Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / smc91x.c
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
29 *
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
32 *
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
35 *
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@fluxnic.net>
39 * Russell King <rmk@arm.linux.org.uk>
40 *
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
59 */
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
62
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG 0
66 #endif
67
68
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/interrupt.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88
89 #include <asm/io.h>
90
91 #include "smc91x.h"
92
93 #ifndef SMC_NOWAIT
94 # define SMC_NOWAIT 0
95 #endif
96 static int nowait = SMC_NOWAIT;
97 module_param(nowait, int, 0400);
98 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
99
100 /*
101 * Transmit timeout, default 5 seconds.
102 */
103 static int watchdog = 1000;
104 module_param(watchdog, int, 0400);
105 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
106
107 MODULE_LICENSE("GPL");
108 MODULE_ALIAS("platform:smc91x");
109
110 /*
111 * The internal workings of the driver. If you are changing anything
112 * here with the SMC stuff, you should have the datasheet and know
113 * what you are doing.
114 */
115 #define CARDNAME "smc91x"
116
117 /*
118 * Use power-down feature of the chip
119 */
120 #define POWER_DOWN 1
121
122 /*
123 * Wait time for memory to be free. This probably shouldn't be
124 * tuned that much, as waiting for this means nothing else happens
125 * in the system
126 */
127 #define MEMORY_WAIT_TIME 16
128
129 /*
130 * The maximum number of processing loops allowed for each call to the
131 * IRQ handler.
132 */
133 #define MAX_IRQ_LOOPS 8
134
135 /*
136 * This selects whether TX packets are sent one by one to the SMC91x internal
137 * memory and throttled until transmission completes. This may prevent
138 * RX overruns a litle by keeping much of the memory free for RX packets
139 * but to the expense of reduced TX throughput and increased IRQ overhead.
140 * Note this is not a cure for a too slow data bus or too high IRQ latency.
141 */
142 #define THROTTLE_TX_PKTS 0
143
144 /*
145 * The MII clock high/low times. 2x this number gives the MII clock period
146 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
147 */
148 #define MII_DELAY 1
149
150 #if SMC_DEBUG > 0
151 #define DBG(n, args...) \
152 do { \
153 if (SMC_DEBUG >= (n)) \
154 printk(args); \
155 } while (0)
156
157 #define PRINTK(args...) printk(args)
158 #else
159 #define DBG(n, args...) do { } while(0)
160 #define PRINTK(args...) printk(KERN_DEBUG args)
161 #endif
162
163 #if SMC_DEBUG > 3
164 static void PRINT_PKT(u_char *buf, int length)
165 {
166 int i;
167 int remainder;
168 int lines;
169
170 lines = length / 16;
171 remainder = length % 16;
172
173 for (i = 0; i < lines ; i ++) {
174 int cur;
175 for (cur = 0; cur < 8; cur++) {
176 u_char a, b;
177 a = *buf++;
178 b = *buf++;
179 printk("%02x%02x ", a, b);
180 }
181 printk("\n");
182 }
183 for (i = 0; i < remainder/2 ; i++) {
184 u_char a, b;
185 a = *buf++;
186 b = *buf++;
187 printk("%02x%02x ", a, b);
188 }
189 printk("\n");
190 }
191 #else
192 #define PRINT_PKT(x...) do { } while(0)
193 #endif
194
195
196 /* this enables an interrupt in the interrupt mask register */
197 #define SMC_ENABLE_INT(lp, x) do { \
198 unsigned char mask; \
199 unsigned long smc_enable_flags; \
200 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
201 mask = SMC_GET_INT_MASK(lp); \
202 mask |= (x); \
203 SMC_SET_INT_MASK(lp, mask); \
204 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
205 } while (0)
206
207 /* this disables an interrupt from the interrupt mask register */
208 #define SMC_DISABLE_INT(lp, x) do { \
209 unsigned char mask; \
210 unsigned long smc_disable_flags; \
211 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
212 mask = SMC_GET_INT_MASK(lp); \
213 mask &= ~(x); \
214 SMC_SET_INT_MASK(lp, mask); \
215 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
216 } while (0)
217
218 /*
219 * Wait while MMU is busy. This is usually in the order of a few nanosecs
220 * if at all, but let's avoid deadlocking the system if the hardware
221 * decides to go south.
222 */
223 #define SMC_WAIT_MMU_BUSY(lp) do { \
224 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
225 unsigned long timeout = jiffies + 2; \
226 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
227 if (time_after(jiffies, timeout)) { \
228 printk("%s: timeout %s line %d\n", \
229 dev->name, __FILE__, __LINE__); \
230 break; \
231 } \
232 cpu_relax(); \
233 } \
234 } \
235 } while (0)
236
237
238 /*
239 * this does a soft reset on the device
240 */
241 static void smc_reset(struct net_device *dev)
242 {
243 struct smc_local *lp = netdev_priv(dev);
244 void __iomem *ioaddr = lp->base;
245 unsigned int ctl, cfg;
246 struct sk_buff *pending_skb;
247
248 DBG(2, "%s: %s\n", dev->name, __func__);
249
250 /* Disable all interrupts, block TX tasklet */
251 spin_lock_irq(&lp->lock);
252 SMC_SELECT_BANK(lp, 2);
253 SMC_SET_INT_MASK(lp, 0);
254 pending_skb = lp->pending_tx_skb;
255 lp->pending_tx_skb = NULL;
256 spin_unlock_irq(&lp->lock);
257
258 /* free any pending tx skb */
259 if (pending_skb) {
260 dev_kfree_skb(pending_skb);
261 dev->stats.tx_errors++;
262 dev->stats.tx_aborted_errors++;
263 }
264
265 /*
266 * This resets the registers mostly to defaults, but doesn't
267 * affect EEPROM. That seems unnecessary
268 */
269 SMC_SELECT_BANK(lp, 0);
270 SMC_SET_RCR(lp, RCR_SOFTRST);
271
272 /*
273 * Setup the Configuration Register
274 * This is necessary because the CONFIG_REG is not affected
275 * by a soft reset
276 */
277 SMC_SELECT_BANK(lp, 1);
278
279 cfg = CONFIG_DEFAULT;
280
281 /*
282 * Setup for fast accesses if requested. If the card/system
283 * can't handle it then there will be no recovery except for
284 * a hard reset or power cycle
285 */
286 if (lp->cfg.flags & SMC91X_NOWAIT)
287 cfg |= CONFIG_NO_WAIT;
288
289 /*
290 * Release from possible power-down state
291 * Configuration register is not affected by Soft Reset
292 */
293 cfg |= CONFIG_EPH_POWER_EN;
294
295 SMC_SET_CONFIG(lp, cfg);
296
297 /* this should pause enough for the chip to be happy */
298 /*
299 * elaborate? What does the chip _need_? --jgarzik
300 *
301 * This seems to be undocumented, but something the original
302 * driver(s) have always done. Suspect undocumented timing
303 * info/determined empirically. --rmk
304 */
305 udelay(1);
306
307 /* Disable transmit and receive functionality */
308 SMC_SELECT_BANK(lp, 0);
309 SMC_SET_RCR(lp, RCR_CLEAR);
310 SMC_SET_TCR(lp, TCR_CLEAR);
311
312 SMC_SELECT_BANK(lp, 1);
313 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
314
315 /*
316 * Set the control register to automatically release successfully
317 * transmitted packets, to make the best use out of our limited
318 * memory
319 */
320 if(!THROTTLE_TX_PKTS)
321 ctl |= CTL_AUTO_RELEASE;
322 else
323 ctl &= ~CTL_AUTO_RELEASE;
324 SMC_SET_CTL(lp, ctl);
325
326 /* Reset the MMU */
327 SMC_SELECT_BANK(lp, 2);
328 SMC_SET_MMU_CMD(lp, MC_RESET);
329 SMC_WAIT_MMU_BUSY(lp);
330 }
331
332 /*
333 * Enable Interrupts, Receive, and Transmit
334 */
335 static void smc_enable(struct net_device *dev)
336 {
337 struct smc_local *lp = netdev_priv(dev);
338 void __iomem *ioaddr = lp->base;
339 int mask;
340
341 DBG(2, "%s: %s\n", dev->name, __func__);
342
343 /* see the header file for options in TCR/RCR DEFAULT */
344 SMC_SELECT_BANK(lp, 0);
345 SMC_SET_TCR(lp, lp->tcr_cur_mode);
346 SMC_SET_RCR(lp, lp->rcr_cur_mode);
347
348 SMC_SELECT_BANK(lp, 1);
349 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
350
351 /* now, enable interrupts */
352 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
353 if (lp->version >= (CHIP_91100 << 4))
354 mask |= IM_MDINT;
355 SMC_SELECT_BANK(lp, 2);
356 SMC_SET_INT_MASK(lp, mask);
357
358 /*
359 * From this point the register bank must _NOT_ be switched away
360 * to something else than bank 2 without proper locking against
361 * races with any tasklet or interrupt handlers until smc_shutdown()
362 * or smc_reset() is called.
