Merge first four commits of 'zImage_fixes' of git://git.linaro.org/people/nico/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/mm.h>
45 #include <linux/firmware.h>
46 #include <asm/processor.h> /* Processor type for cache alignment. */
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49
50 /*
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
53 */
54 #define HAS_BROKEN_FIRMWARE
55
56 /*
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 */
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
61 #endif
62
63 /*
64 * Define this if using the driver with the zero-copy patch
65 */
66 #define ZEROCOPY
67
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69 #define VLAN_SUPPORT
70 #endif
71
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
74
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
78
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
81 static int mtu;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
87
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89 /*
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
92 *
93 * NOTE:
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
97 * 23/10/2000 - Jes
98 *
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
101 * penalty. -Ion
102 */
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
105 #else
106 static int rx_copybreak /* = 0 */;
107 #endif
108
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110 #ifdef __sparc__
111 #define DMA_BURST_SIZE 64
112 #else
113 #define DMA_BURST_SIZE 128
114 #endif
115
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
120 */
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
124
125 /* Operational parameters that are set at compile time. */
126
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
129 */
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
136
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
139 #else
140 #define RX_Q_ENTRIES Rx256QEntries
141 #endif
142
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
146
147 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
148 /* 64-bit dma_addr_t */
149 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
150 #define netdrv_addr_t __le64
151 #define cpu_to_dma(x) cpu_to_le64(x)
152 #define dma_to_cpu(x) le64_to_cpu(x)
153 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
154 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
155 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
156 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
157 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
158 #else /* 32-bit dma_addr_t */
159 #define netdrv_addr_t __le32
160 #define cpu_to_dma(x) cpu_to_le32(x)
161 #define dma_to_cpu(x) le32_to_cpu(x)
162 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
163 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
164 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
165 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
166 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
167 #endif
168
169 #define skb_first_frag_len(skb) skb_headlen(skb)
170 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
171
172 /* Firmware names */
173 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
174 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
175
176 /* These identify the driver base version and may not be removed. */
177 static const char version[] __devinitconst =
178 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
179 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
180
181 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
182 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
183 MODULE_LICENSE("GPL");
184 MODULE_VERSION(DRV_VERSION);
185 MODULE_FIRMWARE(FIRMWARE_RX);
186 MODULE_FIRMWARE(FIRMWARE_TX);
187
188 module_param(max_interrupt_work, int, 0);
189 module_param(mtu, int, 0);
190 module_param(debug, int, 0);
191 module_param(rx_copybreak, int, 0);
192 module_param(intr_latency, int, 0);
193 module_param(small_frames, int, 0);
194 module_param_array(options, int, NULL, 0);
195 module_param_array(full_duplex, int, NULL, 0);
196 module_param(enable_hw_cksum, int, 0);
197 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
198 MODULE_PARM_DESC(mtu, "MTU (all boards)");
199 MODULE_PARM_DESC(debug, "Debug level (0-6)");
200 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
201 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
202 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
203 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
204 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
205 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
206
207 /*
208 Theory of Operation
209
210 I. Board Compatibility
211
212 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
213
214 II. Board-specific settings
215
216 III. Driver operation
217
218 IIIa. Ring buffers
219
220 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
221 ring sizes are set fixed by the hardware, but may optionally be wrapped
222 earlier by the END bit in the descriptor.
223 This driver uses that hardware queue size for the Rx ring, where a large
224 number of entries has no ill effect beyond increases the potential backlog.
225 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
226 disables the queue layer priority ordering and we have no mechanism to
227 utilize the hardware two-level priority queue. When modifying the
228 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
229 levels.
230
231 IIIb/c. Transmit/Receive Structure
232
233 See the Adaptec manual for the many possible structures, and options for
234 each structure. There are far too many to document all of them here.
235
236 For transmit this driver uses type 0/1 transmit descriptors (depending
237 on the 32/64 bitness of the architecture), and relies on automatic
238 minimum-length padding. It does not use the completion queue
239 consumer index, but instead checks for non-zero status entries.
240
241 For receive this driver uses type 2/3 receive descriptors. The driver
242 allocates full frame size skbuffs for the Rx ring buffers, so all frames
243 should fit in a single descriptor. The driver does not use the completion
244 queue consumer index, but instead checks for non-zero status entries.
245
246 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
247 is allocated and the frame is copied to the new skbuff. When the incoming
248 frame is larger, the skbuff is passed directly up the protocol stack.
249 Buffers consumed this way are replaced by newly allocated skbuffs in a later
250 phase of receive.
251
252 A notable aspect of operation is that unaligned buffers are not permitted by
253 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
254 isn't longword aligned, which may cause problems on some machine
255 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
256 the frame into a new skbuff unconditionally. Copied frames are put into the
257 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
258
259 IIId. Synchronization
260
261 The driver runs as two independent, single-threaded flows of control. One
262 is the send-packet routine, which enforces single-threaded use by the
263 dev->tbusy flag. The other thread is the interrupt handler, which is single
264 threaded by the hardware and interrupt handling software.
265
266 The send packet thread has partial control over the Tx ring and the netif_queue
267 status. If the number of free Tx slots in the ring falls below a certain number
268 (currently hardcoded to 4), it signals the upper layer to stop the queue.
269
270 The interrupt handler has exclusive control over the Rx ring and records stats
271 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
272 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
273 number of free Tx slow is above the threshold, it signals the upper layer to
274 restart the queue.
275
276 IV. Notes
277
278 IVb. References
279
280 The Adaptec Starfire manuals, available only from Adaptec.
281 http://www.scyld.com/expert/100mbps.html
282 http://www.scyld.com/expert/NWay.html
283
284 IVc. Errata
285
286 - StopOnPerr is broken, don't enable
287 - Hardware ethernet padding exposes random data, perform software padding
288 instead (unverified -- works correctly for all the hardware I have)
289
290 */
291
292
293
294 enum chip_capability_flags {CanHaveMII=1, };
295
296 enum chipset {
297 CH_6915 = 0,
298 };
299
300 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
301 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
302 { 0, }
303 };
304 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
305
306 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
307 static const struct chip_info {
308 const char *name;
309 int drv_flags;
310 } netdrv_tbl[] __devinitdata = {
311 { "Adaptec Starfire 6915", CanHaveMII },
312 };
313
314
315 /* Offsets to the device registers.
316 Unlike software-only systems, device drivers interact with complex hardware.
317 It's not useful to define symbolic names for every register bit in the
318 device. The name can only partially document the semantics and make
319 the driver longer and more difficult to read.
320 In general, only the important configuration values or bits changed
321 multiple times should be defined symbolically.
322 */
323 enum register_offsets {
324 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
325 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
326 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
327 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
328 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
329 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
330 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
331 TxThreshold=0x500B0,
332 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
333 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
334 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
335 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
336 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
337 TxMode=0x55000, VlanType=0x55064,
338 PerfFilterTable=0x56000, HashTable=0x56100,
339 TxGfpMem=0x58000, RxGfpMem=0x5a000,
340 };
341
342 /*
343 * Bits in the interrupt status/mask registers.
344 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
345 * enables all the interrupt sources that are or'ed into those status bits.
