944 if (!pciaddr) {
1945 err = -EIO;
1946 ERR("tehuti: no MMIO resource\n");
1947 goto err_out_res;
1948 }
1949 if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
1950 err = -EIO;
1951 ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
1952 goto err_out_res;
1953 }
1954
1955 nic->regs = ioremap(pciaddr, regionSize);
1956 if (!nic->regs) {
1957 err = -EIO;
1958 ERR("tehuti: ioremap failed\n");
1959 goto err_out_res;
1960 }
1961
1962 if (pdev->irq < 2) {
1963 err = -EIO;
1964 ERR("tehuti: invalid irq (%d)\n", pdev->irq);
1965 goto err_out_iomap;
1966 }
1967 pci_set_drvdata(pdev, nic);
1968
1969 if (pdev->device == 0x3014)
1970 nic->port_num = 2;
1971 else
1972 nic->port_num = 1;
1973
1974 print_hw_id(pdev);
1975
1976 bdx_hw_reset_direct(nic->regs);
1977
1978 nic->irq_type = IRQ_INTX;
1979 #ifdef BDX_MSI
1980 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1981 if ((err = pci_enable_msi(pdev)))
1982 ERR("Tehuti: Can't eneble msi. error is %d\n", err);
1983 else
1984 nic->irq_type = IRQ_MSI;
1985 } else
1986 DBG("HW does not support MSI\n");
1987 #endif
1988
1989 /************** netdev **************/
1990 for (port = 0; port < nic->port_num; port++) {
1991 if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
1992 err = -ENOMEM;
1993 printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
1994 goto err_out_iomap;
1995 }
1996
1997 ndev->open = bdx_open;
1998 ndev->stop = bdx_close;
1999 ndev->hard_start_xmit = bdx_tx_transmit;
2000 ndev->do_ioctl = bdx_ioctl;
2001 ndev->set_multicast_list = bdx_setmulti;
2002 ndev->get_stats = bdx_get_stats;
2003 ndev->change_mtu = bdx_change_mtu;
2004 ndev->set_mac_address = bdx_set_mac;
2005 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
2006 ndev->vlan_rx_register = bdx_vlan_rx_register;
2007 ndev->vlan_rx_add_vid = bdx_vlan_rx_add_vid;
2008 ndev->vlan_rx_kill_vid = bdx_vlan_rx_kill_vid;
2009
2010 bdx_ethtool_ops(ndev); /* ethtool interface */
2011
2012 /* these fields are used for info purposes only
2013 * so we can have them same for all ports of the board */
2014 ndev->if_port = port;
2015 ndev->base_addr = pciaddr;
2016 ndev->mem_start = pciaddr;
2017 ndev->mem_end = pciaddr + regionSize;
2018 ndev->irq = pdev->irq;
2019 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2020 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2021 NETIF_F_HW_VLAN_FILTER
2022 /*| NETIF_F_FRAGLIST */
2023 ;
2024
2025 if (pci_using_dac)
2026 ndev->features |= NETIF_F_HIGHDMA;
2027
2028 /************** priv ****************/
2029 priv = nic->priv[port] = ndev->priv;
2030
2031 memset(priv, 0, sizeof(struct bdx_priv));
2032 priv->pBdxRegs = nic->regs + port * 0x8000;
2033 priv->port = port;
2034 priv->pdev = pdev;
2035 priv->ndev = ndev;
2036 priv->nic = nic;
2037 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2038
2039 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2040
2041 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2042 DBG("HW statistics not supported\n");
2043 priv->stats_flag = 0;
2044 } else {
2045 priv->stats_flag = 1;
2046 }
2047
2048 /* Initialize fifo sizes. */
2049 priv->txd_size = 2;
2050 priv->txf_size = 2;
2051 priv->rxd_size = 2;
2052 priv->rxf_size = 3;
2053
2054 /* Initialize the initial coalescing registers. */
2055 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2056 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2057
2058 /* ndev->xmit_lock spinlock is not used.
2059 * Private priv->tx_lock is used for synchronization
2060 * between transmit and TX irq cleanup. In addition
2061 * set multicast list callback has to use priv->tx_lock.