363 */
364 }
365
366 /*
367 * this puts the device in an inactive state
368 */
369 static void smc_shutdown(struct net_device *dev)
370 {
371 struct smc_local *lp = netdev_priv(dev);
372 void __iomem *ioaddr = lp->base;
373 struct sk_buff *pending_skb;
374
375 DBG(2, "%s: %s\n", CARDNAME, __func__);
376
377 /* no more interrupts for me */
378 spin_lock_irq(&lp->lock);
379 SMC_SELECT_BANK(lp, 2);
380 SMC_SET_INT_MASK(lp, 0);
381 pending_skb = lp->pending_tx_skb;
382 lp->pending_tx_skb = NULL;
383 spin_unlock_irq(&lp->lock);
384 if (pending_skb)
385 dev_kfree_skb(pending_skb);
386
387 /* and tell the card to stay away from that nasty outside world */
388 SMC_SELECT_BANK(lp, 0);
389 SMC_SET_RCR(lp, RCR_CLEAR);
390 SMC_SET_TCR(lp, TCR_CLEAR);
391
392 #ifdef POWER_DOWN
393 /* finally, shut the chip down */
394 SMC_SELECT_BANK(lp, 1);
395 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
396 #endif
397 }
398
399 /*
400 * This is the procedure to handle the receipt of a packet.
401 */
402 static inline void smc_rcv(struct net_device *dev)
403 {
404 struct smc_local *lp = netdev_priv(dev);
405 void __iomem *ioaddr = lp->base;
406 unsigned int packet_number, status, packet_len;
407
408 DBG(3, "%s: %s\n", dev->name, __func__);
409
410 packet_number = SMC_GET_RXFIFO(lp);
411 if (unlikely(packet_number & RXFIFO_REMPTY)) {
412 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
413 return;
414 }
415
416 /* read from start of packet */
417 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
418
419 /* First two words are status and packet length */
420 SMC_GET_PKT_HDR(lp, status, packet_len);
421 packet_len &= 0x07ff; /* mask off top bits */
422 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
423 dev->name, packet_number, status,
424 packet_len, packet_len);
425
426 back:
427 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
428 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
429 /* accept VLAN packets */
430 status &= ~RS_TOOLONG;
431 goto back;
432 }
433 if (packet_len < 6) {
434 /* bloody hardware */
435 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
436 dev->name, packet_len, status);
437 status |= RS_TOOSHORT;
438 }
439 SMC_WAIT_MMU_BUSY(lp);
440 SMC_SET_MMU_CMD(lp, MC_RELEASE);
441 dev->stats.rx_errors++;
442 if (status & RS_ALGNERR)
443 dev->stats.rx_frame_errors++;
444 if (status & (RS_TOOSHORT | RS_TOOLONG))
445 dev->stats.rx_length_errors++;
446 if (status & RS_BADCRC)
447 dev->stats.rx_crc_errors++;
448 } else {
449 struct sk_buff *skb;
450 unsigned char *data;
451 unsigned int data_len;
452
453 /* set multicast stats */
454 if (status & RS_MULTICAST)
455 dev->stats.multicast++;
456
457 /*
458 * Actual payload is packet_len - 6 (or 5 if odd byte).
459 * We want skb_reserve(2) and the final ctrl word
460 * (2 bytes, possibly containing the payload odd byte).
461 * Furthermore, we add 2 bytes to allow rounding up to
462 * multiple of 4 bytes on 32 bit buses.
463 * Hence packet_len - 6 + 2 + 2 + 2.
464 */
465 skb = dev_alloc_skb(packet_len);
466 if (unlikely(skb == NULL)) {
467 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
468 dev->name);
469 SMC_WAIT_MMU_BUSY(lp);
470 SMC_SET_MMU_CMD(lp, MC_RELEASE);
471 dev->stats.rx_dropped++;
472 return;
473 }
474
475 /* Align IP header to 32 bits */
476 skb_reserve(skb, 2);
477
478 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
479 if (lp->version == 0x90)
480 status |= RS_ODDFRAME;
481
482 /*
483 * If odd length: packet_len - 5,
484 * otherwise packet_len - 6.
485 * With the trailing ctrl byte it's packet_len - 4.
486 */
487 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
488 data = skb_put(skb, data_len);
489 SMC_PULL_DATA(lp, data, packet_len - 4);
490
491 SMC_WAIT_MMU_BUSY(lp);
492 SMC_SET_MMU_CMD(lp, MC_RELEASE);
493
494 PRINT_PKT(data, packet_len - 4);
495
496 skb->protocol = eth_type_trans(skb, dev);
497 netif_rx(skb);
498 dev->stats.rx_packets++;
499 dev->stats.rx_bytes += data_len;
500 }
501 }
502
503 #ifdef CONFIG_SMP
504 /*
505 * On SMP we have the following problem:
506 *
507 * A = smc_hardware_send_pkt()
508 * B = smc_hard_start_xmit()
509 * C = smc_interrupt()
510 *
511 * A and B can never be executed simultaneously. However, at least on UP,
512 * it is possible (and even desirable) for C to interrupt execution of
513 * A or B in order to have better RX reliability and avoid overruns.
514 * C, just like A and B, must have exclusive access to the chip and
515 * each of them must lock against any other concurrent access.
516 * Unfortunately this is not possible to have C suspend execution of A or
517 * B taking place on another CPU. On UP this is no an issue since A and B
518 * are run from softirq context and C from hard IRQ context, and there is
519 * no other CPU where concurrent access can happen.
520 * If ever there is a way to force at least B and C to always be executed
521 * on the same CPU then we could use read/write locks to protect against
522 * any other concurrent access and C would always interrupt B. But life
523 * isn't that easy in a SMP world...
524 */
525 #define smc_special_trylock(lock, flags) \
526 ({ \
527 int __ret; \
528 local_irq_save(flags); \
529 __ret = spin_trylock(lock); \
530 if (!__ret) \
531 local_irq_restore(flags); \
532 __ret; \
533 })
534 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
535 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
536 #else
537 #define smc_special_trylock(lock, flags) (flags == flags)
538 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
539 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
540 #endif
541
542 /*
543 * This is called to actually send a packet to the chip.
544 */
545 static void smc_hardware_send_pkt(unsigned long data)
546 {
547 struct net_device *dev = (struct net_device *)data;
548 struct smc_local *lp = netdev_priv(dev);
549 void __iomem *ioaddr = lp->base;
550 struct sk_buff *skb;
551 unsigned int packet_no, len;
552 unsigned char *buf;
553 unsigned long flags;
554
555 DBG(3, "%s: %s\n", dev->name, __func__);
556
557 if (!smc_special_trylock(&lp->lock, flags)) {
558 netif_stop_queue(dev);
559 tasklet_schedule(&lp->tx_task);
560 return;
561 }
562
563 skb = lp->pending_tx_skb;
564 if (unlikely(!skb)) {
565 smc_special_unlock(&lp->lock, flags);
566 return;
567 }
568 lp->pending_tx_skb = NULL;
569
570 packet_no = SMC_GET_AR(lp);
571 if (unlikely(packet_no & AR_FAILED)) {
572 printk("%s: Memory allocation failed.\n", dev->name);
573 dev->stats.tx_errors++;
574 dev->stats.tx_fifo_errors++;
575 smc_special_unlock(&lp->lock, flags);
576 goto done;
577 }
578
579 /* point to the beginning of the packet */
580 SMC_SET_PN(lp, packet_no);
581 SMC_SET_PTR(lp, PTR_AUTOINC);
582
583 buf = skb->data;
584 len = skb->len;
585 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
586 dev->name, packet_no, len, len, buf);
587 PRINT_PKT(buf, len);
588
589 /*
590 * Send the packet length (+6 for status words, length, and ctl.
591 * The card will pad to 64 bytes with zeroes if packet is too small.
592 */
593 SMC_PUT_PKT_HDR(lp, 0, len + 6);
594
595 /* send the actual data */
596 SMC_PUSH_DATA(lp, buf, len & ~1);
597
598 /* Send final ctl word with the last byte if there is one */
599 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
600
601 /*
602 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
603 * have the effect of having at most one packet queued for TX
604 * in the chip's memory at all time.
605 *
606 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
607 * when memory allocation (MC_ALLOC) does not succeed right away.
608 */
609 if (THROTTLE_TX_PKTS)
610 netif_stop_queue(dev);
611
612 /* queue the packet for TX */
613 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
614 smc_special_unlock(&lp->lock, flags);
615
616 dev->trans_start = jiffies;
617 dev->stats.tx_packets++;
618 dev->stats.tx_bytes += len;
619
620 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
621
622 done: if (!THROTTLE_TX_PKTS)
623 netif_wake_queue(dev);
624
625 dev_kfree_skb(skb);
626 }
627
628 /*
629 * Since I am not sure if I will have enough room in the chip's ram
630 * to store the packet, I call this routine which either sends it
631 * now, or set the card to generates an interrupt when ready
632 * for the packet.
633 */
634 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
635 {
636 struct smc_local *lp = netdev_priv(dev);
637 void __iomem *ioaddr = lp->base;
638 unsigned int numPages, poll_count, status;
639 unsigned long flags;
640
641 DBG(3, "%s: %s\n", dev->name, __func__);
642
643 BUG_ON(lp->pending_tx_skb != NULL);
644
645 /*
646 * The MMU wants the number of pages to be the number of 256 bytes
647 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
648 *
649 * The 91C111 ignores the size bits, but earlier models don't.
650 *
651 * Pkt size for allocating is data length +6 (for additional status
652 * words, length and ctl)
653 *
654 * If odd size then last byte is included in ctl word.
