Merge branch 'fix/hda' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30
31 #define EFX_MAX_MTU (9 * 1024)
32
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38 static struct workqueue_struct *refill_workqueue;
39
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44 static struct workqueue_struct *reset_workqueue;
45
46 /**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52 /*
53 * Use separate channels for TX and RX events
54 *
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
57 *
58 * This is only used in MSI-X interrupt mode
59 */
60 static unsigned int separate_tx_channels;
61 module_param(separate_tx_channels, uint, 0644);
62 MODULE_PARM_DESC(separate_tx_channels,
63 "Use separate channels for TX and RX");
64
65 /* This is the weight assigned to each of the (per-channel) virtual
66 * NAPI devices.
67 */
68 static int napi_weight = 64;
69
70 /* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
73 */
74 unsigned int efx_monitor_interval = 1 * HZ;
75
76 /* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
82 */
83 static unsigned int allow_bad_hwaddr;
84
85 /* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
87 *
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
90 */
91 static unsigned int rx_irq_mod_usec = 60;
92
93 /* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
95 *
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
101 */
102 static unsigned int tx_irq_mod_usec = 150;
103
104 /* This is the first interrupt mode to try out of:
105 * 0 => MSI-X
106 * 1 => MSI
107 * 2 => legacy
108 */
109 static unsigned int interrupt_mode;
110
111 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
114 *
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
117 */
118 static unsigned int rss_cpus;
119 module_param(rss_cpus, uint, 0444);
120 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
121
122 static int phy_flash_cfg;
123 module_param(phy_flash_cfg, int, 0644);
124 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
125
126 static unsigned irq_adapt_low_thresh = 10000;
127 module_param(irq_adapt_low_thresh, uint, 0644);
128 MODULE_PARM_DESC(irq_adapt_low_thresh,
129 "Threshold score for reducing IRQ moderation");
130
131 static unsigned irq_adapt_high_thresh = 20000;
132 module_param(irq_adapt_high_thresh, uint, 0644);
133 MODULE_PARM_DESC(irq_adapt_high_thresh,
134 "Threshold score for increasing IRQ moderation");
135
136 /**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
145
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
148 if (efx->state == STATE_RUNNING) \
149 ASSERT_RTNL(); \
150 } while (0)
151
152 /**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158 /* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
166 {
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
169
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 !channel->enabled))
172 return 0;
173
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_rx_strategy(channel);
186
187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
188
189 return rx_packets;
190 }
191
192 /* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198 static inline void efx_channel_processed(struct efx_channel *channel)
199 {
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel->work_pending = false;
204 smp_wmb();
205
206 falcon_eventq_read_ack(channel);
207 }
208
209 /* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214 static int efx_poll(struct napi_struct *napi, int budget)
215 {
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
223 rx_packets = efx_process_channel(channel, budget);
224
225 if (rx_packets < budget) {
226 struct efx_nic *efx = channel->efx;
227
228 if (channel->used_flags & EFX_USED_BY_RX &&
229 efx->irq_rx_adaptive &&
230 unlikely(++channel->irq_count == 1000)) {
231 unsigned old_irq_moderation = channel->irq_moderation;
232
233 if (unlikely(channel->irq_mod_score <
234 irq_adapt_low_thresh)) {
235 channel->irq_moderation =
236 max_t(int,
237 channel->irq_moderation -
238 FALCON_IRQ_MOD_RESOLUTION,
239 FALCON_IRQ_MOD_RESOLUTION);
240 } else if (unlikely(channel->irq_mod_score >
241 irq_adapt_high_thresh)) {
242 channel->irq_moderation =
243 min(channel->irq_moderation +
244 FALCON_IRQ_MOD_RESOLUTION,
245 efx->irq_rx_moderation);
246 }
247
248 if (channel->irq_moderation != old_irq_moderation)
249 falcon_set_int_moderation(channel);
250
251 channel->irq_count = 0;
252 channel->irq_mod_score = 0;
253 }
254
255 /* There is no race here; although napi_disable() will
256 * only wait for napi_complete(), this isn't a problem
257 * since efx_channel_processed() will have no effect if
258 * interrupts have already been disabled.
259 */
260 napi_complete(napi);
261 efx_channel_processed(channel);
262 }
263
264 return rx_packets;
265 }
266
267 /* Process the eventq of the specified channel immediately on this CPU
268 *
269 * Disable hardware generated interrupts, wait for any existing
270 * processing to finish, then directly poll (and ack ) the eventq.
271 * Finally reenable NAPI and interrupts.
272 *
273 * Since we are touching interrupts the caller should hold the suspend lock
274 */
275 void efx_process_channel_now(struct efx_channel *channel)
276 {
277 struct efx_nic *efx = channel->efx;
278
279 BUG_ON(!channel->used_flags);
280 BUG_ON(!channel->enabled);
281
282 /* Disable interrupts and wait for ISRs to complete */
283 falcon_disable_interrupts(efx);
284 if (efx->legacy_irq)
285 synchronize_irq(efx->legacy_irq);
286 if (channel->irq)
287 synchronize_irq(channel->irq);
288
289 /* Wait for any NAPI processing to complete */
290 napi_disable(&channel->napi_str);
291
292 /* Poll the channel */
293 efx_process_channel(channel, efx->type->evq_size);
294
295 /* Ack the eventq. This may cause an interrupt to be generated
296 * when they are reenabled */
297 efx_channel_processed(channel);
298
299 napi_enable(&channel->napi_str);
300 falcon_enable_interrupts(efx);
301 }
302
303 /* Create event queue
304 * Event queue memory allocations are done only once. If the channel
305 * is reset, the memory buffer will be reused; this guards against
306 * errors during channel reset and also simplifies interrupt handling.
307 */
308 static int efx_probe_eventq(struct efx_channel *channel)
309 {
310 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
311
312 return falcon_probe_eventq(channel);
313 }
314
315 /* Prepare channel's event queue */
316 static void efx_init_eventq(struct efx_channel *channel)
317 {
318 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
319
320 channel->eventq_read_ptr = 0;
321
322 falcon_init_eventq(channel);
323 }
324
325 static void efx_fini_eventq(struct efx_channel *channel)
326 {
327 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
328
329 falcon_fini_eventq(channel);
330 }
331
332 static void efx_remove_eventq(struct efx_channel *channel)
333 {
334 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
335
336 falcon_remove_eventq(channel);
337 }
338
339 /**************************************************************************
340 *
341 * Channel handling
342 *
343 *************************************************************************/
344
345 static int efx_probe_channel(struct efx_channel *channel)
346 {
347 struct efx_tx_queue *tx_queue;
348 struct efx_rx_queue *rx_queue;
349 int rc;
350
351 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
352
353 rc = efx_probe_eventq(channel);
354 if (rc)
355 goto fail1;
356
357 efx_for_each_channel_tx_queue(tx_queue, channel) {
358 rc = efx_probe_tx_queue(tx_queue);
359 if (rc)
360 goto fail2;
361 }
362
363 efx_for_each_channel_rx_queue(rx_queue, channel) {
364 rc = efx_probe_rx_queue(rx_queue);
365 if (rc)
366 goto fail3;
367 }
368
369 channel->n_rx_frm_trunc = 0;
370
371 return 0;
372
373 fail3:
374 efx_for_each_channel_rx_queue(rx_queue, channel)
375 efx_remove_rx_queue(rx_queue);
376 fail2:
377 efx_for_each_channel_tx_queue(tx_queue, channel)
378 efx_remove_tx_queue(tx_queue);
379 fail1:
380 return rc;
381 }
382
383
384 static void efx_set_channel_names(struct efx_nic *efx)
385 {
386 struct efx_channel *channel;
387 const char *type = "";
388 int number;
389
390 efx_for_each_channel(channel, efx) {
391 number = channel->channel;
392 if (efx->n_channels > efx->n_rx_queues) {
393 if (channel->channel < efx->n_rx_queues) {
394 type = "-rx";
395 } else {
396 type = "-tx";
397 number -= efx->n_rx_queues;
398 }
399 }
400 snprintf(channel->name, sizeof(channel->name),
401 "%s%s-%d", efx->name, type, number);
402 }
403 }
404
405 /* Channels are shutdown and reinitialised whilst the NIC is running
406 * to propagate configuration changes (mtu, checksum offload), or
407 * to clear hardware error conditions
408 */
409 static void efx_init_channels(struct efx_nic *efx)
410 {
411 struct efx_tx_queue *tx_queue;
412 struct efx_rx_queue *rx_queue;
413 struct efx_channel *channel;
414
415 /* Calculate the rx buffer allocation parameters required to
416 * support the current MTU, including padding for header
417 * alignment and overruns.
