sfc: Implement ethtool reset operation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "mdio_10g.h"
26 #include "falcon.h"
27
28 /**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
37 const char *efx_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_GMAC] = "GMAC",
40 [LOOPBACK_XGMII] = "XGMII",
41 [LOOPBACK_XGXS] = "XGXS",
42 [LOOPBACK_XAUI] = "XAUI",
43 [LOOPBACK_GPHY] = "GPHY",
44 [LOOPBACK_PHYXS] = "PHYXS",
45 [LOOPBACK_PCS] = "PCS",
46 [LOOPBACK_PMAPMD] = "PMA/PMD",
47 [LOOPBACK_NETWORK] = "NETWORK",
48 };
49
50 /* Interrupt mode names (see INT_MODE())) */
51 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
52 const char *efx_interrupt_mode_names[] = {
53 [EFX_INT_MODE_MSIX] = "MSI-X",
54 [EFX_INT_MODE_MSI] = "MSI",
55 [EFX_INT_MODE_LEGACY] = "legacy",
56 };
57
58 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
59 const char *efx_reset_type_names[] = {
60 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
61 [RESET_TYPE_ALL] = "ALL",
62 [RESET_TYPE_WORLD] = "WORLD",
63 [RESET_TYPE_DISABLE] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
66 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
67 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
68 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
69 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
70 };
71
72 #define EFX_MAX_MTU (9 * 1024)
73
74 /* RX slow fill workqueue. If memory allocation fails in the fast path,
75 * a work item is pushed onto this work queue to retry the allocation later,
76 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
77 * workqueue, there is nothing to be gained in making it per NIC
78 */
79 static struct workqueue_struct *refill_workqueue;
80
81 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
82 * queued onto this work queue. This is not a per-nic work queue, because
83 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
84 */
85 static struct workqueue_struct *reset_workqueue;
86
87 /**************************************************************************
88 *
89 * Configurable values
90 *
91 *************************************************************************/
92
93 /*
94 * Use separate channels for TX and RX events
95 *
96 * Set this to 1 to use separate channels for TX and RX. It allows us
97 * to control interrupt affinity separately for TX and RX.
98 *
99 * This is only used in MSI-X interrupt mode
100 */
101 static unsigned int separate_tx_channels;
102 module_param(separate_tx_channels, uint, 0644);
103 MODULE_PARM_DESC(separate_tx_channels,
104 "Use separate channels for TX and RX");
105
106 /* This is the weight assigned to each of the (per-channel) virtual
107 * NAPI devices.
108 */
109 static int napi_weight = 64;
110
111 /* This is the time (in jiffies) between invocations of the hardware
112 * monitor, which checks for known hardware bugs and resets the
113 * hardware and driver as necessary.
114 */
115 unsigned int efx_monitor_interval = 1 * HZ;
116
117 /* This controls whether or not the driver will initialise devices
118 * with invalid MAC addresses stored in the EEPROM or flash. If true,
119 * such devices will be initialised with a random locally-generated
120 * MAC address. This allows for loading the sfc_mtd driver to
121 * reprogram the flash, even if the flash contents (including the MAC
122 * address) have previously been erased.