655 */
656 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
657 if (unlikely(numPages > 7)) {
658 printk("%s: Far too big packet error.\n", dev->name);
659 dev->stats.tx_errors++;
660 dev->stats.tx_dropped++;
661 dev_kfree_skb(skb);
662 return NETDEV_TX_OK;
663 }
664
665 smc_special_lock(&lp->lock, flags);
666
667 /* now, try to allocate the memory */
668 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
669
670 /*
671 * Poll the chip for a short amount of time in case the
672 * allocation succeeds quickly.
673 */
674 poll_count = MEMORY_WAIT_TIME;
675 do {
676 status = SMC_GET_INT(lp);
677 if (status & IM_ALLOC_INT) {
678 SMC_ACK_INT(lp, IM_ALLOC_INT);
679 break;
680 }
681 } while (--poll_count);
682
683 smc_special_unlock(&lp->lock, flags);
684
685 lp->pending_tx_skb = skb;
686 if (!poll_count) {
687 /* oh well, wait until the chip finds memory later */
688 netif_stop_queue(dev);
689 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
690 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
691 } else {
692 /*
693 * Allocation succeeded: push packet to the chip's own memory
694 * immediately.
695 */
696 smc_hardware_send_pkt((unsigned long)dev);
697 }
698
699 return NETDEV_TX_OK;
700 }
701
702 /*
703 * This handles a TX interrupt, which is only called when:
704 * - a TX error occurred, or
705 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
706 */
707 static void smc_tx(struct net_device *dev)
708 {
709 struct smc_local *lp = netdev_priv(dev);
710 void __iomem *ioaddr = lp->base;
711 unsigned int saved_packet, packet_no, tx_status, pkt_len;
712
713 DBG(3, "%s: %s\n", dev->name, __func__);
714
715 /* If the TX FIFO is empty then nothing to do */
716 packet_no = SMC_GET_TXFIFO(lp);
717 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
718 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
719 return;
720 }
721
722 /* select packet to read from */
723 saved_packet = SMC_GET_PN(lp);
724 SMC_SET_PN(lp, packet_no);
725
726 /* read the first word (status word) from this packet */
727 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
728 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
729 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
730 dev->name, tx_status, packet_no);
731
732 if (!(tx_status & ES_TX_SUC))
733 dev->stats.tx_errors++;
734
735 if (tx_status & ES_LOSTCARR)
736 dev->stats.tx_carrier_errors++;
737
738 if (tx_status & (ES_LATCOL | ES_16COL)) {
739 PRINTK("%s: %s occurred on last xmit\n", dev->name,
740 (tx_status & ES_LATCOL) ?
741 "late collision" : "too many collisions");
742 dev->stats.tx_window_errors++;
743 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
744 printk(KERN_INFO "%s: unexpectedly large number of "
745 "bad collisions. Please check duplex "
746 "setting.\n", dev->name);
747 }
748 }
749
750 /* kill the packet */
751 SMC_WAIT_MMU_BUSY(lp);
752 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
753
754 /* Don't restore Packet Number Reg until busy bit is cleared */
755 SMC_WAIT_MMU_BUSY(lp);
756 SMC_SET_PN(lp, saved_packet);
757
758 /* re-enable transmit */
759 SMC_SELECT_BANK(lp, 0);
760 SMC_SET_TCR(lp, lp->tcr_cur_mode);
761 SMC_SELECT_BANK(lp, 2);
762 }
763
764
765 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
766
767 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
768 {
769 struct smc_local *lp = netdev_priv(dev);
770 void __iomem *ioaddr = lp->base;
771 unsigned int mii_reg, mask;
772
773 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
774 mii_reg |= MII_MDOE;
775
776 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
777 if (val & mask)
778 mii_reg |= MII_MDO;
779 else
780 mii_reg &= ~MII_MDO;
781
782 SMC_SET_MII(lp, mii_reg);
783 udelay(MII_DELAY);
784 SMC_SET_MII(lp, mii_reg | MII_MCLK);
785 udelay(MII_DELAY);
786 }
787 }
788
789 static unsigned int smc_mii_in(struct net_device *dev, int bits)
790 {
791 struct smc_local *lp = netdev_priv(dev);
792 void __iomem *ioaddr = lp->base;
793 unsigned int mii_reg, mask, val;
794
795 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
796 SMC_SET_MII(lp, mii_reg);
797
798 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
799 if (SMC_GET_MII(lp) & MII_MDI)
800 val |= mask;
801
802 SMC_SET_MII(lp, mii_reg);
803 udelay(MII_DELAY);
804 SMC_SET_MII(lp, mii_reg | MII_MCLK);
805 udelay(MII_DELAY);
806 }
807
808 return val;
809 }
810
811 /*
812 * Reads a register from the MII Management serial interface
813 */
814 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
815 {
816 struct smc_local *lp = netdev_priv(dev);
817 void __iomem *ioaddr = lp->base;
818 unsigned int phydata;
819
820 SMC_SELECT_BANK(lp, 3);
821
822 /* Idle - 32 ones */
823 smc_mii_out(dev, 0xffffffff, 32);
824
825 /* Start code (01) + read (10) + phyaddr + phyreg */
826 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
827
828 /* Turnaround (2bits) + phydata */
829 phydata = smc_mii_in(dev, 18);
830
831 /* Return to idle state */
832 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
833
834 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
835 __func__, phyaddr, phyreg, phydata);
836
837 SMC_SELECT_BANK(lp, 2);
838 return phydata;
839 }
840
841 /*
842 * Writes a register to the MII Management serial interface
843 */
844 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
845 int phydata)
846 {
847 struct smc_local *lp = netdev_priv(dev);
848 void __iomem *ioaddr = lp->base;
849
850 SMC_SELECT_BANK(lp, 3);
851
852 /* Idle - 32 ones */
853 smc_mii_out(dev, 0xffffffff, 32);
854
855 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
856 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
857
858 /* Return to idle state */
859 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
860
861 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
862 __func__, phyaddr, phyreg, phydata);
863
864 SMC_SELECT_BANK(lp, 2);
865 }
866
867 /*
868 * Finds and reports the PHY address
869 */
870 static void smc_phy_detect(struct net_device *dev)
871 {
872 struct smc_local *lp = netdev_priv(dev);
873 int phyaddr;
874
875 DBG(2, "%s: %s\n", dev->name, __func__);
876
877 lp->phy_type = 0;
878
879 /*
880 * Scan all 32 PHY addresses if necessary, starting at
881 * PHY#1 to PHY#31, and then PHY#0 last.
882 */
883 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
884 unsigned int id1, id2;
885
886 /* Read the PHY identifiers */
887 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
888 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
889
890 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
891 dev->name, id1, id2);
892
893 /* Make sure it is a valid identifier */
894 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
895 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
896 /* Save the PHY's address */
897 lp->mii.phy_id = phyaddr & 31;
898 lp->phy_type = id1 << 16 | id2;
899 break;
900 }
901 }
902 }
903
904 /*
905 * Sets the PHY to a configuration as determined by the user
906 */
907 static int smc_phy_fixed(struct net_device *dev)
908 {
909 struct smc_local *lp = netdev_priv(dev);
910 void __iomem *ioaddr = lp->base;
911 int phyaddr = lp->mii.phy_id;
912 int bmcr, cfg1;
913
914 DBG(3, "%s: %s\n", dev->name, __func__);
915
916 /* Enter Link Disable state */
917 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
918 cfg1 |= PHY_CFG1_LNKDIS;
919 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
920
921 /*
922 * Set our fixed capabilities
923 * Disable auto-negotiation
924 */
925 bmcr = 0;
926
927 if (lp->ctl_rfduplx)
928 bmcr |= BMCR_FULLDPLX;
929
930 if (lp->ctl_rspeed == 100)
931 bmcr |= BMCR_SPEED100;
932
933 /* Write our capabilities to the phy control register */
934 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
935
936 /* Re-Configure the Receive/Phy Control register */
937 SMC_SELECT_BANK(lp, 0);
938 SMC_SET_RPC(lp, lp->rpc_cur_mode);
939 SMC_SELECT_BANK(lp, 2);
940
941 return 1;
942 }
943
944 /*
945 * smc_phy_reset - reset the phy
946 * @dev: net device
947 * @phy: phy address
948 *
949 * Issue a software reset for the specified PHY and
950 * wait up to 100ms for the reset to complete. We should
951 * not access the PHY for 50ms after issuing the reset.
952 *
953 * The time to wait appears to be dependent on the PHY.
954 *
955 * Must be called with lp->lock locked.
956 */
957 static int smc_phy_reset(struct net_device *dev, int phy)
958 {
959 struct smc_local *lp = netdev_priv(dev);
960 unsigned int bmcr;
961 int timeout;
962
963 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
964
965 for (timeout = 2; timeout; timeout--) {
966 spin_unlock_irq(&lp->lock);
967 msleep(50);
968 spin_lock_irq(&lp->lock);
969
970 bmcr = smc_phy_read(dev, phy, MII_BMCR);
971 if (!(bmcr & BMCR_RESET))
972 break;
973 }
974
975 return bmcr & BMCR_RESET;
976 }
977
978 /*
979 * smc_phy_powerdown - powerdown phy
980 * @dev: net device
981 *
982 * Power down the specified PHY
983 */
984 static void smc_phy_powerdown(struct net_device *dev)
985 {
986 struct smc_local *lp = netdev_priv(dev);
987 unsigned int bmcr;
988 int phy = lp->mii.phy_id;
989
990 if (lp->phy_type == 0)
991 return;
992
993 /* We need to ensure that no calls to smc_phy_configure are
994 pending.