418 */
419 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
420 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
421 efx->type->rx_buffer_padding);
422 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
423
424 /* Initialise the channels */
425 efx_for_each_channel(channel, efx) {
426 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
427
428 efx_init_eventq(channel);
429
430 efx_for_each_channel_tx_queue(tx_queue, channel)
431 efx_init_tx_queue(tx_queue);
432
433 /* The rx buffer allocation strategy is MTU dependent */
434 efx_rx_strategy(channel);
435
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_init_rx_queue(rx_queue);
438
439 WARN_ON(channel->rx_pkt != NULL);
440 efx_rx_strategy(channel);
441 }
442 }
443
444 /* This enables event queue processing and packet transmission.
445 *
446 * Note that this function is not allowed to fail, since that would
447 * introduce too much complexity into the suspend/resume path.
448 */
449 static void efx_start_channel(struct efx_channel *channel)
450 {
451 struct efx_rx_queue *rx_queue;
452
453 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
454
455 /* The interrupt handler for this channel may set work_pending
456 * as soon as we enable it. Make sure it's cleared before
457 * then. Similarly, make sure it sees the enabled flag set. */
458 channel->work_pending = false;
459 channel->enabled = true;
460 smp_wmb();
461
462 napi_enable(&channel->napi_str);
463
464 /* Load up RX descriptors */
465 efx_for_each_channel_rx_queue(rx_queue, channel)
466 efx_fast_push_rx_descriptors(rx_queue);
467 }
468
469 /* This disables event queue processing and packet transmission.
470 * This function does not guarantee that all queue processing
471 * (e.g. RX refill) is complete.
472 */
473 static void efx_stop_channel(struct efx_channel *channel)
474 {
475 struct efx_rx_queue *rx_queue;
476
477 if (!channel->enabled)
478 return;
479
480 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
481
482 channel->enabled = false;
483 napi_disable(&channel->napi_str);
484
485 /* Ensure that any worker threads have exited or will be no-ops */
486 efx_for_each_channel_rx_queue(rx_queue, channel) {
487 spin_lock_bh(&rx_queue->add_lock);
488 spin_unlock_bh(&rx_queue->add_lock);
489 }
490 }
491
492 static void efx_fini_channels(struct efx_nic *efx)
493 {
494 struct efx_channel *channel;
495 struct efx_tx_queue *tx_queue;
496 struct efx_rx_queue *rx_queue;
497 int rc;
498
499 EFX_ASSERT_RESET_SERIALISED(efx);
500 BUG_ON(efx->port_enabled);
501
502 rc = falcon_flush_queues(efx);
503 if (rc)
504 EFX_ERR(efx, "failed to flush queues\n");
505 else
506 EFX_LOG(efx, "successfully flushed all queues\n");
507
508 efx_for_each_channel(channel, efx) {
509 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
510
511 efx_for_each_channel_rx_queue(rx_queue, channel)
512 efx_fini_rx_queue(rx_queue);
513 efx_for_each_channel_tx_queue(tx_queue, channel)
514 efx_fini_tx_queue(tx_queue);
515 efx_fini_eventq(channel);
516 }
517 }
518
519 static void efx_remove_channel(struct efx_channel *channel)
520 {
521 struct efx_tx_queue *tx_queue;
522 struct efx_rx_queue *rx_queue;
523
524 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
525
526 efx_for_each_channel_rx_queue(rx_queue, channel)
527 efx_remove_rx_queue(rx_queue);
528 efx_for_each_channel_tx_queue(tx_queue, channel)
529 efx_remove_tx_queue(tx_queue);
530 efx_remove_eventq(channel);
531
532 channel->used_flags = 0;
533 }
534
535 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
536 {
537 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
538 }
539
540 /**************************************************************************
541 *
542 * Port handling
543 *
544 **************************************************************************/
545
546 /* This ensures that the kernel is kept informed (via
547 * netif_carrier_on/off) of the link status, and also maintains the
548 * link status's stop on the port's TX queue.
549 */
550 static void efx_link_status_changed(struct efx_nic *efx)
551 {
552 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
553 * that no events are triggered between unregister_netdev() and the
554 * driver unloading. A more general condition is that NETDEV_CHANGE
555 * can only be generated between NETDEV_UP and NETDEV_DOWN */
556 if (!netif_running(efx->net_dev))
557 return;
558
559 if (efx->port_inhibited) {
560 netif_carrier_off(efx->net_dev);
561 return;
562 }
563
564 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
565 efx->n_link_state_changes++;
566
567 if (efx->link_up)
568 netif_carrier_on(efx->net_dev);
569 else
570 netif_carrier_off(efx->net_dev);
571 }
572
573 /* Status message for kernel log */
574 if (efx->link_up) {
575 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
576 efx->link_speed, efx->link_fd ? "full" : "half",
577 efx->net_dev->mtu,
578 (efx->promiscuous ? " [PROMISC]" : ""));
579 } else {
580 EFX_INFO(efx, "link down\n");
581 }
582
583 }
584
585 static void efx_fini_port(struct efx_nic *efx);
586
587 /* This call reinitialises the MAC to pick up new PHY settings. The
588 * caller must hold the mac_lock */
589 void __efx_reconfigure_port(struct efx_nic *efx)
590 {
591 WARN_ON(!mutex_is_locked(&efx->mac_lock));
592
593 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
594 raw_smp_processor_id());
595
596 /* Serialise the promiscuous flag with efx_set_multicast_list. */
597 if (efx_dev_registered(efx)) {
598 netif_addr_lock_bh(efx->net_dev);
599 netif_addr_unlock_bh(efx->net_dev);
600 }
601
602 falcon_deconfigure_mac_wrapper(efx);
603
604 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
605 if (LOOPBACK_INTERNAL(efx))
606 efx->phy_mode |= PHY_MODE_TX_DISABLED;
607 else
608 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
609 efx->phy_op->reconfigure(efx);
610
611 if (falcon_switch_mac(efx))
612 goto fail;
613
614 efx->mac_op->reconfigure(efx);
615
616 /* Inform kernel of loss/gain of carrier */
617 efx_link_status_changed(efx);
618 return;
619
620 fail:
621 EFX_ERR(efx, "failed to reconfigure MAC\n");
622 efx->port_enabled = false;
623 efx_fini_port(efx);
624 }
625
626 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
627 * disabled. */
628 void efx_reconfigure_port(struct efx_nic *efx)
629 {
630 EFX_ASSERT_RESET_SERIALISED(efx);
631
632 mutex_lock(&efx->mac_lock);
633 __efx_reconfigure_port(efx);
634 mutex_unlock(&efx->mac_lock);
635 }
636
637 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
638 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
639 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
640 static void efx_phy_work(struct work_struct *data)
641 {
642 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
643
644 mutex_lock(&efx->mac_lock);
645 if (efx->port_enabled)
646 __efx_reconfigure_port(efx);
647 mutex_unlock(&efx->mac_lock);
648 }
649
650 static void efx_mac_work(struct work_struct *data)
651 {
652 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
653
654 mutex_lock(&efx->mac_lock);
655 if (efx->port_enabled)
