TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/etherdevice.h>
36 #include <linux/platform_device.h>
37 #include <linux/ip.h>
38 #include <linux/tcp.h>
39 #include <linux/skbuff.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_ether.h>
42 #include <linux/crc32.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/if_vlan.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/slab.h>
48 #include "stmmac.h"
49
50 #define STMMAC_RESOURCE_NAME "stmmaceth"
51 #define PHY_RESOURCE_NAME "stmmacphy"
52
53 #undef STMMAC_DEBUG
54 /*#define STMMAC_DEBUG*/
55 #ifdef STMMAC_DEBUG
56 #define DBG(nlevel, klevel, fmt, args...) \
57 ((void)(netif_msg_##nlevel(priv) && \
58 printk(KERN_##klevel fmt, ## args)))
59 #else
60 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
61 #endif
62
63 #undef STMMAC_RX_DEBUG
64 /*#define STMMAC_RX_DEBUG*/
65 #ifdef STMMAC_RX_DEBUG
66 #define RX_DBG(fmt, args...) printk(fmt, ## args)
67 #else
68 #define RX_DBG(fmt, args...) do { } while (0)
69 #endif
70
71 #undef STMMAC_XMIT_DEBUG
72 /*#define STMMAC_XMIT_DEBUG*/
73 #ifdef STMMAC_TX_DEBUG
74 #define TX_DBG(fmt, args...) printk(fmt, ## args)
75 #else
76 #define TX_DBG(fmt, args...) do { } while (0)
77 #endif
78
79 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
80 #define JUMBO_LEN 9000
81
82 /* Module parameters */
83 #define TX_TIMEO 5000 /* default 5 seconds */
84 static int watchdog = TX_TIMEO;
85 module_param(watchdog, int, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87
88 static int debug = -1; /* -1: default, 0: no output, 16: all */
89 module_param(debug, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91
92 static int phyaddr = -1;
93 module_param(phyaddr, int, S_IRUGO);
94 MODULE_PARM_DESC(phyaddr, "Physical device address");
95
96 #define DMA_TX_SIZE 256
97 static int dma_txsize = DMA_TX_SIZE;
98 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100
101 #define DMA_RX_SIZE 256
102 static int dma_rxsize = DMA_RX_SIZE;
103 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105
106 static int flow_ctrl = FLOW_OFF;
107 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109
110 static int pause = PAUSE_TIME;
111 module_param(pause, int, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113
114 #define TC_DEFAULT 64
115 static int tc = TC_DEFAULT;
116 module_param(tc, int, S_IRUGO | S_IWUSR);
117 MODULE_PARM_DESC(tc, "DMA threshold control value");
118
119 #define RX_NO_COALESCE 1 /* Always interrupt on completion */
120 #define TX_NO_COALESCE -1 /* No moderation by default */
121
122 /* Pay attention to tune this parameter; take care of both
123 * hardware capability and network stabitily/performance impact.
124 * Many tests showed that ~4ms latency seems to be good enough. */
125 #ifdef CONFIG_STMMAC_TIMER
126 #define DEFAULT_PERIODIC_RATE 256
127 static int tmrate = DEFAULT_PERIODIC_RATE;
128 module_param(tmrate, int, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
130 #endif
131
132 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
133 static int buf_sz = DMA_BUFFER_SIZE;
134 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
135 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
136
137 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
138 NETIF_MSG_LINK | NETIF_MSG_IFUP |
139 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
140
141 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
142 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
143
144 /**
145 * stmmac_verify_args - verify the driver parameters.
146 * Description: it verifies if some wrong parameter is passed to the driver.
147 * Note that wrong parameters are replaced with the default values.
148 */
149 static void stmmac_verify_args(void)
150 {
151 if (unlikely(watchdog < 0))
152 watchdog = TX_TIMEO;
153 if (unlikely(dma_rxsize < 0))
154 dma_rxsize = DMA_RX_SIZE;
155 if (unlikely(dma_txsize < 0))
156 dma_txsize = DMA_TX_SIZE;
157 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
158 buf_sz = DMA_BUFFER_SIZE;
159 if (unlikely(flow_ctrl > 1))
160 flow_ctrl = FLOW_AUTO;
161 else if (likely(flow_ctrl < 0))
162 flow_ctrl = FLOW_OFF;
163 if (unlikely((pause < 0) || (pause > 0xffff)))
164 pause = PAUSE_TIME;
165 }
166
167 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
168 static void print_pkt(unsigned char *buf, int len)
169 {
170 int j;
171 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
172 for (j = 0; j < len; j++) {
173 if ((j % 16) == 0)
174 pr_info("\n %03x:", j);
175 pr_info(" %02x", buf[j]);
176 }
177 pr_info("\n");
178 }
179 #endif
180
181 /* minimum number of free TX descriptors required to wake up TX process */
182 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
183
184 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
185 {
186 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
187 }
188
189 /* On some ST platforms, some HW system configuraton registers have to be
190 * set according to the link speed negotiated.
191 */
192 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
193 {
194 struct phy_device *phydev = priv->phydev;
195
196 if (likely(priv->plat->fix_mac_speed))
197 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
198 phydev->speed);
199 }
200
201 /**
202 * stmmac_adjust_link
203 * @dev: net device structure
204 * Description: it adjusts the link parameters.
205 */
206 static void stmmac_adjust_link(struct net_device *dev)
207 {
208 struct stmmac_priv *priv = netdev_priv(dev);
209 struct phy_device *phydev = priv->phydev;
210 unsigned long flags;
211 int new_state = 0;
212 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
213
214 if (phydev == NULL)
215 return;
216
217 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
218 phydev->addr, phydev->link);
219
220 spin_lock_irqsave(&priv->lock, flags);
221 if (phydev->link) {
222 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
223
224 /* Now we make sure that we can be in full duplex mode.
225 * If not, we operate in half-duplex mode. */
226 if (phydev->duplex != priv->oldduplex) {
227 new_state = 1;
228 if (!(phydev->duplex))
229 ctrl &= ~priv->hw->link.duplex;
230 else
231 ctrl |= priv->hw->link.duplex;
232 priv->oldduplex = phydev->duplex;
233 }
234 /* Flow Control operation */
235 if (phydev->pause)
236 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
237 fc, pause_time);
238
239 if (phydev->speed != priv->speed) {
240 new_state = 1;
241 switch (phydev->speed) {
242 case 1000:
243 if (likely(priv->plat->has_gmac))
244 ctrl &= ~priv->hw->link.port;
245 stmmac_hw_fix_mac_speed(priv);
246 break;
247 case 100:
248 case 10:
249 if (priv->plat->has_gmac) {
250 ctrl |= priv->hw->link.port;
251 if (phydev->speed == SPEED_100) {
252 ctrl |= priv->hw->link.speed;
253 } else {
254 ctrl &= ~(priv->hw->link.speed);
255 }
256 } else {
257 ctrl &= ~priv->hw->link.port;
258 }
259 stmmac_hw_fix_mac_speed(priv);
260 break;
261 default:
262 if (netif_msg_link(priv))
263 pr_warning("%s: Speed (%d) is not 10"
264 " or 100!\n", dev->name, phydev->speed);
265 break;
266 }
267
268 priv->speed = phydev->speed;
269 }
270
271 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
272
273 if (!priv->oldlink) {
274 new_state = 1;
275 priv->oldlink = 1;
276 }
277 } else if (priv->oldlink) {
278 new_state = 1;
279 priv->oldlink = 0;
280 priv->speed = 0;
281 priv->oldduplex = -1;
282 }
283
284 if (new_state && netif_msg_link(priv))
285 phy_print_status(phydev);
286
287 spin_unlock_irqrestore(&priv->lock, flags);
288
289 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
290 }
291
292 /**
293 * stmmac_init_phy - PHY initialization
294 * @dev: net device structure
295 * Description: it initializes the driver's PHY state, and attaches the PHY
296 * to the mac driver.