995 */
996 cancel_work_sync(&lp->phy_configure);
997
998 bmcr = smc_phy_read(dev, phy, MII_BMCR);
999 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1000 }
1001
1002 /*
1003 * smc_phy_check_media - check the media status and adjust TCR
1004 * @dev: net device
1005 * @init: set true for initialisation
1006 *
1007 * Select duplex mode depending on negotiation state. This
1008 * also updates our carrier state.
1009 */
1010 static void smc_phy_check_media(struct net_device *dev, int init)
1011 {
1012 struct smc_local *lp = netdev_priv(dev);
1013 void __iomem *ioaddr = lp->base;
1014
1015 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1016 /* duplex state has changed */
1017 if (lp->mii.full_duplex) {
1018 lp->tcr_cur_mode |= TCR_SWFDUP;
1019 } else {
1020 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1021 }
1022
1023 SMC_SELECT_BANK(lp, 0);
1024 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1025 }
1026 }
1027
1028 /*
1029 * Configures the specified PHY through the MII management interface
1030 * using Autonegotiation.
1031 * Calls smc_phy_fixed() if the user has requested a certain config.
1032 * If RPC ANEG bit is set, the media selection is dependent purely on
1033 * the selection by the MII (either in the MII BMCR reg or the result
1034 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1035 * is controlled by the RPC SPEED and RPC DPLX bits.
1036 */
1037 static void smc_phy_configure(struct work_struct *work)
1038 {
1039 struct smc_local *lp =
1040 container_of(work, struct smc_local, phy_configure);
1041 struct net_device *dev = lp->dev;
1042 void __iomem *ioaddr = lp->base;
1043 int phyaddr = lp->mii.phy_id;
1044 int my_phy_caps; /* My PHY capabilities */
1045 int my_ad_caps; /* My Advertised capabilities */
1046 int status;
1047
1048 DBG(3, "%s:smc_program_phy()\n", dev->name);
1049
1050 spin_lock_irq(&lp->lock);
1051
1052 /*
1053 * We should not be called if phy_type is zero.
1054 */
1055 if (lp->phy_type == 0)
1056 goto smc_phy_configure_exit;
1057
1058 if (smc_phy_reset(dev, phyaddr)) {
1059 printk("%s: PHY reset timed out\n", dev->name);
1060 goto smc_phy_configure_exit;
1061 }
1062
1063 /*
1064 * Enable PHY Interrupts (for register 18)
1065 * Interrupts listed here are disabled
1066 */
1067 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1068 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1069 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1070 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1071
1072 /* Configure the Receive/Phy Control register */
1073 SMC_SELECT_BANK(lp, 0);
1074 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1075
1076 /* If the user requested no auto neg, then go set his request */
1077 if (lp->mii.force_media) {
1078 smc_phy_fixed(dev);
1079 goto smc_phy_configure_exit;
1080 }
1081
1082 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1083 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1084
1085 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1086 printk(KERN_INFO "Auto negotiation NOT supported\n");
1087 smc_phy_fixed(dev);
1088 goto smc_phy_configure_exit;
1089 }
1090
1091 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1092
1093 if (my_phy_caps & BMSR_100BASE4)
1094 my_ad_caps |= ADVERTISE_100BASE4;
1095 if (my_phy_caps & BMSR_100FULL)
1096 my_ad_caps |= ADVERTISE_100FULL;
1097 if (my_phy_caps & BMSR_100HALF)
1098 my_ad_caps |= ADVERTISE_100HALF;
1099 if (my_phy_caps & BMSR_10FULL)
1100 my_ad_caps |= ADVERTISE_10FULL;
1101 if (my_phy_caps & BMSR_10HALF)
1102 my_ad_caps |= ADVERTISE_10HALF;
1103
1104 /* Disable capabilities not selected by our user */
1105 if (lp->ctl_rspeed != 100)
1106 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1107
1108 if (!lp->ctl_rfduplx)
1109 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1110
1111 /* Update our Auto-Neg Advertisement Register */
1112 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1113 lp->mii.advertising = my_ad_caps;
1114
1115 /*
1116 * Read the register back. Without this, it appears that when
1117 * auto-negotiation is restarted, sometimes it isn't ready and
1118 * the link does not come up.
1119 */
1120 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1121
1122 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1123 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1124
1125 /* Restart auto-negotiation process in order to advertise my caps */
1126 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1127
1128 smc_phy_check_media(dev, 1);
1129
1130 smc_phy_configure_exit:
1131 SMC_SELECT_BANK(lp, 2);
1132 spin_unlock_irq(&lp->lock);
1133 }
1134
1135 /*
1136 * smc_phy_interrupt
1137 *
1138 * Purpose: Handle interrupts relating to PHY register 18. This is
1139 * called from the "hard" interrupt handler under our private spinlock.
1140 */
1141 static void smc_phy_interrupt(struct net_device *dev)
1142 {
1143 struct smc_local *lp = netdev_priv(dev);
1144 int phyaddr = lp->mii.phy_id;
1145 int phy18;
1146
1147 DBG(2, "%s: %s\n", dev->name, __func__);
1148
1149 if (lp->phy_type == 0)
1150 return;
1151
1152 for(;;) {
1153 smc_phy_check_media(dev, 0);
1154
1155 /* Read PHY Register 18, Status Output */
1156 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1157 if ((phy18 & PHY_INT_INT) == 0)
1158 break;
1159 }
1160 }
1161
1162 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1163
1164 static void smc_10bt_check_media(struct net_device *dev, int init)
1165 {
1166 struct smc_local *lp = netdev_priv(dev);
1167 void __iomem *ioaddr = lp->base;
1168 unsigned int old_carrier, new_carrier;
1169
1170 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1171
1172 SMC_SELECT_BANK(lp, 0);
1173 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1174 SMC_SELECT_BANK(lp, 2);
1175
1176 if (init || (old_carrier != new_carrier)) {
1177 if (!new_carrier) {
1178 netif_carrier_off(dev);
1179 } else {
1180 netif_carrier_on(dev);
1181 }
1182 if (netif_msg_link(lp))
1183 printk(KERN_INFO "%s: link %s\n", dev->name,
1184 new_carrier ? "up" : "down");
1185 }
1186 }
1187
1188 static void smc_eph_interrupt(struct net_device *dev)
1189 {
1190 struct smc_local *lp = netdev_priv(dev);
1191 void __iomem *ioaddr = lp->base;
1192 unsigned int ctl;
1193
1194 smc_10bt_check_media(dev, 0);
1195
1196 SMC_SELECT_BANK(lp, 1);
1197 ctl = SMC_GET_CTL(lp);
1198 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1199 SMC_SET_CTL(lp, ctl);
1200 SMC_SELECT_BANK(lp, 2);
1201 }
1202
1203 /*
1204 * This is the main routine of the driver, to handle the device when
1205 * it needs some attention.
1206 */
1207 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1208 {
1209 struct net_device *dev = dev_id;
1210 struct smc_local *lp = netdev_priv(dev);
1211 void __iomem *ioaddr = lp->base;
1212 int status, mask, timeout, card_stats;
1213 int saved_pointer;
1214
1215 DBG(3, "%s: %s\n", dev->name, __func__);
1216
1217 spin_lock(&lp->lock);
1218
1219 /* A preamble may be used when there is a potential race
1220 * between the interruptible transmit functions and this
1221 * ISR. */
1222 SMC_INTERRUPT_PREAMBLE;
1223
1224 saved_pointer = SMC_GET_PTR(lp);
1225 mask = SMC_GET_INT_MASK(lp);
1226 SMC_SET_INT_MASK(lp, 0);
1227
1228 /* set a timeout value, so I don't stay here forever */
1229 timeout = MAX_IRQ_LOOPS;
1230
1231 do {
1232 status = SMC_GET_INT(lp);
1233
1234 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1235 dev->name, status, mask,
1236 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1237 meminfo = SMC_GET_MIR(lp);
1238 SMC_SELECT_BANK(lp, 2); meminfo; }),
1239 SMC_GET_FIFO(lp));
1240
1241 status &= mask;
1242 if (!status)
1243 break;
1244
1245 if (status & IM_TX_INT) {
1246 /* do this before RX as it will free memory quickly */
1247 DBG(3, "%s: TX int\n", dev->name);
1248 smc_tx(dev);
1249 SMC_ACK_INT(lp, IM_TX_INT);
1250 if (THROTTLE_TX_PKTS)
1251 netif_wake_queue(dev);
1252 } else if (status & IM_RCV_INT) {
1253 DBG(3, "%s: RX irq\n", dev->name);
1254 smc_rcv(dev);
1255 } else if (status & IM_ALLOC_INT) {
1256 DBG(3, "%s: Allocation irq\n", dev->name);
1257 tasklet_hi_schedule(&lp->tx_task);
1258 mask &= ~IM_ALLOC_INT;
1259 } else if (status & IM_TX_EMPTY_INT) {
1260 DBG(3, "%s: TX empty\n", dev->name);
1261 mask &= ~IM_TX_EMPTY_INT;
1262
1263 /* update stats */
1264 SMC_SELECT_BANK(lp, 0);
1265 card_stats = SMC_GET_COUNTER(lp);
1266 SMC_SELECT_BANK(lp, 2);
1267
1268 /* single collisions */
1269 dev->stats.collisions += card_stats & 0xF;
1270 card_stats >>= 4;
1271
1272 /* multiple collisions */
1273 dev->stats.collisions += card_stats & 0xF;
1274 } else if (status & IM_RX_OVRN_INT) {
1275 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1276 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1277 eph_st = SMC_GET_EPH_STATUS(lp);
1278 SMC_SELECT_BANK(lp, 2); eph_st; }));
1279 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1280 dev->stats.rx_errors++;
1281 dev->stats.rx_fifo_errors++;
1282 } else if (status & IM_EPH_INT) {
1283 smc_eph_interrupt(dev);
1284 } else if (status & IM_MDINT) {
1285 SMC_ACK_INT(lp, IM_MDINT);
1286 smc_phy_interrupt(dev);
1287 } else if (status & IM_ERCV_INT) {
1288 SMC_ACK_INT(lp, IM_ERCV_INT);
1289 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1290 }
1291 } while (--timeout);
1292
1293 /* restore register states */
1294 SMC_SET_PTR(lp, saved_pointer);
1295 SMC_SET_INT_MASK(lp, mask);
1296 spin_unlock(&lp->lock);
1297
1298 #ifndef CONFIG_NET_POLL_CONTROLLER
1299 if (timeout == MAX_IRQ_LOOPS)
1300 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1301 dev->name, mask);
1302 #endif
1303 DBG(3, "%s: Interrupt done (%d loops)\n",
1304 dev->name, MAX_IRQ_LOOPS - timeout);
1305
1306 /*
1307 * We return IRQ_HANDLED unconditionally here even if there was
1308 * nothing to do. There is a possibility that a packet might
1309 * get enqueued into the chip right after TX_EMPTY_INT is raised
1310 * but just before the CPU acknowledges the IRQ.