346 */
347 enum intr_status_bits {
348 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
349 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
350 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
351 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
352 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
353 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
354 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
355 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
356 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
357 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
358 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
359 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
360 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
361 IntrTxGfp=0x02, IntrPCIPad=0x01,
362 /* not quite bits */
363 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
364 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
365 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
366 };
367
368 /* Bits in the RxFilterMode register. */
369 enum rx_mode_bits {
370 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
371 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
372 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
373 WakeupOnGFP=0x0800,
374 };
375
376 /* Bits in the TxMode register */
377 enum tx_mode_bits {
378 MiiSoftReset=0x8000, MIILoopback=0x4000,
379 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
380 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
381 };
382
383 /* Bits in the TxDescCtrl register. */
384 enum tx_ctrl_bits {
385 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
386 TxDescSpace128=0x30, TxDescSpace256=0x40,
387 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
388 TxDescType3=0x03, TxDescType4=0x04,
389 TxNoDMACompletion=0x08,
390 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
391 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
392 TxDMABurstSizeShift=8,
393 };
394
395 /* Bits in the RxDescQCtrl register. */
396 enum rx_ctrl_bits {
397 RxBufferLenShift=16, RxMinDescrThreshShift=0,
398 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
399 Rx2048QEntries=0x4000, Rx256QEntries=0,
400 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
401 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
402 RxDescSpace4=0x000, RxDescSpace8=0x100,
403 RxDescSpace16=0x200, RxDescSpace32=0x300,
404 RxDescSpace64=0x400, RxDescSpace128=0x500,
405 RxConsumerWrEn=0x80,
406 };
407
408 /* Bits in the RxDMACtrl register. */
409 enum rx_dmactrl_bits {
410 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
411 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
412 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
413 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
414 RxChecksumRejectTCPOnly=0x01000000,
415 RxCompletionQ2Enable=0x800000,
416 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
417 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
418 RxDMAQ2NonIP=0x400000,
419 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
420 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
421 RxBurstSizeShift=0,
422 };
423
424 /* Bits in the RxCompletionAddr register */
425 enum rx_compl_bits {
426 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
427 RxComplProducerWrEn=0x40,
428 RxComplType0=0x00, RxComplType1=0x10,
429 RxComplType2=0x20, RxComplType3=0x30,
430 RxComplThreshShift=0,
431 };
432
433 /* Bits in the TxCompletionAddr register */
434 enum tx_compl_bits {
435 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
436 TxComplProducerWrEn=0x40,
437 TxComplIntrStatus=0x20,
438 CommonQueueMode=0x10,
439 TxComplThreshShift=0,
440 };
441
442 /* Bits in the GenCtrl register */
443 enum gen_ctrl_bits {
444 RxEnable=0x05, TxEnable=0x0a,
445 RxGFPEnable=0x10, TxGFPEnable=0x20,
446 };
447
448 /* Bits in the IntrTimerCtrl register */
449 enum intr_ctrl_bits {
450 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
451 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
452 IntrLatencyMask=0x1f,
453 };
454
455 /* The Rx and Tx buffer descriptors. */
456 struct starfire_rx_desc {
457 netdrv_addr_t rxaddr;
458 };
459 enum rx_desc_bits {
460 RxDescValid=1, RxDescEndRing=2,
461 };
462
463 /* Completion queue entry. */
464 struct short_rx_done_desc {
465 __le32 status; /* Low 16 bits is length. */
466 };
467 struct basic_rx_done_desc {
468 __le32 status; /* Low 16 bits is length. */
469 __le16 vlanid;
470 __le16 status2;
471 };
472 struct csum_rx_done_desc {
473 __le32 status; /* Low 16 bits is length. */
474 __le16 csum; /* Partial checksum */
475 __le16 status2;
476 };
477 struct full_rx_done_desc {
478 __le32 status; /* Low 16 bits is length. */
479 __le16 status3;
480 __le16 status2;
481 __le16 vlanid;
482 __le16 csum; /* partial checksum */
483 __le32 timestamp;
484 };
485 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
486 #ifdef VLAN_SUPPORT
487 typedef struct full_rx_done_desc rx_done_desc;
488 #define RxComplType RxComplType3
489 #else /* not VLAN_SUPPORT */
490 typedef struct csum_rx_done_desc rx_done_desc;
491 #define RxComplType RxComplType2
492 #endif /* not VLAN_SUPPORT */
493
494 enum rx_done_bits {
495 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
496 };
497
498 /* Type 1 Tx descriptor. */
499 struct starfire_tx_desc_1 {
500 __le32 status; /* Upper bits are status, lower 16 length. */
501 __le32 addr;
502 };
503
504 /* Type 2 Tx descriptor. */
505 struct starfire_tx_desc_2 {
506 __le32 status; /* Upper bits are status, lower 16 length. */
507 __le32 reserved;
508 __le64 addr;
509 };
510
511 #ifdef ADDR_64BITS
512 typedef struct starfire_tx_desc_2 starfire_tx_desc;
513 #define TX_DESC_TYPE TxDescType2
514 #else /* not ADDR_64BITS */
515 typedef struct starfire_tx_desc_1 starfire_tx_desc;
516 #define TX_DESC_TYPE TxDescType1
517 #endif /* not ADDR_64BITS */
518 #define TX_DESC_SPACING TxDescSpaceUnlim
519
520 enum tx_desc_bits {
521 TxDescID=0xB0000000,
522 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
523 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
524 };
525 struct tx_done_desc {
526 __le32 status; /* timestamp, index. */
527 #if 0
528 __le32 intrstatus; /* interrupt status */
529 #endif
530 };
531
532 struct rx_ring_info {
533 struct sk_buff *skb;
534 dma_addr_t mapping;
535 };
536 struct tx_ring_info {
537 struct sk_buff *skb;
538 dma_addr_t mapping;
539 unsigned int used_slots;
540 };
541
542 #define PHY_CNT 2
543 struct netdev_private {
544 /* Descriptor rings first for alignment. */
545 struct starfire_rx_desc *rx_ring;
546 starfire_tx_desc *tx_ring;
547 dma_addr_t rx_ring_dma;
548 dma_addr_t tx_ring_dma;
549 /* The addresses of rx/tx-in-place skbuffs. */
550 struct rx_ring_info rx_info[RX_RING_SIZE];
551 struct tx_ring_info tx_info[TX_RING_SIZE];
552 /* Pointers to completion queues (full pages). */
553 rx_done_desc *rx_done_q;
554 dma_addr_t rx_done_q_dma;
555 unsigned int rx_done;
556 struct tx_done_desc *tx_done_q;
557 dma_addr_t tx_done_q_dma;
558 unsigned int tx_done;
559 struct napi_struct napi;
560 struct net_device *dev;
561 struct pci_dev *pci_dev;
562 #ifdef VLAN_SUPPORT
563 struct vlan_group *vlgrp;
564 #endif
565 void *queue_mem;
566 dma_addr_t queue_mem_dma;
567 size_t queue_mem_size;
568
569 /* Frequently used values: keep some adjacent for cache effect. */
570 spinlock_t lock;
571 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
572 unsigned int cur_tx, dirty_tx, reap_tx;
573 unsigned int rx_buf_sz; /* Based on MTU+slack. */
574 /* These values keep track of the transceiver/media in use. */
575 int speed100; /* Set if speed == 100MBit. */
576 u32 tx_mode;
577 u32 intr_timer_ctrl;
578 u8 tx_threshold;
579 /* MII transceiver section. */
580 struct mii_if_info mii_if; /* MII lib hooks/info */
581 int phy_cnt; /* MII device addresses. */
582 unsigned char phys[PHY_CNT]; /* MII device addresses. */
583 void __iomem *base;
584 };
585
586
587 static int mdio_read(struct net_device *dev, int phy_id, int location);
588 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
589 static int netdev_open(struct net_device *dev);
590 static void check_duplex(struct net_device *dev);
591 static void tx_timeout(struct net_device *dev);
592 static void init_ring(struct net_device *dev);
593 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
594 static irqreturn_t intr_handler(int irq, void *dev_instance);
595 static void netdev_error(struct net_device *dev, int intr_status);
596 static int __netdev_rx(struct net_device *dev, int *quota);