297 * Return value:
298 * 0 on success
299 */
300 static int stmmac_init_phy(struct net_device *dev)
301 {
302 struct stmmac_priv *priv = netdev_priv(dev);
303 struct phy_device *phydev;
304 char phy_id[MII_BUS_ID_SIZE + 3];
305 char bus_id[MII_BUS_ID_SIZE];
306
307 priv->oldlink = 0;
308 priv->speed = 0;
309 priv->oldduplex = -1;
310
311 if (priv->phy_addr == -1) {
312 /* We don't have a PHY, so do nothing */
313 return 0;
314 }
315
316 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
317 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
318 priv->phy_addr);
319 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
320
321 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
322 priv->phy_interface);
323
324 if (IS_ERR(phydev)) {
325 pr_err("%s: Could not attach to PHY\n", dev->name);
326 return PTR_ERR(phydev);
327 }
328
329 /*
330 * Broken HW is sometimes missing the pull-up resistor on the
331 * MDIO line, which results in reads to non-existent devices returning
332 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
333 * device as well.
334 * Note: phydev->phy_id is the result of reading the UID PHY registers.
335 */
336 if (phydev->phy_id == 0) {
337 phy_disconnect(phydev);
338 return -ENODEV;
339 }
340 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
341 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
342
343 priv->phydev = phydev;
344
345 return 0;
346 }
347
348 static inline void stmmac_enable_mac(void __iomem *ioaddr)
349 {
350 u32 value = readl(ioaddr + MAC_CTRL_REG);
351
352 value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
353 writel(value, ioaddr + MAC_CTRL_REG);
354 }
355
356 static inline void stmmac_disable_mac(void __iomem *ioaddr)
357 {
358 u32 value = readl(ioaddr + MAC_CTRL_REG);
359
360 value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
361 writel(value, ioaddr + MAC_CTRL_REG);
362 }
363
364 /**
365 * display_ring
366 * @p: pointer to the ring.
367 * @size: size of the ring.
368 * Description: display all the descriptors within the ring.
369 */
370 static void display_ring(struct dma_desc *p, int size)
371 {
372 struct tmp_s {
373 u64 a;
374 unsigned int b;
375 unsigned int c;
376 };
377 int i;
378 for (i = 0; i < size; i++) {
379 struct tmp_s *x = (struct tmp_s *)(p + i);
380 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
381 i, (unsigned int)virt_to_phys(&p[i]),
382 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
383 x->b, x->c);
384 pr_info("\n");
385 }
386 }
387
388 /**
389 * init_dma_desc_rings - init the RX/TX descriptor rings
390 * @dev: net device structure
391 * Description: this function initializes the DMA RX/TX descriptors
392 * and allocates the socket buffers.
393 */
394 static void init_dma_desc_rings(struct net_device *dev)
395 {
396 int i;
397 struct stmmac_priv *priv = netdev_priv(dev);
398 struct sk_buff *skb;
399 unsigned int txsize = priv->dma_tx_size;
400 unsigned int rxsize = priv->dma_rx_size;
401 unsigned int bfsize = priv->dma_buf_sz;
402 int buff2_needed = 0, dis_ic = 0;
403
404 /* Set the Buffer size according to the MTU;
405 * indeed, in case of jumbo we need to bump-up the buffer sizes.
406 */
407 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
408 bfsize = BUF_SIZE_16KiB;
409 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
410 bfsize = BUF_SIZE_8KiB;
411 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
412 bfsize = BUF_SIZE_4KiB;
413 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
414 bfsize = BUF_SIZE_2KiB;
415 else
416 bfsize = DMA_BUFFER_SIZE;
417
418 #ifdef CONFIG_STMMAC_TIMER
419 /* Disable interrupts on completion for the reception if timer is on */
420 if (likely(priv->tm->enable))
421 dis_ic = 1;
422 #endif
423 /* If the MTU exceeds 8k so use the second buffer in the chain */
424 if (bfsize >= BUF_SIZE_8KiB)
425 buff2_needed = 1;
426
427 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
428 txsize, rxsize, bfsize);
429
430 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
431 priv->rx_skbuff =
432 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
433 priv->dma_rx =
434 (struct dma_desc *)dma_alloc_coherent(priv->device,
435 rxsize *
436 sizeof(struct dma_desc),
437 &priv->dma_rx_phy,
438 GFP_KERNEL);
439 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
440 GFP_KERNEL);
441 priv->dma_tx =
442 (struct dma_desc *)dma_alloc_coherent(priv->device,
443 txsize *
444 sizeof(struct dma_desc),
445 &priv->dma_tx_phy,
446 GFP_KERNEL);
447
448 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
449 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
450 return;
451 }
452
453 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
454 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
455 dev->name, priv->dma_rx, priv->dma_tx,
456 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
457
458 /* RX INITIALIZATION */
459 DBG(probe, INFO, "stmmac: SKB addresses:\n"
460 "skb\t\tskb data\tdma data\n");
461
462 for (i = 0; i < rxsize; i++) {
463 struct dma_desc *p = priv->dma_rx + i;
464
465 skb = netdev_alloc_skb_ip_align(dev, bfsize);
466 if (unlikely(skb == NULL)) {
467 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
468 break;
469 }
470 priv->rx_skbuff[i] = skb;
471 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
472 bfsize, DMA_FROM_DEVICE);
473
474 p->des2 = priv->rx_skbuff_dma[i];
475 if (unlikely(buff2_needed))
476 p->des3 = p->des2 + BUF_SIZE_8KiB;
477 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
478 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
479 }
480 priv->cur_rx = 0;
481 priv->dirty_rx = (unsigned int)(i - rxsize);
482 priv->dma_buf_sz = bfsize;
483 buf_sz = bfsize;
484
485 /* TX INITIALIZATION */
486 for (i = 0; i < txsize; i++) {
487 priv->tx_skbuff[i] = NULL;
488 priv->dma_tx[i].des2 = 0;
489 }
490 priv->dirty_tx = 0;
491 priv->cur_tx = 0;
492
493 /* Clear the Rx/Tx descriptors */
494 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
495 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
496
497 if (netif_msg_hw(priv)) {
498 pr_info("RX descriptor ring:\n");
499 display_ring(priv->dma_rx, rxsize);
500 pr_info("TX descriptor ring:\n");
501 display_ring(priv->dma_tx, txsize);
502 }
503 }
504
505 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
506 {
507 int i;
508
509 for (i = 0; i < priv->dma_rx_size; i++) {
510 if (priv->rx_skbuff[i]) {
511 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
512 priv->dma_buf_sz, DMA_FROM_DEVICE);
513 dev_kfree_skb_any(priv->rx_skbuff[i]);
514 }
515 priv->rx_skbuff[i] = NULL;
516 }
517 }
518
519 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
520 {
521 int i;
522
523 for (i = 0; i < priv->dma_tx_size; i++) {
524 if (priv->tx_skbuff[i] != NULL) {
525 struct dma_desc *p = priv->dma_tx + i;
526 if (p->des2)
527 dma_unmap_single(priv->device, p->des2,
528 priv->hw->desc->get_tx_len(p),
529 DMA_TO_DEVICE);
530 dev_kfree_skb_any(priv->tx_skbuff[i]);
531 priv->tx_skbuff[i] = NULL;
532 }
533 }
534 }
535
536 static void free_dma_desc_resources(struct stmmac_priv *priv)
537 {
538 /* Release the DMA TX/RX socket buffers */
539 dma_free_rx_skbufs(priv);
540 dma_free_tx_skbufs(priv);
541
542 /* Free the region of consistent memory previously allocated for
543 * the DMA */
544 dma_free_coherent(priv->device,
545 priv->dma_tx_size * sizeof(struct dma_desc),
546 priv->dma_tx, priv->dma_tx_phy);
547 dma_free_coherent(priv->device,
548 priv->dma_rx_size * sizeof(struct dma_desc),
549 priv->dma_rx, priv->dma_rx_phy);
550 kfree(priv->rx_skbuff_dma);
551 kfree(priv->rx_skbuff);
552 kfree(priv->tx_skbuff);
553 }
554
555 /**
556 * stmmac_dma_operation_mode - HW DMA operation mode
557 * @priv : pointer to the private device structure.