1311 * Better take an unneeded IRQ in some occasions than complexifying
1312 * the code for all cases.
1313 */
1314 return IRQ_HANDLED;
1315 }
1316
1317 #ifdef CONFIG_NET_POLL_CONTROLLER
1318 /*
1319 * Polling receive - used by netconsole and other diagnostic tools
1320 * to allow network i/o with interrupts disabled.
1321 */
1322 static void smc_poll_controller(struct net_device *dev)
1323 {
1324 disable_irq(dev->irq);
1325 smc_interrupt(dev->irq, dev);
1326 enable_irq(dev->irq);
1327 }
1328 #endif
1329
1330 /* Our watchdog timed out. Called by the networking layer */
1331 static void smc_timeout(struct net_device *dev)
1332 {
1333 struct smc_local *lp = netdev_priv(dev);
1334 void __iomem *ioaddr = lp->base;
1335 int status, mask, eph_st, meminfo, fifo;
1336
1337 DBG(2, "%s: %s\n", dev->name, __func__);
1338
1339 spin_lock_irq(&lp->lock);
1340 status = SMC_GET_INT(lp);
1341 mask = SMC_GET_INT_MASK(lp);
1342 fifo = SMC_GET_FIFO(lp);
1343 SMC_SELECT_BANK(lp, 0);
1344 eph_st = SMC_GET_EPH_STATUS(lp);
1345 meminfo = SMC_GET_MIR(lp);
1346 SMC_SELECT_BANK(lp, 2);
1347 spin_unlock_irq(&lp->lock);
1348 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1349 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1350 dev->name, status, mask, meminfo, fifo, eph_st );
1351
1352 smc_reset(dev);
1353 smc_enable(dev);
1354
1355 /*
1356 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1357 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1358 * which calls schedule(). Hence we use a work queue.
1359 */
1360 if (lp->phy_type != 0)
1361 schedule_work(&lp->phy_configure);
1362
1363 /* We can accept TX packets again */
1364 dev->trans_start = jiffies;
1365 netif_wake_queue(dev);
1366 }
1367
1368 /*
1369 * This routine will, depending on the values passed to it,
1370 * either make it accept multicast packets, go into
1371 * promiscuous mode (for TCPDUMP and cousins) or accept
1372 * a select set of multicast packets
1373 */
1374 static void smc_set_multicast_list(struct net_device *dev)
1375 {
1376 struct smc_local *lp = netdev_priv(dev);
1377 void __iomem *ioaddr = lp->base;
1378 unsigned char multicast_table[8];
1379 int update_multicast = 0;
1380
1381 DBG(2, "%s: %s\n", dev->name, __func__);
1382
1383 if (dev->flags & IFF_PROMISC) {
1384 DBG(2, "%s: RCR_PRMS\n", dev->name);
1385 lp->rcr_cur_mode |= RCR_PRMS;
1386 }
1387
1388 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1389 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1390 when promiscuous mode is turned on.
1391 */
1392
1393 /*
1394 * Here, I am setting this to accept all multicast packets.
1395 * I don't need to zero the multicast table, because the flag is
1396 * checked before the table is
1397 */
1398 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1399 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1400 lp->rcr_cur_mode |= RCR_ALMUL;
1401 }
1402
1403 /*
1404 * This sets the internal hardware table to filter out unwanted
1405 * multicast packets before they take up memory.
1406 *
1407 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1408 * address are the offset into the table. If that bit is 1, then the
1409 * multicast packet is accepted. Otherwise, it's dropped silently.
1410 *
1411 * To use the 6 bits as an offset into the table, the high 3 bits are
1412 * the number of the 8 bit register, while the low 3 bits are the bit
1413 * within that register.
1414 */
1415 else if (dev->mc_count) {
1416 int i;
1417 struct dev_mc_list *cur_addr;
1418
1419 /* table for flipping the order of 3 bits */
1420 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1421
1422 /* start with a table of all zeros: reject all */
1423 memset(multicast_table, 0, sizeof(multicast_table));
1424
1425 cur_addr = dev->mc_list;
1426 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1427 int position;
1428
1429 /* do we have a pointer here? */
1430 if (!cur_addr)
1431 break;
1432 /* make sure this is a multicast address -
1433 shouldn't this be a given if we have it here ? */
1434 if (!(*cur_addr->dmi_addr & 1))
1435 continue;
1436
1437 /* only use the low order bits */
1438 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1439
1440 /* do some messy swapping to put the bit in the right spot */
1441 multicast_table[invert3[position&7]] |=
1442 (1<<invert3[(position>>3)&7]);
1443 }
1444
1445 /* be sure I get rid of flags I might have set */
1446 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1447
1448 /* now, the table can be loaded into the chipset */
1449 update_multicast = 1;
1450 } else {
1451 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1452 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1453
1454 /*
1455 * since I'm disabling all multicast entirely, I need to
1456 * clear the multicast list
1457 */
1458 memset(multicast_table, 0, sizeof(multicast_table));
1459 update_multicast = 1;
1460 }
1461
1462 spin_lock_irq(&lp->lock);
1463 SMC_SELECT_BANK(lp, 0);
1464 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1465 if (update_multicast) {
1466 SMC_SELECT_BANK(lp, 3);
1467 SMC_SET_MCAST(lp, multicast_table);
1468 }
1469 SMC_SELECT_BANK(lp, 2);
1470 spin_unlock_irq(&lp->lock);
1471 }
1472
1473
1474 /*
1475 * Open and Initialize the board
1476 *
1477 * Set up everything, reset the card, etc..
1478 */
1479 static int
1480 smc_open(struct net_device *dev)
1481 {
1482 struct smc_local *lp = netdev_priv(dev);
1483
1484 DBG(2, "%s: %s\n", dev->name, __func__);
1485
1486 /*
1487 * Check that the address is valid. If its not, refuse
1488 * to bring the device up. The user must specify an
1489 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1490 */
1491 if (!is_valid_ether_addr(dev->dev_addr)) {
1492 PRINTK("%s: no valid ethernet hw addr\n", __func__);
1493 return -EINVAL;
1494 }
1495
1496 /* Setup the default Register Modes */
1497 lp->tcr_cur_mode = TCR_DEFAULT;
1498 lp->rcr_cur_mode = RCR_DEFAULT;
1499 lp->rpc_cur_mode = RPC_DEFAULT |
1500 lp->cfg.leda << RPC_LSXA_SHFT |
1501 lp->cfg.ledb << RPC_LSXB_SHFT;
1502
1503 /*
1504 * If we are not using a MII interface, we need to
1505 * monitor our own carrier signal to detect faults.