2062 */
2063 #ifdef BDX_LLTX
2064 ndev->features |= NETIF_F_LLTX;
2065 #endif
2066 spin_lock_init(&priv->tx_lock);
2067
2068 /*bdx_hw_reset(priv); */
2069 if (bdx_read_mac(priv)) {
2070 printk(KERN_ERR "tehuti: load MAC address failed\n");
2071 goto err_out_iomap;
2072 }
2073 SET_NETDEV_DEV(ndev, &pdev->dev);
2074 if ((err = register_netdev(ndev))) {
2075 printk(KERN_ERR "tehuti: register_netdev failed\n");
2076 goto err_out_free;
2077 }
2078 netif_carrier_off(ndev);
2079 netif_stop_queue(ndev);
2080
2081 print_eth_id(ndev);
2082 }
2083 RET(0);
2084
2085 err_out_free:
2086 free_netdev(ndev);
2087 err_out_iomap:
2088 iounmap(nic->regs);
2089 err_out_res:
2090 pci_release_regions(pdev);
2091 err_dma:
2092 pci_disable_device(pdev);
2093 err_pci:
2094 vfree(nic);
2095
2096 RET(err);
2097 }
2098
2099 /****************** Ethtool interface *********************/
2100 /* get strings for tests */
2101 static const char
2102 bdx_test_names[][ETH_GSTRING_LEN] = {
2103 "No tests defined"
2104 };
2105
2106 /* get strings for statistics counters */
2107 static const char
2108 bdx_stat_names[][ETH_GSTRING_LEN] = {
2109 "InUCast", /* 0x7200 */
2110 "InMCast", /* 0x7210 */
2111 "InBCast", /* 0x7220 */
2112 "InPkts", /* 0x7230 */
2113 "InErrors", /* 0x7240 */
2114 "InDropped", /* 0x7250 */
2115 "FrameTooLong", /* 0x7260 */
2116 "FrameSequenceErrors", /* 0x7270 */
2117 "InVLAN", /* 0x7280 */
2118 "InDroppedDFE", /* 0x7290 */
2119 "InDroppedIntFull", /* 0x72A0 */
2120 "InFrameAlignErrors", /* 0x72B0 */
2121
2122 /* 0x72C0-0x72E0 RSRV */
2123
2124 "OutUCast", /* 0x72F0 */
2125 "OutMCast", /* 0x7300 */
2126 "OutBCast", /* 0x7310 */
2127 "OutPkts", /* 0x7320 */
2128
2129 /* 0x7330-0x7360 RSRV */
2130
2131 "OutVLAN", /* 0x7370 */
2132 "InUCastOctects", /* 0x7380 */
2133 "OutUCastOctects", /* 0x7390 */
2134
2135 /* 0x73A0-0x73B0 RSRV */
2136
2137 "InBCastOctects", /* 0x73C0 */
2138 "OutBCastOctects", /* 0x73D0 */
2139 "InOctects", /* 0x73E0 */
2140 "OutOctects", /* 0x73F0 */
2141 };
2142
2143 /*
2144 * bdx_get_settings - get device-specific settings
2145 * @netdev
2146 * @ecmd
2147 */
2148 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2149 {
2150 u32 rdintcm;
2151 u32 tdintcm;
2152 struct bdx_priv *priv = netdev->priv;
2153
2154 rdintcm = priv->rdintcm;
2155 tdintcm = priv->tdintcm;
2156
2157 ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2158 ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2159 ecmd->speed = SPEED_10000;
2160 ecmd->duplex = DUPLEX_FULL;
2161 ecmd->port = PORT_FIBRE;
2162 ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
2163 ecmd->autoneg = AUTONEG_DISABLE;
2164
2165 /* PCK_TH measures in multiples of FIFO bytes
2166 We translate to packets */
2167 ecmd->maxtxpkt =
2168 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2169 ecmd->maxrxpkt =
2170 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2171
2172 return 0;
2173 }
2174
2175 /*
2176 * bdx_get_drvinfo - report driver information
2177 * @netdev
2178 * @drvinfo
2179 */
2180 static void
2181 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2182 {
2183 struct bdx_priv *priv = netdev->priv;
2184
2185 strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2186 strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2187 strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2188 strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2189 sizeof(drvinfo->bus_info));
2190
2191 drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2192 drvinfo->testinfo_len = 0;
2193 drvinfo->regdump_len = 0;
2194 drvinfo->eedump_len = 0;
2195 }
2196
2197 /*
2198 * bdx_get_rx_csum - report whether receive checksums are turned on or off
2199 * @netdev
2200 */
2201 static u32 bdx_get_rx_csum(struct net_device *netdev)
2202 {
2203 return 1; /* always on */
2204 }
2205
2206 /*
2207 * bdx_get_tx_csum - report whether transmit checksums are turned on or off
2208 * @netdev
2209 */
2210 static u32 bdx_get_tx_csum(struct net_device *netdev)
2211 {
2212 return (netdev->features & NETIF_F_IP_CSUM) != 0;
2213 }
2214
2215 /*
2216 * bdx_get_coalesce - get interrupt coalescing parameters