597 static int netdev_poll(struct napi_struct *napi, int budget);
598 static void refill_rx_ring(struct net_device *dev);
599 static void netdev_error(struct net_device *dev, int intr_status);
600 static void set_rx_mode(struct net_device *dev);
601 static struct net_device_stats *get_stats(struct net_device *dev);
602 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
603 static int netdev_close(struct net_device *dev);
604 static void netdev_media_change(struct net_device *dev);
605 static const struct ethtool_ops ethtool_ops;
606
607
608 #ifdef VLAN_SUPPORT
609 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
610 {
611 struct netdev_private *np = netdev_priv(dev);
612
613 spin_lock(&np->lock);
614 if (debug > 2)
615 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
616 np->vlgrp = grp;
617 set_rx_mode(dev);
618 spin_unlock(&np->lock);
619 }
620
621 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
622 {
623 struct netdev_private *np = netdev_priv(dev);
624
625 spin_lock(&np->lock);
626 if (debug > 1)
627 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
628 set_rx_mode(dev);
629 spin_unlock(&np->lock);
630 }
631
632 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
633 {
634 struct netdev_private *np = netdev_priv(dev);
635
636 spin_lock(&np->lock);
637 if (debug > 1)
638 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
639 vlan_group_set_device(np->vlgrp, vid, NULL);
640 set_rx_mode(dev);
641 spin_unlock(&np->lock);
642 }
643 #endif /* VLAN_SUPPORT */
644
645
646 static const struct net_device_ops netdev_ops = {
647 .ndo_open = netdev_open,
648 .ndo_stop = netdev_close,
649 .ndo_start_xmit = start_tx,
650 .ndo_tx_timeout = tx_timeout,
651 .ndo_get_stats = get_stats,
652 .ndo_set_multicast_list = &set_rx_mode,
653 .ndo_do_ioctl = netdev_ioctl,
654 .ndo_change_mtu = eth_change_mtu,
655 .ndo_set_mac_address = eth_mac_addr,
656 .ndo_validate_addr = eth_validate_addr,
657 #ifdef VLAN_SUPPORT
658 .ndo_vlan_rx_register = netdev_vlan_rx_register,
659 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
660 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
661 #endif
662 };
663
664 static int __devinit starfire_init_one(struct pci_dev *pdev,
665 const struct pci_device_id *ent)
666 {
667 struct netdev_private *np;
668 int i, irq, option, chip_idx = ent->driver_data;
669 struct net_device *dev;
670 static int card_idx = -1;
671 long ioaddr;
672 void __iomem *base;
673 int drv_flags, io_size;
674 int boguscnt;
675
676 /* when built into the kernel, we only print version if device is found */
677 #ifndef MODULE
678 static int printed_version;
679 if (!printed_version++)
680 printk(version);
681 #endif
682
683 card_idx++;
684
685 if (pci_enable_device (pdev))
686 return -EIO;
687
688 ioaddr = pci_resource_start(pdev, 0);
689 io_size = pci_resource_len(pdev, 0);
690 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
691 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
692 return -ENODEV;
693 }
694
695 dev = alloc_etherdev(sizeof(*np));
696 if (!dev) {
697 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
698 return -ENOMEM;
699 }
700 SET_NETDEV_DEV(dev, &pdev->dev);
701
702 irq = pdev->irq;
703
704 if (pci_request_regions (pdev, DRV_NAME)) {
705 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
706 goto err_out_free_netdev;
707 }
708
709 base = ioremap(ioaddr, io_size);
710 if (!base) {
711 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
712 card_idx, io_size, ioaddr);
713 goto err_out_free_res;
714 }
715
716 pci_set_master(pdev);
717
718 /* enable MWI -- it vastly improves Rx performance on sparc64 */
719 pci_try_set_mwi(pdev);
720
721 #ifdef ZEROCOPY
722 /* Starfire can do TCP/UDP checksumming */
723 if (enable_hw_cksum)
724 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
725 #endif /* ZEROCOPY */
726
727 #ifdef VLAN_SUPPORT
728 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
729 #endif /* VLAN_RX_KILL_VID */
730 #ifdef ADDR_64BITS
731 dev->features |= NETIF_F_HIGHDMA;
732 #endif /* ADDR_64BITS */
733
734 /* Serial EEPROM reads are hidden by the hardware. */
735 for (i = 0; i < 6; i++)
736 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
737
738 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
739 if (debug > 4)
740 for (i = 0; i < 0x20; i++)
741 printk("%2.2x%s",
742 (unsigned int)readb(base + EEPROMCtrl + i),
743 i % 16 != 15 ? " " : "\n");
744 #endif
745
746 /* Issue soft reset */
747 writel(MiiSoftReset, base + TxMode);
748 udelay(1000);
749 writel(0, base + TxMode);
750
751 /* Reset the chip to erase previous misconfiguration. */
752 writel(1, base + PCIDeviceConfig);
753 boguscnt = 1000;
754 while (--boguscnt > 0) {
755 udelay(10);
756 if ((readl(base + PCIDeviceConfig) & 1) == 0)
757 break;
758 }
759 if (boguscnt == 0)
760 printk("%s: chipset reset never completed!\n", dev->name);
761 /* wait a little longer */
762 udelay(1000);
763
764 dev->base_addr = (unsigned long)base;
765 dev->irq = irq;
766
767 np = netdev_priv(dev);
768 np->dev = dev;
769 np->base = base;
770 spin_lock_init(&np->lock);
771 pci_set_drvdata(pdev, dev);
772
773 np->pci_dev = pdev;
774
775 np->mii_if.dev = dev;
776 np->mii_if.mdio_read = mdio_read;
777 np->mii_if.mdio_write = mdio_write;
778 np->mii_if.phy_id_mask = 0x1f;
779 np->mii_if.reg_num_mask = 0x1f;
780
781 drv_flags = netdrv_tbl[chip_idx].drv_flags;
782
783 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
784 if (dev->mem_start)
785 option = dev->mem_start;
786
787 /* The lower four bits are the media type. */
788 if (option & 0x200)
789 np->mii_if.full_duplex = 1;
790
791 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
792 np->mii_if.full_duplex = 1;
793
794 if (np->mii_if.full_duplex)
795 np->mii_if.force_media = 1;
796 else
797 np->mii_if.force_media = 0;
798 np->speed100 = 1;
799
800 /* timer resolution is 128 * 0.8us */
801 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
802 Timer10X | EnableIntrMasking;
803
804 if (small_frames > 0) {
805 np->intr_timer_ctrl |= SmallFrameBypass;
806 switch (small_frames) {
807 case 1 ... 64:
808 np->intr_timer_ctrl |= SmallFrame64;
809 break;
810 case 65 ... 128:
811 np->intr_timer_ctrl |= SmallFrame128;
812 break;
813 case 129 ... 256:
814 np->intr_timer_ctrl |= SmallFrame256;
815 break;
816 default:
817 np->intr_timer_ctrl |= SmallFrame512;
818 if (small_frames > 512)
819 printk("Adjusting small_frames down to 512\n");
820 break;
821 }
822 }
823
824 dev->netdev_ops = &netdev_ops;
825 dev->watchdog_timeo = TX_TIMEOUT;
826 SET_ETHTOOL_OPS(dev, &ethtool_ops);
827
828 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
829
830 if (mtu)
831 dev->mtu = mtu;
832
833 if (register_netdev(dev))
834 goto err_out_cleardev;
835
836 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
837 dev->name, netdrv_tbl[chip_idx].name, base,
838 dev->dev_addr, irq);
839
840 if (drv_flags & CanHaveMII) {
841 int phy, phy_idx = 0;
842 int mii_status;
843 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
844 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
845 mdelay(100);
846 boguscnt = 1000;
847 while (--boguscnt > 0)
848 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
849 break;
850 if (boguscnt == 0) {
851 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
852 continue;
853 }
854 mii_status = mdio_read(dev, phy, MII_BMSR);
855 if (mii_status != 0) {
856 np->phys[phy_idx++] = phy;
857 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
858 printk(KERN_INFO "%s: MII PHY found at address %d, status "
859 "%#4.4x advertising %#4.4x.\n",
860 dev->name, phy, mii_status, np->mii_if.advertising);
861 /* there can be only one PHY on-board */
862 break;
863 }
864 }
865 np->phy_cnt = phy_idx;
866 if (np->phy_cnt > 0)
867 np->mii_if.phy_id = np->phys[0];
868 else
869 memset(&np->mii_if, 0, sizeof(np->mii_if));
870 }
871
872 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
873 dev->name, enable_hw_cksum ? "enabled" : "disabled");
874 return 0;
875
876 err_out_cleardev:
877 pci_set_drvdata(pdev, NULL);
878 iounmap(base);
879 err_out_free_res:
880 pci_release_regions (pdev);
881 err_out_free_netdev:
882 free_netdev(dev);
883 return -ENODEV;
884 }
885
886
887 /* Read the MII Management Data I/O (MDIO) interfaces. */
888 static int mdio_read(struct net_device *dev, int phy_id, int location)
889 {
890 struct netdev_private *np = netdev_priv(dev);
891 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
892 int result, boguscnt=1000;
893 /* ??? Should we add a busy-wait here? */
894 do {
895 result = readl(mdio_addr);
896 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
897 if (boguscnt == 0)