1506 */
1507 if (lp->phy_type == 0)
1508 lp->tcr_cur_mode |= TCR_MON_CSN;
1509
1510 /* reset the hardware */
1511 smc_reset(dev);
1512 smc_enable(dev);
1513
1514 /* Configure the PHY, initialize the link state */
1515 if (lp->phy_type != 0)
1516 smc_phy_configure(&lp->phy_configure);
1517 else {
1518 spin_lock_irq(&lp->lock);
1519 smc_10bt_check_media(dev, 1);
1520 spin_unlock_irq(&lp->lock);
1521 }
1522
1523 netif_start_queue(dev);
1524 return 0;
1525 }
1526
1527 /*
1528 * smc_close
1529 *
1530 * this makes the board clean up everything that it can
1531 * and not talk to the outside world. Caused by
1532 * an 'ifconfig ethX down'
1533 */
1534 static int smc_close(struct net_device *dev)
1535 {
1536 struct smc_local *lp = netdev_priv(dev);
1537
1538 DBG(2, "%s: %s\n", dev->name, __func__);
1539
1540 netif_stop_queue(dev);
1541 netif_carrier_off(dev);
1542
1543 /* clear everything */
1544 smc_shutdown(dev);
1545 tasklet_kill(&lp->tx_task);
1546 smc_phy_powerdown(dev);
1547 return 0;
1548 }
1549
1550 /*
1551 * Ethtool support
1552 */
1553 static int
1554 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1555 {
1556 struct smc_local *lp = netdev_priv(dev);
1557 int ret;
1558
1559 cmd->maxtxpkt = 1;
1560 cmd->maxrxpkt = 1;
1561
1562 if (lp->phy_type != 0) {
1563 spin_lock_irq(&lp->lock);
1564 ret = mii_ethtool_gset(&lp->mii, cmd);
1565 spin_unlock_irq(&lp->lock);
1566 } else {
1567 cmd->supported = SUPPORTED_10baseT_Half |
1568 SUPPORTED_10baseT_Full |
1569 SUPPORTED_TP | SUPPORTED_AUI;
1570
1571 if (lp->ctl_rspeed == 10)
1572 cmd->speed = SPEED_10;
1573 else if (lp->ctl_rspeed == 100)
1574 cmd->speed = SPEED_100;
1575
1576 cmd->autoneg = AUTONEG_DISABLE;
1577 cmd->transceiver = XCVR_INTERNAL;
1578 cmd->port = 0;
1579 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1580
1581 ret = 0;
1582 }
1583
1584 return ret;
1585 }
1586
1587 static int
1588 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1589 {
1590 struct smc_local *lp = netdev_priv(dev);
1591 int ret;
1592
1593 if (lp->phy_type != 0) {
1594 spin_lock_irq(&lp->lock);
1595 ret = mii_ethtool_sset(&lp->mii, cmd);
1596 spin_unlock_irq(&lp->lock);
1597 } else {
1598 if (cmd->autoneg != AUTONEG_DISABLE ||
1599 cmd->speed != SPEED_10 ||
1600 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1601 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1602 return -EINVAL;
1603
1604 // lp->port = cmd->port;
1605 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1606
1607 // if (netif_running(dev))
1608 // smc_set_port(dev);
1609
1610 ret = 0;
1611 }
1612
1613 return ret;
1614 }
1615
1616 static void
1617 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1618 {
1619 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1620 strncpy(info->version, version, sizeof(info->version));
1621 strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1622 }
1623
1624 static int smc_ethtool_nwayreset(struct net_device *dev)
1625 {
1626 struct smc_local *lp = netdev_priv(dev);
1627 int ret = -EINVAL;
1628
1629 if (lp->phy_type != 0) {
1630 spin_lock_irq(&lp->lock);
1631 ret = mii_nway_restart(&lp->mii);
1632 spin_unlock_irq(&lp->lock);
1633 }
1634
1635 return ret;
1636 }
1637
1638 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1639 {
1640 struct smc_local *lp = netdev_priv(dev);
1641 return lp->msg_enable;
1642 }
1643
1644 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1645 {
1646 struct smc_local *lp = netdev_priv(dev);
1647 lp->msg_enable = level;
1648 }
1649
1650 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1651 {
1652 u16 ctl;
1653 struct smc_local *lp = netdev_priv(dev);
1654 void __iomem *ioaddr = lp->base;
1655
1656 spin_lock_irq(&lp->lock);
1657 /* load word into GP register */
1658 SMC_SELECT_BANK(lp, 1);
1659 SMC_SET_GP(lp, word);
1660 /* set the address to put the data in EEPROM */
1661 SMC_SELECT_BANK(lp, 2);
1662 SMC_SET_PTR(lp, addr);
1663 /* tell it to write */
1664 SMC_SELECT_BANK(lp, 1);
1665 ctl = SMC_GET_CTL(lp);
1666 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1667 /* wait for it to finish */
1668 do {
1669 udelay(1);
1670 } while (SMC_GET_CTL(lp) & CTL_STORE);
1671 /* clean up */
1672 SMC_SET_CTL(lp, ctl);
1673 SMC_SELECT_BANK(lp, 2);
1674 spin_unlock_irq(&lp->lock);
1675 return 0;
1676 }
1677
1678 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1679 {
1680 u16 ctl;
1681 struct smc_local *lp = netdev_priv(dev);
1682 void __iomem *ioaddr = lp->base;
1683
1684 spin_lock_irq(&lp->lock);
1685 /* set the EEPROM address to get the data from */
1686 SMC_SELECT_BANK(lp, 2);
1687 SMC_SET_PTR(lp, addr | PTR_READ);
1688 /* tell it to load */
1689 SMC_SELECT_BANK(lp, 1);
1690 SMC_SET_GP(lp, 0xffff); /* init to known */
1691 ctl = SMC_GET_CTL(lp);
1692 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1693 /* wait for it to finish */
1694 do {
1695 udelay(1);
1696 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1697 /* read word from GP register */
1698 *word = SMC_GET_GP(lp);
1699 /* clean up */
1700 SMC_SET_CTL(lp, ctl);
1701 SMC_SELECT_BANK(lp, 2);
1702 spin_unlock_irq(&lp->lock);
1703 return 0;
1704 }
1705
1706 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1707 {
1708 return 0x23 * 2;
1709 }
1710
1711 static int smc_ethtool_geteeprom(struct net_device *dev,
1712 struct ethtool_eeprom *eeprom, u8 *data)
1713 {
1714 int i;
1715 int imax;
1716
1717 DBG(1, "Reading %d bytes at %d(0x%x)\n",
1718 eeprom->len, eeprom->offset, eeprom->offset);
1719 imax = smc_ethtool_geteeprom_len(dev);
1720 for (i = 0; i < eeprom->len; i += 2) {
1721 int ret;
1722 u16 wbuf;
1723 int offset = i + eeprom->offset;
1724 if (offset > imax)
1725 break;
1726 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1727 if (ret != 0)
1728 return ret;
1729 DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1730 data[i] = (wbuf >> 8) & 0xff;
1731 data[i+1] = wbuf & 0xff;
1732 }
1733 return 0;
1734 }
1735
1736 static int smc_ethtool_seteeprom(struct net_device *dev,
1737 struct ethtool_eeprom *eeprom, u8 *data)
1738 {
1739 int i;
1740 int imax;
1741
1742 DBG(1, "Writing %d bytes to %d(0x%x)\n",
1743 eeprom->len, eeprom->offset, eeprom->offset);
1744 imax = smc_ethtool_geteeprom_len(dev);
1745 for (i = 0; i < eeprom->len; i += 2) {
1746 int ret;
1747 u16 wbuf;
1748 int offset = i + eeprom->offset;
1749 if (offset > imax)
1750 break;
1751 wbuf = (data[i] << 8) | data[i + 1];
1752 DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1753 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1754 if (ret != 0)
1755 return ret;
1756 }
1757 return 0;
1758 }
1759
1760
1761 static const struct ethtool_ops smc_ethtool_ops = {
1762 .get_settings = smc_ethtool_getsettings,
1763 .set_settings = smc_ethtool_setsettings,
1764 .get_drvinfo = smc_ethtool_getdrvinfo,
1765
1766 .get_msglevel = smc_ethtool_getmsglevel,
1767 .set_msglevel = smc_ethtool_setmsglevel,
1768 .nway_reset = smc_ethtool_nwayreset,
1769 .get_link = ethtool_op_get_link,
1770 .get_eeprom_len = smc_ethtool_geteeprom_len,
1771 .get_eeprom = smc_ethtool_geteeprom,
1772 .set_eeprom = smc_ethtool_seteeprom,
1773 };
1774
1775 static const struct net_device_ops smc_netdev_ops = {
1776 .ndo_open = smc_open,
1777 .ndo_stop = smc_close,
1778 .ndo_start_xmit = smc_hard_start_xmit,
1779 .ndo_tx_timeout = smc_timeout,
1780 .ndo_set_multicast_list = smc_set_multicast_list,
1781 .ndo_change_mtu = eth_change_mtu,
1782 .ndo_validate_addr = eth_validate_addr,
1783 .ndo_set_mac_address = eth_mac_addr,
1784 #ifdef CONFIG_NET_POLL_CONTROLLER
1785 .ndo_poll_controller = smc_poll_controller,
1786 #endif
1787 };
1788
1789 /*
1790 * smc_findirq
1791 *
1792 * This routine has a simple purpose -- make the SMC chip generate an
1793 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1794 */
1795 /*
1796 * does this still work?
1797 *
1798 * I just deleted auto_irq.c, since it was never built...
1799 * --jgarzik
1800 */
1801 static int __devinit smc_findirq(struct smc_local *lp)
1802 {
1803 void __iomem *ioaddr = lp->base;
1804 int timeout = 20;
1805 unsigned long cookie;
1806
1807 DBG(2, "%s: %s\n", CARDNAME, __func__);
1808
1809 cookie = probe_irq_on();
1810
1811 /*
1812 * What I try to do here is trigger an ALLOC_INT. This is done
1813 * by allocating a small chunk of memory, which will give an interrupt
1814 * when done.