656 efx->mac_op->irq(efx);
657 mutex_unlock(&efx->mac_lock);
658 }
659
660 static int efx_probe_port(struct efx_nic *efx)
661 {
662 int rc;
663
664 EFX_LOG(efx, "create port\n");
665
666 /* Connect up MAC/PHY operations table and read MAC address */
667 rc = falcon_probe_port(efx);
668 if (rc)
669 goto err;
670
671 if (phy_flash_cfg)
672 efx->phy_mode = PHY_MODE_SPECIAL;
673
674 /* Sanity check MAC address */
675 if (is_valid_ether_addr(efx->mac_address)) {
676 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
677 } else {
678 EFX_ERR(efx, "invalid MAC address %pM\n",
679 efx->mac_address);
680 if (!allow_bad_hwaddr) {
681 rc = -EINVAL;
682 goto err;
683 }
684 random_ether_addr(efx->net_dev->dev_addr);
685 EFX_INFO(efx, "using locally-generated MAC %pM\n",
686 efx->net_dev->dev_addr);
687 }
688
689 return 0;
690
691 err:
692 efx_remove_port(efx);
693 return rc;
694 }
695
696 static int efx_init_port(struct efx_nic *efx)
697 {
698 int rc;
699
700 EFX_LOG(efx, "init port\n");
701
702 rc = efx->phy_op->init(efx);
703 if (rc)
704 return rc;
705 mutex_lock(&efx->mac_lock);
706 efx->phy_op->reconfigure(efx);
707 rc = falcon_switch_mac(efx);
708 mutex_unlock(&efx->mac_lock);
709 if (rc)
710 goto fail;
711 efx->mac_op->reconfigure(efx);
712
713 efx->port_initialized = true;
714 efx_stats_enable(efx);
715 return 0;
716
717 fail:
718 efx->phy_op->fini(efx);
719 return rc;
720 }
721
722 /* Allow efx_reconfigure_port() to be scheduled, and close the window
723 * between efx_stop_port and efx_flush_all whereby a previously scheduled
724 * efx_phy_work()/efx_mac_work() may have been cancelled */
725 static void efx_start_port(struct efx_nic *efx)
726 {
727 EFX_LOG(efx, "start port\n");
728 BUG_ON(efx->port_enabled);
729
730 mutex_lock(&efx->mac_lock);
731 efx->port_enabled = true;
732 __efx_reconfigure_port(efx);
733 efx->mac_op->irq(efx);
734 mutex_unlock(&efx->mac_lock);
735 }
736
737 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
738 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
739 * and efx_mac_work may still be scheduled via NAPI processing until
740 * efx_flush_all() is called */
741 static void efx_stop_port(struct efx_nic *efx)
742 {
743 EFX_LOG(efx, "stop port\n");
744
745 mutex_lock(&efx->mac_lock);
746 efx->port_enabled = false;
747 mutex_unlock(&efx->mac_lock);
748
749 /* Serialise against efx_set_multicast_list() */
750 if (efx_dev_registered(efx)) {
751 netif_addr_lock_bh(efx->net_dev);
752 netif_addr_unlock_bh(efx->net_dev);
753 }
754 }
755
756 static void efx_fini_port(struct efx_nic *efx)
757 {
758 EFX_LOG(efx, "shut down port\n");
759
760 if (!efx->port_initialized)
761 return;
762
763 efx_stats_disable(efx);
764 efx->phy_op->fini(efx);
765 efx->port_initialized = false;
766
767 efx->link_up = false;
768 efx_link_status_changed(efx);
769 }
770
771 static void efx_remove_port(struct efx_nic *efx)
772 {
773 EFX_LOG(efx, "destroying port\n");
774
775 falcon_remove_port(efx);
776 }
777
778 /**************************************************************************
779 *
780 * NIC handling
781 *
782 **************************************************************************/
783
784 /* This configures the PCI device to enable I/O and DMA. */
785 static int efx_init_io(struct efx_nic *efx)
786 {
787 struct pci_dev *pci_dev = efx->pci_dev;
788 dma_addr_t dma_mask = efx->type->max_dma_mask;
789 int rc;
790
791 EFX_LOG(efx, "initialising I/O\n");
792
793 rc = pci_enable_device(pci_dev);
794 if (rc) {
795 EFX_ERR(efx, "failed to enable PCI device\n");
796 goto fail1;
797 }
798
799 pci_set_master(pci_dev);
800
801 /* Set the PCI DMA mask. Try all possibilities from our
802 * genuine mask down to 32 bits, because some architectures
803 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
804 * masks event though they reject 46 bit masks.
805 */
806 while (dma_mask > 0x7fffffffUL) {
807 if (pci_dma_supported(pci_dev, dma_mask) &&
808 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
809 break;
810 dma_mask >>= 1;
811 }
812 if (rc) {
813 EFX_ERR(efx, "could not find a suitable DMA mask\n");
814 goto fail2;
815 }
816 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
817 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
818 if (rc) {
819 /* pci_set_consistent_dma_mask() is not *allowed* to
820 * fail with a mask that pci_set_dma_mask() accepted,
821 * but just in case...
822 */
823 EFX_ERR(efx, "failed to set consistent DMA mask\n");
824 goto fail2;
825 }
826
827 efx->membase_phys = pci_resource_start(efx->pci_dev,
828 efx->type->mem_bar);
829 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
830 if (rc) {
831 EFX_ERR(efx, "request for memory BAR failed\n");
832 rc = -EIO;
833 goto fail3;
834 }
835 efx->membase = ioremap_nocache(efx->membase_phys,
836 efx->type->mem_map_size);
837 if (!efx->membase) {
838 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
839 efx->type->mem_bar,
840 (unsigned long long)efx->membase_phys,
841 efx->type->mem_map_size);
842 rc = -ENOMEM;
843 goto fail4;
844 }
845 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
846 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
847 efx->type->mem_map_size, efx->membase);
848
849 return 0;
850
851 fail4:
852 pci_release_region(efx->pci_dev, efx->type->mem_bar);
853 fail3:
854 efx->membase_phys = 0;
855 fail2:
856 pci_disable_device(efx->pci_dev);
857 fail1:
858 return rc;
859 }
860
861 static void efx_fini_io(struct efx_nic *efx)
862 {
863 EFX_LOG(efx, "shutting down I/O\n");
864
865 if (efx->membase) {
866 iounmap(efx->membase);
867 efx->membase = NULL;
868 }
869
870 if (efx->membase_phys) {
871 pci_release_region(efx->pci_dev, efx->type->mem_bar);
872 efx->membase_phys = 0;
873 }
874
875 pci_disable_device(efx->pci_dev);
876 }
877
878 /* Get number of RX queues wanted. Return number of online CPU
879 * packages in the expectation that an IRQ balancer will spread
880 * interrupts across them. */
881 static int efx_wanted_rx_queues(void)
882 {
883 cpumask_var_t core_mask;
884 int count;
885 int cpu;
886
887 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
888 printk(KERN_WARNING
889 "sfc: RSS disabled due to allocation failure\n");
890 return 1;
891 }
892
893 count = 0;
894 for_each_online_cpu(cpu) {
895 if (!cpumask_test_cpu(cpu, core_mask)) {
896 ++count;
897 cpumask_or(core_mask, core_mask,
898 topology_core_cpumask(cpu));
899 }
900 }
901
902 free_cpumask_var(core_mask);
903 return count;
904 }
905
906 /* Probe the number and type of interrupts we are able to obtain, and
907 * the resulting numbers of channels and RX queues.
908 */
909 static void efx_probe_interrupts(struct efx_nic *efx)
910 {
911 int max_channels =
912 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
913 int rc, i;
914
915 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
916 struct msix_entry xentries[EFX_MAX_CHANNELS];
917 int wanted_ints;
918 int rx_queues;
919
920 /* We want one RX queue and interrupt per CPU package
921 * (or as specified by the rss_cpus module parameter).
922 * We will need one channel per interrupt.
