skge: retry on MAC shutdown
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
42 #include <asm/irq.h>
43
44 #include "skge.h"
45
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.12"
48 #define PFX DRV_NAME " "
49
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
61 #define BLINK_MS 250
62 #define LINK_HZ HZ
63
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
65
66
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION);
71
72 static const u32 default_msg
73 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
75
76 static int debug = -1; /* defaults above */
77 module_param(debug, int, 0);
78 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
79
80 static const struct pci_device_id skge_id_table[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
91 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
92 { 0 }
93 };
94 MODULE_DEVICE_TABLE(pci, skge_id_table);
95
96 static int skge_up(struct net_device *dev);
97 static int skge_down(struct net_device *dev);
98 static void skge_phy_reset(struct skge_port *skge);
99 static void skge_tx_clean(struct net_device *dev);
100 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
101 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
102 static void genesis_get_stats(struct skge_port *skge, u64 *data);
103 static void yukon_get_stats(struct skge_port *skge, u64 *data);
104 static void yukon_init(struct skge_hw *hw, int port);
105 static void genesis_mac_init(struct skge_hw *hw, int port);
106 static void genesis_link_up(struct skge_port *skge);
107
108 /* Avoid conditionals by using array */
109 static const int txqaddr[] = { Q_XA1, Q_XA2 };
110 static const int rxqaddr[] = { Q_R1, Q_R2 };
111 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
112 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
113 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
114 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
115
116 static int skge_get_regs_len(struct net_device *dev)
117 {
118 return 0x4000;
119 }
120
121 /*
122 * Returns copy of whole control register region
123 * Note: skip RAM address register because accessing it will
124 * cause bus hangs!
125 */
126 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
127 void *p)
128 {
129 const struct skge_port *skge = netdev_priv(dev);
130 const void __iomem *io = skge->hw->regs;
131
132 regs->version = 1;
133 memset(p, 0, regs->len);
134 memcpy_fromio(p, io, B3_RAM_ADDR);
135
136 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
137 regs->len - B3_RI_WTO_R1);
138 }
139
140 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
141 static u32 wol_supported(const struct skge_hw *hw)
142 {
143 if (hw->chip_id == CHIP_ID_GENESIS)
144 return 0;
145
146 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
147 return 0;
148
149 return WAKE_MAGIC | WAKE_PHY;
150 }
151
152 static u32 pci_wake_enabled(struct pci_dev *dev)
153 {
154 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
155 u16 value;
156
157 /* If device doesn't support PM Capabilities, but request is to disable
158 * wake events, it's a nop; otherwise fail */
159 if (!pm)
160 return 0;
161
162 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
163
164 value &= PCI_PM_CAP_PME_MASK;
165 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
166
167 return value != 0;
168 }
169
170 static void skge_wol_init(struct skge_port *skge)
171 {
172 struct skge_hw *hw = skge->hw;
173 int port = skge->port;
174 u16 ctrl;
175
176 skge_write16(hw, B0_CTST, CS_RST_CLR);
177 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
178
179 /* Turn on Vaux */
180 skge_write8(hw, B0_POWER_CTRL,
181 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
182
183 /* WA code for COMA mode -- clear PHY reset */
184 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
185 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
186 u32 reg = skge_read32(hw, B2_GP_IO);
187 reg |= GP_DIR_9;
188 reg &= ~GP_IO_9;
189 skge_write32(hw, B2_GP_IO, reg);
190 }
191
192 skge_write32(hw, SK_REG(port, GPHY_CTRL),
193 GPC_DIS_SLEEP |
194 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
195 GPC_ANEG_1 | GPC_RST_SET);
196
197 skge_write32(hw, SK_REG(port, GPHY_CTRL),
198 GPC_DIS_SLEEP |
199 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
200 GPC_ANEG_1 | GPC_RST_CLR);
201
202 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
203
204 /* Force to 10/100 skge_reset will re-enable on resume */
205 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
206 PHY_AN_100FULL | PHY_AN_100HALF |
207 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
208 /* no 1000 HD/FD */
209 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
210 gm_phy_write(hw, port, PHY_MARV_CTRL,
211 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
212 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
213
214
215 /* Set GMAC to no flow control and auto update for speed/duplex */
216 gma_write16(hw, port, GM_GP_CTRL,
217 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
218 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
219
220 /* Set WOL address */
221 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
222 skge->netdev->dev_addr, ETH_ALEN);
223
224 /* Turn on appropriate WOL control bits */
225 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
226 ctrl = 0;
227 if (skge->wol & WAKE_PHY)
228 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
229 else
230 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
231
232 if (skge->wol & WAKE_MAGIC)
233 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
234 else
235 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
236
237 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
238 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
239
240 /* block receiver */
241 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
242 }
243
244 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
245 {
246 struct skge_port *skge = netdev_priv(dev);
247
248 wol->supported = wol_supported(skge->hw);
249 wol->wolopts = skge->wol;
250 }
251
252 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
253 {
254 struct skge_port *skge = netdev_priv(dev);
255 struct skge_hw *hw = skge->hw;
256
257 if (wol->wolopts & ~wol_supported(hw))
258 return -EOPNOTSUPP;
259
260 skge->wol = wol->wolopts;
261 return 0;
262 }
263
264 /* Determine supported/advertised modes based on hardware.
265 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
266 */
267 static u32 skge_supported_modes(const struct skge_hw *hw)
268 {
269 u32 supported;
270
271 if (hw->copper) {
272 supported = SUPPORTED_10baseT_Half
273 | SUPPORTED_10baseT_Full
274 | SUPPORTED_100baseT_Half
275 | SUPPORTED_100baseT_Full
276 | SUPPORTED_1000baseT_Half
277 | SUPPORTED_1000baseT_Full
278 | SUPPORTED_Autoneg| SUPPORTED_TP;
279
280 if (hw->chip_id == CHIP_ID_GENESIS)
281 supported &= ~(SUPPORTED_10baseT_Half
282 | SUPPORTED_10baseT_Full
283 | SUPPORTED_100baseT_Half
284 | SUPPORTED_100baseT_Full);
285
286 else if (hw->chip_id == CHIP_ID_YUKON)
287 supported &= ~SUPPORTED_1000baseT_Half;
288 } else
289 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
290 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
291
292 return supported;
293 }
294
295 static int skge_get_settings(struct net_device *dev,
296 struct ethtool_cmd *ecmd)
297 {
298 struct skge_port *skge = netdev_priv(dev);
299 struct skge_hw *hw = skge->hw;
300
301 ecmd->transceiver = XCVR_INTERNAL;
302 ecmd->supported = skge_supported_modes(hw);
303
304 if (hw->copper) {
305 ecmd->port = PORT_TP;
306 ecmd->phy_address = hw->phy_addr;
307 } else
308 ecmd->port = PORT_FIBRE;
309
310 ecmd->advertising = skge->advertising;
311 ecmd->autoneg = skge->autoneg;
312 ecmd->speed = skge->speed;
313 ecmd->duplex = skge->duplex;
314 return 0;
315 }
316
317 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
318 {
319 struct skge_port *skge = netdev_priv(dev);
320 const struct skge_hw *hw = skge->hw;
321 u32 supported = skge_supported_modes(hw);
322
323 if (ecmd->autoneg == AUTONEG_ENABLE) {
324 ecmd->advertising = supported;
325 skge->duplex = -1;
326 skge->speed = -1;
327 } else {
328 u32 setting;
329
330 switch (ecmd->speed) {
331 case SPEED_1000:
332 if (ecmd->duplex == DUPLEX_FULL)
333 setting = SUPPORTED_1000baseT_Full;
334 else if (ecmd->duplex == DUPLEX_HALF)
335 setting = SUPPORTED_1000baseT_Half;
336 else
337 return -EINVAL;
338 break;
339 case SPEED_100:
340 if (ecmd->duplex == DUPLEX_FULL)
341 setting = SUPPORTED_100baseT_Full;
342 else if (ecmd->duplex == DUPLEX_HALF)
343 setting = SUPPORTED_100baseT_Half;
344 else
345 return -EINVAL;
346 break;
347
348 case SPEED_10:
349 if (ecmd->duplex == DUPLEX_FULL)
350 setting = SUPPORTED_10baseT_Full;
351 else if (ecmd->duplex == DUPLEX_HALF)
352 setting = SUPPORTED_10baseT_Half;
353 else
354 return -EINVAL;
355 break;
356 default:
357 return -EINVAL;
358 }
359
360 if ((setting & supported) == 0)
361 return -EINVAL;
362
363 skge->speed = ecmd->speed;
364 skge->duplex = ecmd->duplex;
365 }
366
367 skge->autoneg = ecmd->autoneg;
368 skge->advertising = ecmd->advertising;
369
370 if (netif_running(dev))
371 skge_phy_reset(skge);
372
373 return (0);
374 }
375
376 static void skge_get_drvinfo(struct net_device *dev,
377 struct ethtool_drvinfo *info)
378 {
379 struct skge_port *skge = netdev_priv(dev);
380
381 strcpy(info->driver, DRV_NAME);
382 strcpy(info->version, DRV_VERSION);
383 strcpy(info->fw_version, "N/A");
384 strcpy(info->bus_info, pci_name(skge->hw->pdev));
385 }
386
387 static const struct skge_stat {
388 char name[ETH_GSTRING_LEN];
389 u16 xmac_offset;
390 u16 gma_offset;
391 } skge_stats[] = {
392 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
393 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
394
395 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
396 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
397 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
398 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
399 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
400 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
401 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
402 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
403
404 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
405 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
406 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
407 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
408 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
409 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
410
411 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
412 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
413 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
414 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
415 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
416 };
417
418 static int skge_get_sset_count(struct net_device *dev, int sset)
419 {
420 switch (sset) {
421 case ETH_SS_STATS:
422 return ARRAY_SIZE(skge_stats);
423 default:
424 return -EOPNOTSUPP;
425 }
426 }
427
428 static void skge_get_ethtool_stats(struct net_device *dev,
429 struct ethtool_stats *stats, u64 *data)
430 {
431 struct skge_port *skge = netdev_priv(dev);
432
433 if (skge->hw->chip_id == CHIP_ID_GENESIS)
434 genesis_get_stats(skge, data);
435 else
436 yukon_get_stats(skge, data);
437 }
438
439 /* Use hardware MIB variables for critical path statistics and
440 * transmit feedback not reported at interrupt.
441 * Other errors are accounted for in interrupt handler.