1815 */
1816 /* enable ALLOCation interrupts ONLY */
1817 SMC_SELECT_BANK(lp, 2);
1818 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1819
1820 /*
1821 * Allocate 512 bytes of memory. Note that the chip was just
1822 * reset so all the memory is available
1823 */
1824 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1825
1826 /*
1827 * Wait until positive that the interrupt has been generated
1828 */
1829 do {
1830 int int_status;
1831 udelay(10);
1832 int_status = SMC_GET_INT(lp);
1833 if (int_status & IM_ALLOC_INT)
1834 break; /* got the interrupt */
1835 } while (--timeout);
1836
1837 /*
1838 * there is really nothing that I can do here if timeout fails,
1839 * as autoirq_report will return a 0 anyway, which is what I
1840 * want in this case. Plus, the clean up is needed in both
1841 * cases.
1842 */
1843
1844 /* and disable all interrupts again */
1845 SMC_SET_INT_MASK(lp, 0);
1846
1847 /* and return what I found */
1848 return probe_irq_off(cookie);
1849 }
1850
1851 /*
1852 * Function: smc_probe(unsigned long ioaddr)
1853 *
1854 * Purpose:
1855 * Tests to see if a given ioaddr points to an SMC91x chip.
1856 * Returns a 0 on success
1857 *
1858 * Algorithm:
1859 * (1) see if the high byte of BANK_SELECT is 0x33
1860 * (2) compare the ioaddr with the base register's address
1861 * (3) see if I recognize the chip ID in the appropriate register
1862 *
1863 * Here I do typical initialization tasks.
1864 *
1865 * o Initialize the structure if needed
1866 * o print out my vanity message if not done so already
1867 * o print out what type of hardware is detected
1868 * o print out the ethernet address
1869 * o find the IRQ
1870 * o set up my private data
1871 * o configure the dev structure with my subroutines
1872 * o actually GRAB the irq.
1873 * o GRAB the region
1874 */
1875 static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1876 unsigned long irq_flags)
1877 {
1878 struct smc_local *lp = netdev_priv(dev);
1879 static int version_printed = 0;
1880 int retval;
1881 unsigned int val, revision_register;
1882 const char *version_string;
1883
1884 DBG(2, "%s: %s\n", CARDNAME, __func__);
1885
1886 /* First, see if the high byte is 0x33 */
1887 val = SMC_CURRENT_BANK(lp);
1888 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1889 if ((val & 0xFF00) != 0x3300) {
1890 if ((val & 0xFF) == 0x33) {
1891 printk(KERN_WARNING
1892 "%s: Detected possible byte-swapped interface"
1893 " at IOADDR %p\n", CARDNAME, ioaddr);
1894 }
1895 retval = -ENODEV;
1896 goto err_out;
1897 }
1898
1899 /*
1900 * The above MIGHT indicate a device, but I need to write to
1901 * further test this.
1902 */
1903 SMC_SELECT_BANK(lp, 0);
1904 val = SMC_CURRENT_BANK(lp);
1905 if ((val & 0xFF00) != 0x3300) {
1906 retval = -ENODEV;
1907 goto err_out;
1908 }
1909
1910 /*
1911 * well, we've already written once, so hopefully another
1912 * time won't hurt. This time, I need to switch the bank
1913 * register to bank 1, so I can access the base address
1914 * register
1915 */
1916 SMC_SELECT_BANK(lp, 1);
1917 val = SMC_GET_BASE(lp);
1918 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1919 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1920 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1921 CARDNAME, ioaddr, val);
1922 }
1923
1924 /*
1925 * check if the revision register is something that I
1926 * recognize. These might need to be added to later,
1927 * as future revisions could be added.
1928 */
1929 SMC_SELECT_BANK(lp, 3);
1930 revision_register = SMC_GET_REV(lp);
1931 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1932 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1933 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1934 /* I don't recognize this chip, so... */
1935 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1936 ", Contact author.\n", CARDNAME,
1937 ioaddr, revision_register);
1938
1939 retval = -ENODEV;
1940 goto err_out;
1941 }
1942
1943 /* At this point I'll assume that the chip is an SMC91x. */
1944 if (version_printed++ == 0)
1945 printk("%s", version);
1946
1947 /* fill in some of the fields */
1948 dev->base_addr = (unsigned long)ioaddr;
1949 lp->base = ioaddr;
1950 lp->version = revision_register & 0xff;
1951 spin_lock_init(&lp->lock);
1952
1953 /* Get the MAC address */
1954 SMC_SELECT_BANK(lp, 1);
1955 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1956
1957 /* now, reset the chip, and put it into a known state */
1958 smc_reset(dev);
1959
1960 /*
1961 * If dev->irq is 0, then the device has to be banged on to see
1962 * what the IRQ is.
1963 *
1964 * This banging doesn't always detect the IRQ, for unknown reasons.
1965 * a workaround is to reset the chip and try again.
1966 *
1967 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1968 * be what is requested on the command line. I don't do that, mostly
1969 * because the card that I have uses a non-standard method of accessing
1970 * the IRQs, and because this _should_ work in most configurations.
1971 *
1972 * Specifying an IRQ is done with the assumption that the user knows
1973 * what (s)he is doing. No checking is done!!!!
1974 */
1975 if (dev->irq < 1) {
1976 int trials;
1977
1978 trials = 3;
1979 while (trials--) {
1980 dev->irq = smc_findirq(lp);
1981 if (dev->irq)
1982 break;
1983 /* kick the card and try again */
1984 smc_reset(dev);
1985 }
1986 }
1987 if (dev->irq == 0) {
1988 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1989 dev->name);
1990 retval = -ENODEV;
1991 goto err_out;
1992 }
1993 dev->irq = irq_canonicalize(dev->irq);
1994
1995 /* Fill in the fields of the device structure with ethernet values. */
1996 ether_setup(dev);
1997
1998 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1999 dev->netdev_ops = &smc_netdev_ops;
2000 dev->ethtool_ops = &smc_ethtool_ops;
2001
2002 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
2003 INIT_WORK(&lp->phy_configure, smc_phy_configure);
2004 lp->dev = dev;
2005 lp->mii.phy_id_mask = 0x1f;
2006 lp->mii.reg_num_mask = 0x1f;
2007 lp->mii.force_media = 0;
2008 lp->mii.full_duplex = 0;
2009 lp->mii.dev = dev;
2010 lp->mii.mdio_read = smc_phy_read;
2011 lp->mii.mdio_write = smc_phy_write;
2012
2013 /*
2014 * Locate the phy, if any.
2015 */
2016 if (lp->version >= (CHIP_91100 << 4))
2017 smc_phy_detect(dev);
2018
2019 /* then shut everything down to save power */
2020 smc_shutdown(dev);
2021 smc_phy_powerdown(dev);
2022
2023 /* Set default parameters */
2024 lp->msg_enable = NETIF_MSG_LINK;
2025 lp->ctl_rfduplx = 0;
2026 lp->ctl_rspeed = 10;
2027
2028 if (lp->version >= (CHIP_91100 << 4)) {
2029 lp->ctl_rfduplx = 1;
2030 lp->ctl_rspeed = 100;
2031 }
2032
2033 /* Grab the IRQ */
2034 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2035 if (retval)
2036 goto err_out;
2037
2038 #ifdef CONFIG_ARCH_PXA
2039 # ifdef SMC_USE_PXA_DMA
2040 lp->cfg.flags |= SMC91X_USE_DMA;
2041 # endif
2042 if (lp->cfg.flags & SMC91X_USE_DMA) {
2043 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2044 smc_pxa_dma_irq, NULL);
2045 if (dma >= 0)
2046 dev->dma = dma;
2047 }
2048 #endif
2049
2050 retval = register_netdev(dev);
2051 if (retval == 0) {
2052 /* now, print out the card info, in a short format.. */
2053 printk("%s: %s (rev %d) at %p IRQ %d",
2054 dev->name, version_string, revision_register & 0x0f,
2055 lp->base, dev->irq);
2056
2057 if (dev->dma != (unsigned char)-1)
2058 printk(" DMA %d", dev->dma);
2059
2060 printk("%s%s\n",
2061 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2062 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2063
2064 if (!is_valid_ether_addr(dev->dev_addr)) {
2065 printk("%s: Invalid ethernet MAC address. Please "
2066 "set using ifconfig\n", dev->name);
2067 } else {
2068 /* Print the Ethernet address */
2069 printk("%s: Ethernet addr: %pM\n",
2070 dev->name, dev->dev_addr);
2071 }
2072
2073 if (lp->phy_type == 0) {
2074 PRINTK("%s: No PHY found\n", dev->name);
2075 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2076 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2077 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2078 PRINTK("%s: PHY LAN83C180\n", dev->name);
2079 }
2080 }
2081
2082 err_out:
2083 #ifdef CONFIG_ARCH_PXA
2084 if (retval && dev->dma != (unsigned char)-1)
2085 pxa_free_dma(dev->dma);
2086 #endif
2087 return retval;
2088 }
2089
2090 static int smc_enable_device(struct platform_device *pdev)
2091 {
2092 struct net_device *ndev = platform_get_drvdata(pdev);
2093 struct smc_local *lp = netdev_priv(ndev);
2094 unsigned long flags;
2095 unsigned char ecor, ecsr;
2096 void __iomem *addr;
2097 struct resource * res;
2098
2099 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2100 if (!res)
2101 return 0;
2102
2103 /*
2104 * Map the attribute space. This is overkill, but clean.