558 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
559 * or Store-And-Forward capability.
560 */
561 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
562 {
563 if (likely((priv->plat->tx_coe) && (!priv->no_csum_insertion))) {
564 /* In case of GMAC, SF mode has to be enabled
565 * to perform the TX COE. This depends on:
566 * 1) TX COE if actually supported
567 * 2) There is no bugged Jumbo frame support
568 * that needs to not insert csum in the TDES.
569 */
570 priv->hw->dma->dma_mode(priv->ioaddr,
571 SF_DMA_MODE, SF_DMA_MODE);
572 tc = SF_DMA_MODE;
573 } else
574 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
575 }
576
577 /**
578 * stmmac_tx:
579 * @priv: private driver structure
580 * Description: it reclaims resources after transmission completes.
581 */
582 static void stmmac_tx(struct stmmac_priv *priv)
583 {
584 unsigned int txsize = priv->dma_tx_size;
585
586 while (priv->dirty_tx != priv->cur_tx) {
587 int last;
588 unsigned int entry = priv->dirty_tx % txsize;
589 struct sk_buff *skb = priv->tx_skbuff[entry];
590 struct dma_desc *p = priv->dma_tx + entry;
591
592 /* Check if the descriptor is owned by the DMA. */
593 if (priv->hw->desc->get_tx_owner(p))
594 break;
595
596 /* Verify tx error by looking at the last segment */
597 last = priv->hw->desc->get_tx_ls(p);
598 if (likely(last)) {
599 int tx_error =
600 priv->hw->desc->tx_status(&priv->dev->stats,
601 &priv->xstats, p,
602 priv->ioaddr);
603 if (likely(tx_error == 0)) {
604 priv->dev->stats.tx_packets++;
605 priv->xstats.tx_pkt_n++;
606 } else
607 priv->dev->stats.tx_errors++;
608 }
609 TX_DBG("%s: curr %d, dirty %d\n", __func__,
610 priv->cur_tx, priv->dirty_tx);
611
612 if (likely(p->des2))
613 dma_unmap_single(priv->device, p->des2,
614 priv->hw->desc->get_tx_len(p),
615 DMA_TO_DEVICE);
616 if (unlikely(p->des3))
617 p->des3 = 0;
618
619 if (likely(skb != NULL)) {
620 /*
621 * If there's room in the queue (limit it to size)
622 * we add this skb back into the pool,
623 * if it's the right size.
624 */
625 if ((skb_queue_len(&priv->rx_recycle) <
626 priv->dma_rx_size) &&
627 skb_recycle_check(skb, priv->dma_buf_sz))
628 __skb_queue_head(&priv->rx_recycle, skb);
629 else
630 dev_kfree_skb(skb);
631
632 priv->tx_skbuff[entry] = NULL;
633 }
634
635 priv->hw->desc->release_tx_desc(p);
636
637 entry = (++priv->dirty_tx) % txsize;
638 }
639 if (unlikely(netif_queue_stopped(priv->dev) &&
640 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
641 netif_tx_lock(priv->dev);
642 if (netif_queue_stopped(priv->dev) &&
643 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
644 TX_DBG("%s: restart transmit\n", __func__);
645 netif_wake_queue(priv->dev);
646 }
647 netif_tx_unlock(priv->dev);
648 }
649 }
650
651 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
652 {
653 #ifdef CONFIG_STMMAC_TIMER
654 if (likely(priv->tm->enable))
655 priv->tm->timer_start(tmrate);
656 else
657 #endif
658 priv->hw->dma->enable_dma_irq(priv->ioaddr);
659 }
660
661 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
662 {
663 #ifdef CONFIG_STMMAC_TIMER
664 if (likely(priv->tm->enable))
665 priv->tm->timer_stop();
666 else
667 #endif
668 priv->hw->dma->disable_dma_irq(priv->ioaddr);
669 }
670
671 static int stmmac_has_work(struct stmmac_priv *priv)
672 {
673 unsigned int has_work = 0;
674 int rxret, tx_work = 0;
675
676 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
677 (priv->cur_rx % priv->dma_rx_size));
678
679 if (priv->dirty_tx != priv->cur_tx)
680 tx_work = 1;
681
682 if (likely(!rxret || tx_work))
683 has_work = 1;
684
685 return has_work;
686 }
687
688 static inline void _stmmac_schedule(struct stmmac_priv *priv)
689 {
690 if (likely(stmmac_has_work(priv))) {
691 stmmac_disable_irq(priv);
692 napi_schedule(&priv->napi);
693 }
694 }
695
696 #ifdef CONFIG_STMMAC_TIMER
697 void stmmac_schedule(struct net_device *dev)
698 {
699 struct stmmac_priv *priv = netdev_priv(dev);
700
701 priv->xstats.sched_timer_n++;
702
703 _stmmac_schedule(priv);
704 }
705
706 static void stmmac_no_timer_started(unsigned int x)
707 {;
708 };
709
710 static void stmmac_no_timer_stopped(void)
711 {;
712 };
713 #endif
714
715 /**
716 * stmmac_tx_err:
717 * @priv: pointer to the private device structure
718 * Description: it cleans the descriptors and restarts the transmission
719 * in case of errors.
720 */
721 static void stmmac_tx_err(struct stmmac_priv *priv)
722 {
723
724 netif_stop_queue(priv->dev);
725
726 priv->hw->dma->stop_tx(priv->ioaddr);
727 dma_free_tx_skbufs(priv);
728 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
729 priv->dirty_tx = 0;
730 priv->cur_tx = 0;
731 priv->hw->dma->start_tx(priv->ioaddr);
732
733 priv->dev->stats.tx_errors++;
734 netif_wake_queue(priv->dev);
735 }
736
737
738 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
739 {
740 int status;
741
742 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
743 if (likely(status == handle_tx_rx))
744 _stmmac_schedule(priv);
745
746 else if (unlikely(status == tx_hard_error_bump_tc)) {
747 /* Try to bump up the dma threshold on this failure */
748 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
749 tc += 64;
750 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
751 priv->xstats.threshold = tc;
752 }
753 stmmac_tx_err(priv);
754 } else if (unlikely(status == tx_hard_error))
755 stmmac_tx_err(priv);
756 }
757
758 /**
759 * stmmac_open - open entry point of the driver
760 * @dev : pointer to the device structure.
761 * Description:
762 * This function is the open entry point of the driver.
763 * Return value:
764 * 0 on success and an appropriate (-)ve integer as defined in errno.h
765 * file on failure.
766 */
767 static int stmmac_open(struct net_device *dev)
768 {
769 struct stmmac_priv *priv = netdev_priv(dev);
770 int ret;
771
772 /* Check that the MAC address is valid. If its not, refuse
773 * to bring the device up. The user must specify an
774 * address using the following linux command:
775 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
776 if (!is_valid_ether_addr(dev->dev_addr)) {
777 random_ether_addr(dev->dev_addr);
778 pr_warning("%s: generated random MAC address %pM\n", dev->name,
779 dev->dev_addr);
780 }
781
782 stmmac_verify_args();
783
784 ret = stmmac_init_phy(dev);
785 if (unlikely(ret)) {
786 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
787 return ret;
788 }
789
790 /* Request the IRQ lines */
791 ret = request_irq(dev->irq, stmmac_interrupt,
792 IRQF_SHARED, dev->name, dev);
793 if (unlikely(ret < 0)) {
794 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
795 __func__, dev->irq, ret);
796 return ret;
797 }
798
799 #ifdef CONFIG_STMMAC_TIMER
800 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
801 if (unlikely(priv->tm == NULL)) {
802 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
803 return -ENOMEM;
804 }
805 priv->tm->freq = tmrate;
806
807 /* Test if the external timer can be actually used.