923 */
924 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
925 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
926 wanted_ints = min(wanted_ints, max_channels);
927
928 for (i = 0; i < wanted_ints; i++)
929 xentries[i].entry = i;
930 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
931 if (rc > 0) {
932 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
933 " available (%d < %d).\n", rc, wanted_ints);
934 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
935 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
936 wanted_ints = rc;
937 rc = pci_enable_msix(efx->pci_dev, xentries,
938 wanted_ints);
939 }
940
941 if (rc == 0) {
942 efx->n_rx_queues = min(rx_queues, wanted_ints);
943 efx->n_channels = wanted_ints;
944 for (i = 0; i < wanted_ints; i++)
945 efx->channel[i].irq = xentries[i].vector;
946 } else {
947 /* Fall back to single channel MSI */
948 efx->interrupt_mode = EFX_INT_MODE_MSI;
949 EFX_ERR(efx, "could not enable MSI-X\n");
950 }
951 }
952
953 /* Try single interrupt MSI */
954 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
955 efx->n_rx_queues = 1;
956 efx->n_channels = 1;
957 rc = pci_enable_msi(efx->pci_dev);
958 if (rc == 0) {
959 efx->channel[0].irq = efx->pci_dev->irq;
960 } else {
961 EFX_ERR(efx, "could not enable MSI\n");
962 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
963 }
964 }
965
966 /* Assume legacy interrupts */
967 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
968 efx->n_rx_queues = 1;
969 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
970 efx->legacy_irq = efx->pci_dev->irq;
971 }
972 }
973
974 static void efx_remove_interrupts(struct efx_nic *efx)
975 {
976 struct efx_channel *channel;
977
978 /* Remove MSI/MSI-X interrupts */
979 efx_for_each_channel(channel, efx)
980 channel->irq = 0;
981 pci_disable_msi(efx->pci_dev);
982 pci_disable_msix(efx->pci_dev);
983
984 /* Remove legacy interrupt */
985 efx->legacy_irq = 0;
986 }
987
988 static void efx_set_channels(struct efx_nic *efx)
989 {
990 struct efx_tx_queue *tx_queue;
991 struct efx_rx_queue *rx_queue;
992
993 efx_for_each_tx_queue(tx_queue, efx) {
994 if (separate_tx_channels)
995 tx_queue->channel = &efx->channel[efx->n_channels-1];
996 else
997 tx_queue->channel = &efx->channel[0];
998 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
999 }
1000
1001 efx_for_each_rx_queue(rx_queue, efx) {
1002 rx_queue->channel = &efx->channel[rx_queue->queue];
1003 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1004 }
1005 }
1006
1007 static int efx_probe_nic(struct efx_nic *efx)
1008 {
1009 int rc;
1010
1011 EFX_LOG(efx, "creating NIC\n");
1012
1013 /* Carry out hardware-type specific initialisation */
1014 rc = falcon_probe_nic(efx);
1015 if (rc)
1016 return rc;
1017
1018 /* Determine the number of channels and RX queues by trying to hook
1019 * in MSI-X interrupts. */
1020 efx_probe_interrupts(efx);
1021
1022 efx_set_channels(efx);
1023
1024 /* Initialise the interrupt moderation settings */
1025 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1026
1027 return 0;
1028 }
1029
1030 static void efx_remove_nic(struct efx_nic *efx)
1031 {
1032 EFX_LOG(efx, "destroying NIC\n");
1033
1034 efx_remove_interrupts(efx);
1035 falcon_remove_nic(efx);
1036 }
1037
1038 /**************************************************************************
1039 *
1040 * NIC startup/shutdown
1041 *
1042 *************************************************************************/
1043
1044 static int efx_probe_all(struct efx_nic *efx)
1045 {
1046 struct efx_channel *channel;
1047 int rc;
1048
1049 /* Create NIC */
1050 rc = efx_probe_nic(efx);
1051 if (rc) {
1052 EFX_ERR(efx, "failed to create NIC\n");
1053 goto fail1;
1054 }
1055
1056 /* Create port */
1057 rc = efx_probe_port(efx);
1058 if (rc) {
1059 EFX_ERR(efx, "failed to create port\n");
1060 goto fail2;
1061 }
1062
1063 /* Create channels */
1064 efx_for_each_channel(channel, efx) {
1065 rc = efx_probe_channel(channel);
1066 if (rc) {
1067 EFX_ERR(efx, "failed to create channel %d\n",
1068 channel->channel);
1069 goto fail3;
1070 }
1071 }
1072 efx_set_channel_names(efx);
1073
1074 return 0;
1075
1076 fail3:
1077 efx_for_each_channel(channel, efx)
1078 efx_remove_channel(channel);
1079 efx_remove_port(efx);
1080 fail2:
1081 efx_remove_nic(efx);
1082 fail1:
1083 return rc;
1084 }
1085
1086 /* Called after previous invocation(s) of efx_stop_all, restarts the
1087 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1088 * and ensures that the port is scheduled to be reconfigured.
1089 * This function is safe to call multiple times when the NIC is in any
1090 * state. */
1091 static void efx_start_all(struct efx_nic *efx)
1092 {
1093 struct efx_channel *channel;
1094
1095 EFX_ASSERT_RESET_SERIALISED(efx);
1096
1097 /* Check that it is appropriate to restart the interface. All
1098 * of these flags are safe to read under just the rtnl lock */
1099 if (efx->port_enabled)
1100 return;
1101 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1102 return;
1103 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1104 return;
1105
1106 /* Mark the port as enabled so port reconfigurations can start, then
1107 * restart the transmit interface early so the watchdog timer stops */
1108 efx_start_port(efx);
1109 if (efx_dev_registered(efx))
1110 efx_wake_queue(efx);
1111
1112 efx_for_each_channel(channel, efx)
1113 efx_start_channel(channel);
1114
1115 falcon_enable_interrupts(efx);
1116
1117 /* Start hardware monitor if we're in RUNNING */
1118 if (efx->state == STATE_RUNNING)
1119 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1120 efx_monitor_interval);
1121 }
1122
1123 /* Flush all delayed work. Should only be called when no more delayed work
1124 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1125 * since we're holding the rtnl_lock at this point. */
1126 static void efx_flush_all(struct efx_nic *efx)
1127 {
1128 struct efx_rx_queue *rx_queue;
1129
1130 /* Make sure the hardware monitor is stopped */
1131 cancel_delayed_work_sync(&efx->monitor_work);
1132
1133 /* Ensure that all RX slow refills are complete. */
1134 efx_for_each_rx_queue(rx_queue, efx)
1135 cancel_delayed_work_sync(&rx_queue->work);
1136
1137 /* Stop scheduled port reconfigurations */
1138 cancel_work_sync(&efx->mac_work);
1139 cancel_work_sync(&efx->phy_work);
1140
1141 }
1142
1143 /* Quiesce hardware and software without bringing the link down.
1144 * Safe to call multiple times, when the nic and interface is in any
1145 * state. The caller is guaranteed to subsequently be in a position
1146 * to modify any hardware and software state they see fit without
1147 * taking locks. */
1148 static void efx_stop_all(struct efx_nic *efx)
1149 {
1150 struct efx_channel *channel;
1151
1152 EFX_ASSERT_RESET_SERIALISED(efx);
1153
1154 /* port_enabled can be read safely under the rtnl lock */
1155 if (!efx->port_enabled)
1156 return;
1157
1158 /* Disable interrupts and wait for ISR to complete */
1159 falcon_disable_interrupts(efx);
1160 if (efx->legacy_irq)
1161 synchronize_irq(efx->legacy_irq);
1162 efx_for_each_channel(channel, efx) {
1163 if (channel->irq)
1164 synchronize_irq(channel->irq);
1165 }
1166
1167 /* Stop all NAPI processing and synchronous rx refills */
1168 efx_for_each_channel(channel, efx)
1169 efx_stop_channel(channel);
1170
1171 /* Stop all asynchronous port reconfigurations. Since all
1172 * event processing has already been stopped, there is no
1173 * window to loose phy events */
1174 efx_stop_port(efx);
1175
1176 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1177 efx_flush_all(efx);
1178
1179 /* Isolate the MAC from the TX and RX engines, so that queue
1180 * flushes will complete in a timely fashion. */
1181 falcon_deconfigure_mac_wrapper(efx);
1182 msleep(10); /* Let the Rx FIFO drain */
1183 falcon_drain_tx_fifo(efx);
1184
1185 /* Stop the kernel transmit interface late, so the watchdog
1186 * timer isn't ticking over the flush */
1187 if (efx_dev_registered(efx)) {
1188 efx_stop_queue(efx);
1189 netif_tx_lock_bh(efx->net_dev);
1190 netif_tx_unlock_bh(efx->net_dev);
1191 }
1192 }
1193
1194 static void efx_remove_all(struct efx_nic *efx)
1195 {
1196 struct efx_channel *channel;
1197
1198 efx_for_each_channel(channel, efx)
1199 efx_remove_channel(channel);
1200 efx_remove_port(efx);
1201 efx_remove_nic(efx);
1202 }
1203
1204 /* A convinience function to safely flush all the queues */
1205 void efx_flush_queues(struct efx_nic *efx)
1206 {
1207 EFX_ASSERT_RESET_SERIALISED(efx);
1208
1209 efx_stop_all(efx);
1210
1211 efx_fini_channels(efx);
1212 efx_init_channels(efx);
1213
1214 efx_start_all(efx);
1215 }
1216
1217 /**************************************************************************
1218 *
1219 * Interrupt moderation
1220 *
1221 **************************************************************************/
1222
1223 /* Set interrupt moderation parameters */
1224 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1225 bool rx_adaptive)
1226 {
1227 struct efx_tx_queue *tx_queue;
1228 struct efx_rx_queue *rx_queue;
1229
1230 EFX_ASSERT_RESET_SERIALISED(efx);
1231
1232 efx_for_each_tx_queue(tx_queue, efx)
1233 tx_queue->channel->irq_moderation = tx_usecs;
1234
1235 efx->irq_rx_adaptive = rx_adaptive;
1236 efx->irq_rx_moderation = rx_usecs;
1237 efx_for_each_rx_queue(rx_queue, efx)
1238 rx_queue->channel->irq_moderation = rx_usecs;
1239 }
1240
1241 /**************************************************************************
1242 *
1243 * Hardware monitor
1244 *
1245 **************************************************************************/
1246
1247 /* Run periodically off the general workqueue. Serialised against
1248 * efx_reconfigure_port via the mac_lock */
1249 static void efx_monitor(struct work_struct *data)
1250 {
1251 struct efx_nic *efx = container_of(data, struct efx_nic,
1252 monitor_work.work);
1253 int rc;
1254
1255 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1256 raw_smp_processor_id());
1257
1258 /* If the mac_lock is already held then it is likely a port
1259 * reconfiguration is already in place, which will likely do
1260 * most of the work of check_hw() anyway. */
1261 if (!mutex_trylock(&efx->mac_lock))
1262 goto out_requeue;
1263 if (!efx->port_enabled)
1264 goto out_unlock;
1265 rc = efx->board_info.monitor(efx);
1266 if (rc) {
1267 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1268 (rc == -ERANGE) ? "reported fault" : "failed");
1269 efx->phy_mode |= PHY_MODE_LOW_POWER;
1270 falcon_sim_phy_event(efx);
1271 }
1272 efx->phy_op->poll(efx);
1273 efx->mac_op->poll(efx);
1274
1275 out_unlock:
1276 mutex_unlock(&efx->mac_lock);
1277 out_requeue:
1278 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1279 efx_monitor_interval);
1280 }
1281
1282 /**************************************************************************
1283 *
1284 * ioctls
1285 *
1286 *************************************************************************/
1287
1288 /* Net device ioctl
1289 * Context: process, rtnl_lock() held.