2105 */
2106 addr = ioremap(res->start, ATTRIB_SIZE);
2107 if (!addr)
2108 return -ENOMEM;
2109
2110 /*
2111 * Reset the device. We must disable IRQs around this
2112 * since a reset causes the IRQ line become active.
2113 */
2114 local_irq_save(flags);
2115 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2116 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2117 readb(addr + (ECOR << SMC_IO_SHIFT));
2118
2119 /*
2120 * Wait 100us for the chip to reset.
2121 */
2122 udelay(100);
2123
2124 /*
2125 * The device will ignore all writes to the enable bit while
2126 * reset is asserted, even if the reset bit is cleared in the
2127 * same write. Must clear reset first, then enable the device.
2128 */
2129 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2130 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2131
2132 /*
2133 * Set the appropriate byte/word mode.
2134 */
2135 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2136 if (!SMC_16BIT(lp))
2137 ecsr |= ECSR_IOIS8;
2138 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2139 local_irq_restore(flags);
2140
2141 iounmap(addr);
2142
2143 /*
2144 * Wait for the chip to wake up. We could poll the control
2145 * register in the main register space, but that isn't mapped
2146 * yet. We know this is going to take 750us.
2147 */
2148 msleep(1);
2149
2150 return 0;
2151 }
2152
2153 static int smc_request_attrib(struct platform_device *pdev,
2154 struct net_device *ndev)
2155 {
2156 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2157 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2158
2159 if (!res)
2160 return 0;
2161
2162 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2163 return -EBUSY;
2164
2165 return 0;
2166 }
2167
2168 static void smc_release_attrib(struct platform_device *pdev,
2169 struct net_device *ndev)
2170 {
2171 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2172 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2173
2174 if (res)
2175 release_mem_region(res->start, ATTRIB_SIZE);
2176 }
2177
2178 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2179 {
2180 if (SMC_CAN_USE_DATACS) {
2181 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2182 struct smc_local *lp = netdev_priv(ndev);
2183
2184 if (!res)
2185 return;
2186
2187 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2188 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2189 return;
2190 }
2191
2192 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2193 }
2194 }
2195
2196 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2197 {
2198 if (SMC_CAN_USE_DATACS) {
2199 struct smc_local *lp = netdev_priv(ndev);
2200 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2201
2202 if (lp->datacs)
2203 iounmap(lp->datacs);
2204
2205 lp->datacs = NULL;
2206
2207 if (res)
2208 release_mem_region(res->start, SMC_DATA_EXTENT);
2209 }
2210 }
2211
2212 /*
2213 * smc_init(void)
2214 * Input parameters:
2215 * dev->base_addr == 0, try to find all possible locations
2216 * dev->base_addr > 0x1ff, this is the address to check
2217 * dev->base_addr == <anything else>, return failure code
2218 *
2219 * Output:
2220 * 0 --> there is a device
2221 * anything else, error
2222 */
2223 static int __devinit smc_drv_probe(struct platform_device *pdev)
2224 {
2225 struct smc91x_platdata *pd = pdev->dev.platform_data;
2226 struct smc_local *lp;
2227 struct net_device *ndev;
2228 struct resource *res, *ires;
2229 unsigned int __iomem *addr;
2230 unsigned long irq_flags = SMC_IRQ_FLAGS;
2231 int ret;
2232
2233 ndev = alloc_etherdev(sizeof(struct smc_local));
2234 if (!ndev) {
2235 printk("%s: could not allocate device.\n", CARDNAME);
2236 ret = -ENOMEM;
2237 goto out;
2238 }
2239 SET_NETDEV_DEV(ndev, &pdev->dev);
2240
2241 /* get configuration from platform data, only allow use of
2242 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2243 */
2244
2245 lp = netdev_priv(ndev);
2246
2247 if (pd) {
2248 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2249 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2250 } else {
2251 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2252 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2253 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2254 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2255 }
2256
2257 if (!lp->cfg.leda && !lp->cfg.ledb) {
2258 lp->cfg.leda = RPC_LSA_DEFAULT;
2259 lp->cfg.ledb = RPC_LSB_DEFAULT;
2260 }
2261
2262 ndev->dma = (unsigned char)-1;
2263
2264 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2265 if (!res)
2266 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2267 if (!res) {
2268 ret = -ENODEV;
2269 goto out_free_netdev;
2270 }
2271
2272
2273 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2274 ret = -EBUSY;
2275 goto out_free_netdev;
2276 }
2277
2278 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2279 if (!ires) {
2280 ret = -ENODEV;
2281 goto out_release_io;
2282 }
2283
2284 ndev->irq = ires->start;
2285
2286 if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2287 irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2288
2289 ret = smc_request_attrib(pdev, ndev);
2290 if (ret)
2291 goto out_release_io;
2292 #if defined(CONFIG_SA1100_ASSABET)
2293 NCR_0 |= NCR_ENET_OSC_EN;
2294 #endif
2295 platform_set_drvdata(pdev, ndev);
2296 ret = smc_enable_device(pdev);
2297 if (ret)
2298 goto out_release_attrib;
2299
2300 addr = ioremap(res->start, SMC_IO_EXTENT);
2301 if (!addr) {
2302 ret = -ENOMEM;
2303 goto out_release_attrib;
2304 }
2305
2306 #ifdef CONFIG_ARCH_PXA
2307 {
2308 struct smc_local *lp = netdev_priv(ndev);
2309 lp->device = &pdev->dev;
2310 lp->physaddr = res->start;
2311 }
2312 #endif
2313
2314 ret = smc_probe(ndev, addr, irq_flags);
2315 if (ret != 0)
2316 goto out_iounmap;
2317
2318 smc_request_datacs(pdev, ndev);
2319
2320 return 0;
2321
2322 out_iounmap:
2323 platform_set_drvdata(pdev, NULL);
2324 iounmap(addr);
2325 out_release_attrib:
2326 smc_release_attrib(pdev, ndev);
2327 out_release_io:
2328 release_mem_region(res->start, SMC_IO_EXTENT);
2329 out_free_netdev:
2330 free_netdev(ndev);
2331 out:
2332 printk("%s: not found (%d).\n", CARDNAME, ret);
2333
2334 return ret;
2335 }
2336
2337 static int __devexit smc_drv_remove(struct platform_device *pdev)
2338 {
2339 struct net_device *ndev = platform_get_drvdata(pdev);
2340 struct smc_local *lp = netdev_priv(ndev);
2341 struct resource *res;
2342
2343 platform_set_drvdata(pdev, NULL);
2344
2345 unregister_netdev(ndev);
2346
2347 free_irq(ndev->irq, ndev);
2348
2349 #ifdef CONFIG_ARCH_PXA
2350 if (ndev->dma != (unsigned char)-1)
2351 pxa_free_dma(ndev->dma);
2352 #endif
2353 iounmap(lp->base);
2354
2355 smc_release_datacs(pdev,ndev);
2356 smc_release_attrib(pdev,ndev);
2357
2358 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2359 if (!res)
2360 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2361 release_mem_region(res->start, SMC_IO_EXTENT);
2362
2363 free_netdev(ndev);
2364
2365 return 0;
2366 }
2367
2368 static int smc_drv_suspend(struct device *dev)
2369 {
2370 struct platform_device *pdev = to_platform_device(dev);
2371 struct net_device *ndev = platform_get_drvdata(pdev);
2372
2373 if (ndev) {
2374 if (netif_running(ndev)) {
2375 netif_device_detach(ndev);
2376 smc_shutdown(ndev);
2377 smc_phy_powerdown(ndev);
2378 }
2379 }
2380 return 0;
2381 }
2382
2383 static int smc_drv_resume(struct device *dev)
2384 {
2385 struct platform_device *pdev = to_platform_device(dev);
2386 struct net_device *ndev = platform_get_drvdata(pdev);
2387
2388 if (ndev) {
2389 struct smc_local *lp = netdev_priv(ndev);
2390 smc_enable_device(pdev);
2391 if (netif_running(ndev)) {
2392 smc_reset(ndev);
2393 smc_enable(ndev);
2394 if (lp->phy_type != 0)
2395 smc_phy_configure(&lp->phy_configure);
2396 netif_device_attach(ndev);
2397 }
2398 }
2399 return 0;
2400 }
2401
2402 static struct dev_pm_ops smc_drv_pm_ops = {
2403 .suspend = smc_drv_suspend,
2404 .resume = smc_drv_resume,
2405 };
2406
2407 static struct platform_driver smc_driver = {
2408 .probe = smc_drv_probe,
2409 .remove = __devexit_p(smc_drv_remove),
2410 .driver = {
2411 .name = CARDNAME,
2412 .owner = THIS_MODULE,
2413 .pm = &smc_drv_pm_ops,
2414 },
2415 };
2416
2417 static int __init smc_init(void)
2418 {
2419 return platform_driver_register(&smc_driver);
2420 }
2421
2422 static void __exit smc_cleanup(void)
2423 {
2424 platform_driver_unregister(&smc_driver);
2425 }
2426
2427 module_init(smc_init);
2428 module_exit(smc_cleanup);