442 */
443 static struct net_device_stats *skge_get_stats(struct net_device *dev)
444 {
445 struct skge_port *skge = netdev_priv(dev);
446 u64 data[ARRAY_SIZE(skge_stats)];
447
448 if (skge->hw->chip_id == CHIP_ID_GENESIS)
449 genesis_get_stats(skge, data);
450 else
451 yukon_get_stats(skge, data);
452
453 dev->stats.tx_bytes = data[0];
454 dev->stats.rx_bytes = data[1];
455 dev->stats.tx_packets = data[2] + data[4] + data[6];
456 dev->stats.rx_packets = data[3] + data[5] + data[7];
457 dev->stats.multicast = data[3] + data[5];
458 dev->stats.collisions = data[10];
459 dev->stats.tx_aborted_errors = data[12];
460
461 return &dev->stats;
462 }
463
464 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
465 {
466 int i;
467
468 switch (stringset) {
469 case ETH_SS_STATS:
470 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
471 memcpy(data + i * ETH_GSTRING_LEN,
472 skge_stats[i].name, ETH_GSTRING_LEN);
473 break;
474 }
475 }
476
477 static void skge_get_ring_param(struct net_device *dev,
478 struct ethtool_ringparam *p)
479 {
480 struct skge_port *skge = netdev_priv(dev);
481
482 p->rx_max_pending = MAX_RX_RING_SIZE;
483 p->tx_max_pending = MAX_TX_RING_SIZE;
484 p->rx_mini_max_pending = 0;
485 p->rx_jumbo_max_pending = 0;
486
487 p->rx_pending = skge->rx_ring.count;
488 p->tx_pending = skge->tx_ring.count;
489 p->rx_mini_pending = 0;
490 p->rx_jumbo_pending = 0;
491 }
492
493 static int skge_set_ring_param(struct net_device *dev,
494 struct ethtool_ringparam *p)
495 {
496 struct skge_port *skge = netdev_priv(dev);
497 int err;
498
499 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
500 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
501 return -EINVAL;
502
503 skge->rx_ring.count = p->rx_pending;
504 skge->tx_ring.count = p->tx_pending;
505
506 if (netif_running(dev)) {
507 skge_down(dev);
508 err = skge_up(dev);
509 if (err)
510 dev_close(dev);
511 }
512
513 return 0;
514 }
515
516 static u32 skge_get_msglevel(struct net_device *netdev)
517 {
518 struct skge_port *skge = netdev_priv(netdev);
519 return skge->msg_enable;
520 }
521
522 static void skge_set_msglevel(struct net_device *netdev, u32 value)
523 {
524 struct skge_port *skge = netdev_priv(netdev);
525 skge->msg_enable = value;
526 }
527
528 static int skge_nway_reset(struct net_device *dev)
529 {
530 struct skge_port *skge = netdev_priv(dev);
531
532 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
533 return -EINVAL;
534
535 skge_phy_reset(skge);
536 return 0;
537 }
538
539 static int skge_set_sg(struct net_device *dev, u32 data)
540 {
541 struct skge_port *skge = netdev_priv(dev);
542 struct skge_hw *hw = skge->hw;
543
544 if (hw->chip_id == CHIP_ID_GENESIS && data)
545 return -EOPNOTSUPP;
546 return ethtool_op_set_sg(dev, data);
547 }
548
549 static int skge_set_tx_csum(struct net_device *dev, u32 data)
550 {
551 struct skge_port *skge = netdev_priv(dev);
552 struct skge_hw *hw = skge->hw;
553
554 if (hw->chip_id == CHIP_ID_GENESIS && data)
555 return -EOPNOTSUPP;
556
557 return ethtool_op_set_tx_csum(dev, data);
558 }
559
560 static u32 skge_get_rx_csum(struct net_device *dev)
561 {
562 struct skge_port *skge = netdev_priv(dev);
563
564 return skge->rx_csum;
565 }
566
567 /* Only Yukon supports checksum offload. */
568 static int skge_set_rx_csum(struct net_device *dev, u32 data)
569 {
570 struct skge_port *skge = netdev_priv(dev);
571
572 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
573 return -EOPNOTSUPP;
574
575 skge->rx_csum = data;
576 return 0;
577 }
578
579 static void skge_get_pauseparam(struct net_device *dev,
580 struct ethtool_pauseparam *ecmd)
581 {
582 struct skge_port *skge = netdev_priv(dev);
583
584 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
585 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
586 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
587
588 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
589 }
590
591 static int skge_set_pauseparam(struct net_device *dev,
592 struct ethtool_pauseparam *ecmd)
593 {
594 struct skge_port *skge = netdev_priv(dev);
595 struct ethtool_pauseparam old;
596
597 skge_get_pauseparam(dev, &old);
598
599 if (ecmd->autoneg != old.autoneg)
600 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
601 else {
602 if (ecmd->rx_pause && ecmd->tx_pause)
603 skge->flow_control = FLOW_MODE_SYMMETRIC;
604 else if (ecmd->rx_pause && !ecmd->tx_pause)
605 skge->flow_control = FLOW_MODE_SYM_OR_REM;
606 else if (!ecmd->rx_pause && ecmd->tx_pause)
607 skge->flow_control = FLOW_MODE_LOC_SEND;
608 else
609 skge->flow_control = FLOW_MODE_NONE;
610 }
611
612 if (netif_running(dev))
613 skge_phy_reset(skge);
614
615 return 0;
616 }
617
618 /* Chip internal frequency for clock calculations */
619 static inline u32 hwkhz(const struct skge_hw *hw)
620 {
621 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
622 }
623
624 /* Chip HZ to microseconds */
625 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
626 {
627 return (ticks * 1000) / hwkhz(hw);
628 }
629
630 /* Microseconds to chip HZ */
631 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
632 {
633 return hwkhz(hw) * usec / 1000;
634 }
635
636 static int skge_get_coalesce(struct net_device *dev,
637 struct ethtool_coalesce *ecmd)
638 {
639 struct skge_port *skge = netdev_priv(dev);
640 struct skge_hw *hw = skge->hw;
641 int port = skge->port;
642
643 ecmd->rx_coalesce_usecs = 0;
644 ecmd->tx_coalesce_usecs = 0;
645
646 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
647 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
648 u32 msk = skge_read32(hw, B2_IRQM_MSK);
649
650 if (msk & rxirqmask[port])
651 ecmd->rx_coalesce_usecs = delay;
652 if (msk & txirqmask[port])
653 ecmd->tx_coalesce_usecs = delay;
654 }
655
656 return 0;
657 }
658
659 /* Note: interrupt timer is per board, but can turn on/off per port */
660 static int skge_set_coalesce(struct net_device *dev,
661 struct ethtool_coalesce *ecmd)
662 {
663 struct skge_port *skge = netdev_priv(dev);
664 struct skge_hw *hw = skge->hw;
665 int port = skge->port;
666 u32 msk = skge_read32(hw, B2_IRQM_MSK);
667 u32 delay = 25;
668
669 if (ecmd->rx_coalesce_usecs == 0)
670 msk &= ~rxirqmask[port];
671 else if (ecmd->rx_coalesce_usecs < 25 ||
672 ecmd->rx_coalesce_usecs > 33333)
673 return -EINVAL;
674 else {
675 msk |= rxirqmask[port];
676 delay = ecmd->rx_coalesce_usecs;
677 }
678
679 if (ecmd->tx_coalesce_usecs == 0)
680 msk &= ~txirqmask[port];
681 else if (ecmd->tx_coalesce_usecs < 25 ||
682 ecmd->tx_coalesce_usecs > 33333)
683 return -EINVAL;
684 else {
685 msk |= txirqmask[port];
686 delay = min(delay, ecmd->rx_coalesce_usecs);
687 }
688
689 skge_write32(hw, B2_IRQM_MSK, msk);
690 if (msk == 0)
691 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
692 else {
693 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
694 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
695 }
696 return 0;
697 }
698
699 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
700 static void skge_led(struct skge_port *skge, enum led_mode mode)
701 {
702 struct skge_hw *hw = skge->hw;
703 int port = skge->port;
704
705 spin_lock_bh(&hw->phy_lock);
706 if (hw->chip_id == CHIP_ID_GENESIS) {
707 switch (mode) {
708 case LED_MODE_OFF:
709 if (hw->phy_type == SK_PHY_BCOM)
710 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
711 else {
712 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
713 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
714 }
715 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
716 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
717 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
718 break;
719
720 case LED_MODE_ON:
721 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
722 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
723
724 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
725 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
726
727 break;
728
729 case LED_MODE_TST:
730 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
731 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
732 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
733
734 if (hw->phy_type == SK_PHY_BCOM)
735 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
736 else {
737 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
738 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
739 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
740 }
741
742 }
743 } else {
744 switch (mode) {
745 case LED_MODE_OFF:
746 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
747 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
748 PHY_M_LED_MO_DUP(MO_LED_OFF) |
749 PHY_M_LED_MO_10(MO_LED_OFF) |
750 PHY_M_LED_MO_100(MO_LED_OFF) |
751 PHY_M_LED_MO_1000(MO_LED_OFF) |
752 PHY_M_LED_MO_RX(MO_LED_OFF));
753 break;
754 case LED_MODE_ON:
755 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
756 PHY_M_LED_PULS_DUR(PULS_170MS) |
757 PHY_M_LED_BLINK_RT(BLINK_84MS) |
758 PHY_M_LEDC_TX_CTRL |
759 PHY_M_LEDC_DP_CTRL);
760
761 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
762 PHY_M_LED_MO_RX(MO_LED_OFF) |
763 (skge->speed == SPEED_100 ?
764 PHY_M_LED_MO_100(MO_LED_ON) : 0));
765 break;
766 case LED_MODE_TST:
767 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
768 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
769 PHY_M_LED_MO_DUP(MO_LED_ON) |
770 PHY_M_LED_MO_10(MO_LED_ON) |
771 PHY_M_LED_MO_100(MO_LED_ON) |
772 PHY_M_LED_MO_1000(MO_LED_ON) |
773 PHY_M_LED_MO_RX(MO_LED_ON));
774 }
775 }
776 spin_unlock_bh(&hw->phy_lock);
777 }
778
779 /* blink LED's for finding board */
780 static int skge_phys_id(struct net_device *dev, u32 data)
781 {
782 struct skge_port *skge = netdev_priv(dev);
783 unsigned long ms;
784 enum led_mode mode = LED_MODE_TST;
785
786 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
787 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
788 else
789 ms = data * 1000;
790
791 while (ms > 0) {
792 skge_led(skge, mode);
793 mode ^= LED_MODE_TST;
794
795 if (msleep_interruptible(BLINK_MS))
796 break;
797 ms -= BLINK_MS;
798 }
799
800 /* back to regular LED state */
801 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
802
803 return 0;
804 }
805
806 static int skge_get_eeprom_len(struct net_device *dev)
807 {
808 struct skge_port *skge = netdev_priv(dev);
809 u32 reg2;
810
811 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
812 return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
813 }
814
815 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
816 {
817 u32 val;
818
819 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
820
821 do {
822 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
823 } while (!(offset & PCI_VPD_ADDR_F));
824
825 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
826 return val;
827 }
828
829 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
830 {
831 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
832 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
833 offset | PCI_VPD_ADDR_F);
834
835 do {
836 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
837 } while (offset & PCI_VPD_ADDR_F);
838 }
839
840 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
841 u8 *data)
842 {
843 struct skge_port *skge = netdev_priv(dev);
844 struct pci_dev *pdev = skge->hw->pdev;
845 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
846 int length = eeprom->len;
847 u16 offset = eeprom->offset;
848
849 if (!cap)
850 return -EINVAL;
851
852 eeprom->magic = SKGE_EEPROM_MAGIC;
853
854 while (length > 0) {
855 u32 val = skge_vpd_read(pdev, cap, offset);
856 int n = min_t(int, length, sizeof(val));
857
858 memcpy(data, &val, n);
859 length -= n;
860 data += n;
861 offset += n;
862 }
863 return 0;
864 }
865
866 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
867 u8 *data)
868 {
869 struct skge_port *skge = netdev_priv(dev);
870 struct pci_dev *pdev = skge->hw->pdev;
871 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
872 int length = eeprom->len;
873 u16 offset = eeprom->offset;
874
875 if (!cap)
876 return -EINVAL;
877
878 if (eeprom->magic != SKGE_EEPROM_MAGIC)
879 return -EINVAL;
880
881 while (length > 0) {
882 u32 val;
883 int n = min_t(int, length, sizeof(val));
884
885 if (n < sizeof(val))
886 val = skge_vpd_read(pdev, cap, offset);
887 memcpy(&val, data, n);
888
889 skge_vpd_write(pdev, cap, offset, val);
890
891 length -= n;
892 data += n;
893 offset += n;
894 }
895 return 0;
896 }
897
898 static const struct ethtool_ops skge_ethtool_ops = {
899 .get_settings = skge_get_settings,
900 .set_settings = skge_set_settings,
901 .get_drvinfo = skge_get_drvinfo,
902 .get_regs_len = skge_get_regs_len,
903 .get_regs = skge_get_regs,
904 .get_wol = skge_get_wol,
905 .set_wol = skge_set_wol,
906 .get_msglevel = skge_get_msglevel,
907 .set_msglevel = skge_set_msglevel,
908 .nway_reset = skge_nway_reset,
909 .get_link = ethtool_op_get_link,
910 .get_eeprom_len = skge_get_eeprom_len,
911 .get_eeprom = skge_get_eeprom,
912 .set_eeprom = skge_set_eeprom,
913 .get_ringparam = skge_get_ring_param,
914 .set_ringparam = skge_set_ring_param,
915 .get_pauseparam = skge_get_pauseparam,
916 .set_pauseparam = skge_set_pauseparam,
917 .get_coalesce = skge_get_coalesce,
918 .set_coalesce = skge_set_coalesce,
919 .set_sg = skge_set_sg,
920 .set_tx_csum = skge_set_tx_csum,
921 .get_rx_csum = skge_get_rx_csum,
922 .set_rx_csum = skge_set_rx_csum,
923 .get_strings = skge_get_strings,
924 .phys_id = skge_phys_id,
925 .get_sset_count = skge_get_sset_count,
926 .get_ethtool_stats = skge_get_ethtool_stats,
927 };
928
929 /*
930 * Allocate ring elements and chain them together
931 * One-to-one association of board descriptors with ring elements
932 */
933 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
934 {
935 struct skge_tx_desc *d;
936 struct skge_element *e;
937 int i;
938
939 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
940 if (!ring->start)
941 return -ENOMEM;
942
943 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
944 e->desc = d;
945 if (i == ring->count - 1) {
946 e->next = ring->start;
947 d->next_offset = base;
948 } else {
949 e->next = e + 1;
950 d->next_offset = base + (i+1) * sizeof(*d);
951 }
952 }
953 ring->to_use = ring->to_clean = ring->start;
954
955 return 0;
956 }
957
958 /* Allocate and setup a new buffer for receiving */
959 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
960 struct sk_buff *skb, unsigned int bufsize)
961 {
962 struct skge_rx_desc *rd = e->desc;
963 u64 map;
964
965 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
966 PCI_DMA_FROMDEVICE);
967
968 rd->dma_lo = map;
969 rd->dma_hi = map >> 32;
970 e->skb = skb;
971 rd->csum1_start = ETH_HLEN;
972 rd->csum2_start = ETH_HLEN;
973 rd->csum1 = 0;
974 rd->csum2 = 0;
975
976 wmb();
977
978 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
979 pci_unmap_addr_set(e, mapaddr, map);
980 pci_unmap_len_set(e, maplen, bufsize);
981 }
982
983 /* Resume receiving using existing skb,
984 * Note: DMA address is not changed by chip.
985 * MTU not changed while receiver active.
986 */
987 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
988 {
989 struct skge_rx_desc *rd = e->desc;
990
991 rd->csum2 = 0;
992 rd->csum2_start = ETH_HLEN;
993
994 wmb();
995
996 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
997 }
998
999
1000 /* Free all buffers in receive ring, assumes receiver stopped */
1001 static void skge_rx_clean(struct skge_port *skge)
1002 {
1003 struct skge_hw *hw = skge->hw;
1004 struct skge_ring *ring = &skge->rx_ring;
1005 struct skge_element *e;
1006
1007 e = ring->start;
1008 do {
1009 struct skge_rx_desc *rd = e->desc;
1010 rd->control = 0;
1011 if (e->skb) {
1012 pci_unmap_single(hw->pdev,
1013 pci_unmap_addr(e, mapaddr),
1014 pci_unmap_len(e, maplen),
1015 PCI_DMA_FROMDEVICE);
1016 dev_kfree_skb(e->skb);
1017 e->skb = NULL;
1018 }
1019 } while ((e = e->next) != ring->start);
1020 }
1021
1022
1023 /* Allocate buffers for receive ring
1024 * For receive: to_clean is next received frame.