123 */
124 static unsigned int allow_bad_hwaddr;
125
126 /* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132 static unsigned int rx_irq_mod_usec = 60;
133
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
142 */
143 static unsigned int tx_irq_mod_usec = 150;
144
145 /* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150 static unsigned int interrupt_mode;
151
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each package (level II cache)
158 */
159 static unsigned int rss_cpus;
160 module_param(rss_cpus, uint, 0444);
161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
163 static int phy_flash_cfg;
164 module_param(phy_flash_cfg, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
167 static unsigned irq_adapt_low_thresh = 10000;
168 module_param(irq_adapt_low_thresh, uint, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh,
170 "Threshold score for reducing IRQ moderation");
171
172 static unsigned irq_adapt_high_thresh = 20000;
173 module_param(irq_adapt_high_thresh, uint, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh,
175 "Threshold score for increasing IRQ moderation");
176
177 /**************************************************************************
178 *
179 * Utility functions and prototypes
180 *
181 *************************************************************************/
182 static void efx_remove_channel(struct efx_channel *channel);
183 static void efx_remove_port(struct efx_nic *efx);
184 static void efx_fini_napi(struct efx_nic *efx);
185 static void efx_fini_channels(struct efx_nic *efx);
186
187 #define EFX_ASSERT_RESET_SERIALISED(efx) \
188 do { \
189 if ((efx->state == STATE_RUNNING) || \
190 (efx->state == STATE_DISABLED)) \
191 ASSERT_RTNL(); \
192 } while (0)
193
194 /**************************************************************************
195 *
196 * Event queue processing
197 *
198 *************************************************************************/
199
200 /* Process channel's event queue
201 *
202 * This function is responsible for processing the event queue of a
203 * single channel. The caller must guarantee that this function will
204 * never be concurrently called more than once on the same channel,
205 * though different channels may be being processed concurrently.
206 */
207 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
208 {
209 struct efx_nic *efx = channel->efx;
210 int rx_packets;
211
212 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
213 !channel->enabled))
214 return 0;
215
216 rx_packets = falcon_process_eventq(channel, rx_quota);
217 if (rx_packets == 0)
218 return 0;
219
220 /* Deliver last RX packet. */
221 if (channel->rx_pkt) {
222 __efx_rx_packet(channel, channel->rx_pkt,
223 channel->rx_pkt_csummed);
224 channel->rx_pkt = NULL;
225 }
226
227 efx_rx_strategy(channel);
228
229 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
230
231 return rx_packets;
232 }
233
234 /* Mark channel as finished processing
235 *
236 * Note that since we will not receive further interrupts for this
237 * channel before we finish processing and call the eventq_read_ack()
238 * method, there is no need to use the interrupt hold-off timers.
239 */
240 static inline void efx_channel_processed(struct efx_channel *channel)
241 {
242 /* The interrupt handler for this channel may set work_pending
243 * as soon as we acknowledge the events we've seen. Make sure
244 * it's cleared before then. */
245 channel->work_pending = false;
246 smp_wmb();
247
248 falcon_eventq_read_ack(channel);
249 }
250
251 /* NAPI poll handler
252 *
253 * NAPI guarantees serialisation of polls of the same device, which
254 * provides the guarantee required by efx_process_channel().
255 */
256 static int efx_poll(struct napi_struct *napi, int budget)
257 {
258 struct efx_channel *channel =
259 container_of(napi, struct efx_channel, napi_str);
260 int rx_packets;
261
262 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
263 channel->channel, raw_smp_processor_id());
264
265 rx_packets = efx_process_channel(channel, budget);
266
267 if (rx_packets < budget) {
268 struct efx_nic *efx = channel->efx;
269
270 if (channel->used_flags & EFX_USED_BY_RX &&
271 efx->irq_rx_adaptive &&
272 unlikely(++channel->irq_count == 1000)) {
273 if (unlikely(channel->irq_mod_score <
274 irq_adapt_low_thresh)) {
275 if (channel->irq_moderation > 1) {
276 channel->irq_moderation -= 1;
277 efx->type->push_irq_moderation(channel);
278 }
279 } else if (unlikely(channel->irq_mod_score >
280 irq_adapt_high_thresh)) {
281 if (channel->irq_moderation <
282 efx->irq_rx_moderation) {
283 channel->irq_moderation += 1;
284 efx->type->push_irq_moderation(channel);
285 }
286 }
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289 }
290
291 /* There is no race here; although napi_disable() will
292 * only wait for napi_complete(), this isn't a problem
293 * since efx_channel_processed() will have no effect if
294 * interrupts have already been disabled.