898 return 0;
899 if ((result & 0xffff) == 0xffff)
900 return 0;
901 return result & 0xffff;
902 }
903
904
905 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
906 {
907 struct netdev_private *np = netdev_priv(dev);
908 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
909 writel(value, mdio_addr);
910 /* The busy-wait will occur before a read. */
911 }
912
913
914 static int netdev_open(struct net_device *dev)
915 {
916 const struct firmware *fw_rx, *fw_tx;
917 const __be32 *fw_rx_data, *fw_tx_data;
918 struct netdev_private *np = netdev_priv(dev);
919 void __iomem *ioaddr = np->base;
920 int i, retval;
921 size_t tx_size, rx_size;
922 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
923
924 /* Do we ever need to reset the chip??? */
925
926 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
927 if (retval)
928 return retval;
929
930 /* Disable the Rx and Tx, and reset the chip. */
931 writel(0, ioaddr + GenCtrl);
932 writel(1, ioaddr + PCIDeviceConfig);
933 if (debug > 1)
934 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
935 dev->name, dev->irq);
936
937 /* Allocate the various queues. */
938 if (!np->queue_mem) {
939 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
940 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
941 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
942 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
943 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
944 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
945 if (np->queue_mem == NULL) {
946 free_irq(dev->irq, dev);
947 return -ENOMEM;
948 }
949
950 np->tx_done_q = np->queue_mem;
951 np->tx_done_q_dma = np->queue_mem_dma;
952 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
953 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
954 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
955 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
956 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
957 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
958 }
959
960 /* Start with no carrier, it gets adjusted later */
961 netif_carrier_off(dev);
962 init_ring(dev);
963 /* Set the size of the Rx buffers. */
964 writel((np->rx_buf_sz << RxBufferLenShift) |
965 (0 << RxMinDescrThreshShift) |
966 RxPrefetchMode | RxVariableQ |
967 RX_Q_ENTRIES |
968 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
969 RxDescSpace4,
970 ioaddr + RxDescQCtrl);
971
972 /* Set up the Rx DMA controller. */
973 writel(RxChecksumIgnore |
974 (0 << RxEarlyIntThreshShift) |
975 (6 << RxHighPrioThreshShift) |
976 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
977 ioaddr + RxDMACtrl);
978
979 /* Set Tx descriptor */
980 writel((2 << TxHiPriFIFOThreshShift) |
981 (0 << TxPadLenShift) |
982 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
983 TX_DESC_Q_ADDR_SIZE |
984 TX_DESC_SPACING | TX_DESC_TYPE,
985 ioaddr + TxDescCtrl);
986
987 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
988 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
989 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
990 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
991 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
992
993 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
994 writel(np->rx_done_q_dma |
995 RxComplType |
996 (0 << RxComplThreshShift),
997 ioaddr + RxCompletionAddr);
998
999 if (debug > 1)
1000 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1001
1002 /* Fill both the Tx SA register and the Rx perfect filter. */
1003 for (i = 0; i < 6; i++)
1004 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1005 /* The first entry is special because it bypasses the VLAN filter.
1006 Don't use it. */
1007 writew(0, ioaddr + PerfFilterTable);
1008 writew(0, ioaddr + PerfFilterTable + 4);
1009 writew(0, ioaddr + PerfFilterTable + 8);
1010 for (i = 1; i < 16; i++) {
1011 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1012 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1013 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1014 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1015 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1016 }
1017
1018 /* Initialize other registers. */
1019 /* Configure the PCI bus bursts and FIFO thresholds. */
1020 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1021 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1022 udelay(1000);
1023 writel(np->tx_mode, ioaddr + TxMode);
1024 np->tx_threshold = 4;
1025 writel(np->tx_threshold, ioaddr + TxThreshold);
1026
1027 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1028
1029 napi_enable(&np->napi);
1030
1031 netif_start_queue(dev);
1032
1033 if (debug > 1)
1034 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1035 set_rx_mode(dev);
1036
1037 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1038 check_duplex(dev);
1039
1040 /* Enable GPIO interrupts on link change */
1041 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1042
1043 /* Set the interrupt mask */
1044 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1045 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1046 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1047 ioaddr + IntrEnable);
1048 /* Enable PCI interrupts. */
1049 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1050 ioaddr + PCIDeviceConfig);
1051
1052 #ifdef VLAN_SUPPORT
1053 /* Set VLAN type to 802.1q */
1054 writel(ETH_P_8021Q, ioaddr + VlanType);
1055 #endif /* VLAN_SUPPORT */
1056
1057 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1058 if (retval) {
1059 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1060 FIRMWARE_RX);
1061 goto out_init;
1062 }
1063 if (fw_rx->size % 4) {
1064 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1065 fw_rx->size, FIRMWARE_RX);
1066 retval = -EINVAL;
1067 goto out_rx;
1068 }
1069 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1070 if (retval) {
1071 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1072 FIRMWARE_TX);
1073 goto out_rx;
1074 }
1075 if (fw_tx->size % 4) {
1076 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1077 fw_tx->size, FIRMWARE_TX);
1078 retval = -EINVAL;
1079 goto out_tx;
1080 }
1081 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1082 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1083 rx_size = fw_rx->size / 4;
1084 tx_size = fw_tx->size / 4;
1085
1086 /* Load Rx/Tx firmware into the frame processors */
1087 for (i = 0; i < rx_size; i++)
1088 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1089 for (i = 0; i < tx_size; i++)
1090 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1091 if (enable_hw_cksum)
1092 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1093 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1094 else
1095 /* Enable the Rx and Tx units only. */
1096 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1097
1098 if (debug > 1)
1099 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1100 dev->name);
1101
1102 out_tx:
1103 release_firmware(fw_tx);
1104 out_rx:
1105 release_firmware(fw_rx);
1106 out_init:
1107 if (retval)
1108 netdev_close(dev);
1109 return retval;
1110 }
1111
1112
1113 static void check_duplex(struct net_device *dev)
1114 {
1115 struct netdev_private *np = netdev_priv(dev);
1116 u16 reg0;
1117 int silly_count = 1000;
1118
1119 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1120 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1121 udelay(500);
1122 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1123 /* do nothing */;
1124 if (!silly_count) {
1125 printk("%s: MII reset failed!\n", dev->name);
1126 return;
1127 }
1128
1129 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1130
1131 if (!np->mii_if.force_media) {
1132 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1133 } else {
1134 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1135 if (np->speed100)
1136 reg0 |= BMCR_SPEED100;
1137 if (np->mii_if.full_duplex)
1138 reg0 |= BMCR_FULLDPLX;
1139 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1140 dev->name,
1141 np->speed100 ? "100" : "10",
1142 np->mii_if.full_duplex ? "full" : "half");
1143 }
1144 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1145 }
1146
1147
1148 static void tx_timeout(struct net_device *dev)
1149 {
1150 struct netdev_private *np = netdev_priv(dev);
1151 void __iomem *ioaddr = np->base;
1152 int old_debug;
1153
1154 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1155 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1156
1157 /* Perhaps we should reinitialize the hardware here. */
1158
1159 /*
1160 * Stop and restart the interface.