1025 */
1026 static int skge_rx_fill(struct net_device *dev)
1027 {
1028 struct skge_port *skge = netdev_priv(dev);
1029 struct skge_ring *ring = &skge->rx_ring;
1030 struct skge_element *e;
1031
1032 e = ring->start;
1033 do {
1034 struct sk_buff *skb;
1035
1036 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1037 GFP_KERNEL);
1038 if (!skb)
1039 return -ENOMEM;
1040
1041 skb_reserve(skb, NET_IP_ALIGN);
1042 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1043 } while ( (e = e->next) != ring->start);
1044
1045 ring->to_clean = ring->start;
1046 return 0;
1047 }
1048
1049 static const char *skge_pause(enum pause_status status)
1050 {
1051 switch(status) {
1052 case FLOW_STAT_NONE:
1053 return "none";
1054 case FLOW_STAT_REM_SEND:
1055 return "rx only";
1056 case FLOW_STAT_LOC_SEND:
1057 return "tx_only";
1058 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1059 return "both";
1060 default:
1061 return "indeterminated";
1062 }
1063 }
1064
1065
1066 static void skge_link_up(struct skge_port *skge)
1067 {
1068 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1069 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1070
1071 netif_carrier_on(skge->netdev);
1072 netif_wake_queue(skge->netdev);
1073
1074 if (netif_msg_link(skge)) {
1075 printk(KERN_INFO PFX
1076 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1077 skge->netdev->name, skge->speed,
1078 skge->duplex == DUPLEX_FULL ? "full" : "half",
1079 skge_pause(skge->flow_status));
1080 }
1081 }
1082
1083 static void skge_link_down(struct skge_port *skge)
1084 {
1085 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1086 netif_carrier_off(skge->netdev);
1087 netif_stop_queue(skge->netdev);
1088
1089 if (netif_msg_link(skge))
1090 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
1091 }
1092
1093
1094 static void xm_link_down(struct skge_hw *hw, int port)
1095 {
1096 struct net_device *dev = hw->dev[port];
1097 struct skge_port *skge = netdev_priv(dev);
1098 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
1099
1100 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1101
1102 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1103 xm_write16(hw, port, XM_MMU_CMD, cmd);
1104
1105 /* dummy read to ensure writing */
1106 xm_read16(hw, port, XM_MMU_CMD);
1107
1108 if (netif_carrier_ok(dev))
1109 skge_link_down(skge);
1110 }
1111
1112 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1113 {
1114 int i;
1115
1116 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1117 *val = xm_read16(hw, port, XM_PHY_DATA);
1118
1119 if (hw->phy_type == SK_PHY_XMAC)
1120 goto ready;
1121
1122 for (i = 0; i < PHY_RETRIES; i++) {
1123 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1124 goto ready;
1125 udelay(1);
1126 }
1127
1128 return -ETIMEDOUT;
1129 ready:
1130 *val = xm_read16(hw, port, XM_PHY_DATA);
1131
1132 return 0;
1133 }
1134
1135 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1136 {
1137 u16 v = 0;
1138 if (__xm_phy_read(hw, port, reg, &v))
1139 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1140 hw->dev[port]->name);
1141 return v;
1142 }
1143
1144 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1145 {
1146 int i;
1147
1148 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1149 for (i = 0; i < PHY_RETRIES; i++) {
1150 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1151 goto ready;
1152 udelay(1);
1153 }
1154 return -EIO;
1155
1156 ready:
1157 xm_write16(hw, port, XM_PHY_DATA, val);
1158 for (i = 0; i < PHY_RETRIES; i++) {
1159 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1160 return 0;
1161 udelay(1);
1162 }
1163 return -ETIMEDOUT;
1164 }
1165
1166 static void genesis_init(struct skge_hw *hw)
1167 {
1168 /* set blink source counter */
1169 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1170 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1171
1172 /* configure mac arbiter */
1173 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1174
1175 /* configure mac arbiter timeout values */
1176 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1177 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1178 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1179 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1180
1181 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1182 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1183 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1184 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1185
1186 /* configure packet arbiter timeout */
1187 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1188 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1189 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1190 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1191 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1192 }
1193
1194 static void genesis_reset(struct skge_hw *hw, int port)
1195 {
1196 const u8 zero[8] = { 0 };
1197
1198 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1199
1200 /* reset the statistics module */
1201 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1202 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1203 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1204 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1205 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1206
1207 /* disable Broadcom PHY IRQ */
1208 if (hw->phy_type == SK_PHY_BCOM)
1209 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1210
1211 xm_outhash(hw, port, XM_HSM, zero);
1212 }
1213
1214
1215 /* Convert mode to MII values */
1216 static const u16 phy_pause_map[] = {
1217 [FLOW_MODE_NONE] = 0,
1218 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1219 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1220 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1221 };
1222
1223 /* special defines for FIBER (88E1011S only) */
1224 static const u16 fiber_pause_map[] = {
1225 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1226 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1227 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1228 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1229 };
1230
1231
1232 /* Check status of Broadcom phy link */
1233 static void bcom_check_link(struct skge_hw *hw, int port)
1234 {
1235 struct net_device *dev = hw->dev[port];
1236 struct skge_port *skge = netdev_priv(dev);
1237 u16 status;
1238
1239 /* read twice because of latch */
1240 xm_phy_read(hw, port, PHY_BCOM_STAT);
1241 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1242
1243 if ((status & PHY_ST_LSYNC) == 0) {
1244 xm_link_down(hw, port);
1245 return;
1246 }
1247
1248 if (skge->autoneg == AUTONEG_ENABLE) {
1249 u16 lpa, aux;
1250
1251 if (!(status & PHY_ST_AN_OVER))
1252 return;
1253
1254 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1255 if (lpa & PHY_B_AN_RF) {
1256 printk(KERN_NOTICE PFX "%s: remote fault\n",
1257 dev->name);
1258 return;
1259 }
1260
1261 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1262
1263 /* Check Duplex mismatch */
1264 switch (aux & PHY_B_AS_AN_RES_MSK) {
1265 case PHY_B_RES_1000FD:
1266 skge->duplex = DUPLEX_FULL;
1267 break;
1268 case PHY_B_RES_1000HD:
1269 skge->duplex = DUPLEX_HALF;
1270 break;
1271 default:
1272 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1273 dev->name);
1274 return;
1275 }
1276
1277 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1278 switch (aux & PHY_B_AS_PAUSE_MSK) {
1279 case PHY_B_AS_PAUSE_MSK:
1280 skge->flow_status = FLOW_STAT_SYMMETRIC;
1281 break;
1282 case PHY_B_AS_PRR:
1283 skge->flow_status = FLOW_STAT_REM_SEND;
1284 break;
1285 case PHY_B_AS_PRT:
1286 skge->flow_status = FLOW_STAT_LOC_SEND;
1287 break;
1288 default:
1289 skge->flow_status = FLOW_STAT_NONE;
1290 }
1291 skge->speed = SPEED_1000;
1292 }
1293
1294 if (!netif_carrier_ok(dev))
1295 genesis_link_up(skge);
1296 }
1297
1298 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1299 * Phy on for 100 or 10Mbit operation
1300 */
1301 static void bcom_phy_init(struct skge_port *skge)
1302 {
1303 struct skge_hw *hw = skge->hw;
1304 int port = skge->port;
1305 int i;
1306 u16 id1, r, ext, ctl;
1307
1308 /* magic workaround patterns for Broadcom */
1309 static const struct {
1310 u16 reg;
1311 u16 val;
1312 } A1hack[] = {
1313 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1314 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1315 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1316 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1317 }, C0hack[] = {
1318 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1319 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1320 };
1321
1322 /* read Id from external PHY (all have the same address) */
1323 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1324
1325 /* Optimize MDIO transfer by suppressing preamble. */
1326 r = xm_read16(hw, port, XM_MMU_CMD);
1327 r |= XM_MMU_NO_PRE;
1328 xm_write16(hw, port, XM_MMU_CMD,r);
1329
1330 switch (id1) {
1331 case PHY_BCOM_ID1_C0:
1332 /*
1333 * Workaround BCOM Errata for the C0 type.
1334 * Write magic patterns to reserved registers.
1335 */
1336 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1337 xm_phy_write(hw, port,
1338 C0hack[i].reg, C0hack[i].val);
1339
1340 break;
1341 case PHY_BCOM_ID1_A1:
1342 /*
1343 * Workaround BCOM Errata for the A1 type.
1344 * Write magic patterns to reserved registers.
1345 */
1346 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1347 xm_phy_write(hw, port,
1348 A1hack[i].reg, A1hack[i].val);
1349 break;
1350 }
1351
1352 /*
1353 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1354 * Disable Power Management after reset.
1355 */
1356 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1357 r |= PHY_B_AC_DIS_PM;
1358 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1359
1360 /* Dummy read */
1361 xm_read16(hw, port, XM_ISRC);
1362
1363 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1364 ctl = PHY_CT_SP1000; /* always 1000mbit */
1365
1366 if (skge->autoneg == AUTONEG_ENABLE) {
1367 /*
1368 * Workaround BCOM Errata #1 for the C5 type.
1369 * 1000Base-T Link Acquisition Failure in Slave Mode
1370 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1371 */
1372 u16 adv = PHY_B_1000C_RD;
1373 if (skge->advertising & ADVERTISED_1000baseT_Half)
1374 adv |= PHY_B_1000C_AHD;
1375 if (skge->advertising & ADVERTISED_1000baseT_Full)
1376 adv |= PHY_B_1000C_AFD;
1377 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1378
1379 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1380 } else {
1381 if (skge->duplex == DUPLEX_FULL)
1382 ctl |= PHY_CT_DUP_MD;
1383 /* Force to slave */
1384 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1385 }
1386
1387 /* Set autonegotiation pause parameters */
1388 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1389 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1390
1391 /* Handle Jumbo frames */
1392 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1393 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1394 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1395
1396 ext |= PHY_B_PEC_HIGH_LA;
1397
1398 }
1399
1400 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1401 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1402
1403 /* Use link status change interrupt */
1404 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1405 }
1406
1407 static void xm_phy_init(struct skge_port *skge)
1408 {
1409 struct skge_hw *hw = skge->hw;
1410 int port = skge->port;
1411 u16 ctrl = 0;
1412
1413 if (skge->autoneg == AUTONEG_ENABLE) {
1414 if (skge->advertising & ADVERTISED_1000baseT_Half)
1415 ctrl |= PHY_X_AN_HD;
1416 if (skge->advertising & ADVERTISED_1000baseT_Full)
1417 ctrl |= PHY_X_AN_FD;
1418
1419 ctrl |= fiber_pause_map[skge->flow_control];
1420
1421 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1422
1423 /* Restart Auto-negotiation */
1424 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1425 } else {
1426 /* Set DuplexMode in Config register */
1427 if (skge->duplex == DUPLEX_FULL)
1428 ctrl |= PHY_CT_DUP_MD;
1429 /*
1430 * Do NOT enable Auto-negotiation here. This would hold
1431 * the link down because no IDLEs are transmitted
1432 */
1433 }
1434
1435 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1436
1437 /* Poll PHY for status changes */
1438 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1439 }
1440
1441 static int xm_check_link(struct net_device *dev)
1442 {
1443 struct skge_port *skge = netdev_priv(dev);
1444 struct skge_hw *hw = skge->hw;
1445 int port = skge->port;
1446 u16 status;
1447
1448 /* read twice because of latch */
1449 xm_phy_read(hw, port, PHY_XMAC_STAT);
1450 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1451
1452 if ((status & PHY_ST_LSYNC) == 0) {
1453 xm_link_down(hw, port);
1454 return 0;
1455 }
1456
1457 if (skge->autoneg == AUTONEG_ENABLE) {
1458 u16 lpa, res;
1459
1460 if (!(status & PHY_ST_AN_OVER))
1461 return 0;
1462
1463 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1464 if (lpa & PHY_B_AN_RF) {
1465 printk(KERN_NOTICE PFX "%s: remote fault\n",
1466 dev->name);
1467 return 0;
1468 }
1469
1470 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1471
1472 /* Check Duplex mismatch */
1473 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1474 case PHY_X_RS_FD:
1475 skge->duplex = DUPLEX_FULL;
1476 break;
1477 case PHY_X_RS_HD:
1478 skge->duplex = DUPLEX_HALF;
1479 break;
1480 default:
1481 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1482 dev->name);
1483 return 0;
1484 }
1485
1486 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1488 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1489 (lpa & PHY_X_P_SYM_MD))
1490 skge->flow_status = FLOW_STAT_SYMMETRIC;
1491 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1492 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1493 /* Enable PAUSE receive, disable PAUSE transmit */
1494 skge->flow_status = FLOW_STAT_REM_SEND;
1495 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1496 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1497 /* Disable PAUSE receive, enable PAUSE transmit */
1498 skge->flow_status = FLOW_STAT_LOC_SEND;
1499 else
1500 skge->flow_status = FLOW_STAT_NONE;
1501
1502 skge->speed = SPEED_1000;
1503 }
1504
1505 if (!netif_carrier_ok(dev))
1506 genesis_link_up(skge);
1507 return 1;
1508 }
1509
1510 /* Poll to check for link coming up.
1511 *
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1514 * link coming up.
1515 */
1516 static void xm_link_timer(unsigned long arg)
1517 {
1518 struct skge_port *skge = (struct skge_port *) arg;
1519 struct net_device *dev = skge->netdev;
1520 struct skge_hw *hw = skge->hw;
1521 int port = skge->port;
1522 int i;
1523 unsigned long flags;
1524
1525 if (!netif_running(dev))
1526 return;
1527
1528 spin_lock_irqsave(&hw->phy_lock, flags);
1529
1530 /*
1531 * Verify that the link by checking GPIO register three times.
1532 * This pin has the signal from the link_sync pin connected to it.
1533 */
1534 for (i = 0; i < 3; i++) {
1535 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1536 goto link_down;
1537 }
1538
1539 /* Re-enable interrupt to detect link down */
1540 if (xm_check_link(dev)) {
1541 u16 msk = xm_read16(hw, port, XM_IMSK);
1542 msk &= ~XM_IS_INP_ASS;
1543 xm_write16(hw, port, XM_IMSK, msk);
1544 xm_read16(hw, port, XM_ISRC);
1545 } else {
1546 link_down:
1547 mod_timer(&skge->link_timer,
1548 round_jiffies(jiffies + LINK_HZ));
1549 }
1550 spin_unlock_irqrestore(&hw->phy_lock, flags);
1551 }
1552
1553 static void genesis_mac_init(struct skge_hw *hw, int port)
1554 {
1555 struct net_device *dev = hw->dev[port];
1556 struct skge_port *skge = netdev_priv(dev);
1557 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1558 int i;
1559 u32 r;
1560 const u8 zero[6] = { 0 };
1561
1562 for (i = 0; i < 10; i++) {
1563 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1564 MFF_SET_MAC_RST);
1565 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1566 goto reset_ok;
1567 udelay(1);
1568 }
1569
1570 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1571
1572 reset_ok:
1573 /* Unreset the XMAC. */
1574 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1575
1576 /*
1577 * Perform additional initialization for external PHYs,
1578 * namely for the 1000baseTX cards that use the XMAC's
1579 * GMII mode.
1580 */
1581 if (hw->phy_type != SK_PHY_XMAC) {
1582 /* Take external Phy out of reset */
1583 r = skge_read32(hw, B2_GP_IO);
1584 if (port == 0)
1585 r |= GP_DIR_0|GP_IO_0;
1586 else
1587 r |= GP_DIR_2|GP_IO_2;
1588
1589 skge_write32(hw, B2_GP_IO, r);
1590
1591 /* Enable GMII interface */
1592 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1593 }
1594
1595
1596 switch(hw->phy_type) {
1597 case SK_PHY_XMAC:
1598 xm_phy_init(skge);
1599 break;
1600 case SK_PHY_BCOM:
1601 bcom_phy_init(skge);
1602 bcom_check_link(hw, port);
1603 }
1604
1605 /* Set Station Address */
1606 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1607
1608 /* We don't use match addresses so clear */
1609 for (i = 1; i < 16; i++)
1610 xm_outaddr(hw, port, XM_EXM(i), zero);
1611
1612 /* Clear MIB counters */
1613 xm_write16(hw, port, XM_STAT_CMD,
1614 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1615 /* Clear two times according to Errata #3 */
1616 xm_write16(hw, port, XM_STAT_CMD,
1617 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1618
1619 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1621
1622 /* We don't need the FCS appended to the packet. */
1623 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1624 if (jumbo)
1625 r |= XM_RX_BIG_PK_OK;
1626
1627 if (skge->duplex == DUPLEX_HALF) {
1628 /*
1629 * If in manual half duplex mode the other side might be in
1630 * full duplex mode, so ignore if a carrier extension is not seen
1631 * on frames received
1632 */
1633 r |= XM_RX_DIS_CEXT;
1634 }
1635 xm_write16(hw, port, XM_RX_CMD, r);
1636
1637
1638 /* We want short frames padded to 60 bytes. */
1639 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1640
1641 /*
1642 * Bump up the transmit threshold. This helps hold off transmit
1643 * underruns when we're blasting traffic from both ports at once.