2217 * @netdev
2218 * @ecoal
2219 */
2220 static int
2221 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2222 {
2223 u32 rdintcm;
2224 u32 tdintcm;
2225 struct bdx_priv *priv = netdev->priv;
2226
2227 rdintcm = priv->rdintcm;
2228 tdintcm = priv->tdintcm;
2229
2230 /* PCK_TH measures in multiples of FIFO bytes
2231 We translate to packets */
2232 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2233 ecoal->rx_max_coalesced_frames =
2234 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2235
2236 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2237 ecoal->tx_max_coalesced_frames =
2238 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2239
2240 /* adaptive parameters ignored */
2241 return 0;
2242 }
2243
2244 /*
2245 * bdx_set_coalesce - set interrupt coalescing parameters
2246 * @netdev
2247 * @ecoal
2248 */
2249 static int
2250 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2251 {
2252 u32 rdintcm;
2253 u32 tdintcm;
2254 struct bdx_priv *priv = netdev->priv;
2255 int rx_coal;
2256 int tx_coal;
2257 int rx_max_coal;
2258 int tx_max_coal;
2259
2260 /* Check for valid input */
2261 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2262 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2263 rx_max_coal = ecoal->rx_max_coalesced_frames;
2264 tx_max_coal = ecoal->tx_max_coalesced_frames;
2265
2266 /* Translate from packets to multiples of FIFO bytes */
2267 rx_max_coal =
2268 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2269 / PCK_TH_MULT);
2270 tx_max_coal =
2271 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2272 / PCK_TH_MULT);
2273
2274 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
2275 || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2276 return -EINVAL;
2277
2278 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2279 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2280 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2281 tx_max_coal);
2282
2283 priv->rdintcm = rdintcm;
2284 priv->tdintcm = tdintcm;
2285
2286 WRITE_REG(priv, regRDINTCM0, rdintcm);
2287 WRITE_REG(priv, regTDINTCM0, tdintcm);
2288
2289 return 0;
2290 }
2291
2292 /* Convert RX fifo size to number of pending packets */
2293 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2294 {
2295 return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
2296 }
2297
2298 /* Convert TX fifo size to number of pending packets */
2299 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2300 {
2301 return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
2302 }
2303
2304 /*
2305 * bdx_get_ringparam - report ring sizes
2306 * @netdev
2307 * @ring
2308 */
2309 static void
2310 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2311 {
2312 struct bdx_priv *priv = netdev->priv;
2313
2314 /*max_pending - the maximum-sized FIFO we allow */
2315 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2316 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2317 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2318 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2319 }
2320
2321 /*
2322 * bdx_set_ringparam - set ring sizes
2323 * @netdev
2324 * @ring
2325 */
2326 static int
2327 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2328 {
2329 struct bdx_priv *priv = netdev->priv;
2330 int rx_size = 0;
2331 int tx_size = 0;
2332
2333 for (; rx_size < 4; rx_size++) {
2334 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2335 break;
2336 }
2337 if (rx_size == 4)
2338 rx_size = 3;
2339
2340 for (; tx_size < 4; tx_size++) {
2341 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2342 break;
2343 }
2344 if (tx_size == 4)
2345 tx_size = 3;
2346
2347 /*Is there anything to do? */
2348 if ((rx_size == priv->rxf_size)
2349 && (tx_size == priv->txd_size))
2350 return 0;
2351
2352 priv->rxf_size = rx_size;
2353 if (rx_size > 1)
2354 priv->rxd_size = rx_size - 1;
2355 else
2356 priv->rxd_size = rx_size;
2357
2358 priv->txf_size = priv->txd_size = tx_size;
2359
2360 if (netif_running(netdev)) {
2361 bdx_close(netdev);
2362 bdx_open(netdev);
2363 }
2364 return 0;
2365 }
2366
2367 /*