1290 */
1291 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1292 {
1293 struct efx_nic *efx = netdev_priv(net_dev);
1294 struct mii_ioctl_data *data = if_mii(ifr);
1295
1296 EFX_ASSERT_RESET_SERIALISED(efx);
1297
1298 /* Convert phy_id from older PRTAD/DEVAD format */
1299 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1300 (data->phy_id & 0xfc00) == 0x0400)
1301 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1302
1303 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1304 }
1305
1306 /**************************************************************************
1307 *
1308 * NAPI interface
1309 *
1310 **************************************************************************/
1311
1312 static int efx_init_napi(struct efx_nic *efx)
1313 {
1314 struct efx_channel *channel;
1315
1316 efx_for_each_channel(channel, efx) {
1317 channel->napi_dev = efx->net_dev;
1318 netif_napi_add(channel->napi_dev, &channel->napi_str,
1319 efx_poll, napi_weight);
1320 }
1321 return 0;
1322 }
1323
1324 static void efx_fini_napi(struct efx_nic *efx)
1325 {
1326 struct efx_channel *channel;
1327
1328 efx_for_each_channel(channel, efx) {
1329 if (channel->napi_dev)
1330 netif_napi_del(&channel->napi_str);
1331 channel->napi_dev = NULL;
1332 }
1333 }
1334
1335 /**************************************************************************
1336 *
1337 * Kernel netpoll interface
1338 *
1339 *************************************************************************/
1340
1341 #ifdef CONFIG_NET_POLL_CONTROLLER
1342
1343 /* Although in the common case interrupts will be disabled, this is not
1344 * guaranteed. However, all our work happens inside the NAPI callback,
1345 * so no locking is required.
1346 */
1347 static void efx_netpoll(struct net_device *net_dev)
1348 {
1349 struct efx_nic *efx = netdev_priv(net_dev);
1350 struct efx_channel *channel;
1351
1352 efx_for_each_channel(channel, efx)
1353 efx_schedule_channel(channel);
1354 }
1355
1356 #endif
1357
1358 /**************************************************************************
1359 *
1360 * Kernel net device interface
1361 *
1362 *************************************************************************/
1363
1364 /* Context: process, rtnl_lock() held. */
1365 static int efx_net_open(struct net_device *net_dev)
1366 {
1367 struct efx_nic *efx = netdev_priv(net_dev);
1368 EFX_ASSERT_RESET_SERIALISED(efx);
1369
1370 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1371 raw_smp_processor_id());
1372
1373 if (efx->state == STATE_DISABLED)
1374 return -EIO;
1375 if (efx->phy_mode & PHY_MODE_SPECIAL)
1376 return -EBUSY;
1377
1378 efx_start_all(efx);
1379 return 0;
1380 }
1381
1382 /* Context: process, rtnl_lock() held.
1383 * Note that the kernel will ignore our return code; this method
1384 * should really be a void.
1385 */
1386 static int efx_net_stop(struct net_device *net_dev)
1387 {
1388 struct efx_nic *efx = netdev_priv(net_dev);
1389
1390 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1391 raw_smp_processor_id());
1392
1393 if (efx->state != STATE_DISABLED) {
1394 /* Stop the device and flush all the channels */
1395 efx_stop_all(efx);
1396 efx_fini_channels(efx);
1397 efx_init_channels(efx);
1398 }
1399
1400 return 0;
1401 }
1402
1403 void efx_stats_disable(struct efx_nic *efx)
1404 {
1405 spin_lock(&efx->stats_lock);
1406 ++efx->stats_disable_count;
1407 spin_unlock(&efx->stats_lock);
1408 }
1409
1410 void efx_stats_enable(struct efx_nic *efx)
1411 {
1412 spin_lock(&efx->stats_lock);
1413 --efx->stats_disable_count;
1414 spin_unlock(&efx->stats_lock);
1415 }
1416
1417 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1418 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1419 {
1420 struct efx_nic *efx = netdev_priv(net_dev);
1421 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1422 struct net_device_stats *stats = &net_dev->stats;
1423
1424 /* Update stats if possible, but do not wait if another thread
1425 * is updating them or if MAC stats fetches are temporarily
1426 * disabled; slightly stale stats are acceptable.
1427 */
1428 if (!spin_trylock(&efx->stats_lock))
1429 return stats;
1430 if (!efx->stats_disable_count) {
1431 efx->mac_op->update_stats(efx);
1432 falcon_update_nic_stats(efx);
1433 }
1434 spin_unlock(&efx->stats_lock);
1435
1436 stats->rx_packets = mac_stats->rx_packets;
1437 stats->tx_packets = mac_stats->tx_packets;
1438 stats->rx_bytes = mac_stats->rx_bytes;
1439 stats->tx_bytes = mac_stats->tx_bytes;
1440 stats->multicast = mac_stats->rx_multicast;
1441 stats->collisions = mac_stats->tx_collision;
1442 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1443 mac_stats->rx_length_error);
1444 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1445 stats->rx_crc_errors = mac_stats->rx_bad;
1446 stats->rx_frame_errors = mac_stats->rx_align_error;
1447 stats->rx_fifo_errors = mac_stats->rx_overflow;
1448 stats->rx_missed_errors = mac_stats->rx_missed;
1449 stats->tx_window_errors = mac_stats->tx_late_collision;
1450
1451 stats->rx_errors = (stats->rx_length_errors +
1452 stats->rx_over_errors +
1453 stats->rx_crc_errors +
1454 stats->rx_frame_errors +
1455 stats->rx_fifo_errors +
1456 stats->rx_missed_errors +
1457 mac_stats->rx_symbol_error);
1458 stats->tx_errors = (stats->tx_window_errors +
1459 mac_stats->tx_bad);
1460
1461 return stats;
1462 }
1463
1464 /* Context: netif_tx_lock held, BHs disabled. */
1465 static void efx_watchdog(struct net_device *net_dev)
1466 {
1467 struct efx_nic *efx = netdev_priv(net_dev);
1468
1469 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1470 " resetting channels\n",
1471 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1472
1473 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1474 }
1475
1476
1477 /* Context: process, rtnl_lock() held. */
1478 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1479 {
1480 struct efx_nic *efx = netdev_priv(net_dev);
1481 int rc = 0;
1482
1483 EFX_ASSERT_RESET_SERIALISED(efx);
1484
1485 if (new_mtu > EFX_MAX_MTU)
1486 return -EINVAL;
1487
1488 efx_stop_all(efx);
1489
1490 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1491
1492 efx_fini_channels(efx);
1493 net_dev->mtu = new_mtu;
1494 efx_init_channels(efx);
1495
1496 efx_start_all(efx);
1497 return rc;
1498 }
1499
1500 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1501 {
1502 struct efx_nic *efx = netdev_priv(net_dev);
1503 struct sockaddr *addr = data;
1504 char *new_addr = addr->sa_data;
1505
1506 EFX_ASSERT_RESET_SERIALISED(efx);
1507
1508 if (!is_valid_ether_addr(new_addr)) {
1509 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1510 new_addr);
1511 return -EINVAL;
1512 }
1513
1514 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1515
1516 /* Reconfigure the MAC */
1517 efx_reconfigure_port(efx);
1518
1519 return 0;
1520 }
1521
1522 /* Context: netif_addr_lock held, BHs disabled. */
1523 static void efx_set_multicast_list(struct net_device *net_dev)
1524 {
1525 struct efx_nic *efx = netdev_priv(net_dev);
1526 struct dev_mc_list *mc_list = net_dev->mc_list;
1527 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1528 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1529 bool changed = (efx->promiscuous != promiscuous);
1530 u32 crc;
1531 int bit;
1532 int i;
1533
1534 efx->promiscuous = promiscuous;
1535
1536 /* Build multicast hash table */
1537 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1538 memset(mc_hash, 0xff, sizeof(*mc_hash));
1539 } else {
1540 memset(mc_hash, 0x00, sizeof(*mc_hash));
1541 for (i = 0; i < net_dev->mc_count; i++) {
1542 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1543 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1544 set_bit_le(bit, mc_hash->byte);