1644 */
1645 xm_write16(hw, port, XM_TX_THR, 512);
1646
1647 /*
1648 * Enable the reception of all error frames. This is is
1649 * a necessary evil due to the design of the XMAC. The
1650 * XMAC's receive FIFO is only 8K in size, however jumbo
1651 * frames can be up to 9000 bytes in length. When bad
1652 * frame filtering is enabled, the XMAC's RX FIFO operates
1653 * in 'store and forward' mode. For this to work, the
1654 * entire frame has to fit into the FIFO, but that means
1655 * that jumbo frames larger than 8192 bytes will be
1656 * truncated. Disabling all bad frame filtering causes
1657 * the RX FIFO to operate in streaming mode, in which
1658 * case the XMAC will start transferring frames out of the
1659 * RX FIFO as soon as the FIFO threshold is reached.
1660 */
1661 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1662
1663
1664 /*
1665 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1666 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1667 * and 'Octets Rx OK Hi Cnt Ov'.
1668 */
1669 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1670
1671 /*
1672 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1673 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1674 * and 'Octets Tx OK Hi Cnt Ov'.
1675 */
1676 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1677
1678 /* Configure MAC arbiter */
1679 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1680
1681 /* configure timeout values */
1682 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1683 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1684 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1685 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1686
1687 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1688 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1689 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1690 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1691
1692 /* Configure Rx MAC FIFO */
1693 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1694 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1695 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1696
1697 /* Configure Tx MAC FIFO */
1698 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1699 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1700 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1701
1702 if (jumbo) {
1703 /* Enable frame flushing if jumbo frames used */
1704 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1705 } else {
1706 /* enable timeout timers if normal frames */
1707 skge_write16(hw, B3_PA_CTRL,
1708 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1709 }
1710 }
1711
1712 static void genesis_stop(struct skge_port *skge)
1713 {
1714 struct skge_hw *hw = skge->hw;
1715 int port = skge->port;
1716 unsigned retries = 1000;
1717
1718 genesis_reset(hw, port);
1719
1720 /* Clear Tx packet arbiter timeout IRQ */
1721 skge_write16(hw, B3_PA_CTRL,
1722 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1723
1724 /* Reset the MAC */
1725 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1726 do {
1727 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1728 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1729 break;
1730 } while (--retries > 0);
1731
1732 /* For external PHYs there must be special handling */
1733 if (hw->phy_type != SK_PHY_XMAC) {
1734 u32 reg = skge_read32(hw, B2_GP_IO);
1735 if (port == 0) {
1736 reg |= GP_DIR_0;
1737 reg &= ~GP_IO_0;
1738 } else {
1739 reg |= GP_DIR_2;
1740 reg &= ~GP_IO_2;
1741 }
1742 skge_write32(hw, B2_GP_IO, reg);
1743 skge_read32(hw, B2_GP_IO);
1744 }
1745
1746 xm_write16(hw, port, XM_MMU_CMD,
1747 xm_read16(hw, port, XM_MMU_CMD)
1748 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1749
1750 xm_read16(hw, port, XM_MMU_CMD);
1751 }
1752
1753
1754 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1755 {
1756 struct skge_hw *hw = skge->hw;
1757 int port = skge->port;
1758 int i;
1759 unsigned long timeout = jiffies + HZ;
1760
1761 xm_write16(hw, port,
1762 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1763
1764 /* wait for update to complete */
1765 while (xm_read16(hw, port, XM_STAT_CMD)
1766 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1767 if (time_after(jiffies, timeout))
1768 break;
1769 udelay(10);
1770 }
1771
1772 /* special case for 64 bit octet counter */
1773 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1774 | xm_read32(hw, port, XM_TXO_OK_LO);
1775 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1776 | xm_read32(hw, port, XM_RXO_OK_LO);
1777
1778 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1779 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1780 }
1781
1782 static void genesis_mac_intr(struct skge_hw *hw, int port)
1783 {
1784 struct net_device *dev = hw->dev[port];
1785 struct skge_port *skge = netdev_priv(dev);
1786 u16 status = xm_read16(hw, port, XM_ISRC);
1787
1788 if (netif_msg_intr(skge))
1789 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1790 dev->name, status);
1791
1792 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1793 xm_link_down(hw, port);
1794 mod_timer(&skge->link_timer, jiffies + 1);
1795 }
1796
1797 if (status & XM_IS_TXF_UR) {
1798 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1799 ++dev->stats.tx_fifo_errors;
1800 }
1801 }
1802
1803 static void genesis_link_up(struct skge_port *skge)
1804 {
1805 struct skge_hw *hw = skge->hw;
1806 int port = skge->port;
1807 u16 cmd, msk;
1808 u32 mode;
1809
1810 cmd = xm_read16(hw, port, XM_MMU_CMD);
1811
1812 /*
1813 * enabling pause frame reception is required for 1000BT
1814 * because the XMAC is not reset if the link is going down
1815 */
1816 if (skge->flow_status == FLOW_STAT_NONE ||
1817 skge->flow_status == FLOW_STAT_LOC_SEND)
1818 /* Disable Pause Frame Reception */
1819 cmd |= XM_MMU_IGN_PF;
1820 else
1821 /* Enable Pause Frame Reception */
1822 cmd &= ~XM_MMU_IGN_PF;
1823
1824 xm_write16(hw, port, XM_MMU_CMD, cmd);
1825
1826 mode = xm_read32(hw, port, XM_MODE);
1827 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1828 skge->flow_status == FLOW_STAT_LOC_SEND) {
1829 /*
1830 * Configure Pause Frame Generation
1831 * Use internal and external Pause Frame Generation.
1832 * Sending pause frames is edge triggered.
1833 * Send a Pause frame with the maximum pause time if
1834 * internal oder external FIFO full condition occurs.
1835 * Send a zero pause time frame to re-start transmission.
1836 */
1837 /* XM_PAUSE_DA = '010000C28001' (default) */
1838 /* XM_MAC_PTIME = 0xffff (maximum) */
1839 /* remember this value is defined in big endian (!) */
1840 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1841
1842 mode |= XM_PAUSE_MODE;
1843 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1844 } else {
1845 /*
1846 * disable pause frame generation is required for 1000BT
1847 * because the XMAC is not reset if the link is going down
1848 */
1849 /* Disable Pause Mode in Mode Register */
1850 mode &= ~XM_PAUSE_MODE;
1851
1852 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1853 }
1854
1855 xm_write32(hw, port, XM_MODE, mode);
1856
1857 /* Turn on detection of Tx underrun */
1858 msk = xm_read16(hw, port, XM_IMSK);
1859 msk &= ~XM_IS_TXF_UR;
1860 xm_write16(hw, port, XM_IMSK, msk);
1861
1862 xm_read16(hw, port, XM_ISRC);
1863
1864 /* get MMU Command Reg. */
1865 cmd = xm_read16(hw, port, XM_MMU_CMD);
1866 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1867 cmd |= XM_MMU_GMII_FD;
1868
1869 /*
1870 * Workaround BCOM Errata (#10523) for all BCom Phys
1871 * Enable Power Management after link up
1872 */
1873 if (hw->phy_type == SK_PHY_BCOM) {
1874 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1875 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1876 & ~PHY_B_AC_DIS_PM);
1877 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1878 }
1879
1880 /* enable Rx/Tx */
1881 xm_write16(hw, port, XM_MMU_CMD,
1882 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1883 skge_link_up(skge);
1884 }
1885
1886
1887 static inline void bcom_phy_intr(struct skge_port *skge)
1888 {
1889 struct skge_hw *hw = skge->hw;
1890 int port = skge->port;
1891 u16 isrc;
1892
1893 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1894 if (netif_msg_intr(skge))
1895 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1896 skge->netdev->name, isrc);
1897
1898 if (isrc & PHY_B_IS_PSE)
1899 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1900 hw->dev[port]->name);
1901
1902 /* Workaround BCom Errata:
1903 * enable and disable loopback mode if "NO HCD" occurs.
1904 */
1905 if (isrc & PHY_B_IS_NO_HDCL) {
1906 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1907 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1908 ctrl | PHY_CT_LOOP);
1909 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1910 ctrl & ~PHY_CT_LOOP);
1911 }
1912
1913 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1914 bcom_check_link(hw, port);
1915
1916 }
1917
1918 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1919 {
1920 int i;
1921
1922 gma_write16(hw, port, GM_SMI_DATA, val);
1923 gma_write16(hw, port, GM_SMI_CTRL,
1924 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1925 for (i = 0; i < PHY_RETRIES; i++) {
1926 udelay(1);
1927
1928 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1929 return 0;
1930 }
1931
1932 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1933 hw->dev[port]->name);
1934 return -EIO;
1935 }
1936
1937 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1938 {
1939 int i;
1940
1941 gma_write16(hw, port, GM_SMI_CTRL,
1942 GM_SMI_CT_PHY_AD(hw->phy_addr)
1943 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1944
1945 for (i = 0; i < PHY_RETRIES; i++) {
1946 udelay(1);
1947 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1948 goto ready;
1949 }
1950
1951 return -ETIMEDOUT;
1952 ready:
1953 *val = gma_read16(hw, port, GM_SMI_DATA);
1954 return 0;
1955 }
1956
1957 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1958 {
1959 u16 v = 0;
1960 if (__gm_phy_read(hw, port, reg, &v))
1961 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1962 hw->dev[port]->name);
1963 return v;
1964 }
1965
1966 /* Marvell Phy Initialization */
1967 static void yukon_init(struct skge_hw *hw, int port)
1968 {
1969 struct skge_port *skge = netdev_priv(hw->dev[port]);
1970 u16 ctrl, ct1000, adv;
1971
1972 if (skge->autoneg == AUTONEG_ENABLE) {
1973 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1974
1975 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1976 PHY_M_EC_MAC_S_MSK);
1977 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1978
1979 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1980
1981 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1982 }
1983
1984 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1985 if (skge->autoneg == AUTONEG_DISABLE)
1986 ctrl &= ~PHY_CT_ANE;
1987
1988 ctrl |= PHY_CT_RESET;
1989 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1990
1991 ctrl = 0;
1992 ct1000 = 0;
1993 adv = PHY_AN_CSMA;
1994
1995 if (skge->autoneg == AUTONEG_ENABLE) {
1996 if (hw->copper) {
1997 if (skge->advertising & ADVERTISED_1000baseT_Full)
1998 ct1000 |= PHY_M_1000C_AFD;
1999 if (skge->advertising & ADVERTISED_1000baseT_Half)
2000 ct1000 |= PHY_M_1000C_AHD;
2001 if (skge->advertising & ADVERTISED_100baseT_Full)
2002 adv |= PHY_M_AN_100_FD;
2003 if (skge->advertising & ADVERTISED_100baseT_Half)
2004 adv |= PHY_M_AN_100_HD;
2005 if (skge->advertising & ADVERTISED_10baseT_Full)
2006 adv |= PHY_M_AN_10_FD;
2007 if (skge->advertising & ADVERTISED_10baseT_Half)
2008 adv |= PHY_M_AN_10_HD;
2009
2010 /* Set Flow-control capabilities */
2011 adv |= phy_pause_map[skge->flow_control];
2012 } else {
2013 if (skge->advertising & ADVERTISED_1000baseT_Full)
2014 adv |= PHY_M_AN_1000X_AFD;
2015 if (skge->advertising & ADVERTISED_1000baseT_Half)
2016 adv |= PHY_M_AN_1000X_AHD;
2017
2018 adv |= fiber_pause_map[skge->flow_control];
2019 }
2020
2021 /* Restart Auto-negotiation */
2022 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2023 } else {
2024 /* forced speed/duplex settings */
2025 ct1000 = PHY_M_1000C_MSE;
2026
2027 if (skge->duplex == DUPLEX_FULL)
2028 ctrl |= PHY_CT_DUP_MD;
2029
2030 switch (skge->speed) {
2031 case SPEED_1000:
2032 ctrl |= PHY_CT_SP1000;
2033 break;
2034 case SPEED_100:
2035 ctrl |= PHY_CT_SP100;
2036 break;
2037 }
2038
2039 ctrl |= PHY_CT_RESET;
2040 }
2041
2042 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2043
2044 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2045 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2046
2047 /* Enable phy interrupt on autonegotiation complete (or link up) */
2048 if (skge->autoneg == AUTONEG_ENABLE)
2049 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2050 else
2051 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2052 }
2053
2054 static void yukon_reset(struct skge_hw *hw, int port)
2055 {
2056 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2057 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2058 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2059 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2060 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2061
2062 gma_write16(hw, port, GM_RX_CTRL,
2063 gma_read16(hw, port, GM_RX_CTRL)
2064 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2065 }
2066
2067 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2068 static int is_yukon_lite_a0(struct skge_hw *hw)
2069 {
2070 u32 reg;
2071 int ret;
2072
2073 if (hw->chip_id != CHIP_ID_YUKON)
2074 return 0;
2075
2076 reg = skge_read32(hw, B2_FAR);
2077 skge_write8(hw, B2_FAR + 3, 0xff);
2078 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2079 skge_write32(hw, B2_FAR, reg);
2080 return ret;
2081 }
2082
2083 static void yukon_mac_init(struct skge_hw *hw, int port)
2084 {
2085 struct skge_port *skge = netdev_priv(hw->dev[port]);
2086 int i;
2087 u32 reg;
2088 const u8 *addr = hw->dev[port]->dev_addr;
2089
2090 /* WA code for COMA mode -- set PHY reset */
2091 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2092 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2093 reg = skge_read32(hw, B2_GP_IO);
2094 reg |= GP_DIR_9 | GP_IO_9;
2095 skge_write32(hw, B2_GP_IO, reg);
2096 }
2097
2098 /* hard reset */
2099 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2100 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2101
2102 /* WA code for COMA mode -- clear PHY reset */
2103 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2104 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2105 reg = skge_read32(hw, B2_GP_IO);
2106 reg |= GP_DIR_9;
2107 reg &= ~GP_IO_9;
2108 skge_write32(hw, B2_GP_IO, reg);
2109 }
2110
2111 /* Set hardware config mode */
2112 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2113 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2114 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2115
2116 /* Clear GMC reset */
2117 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2118 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2119 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2120
2121 if (skge->autoneg == AUTONEG_DISABLE) {
2122 reg = GM_GPCR_AU_ALL_DIS;
2123 gma_write16(hw, port, GM_GP_CTRL,
2124 gma_read16(hw, port, GM_GP_CTRL) | reg);
2125
2126 switch (skge->speed) {
2127 case SPEED_1000:
2128 reg &= ~GM_GPCR_SPEED_100;
2129 reg |= GM_GPCR_SPEED_1000;
2130 break;
2131 case SPEED_100:
2132 reg &= ~GM_GPCR_SPEED_1000;
2133 reg |= GM_GPCR_SPEED_100;
2134 break;
2135 case SPEED_10:
2136 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2137 break;
2138 }
2139
2140 if (skge->duplex == DUPLEX_FULL)
2141 reg |= GM_GPCR_DUP_FULL;
2142 } else
2143 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2144
2145 switch (skge->flow_control) {
2146 case FLOW_MODE_NONE:
2147 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2148 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2149 break;
2150 case FLOW_MODE_LOC_SEND:
2151 /* disable Rx flow-control */
2152 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2153 break;
2154 case FLOW_MODE_SYMMETRIC:
2155 case FLOW_MODE_SYM_OR_REM:
2156 /* enable Tx & Rx flow-control */
2157 break;
2158 }
2159
2160 gma_write16(hw, port, GM_GP_CTRL, reg);
2161 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2162
2163 yukon_init(hw, port);
2164
2165 /* MIB clear */
2166 reg = gma_read16(hw, port, GM_PHY_ADDR);
2167 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2168
2169 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2170 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2171 gma_write16(hw, port, GM_PHY_ADDR, reg);
2172
2173 /* transmit control */
2174 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2175
2176 /* receive control reg: unicast + multicast + no FCS */
2177 gma_write16(hw, port, GM_RX_CTRL,
2178 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2179
2180 /* transmit flow control */
2181 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2182
2183 /* transmit parameter */
2184 gma_write16(hw, port, GM_TX_PARAM,
2185 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2186 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2187 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2188
2189 /* serial mode register */
2190 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2191 if (hw->dev[port]->mtu > 1500)