295 */
296 napi_complete(napi);
297 efx_channel_processed(channel);
298 }
299
300 return rx_packets;
301 }
302
303 /* Process the eventq of the specified channel immediately on this CPU
304 *
305 * Disable hardware generated interrupts, wait for any existing
306 * processing to finish, then directly poll (and ack ) the eventq.
307 * Finally reenable NAPI and interrupts.
308 *
309 * Since we are touching interrupts the caller should hold the suspend lock
310 */
311 void efx_process_channel_now(struct efx_channel *channel)
312 {
313 struct efx_nic *efx = channel->efx;
314
315 BUG_ON(!channel->used_flags);
316 BUG_ON(!channel->enabled);
317
318 /* Disable interrupts and wait for ISRs to complete */
319 falcon_disable_interrupts(efx);
320 if (efx->legacy_irq)
321 synchronize_irq(efx->legacy_irq);
322 if (channel->irq)
323 synchronize_irq(channel->irq);
324
325 /* Wait for any NAPI processing to complete */
326 napi_disable(&channel->napi_str);
327
328 /* Poll the channel */
329 efx_process_channel(channel, EFX_EVQ_SIZE);
330
331 /* Ack the eventq. This may cause an interrupt to be generated
332 * when they are reenabled */
333 efx_channel_processed(channel);
334
335 napi_enable(&channel->napi_str);
336 falcon_enable_interrupts(efx);
337 }
338
339 /* Create event queue
340 * Event queue memory allocations are done only once. If the channel
341 * is reset, the memory buffer will be reused; this guards against
342 * errors during channel reset and also simplifies interrupt handling.
343 */
344 static int efx_probe_eventq(struct efx_channel *channel)
345 {
346 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
347
348 return falcon_probe_eventq(channel);
349 }
350
351 /* Prepare channel's event queue */
352 static void efx_init_eventq(struct efx_channel *channel)
353 {
354 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
355
356 channel->eventq_read_ptr = 0;
357
358 falcon_init_eventq(channel);
359 }
360
361 static void efx_fini_eventq(struct efx_channel *channel)
362 {
363 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
364
365 falcon_fini_eventq(channel);
366 }
367
368 static void efx_remove_eventq(struct efx_channel *channel)
369 {
370 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
371
372 falcon_remove_eventq(channel);
373 }
374
375 /**************************************************************************
376 *
377 * Channel handling
378 *
379 *************************************************************************/
380
381 static int efx_probe_channel(struct efx_channel *channel)
382 {
383 struct efx_tx_queue *tx_queue;
384 struct efx_rx_queue *rx_queue;
385 int rc;
386
387 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
388
389 rc = efx_probe_eventq(channel);
390 if (rc)
391 goto fail1;
392
393 efx_for_each_channel_tx_queue(tx_queue, channel) {
394 rc = efx_probe_tx_queue(tx_queue);
395 if (rc)
396 goto fail2;
397 }
398
399 efx_for_each_channel_rx_queue(rx_queue, channel) {
400 rc = efx_probe_rx_queue(rx_queue);
401 if (rc)
402 goto fail3;
403 }
404
405 channel->n_rx_frm_trunc = 0;
406
407 return 0;
408
409 fail3:
410 efx_for_each_channel_rx_queue(rx_queue, channel)
411 efx_remove_rx_queue(rx_queue);
412 fail2:
413 efx_for_each_channel_tx_queue(tx_queue, channel)
414 efx_remove_tx_queue(tx_queue);
415 fail1:
416 return rc;
417 }
418
419
420 static void efx_set_channel_names(struct efx_nic *efx)
421 {
422 struct efx_channel *channel;
423 const char *type = "";
424 int number;
425
426 efx_for_each_channel(channel, efx) {
427 number = channel->channel;
428 if (efx->n_channels > efx->n_rx_queues) {
429 if (channel->channel < efx->n_rx_queues) {
430 type = "-rx";
431 } else {
432 type = "-tx";
433 number -= efx->n_rx_queues;
434 }
435 }
436 snprintf(channel->name, sizeof(channel->name),
437 "%s%s-%d", efx->name, type, number);
438 }
439 }
440
441 /* Channels are shutdown and reinitialised whilst the NIC is running
442 * to propagate configuration changes (mtu, checksum offload), or
443 * to clear hardware error conditions
444 */
445 static void efx_init_channels(struct efx_nic *efx)
446 {
447 struct efx_tx_queue *tx_queue;
448 struct efx_rx_queue *rx_queue;
449 struct efx_channel *channel;
450
451 /* Calculate the rx buffer allocation parameters required to
452 * support the current MTU, including padding for header
453 * alignment and overruns.