808 * In case of failure continue without timer. */
809 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
810 pr_warning("stmmaceth: cannot attach the external timer.\n");
811 priv->tm->freq = 0;
812 priv->tm->timer_start = stmmac_no_timer_started;
813 priv->tm->timer_stop = stmmac_no_timer_stopped;
814 } else
815 priv->tm->enable = 1;
816 #endif
817
818 /* Create and initialize the TX/RX descriptors chains. */
819 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
820 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
821 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
822 init_dma_desc_rings(dev);
823
824 /* DMA initialization and SW reset */
825 if (unlikely(priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
826 priv->dma_tx_phy,
827 priv->dma_rx_phy) < 0)) {
828
829 pr_err("%s: DMA initialization failed\n", __func__);
830 return -1;
831 }
832
833 /* Copy the MAC addr into the HW */
834 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
835 /* If required, perform hw setup of the bus. */
836 if (priv->plat->bus_setup)
837 priv->plat->bus_setup(priv->ioaddr);
838 /* Initialize the MAC Core */
839 priv->hw->mac->core_init(priv->ioaddr);
840
841 priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
842 if (priv->rx_coe)
843 pr_info("stmmac: Rx Checksum Offload Engine supported\n");
844 if (priv->plat->tx_coe)
845 pr_info("\tTX Checksum insertion supported\n");
846
847 /* Initialise the MMC (if present) to disable all interrupts. */
848 writel(0xffffffff, priv->ioaddr + MMC_HIGH_INTR_MASK);
849 writel(0xffffffff, priv->ioaddr + MMC_LOW_INTR_MASK);
850
851 /* Enable the MAC Rx/Tx */
852 stmmac_enable_mac(priv->ioaddr);
853
854 /* Set the HW DMA mode and the COE */
855 stmmac_dma_operation_mode(priv);
856
857 /* Extra statistics */
858 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
859 priv->xstats.threshold = tc;
860
861 /* Start the ball rolling... */
862 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
863 priv->hw->dma->start_tx(priv->ioaddr);
864 priv->hw->dma->start_rx(priv->ioaddr);
865
866 #ifdef CONFIG_STMMAC_TIMER
867 priv->tm->timer_start(tmrate);
868 #endif
869 /* Dump DMA/MAC registers */
870 if (netif_msg_hw(priv)) {
871 priv->hw->mac->dump_regs(priv->ioaddr);
872 priv->hw->dma->dump_regs(priv->ioaddr);
873 }
874
875 if (priv->phydev)
876 phy_start(priv->phydev);
877
878 napi_enable(&priv->napi);
879 skb_queue_head_init(&priv->rx_recycle);
880 netif_start_queue(dev);
881 return 0;
882 }
883
884 /**
885 * stmmac_release - close entry point of the driver
886 * @dev : device pointer.
887 * Description:
888 * This is the stop entry point of the driver.
889 */
890 static int stmmac_release(struct net_device *dev)
891 {
892 struct stmmac_priv *priv = netdev_priv(dev);
893
894 /* Stop and disconnect the PHY */
895 if (priv->phydev) {
896 phy_stop(priv->phydev);
897 phy_disconnect(priv->phydev);
898 priv->phydev = NULL;
899 }
900
901 netif_stop_queue(dev);
902
903 #ifdef CONFIG_STMMAC_TIMER
904 /* Stop and release the timer */
905 stmmac_close_ext_timer();
906 if (priv->tm != NULL)
907 kfree(priv->tm);
908 #endif
909 napi_disable(&priv->napi);
910 skb_queue_purge(&priv->rx_recycle);
911
912 /* Free the IRQ lines */
913 free_irq(dev->irq, dev);
914
915 /* Stop TX/RX DMA and clear the descriptors */
916 priv->hw->dma->stop_tx(priv->ioaddr);
917 priv->hw->dma->stop_rx(priv->ioaddr);
918
919 /* Release and free the Rx/Tx resources */
920 free_dma_desc_resources(priv);
921
922 /* Disable the MAC Rx/Tx */
923 stmmac_disable_mac(priv->ioaddr);
924
925 netif_carrier_off(dev);
926
927 return 0;
928 }
929
930 /*
931 * To perform emulated hardware segmentation on skb.
932 */
933 static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
934 {
935 struct sk_buff *segs, *curr_skb;
936 int gso_segs = skb_shinfo(skb)->gso_segs;
937
938 /* Estimate the number of fragments in the worst case */
939 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
940 netif_stop_queue(priv->dev);
941 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
942 __func__);
943 if (stmmac_tx_avail(priv) < gso_segs)
944 return NETDEV_TX_BUSY;
945
946 netif_wake_queue(priv->dev);
947 }
948 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
949 skb, skb->len);
950
951 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
952 if (IS_ERR(segs))
953 goto sw_tso_end;
954
955 do {
956 curr_skb = segs;
957 segs = segs->next;
958 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
959 "*next %p\n", curr_skb->len, curr_skb, segs);
960 curr_skb->next = NULL;
961 stmmac_xmit(curr_skb, priv->dev);
962 } while (segs);
963
964 sw_tso_end:
965 dev_kfree_skb(skb);
966
967 return NETDEV_TX_OK;
968 }
969
970 static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
971 struct net_device *dev,
972 int csum_insertion)
973 {
974 struct stmmac_priv *priv = netdev_priv(dev);
975 unsigned int nopaged_len = skb_headlen(skb);
976 unsigned int txsize = priv->dma_tx_size;
977 unsigned int entry = priv->cur_tx % txsize;
978 struct dma_desc *desc = priv->dma_tx + entry;
979
980 if (nopaged_len > BUF_SIZE_8KiB) {
981
982 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
983
984 desc->des2 = dma_map_single(priv->device, skb->data,
985 BUF_SIZE_8KiB, DMA_TO_DEVICE);
986 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
987 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
988 csum_insertion);
989
990 entry = (++priv->cur_tx) % txsize;
991 desc = priv->dma_tx + entry;
992
993 desc->des2 = dma_map_single(priv->device,
994 skb->data + BUF_SIZE_8KiB,
995 buf2_size, DMA_TO_DEVICE);
996 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
997 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
998 csum_insertion);
999 priv->hw->desc->set_tx_owner(desc);
1000 priv->tx_skbuff[entry] = NULL;
1001 } else {
1002 desc->des2 = dma_map_single(priv->device, skb->data,
1003 nopaged_len, DMA_TO_DEVICE);
1004 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1005 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1006 csum_insertion);
1007 }
1008 return entry;
1009 }
1010
1011 /**
1012 * stmmac_xmit:
1013 * @skb : the socket buffer
1014 * @dev : device pointer
1015 * Description : Tx entry point of the driver.