2192 reg |= GM_SMOD_JUMBO_ENA;
2193
2194 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2195
2196 /* physical address: used for pause frames */
2197 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2198 /* virtual address for data */
2199 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2200
2201 /* enable interrupt mask for counter overflows */
2202 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2203 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2204 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2205
2206 /* Initialize Mac Fifo */
2207
2208 /* Configure Rx MAC FIFO */
2209 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2210 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2211
2212 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2213 if (is_yukon_lite_a0(hw))
2214 reg &= ~GMF_RX_F_FL_ON;
2215
2216 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2217 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2218 /*
2219 * because Pause Packet Truncation in GMAC is not working
2220 * we have to increase the Flush Threshold to 64 bytes
2221 * in order to flush pause packets in Rx FIFO on Yukon-1
2222 */
2223 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2224
2225 /* Configure Tx MAC FIFO */
2226 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2227 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2228 }
2229
2230 /* Go into power down mode */
2231 static void yukon_suspend(struct skge_hw *hw, int port)
2232 {
2233 u16 ctrl;
2234
2235 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2236 ctrl |= PHY_M_PC_POL_R_DIS;
2237 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2238
2239 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2240 ctrl |= PHY_CT_RESET;
2241 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2242
2243 /* switch IEEE compatible power down mode on */
2244 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2245 ctrl |= PHY_CT_PDOWN;
2246 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2247 }
2248
2249 static void yukon_stop(struct skge_port *skge)
2250 {
2251 struct skge_hw *hw = skge->hw;
2252 int port = skge->port;
2253
2254 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2255 yukon_reset(hw, port);
2256
2257 gma_write16(hw, port, GM_GP_CTRL,
2258 gma_read16(hw, port, GM_GP_CTRL)
2259 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2260 gma_read16(hw, port, GM_GP_CTRL);
2261
2262 yukon_suspend(hw, port);
2263
2264 /* set GPHY Control reset */
2265 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2266 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2267 }
2268
2269 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2270 {
2271 struct skge_hw *hw = skge->hw;
2272 int port = skge->port;
2273 int i;
2274
2275 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2276 | gma_read32(hw, port, GM_TXO_OK_LO);
2277 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2278 | gma_read32(hw, port, GM_RXO_OK_LO);
2279
2280 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2281 data[i] = gma_read32(hw, port,
2282 skge_stats[i].gma_offset);
2283 }
2284
2285 static void yukon_mac_intr(struct skge_hw *hw, int port)
2286 {
2287 struct net_device *dev = hw->dev[port];
2288 struct skge_port *skge = netdev_priv(dev);
2289 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2290
2291 if (netif_msg_intr(skge))
2292 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2293 dev->name, status);
2294
2295 if (status & GM_IS_RX_FF_OR) {
2296 ++dev->stats.rx_fifo_errors;
2297 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2298 }
2299
2300 if (status & GM_IS_TX_FF_UR) {
2301 ++dev->stats.tx_fifo_errors;
2302 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2303 }
2304
2305 }
2306
2307 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2308 {
2309 switch (aux & PHY_M_PS_SPEED_MSK) {
2310 case PHY_M_PS_SPEED_1000:
2311 return SPEED_1000;
2312 case PHY_M_PS_SPEED_100:
2313 return SPEED_100;
2314 default:
2315 return SPEED_10;
2316 }
2317 }
2318
2319 static void yukon_link_up(struct skge_port *skge)
2320 {
2321 struct skge_hw *hw = skge->hw;
2322 int port = skge->port;
2323 u16 reg;
2324
2325 /* Enable Transmit FIFO Underrun */
2326 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2327
2328 reg = gma_read16(hw, port, GM_GP_CTRL);
2329 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2330 reg |= GM_GPCR_DUP_FULL;
2331
2332 /* enable Rx/Tx */
2333 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2334 gma_write16(hw, port, GM_GP_CTRL, reg);
2335
2336 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2337 skge_link_up(skge);
2338 }
2339
2340 static void yukon_link_down(struct skge_port *skge)
2341 {
2342 struct skge_hw *hw = skge->hw;
2343 int port = skge->port;
2344 u16 ctrl;
2345
2346 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2347 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2348 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2349
2350 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2351 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2352 ctrl |= PHY_M_AN_ASP;
2353 /* restore Asymmetric Pause bit */
2354 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2355 }
2356
2357 skge_link_down(skge);
2358
2359 yukon_init(hw, port);
2360 }
2361
2362 static void yukon_phy_intr(struct skge_port *skge)
2363 {
2364 struct skge_hw *hw = skge->hw;
2365 int port = skge->port;
2366 const char *reason = NULL;
2367 u16 istatus, phystat;
2368
2369 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2370 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2371
2372 if (netif_msg_intr(skge))
2373 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2374 skge->netdev->name, istatus, phystat);
2375
2376 if (istatus & PHY_M_IS_AN_COMPL) {
2377 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2378 & PHY_M_AN_RF) {
2379 reason = "remote fault";
2380 goto failed;
2381 }
2382
2383 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2384 reason = "master/slave fault";
2385 goto failed;
2386 }
2387
2388 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2389 reason = "speed/duplex";
2390 goto failed;
2391 }
2392
2393 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2394 ? DUPLEX_FULL : DUPLEX_HALF;
2395 skge->speed = yukon_speed(hw, phystat);
2396
2397 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2398 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2399 case PHY_M_PS_PAUSE_MSK:
2400 skge->flow_status = FLOW_STAT_SYMMETRIC;
2401 break;
2402 case PHY_M_PS_RX_P_EN:
2403 skge->flow_status = FLOW_STAT_REM_SEND;
2404 break;
2405 case PHY_M_PS_TX_P_EN:
2406 skge->flow_status = FLOW_STAT_LOC_SEND;
2407 break;
2408 default:
2409 skge->flow_status = FLOW_STAT_NONE;
2410 }
2411
2412 if (skge->flow_status == FLOW_STAT_NONE ||
2413 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2414 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2415 else
2416 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2417 yukon_link_up(skge);
2418 return;
2419 }
2420
2421 if (istatus & PHY_M_IS_LSP_CHANGE)
2422 skge->speed = yukon_speed(hw, phystat);
2423
2424 if (istatus & PHY_M_IS_DUP_CHANGE)
2425 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2426 if (istatus & PHY_M_IS_LST_CHANGE) {
2427 if (phystat & PHY_M_PS_LINK_UP)
2428 yukon_link_up(skge);
2429 else
2430 yukon_link_down(skge);
2431 }
2432 return;
2433 failed:
2434 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2435 skge->netdev->name, reason);
2436
2437 /* XXX restart autonegotiation? */
2438 }
2439
2440 static void skge_phy_reset(struct skge_port *skge)
2441 {
2442 struct skge_hw *hw = skge->hw;
2443 int port = skge->port;
2444 struct net_device *dev = hw->dev[port];
2445
2446 netif_stop_queue(skge->netdev);
2447 netif_carrier_off(skge->netdev);
2448
2449 spin_lock_bh(&hw->phy_lock);
2450 if (hw->chip_id == CHIP_ID_GENESIS) {
2451 genesis_reset(hw, port);
2452 genesis_mac_init(hw, port);
2453 } else {
2454 yukon_reset(hw, port);
2455 yukon_init(hw, port);
2456 }
2457 spin_unlock_bh(&hw->phy_lock);
2458
2459 dev->set_multicast_list(dev);
2460 }
2461
2462 /* Basic MII support */
2463 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2464 {
2465 struct mii_ioctl_data *data = if_mii(ifr);
2466 struct skge_port *skge = netdev_priv(dev);
2467 struct skge_hw *hw = skge->hw;
2468 int err = -EOPNOTSUPP;
2469
2470 if (!netif_running(dev))
2471 return -ENODEV; /* Phy still in reset */
2472
2473 switch(cmd) {
2474 case SIOCGMIIPHY:
2475 data->phy_id = hw->phy_addr;
2476
2477 /* fallthru */
2478 case SIOCGMIIREG: {
2479 u16 val = 0;
2480 spin_lock_bh(&hw->phy_lock);
2481 if (hw->chip_id == CHIP_ID_GENESIS)
2482 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2483 else
2484 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2485 spin_unlock_bh(&hw->phy_lock);
2486 data->val_out = val;
2487 break;
2488 }
2489
2490 case SIOCSMIIREG:
2491 if (!capable(CAP_NET_ADMIN))
2492 return -EPERM;
2493
2494 spin_lock_bh(&hw->phy_lock);
2495 if (hw->chip_id == CHIP_ID_GENESIS)
2496 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2497 data->val_in);
2498 else
2499 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2500 data->val_in);
2501 spin_unlock_bh(&hw->phy_lock);
2502 break;
2503 }
2504 return err;
2505 }
2506
2507 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2508 {
2509 u32 end;
2510
2511 start /= 8;
2512 len /= 8;
2513 end = start + len - 1;
2514
2515 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2516 skge_write32(hw, RB_ADDR(q, RB_START), start);
2517 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2518 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2519 skge_write32(hw, RB_ADDR(q, RB_END), end);
2520
2521 if (q == Q_R1 || q == Q_R2) {
2522 /* Set thresholds on receive queue's */
2523 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2524 start + (2*len)/3);
2525 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2526 start + (len/3));
2527 } else {
2528 /* Enable store & forward on Tx queue's because
2529 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2530 */
2531 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2532 }
2533
2534 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2535 }
2536
2537 /* Setup Bus Memory Interface */
2538 static void skge_qset(struct skge_port *skge, u16 q,
2539 const struct skge_element *e)
2540 {
2541 struct skge_hw *hw = skge->hw;
2542 u32 watermark = 0x600;
2543 u64 base = skge->dma + (e->desc - skge->mem);
2544
2545 /* optimization to reduce window on 32bit/33mhz */
2546 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2547 watermark /= 2;
2548
2549 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2550 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2551 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2552 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2553 }
2554
2555 static int skge_up(struct net_device *dev)
2556 {
2557 struct skge_port *skge = netdev_priv(dev);
2558 struct skge_hw *hw = skge->hw;
2559 int port = skge->port;
2560 u32 chunk, ram_addr;
2561 size_t rx_size, tx_size;
2562 int err;
2563
2564 if (!is_valid_ether_addr(dev->dev_addr))
2565 return -EINVAL;
2566
2567 if (netif_msg_ifup(skge))
2568 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2569
2570 if (dev->mtu > RX_BUF_SIZE)
2571 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2572 else
2573 skge->rx_buf_size = RX_BUF_SIZE;
2574
2575
2576 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2577 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2578 skge->mem_size = tx_size + rx_size;
2579 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2580 if (!skge->mem)
2581 return -ENOMEM;
2582
2583 BUG_ON(skge->dma & 7);
2584
2585 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2586 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2587 err = -EINVAL;
2588 goto free_pci_mem;
2589 }
2590
2591 memset(skge->mem, 0, skge->mem_size);
2592
2593 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2594 if (err)
2595 goto free_pci_mem;
2596
2597 err = skge_rx_fill(dev);
2598 if (err)
2599 goto free_rx_ring;
2600
2601 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2602 skge->dma + rx_size);
2603 if (err)
2604 goto free_rx_ring;
2605
2606 /* Initialize MAC */
2607 spin_lock_bh(&hw->phy_lock);
2608 if (hw->chip_id == CHIP_ID_GENESIS)
2609 genesis_mac_init(hw, port);
2610 else
2611 yukon_mac_init(hw, port);
2612 spin_unlock_bh(&hw->phy_lock);
2613
2614 /* Configure RAMbuffers - equally between ports and tx/rx */
2615 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2616 ram_addr = hw->ram_offset + 2 * chunk * port;
2617
2618 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2619 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2620
2621 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2622 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2623 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2624
2625 /* Start receiver BMU */
2626 wmb();
2627 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2628 skge_led(skge, LED_MODE_ON);
2629
2630 spin_lock_irq(&hw->hw_lock);
2631 hw->intr_mask |= portmask[port];
2632 skge_write32(hw, B0_IMSK, hw->intr_mask);
2633 spin_unlock_irq(&hw->hw_lock);
2634
2635 napi_enable(&skge->napi);
2636 return 0;
2637
2638 free_rx_ring:
2639 skge_rx_clean(skge);
2640 kfree(skge->rx_ring.start);
2641 free_pci_mem:
2642 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2643 skge->mem = NULL;
2644
2645 return err;
2646 }
2647
2648 /* stop receiver */
2649 static void skge_rx_stop(struct skge_hw *hw, int port)
2650 {
2651 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2652 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2653 RB_RST_SET|RB_DIS_OP_MD);
2654 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2655 }
2656
2657 static int skge_down(struct net_device *dev)
2658 {
2659 struct skge_port *skge = netdev_priv(dev);
2660 struct skge_hw *hw = skge->hw;
2661 int port = skge->port;
2662
2663 if (skge->mem == NULL)
2664 return 0;
2665
2666 if (netif_msg_ifdown(skge))
2667 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2668
2669 netif_stop_queue(dev);
2670
2671 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2672 del_timer_sync(&skge->link_timer);
2673
2674 napi_disable(&skge->napi);
2675 netif_carrier_off(dev);
2676
2677 spin_lock_irq(&hw->hw_lock);
2678 hw->intr_mask &= ~portmask[port];
2679 skge_write32(hw, B0_IMSK, hw->intr_mask);
2680 spin_unlock_irq(&hw->hw_lock);
2681
2682 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2683 if (hw->chip_id == CHIP_ID_GENESIS)
2684 genesis_stop(skge);
2685 else
2686 yukon_stop(skge);
2687
2688 /* Stop transmitter */
2689 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2690 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2691 RB_RST_SET|RB_DIS_OP_MD);
2692
2693
2694 /* Disable Force Sync bit and Enable Alloc bit */
2695 skge_write8(hw, SK_REG(port, TXA_CTRL),
2696 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2697
2698 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2699 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2700 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2701
2702 /* Reset PCI FIFO */
2703 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2704 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2705
2706 /* Reset the RAM Buffer async Tx queue */
2707 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2708
2709 skge_rx_stop(hw, port);
2710
2711 if (hw->chip_id == CHIP_ID_GENESIS) {
2712 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2713 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2714 } else {
2715 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2716 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2717 }
2718
2719 skge_led(skge, LED_MODE_OFF);
2720
2721 netif_tx_lock_bh(dev);
2722 skge_tx_clean(dev);
2723 netif_tx_unlock_bh(dev);
2724
2725 skge_rx_clean(skge);
2726
2727 kfree(skge->rx_ring.start);
2728 kfree(skge->tx_ring.start);
2729 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2730 skge->mem = NULL;
2731 return 0;
2732 }
2733
2734 static inline int skge_avail(const struct skge_ring *ring)
2735 {
2736 smp_mb();
2737 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2738 + (ring->to_clean - ring->to_use) - 1;
2739 }
2740
2741 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2742 {
2743 struct skge_port *skge = netdev_priv(dev);
2744 struct skge_hw *hw = skge->hw;
2745 struct skge_element *e;
2746 struct skge_tx_desc *td;
2747 int i;
2748 u32 control, len;
2749 u64 map;
2750
2751 if (skb_padto(skb, ETH_ZLEN))
2752 return NETDEV_TX_OK;
2753
2754 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2755 return NETDEV_TX_BUSY;
2756
2757 e = skge->tx_ring.to_use;
2758 td = e->desc;
2759 BUG_ON(td->control & BMU_OWN);
2760 e->skb = skb;
2761 len = skb_headlen(skb);
2762 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2763 pci_unmap_addr_set(e, mapaddr, map);
2764 pci_unmap_len_set(e, maplen, len);
2765
2766 td->dma_lo = map;
2767 td->dma_hi = map >> 32;
2768
2769 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2770 const int offset = skb_transport_offset(skb);
2771
2772 /* This seems backwards, but it is what the sk98lin
2773 * does. Looks like hardware is wrong?