454 */
455 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
456 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
457 efx->type->rx_buffer_padding);
458 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
459
460 /* Initialise the channels */
461 efx_for_each_channel(channel, efx) {
462 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
463
464 efx_init_eventq(channel);
465
466 efx_for_each_channel_tx_queue(tx_queue, channel)
467 efx_init_tx_queue(tx_queue);
468
469 /* The rx buffer allocation strategy is MTU dependent */
470 efx_rx_strategy(channel);
471
472 efx_for_each_channel_rx_queue(rx_queue, channel)
473 efx_init_rx_queue(rx_queue);
474
475 WARN_ON(channel->rx_pkt != NULL);
476 efx_rx_strategy(channel);
477 }
478 }
479
480 /* This enables event queue processing and packet transmission.
481 *
482 * Note that this function is not allowed to fail, since that would
483 * introduce too much complexity into the suspend/resume path.
484 */
485 static void efx_start_channel(struct efx_channel *channel)
486 {
487 struct efx_rx_queue *rx_queue;
488
489 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
490
491 /* The interrupt handler for this channel may set work_pending
492 * as soon as we enable it. Make sure it's cleared before
493 * then. Similarly, make sure it sees the enabled flag set. */
494 channel->work_pending = false;
495 channel->enabled = true;
496 smp_wmb();
497
498 napi_enable(&channel->napi_str);
499
500 /* Load up RX descriptors */
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_fast_push_rx_descriptors(rx_queue);
503 }
504
505 /* This disables event queue processing and packet transmission.
506 * This function does not guarantee that all queue processing
507 * (e.g. RX refill) is complete.
508 */
509 static void efx_stop_channel(struct efx_channel *channel)
510 {
511 struct efx_rx_queue *rx_queue;
512
513 if (!channel->enabled)
514 return;
515
516 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
517
518 channel->enabled = false;
519 napi_disable(&channel->napi_str);
520
521 /* Ensure that any worker threads have exited or will be no-ops */
522 efx_for_each_channel_rx_queue(rx_queue, channel) {
523 spin_lock_bh(&rx_queue->add_lock);
524 spin_unlock_bh(&rx_queue->add_lock);
525 }
526 }
527
528 static void efx_fini_channels(struct efx_nic *efx)
529 {
530 struct efx_channel *channel;
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
533 int rc;
534
535 EFX_ASSERT_RESET_SERIALISED(efx);
536 BUG_ON(efx->port_enabled);
537
538 rc = falcon_flush_queues(efx);
539 if (rc)
540 EFX_ERR(efx, "failed to flush queues\n");
541 else
542 EFX_LOG(efx, "successfully flushed all queues\n");
543
544 efx_for_each_channel(channel, efx) {
545 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
546
547 efx_for_each_channel_rx_queue(rx_queue, channel)
548 efx_fini_rx_queue(rx_queue);
549 efx_for_each_channel_tx_queue(tx_queue, channel)
550 efx_fini_tx_queue(tx_queue);
551 efx_fini_eventq(channel);
552 }
553 }
554
555 static void efx_remove_channel(struct efx_channel *channel)
556 {
557 struct efx_tx_queue *tx_queue;
558 struct efx_rx_queue *rx_queue;
559
560 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
561
562 efx_for_each_channel_rx_queue(rx_queue, channel)
563 efx_remove_rx_queue(rx_queue);
564 efx_for_each_channel_tx_queue(tx_queue, channel)
565 efx_remove_tx_queue(tx_queue);
566 efx_remove_eventq(channel);
567
568 channel->used_flags = 0;
569 }
570
571 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
572 {
573 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
574 }
575
576 /**************************************************************************
577 *
578 * Port handling
579 *
580 **************************************************************************/
581
582 /* This ensures that the kernel is kept informed (via
583 * netif_carrier_on/off) of the link status, and also maintains the
584 * link status's stop on the port's TX queue.