1545 mc_list = mc_list->next;
1546 }
1547 }
1548
1549 if (!efx->port_enabled)
1550 /* Delay pushing settings until efx_start_port() */
1551 return;
1552
1553 if (changed)
1554 queue_work(efx->workqueue, &efx->phy_work);
1555
1556 /* Create and activate new global multicast hash table */
1557 falcon_set_multicast_hash(efx);
1558 }
1559
1560 static const struct net_device_ops efx_netdev_ops = {
1561 .ndo_open = efx_net_open,
1562 .ndo_stop = efx_net_stop,
1563 .ndo_get_stats = efx_net_stats,
1564 .ndo_tx_timeout = efx_watchdog,
1565 .ndo_start_xmit = efx_hard_start_xmit,
1566 .ndo_validate_addr = eth_validate_addr,
1567 .ndo_do_ioctl = efx_ioctl,
1568 .ndo_change_mtu = efx_change_mtu,
1569 .ndo_set_mac_address = efx_set_mac_address,
1570 .ndo_set_multicast_list = efx_set_multicast_list,
1571 #ifdef CONFIG_NET_POLL_CONTROLLER
1572 .ndo_poll_controller = efx_netpoll,
1573 #endif
1574 };
1575
1576 static void efx_update_name(struct efx_nic *efx)
1577 {
1578 strcpy(efx->name, efx->net_dev->name);
1579 efx_mtd_rename(efx);
1580 efx_set_channel_names(efx);
1581 }
1582
1583 static int efx_netdev_event(struct notifier_block *this,
1584 unsigned long event, void *ptr)
1585 {
1586 struct net_device *net_dev = ptr;
1587
1588 if (net_dev->netdev_ops == &efx_netdev_ops &&
1589 event == NETDEV_CHANGENAME)
1590 efx_update_name(netdev_priv(net_dev));
1591
1592 return NOTIFY_DONE;
1593 }
1594
1595 static struct notifier_block efx_netdev_notifier = {
1596 .notifier_call = efx_netdev_event,
1597 };
1598
1599 static ssize_t
1600 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1601 {
1602 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1603 return sprintf(buf, "%d\n", efx->phy_type);
1604 }
1605 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1606
1607 static int efx_register_netdev(struct efx_nic *efx)
1608 {
1609 struct net_device *net_dev = efx->net_dev;
1610 int rc;
1611
1612 net_dev->watchdog_timeo = 5 * HZ;
1613 net_dev->irq = efx->pci_dev->irq;
1614 net_dev->netdev_ops = &efx_netdev_ops;
1615 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1616 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1617
1618 /* Clear MAC statistics */
1619 efx->mac_op->update_stats(efx);
1620 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1621
1622 rtnl_lock();
1623
1624 rc = dev_alloc_name(net_dev, net_dev->name);
1625 if (rc < 0)
1626 goto fail_locked;
1627 efx_update_name(efx);
1628
1629 rc = register_netdevice(net_dev);
1630 if (rc)
1631 goto fail_locked;
1632
1633 /* Always start with carrier off; PHY events will detect the link */
1634 netif_carrier_off(efx->net_dev);
1635
1636 rtnl_unlock();
1637
1638 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1639 if (rc) {
1640 EFX_ERR(efx, "failed to init net dev attributes\n");
1641 goto fail_registered;
1642 }
1643
1644 return 0;
1645
1646 fail_locked:
1647 rtnl_unlock();
1648 EFX_ERR(efx, "could not register net dev\n");
1649 return rc;
1650
1651 fail_registered:
1652 unregister_netdev(net_dev);
1653 return rc;
1654 }
1655
1656 static void efx_unregister_netdev(struct efx_nic *efx)
1657 {
1658 struct efx_tx_queue *tx_queue;
1659
1660 if (!efx->net_dev)
1661 return;
1662
1663 BUG_ON(netdev_priv(efx->net_dev) != efx);
1664
1665 /* Free up any skbs still remaining. This has to happen before
1666 * we try to unregister the netdev as running their destructors
1667 * may be needed to get the device ref. count to 0. */
1668 efx_for_each_tx_queue(tx_queue, efx)
1669 efx_release_tx_buffers(tx_queue);
1670
1671 if (efx_dev_registered(efx)) {
1672 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1673 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1674 unregister_netdev(efx->net_dev);
1675 }
1676 }
1677
1678 /**************************************************************************
1679 *
1680 * Device reset and suspend
1681 *
1682 **************************************************************************/
1683
1684 /* Tears down the entire software state and most of the hardware state
1685 * before reset. */
1686 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1687 struct ethtool_cmd *ecmd)
1688 {
1689 EFX_ASSERT_RESET_SERIALISED(efx);
1690
1691 efx_stats_disable(efx);
1692 efx_stop_all(efx);
1693 mutex_lock(&efx->mac_lock);
1694 mutex_lock(&efx->spi_lock);
1695
1696 efx->phy_op->get_settings(efx, ecmd);
1697
1698 efx_fini_channels(efx);
1699 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1700 efx->phy_op->fini(efx);
1701 }
1702
1703 /* This function will always ensure that the locks acquired in
1704 * efx_reset_down() are released. A failure return code indicates
1705 * that we were unable to reinitialise the hardware, and the
1706 * driver should be disabled. If ok is false, then the rx and tx
1707 * engines are not restarted, pending a RESET_DISABLE. */
1708 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1709 struct ethtool_cmd *ecmd, bool ok)
1710 {
1711 int rc;
1712
1713 EFX_ASSERT_RESET_SERIALISED(efx);
1714
1715 rc = falcon_init_nic(efx);
1716 if (rc) {
1717 EFX_ERR(efx, "failed to initialise NIC\n");
1718 ok = false;
1719 }
1720
1721 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1722 if (ok) {
1723 rc = efx->phy_op->init(efx);
1724 if (rc)
1725 ok = false;
1726 }
1727 if (!ok)
1728 efx->port_initialized = false;
1729 }
1730
1731 if (ok) {
1732 efx_init_channels(efx);
1733
1734 if (efx->phy_op->set_settings(efx, ecmd))
1735 EFX_ERR(efx, "could not restore PHY settings\n");
1736 }
1737
1738 mutex_unlock(&efx->spi_lock);
1739 mutex_unlock(&efx->mac_lock);
1740
1741 if (ok) {
1742 efx_start_all(efx);
1743 efx_stats_enable(efx);
1744 }
1745 return rc;
1746 }
1747
1748 /* Reset the NIC as transparently as possible. Do not reset the PHY
1749 * Note that the reset may fail, in which case the card will be left
1750 * in a most-probably-unusable state.
1751 *
1752 * This function will sleep. You cannot reset from within an atomic
1753 * state; use efx_schedule_reset() instead.
1754 *
1755 * Grabs the rtnl_lock.
1756 */
1757 static int efx_reset(struct efx_nic *efx)
1758 {
1759 struct ethtool_cmd ecmd;
1760 enum reset_type method = efx->reset_pending;
1761 int rc = 0;
1762
1763 /* Serialise with kernel interfaces */
1764 rtnl_lock();
1765
1766 /* If we're not RUNNING then don't reset. Leave the reset_pending
1767 * flag set so that efx_pci_probe_main will be retried */
1768 if (efx->state != STATE_RUNNING) {
1769 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1770 goto out_unlock;
1771 }
1772
1773 EFX_INFO(efx, "resetting (%d)\n", method);
1774
1775 efx_reset_down(efx, method, &ecmd);
1776
1777 rc = falcon_reset_hw(efx, method);
1778 if (rc) {
1779 EFX_ERR(efx, "failed to reset hardware\n");
1780 goto out_disable;
1781 }
1782
1783 /* Allow resets to be rescheduled. */
1784 efx->reset_pending = RESET_TYPE_NONE;
1785
1786 /* Reinitialise bus-mastering, which may have been turned off before
1787 * the reset was scheduled. This is still appropriate, even in the
1788 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1789 * can respond to requests. */
1790 pci_set_master(efx->pci_dev);
1791
1792 /* Leave device stopped if necessary */
1793 if (method == RESET_TYPE_DISABLE) {
1794 efx_reset_up(efx, method, &ecmd, false);
1795 rc = -EIO;
1796 } else {
1797 rc = efx_reset_up(efx, method, &ecmd, true);
1798 }
1799
1800 out_disable:
1801 if (rc) {
1802 EFX_ERR(efx, "has been disabled\n");
1803 efx->state = STATE_DISABLED;
1804 dev_close(efx->net_dev);
1805 } else {
1806 EFX_LOG(efx, "reset complete\n");
1807 }
1808
1809 out_unlock:
1810 rtnl_unlock();
1811 return rc;
1812 }
1813
1814 /* The worker thread exists so that code that cannot sleep can
1815 * schedule a reset for later.