2774 */
2775 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2776 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2777 control = BMU_TCP_CHECK;
2778 else
2779 control = BMU_UDP_CHECK;
2780
2781 td->csum_offs = 0;
2782 td->csum_start = offset;
2783 td->csum_write = offset + skb->csum_offset;
2784 } else
2785 control = BMU_CHECK;
2786
2787 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2788 control |= BMU_EOF| BMU_IRQ_EOF;
2789 else {
2790 struct skge_tx_desc *tf = td;
2791
2792 control |= BMU_STFWD;
2793 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2794 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2795
2796 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2797 frag->size, PCI_DMA_TODEVICE);
2798
2799 e = e->next;
2800 e->skb = skb;
2801 tf = e->desc;
2802 BUG_ON(tf->control & BMU_OWN);
2803
2804 tf->dma_lo = map;
2805 tf->dma_hi = (u64) map >> 32;
2806 pci_unmap_addr_set(e, mapaddr, map);
2807 pci_unmap_len_set(e, maplen, frag->size);
2808
2809 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2810 }
2811 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2812 }
2813 /* Make sure all the descriptors written */
2814 wmb();
2815 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2816 wmb();
2817
2818 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2819
2820 if (unlikely(netif_msg_tx_queued(skge)))
2821 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2822 dev->name, e - skge->tx_ring.start, skb->len);
2823
2824 skge->tx_ring.to_use = e->next;
2825 smp_wmb();
2826
2827 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2828 pr_debug("%s: transmit queue full\n", dev->name);
2829 netif_stop_queue(dev);
2830 }
2831
2832 dev->trans_start = jiffies;
2833
2834 return NETDEV_TX_OK;
2835 }
2836
2837
2838 /* Free resources associated with this reing element */
2839 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2840 u32 control)
2841 {
2842 struct pci_dev *pdev = skge->hw->pdev;
2843
2844 /* skb header vs. fragment */
2845 if (control & BMU_STF)
2846 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2847 pci_unmap_len(e, maplen),
2848 PCI_DMA_TODEVICE);
2849 else
2850 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2851 pci_unmap_len(e, maplen),
2852 PCI_DMA_TODEVICE);
2853
2854 if (control & BMU_EOF) {
2855 if (unlikely(netif_msg_tx_done(skge)))
2856 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2857 skge->netdev->name, e - skge->tx_ring.start);
2858
2859 dev_kfree_skb(e->skb);
2860 }
2861 }
2862
2863 /* Free all buffers in transmit ring */
2864 static void skge_tx_clean(struct net_device *dev)
2865 {
2866 struct skge_port *skge = netdev_priv(dev);
2867 struct skge_element *e;
2868
2869 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2870 struct skge_tx_desc *td = e->desc;
2871 skge_tx_free(skge, e, td->control);
2872 td->control = 0;
2873 }
2874
2875 skge->tx_ring.to_clean = e;
2876 netif_wake_queue(dev);
2877 }
2878
2879 static void skge_tx_timeout(struct net_device *dev)
2880 {
2881 struct skge_port *skge = netdev_priv(dev);
2882
2883 if (netif_msg_timer(skge))
2884 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2885
2886 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2887 skge_tx_clean(dev);
2888 }
2889
2890 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2891 {
2892 struct skge_port *skge = netdev_priv(dev);
2893 struct skge_hw *hw = skge->hw;
2894 int port = skge->port;
2895 int err;
2896 u16 ctl, reg;
2897
2898 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2899 return -EINVAL;
2900
2901 if (!netif_running(dev)) {
2902 dev->mtu = new_mtu;
2903 return 0;
2904 }
2905
2906 skge_write32(hw, B0_IMSK, 0);
2907 dev->trans_start = jiffies; /* prevent tx timeout */
2908 netif_stop_queue(dev);
2909 napi_disable(&skge->napi);
2910
2911 ctl = gma_read16(hw, port, GM_GP_CTRL);
2912 gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
2913
2914 skge_rx_clean(skge);
2915 skge_rx_stop(hw, port);
2916
2917 dev->mtu = new_mtu;
2918
2919 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2920 if (new_mtu > 1500)
2921 reg |= GM_SMOD_JUMBO_ENA;
2922 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2923
2924 skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
2925
2926 err = skge_rx_fill(dev);
2927 wmb();
2928 if (!err)
2929 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2930 skge_write32(hw, B0_IMSK, hw->intr_mask);
2931
2932 if (err)
2933 dev_close(dev);
2934 else {
2935 gma_write16(hw, port, GM_GP_CTRL, ctl);
2936
2937 napi_enable(&skge->napi);
2938 netif_wake_queue(dev);
2939 }
2940
2941 return err;
2942 }
2943
2944 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2945
2946 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2947 {
2948 u32 crc, bit;
2949
2950 crc = ether_crc_le(ETH_ALEN, addr);
2951 bit = ~crc & 0x3f;
2952 filter[bit/8] |= 1 << (bit%8);
2953 }
2954
2955 static void genesis_set_multicast(struct net_device *dev)
2956 {
2957 struct skge_port *skge = netdev_priv(dev);
2958 struct skge_hw *hw = skge->hw;
2959 int port = skge->port;
2960 int i, count = dev->mc_count;
2961 struct dev_mc_list *list = dev->mc_list;
2962 u32 mode;
2963 u8 filter[8];
2964
2965 mode = xm_read32(hw, port, XM_MODE);
2966 mode |= XM_MD_ENA_HASH;
2967 if (dev->flags & IFF_PROMISC)
2968 mode |= XM_MD_ENA_PROM;
2969 else
2970 mode &= ~XM_MD_ENA_PROM;
2971
2972 if (dev->flags & IFF_ALLMULTI)
2973 memset(filter, 0xff, sizeof(filter));
2974 else {
2975 memset(filter, 0, sizeof(filter));
2976
2977 if (skge->flow_status == FLOW_STAT_REM_SEND
2978 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2979 genesis_add_filter(filter, pause_mc_addr);
2980
2981 for (i = 0; list && i < count; i++, list = list->next)
2982 genesis_add_filter(filter, list->dmi_addr);
2983 }
2984
2985 xm_write32(hw, port, XM_MODE, mode);
2986 xm_outhash(hw, port, XM_HSM, filter);
2987 }
2988
2989 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2990 {
2991 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2992 filter[bit/8] |= 1 << (bit%8);
2993 }
2994
2995 static void yukon_set_multicast(struct net_device *dev)
2996 {
2997 struct skge_port *skge = netdev_priv(dev);
2998 struct skge_hw *hw = skge->hw;
2999 int port = skge->port;
3000 struct dev_mc_list *list = dev->mc_list;
3001 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
3002 || skge->flow_status == FLOW_STAT_SYMMETRIC);
3003 u16 reg;
3004 u8 filter[8];
3005
3006 memset(filter, 0, sizeof(filter));
3007
3008 reg = gma_read16(hw, port, GM_RX_CTRL);
3009 reg |= GM_RXCR_UCF_ENA;
3010
3011 if (dev->flags & IFF_PROMISC) /* promiscuous */
3012 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
3013 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
3014 memset(filter, 0xff, sizeof(filter));
3015 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
3016 reg &= ~GM_RXCR_MCF_ENA;
3017 else {
3018 int i;
3019 reg |= GM_RXCR_MCF_ENA;
3020
3021 if (rx_pause)
3022 yukon_add_filter(filter, pause_mc_addr);
3023
3024 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
3025 yukon_add_filter(filter, list->dmi_addr);
3026 }
3027
3028
3029 gma_write16(hw, port, GM_MC_ADDR_H1,
3030 (u16)filter[0] | ((u16)filter[1] << 8));
3031 gma_write16(hw, port, GM_MC_ADDR_H2,
3032 (u16)filter[2] | ((u16)filter[3] << 8));
3033 gma_write16(hw, port, GM_MC_ADDR_H3,
3034 (u16)filter[4] | ((u16)filter[5] << 8));
3035 gma_write16(hw, port, GM_MC_ADDR_H4,
3036 (u16)filter[6] | ((u16)filter[7] << 8));
3037
3038 gma_write16(hw, port, GM_RX_CTRL, reg);
3039 }
3040
3041 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3042 {
3043 if (hw->chip_id == CHIP_ID_GENESIS)
3044 return status >> XMR_FS_LEN_SHIFT;
3045 else
3046 return status >> GMR_FS_LEN_SHIFT;
3047 }
3048
3049 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3050 {
3051 if (hw->chip_id == CHIP_ID_GENESIS)
3052 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3053 else
3054 return (status & GMR_FS_ANY_ERR) ||
3055 (status & GMR_FS_RX_OK) == 0;
3056 }
3057
3058
3059 /* Get receive buffer from descriptor.
3060 * Handles copy of small buffers and reallocation failures
3061 */
3062 static struct sk_buff *skge_rx_get(struct net_device *dev,
3063 struct skge_element *e,
3064 u32 control, u32 status, u16 csum)
3065 {
3066 struct skge_port *skge = netdev_priv(dev);
3067 struct sk_buff *skb;
3068 u16 len = control & BMU_BBC;
3069
3070 if (unlikely(netif_msg_rx_status(skge)))
3071 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
3072 dev->name, e - skge->rx_ring.start,
3073 status, len);
3074
3075 if (len > skge->rx_buf_size)
3076 goto error;
3077
3078 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3079 goto error;
3080
3081 if (bad_phy_status(skge->hw, status))
3082 goto error;
3083
3084 if (phy_length(skge->hw, status) != len)
3085 goto error;
3086
3087 if (len < RX_COPY_THRESHOLD) {
3088 skb = netdev_alloc_skb(dev, len + 2);
3089 if (!skb)
3090 goto resubmit;
3091
3092 skb_reserve(skb, 2);
3093 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3094 pci_unmap_addr(e, mapaddr),
3095 len, PCI_DMA_FROMDEVICE);
3096 skb_copy_from_linear_data(e->skb, skb->data, len);
3097 pci_dma_sync_single_for_device(skge->hw->pdev,
3098 pci_unmap_addr(e, mapaddr),
3099 len, PCI_DMA_FROMDEVICE);
3100 skge_rx_reuse(e, skge->rx_buf_size);
3101 } else {
3102 struct sk_buff *nskb;
3103 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3104 if (!nskb)
3105 goto resubmit;
3106
3107 skb_reserve(nskb, NET_IP_ALIGN);
3108 pci_unmap_single(skge->hw->pdev,
3109 pci_unmap_addr(e, mapaddr),
3110 pci_unmap_len(e, maplen),
3111 PCI_DMA_FROMDEVICE);
3112 skb = e->skb;
3113 prefetch(skb->data);
3114 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3115 }
3116
3117 skb_put(skb, len);
3118 if (skge->rx_csum) {
3119 skb->csum = csum;
3120 skb->ip_summed = CHECKSUM_COMPLETE;
3121 }
3122
3123 skb->protocol = eth_type_trans(skb, dev);
3124
3125 return skb;
3126 error:
3127
3128 if (netif_msg_rx_err(skge))
3129 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3130 dev->name, e - skge->rx_ring.start,
3131 control, status);
3132
3133 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3134 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3135 dev->stats.rx_length_errors++;
3136 if (status & XMR_FS_FRA_ERR)
3137 dev->stats.rx_frame_errors++;
3138 if (status & XMR_FS_FCS_ERR)
3139 dev->stats.rx_crc_errors++;
3140 } else {
3141 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3142 dev->stats.rx_length_errors++;
3143 if (status & GMR_FS_FRAGMENT)
3144 dev->stats.rx_frame_errors++;
3145 if (status & GMR_FS_CRC_ERR)
3146 dev->stats.rx_crc_errors++;
3147 }
3148
3149 resubmit:
3150 skge_rx_reuse(e, skge->rx_buf_size);
3151 return NULL;
3152 }
3153
3154 /* Free all buffers in Tx ring which are no longer owned by device */
3155 static void skge_tx_done(struct net_device *dev)
3156 {
3157 struct skge_port *skge = netdev_priv(dev);
3158 struct skge_ring *ring = &skge->tx_ring;
3159 struct skge_element *e;
3160
3161 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3162
3163 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3164 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3165
3166 if (control & BMU_OWN)
3167 break;
3168
3169 skge_tx_free(skge, e, control);
3170 }
3171 skge->tx_ring.to_clean = e;
3172
3173 /* Can run lockless until we need to synchronize to restart queue. */
3174 smp_mb();
3175
3176 if (unlikely(netif_queue_stopped(dev) &&
3177 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3178 netif_tx_lock(dev);
3179 if (unlikely(netif_queue_stopped(dev) &&
3180 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3181 netif_wake_queue(dev);
3182
3183 }
3184 netif_tx_unlock(dev);
3185 }
3186 }
3187
3188 static int skge_poll(struct napi_struct *napi, int to_do)
3189 {
3190 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3191 struct net_device *dev = skge->netdev;
3192 struct skge_hw *hw = skge->hw;
3193 struct skge_ring *ring = &skge->rx_ring;
3194 struct skge_element *e;
3195 int work_done = 0;
3196
3197 skge_tx_done(dev);
3198
3199 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3200
3201 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3202 struct skge_rx_desc *rd = e->desc;
3203 struct sk_buff *skb;
3204 u32 control;
3205
3206 rmb();
3207 control = rd->control;
3208 if (control & BMU_OWN)
3209 break;
3210
3211 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3212 if (likely(skb)) {
3213 dev->last_rx = jiffies;
3214 netif_receive_skb(skb);
3215
3216 ++work_done;
3217 }
3218 }
3219 ring->to_clean = e;
3220
3221 /* restart receiver */
3222 wmb();
3223 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3224
3225 if (work_done < to_do) {
3226 spin_lock_irq(&hw->hw_lock);
3227 __netif_rx_complete(dev, napi);
3228 hw->intr_mask |= napimask[skge->port];
3229 skge_write32(hw, B0_IMSK, hw->intr_mask);
3230 skge_read32(hw, B0_IMSK);
3231 spin_unlock_irq(&hw->hw_lock);
3232 }
3233
3234 return work_done;
3235 }
3236
3237 /* Parity errors seem to happen when Genesis is connected to a switch
3238 * with no other ports present. Heartbeat error??