1161 * Cheat and increase the debug level temporarily.
1162 */
1163 old_debug = debug;
1164 debug = 2;
1165 netdev_close(dev);
1166 netdev_open(dev);
1167 debug = old_debug;
1168
1169 /* Trigger an immediate transmit demand. */
1170
1171 dev->trans_start = jiffies; /* prevent tx timeout */
1172 dev->stats.tx_errors++;
1173 netif_wake_queue(dev);
1174 }
1175
1176
1177 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1178 static void init_ring(struct net_device *dev)
1179 {
1180 struct netdev_private *np = netdev_priv(dev);
1181 int i;
1182
1183 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1184 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1185
1186 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1187
1188 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1189 for (i = 0; i < RX_RING_SIZE; i++) {
1190 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1191 np->rx_info[i].skb = skb;
1192 if (skb == NULL)
1193 break;
1194 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1195 skb->dev = dev; /* Mark as being used by this device. */
1196 /* Grrr, we cannot offset to correctly align the IP header. */
1197 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1198 }
1199 writew(i - 1, np->base + RxDescQIdx);
1200 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1201
1202 /* Clear the remainder of the Rx buffer ring. */
1203 for ( ; i < RX_RING_SIZE; i++) {
1204 np->rx_ring[i].rxaddr = 0;
1205 np->rx_info[i].skb = NULL;
1206 np->rx_info[i].mapping = 0;
1207 }
1208 /* Mark the last entry as wrapping the ring. */
1209 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1210
1211 /* Clear the completion rings. */
1212 for (i = 0; i < DONE_Q_SIZE; i++) {
1213 np->rx_done_q[i].status = 0;
1214 np->tx_done_q[i].status = 0;
1215 }
1216
1217 for (i = 0; i < TX_RING_SIZE; i++)
1218 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1219 }
1220
1221
1222 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1223 {
1224 struct netdev_private *np = netdev_priv(dev);
1225 unsigned int entry;
1226 u32 status;
1227 int i;
1228
1229 /*
1230 * be cautious here, wrapping the queue has weird semantics
1231 * and we may not have enough slots even when it seems we do.
1232 */
1233 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1234 netif_stop_queue(dev);
1235 return NETDEV_TX_BUSY;
1236 }
1237
1238 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1239 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1240 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1241 return NETDEV_TX_OK;
1242 }
1243 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1244
1245 entry = np->cur_tx % TX_RING_SIZE;
1246 for (i = 0; i < skb_num_frags(skb); i++) {
1247 int wrap_ring = 0;
1248 status = TxDescID;
1249
1250 if (i == 0) {
1251 np->tx_info[entry].skb = skb;
1252 status |= TxCRCEn;
1253 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1254 status |= TxRingWrap;
1255 wrap_ring = 1;
1256 }
1257 if (np->reap_tx) {
1258 status |= TxDescIntr;
1259 np->reap_tx = 0;
1260 }
1261 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1262 status |= TxCalTCP;
1263 dev->stats.tx_compressed++;
1264 }
1265 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1266
1267 np->tx_info[entry].mapping =
1268 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1269 } else {
1270 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1271 status |= this_frag->size;
1272 np->tx_info[entry].mapping =
1273 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1274 }
1275
1276 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1277 np->tx_ring[entry].status = cpu_to_le32(status);
1278 if (debug > 3)
1279 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1280 dev->name, np->cur_tx, np->dirty_tx,
1281 entry, status);
1282 if (wrap_ring) {
1283 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1284 np->cur_tx += np->tx_info[entry].used_slots;
1285 entry = 0;
1286 } else {
1287 np->tx_info[entry].used_slots = 1;
1288 np->cur_tx += np->tx_info[entry].used_slots;
1289 entry++;
1290 }
1291 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1292 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1293 np->reap_tx = 1;
1294 }
1295
1296 /* Non-x86: explicitly flush descriptor cache lines here. */
1297 /* Ensure all descriptors are written back before the transmit is
1298 initiated. - Jes */
1299 wmb();
1300
1301 /* Update the producer index. */
1302 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1303
1304 /* 4 is arbitrary, but should be ok */
1305 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1306 netif_stop_queue(dev);
1307
1308 return NETDEV_TX_OK;
1309 }
1310
1311
1312 /* The interrupt handler does all of the Rx thread work and cleans up
1313 after the Tx thread. */
1314 static irqreturn_t intr_handler(int irq, void *dev_instance)
1315 {
1316 struct net_device *dev = dev_instance;
1317 struct netdev_private *np = netdev_priv(dev);
1318 void __iomem *ioaddr = np->base;
1319 int boguscnt = max_interrupt_work;
1320 int consumer;
1321 int tx_status;
1322 int handled = 0;
1323
1324 do {
1325 u32 intr_status = readl(ioaddr + IntrClear);
1326
1327 if (debug > 4)
1328 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1329 dev->name, intr_status);
1330
1331 if (intr_status == 0 || intr_status == (u32) -1)
1332 break;
1333
1334 handled = 1;
1335
1336 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1337 u32 enable;
1338
1339 if (likely(napi_schedule_prep(&np->napi))) {
1340 __napi_schedule(&np->napi);
1341 enable = readl(ioaddr + IntrEnable);
1342 enable &= ~(IntrRxDone | IntrRxEmpty);
1343 writel(enable, ioaddr + IntrEnable);
1344 /* flush PCI posting buffers */
1345 readl(ioaddr + IntrEnable);
1346 } else {
1347 /* Paranoia check */
1348 enable = readl(ioaddr + IntrEnable);
1349 if (enable & (IntrRxDone | IntrRxEmpty)) {
1350 printk(KERN_INFO
1351 "%s: interrupt while in poll!\n",
1352 dev->name);
1353 enable &= ~(IntrRxDone | IntrRxEmpty);
1354 writel(enable, ioaddr + IntrEnable);
1355 }
1356 }
1357 }
1358
1359 /* Scavenge the skbuff list based on the Tx-done queue.