1816 */
1817 static void efx_reset_work(struct work_struct *data)
1818 {
1819 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1820
1821 efx_reset(nic);
1822 }
1823
1824 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1825 {
1826 enum reset_type method;
1827
1828 if (efx->reset_pending != RESET_TYPE_NONE) {
1829 EFX_INFO(efx, "quenching already scheduled reset\n");
1830 return;
1831 }
1832
1833 switch (type) {
1834 case RESET_TYPE_INVISIBLE:
1835 case RESET_TYPE_ALL:
1836 case RESET_TYPE_WORLD:
1837 case RESET_TYPE_DISABLE:
1838 method = type;
1839 break;
1840 case RESET_TYPE_RX_RECOVERY:
1841 case RESET_TYPE_RX_DESC_FETCH:
1842 case RESET_TYPE_TX_DESC_FETCH:
1843 case RESET_TYPE_TX_SKIP:
1844 method = RESET_TYPE_INVISIBLE;
1845 break;
1846 default:
1847 method = RESET_TYPE_ALL;
1848 break;
1849 }
1850
1851 if (method != type)
1852 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1853 else
1854 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1855
1856 efx->reset_pending = method;
1857
1858 queue_work(reset_workqueue, &efx->reset_work);
1859 }
1860
1861 /**************************************************************************
1862 *
1863 * List of NICs we support
1864 *
1865 **************************************************************************/
1866
1867 /* PCI device ID table */
1868 static struct pci_device_id efx_pci_table[] __devinitdata = {
1869 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1870 .driver_data = (unsigned long) &falcon_a_nic_type},
1871 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1872 .driver_data = (unsigned long) &falcon_b_nic_type},
1873 {0} /* end of list */
1874 };
1875
1876 /**************************************************************************
1877 *
1878 * Dummy PHY/MAC/Board operations
1879 *
1880 * Can be used for some unimplemented operations
1881 * Needed so all function pointers are valid and do not have to be tested
1882 * before use
1883 *
1884 **************************************************************************/
1885 int efx_port_dummy_op_int(struct efx_nic *efx)
1886 {
1887 return 0;
1888 }
1889 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1890 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1891
1892 static struct efx_mac_operations efx_dummy_mac_operations = {
1893 .reconfigure = efx_port_dummy_op_void,
1894 .poll = efx_port_dummy_op_void,
1895 .irq = efx_port_dummy_op_void,
1896 };
1897
1898 static struct efx_phy_operations efx_dummy_phy_operations = {
1899 .init = efx_port_dummy_op_int,
1900 .reconfigure = efx_port_dummy_op_void,
1901 .poll = efx_port_dummy_op_void,
1902 .fini = efx_port_dummy_op_void,
1903 .clear_interrupt = efx_port_dummy_op_void,
1904 };
1905
1906 static struct efx_board efx_dummy_board_info = {
1907 .init = efx_port_dummy_op_int,
1908 .init_leds = efx_port_dummy_op_void,
1909 .set_id_led = efx_port_dummy_op_blink,
1910 .monitor = efx_port_dummy_op_int,
1911 .blink = efx_port_dummy_op_blink,
1912 .fini = efx_port_dummy_op_void,
1913 };
1914
1915 /**************************************************************************
1916 *
1917 * Data housekeeping
1918 *
1919 **************************************************************************/
1920
1921 /* This zeroes out and then fills in the invariants in a struct
1922 * efx_nic (including all sub-structures).
1923 */
1924 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1925 struct pci_dev *pci_dev, struct net_device *net_dev)
1926 {
1927 struct efx_channel *channel;
1928 struct efx_tx_queue *tx_queue;
1929 struct efx_rx_queue *rx_queue;
1930 int i;
1931
1932 /* Initialise common structures */
1933 memset(efx, 0, sizeof(*efx));
1934 spin_lock_init(&efx->biu_lock);
1935 spin_lock_init(&efx->phy_lock);
1936 mutex_init(&efx->spi_lock);
1937 INIT_WORK(&efx->reset_work, efx_reset_work);
1938 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1939 efx->pci_dev = pci_dev;
1940 efx->state = STATE_INIT;
1941 efx->reset_pending = RESET_TYPE_NONE;
1942 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1943 efx->board_info = efx_dummy_board_info;
1944
1945 efx->net_dev = net_dev;
1946 efx->rx_checksum_enabled = true;
1947 spin_lock_init(&efx->netif_stop_lock);
1948 spin_lock_init(&efx->stats_lock);
1949 efx->stats_disable_count = 1;
1950 mutex_init(&efx->mac_lock);
1951 efx->mac_op = &efx_dummy_mac_operations;
1952 efx->phy_op = &efx_dummy_phy_operations;
1953 efx->mdio.dev = net_dev;
1954 INIT_WORK(&efx->phy_work, efx_phy_work);
1955 INIT_WORK(&efx->mac_work, efx_mac_work);
1956 atomic_set(&efx->netif_stop_count, 1);
1957
1958 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1959 channel = &efx->channel[i];
1960 channel->efx = efx;
1961 channel->channel = i;
1962 channel->work_pending = false;
1963 }
1964 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1965 tx_queue = &efx->tx_queue[i];
1966 tx_queue->efx = efx;
1967 tx_queue->queue = i;
1968 tx_queue->buffer = NULL;
1969 tx_queue->channel = &efx->channel[0]; /* for safety */
1970 tx_queue->tso_headers_free = NULL;
1971 }
1972 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1973 rx_queue = &efx->rx_queue[i];
1974 rx_queue->efx = efx;
1975 rx_queue->queue = i;
1976 rx_queue->channel = &efx->channel[0]; /* for safety */
1977 rx_queue->buffer = NULL;
1978 spin_lock_init(&rx_queue->add_lock);
1979 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1980 }
1981
1982 efx->type = type;
1983
1984 /* Sanity-check NIC type */
1985 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1986 (efx->type->txd_ring_mask + 1));
1987 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1988 (efx->type->rxd_ring_mask + 1));
1989 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1990 (efx->type->evq_size - 1));
1991 /* As close as we can get to guaranteeing that we don't overflow */
1992 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1993 (efx->type->txd_ring_mask + 1 +
1994 efx->type->rxd_ring_mask + 1));
1995 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1996
1997 /* Higher numbered interrupt modes are less capable! */
1998 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1999 interrupt_mode);
2000
2001 /* Would be good to use the net_dev name, but we're too early */
2002 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2003 pci_name(pci_dev));
2004 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2005 if (!efx->workqueue)
2006 return -ENOMEM;
2007
2008 return 0;
2009 }
2010
2011 static void efx_fini_struct(struct efx_nic *efx)
2012 {
2013 if (efx->workqueue) {
2014 destroy_workqueue(efx->workqueue);
2015 efx->workqueue = NULL;
2016 }
2017 }
2018
2019 /**************************************************************************
2020 *
2021 * PCI interface
2022 *
2023 **************************************************************************/
2024
2025 /* Main body of final NIC shutdown code
2026 * This is called only at module unload (or hotplug removal).
2027 */
2028 static void efx_pci_remove_main(struct efx_nic *efx)
2029 {
2030 EFX_ASSERT_RESET_SERIALISED(efx);
2031
2032 /* Skip everything if we never obtained a valid membase */
2033 if (!efx->membase)
2034 return;
2035
2036 efx_fini_channels(efx);
2037 efx_fini_port(efx);
2038
2039 /* Shutdown the board, then the NIC and board state */
2040 efx->board_info.fini(efx);
2041 falcon_fini_interrupt(efx);
2042
2043 efx_fini_napi(efx);
2044 efx_remove_all(efx);
2045 }
2046
2047 /* Final NIC shutdown
2048 * This is called only at module unload (or hotplug removal).