3239 */
3240 static void skge_mac_parity(struct skge_hw *hw, int port)
3241 {
3242 struct net_device *dev = hw->dev[port];
3243
3244 ++dev->stats.tx_heartbeat_errors;
3245
3246 if (hw->chip_id == CHIP_ID_GENESIS)
3247 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3248 MFF_CLR_PERR);
3249 else
3250 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3251 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3252 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3253 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3254 }
3255
3256 static void skge_mac_intr(struct skge_hw *hw, int port)
3257 {
3258 if (hw->chip_id == CHIP_ID_GENESIS)
3259 genesis_mac_intr(hw, port);
3260 else
3261 yukon_mac_intr(hw, port);
3262 }
3263
3264 /* Handle device specific framing and timeout interrupts */
3265 static void skge_error_irq(struct skge_hw *hw)
3266 {
3267 struct pci_dev *pdev = hw->pdev;
3268 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3269
3270 if (hw->chip_id == CHIP_ID_GENESIS) {
3271 /* clear xmac errors */
3272 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3273 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3274 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3275 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3276 } else {
3277 /* Timestamp (unused) overflow */
3278 if (hwstatus & IS_IRQ_TIST_OV)
3279 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3280 }
3281
3282 if (hwstatus & IS_RAM_RD_PAR) {
3283 dev_err(&pdev->dev, "Ram read data parity error\n");
3284 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3285 }
3286
3287 if (hwstatus & IS_RAM_WR_PAR) {
3288 dev_err(&pdev->dev, "Ram write data parity error\n");
3289 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3290 }
3291
3292 if (hwstatus & IS_M1_PAR_ERR)
3293 skge_mac_parity(hw, 0);
3294
3295 if (hwstatus & IS_M2_PAR_ERR)
3296 skge_mac_parity(hw, 1);
3297
3298 if (hwstatus & IS_R1_PAR_ERR) {
3299 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3300 hw->dev[0]->name);
3301 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3302 }
3303
3304 if (hwstatus & IS_R2_PAR_ERR) {
3305 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3306 hw->dev[1]->name);
3307 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3308 }
3309
3310 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3311 u16 pci_status, pci_cmd;
3312
3313 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3314 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3315
3316 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3317 pci_cmd, pci_status);
3318
3319 /* Write the error bits back to clear them. */
3320 pci_status &= PCI_STATUS_ERROR_BITS;
3321 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3322 pci_write_config_word(pdev, PCI_COMMAND,
3323 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3324 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3325 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3326
3327 /* if error still set then just ignore it */
3328 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3329 if (hwstatus & IS_IRQ_STAT) {
3330 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3331 hw->intr_mask &= ~IS_HW_ERR;
3332 }
3333 }
3334 }
3335
3336 /*
3337 * Interrupt from PHY are handled in tasklet (softirq)
3338 * because accessing phy registers requires spin wait which might
3339 * cause excess interrupt latency.
3340 */
3341 static void skge_extirq(unsigned long arg)
3342 {
3343 struct skge_hw *hw = (struct skge_hw *) arg;
3344 int port;
3345
3346 for (port = 0; port < hw->ports; port++) {
3347 struct net_device *dev = hw->dev[port];
3348
3349 if (netif_running(dev)) {
3350 struct skge_port *skge = netdev_priv(dev);
3351
3352 spin_lock(&hw->phy_lock);
3353 if (hw->chip_id != CHIP_ID_GENESIS)
3354 yukon_phy_intr(skge);
3355 else if (hw->phy_type == SK_PHY_BCOM)
3356 bcom_phy_intr(skge);
3357 spin_unlock(&hw->phy_lock);
3358 }
3359 }
3360
3361 spin_lock_irq(&hw->hw_lock);
3362 hw->intr_mask |= IS_EXT_REG;
3363 skge_write32(hw, B0_IMSK, hw->intr_mask);
3364 skge_read32(hw, B0_IMSK);
3365 spin_unlock_irq(&hw->hw_lock);
3366 }
3367
3368 static irqreturn_t skge_intr(int irq, void *dev_id)
3369 {
3370 struct skge_hw *hw = dev_id;
3371 u32 status;
3372 int handled = 0;
3373
3374 spin_lock(&hw->hw_lock);
3375 /* Reading this register masks IRQ */
3376 status = skge_read32(hw, B0_SP_ISRC);
3377 if (status == 0 || status == ~0)
3378 goto out;
3379
3380 handled = 1;
3381 status &= hw->intr_mask;
3382 if (status & IS_EXT_REG) {
3383 hw->intr_mask &= ~IS_EXT_REG;
3384 tasklet_schedule(&hw->phy_task);
3385 }
3386
3387 if (status & (IS_XA1_F|IS_R1_F)) {
3388 struct skge_port *skge = netdev_priv(hw->dev[0]);
3389 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3390 netif_rx_schedule(hw->dev[0], &skge->napi);
3391 }
3392
3393 if (status & IS_PA_TO_TX1)
3394 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3395
3396 if (status & IS_PA_TO_RX1) {
3397 ++hw->dev[0]->stats.rx_over_errors;
3398 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3399 }
3400
3401
3402 if (status & IS_MAC1)
3403 skge_mac_intr(hw, 0);
3404
3405 if (hw->dev[1]) {
3406 struct skge_port *skge = netdev_priv(hw->dev[1]);
3407
3408 if (status & (IS_XA2_F|IS_R2_F)) {
3409 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3410 netif_rx_schedule(hw->dev[1], &skge->napi);
3411 }
3412
3413 if (status & IS_PA_TO_RX2) {
3414 ++hw->dev[1]->stats.rx_over_errors;
3415 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3416 }
3417
3418 if (status & IS_PA_TO_TX2)
3419 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3420
3421 if (status & IS_MAC2)
3422 skge_mac_intr(hw, 1);
3423 }
3424
3425 if (status & IS_HW_ERR)
3426 skge_error_irq(hw);
3427
3428 skge_write32(hw, B0_IMSK, hw->intr_mask);
3429 skge_read32(hw, B0_IMSK);
3430 out:
3431 spin_unlock(&hw->hw_lock);
3432
3433 return IRQ_RETVAL(handled);
3434 }
3435
3436 #ifdef CONFIG_NET_POLL_CONTROLLER
3437 static void skge_netpoll(struct net_device *dev)
3438 {
3439 struct skge_port *skge = netdev_priv(dev);
3440
3441 disable_irq(dev->irq);
3442 skge_intr(dev->irq, skge->hw);
3443 enable_irq(dev->irq);
3444 }
3445 #endif
3446
3447 static int skge_set_mac_address(struct net_device *dev, void *p)
3448 {
3449 struct skge_port *skge = netdev_priv(dev);
3450 struct skge_hw *hw = skge->hw;
3451 unsigned port = skge->port;
3452 const struct sockaddr *addr = p;
3453 u16 ctrl;
3454
3455 if (!is_valid_ether_addr(addr->sa_data))
3456 return -EADDRNOTAVAIL;
3457
3458 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3459
3460 if (!netif_running(dev)) {
3461 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3462 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3463 } else {
3464 /* disable Rx */
3465 spin_lock_bh(&hw->phy_lock);
3466 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3467 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3468
3469 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471
3472 if (hw->chip_id == CHIP_ID_GENESIS)
3473 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3474 else {
3475 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3476 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3477 }
3478
3479 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3480 spin_unlock_bh(&hw->phy_lock);
3481 }
3482
3483 return 0;
3484 }
3485
3486 static const struct {
3487 u8 id;
3488 const char *name;
3489 } skge_chips[] = {
3490 { CHIP_ID_GENESIS, "Genesis" },
3491 { CHIP_ID_YUKON, "Yukon" },
3492 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3493 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3494 };
3495
3496 static const char *skge_board_name(const struct skge_hw *hw)
3497 {
3498 int i;
3499 static char buf[16];
3500
3501 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3502 if (skge_chips[i].id == hw->chip_id)
3503 return skge_chips[i].name;
3504
3505 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3506 return buf;
3507 }
3508
3509
3510 /*
3511 * Setup the board data structure, but don't bring up
3512 * the port(s)
3513 */
3514 static int skge_reset(struct skge_hw *hw)
3515 {
3516 u32 reg;
3517 u16 ctst, pci_status;
3518 u8 t8, mac_cfg, pmd_type;
3519 int i;
3520
3521 ctst = skge_read16(hw, B0_CTST);
3522
3523 /* do a SW reset */
3524 skge_write8(hw, B0_CTST, CS_RST_SET);
3525 skge_write8(hw, B0_CTST, CS_RST_CLR);
3526
3527 /* clear PCI errors, if any */
3528 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3529 skge_write8(hw, B2_TST_CTRL2, 0);
3530
3531 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3532 pci_write_config_word(hw->pdev, PCI_STATUS,
3533 pci_status | PCI_STATUS_ERROR_BITS);
3534 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3535 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3536
3537 /* restore CLK_RUN bits (for Yukon-Lite) */
3538 skge_write16(hw, B0_CTST,
3539 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3540
3541 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3542 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3543 pmd_type = skge_read8(hw, B2_PMD_TYP);
3544 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3545
3546 switch (hw->chip_id) {
3547 case CHIP_ID_GENESIS:
3548 switch (hw->phy_type) {
3549 case SK_PHY_XMAC:
3550 hw->phy_addr = PHY_ADDR_XMAC;
3551 break;
3552 case SK_PHY_BCOM:
3553 hw->phy_addr = PHY_ADDR_BCOM;
3554 break;
3555 default:
3556 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3557 hw->phy_type);
3558 return -EOPNOTSUPP;
3559 }
3560 break;
3561
3562 case CHIP_ID_YUKON:
3563 case CHIP_ID_YUKON_LITE:
3564 case CHIP_ID_YUKON_LP:
3565 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3566 hw->copper = 1;
3567
3568 hw->phy_addr = PHY_ADDR_MARV;
3569 break;
3570
3571 default:
3572 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3573 hw->chip_id);
3574 return -EOPNOTSUPP;
3575 }
3576
3577 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3578 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3579 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3580
3581 /* read the adapters RAM size */
3582 t8 = skge_read8(hw, B2_E_0);
3583 if (hw->chip_id == CHIP_ID_GENESIS) {
3584 if (t8 == 3) {
3585 /* special case: 4 x 64k x 36, offset = 0x80000 */
3586 hw->ram_size = 0x100000;
3587 hw->ram_offset = 0x80000;
3588 } else
3589 hw->ram_size = t8 * 512;
3590 }
3591 else if (t8 == 0)
3592 hw->ram_size = 0x20000;
3593 else
3594 hw->ram_size = t8 * 4096;
3595
3596 hw->intr_mask = IS_HW_ERR;
3597
3598 /* Use PHY IRQ for all but fiber based Genesis board */
3599 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3600 hw->intr_mask |= IS_EXT_REG;
3601
3602 if (hw->chip_id == CHIP_ID_GENESIS)
3603 genesis_init(hw);
3604 else {
3605 /* switch power to VCC (WA for VAUX problem) */
3606 skge_write8(hw, B0_POWER_CTRL,
3607 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3608
3609 /* avoid boards with stuck Hardware error bits */
3610 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3611 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3612 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3613 hw->intr_mask &= ~IS_HW_ERR;
3614 }
3615
3616 /* Clear PHY COMA */
3617 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3618 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3619 reg &= ~PCI_PHY_COMA;
3620 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3621 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3622
3623
3624 for (i = 0; i < hw->ports; i++) {
3625 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3626 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3627 }
3628 }
3629
3630 /* turn off hardware timer (unused) */
3631 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3632 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3633 skge_write8(hw, B0_LED, LED_STAT_ON);
3634
3635 /* enable the Tx Arbiters */
3636 for (i = 0; i < hw->ports; i++)
3637 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3638
3639 /* Initialize ram interface */
3640 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3641
3642 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3643 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3644 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3645 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3646 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3647 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3648 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3649 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3650 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3651 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3652 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3653 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3654
3655 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3656
3657 /* Set interrupt moderation for Transmit only
3658 * Receive interrupts avoided by NAPI
3659 */
3660 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3661 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3662 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3663
3664 skge_write32(hw, B0_IMSK, hw->intr_mask);
3665
3666 for (i = 0; i < hw->ports; i++) {
3667 if (hw->chip_id == CHIP_ID_GENESIS)
3668 genesis_reset(hw, i);
3669 else