1360 There are redundant checks here that may be cleaned up
1361 after the driver has proven to be reliable. */
1362 consumer = readl(ioaddr + TxConsumerIdx);
1363 if (debug > 3)
1364 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1365 dev->name, consumer);
1366
1367 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1368 if (debug > 3)
1369 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1370 dev->name, np->dirty_tx, np->tx_done, tx_status);
1371 if ((tx_status & 0xe0000000) == 0xa0000000) {
1372 dev->stats.tx_packets++;
1373 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1374 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1375 struct sk_buff *skb = np->tx_info[entry].skb;
1376 np->tx_info[entry].skb = NULL;
1377 pci_unmap_single(np->pci_dev,
1378 np->tx_info[entry].mapping,
1379 skb_first_frag_len(skb),
1380 PCI_DMA_TODEVICE);
1381 np->tx_info[entry].mapping = 0;
1382 np->dirty_tx += np->tx_info[entry].used_slots;
1383 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1384 {
1385 int i;
1386 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1387 pci_unmap_single(np->pci_dev,
1388 np->tx_info[entry].mapping,
1389 skb_shinfo(skb)->frags[i].size,
1390 PCI_DMA_TODEVICE);
1391 np->dirty_tx++;
1392 entry++;
1393 }
1394 }
1395
1396 dev_kfree_skb_irq(skb);
1397 }
1398 np->tx_done_q[np->tx_done].status = 0;
1399 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1400 }
1401 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1402
1403 if (netif_queue_stopped(dev) &&
1404 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1405 /* The ring is no longer full, wake the queue. */
1406 netif_wake_queue(dev);
1407 }
1408
1409 /* Stats overflow */
1410 if (intr_status & IntrStatsMax)
1411 get_stats(dev);
1412
1413 /* Media change interrupt. */
1414 if (intr_status & IntrLinkChange)
1415 netdev_media_change(dev);
1416
1417 /* Abnormal error summary/uncommon events handlers. */
1418 if (intr_status & IntrAbnormalSummary)
1419 netdev_error(dev, intr_status);
1420
1421 if (--boguscnt < 0) {
1422 if (debug > 1)
1423 printk(KERN_WARNING "%s: Too much work at interrupt, "
1424 "status=%#8.8x.\n",
1425 dev->name, intr_status);
1426 break;
1427 }
1428 } while (1);
1429
1430 if (debug > 4)
1431 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1432 dev->name, (int) readl(ioaddr + IntrStatus));
1433 return IRQ_RETVAL(handled);
1434 }
1435
1436
1437 /*
1438 * This routine is logically part of the interrupt/poll handler, but separated
1439 * for clarity and better register allocation.
1440 */
1441 static int __netdev_rx(struct net_device *dev, int *quota)
1442 {
1443 struct netdev_private *np = netdev_priv(dev);
1444 u32 desc_status;
1445 int retcode = 0;
1446
1447 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1448 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1449 struct sk_buff *skb;
1450 u16 pkt_len;
1451 int entry;
1452 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1453
1454 if (debug > 4)
1455 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1456 if (!(desc_status & RxOK)) {
1457 /* There was an error. */
1458 if (debug > 2)
1459 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1460 dev->stats.rx_errors++;
1461 if (desc_status & RxFIFOErr)
1462 dev->stats.rx_fifo_errors++;
1463 goto next_rx;
1464 }
1465
1466 if (*quota <= 0) { /* out of rx quota */
1467 retcode = 1;
1468 goto out;
1469 }
1470 (*quota)--;
1471
1472 pkt_len = desc_status; /* Implicitly Truncate */
1473 entry = (desc_status >> 16) & 0x7ff;
1474
1475 if (debug > 4)
1476 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1477 /* Check if the packet is long enough to accept without copying
1478 to a minimally-sized skbuff. */
1479 if (pkt_len < rx_copybreak &&
1480 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1481 skb_reserve(skb, 2); /* 16 byte align the IP header */
1482 pci_dma_sync_single_for_cpu(np->pci_dev,
1483 np->rx_info[entry].mapping,
1484 pkt_len, PCI_DMA_FROMDEVICE);
1485 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1486 pci_dma_sync_single_for_device(np->pci_dev,
1487 np->rx_info[entry].mapping,
1488 pkt_len, PCI_DMA_FROMDEVICE);
1489 skb_put(skb, pkt_len);
1490 } else {
1491 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1492 skb = np->rx_info[entry].skb;
1493 skb_put(skb, pkt_len);
1494 np->rx_info[entry].skb = NULL;
1495 np->rx_info[entry].mapping = 0;
1496 }
1497 #ifndef final_version /* Remove after testing. */
1498 /* You will want this info for the initial debug. */
1499 if (debug > 5) {
1500 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1501 skb->data, skb->data + 6,
1502 skb->data[12], skb->data[13]);
1503 }
1504 #endif
1505
1506 skb->protocol = eth_type_trans(skb, dev);
1507 #ifdef VLAN_SUPPORT
1508 if (debug > 4)
1509 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1510 #endif
1511 if (le16_to_cpu(desc->status2) & 0x0100) {
1512 skb->ip_summed = CHECKSUM_UNNECESSARY;
1513 dev->stats.rx_compressed++;
1514 }
1515 /*
1516 * This feature doesn't seem to be working, at least
1517 * with the two firmware versions I have. If the GFP sees
1518 * an IP fragment, it either ignores it completely, or reports
1519 * "bad checksum" on it.
1520 *
1521 * Maybe I missed something -- corrections are welcome.
1522 * Until then, the printk stays. :-) -Ion
1523 */
1524 else if (le16_to_cpu(desc->status2) & 0x0040) {
1525 skb->ip_summed = CHECKSUM_COMPLETE;
1526 skb->csum = le16_to_cpu(desc->csum);
1527 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1528 }
1529 #ifdef VLAN_SUPPORT
1530 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1531 u16 vlid = le16_to_cpu(desc->vlanid);
1532
1533 if (debug > 4) {
1534 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1535 vlid);
1536 }
1537 /*
1538 * vlan_hwaccel_rx expects a packet with the VLAN tag
1539 * stripped out.