1016 */
1017 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1018 {
1019 struct stmmac_priv *priv = netdev_priv(dev);
1020 unsigned int txsize = priv->dma_tx_size;
1021 unsigned int entry;
1022 int i, csum_insertion = 0;
1023 int nfrags = skb_shinfo(skb)->nr_frags;
1024 struct dma_desc *desc, *first;
1025
1026 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1027 if (!netif_queue_stopped(dev)) {
1028 netif_stop_queue(dev);
1029 /* This is a hard error, log it. */
1030 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1031 __func__);
1032 }
1033 return NETDEV_TX_BUSY;
1034 }
1035
1036 entry = priv->cur_tx % txsize;
1037
1038 #ifdef STMMAC_XMIT_DEBUG
1039 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1040 pr_info("stmmac xmit:\n"
1041 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1042 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1043 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1044 !skb_is_gso(skb) ? "isn't" : "is");
1045 #endif
1046
1047 if (unlikely(skb_is_gso(skb)))
1048 return stmmac_sw_tso(priv, skb);
1049
1050 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1051 if (unlikely((!priv->plat->tx_coe) ||
1052 (priv->no_csum_insertion)))
1053 skb_checksum_help(skb);
1054 else
1055 csum_insertion = 1;
1056 }
1057
1058 desc = priv->dma_tx + entry;
1059 first = desc;
1060
1061 #ifdef STMMAC_XMIT_DEBUG
1062 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1063 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1064 "\t\tn_frags: %d, ip_summed: %d\n",
1065 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1066 #endif
1067 priv->tx_skbuff[entry] = skb;
1068 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1069 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1070 desc = priv->dma_tx + entry;
1071 } else {
1072 unsigned int nopaged_len = skb_headlen(skb);
1073 desc->des2 = dma_map_single(priv->device, skb->data,
1074 nopaged_len, DMA_TO_DEVICE);
1075 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1076 csum_insertion);
1077 }
1078
1079 for (i = 0; i < nfrags; i++) {
1080 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1081 int len = frag->size;
1082
1083 entry = (++priv->cur_tx) % txsize;
1084 desc = priv->dma_tx + entry;
1085
1086 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1087 desc->des2 = dma_map_page(priv->device, frag->page,
1088 frag->page_offset,
1089 len, DMA_TO_DEVICE);
1090 priv->tx_skbuff[entry] = NULL;
1091 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1092 priv->hw->desc->set_tx_owner(desc);
1093 }
1094
1095 /* Interrupt on completition only for the latest segment */
1096 priv->hw->desc->close_tx_desc(desc);
1097
1098 #ifdef CONFIG_STMMAC_TIMER
1099 /* Clean IC while using timer */
1100 if (likely(priv->tm->enable))
1101 priv->hw->desc->clear_tx_ic(desc);
1102 #endif
1103 /* To avoid raise condition */
1104 priv->hw->desc->set_tx_owner(first);
1105
1106 priv->cur_tx++;
1107
1108 #ifdef STMMAC_XMIT_DEBUG
1109 if (netif_msg_pktdata(priv)) {
1110 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1111 "first=%p, nfrags=%d\n",
1112 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1113 entry, first, nfrags);
1114 display_ring(priv->dma_tx, txsize);
1115 pr_info(">>> frame to be transmitted: ");
1116 print_pkt(skb->data, skb->len);
1117 }
1118 #endif
1119 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1120 TX_DBG("%s: stop transmitted packets\n", __func__);
1121 netif_stop_queue(dev);
1122 }
1123
1124 dev->stats.tx_bytes += skb->len;
1125
1126 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1127
1128 return NETDEV_TX_OK;
1129 }
1130
1131 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1132 {
1133 unsigned int rxsize = priv->dma_rx_size;
1134 int bfsize = priv->dma_buf_sz;
1135 struct dma_desc *p = priv->dma_rx;
1136
1137 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1138 unsigned int entry = priv->dirty_rx % rxsize;
1139 if (likely(priv->rx_skbuff[entry] == NULL)) {
1140 struct sk_buff *skb;
1141
1142 skb = __skb_dequeue(&priv->rx_recycle);
1143 if (skb == NULL)
1144 skb = netdev_alloc_skb_ip_align(priv->dev,
1145 bfsize);
1146
1147 if (unlikely(skb == NULL))
1148 break;
1149
1150 priv->rx_skbuff[entry] = skb;
1151 priv->rx_skbuff_dma[entry] =
1152 dma_map_single(priv->device, skb->data, bfsize,
1153 DMA_FROM_DEVICE);
1154
1155 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1156 if (unlikely(priv->plat->has_gmac)) {
1157 if (bfsize >= BUF_SIZE_8KiB)
1158 (p + entry)->des3 =
1159 (p + entry)->des2 + BUF_SIZE_8KiB;
1160 }
1161 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1162 }
1163 priv->hw->desc->set_rx_owner(p + entry);
1164 }
1165 }
1166
1167 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1168 {
1169 unsigned int rxsize = priv->dma_rx_size;
1170 unsigned int entry = priv->cur_rx % rxsize;
1171 unsigned int next_entry;
1172 unsigned int count = 0;
1173 struct dma_desc *p = priv->dma_rx + entry;
1174 struct dma_desc *p_next;
1175
1176 #ifdef STMMAC_RX_DEBUG
1177 if (netif_msg_hw(priv)) {
1178 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1179 display_ring(priv->dma_rx, rxsize);
1180 }
1181 #endif
1182 count = 0;
1183 while (!priv->hw->desc->get_rx_owner(p)) {
1184 int status;
1185
1186 if (count >= limit)
1187 break;
1188
1189 count++;
1190
1191 next_entry = (++priv->cur_rx) % rxsize;
1192 p_next = priv->dma_rx + next_entry;
1193 prefetch(p_next);
1194
1195 /* read the status of the incoming frame */
1196 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1197 &priv->xstats, p));
1198 if (unlikely(status == discard_frame))
1199 priv->dev->stats.rx_errors++;
1200 else {
1201 struct sk_buff *skb;
1202 int frame_len;
1203
1204 frame_len = priv->hw->desc->get_rx_frame_len(p);
1205 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1206 * Type frames (LLC/LLC-SNAP) */
1207 if (unlikely(status != llc_snap))
1208 frame_len -= ETH_FCS_LEN;
1209 #ifdef STMMAC_RX_DEBUG
1210 if (frame_len > ETH_FRAME_LEN)
1211 pr_debug("\tRX frame size %d, COE status: %d\n",
1212 frame_len, status);
1213
1214 if (netif_msg_hw(priv))
1215 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1216 p, entry, p->des2);
1217 #endif
1218 skb = priv->rx_skbuff[entry];
1219 if (unlikely(!skb)) {
1220 pr_err("%s: Inconsistent Rx descriptor chain\n",
1221 priv->dev->name);
1222 priv->dev->stats.rx_dropped++;
1223 break;
1224 }
1225 prefetch(skb->data - NET_IP_ALIGN);
1226 priv->rx_skbuff[entry] = NULL;
1227
1228 skb_put(skb, frame_len);
1229 dma_unmap_single(priv->device,
1230 priv->rx_skbuff_dma[entry],
1231 priv->dma_buf_sz, DMA_FROM_DEVICE);
1232 #ifdef STMMAC_RX_DEBUG
1233 if (netif_msg_pktdata(priv)) {
1234 pr_info(" frame received (%dbytes)", frame_len);
1235 print_pkt(skb->data, frame_len);
1236 }
1237 #endif
1238 skb->protocol = eth_type_trans(skb, priv->dev);
1239
1240 if (unlikely(status == csum_none)) {
1241 /* always for the old mac 10/100 */
1242 skb_checksum_none_assert(skb);
1243 netif_receive_skb(skb);
1244 } else {
1245 skb->ip_summed = CHECKSUM_UNNECESSARY;
1246 napi_gro_receive(&priv->napi, skb);
1247 }
1248
1249 priv->dev->stats.rx_packets++;
1250 priv->dev->stats.rx_bytes += frame_len;
1251 }
1252 entry = next_entry;
1253 p = p_next; /* use prefetched values */
1254 }
1255
1256 stmmac_rx_refill(priv);
1257
1258 priv->xstats.rx_pkt_n += count;
1259
1260 return count;
1261 }
1262
1263 /**
1264 * stmmac_poll - stmmac poll method (NAPI)
1265 * @napi : pointer to the napi structure.
1266 * @budget : maximum number of packets that the current CPU can receive from
1267 * all interfaces.
1268 * Description :
1269 * This function implements the the reception process.