3670 yukon_reset(hw, i);
3671 }
3672
3673 return 0;
3674 }
3675
3676
3677 #ifdef CONFIG_SKGE_DEBUG
3678
3679 static struct dentry *skge_debug;
3680
3681 static int skge_debug_show(struct seq_file *seq, void *v)
3682 {
3683 struct net_device *dev = seq->private;
3684 const struct skge_port *skge = netdev_priv(dev);
3685 const struct skge_hw *hw = skge->hw;
3686 const struct skge_element *e;
3687
3688 if (!netif_running(dev))
3689 return -ENETDOWN;
3690
3691 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3692 skge_read32(hw, B0_IMSK));
3693
3694 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3695 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3696 const struct skge_tx_desc *t = e->desc;
3697 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3698 t->control, t->dma_hi, t->dma_lo, t->status,
3699 t->csum_offs, t->csum_write, t->csum_start);
3700 }
3701
3702 seq_printf(seq, "\nRx Ring: \n");
3703 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3704 const struct skge_rx_desc *r = e->desc;
3705
3706 if (r->control & BMU_OWN)
3707 break;
3708
3709 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3710 r->control, r->dma_hi, r->dma_lo, r->status,
3711 r->timestamp, r->csum1, r->csum1_start);
3712 }
3713
3714 return 0;
3715 }
3716
3717 static int skge_debug_open(struct inode *inode, struct file *file)
3718 {
3719 return single_open(file, skge_debug_show, inode->i_private);
3720 }
3721
3722 static const struct file_operations skge_debug_fops = {
3723 .owner = THIS_MODULE,
3724 .open = skge_debug_open,
3725 .read = seq_read,
3726 .llseek = seq_lseek,
3727 .release = single_release,
3728 };
3729
3730 /*
3731 * Use network device events to create/remove/rename
3732 * debugfs file entries
3733 */
3734 static int skge_device_event(struct notifier_block *unused,
3735 unsigned long event, void *ptr)
3736 {
3737 struct net_device *dev = ptr;
3738 struct skge_port *skge;
3739 struct dentry *d;
3740
3741 if (dev->open != &skge_up || !skge_debug)
3742 goto done;
3743
3744 skge = netdev_priv(dev);
3745 switch(event) {
3746 case NETDEV_CHANGENAME:
3747 if (skge->debugfs) {
3748 d = debugfs_rename(skge_debug, skge->debugfs,
3749 skge_debug, dev->name);
3750 if (d)
3751 skge->debugfs = d;
3752 else {
3753 pr_info(PFX "%s: rename failed\n", dev->name);
3754 debugfs_remove(skge->debugfs);
3755 }
3756 }
3757 break;
3758
3759 case NETDEV_GOING_DOWN:
3760 if (skge->debugfs) {
3761 debugfs_remove(skge->debugfs);
3762 skge->debugfs = NULL;
3763 }
3764 break;
3765
3766 case NETDEV_UP:
3767 d = debugfs_create_file(dev->name, S_IRUGO,
3768 skge_debug, dev,
3769 &skge_debug_fops);
3770 if (!d || IS_ERR(d))
3771 pr_info(PFX "%s: debugfs create failed\n",
3772 dev->name);
3773 else
3774 skge->debugfs = d;
3775 break;
3776 }
3777
3778 done:
3779 return NOTIFY_DONE;
3780 }
3781
3782 static struct notifier_block skge_notifier = {
3783 .notifier_call = skge_device_event,
3784 };
3785
3786
3787 static __init void skge_debug_init(void)
3788 {
3789 struct dentry *ent;
3790
3791 ent = debugfs_create_dir("skge", NULL);
3792 if (!ent || IS_ERR(ent)) {
3793 pr_info(PFX "debugfs create directory failed\n");
3794 return;
3795 }
3796
3797 skge_debug = ent;
3798 register_netdevice_notifier(&skge_notifier);
3799 }
3800
3801 static __exit void skge_debug_cleanup(void)
3802 {
3803 if (skge_debug) {
3804 unregister_netdevice_notifier(&skge_notifier);
3805 debugfs_remove(skge_debug);
3806 skge_debug = NULL;
3807 }
3808 }
3809
3810 #else
3811 #define skge_debug_init()
3812 #define skge_debug_cleanup()
3813 #endif
3814
3815 /* Initialize network device */
3816 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3817 int highmem)
3818 {
3819 struct skge_port *skge;
3820 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3821
3822 if (!dev) {
3823 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3824 return NULL;
3825 }
3826
3827 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3828 dev->open = skge_up;
3829 dev->stop = skge_down;
3830 dev->do_ioctl = skge_ioctl;
3831 dev->hard_start_xmit = skge_xmit_frame;
3832 dev->get_stats = skge_get_stats;
3833 if (hw->chip_id == CHIP_ID_GENESIS)
3834 dev->set_multicast_list = genesis_set_multicast;
3835 else
3836 dev->set_multicast_list = yukon_set_multicast;
3837
3838 dev->set_mac_address = skge_set_mac_address;
3839 dev->change_mtu = skge_change_mtu;
3840 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3841 dev->tx_timeout = skge_tx_timeout;
3842 dev->watchdog_timeo = TX_WATCHDOG;
3843 #ifdef CONFIG_NET_POLL_CONTROLLER
3844 dev->poll_controller = skge_netpoll;
3845 #endif
3846 dev->irq = hw->pdev->irq;
3847
3848 if (highmem)
3849 dev->features |= NETIF_F_HIGHDMA;
3850
3851 skge = netdev_priv(dev);
3852 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3853 skge->netdev = dev;
3854 skge->hw = hw;
3855 skge->msg_enable = netif_msg_init(debug, default_msg);
3856
3857 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3858 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3859
3860 /* Auto speed and flow control */
3861 skge->autoneg = AUTONEG_ENABLE;
3862 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3863 skge->duplex = -1;
3864 skge->speed = -1;
3865 skge->advertising = skge_supported_modes(hw);
3866
3867 if (pci_wake_enabled(hw->pdev))
3868 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3869
3870 hw->dev[port] = dev;
3871
3872 skge->port = port;
3873
3874 /* Only used for Genesis XMAC */
3875 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3876
3877 if (hw->chip_id != CHIP_ID_GENESIS) {
3878 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3879 skge->rx_csum = 1;
3880 }
3881
3882 /* read the mac address */
3883 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3884 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3885
3886 /* device is off until link detection */
3887 netif_carrier_off(dev);
3888 netif_stop_queue(dev);
3889
3890 return dev;
3891 }
3892
3893 static void __devinit skge_show_addr(struct net_device *dev)
3894 {
3895 const struct skge_port *skge = netdev_priv(dev);
3896 DECLARE_MAC_BUF(mac);
3897
3898 if (netif_msg_probe(skge))
3899 printk(KERN_INFO PFX "%s: addr %s\n",
3900 dev->name, print_mac(mac, dev->dev_addr));
3901 }
3902
3903 static int __devinit skge_probe(struct pci_dev *pdev,
3904 const struct pci_device_id *ent)
3905 {
3906 struct net_device *dev, *dev1;
3907 struct skge_hw *hw;
3908 int err, using_dac = 0;
3909
3910 err = pci_enable_device(pdev);
3911 if (err) {
3912 dev_err(&pdev->dev, "cannot enable PCI device\n");
3913 goto err_out;
3914 }
3915
3916 err = pci_request_regions(pdev, DRV_NAME);
3917 if (err) {
3918 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3919 goto err_out_disable_pdev;
3920 }
3921
3922 pci_set_master(pdev);
3923
3924 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3925 using_dac = 1;
3926 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3927 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3928 using_dac = 0;
3929 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3930 }
3931
3932 if (err) {
3933 dev_err(&pdev->dev, "no usable DMA configuration\n");
3934 goto err_out_free_regions;
3935 }
3936
3937 #ifdef __BIG_ENDIAN
3938 /* byte swap descriptors in hardware */
3939 {
3940 u32 reg;
3941
3942 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3943 reg |= PCI_REV_DESC;
3944 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3945 }
3946 #endif
3947
3948 err = -ENOMEM;
3949 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3950 if (!hw) {
3951 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3952 goto err_out_free_regions;
3953 }
3954
3955 hw->pdev = pdev;
3956 spin_lock_init(&hw->hw_lock);
3957 spin_lock_init(&hw->phy_lock);
3958 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3959
3960 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3961 if (!hw->regs) {
3962 dev_err(&pdev->dev, "cannot map device registers\n");
3963 goto err_out_free_hw;
3964 }
3965
3966 err = skge_reset(hw);
3967 if (err)
3968 goto err_out_iounmap;
3969
3970 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3971 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3972 skge_board_name(hw), hw->chip_rev);
3973
3974 dev = skge_devinit(hw, 0, using_dac);
3975 if (!dev)
3976 goto err_out_led_off;
3977
3978 /* Some motherboards are broken and has zero in ROM. */
3979 if (!is_valid_ether_addr(dev->dev_addr))
3980 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3981
3982 err = register_netdev(dev);
3983 if (err) {
3984 dev_err(&pdev->dev, "cannot register net device\n");
3985 goto err_out_free_netdev;
3986 }
3987
3988 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3989 if (err) {
3990 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3991 dev->name, pdev->irq);
3992 goto err_out_unregister;
3993 }
3994 skge_show_addr(dev);
3995
3996 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3997 if (register_netdev(dev1) == 0)
3998 skge_show_addr(dev1);
3999 else {
4000 /* Failure to register second port need not be fatal */
4001 dev_warn(&pdev->dev, "register of second port failed\n");
4002 hw->dev[1] = NULL;
4003 free_netdev(dev1);
4004 }
4005 }
4006 pci_set_drvdata(pdev, hw);
4007
4008 return 0;
4009
4010 err_out_unregister:
4011 unregister_netdev(dev);
4012 err_out_free_netdev:
4013 free_netdev(dev);
4014 err_out_led_off:
4015 skge_write16(hw, B0_LED, LED_STAT_OFF);
4016 err_out_iounmap:
4017 iounmap(hw->regs);
4018 err_out_free_hw:
4019 kfree(hw);
4020 err_out_free_regions:
4021 pci_release_regions(pdev);
4022 err_out_disable_pdev:
4023 pci_disable_device(pdev);
4024 pci_set_drvdata(pdev, NULL);
4025 err_out:
4026 return err;
4027 }
4028
4029 static void __devexit skge_remove(struct pci_dev *pdev)
4030 {
4031 struct skge_hw *hw = pci_get_drvdata(pdev);
4032 struct net_device *dev0, *dev1;
4033
4034 if (!hw)
4035 return;
4036
4037 flush_scheduled_work();
4038
4039 if ((dev1 = hw->dev[1]))
4040 unregister_netdev(dev1);
4041 dev0 = hw->dev[0];
4042 unregister_netdev(dev0);
4043
4044 tasklet_disable(&hw->phy_task);
4045
4046 spin_lock_irq(&hw->hw_lock);
4047 hw->intr_mask = 0;
4048 skge_write32(hw, B0_IMSK, 0);
4049 skge_read32(hw, B0_IMSK);
4050 spin_unlock_irq(&hw->hw_lock);
4051
4052 skge_write16(hw, B0_LED, LED_STAT_OFF);
4053 skge_write8(hw, B0_CTST, CS_RST_SET);
4054
4055 free_irq(pdev->irq, hw);
4056 pci_release_regions(pdev);
4057 pci_disable_device(pdev);
4058 if (dev1)
4059 free_netdev(dev1);
4060 free_netdev(dev0);
4061
4062 iounmap(hw->regs);
4063 kfree(hw);
4064 pci_set_drvdata(pdev, NULL);
4065 }
4066
4067 #ifdef CONFIG_PM
4068 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
4069 {
4070 struct skge_hw *hw = pci_get_drvdata(pdev);
4071 int i, err, wol = 0;
4072
4073 if (!hw)
4074 return 0;
4075
4076 err = pci_save_state(pdev);
4077 if (err)
4078 return err;
4079
4080 for (i = 0; i < hw->ports; i++) {
4081 struct net_device *dev = hw->dev[i];
4082 struct skge_port *skge = netdev_priv(dev);
4083
4084 if (netif_running(dev))
4085 skge_down(dev);
4086 if (skge->wol)
4087 skge_wol_init(skge);
4088
4089 wol |= skge->wol;
4090 }
4091
4092 skge_write32(hw, B0_IMSK, 0);
4093 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
4094 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4095
4096 return 0;
4097 }
4098
4099 static int skge_resume(struct pci_dev *pdev)
4100 {
4101 struct skge_hw *hw = pci_get_drvdata(pdev);
4102 int i, err;
4103
4104 if (!hw)
4105 return 0;
4106
4107 err = pci_set_power_state(pdev, PCI_D0);
4108 if (err)
4109 goto out;
4110
4111 err = pci_restore_state(pdev);
4112 if (err)
4113 goto out;
4114
4115 pci_enable_wake(pdev, PCI_D0, 0);
4116
4117 err = skge_reset(hw);
4118 if (err)
4119 goto out;
4120
4121 for (i = 0; i < hw->ports; i++) {
4122 struct net_device *dev = hw->dev[i];
4123
4124 if (netif_running(dev)) {
4125 err = skge_up(dev);
4126
4127 if (err) {
4128 printk(KERN_ERR PFX "%s: could not up: %d\n",
4129 dev->name, err);
4130 dev_close(dev);
4131 goto out;
4132 }
4133 }
4134 }
4135 out:
4136 return err;
4137 }
4138 #endif
4139
4140 static void skge_shutdown(struct pci_dev *pdev)
4141 {
4142 struct skge_hw *hw = pci_get_drvdata(pdev);
4143 int i, wol = 0;
4144
4145 if (!hw)
4146 return;
4147
4148 for (i = 0; i < hw->ports; i++) {
4149 struct net_device *dev = hw->dev[i];
4150 struct skge_port *skge = netdev_priv(dev);
4151
4152 if (skge->wol)
4153 skge_wol_init(skge);
4154 wol |= skge->wol;
4155 }
4156
4157 pci_enable_wake(pdev, PCI_D3hot, wol);
4158 pci_enable_wake(pdev, PCI_D3cold, wol);
4159
4160 pci_disable_device(pdev);
4161 pci_set_power_state(pdev, PCI_D3hot);
4162
4163 }
4164
4165 static struct pci_driver skge_driver = {
4166 .name = DRV_NAME,
4167 .id_table = skge_id_table,
4168 .probe = skge_probe,
4169 .remove = __devexit_p(skge_remove),
4170 #ifdef CONFIG_PM
4171 .suspend = skge_suspend,
4172 .resume = skge_resume,
4173 #endif
4174 .shutdown = skge_shutdown,
4175 };
4176
4177 static int __init skge_init_module(void)
4178 {
4179 skge_debug_init();
4180 return pci_register_driver(&skge_driver);
4181 }
4182
4183 static void __exit skge_cleanup_module(void)
4184 {
4185 pci_unregister_driver(&skge_driver);
4186 skge_debug_cleanup();
4187 }
4188
4189 module_init(skge_init_module);
4190 module_exit(skge_cleanup_module);