585 */
586 void efx_link_status_changed(struct efx_nic *efx)
587 {
588 struct efx_link_state *link_state = &efx->link_state;
589
590 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
591 * that no events are triggered between unregister_netdev() and the
592 * driver unloading. A more general condition is that NETDEV_CHANGE
593 * can only be generated between NETDEV_UP and NETDEV_DOWN */
594 if (!netif_running(efx->net_dev))
595 return;
596
597 if (efx->port_inhibited) {
598 netif_carrier_off(efx->net_dev);
599 return;
600 }
601
602 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
603 efx->n_link_state_changes++;
604
605 if (link_state->up)
606 netif_carrier_on(efx->net_dev);
607 else
608 netif_carrier_off(efx->net_dev);
609 }
610
611 /* Status message for kernel log */
612 if (link_state->up) {
613 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
614 link_state->speed, link_state->fd ? "full" : "half",
615 efx->net_dev->mtu,
616 (efx->promiscuous ? " [PROMISC]" : ""));
617 } else {
618 EFX_INFO(efx, "link down\n");
619 }
620
621 }
622
623 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
624 {
625 efx->link_advertising = advertising;
626 if (advertising) {
627 if (advertising & ADVERTISED_Pause)
628 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
629 else
630 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
631 if (advertising & ADVERTISED_Asym_Pause)
632 efx->wanted_fc ^= EFX_FC_TX;
633 }
634 }
635
636 void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
637 {
638 efx->wanted_fc = wanted_fc;
639 if (efx->link_advertising) {
640 if (wanted_fc & EFX_FC_RX)
641 efx->link_advertising |= (ADVERTISED_Pause |
642 ADVERTISED_Asym_Pause);
643 else
644 efx->link_advertising &= ~(ADVERTISED_Pause |
645 ADVERTISED_Asym_Pause);
646 if (wanted_fc & EFX_FC_TX)
647 efx->link_advertising ^= ADVERTISED_Asym_Pause;
648 }
649 }
650
651 static void efx_fini_port(struct efx_nic *efx);
652
653 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
654 * the MAC appropriately. All other PHY configuration changes are pushed
655 * through phy_op->set_settings(), and pushed asynchronously to the MAC
656 * through efx_monitor().