1270 * Also it runs the TX completion thread
1271 */
1272 static int stmmac_poll(struct napi_struct *napi, int budget)
1273 {
1274 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1275 int work_done = 0;
1276
1277 priv->xstats.poll_n++;
1278 stmmac_tx(priv);
1279 work_done = stmmac_rx(priv, budget);
1280
1281 if (work_done < budget) {
1282 napi_complete(napi);
1283 stmmac_enable_irq(priv);
1284 }
1285 return work_done;
1286 }
1287
1288 /**
1289 * stmmac_tx_timeout
1290 * @dev : Pointer to net device structure
1291 * Description: this function is called when a packet transmission fails to
1292 * complete within a reasonable tmrate. The driver will mark the error in the
1293 * netdev structure and arrange for the device to be reset to a sane state
1294 * in order to transmit a new packet.
1295 */
1296 static void stmmac_tx_timeout(struct net_device *dev)
1297 {
1298 struct stmmac_priv *priv = netdev_priv(dev);
1299
1300 /* Clear Tx resources and restart transmitting again */
1301 stmmac_tx_err(priv);
1302 }
1303
1304 /* Configuration changes (passed on by ifconfig) */
1305 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1306 {
1307 if (dev->flags & IFF_UP) /* can't act on a running interface */
1308 return -EBUSY;
1309
1310 /* Don't allow changing the I/O address */
1311 if (map->base_addr != dev->base_addr) {
1312 pr_warning("%s: can't change I/O address\n", dev->name);
1313 return -EOPNOTSUPP;
1314 }
1315
1316 /* Don't allow changing the IRQ */
1317 if (map->irq != dev->irq) {
1318 pr_warning("%s: can't change IRQ number %d\n",
1319 dev->name, dev->irq);
1320 return -EOPNOTSUPP;
1321 }
1322
1323 /* ignore other fields */
1324 return 0;
1325 }
1326
1327 /**
1328 * stmmac_multicast_list - entry point for multicast addressing
1329 * @dev : pointer to the device structure
1330 * Description:
1331 * This function is a driver entry point which gets called by the kernel
1332 * whenever multicast addresses must be enabled/disabled.
1333 * Return value:
1334 * void.
1335 */
1336 static void stmmac_multicast_list(struct net_device *dev)
1337 {
1338 struct stmmac_priv *priv = netdev_priv(dev);
1339
1340 spin_lock(&priv->lock);
1341 priv->hw->mac->set_filter(dev);
1342 spin_unlock(&priv->lock);
1343 }
1344
1345 /**
1346 * stmmac_change_mtu - entry point to change MTU size for the device.
1347 * @dev : device pointer.
1348 * @new_mtu : the new MTU size for the device.
1349 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1350 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1351 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1352 * Return value:
1353 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1354 * file on failure.
1355 */
1356 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1357 {
1358 struct stmmac_priv *priv = netdev_priv(dev);
1359 int max_mtu;
1360
1361 if (netif_running(dev)) {
1362 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1363 return -EBUSY;
1364 }
1365
1366 if (priv->plat->has_gmac)
1367 max_mtu = JUMBO_LEN;
1368 else
1369 max_mtu = ETH_DATA_LEN;
1370
1371 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1372 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1373 return -EINVAL;
1374 }
1375
1376 /* Some GMAC devices have a bugged Jumbo frame support that
1377 * needs to have the Tx COE disabled for oversized frames
1378 * (due to limited buffer sizes). In this case we disable
1379 * the TX csum insertionin the TDES and not use SF. */
1380 if ((priv->plat->bugged_jumbo) && (priv->dev->mtu > ETH_DATA_LEN))
1381 priv->no_csum_insertion = 1;
1382 else
1383 priv->no_csum_insertion = 0;
1384
1385 dev->mtu = new_mtu;
1386
1387 return 0;
1388 }
1389
1390 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1391 {
1392 struct net_device *dev = (struct net_device *)dev_id;
1393 struct stmmac_priv *priv = netdev_priv(dev);
1394
1395 if (unlikely(!dev)) {
1396 pr_err("%s: invalid dev pointer\n", __func__);
1397 return IRQ_NONE;
1398 }
1399
1400 if (priv->plat->has_gmac)
1401 /* To handle GMAC own interrupts */
1402 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1403
1404 stmmac_dma_interrupt(priv);
1405
1406 return IRQ_HANDLED;
1407 }
1408
1409 #ifdef CONFIG_NET_POLL_CONTROLLER
1410 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1411 * to allow network I/O with interrupts disabled. */
1412 static void stmmac_poll_controller(struct net_device *dev)
1413 {
1414 disable_irq(dev->irq);
1415 stmmac_interrupt(dev->irq, dev);
1416 enable_irq(dev->irq);
1417 }
1418 #endif
1419
1420 /**
1421 * stmmac_ioctl - Entry point for the Ioctl
1422 * @dev: Device pointer.
1423 * @rq: An IOCTL specefic structure, that can contain a pointer to
1424 * a proprietary structure used to pass information to the driver.
1425 * @cmd: IOCTL command
1426 * Description:
1427 * Currently there are no special functionality supported in IOCTL, just the
1428 * phy_mii_ioctl(...) can be invoked.
1429 */
1430 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1431 {
1432 struct stmmac_priv *priv = netdev_priv(dev);
1433 int ret;
1434
1435 if (!netif_running(dev))
1436 return -EINVAL;
1437
1438 if (!priv->phydev)
1439 return -EINVAL;
1440
1441 spin_lock(&priv->lock);
1442 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1443 spin_unlock(&priv->lock);
1444
1445 return ret;
1446 }
1447
1448 #ifdef STMMAC_VLAN_TAG_USED
1449 static void stmmac_vlan_rx_register(struct net_device *dev,
1450 struct vlan_group *grp)
1451 {
1452 struct stmmac_priv *priv = netdev_priv(dev);
1453
1454 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1455
1456 spin_lock(&priv->lock);
1457 priv->vlgrp = grp;
1458 spin_unlock(&priv->lock);
1459 }
1460 #endif
1461
1462 static const struct net_device_ops stmmac_netdev_ops = {
1463 .ndo_open = stmmac_open,
1464 .ndo_start_xmit = stmmac_xmit,
1465 .ndo_stop = stmmac_release,
1466 .ndo_change_mtu = stmmac_change_mtu,
1467 .ndo_set_multicast_list = stmmac_multicast_list,
1468 .ndo_tx_timeout = stmmac_tx_timeout,
1469 .ndo_do_ioctl = stmmac_ioctl,
1470 .ndo_set_config = stmmac_config,
1471 #ifdef STMMAC_VLAN_TAG_USED
1472 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1473 #endif
1474 #ifdef CONFIG_NET_POLL_CONTROLLER
1475 .ndo_poll_controller = stmmac_poll_controller,
1476 #endif
1477 .ndo_set_mac_address = eth_mac_addr,
1478 };
1479
1480 /**
1481 * stmmac_probe - Initialization of the adapter .
1482 * @dev : device pointer
1483 * Description: The function initializes the network device structure for
1484 * the STMMAC driver. It also calls the low level routines
1485 * in order to init the HW (i.e. the DMA engine)
1486 */
1487 static int stmmac_probe(struct net_device *dev)
1488 {
1489 int ret = 0;
1490 struct stmmac_priv *priv = netdev_priv(dev);
1491
1492 ether_setup(dev);
1493
1494 dev->netdev_ops = &stmmac_netdev_ops;
1495 stmmac_set_ethtool_ops(dev);
1496
1497 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA |
1498 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1499 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1500 #ifdef STMMAC_VLAN_TAG_USED
1501 /* Both mac100 and gmac support receive VLAN tag detection */
1502 dev->features |= NETIF_F_HW_VLAN_RX;
1503 #endif
1504 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1505
1506 if (flow_ctrl)
1507 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1508
1509 priv->pause = pause;
1510 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1511
1512 /* Get the MAC address */
1513 priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
1514 dev->dev_addr, 0);
1515
1516 if (!is_valid_ether_addr(dev->dev_addr))
1517 pr_warning("\tno valid MAC address;"
1518 "please, use ifconfig or nwhwconfig!\n");
1519
1520 spin_lock_init(&priv->lock);
1521
1522 ret = register_netdev(dev);
1523 if (ret) {
1524 pr_err("%s: ERROR %i registering the device\n",
1525 __func__, ret);
1526 return -ENODEV;
1527 }
1528
1529 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1530 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1531 (dev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1532
1533 return ret;
1534 }
1535
1536 /**
1537 * stmmac_mac_device_setup
1538 * @dev : device pointer
1539 * Description: select and initialise the mac device (mac100 or Gmac).