1540 */
1541 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1542 } else
1543 #endif /* VLAN_SUPPORT */
1544 netif_receive_skb(skb);
1545 dev->stats.rx_packets++;
1546
1547 next_rx:
1548 np->cur_rx++;
1549 desc->status = 0;
1550 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1551 }
1552
1553 if (*quota == 0) { /* out of rx quota */
1554 retcode = 1;
1555 goto out;
1556 }
1557 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1558
1559 out:
1560 refill_rx_ring(dev);
1561 if (debug > 5)
1562 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1563 retcode, np->rx_done, desc_status);
1564 return retcode;
1565 }
1566
1567 static int netdev_poll(struct napi_struct *napi, int budget)
1568 {
1569 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1570 struct net_device *dev = np->dev;
1571 u32 intr_status;
1572 void __iomem *ioaddr = np->base;
1573 int quota = budget;
1574
1575 do {
1576 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1577
1578 if (__netdev_rx(dev, &quota))
1579 goto out;
1580
1581 intr_status = readl(ioaddr + IntrStatus);
1582 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1583
1584 napi_complete(napi);
1585 intr_status = readl(ioaddr + IntrEnable);
1586 intr_status |= IntrRxDone | IntrRxEmpty;
1587 writel(intr_status, ioaddr + IntrEnable);
1588
1589 out:
1590 if (debug > 5)
1591 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1592 budget - quota);
1593
1594 /* Restart Rx engine if stopped. */
1595 return budget - quota;
1596 }
1597
1598 static void refill_rx_ring(struct net_device *dev)
1599 {
1600 struct netdev_private *np = netdev_priv(dev);
1601 struct sk_buff *skb;
1602 int entry = -1;
1603
1604 /* Refill the Rx ring buffers. */
1605 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1606 entry = np->dirty_rx % RX_RING_SIZE;
1607 if (np->rx_info[entry].skb == NULL) {
1608 skb = dev_alloc_skb(np->rx_buf_sz);
1609 np->rx_info[entry].skb = skb;
1610 if (skb == NULL)
1611 break; /* Better luck next round. */
1612 np->rx_info[entry].mapping =
1613 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1614 skb->dev = dev; /* Mark as being used by this device. */
1615 np->rx_ring[entry].rxaddr =
1616 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1617 }
1618 if (entry == RX_RING_SIZE - 1)
1619 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1620 }
1621 if (entry >= 0)
1622 writew(entry, np->base + RxDescQIdx);
1623 }
1624
1625
1626 static void netdev_media_change(struct net_device *dev)
1627 {
1628 struct netdev_private *np = netdev_priv(dev);
1629 void __iomem *ioaddr = np->base;
1630 u16 reg0, reg1, reg4, reg5;
1631 u32 new_tx_mode;
1632 u32 new_intr_timer_ctrl;
1633
1634 /* reset status first */
1635 mdio_read(dev, np->phys[0], MII_BMCR);
1636 mdio_read(dev, np->phys[0], MII_BMSR);
1637
1638 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1639 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1640
1641 if (reg1 & BMSR_LSTATUS) {
1642 /* link is up */
1643 if (reg0 & BMCR_ANENABLE) {
1644 /* autonegotiation is enabled */
1645 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1646 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1647 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1648 np->speed100 = 1;
1649 np->mii_if.full_duplex = 1;
1650 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1651 np->speed100 = 1;
1652 np->mii_if.full_duplex = 0;
1653 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1654 np->speed100 = 0;
1655 np->mii_if.full_duplex = 1;
1656 } else {
1657 np->speed100 = 0;
1658 np->mii_if.full_duplex = 0;
1659 }
1660 } else {
1661 /* autonegotiation is disabled */
1662 if (reg0 & BMCR_SPEED100)
1663 np->speed100 = 1;
1664 else
1665 np->speed100 = 0;
1666 if (reg0 & BMCR_FULLDPLX)
1667 np->mii_if.full_duplex = 1;
1668 else
1669 np->mii_if.full_duplex = 0;
1670 }
1671 netif_carrier_on(dev);
1672 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1673 dev->name,
1674 np->speed100 ? "100" : "10",
1675 np->mii_if.full_duplex ? "full" : "half");
1676
1677 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1678 if (np->mii_if.full_duplex)
1679 new_tx_mode |= FullDuplex;
1680 if (np->tx_mode != new_tx_mode) {
1681 np->tx_mode = new_tx_mode;
1682 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1683 udelay(1000);
1684 writel(np->tx_mode, ioaddr + TxMode);
1685 }
1686
1687 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1688 if (np->speed100)
1689 new_intr_timer_ctrl |= Timer10X;
1690 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1691 np->intr_timer_ctrl = new_intr_timer_ctrl;
1692 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1693 }
1694 } else {
1695 netif_carrier_off(dev);
1696 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1697 }
1698 }
1699
1700
1701 static void netdev_error(struct net_device *dev, int intr_status)
1702 {
1703 struct netdev_private *np = netdev_priv(dev);
1704
1705 /* Came close to underrunning the Tx FIFO, increase threshold. */
1706 if (intr_status & IntrTxDataLow) {
1707 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1708 writel(++np->tx_threshold, np->base + TxThreshold);
1709 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1710 dev->name, np->tx_threshold * 16);
1711 } else
1712 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1713 }
1714 if (intr_status & IntrRxGFPDead) {
1715 dev->stats.rx_fifo_errors++;
1716 dev->stats.rx_errors++;
1717 }
1718 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1719 dev->stats.tx_fifo_errors++;
1720 dev->stats.tx_errors++;
1721 }
1722 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1723 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1724 dev->name, intr_status);
1725 }
1726
1727
1728 static struct net_device_stats *get_stats(struct net_device *dev)
1729 {
1730 struct netdev_private *np = netdev_priv(dev);
1731 void __iomem *ioaddr = np->base;
1732
1733 /* This adapter architecture needs no SMP locks. */
1734 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1735 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1736 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1737 dev->stats.tx_aborted_errors =
1738 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1739 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1740 dev->stats.collisions =
1741 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1742
1743 /* The chip only need report frame silently dropped. */
1744 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1745 writew(0, ioaddr + RxDMAStatus);
1746 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1747 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1748 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1749 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1750
1751 return &dev->stats;
1752 }
1753
1754
1755 static void set_rx_mode(struct net_device *dev)
1756 {
1757 struct netdev_private *np = netdev_priv(dev);
1758 void __iomem *ioaddr = np->base;
1759 u32 rx_mode = MinVLANPrio;
1760 struct netdev_hw_addr *ha;
1761 int i;
1762 #ifdef VLAN_SUPPORT
1763
1764 rx_mode |= VlanMode;
1765 if (np->vlgrp) {
1766 int vlan_count = 0;
1767 void __iomem *filter_addr = ioaddr + HashTable + 8;
1768 for (i = 0; i < VLAN_VID_MASK; i++) {
1769 if (vlan_group_get_device(np->vlgrp, i)) {
1770 if (vlan_count >= 32)
1771 break;
1772 writew(i, filter_addr);
1773 filter_addr += 16;
1774 vlan_count++;
1775 }
1776 }
1777 if (i == VLAN_VID_MASK) {
1778 rx_mode |= PerfectFilterVlan;
1779 while (vlan_count < 32) {
1780 writew(0, filter_addr);
1781 filter_addr += 16;
1782 vlan_count++;
1783 }
1784 }
1785 }
1786 #endif /* VLAN_SUPPORT */
1787
1788 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1789 rx_mode |= AcceptAll;
1790 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1791 (dev->flags & IFF_ALLMULTI)) {
1792 /* Too many to match, or accept all multicasts. */
1793 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1794 } else if (netdev_mc_count(dev) <= 14) {
1795 /* Use the 16 element perfect filter, skip first two entries. */
1796 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1797 __be16 *eaddrs;
1798 netdev_for_each_mc_addr(ha, dev) {
1799 eaddrs = (__be16 *) ha->addr;
1800 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1801 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1802 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1803 }