2368 * bdx_get_strings - return a set of strings that describe the requested objects
2369 * @netdev
2370 * @data
2371 */
2372 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2373 {
2374 switch (stringset) {
2375 case ETH_SS_TEST:
2376 memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
2377 break;
2378 case ETH_SS_STATS:
2379 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2380 break;
2381 }
2382 }
2383
2384 /*
2385 * bdx_get_stats_count - return number of 64bit statistics counters
2386 * @netdev
2387 */
2388 static int bdx_get_stats_count(struct net_device *netdev)
2389 {
2390 struct bdx_priv *priv = netdev->priv;
2391 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2392 != sizeof(struct bdx_stats) / sizeof(u64));
2393 return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2394 }
2395
2396 /*
2397 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2398 * @netdev
2399 * @stats
2400 * @data
2401 */
2402 static void bdx_get_ethtool_stats(struct net_device *netdev,
2403 struct ethtool_stats *stats, u64 *data)
2404 {
2405 struct bdx_priv *priv = netdev->priv;
2406
2407 if (priv->stats_flag) {
2408
2409 /* Update stats from HW */
2410 bdx_update_stats(priv);
2411
2412 /* Copy data to user buffer */
2413 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2414 }
2415 }
2416
2417 /*
2418 * bdx_ethtool_ops - ethtool interface implementation
2419 * @netdev
2420 */
2421 static void bdx_ethtool_ops(struct net_device *netdev)
2422 {
2423 static struct ethtool_ops bdx_ethtool_ops = {
2424 .get_settings = bdx_get_settings,
2425 .get_drvinfo = bdx_get_drvinfo,
2426 .get_link = ethtool_op_get_link,
2427 .get_coalesce = bdx_get_coalesce,
2428 .set_coalesce = bdx_set_coalesce,
2429 .get_ringparam = bdx_get_ringparam,
2430 .set_ringparam = bdx_set_ringparam,
2431 .get_rx_csum = bdx_get_rx_csum,
2432 .get_tx_csum = bdx_get_tx_csum,
2433 .get_sg = ethtool_op_get_sg,
2434 .get_tso = ethtool_op_get_tso,
2435 .get_strings = bdx_get_strings,
2436 .get_stats_count = bdx_get_stats_count,
2437 .get_ethtool_stats = bdx_get_ethtool_stats,
2438 };
2439
2440 SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2441 }
2442
2443 /**
2444 * bdx_remove - Device Removal Routine
2445 * @pdev: PCI device information struct
2446 *
2447 * bdx_remove is called by the PCI subsystem to alert the driver
2448 * that it should release a PCI device. The could be caused by a
2449 * Hot-Plug event, or because the driver is going to be removed from
2450 * memory.
2451 **/
2452 static void __devexit bdx_remove(struct pci_dev *pdev)
2453 {
2454 struct pci_nic *nic = pci_get_drvdata(pdev);
2455 struct net_device *ndev;
2456 int port;
2457
2458 for (port = 0; port < nic->port_num; port++) {
2459 ndev = nic->priv[port]->ndev;
2460 unregister_netdev(ndev);
2461 free_netdev(ndev);
2462 }
2463
2464 /*bdx_hw_reset_direct(nic->regs); */
2465 #ifdef BDX_MSI
2466 if (nic->irq_type == IRQ_MSI)
2467 pci_disable_msi(pdev);
2468 #endif
2469
2470 iounmap(nic->regs);
2471 pci_release_regions(pdev);
2472 pci_disable_device(pdev);
2473 pci_set_drvdata(pdev, NULL);
2474 vfree(nic);
2475
2476 RET();
2477 }
2478
2479 static struct pci_driver bdx_pci_driver = {
2480 .name = BDX_DRV_NAME,
2481 .id_table = bdx_pci_tbl,
2482 .probe = bdx_probe,
2483 .remove = __devexit_p(bdx_remove),
2484 };
2485
2486 /*
2487 * print_driver_id - print parameters of the driver build
2488 */
2489 static void __init print_driver_id(void)
2490 {
2491 printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
2492 BDX_DRV_VERSION);
2493 printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
2494 BDX_MSI_STRING);
2495 }
2496
2497 static int __init bdx_module_init(void)
2498 {
2499 ENTER;
2500 bdx_firmware_endianess();
2501 init_txd_sizes();
2502 print_driver_id();
2503 RET(pci_register_driver(&bdx_pci_driver));
2504 }
2505
2506 module_init(bdx_module_init);
2507
2508 static void __exit bdx_module_exit(void)
2509 {
2510 ENTER;
2511 pci_unregister_driver(&bdx_pci_driver);
2512 RET();
2513 }
2514
2515 module_exit(bdx_module_exit);
2516
2517 MODULE_LICENSE("GPL");
2518 MODULE_AUTHOR(DRIVER_AUTHOR);
2519 MODULE_DESCRIPTION(BDX_DRV_DESC);