1540 */
1541 static int stmmac_mac_device_setup(struct net_device *dev)
1542 {
1543 struct stmmac_priv *priv = netdev_priv(dev);
1544
1545 struct mac_device_info *device;
1546
1547 if (priv->plat->has_gmac)
1548 device = dwmac1000_setup(priv->ioaddr);
1549 else
1550 device = dwmac100_setup(priv->ioaddr);
1551
1552 if (!device)
1553 return -ENOMEM;
1554
1555 if (priv->plat->enh_desc) {
1556 device->desc = &enh_desc_ops;
1557 pr_info("\tEnhanced descriptor structure\n");
1558 } else
1559 device->desc = &ndesc_ops;
1560
1561 priv->hw = device;
1562
1563 if (device_can_wakeup(priv->device)) {
1564 priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
1565 enable_irq_wake(dev->irq);
1566 }
1567
1568 return 0;
1569 }
1570
1571 static int stmmacphy_dvr_probe(struct platform_device *pdev)
1572 {
1573 struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
1574
1575 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1576 plat_dat->bus_id);
1577
1578 return 0;
1579 }
1580
1581 static int stmmacphy_dvr_remove(struct platform_device *pdev)
1582 {
1583 return 0;
1584 }
1585
1586 static struct platform_driver stmmacphy_driver = {
1587 .driver = {
1588 .name = PHY_RESOURCE_NAME,
1589 },
1590 .probe = stmmacphy_dvr_probe,
1591 .remove = stmmacphy_dvr_remove,
1592 };
1593
1594 /**
1595 * stmmac_associate_phy
1596 * @dev: pointer to device structure
1597 * @data: points to the private structure.
1598 * Description: Scans through all the PHYs we have registered and checks if
1599 * any are associated with our MAC. If so, then just fill in
1600 * the blanks in our local context structure
1601 */
1602 static int stmmac_associate_phy(struct device *dev, void *data)
1603 {
1604 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1605 struct plat_stmmacphy_data *plat_dat = dev->platform_data;
1606
1607 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1608 plat_dat->bus_id);
1609
1610 /* Check that this phy is for the MAC being initialised */
1611 if (priv->plat->bus_id != plat_dat->bus_id)
1612 return 0;
1613
1614 /* OK, this PHY is connected to the MAC.
1615 Go ahead and get the parameters */
1616 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1617 priv->phy_irq =
1618 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1619 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1620 plat_dat->bus_id, priv->phy_irq);
1621
1622 /* Override with kernel parameters if supplied XXX CRS XXX
1623 * this needs to have multiple instances */
1624 if ((phyaddr >= 0) && (phyaddr <= 31))
1625 plat_dat->phy_addr = phyaddr;
1626
1627 priv->phy_addr = plat_dat->phy_addr;
1628 priv->phy_mask = plat_dat->phy_mask;
1629 priv->phy_interface = plat_dat->interface;
1630 priv->phy_reset = plat_dat->phy_reset;
1631
1632 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1633 return 1; /* forces exit of driver_for_each_device() */
1634 }
1635
1636 /**
1637 * stmmac_dvr_probe
1638 * @pdev: platform device pointer
1639 * Description: the driver is initialized through platform_device.
1640 */
1641 static int stmmac_dvr_probe(struct platform_device *pdev)
1642 {
1643 int ret = 0;
1644 struct resource *res;
1645 void __iomem *addr = NULL;
1646 struct net_device *ndev = NULL;
1647 struct stmmac_priv *priv = NULL;
1648 struct plat_stmmacenet_data *plat_dat;
1649
1650 pr_info("STMMAC driver:\n\tplatform registration... ");
1651 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1652 if (!res)
1653 return -ENODEV;
1654 pr_info("\tdone!\n");
1655
1656 if (!request_mem_region(res->start, resource_size(res),
1657 pdev->name)) {
1658 pr_err("%s: ERROR: memory allocation failed"
1659 "cannot get the I/O addr 0x%x\n",
1660 __func__, (unsigned int)res->start);
1661 return -EBUSY;
1662 }
1663
1664 addr = ioremap(res->start, resource_size(res));
1665 if (!addr) {
1666 pr_err("%s: ERROR: memory mapping failed\n", __func__);
1667 ret = -ENOMEM;
1668 goto out_release_region;
1669 }
1670
1671 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1672 if (!ndev) {
1673 pr_err("%s: ERROR: allocating the device\n", __func__);
1674 ret = -ENOMEM;
1675 goto out_unmap;
1676 }
1677
1678 SET_NETDEV_DEV(ndev, &pdev->dev);
1679
1680 /* Get the MAC information */
1681 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1682 if (ndev->irq == -ENXIO) {
1683 pr_err("%s: ERROR: MAC IRQ configuration "
1684 "information not found\n", __func__);
1685 ret = -ENXIO;
1686 goto out_free_ndev;
1687 }
1688
1689 priv = netdev_priv(ndev);
1690 priv->device = &(pdev->dev);
1691 priv->dev = ndev;
1692 plat_dat = pdev->dev.platform_data;
1693
1694 priv->plat = plat_dat;
1695
1696 priv->ioaddr = addr;
1697
1698 /* PMT module is not integrated in all the MAC devices. */
1699 if (plat_dat->pmt) {
1700 pr_info("\tPMT module supported\n");
1701 device_set_wakeup_capable(&pdev->dev, 1);
1702 }
1703
1704 platform_set_drvdata(pdev, ndev);
1705
1706 /* Set the I/O base addr */
1707 ndev->base_addr = (unsigned long)addr;
1708
1709 /* Custom initialisation */
1710 if (priv->plat->init) {
1711 ret = priv->plat->init(pdev);
1712 if (unlikely(ret))
1713 goto out_free_ndev;
1714 }
1715
1716 /* MAC HW revice detection */
1717 ret = stmmac_mac_device_setup(ndev);
1718 if (ret < 0)
1719 goto out_plat_exit;
1720
1721 /* Network Device Registration */
1722 ret = stmmac_probe(ndev);
1723 if (ret < 0)
1724 goto out_plat_exit;
1725
1726 /* associate a PHY - it is provided by another platform bus */
1727 if (!driver_for_each_device
1728 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1729 stmmac_associate_phy)) {
1730 pr_err("No PHY device is associated with this MAC!\n");
1731 ret = -ENODEV;
1732 goto out_unregister;
1733 }
1734
1735 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1736 "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
1737 pdev->id, ndev->irq, addr);
1738
1739 /* MDIO bus Registration */
1740 pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
1741 ret = stmmac_mdio_register(ndev);
1742 if (ret < 0)
1743 goto out_unregister;
1744 pr_debug("registered!\n");
1745 return 0;
1746
1747 out_unregister:
1748 unregister_netdev(ndev);
1749 out_plat_exit:
1750 if (priv->plat->exit)
1751 priv->plat->exit(pdev);
1752 out_free_ndev:
1753 free_netdev(ndev);
1754 platform_set_drvdata(pdev, NULL);
1755 out_unmap:
1756 iounmap(addr);
1757 out_release_region:
1758 release_mem_region(res->start, resource_size(res));
1759
1760 return ret;
1761 }
1762
1763 /**
1764 * stmmac_dvr_remove
1765 * @pdev: platform device pointer
1766 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1767 * changes the link status, releases the DMA descriptor rings,
1768 * unregisters the MDIO bus and unmaps the allocated memory.