1804 eaddrs = (__be16 *)dev->dev_addr;
1805 i = netdev_mc_count(dev) + 2;
1806 while (i++ < 16) {
1807 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1808 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1809 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1810 }
1811 rx_mode |= AcceptBroadcast|PerfectFilter;
1812 } else {
1813 /* Must use a multicast hash table. */
1814 void __iomem *filter_addr;
1815 __be16 *eaddrs;
1816 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1817
1818 memset(mc_filter, 0, sizeof(mc_filter));
1819 netdev_for_each_mc_addr(ha, dev) {
1820 /* The chip uses the upper 9 CRC bits
1821 as index into the hash table */
1822 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1823 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1824
1825 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1826 }
1827 /* Clear the perfect filter list, skip first two entries. */
1828 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1829 eaddrs = (__be16 *)dev->dev_addr;
1830 for (i = 2; i < 16; i++) {
1831 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1832 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1833 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1834 }
1835 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1836 writew(mc_filter[i], filter_addr);
1837 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1838 }
1839 writel(rx_mode, ioaddr + RxFilterMode);
1840 }
1841
1842 static int check_if_running(struct net_device *dev)
1843 {
1844 if (!netif_running(dev))
1845 return -EINVAL;
1846 return 0;
1847 }
1848
1849 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1850 {
1851 struct netdev_private *np = netdev_priv(dev);
1852 strcpy(info->driver, DRV_NAME);
1853 strcpy(info->version, DRV_VERSION);
1854 strcpy(info->bus_info, pci_name(np->pci_dev));
1855 }
1856
1857 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1858 {
1859 struct netdev_private *np = netdev_priv(dev);
1860 spin_lock_irq(&np->lock);
1861 mii_ethtool_gset(&np->mii_if, ecmd);
1862 spin_unlock_irq(&np->lock);
1863 return 0;
1864 }
1865
1866 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1867 {
1868 struct netdev_private *np = netdev_priv(dev);
1869 int res;
1870 spin_lock_irq(&np->lock);
1871 res = mii_ethtool_sset(&np->mii_if, ecmd);
1872 spin_unlock_irq(&np->lock);
1873 check_duplex(dev);
1874 return res;
1875 }
1876
1877 static int nway_reset(struct net_device *dev)
1878 {
1879 struct netdev_private *np = netdev_priv(dev);
1880 return mii_nway_restart(&np->mii_if);
1881 }
1882
1883 static u32 get_link(struct net_device *dev)
1884 {
1885 struct netdev_private *np = netdev_priv(dev);
1886 return mii_link_ok(&np->mii_if);
1887 }
1888
1889 static u32 get_msglevel(struct net_device *dev)
1890 {
1891 return debug;
1892 }
1893
1894 static void set_msglevel(struct net_device *dev, u32 val)
1895 {
1896 debug = val;
1897 }
1898
1899 static const struct ethtool_ops ethtool_ops = {
1900 .begin = check_if_running,
1901 .get_drvinfo = get_drvinfo,
1902 .get_settings = get_settings,
1903 .set_settings = set_settings,
1904 .nway_reset = nway_reset,
1905 .get_link = get_link,
1906 .get_msglevel = get_msglevel,
1907 .set_msglevel = set_msglevel,
1908 };
1909
1910 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1911 {
1912 struct netdev_private *np = netdev_priv(dev);
1913 struct mii_ioctl_data *data = if_mii(rq);
1914 int rc;
1915
1916 if (!netif_running(dev))
1917 return -EINVAL;
1918
1919 spin_lock_irq(&np->lock);
1920 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1921 spin_unlock_irq(&np->lock);
1922
1923 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1924 check_duplex(dev);
1925
1926 return rc;
1927 }
1928
1929 static int netdev_close(struct net_device *dev)
1930 {
1931 struct netdev_private *np = netdev_priv(dev);
1932 void __iomem *ioaddr = np->base;
1933 int i;
1934
1935 netif_stop_queue(dev);
1936
1937 napi_disable(&np->napi);
1938
1939 if (debug > 1) {
1940 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1941 dev->name, (int) readl(ioaddr + IntrStatus));
1942 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1943 dev->name, np->cur_tx, np->dirty_tx,
1944 np->cur_rx, np->dirty_rx);
1945 }
1946
1947 /* Disable interrupts by clearing the interrupt mask. */
1948 writel(0, ioaddr + IntrEnable);
1949
1950 /* Stop the chip's Tx and Rx processes. */
1951 writel(0, ioaddr + GenCtrl);
1952 readl(ioaddr + GenCtrl);
1953
1954 if (debug > 5) {
1955 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1956 (long long) np->tx_ring_dma);
1957 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1958 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1959 i, le32_to_cpu(np->tx_ring[i].status),
1960 (long long) dma_to_cpu(np->tx_ring[i].addr),
1961 le32_to_cpu(np->tx_done_q[i].status));
1962 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1963 (long long) np->rx_ring_dma, np->rx_done_q);
1964 if (np->rx_done_q)
1965 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1966 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1967 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1968 }
1969 }
1970
1971 free_irq(dev->irq, dev);
1972
1973 /* Free all the skbuffs in the Rx queue. */
1974 for (i = 0; i < RX_RING_SIZE; i++) {
1975 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1976 if (np->rx_info[i].skb != NULL) {
1977 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1978 dev_kfree_skb(np->rx_info[i].skb);
1979 }
1980 np->rx_info[i].skb = NULL;
1981 np->rx_info[i].mapping = 0;
1982 }
1983 for (i = 0; i < TX_RING_SIZE; i++) {
1984 struct sk_buff *skb = np->tx_info[i].skb;
1985 if (skb == NULL)
1986 continue;
1987 pci_unmap_single(np->pci_dev,
1988 np->tx_info[i].mapping,
1989 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1990 np->tx_info[i].mapping = 0;
1991 dev_kfree_skb(skb);
1992 np->tx_info[i].skb = NULL;
1993 }
1994
1995 return 0;
1996 }
1997
1998 #ifdef CONFIG_PM
1999 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2000 {
2001 struct net_device *dev = pci_get_drvdata(pdev);
2002
2003 if (netif_running(dev)) {
2004 netif_device_detach(dev);
2005 netdev_close(dev);
2006 }
2007
2008 pci_save_state(pdev);
2009 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2010
2011 return 0;
2012 }
2013
2014 static int starfire_resume(struct pci_dev *pdev)
2015 {
2016 struct net_device *dev = pci_get_drvdata(pdev);
2017
2018 pci_set_power_state(pdev, PCI_D0);
2019 pci_restore_state(pdev);
2020
2021 if (netif_running(dev)) {
2022 netdev_open(dev);
2023 netif_device_attach(dev);
2024 }
2025
2026 return 0;
2027 }
2028 #endif /* CONFIG_PM */
2029
2030
2031 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2032 {
2033 struct net_device *dev = pci_get_drvdata(pdev);
2034 struct netdev_private *np = netdev_priv(dev);
2035
2036 BUG_ON(!dev);
2037
2038 unregister_netdev(dev);
2039
2040 if (np->queue_mem)
2041 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2042
2043
2044 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2045 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2046 pci_disable_device(pdev);
2047
2048 iounmap(np->base);
2049 pci_release_regions(pdev);
2050
2051 pci_set_drvdata(pdev, NULL);
2052 free_netdev(dev); /* Will also free np!! */
2053 }
2054
2055
2056 static struct pci_driver starfire_driver = {
2057 .name = DRV_NAME,
2058 .probe = starfire_init_one,
2059 .remove = __devexit_p(starfire_remove_one),
2060 #ifdef CONFIG_PM
2061 .suspend = starfire_suspend,
2062 .resume = starfire_resume,
2063 #endif /* CONFIG_PM */
2064 .id_table = starfire_pci_tbl,
2065 };
2066
2067
2068 static int __init starfire_init (void)
2069 {
2070 /* when a module, this is printed whether or not devices are found in probe */
2071 #ifdef MODULE
2072 printk(version);
2073
2074 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2075 #endif
2076
2077 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2078
2079 return pci_register_driver(&starfire_driver);
2080 }
2081
2082
2083 static void __exit starfire_cleanup (void)
2084 {
2085 pci_unregister_driver (&starfire_driver);
2086 }
2087
2088
2089 module_init(starfire_init);
2090 module_exit(starfire_cleanup);
2091
2092
2093 /*
2094 * Local variables:
2095 * c-basic-offset: 8
2096 * tab-width: 8
2097 * End:
2098 */