2049 */
2050 static void efx_pci_remove(struct pci_dev *pci_dev)
2051 {
2052 struct efx_nic *efx;
2053
2054 efx = pci_get_drvdata(pci_dev);
2055 if (!efx)
2056 return;
2057
2058 /* Mark the NIC as fini, then stop the interface */
2059 rtnl_lock();
2060 efx->state = STATE_FINI;
2061 dev_close(efx->net_dev);
2062
2063 /* Allow any queued efx_resets() to complete */
2064 rtnl_unlock();
2065
2066 if (efx->membase == NULL)
2067 goto out;
2068
2069 efx_unregister_netdev(efx);
2070
2071 efx_mtd_remove(efx);
2072
2073 /* Wait for any scheduled resets to complete. No more will be
2074 * scheduled from this point because efx_stop_all() has been
2075 * called, we are no longer registered with driverlink, and
2076 * the net_device's have been removed. */
2077 cancel_work_sync(&efx->reset_work);
2078
2079 efx_pci_remove_main(efx);
2080
2081 out:
2082 efx_fini_io(efx);
2083 EFX_LOG(efx, "shutdown successful\n");
2084
2085 pci_set_drvdata(pci_dev, NULL);
2086 efx_fini_struct(efx);
2087 free_netdev(efx->net_dev);
2088 };
2089
2090 /* Main body of NIC initialisation
2091 * This is called at module load (or hotplug insertion, theoretically).
2092 */
2093 static int efx_pci_probe_main(struct efx_nic *efx)
2094 {
2095 int rc;
2096
2097 /* Do start-of-day initialisation */
2098 rc = efx_probe_all(efx);
2099 if (rc)
2100 goto fail1;
2101
2102 rc = efx_init_napi(efx);
2103 if (rc)
2104 goto fail2;
2105
2106 /* Initialise the board */
2107 rc = efx->board_info.init(efx);
2108 if (rc) {
2109 EFX_ERR(efx, "failed to initialise board\n");
2110 goto fail3;
2111 }
2112
2113 rc = falcon_init_nic(efx);
2114 if (rc) {
2115 EFX_ERR(efx, "failed to initialise NIC\n");
2116 goto fail4;
2117 }
2118
2119 rc = efx_init_port(efx);
2120 if (rc) {
2121 EFX_ERR(efx, "failed to initialise port\n");
2122 goto fail5;
2123 }
2124
2125 efx_init_channels(efx);
2126
2127 rc = falcon_init_interrupt(efx);
2128 if (rc)
2129 goto fail6;
2130
2131 return 0;
2132
2133 fail6:
2134 efx_fini_channels(efx);
2135 efx_fini_port(efx);
2136 fail5:
2137 fail4:
2138 efx->board_info.fini(efx);
2139 fail3:
2140 efx_fini_napi(efx);
2141 fail2:
2142 efx_remove_all(efx);
2143 fail1:
2144 return rc;
2145 }
2146
2147 /* NIC initialisation
2148 *
2149 * This is called at module load (or hotplug insertion,
2150 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2151 * sets up and registers the network devices with the kernel and hooks
2152 * the interrupt service routine. It does not prepare the device for
2153 * transmission; this is left to the first time one of the network
2154 * interfaces is brought up (i.e. efx_net_open).
2155 */
2156 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2157 const struct pci_device_id *entry)
2158 {
2159 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2160 struct net_device *net_dev;
2161 struct efx_nic *efx;
2162 int i, rc;
2163
2164 /* Allocate and initialise a struct net_device and struct efx_nic */
2165 net_dev = alloc_etherdev(sizeof(*efx));
2166 if (!net_dev)
2167 return -ENOMEM;
2168 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2169 NETIF_F_HIGHDMA | NETIF_F_TSO |
2170 NETIF_F_GRO);
2171 /* Mask for features that also apply to VLAN devices */
2172 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2173 NETIF_F_HIGHDMA | NETIF_F_TSO);
2174 efx = netdev_priv(net_dev);
2175 pci_set_drvdata(pci_dev, efx);
2176 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2177 if (rc)
2178 goto fail1;
2179
2180 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2181
2182 /* Set up basic I/O (BAR mappings etc) */
2183 rc = efx_init_io(efx);
2184 if (rc)
2185 goto fail2;
2186
2187 /* No serialisation is required with the reset path because
2188 * we're in STATE_INIT. */
2189 for (i = 0; i < 5; i++) {
2190 rc = efx_pci_probe_main(efx);
2191
2192 /* Serialise against efx_reset(). No more resets will be
2193 * scheduled since efx_stop_all() has been called, and we
2194 * have not and never have been registered with either
2195 * the rtnetlink or driverlink layers. */
2196 cancel_work_sync(&efx->reset_work);
2197
2198 if (rc == 0) {
2199 if (efx->reset_pending != RESET_TYPE_NONE) {
2200 /* If there was a scheduled reset during
2201 * probe, the NIC is probably hosed anyway */
2202 efx_pci_remove_main(efx);
2203 rc = -EIO;
2204 } else {
2205 break;
2206 }
2207 }
2208
2209 /* Retry if a recoverably reset event has been scheduled */
2210 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2211 (efx->reset_pending != RESET_TYPE_ALL))
2212 goto fail3;
2213
2214 efx->reset_pending = RESET_TYPE_NONE;
2215 }
2216
2217 if (rc) {
2218 EFX_ERR(efx, "Could not reset NIC\n");
2219 goto fail4;
2220 }
2221
2222 /* Switch to the running state before we expose the device to
2223 * the OS. This is to ensure that the initial gathering of
2224 * MAC stats succeeds. */
2225 efx->state = STATE_RUNNING;
2226
2227 efx_mtd_probe(efx); /* allowed to fail */
2228
2229 rc = efx_register_netdev(efx);
2230 if (rc)
2231 goto fail5;
2232
2233 EFX_LOG(efx, "initialisation successful\n");
2234 return 0;
2235
2236 fail5:
2237 efx_pci_remove_main(efx);
2238 fail4:
2239 fail3:
2240 efx_fini_io(efx);
2241 fail2:
2242 efx_fini_struct(efx);
2243 fail1:
2244 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2245 free_netdev(net_dev);
2246 return rc;
2247 }
2248
2249 static struct pci_driver efx_pci_driver = {
2250 .name = EFX_DRIVER_NAME,
2251 .id_table = efx_pci_table,
2252 .probe = efx_pci_probe,
2253 .remove = efx_pci_remove,
2254 };
2255
2256 /**************************************************************************
2257 *
2258 * Kernel module interface
2259 *
2260 *************************************************************************/
2261
2262 module_param(interrupt_mode, uint, 0444);
2263 MODULE_PARM_DESC(interrupt_mode,
2264 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2265
2266 static int __init efx_init_module(void)
2267 {
2268 int rc;
2269
2270 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2271
2272 rc = register_netdevice_notifier(&efx_netdev_notifier);
2273 if (rc)
2274 goto err_notifier;
2275
2276 refill_workqueue = create_workqueue("sfc_refill");
2277 if (!refill_workqueue) {
2278 rc = -ENOMEM;
2279 goto err_refill;
2280 }
2281 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2282 if (!reset_workqueue) {
2283 rc = -ENOMEM;
2284 goto err_reset;
2285 }
2286
2287 rc = pci_register_driver(&efx_pci_driver);
2288 if (rc < 0)
2289 goto err_pci;
2290
2291 return 0;
2292
2293 err_pci:
2294 destroy_workqueue(reset_workqueue);
2295 err_reset:
2296 destroy_workqueue(refill_workqueue);
2297 err_refill:
2298 unregister_netdevice_notifier(&efx_netdev_notifier);
2299 err_notifier:
2300 return rc;
2301 }
2302
2303 static void __exit efx_exit_module(void)
2304 {
2305 printk(KERN_INFO "Solarflare NET driver unloading\n");
2306
2307 pci_unregister_driver(&efx_pci_driver);
2308 destroy_workqueue(reset_workqueue);
2309 destroy_workqueue(refill_workqueue);
2310 unregister_netdevice_notifier(&efx_netdev_notifier);
2311
2312 }
2313
2314 module_init(efx_init_module);
2315 module_exit(efx_exit_module);
2316
2317 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2318 "Solarflare Communications");
2319 MODULE_DESCRIPTION("Solarflare Communications network driver");
2320 MODULE_LICENSE("GPL");
2321 MODULE_DEVICE_TABLE(pci, efx_pci_table);