1769 */
1770 static int stmmac_dvr_remove(struct platform_device *pdev)
1771 {
1772 struct net_device *ndev = platform_get_drvdata(pdev);
1773 struct stmmac_priv *priv = netdev_priv(ndev);
1774 struct resource *res;
1775
1776 pr_info("%s:\n\tremoving driver", __func__);
1777
1778 priv->hw->dma->stop_rx(priv->ioaddr);
1779 priv->hw->dma->stop_tx(priv->ioaddr);
1780
1781 stmmac_disable_mac(priv->ioaddr);
1782
1783 netif_carrier_off(ndev);
1784
1785 stmmac_mdio_unregister(ndev);
1786
1787 if (priv->plat->exit)
1788 priv->plat->exit(pdev);
1789
1790 platform_set_drvdata(pdev, NULL);
1791 unregister_netdev(ndev);
1792
1793 iounmap((void *)priv->ioaddr);
1794 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1795 release_mem_region(res->start, resource_size(res));
1796
1797 free_netdev(ndev);
1798
1799 return 0;
1800 }
1801
1802 #ifdef CONFIG_PM
1803 static int stmmac_suspend(struct device *dev)
1804 {
1805 struct net_device *ndev = dev_get_drvdata(dev);
1806 struct stmmac_priv *priv = netdev_priv(ndev);
1807 int dis_ic = 0;
1808
1809 if (!ndev || !netif_running(ndev))
1810 return 0;
1811
1812 spin_lock(&priv->lock);
1813
1814 netif_device_detach(ndev);
1815 netif_stop_queue(ndev);
1816 if (priv->phydev)
1817 phy_stop(priv->phydev);
1818
1819 #ifdef CONFIG_STMMAC_TIMER
1820 priv->tm->timer_stop();
1821 if (likely(priv->tm->enable))
1822 dis_ic = 1;
1823 #endif
1824 napi_disable(&priv->napi);
1825
1826 /* Stop TX/RX DMA */
1827 priv->hw->dma->stop_tx(priv->ioaddr);
1828 priv->hw->dma->stop_rx(priv->ioaddr);
1829 /* Clear the Rx/Tx descriptors */
1830 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1831 dis_ic);
1832 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1833
1834 /* Enable Power down mode by programming the PMT regs */
1835 if (device_may_wakeup(priv->device))
1836 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1837 else
1838 stmmac_disable_mac(priv->ioaddr);
1839
1840 spin_unlock(&priv->lock);
1841 return 0;
1842 }
1843
1844 static int stmmac_resume(struct device *dev)
1845 {
1846 struct net_device *ndev = dev_get_drvdata(dev);
1847 struct stmmac_priv *priv = netdev_priv(ndev);
1848
1849 if (!netif_running(ndev))
1850 return 0;
1851
1852 spin_lock(&priv->lock);
1853
1854 /* Power Down bit, into the PM register, is cleared
1855 * automatically as soon as a magic packet or a Wake-up frame
1856 * is received. Anyway, it's better to manually clear
1857 * this bit because it can generate problems while resuming
1858 * from another devices (e.g. serial console). */
1859 if (device_may_wakeup(priv->device))
1860 priv->hw->mac->pmt(priv->ioaddr, 0);
1861
1862 netif_device_attach(ndev);
1863
1864 /* Enable the MAC and DMA */
1865 stmmac_enable_mac(priv->ioaddr);
1866 priv->hw->dma->start_tx(priv->ioaddr);
1867 priv->hw->dma->start_rx(priv->ioaddr);
1868
1869 #ifdef CONFIG_STMMAC_TIMER
1870 if (likely(priv->tm->enable))
1871 priv->tm->timer_start(tmrate);
1872 #endif
1873 napi_enable(&priv->napi);
1874
1875 if (priv->phydev)
1876 phy_start(priv->phydev);
1877
1878 netif_start_queue(ndev);
1879
1880 spin_unlock(&priv->lock);
1881 return 0;
1882 }
1883
1884 static int stmmac_freeze(struct device *dev)
1885 {
1886 struct net_device *ndev = dev_get_drvdata(dev);
1887
1888 if (!ndev || !netif_running(ndev))
1889 return 0;
1890
1891 return stmmac_release(ndev);
1892 }
1893
1894 static int stmmac_restore(struct device *dev)
1895 {
1896 struct net_device *ndev = dev_get_drvdata(dev);
1897
1898 if (!ndev || !netif_running(ndev))
1899 return 0;
1900
1901 return stmmac_open(ndev);
1902 }
1903
1904 static const struct dev_pm_ops stmmac_pm_ops = {
1905 .suspend = stmmac_suspend,
1906 .resume = stmmac_resume,
1907 .freeze = stmmac_freeze,
1908 .thaw = stmmac_restore,
1909 .restore = stmmac_restore,
1910 };
1911 #else
1912 static const struct dev_pm_ops stmmac_pm_ops;
1913 #endif /* CONFIG_PM */
1914
1915 static struct platform_driver stmmac_driver = {
1916 .probe = stmmac_dvr_probe,
1917 .remove = stmmac_dvr_remove,
1918 .driver = {
1919 .name = STMMAC_RESOURCE_NAME,
1920 .owner = THIS_MODULE,
1921 .pm = &stmmac_pm_ops,
1922 },
1923 };
1924
1925 /**
1926 * stmmac_init_module - Entry point for the driver
1927 * Description: This function is the entry point for the driver.
1928 */
1929 static int __init stmmac_init_module(void)
1930 {
1931 int ret;
1932
1933 if (platform_driver_register(&stmmacphy_driver)) {
1934 pr_err("No PHY devices registered!\n");
1935 return -ENODEV;
1936 }
1937
1938 ret = platform_driver_register(&stmmac_driver);
1939 return ret;
1940 }
1941
1942 /**
1943 * stmmac_cleanup_module - Cleanup routine for the driver
1944 * Description: This function is the cleanup routine for the driver.
1945 */
1946 static void __exit stmmac_cleanup_module(void)
1947 {
1948 platform_driver_unregister(&stmmacphy_driver);
1949 platform_driver_unregister(&stmmac_driver);
1950 }
1951
1952 #ifndef MODULE
1953 static int __init stmmac_cmdline_opt(char *str)
1954 {
1955 char *opt;
1956
1957 if (!str || !*str)
1958 return -EINVAL;
1959 while ((opt = strsep(&str, ",")) != NULL) {
1960 if (!strncmp(opt, "debug:", 6))
1961 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
1962 else if (!strncmp(opt, "phyaddr:", 8))
1963 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
1964 else if (!strncmp(opt, "dma_txsize:", 11))
1965 strict_strtoul(opt + 11, 0,
1966 (unsigned long *)&dma_txsize);
1967 else if (!strncmp(opt, "dma_rxsize:", 11))
1968 strict_strtoul(opt + 11, 0,
1969 (unsigned long *)&dma_rxsize);
1970 else if (!strncmp(opt, "buf_sz:", 7))
1971 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
1972 else if (!strncmp(opt, "tc:", 3))
1973 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
1974 else if (!strncmp(opt, "watchdog:", 9))
1975 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
1976 else if (!strncmp(opt, "flow_ctrl:", 10))
1977 strict_strtoul(opt + 10, 0,
1978 (unsigned long *)&flow_ctrl);
1979 else if (!strncmp(opt, "pause:", 6))
1980 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
1981 #ifdef CONFIG_STMMAC_TIMER
1982 else if (!strncmp(opt, "tmrate:", 7))
1983 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
1984 #endif
1985 }
1986 return 0;
1987 }
1988
1989 __setup("stmmaceth=", stmmac_cmdline_opt);
1990 #endif
1991
1992 module_init(stmmac_init_module);
1993 module_exit(stmmac_cleanup_module);
1994
1995 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
1996 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
1997 MODULE_LICENSE("GPL");