657 *
658 * Callers must hold the mac_lock
659 */
660 int __efx_reconfigure_port(struct efx_nic *efx)
661 {
662 enum efx_phy_mode phy_mode;
663 int rc;
664
665 WARN_ON(!mutex_is_locked(&efx->mac_lock));
666
667 /* Serialise the promiscuous flag with efx_set_multicast_list. */
668 if (efx_dev_registered(efx)) {
669 netif_addr_lock_bh(efx->net_dev);
670 netif_addr_unlock_bh(efx->net_dev);
671 }
672
673 /* Disable PHY transmit in mac level loopbacks */
674 phy_mode = efx->phy_mode;
675 if (LOOPBACK_INTERNAL(efx))
676 efx->phy_mode |= PHY_MODE_TX_DISABLED;
677 else
678 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
679
680 rc = efx->type->reconfigure_port(efx);
681
682 if (rc)
683 efx->phy_mode = phy_mode;
684
685 return rc;
686 }
687
688 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
689 * disabled. */
690 int efx_reconfigure_port(struct efx_nic *efx)
691 {
692 int rc;
693
694 EFX_ASSERT_RESET_SERIALISED(efx);
695
696 mutex_lock(&efx->mac_lock);
697 rc = __efx_reconfigure_port(efx);
698 mutex_unlock(&efx->mac_lock);
699
700 return rc;
701 }
702
703 /* Asynchronous work item for changing MAC promiscuity and multicast
704 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
705 * MAC directly. */
706 static void efx_mac_work(struct work_struct *data)
707 {
708 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
709
710 mutex_lock(&efx->mac_lock);
711 if (efx->port_enabled) {
712 efx->type->push_multicast_hash(efx);
713 efx->mac_op->reconfigure(efx);
714 }
715 mutex_unlock(&efx->mac_lock);
716 }
717
718 static int efx_probe_port(struct efx_nic *efx)
719 {
720 int rc;
721
722 EFX_LOG(efx, "create port\n");
723
724 /* Connect up MAC/PHY operations table */
725 rc = efx->type->probe_port(efx);
726 if (rc)
727 goto err;
728
729 if (phy_flash_cfg)
730 efx->phy_mode = PHY_MODE_SPECIAL;
731
732 /* Sanity check MAC address */
733 if (is_valid_ether_addr(efx->mac_address)) {
734 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
735 } else {
736 EFX_ERR(efx, "invalid MAC address %pM\n",
737 efx->mac_address);
738 if (!allow_bad_hwaddr) {
739 rc = -EINVAL;
740 goto err;
741 }
742 random_ether_addr(efx->net_dev->dev_addr);
743 EFX_INFO(efx, "using locally-generated MAC %pM\n",
744 efx->net_dev->dev_addr);
745 }
746
747 return 0;
748
749 err:
750 efx_remove_port(efx);
751 return rc;
752 }
753
754 static int efx_init_port(struct efx_nic *efx)
755 {
756 int rc;
757
758 EFX_LOG(efx, "init port\n");
759
760 mutex_lock(&efx->mac_lock);
761
762 rc = efx->phy_op->init(efx);
763 if (rc)
764 goto fail1;
765
766 efx->port_initialized = true;
767
768 /* Reconfigure the MAC before creating dma queues (required for
769 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
770 efx->mac_op->reconfigure(efx);
771
772 /* Ensure the PHY advertises the correct flow control settings */
773 rc = efx->phy_op->reconfigure(efx);
774 if (rc)
775 goto fail2;
776
777 mutex_unlock(&efx->mac_lock);
778 return 0;
779
780 fail2:
781 efx->phy_op->fini(efx);
782 fail1:
783 mutex_unlock(&efx->mac_lock);
784 return rc;
785 }
786
787 static void efx_start_port(struct efx_nic *efx)
788 {
789 EFX_LOG(efx, "start port\n");
790 BUG_ON(efx->port_enabled);
791
792 mutex_lock(&efx->mac_lock);
793 efx->port_enabled = true;
794
795 /* efx_mac_work() might have been scheduled after efx_stop_port(),
796 * and then cancelled by efx_flush_all() */
797 efx->type->push_multicast_hash(efx);
798 efx->mac_op->reconfigure(efx);
799
800 mutex_unlock(&efx->mac_lock);
801 }
802
803 /* Prevent efx_mac_work() and efx_monitor() from working */
804 static void efx_stop_port(struct efx_nic *efx)
805 {
806 EFX_LOG(efx, "stop port\n");
807
808 mutex_lock(&efx->mac_lock);
809 efx->port_enabled = false;
810 mutex_unlock(&efx->mac_lock);
811
812 /* Serialise against efx_set_multicast_list() */
813 if (efx_dev_registered(efx)) {
814 netif_addr_lock_bh(efx->net_dev);
815 netif_addr_unlock_bh(efx->net_dev);
816 }
817 }
818
819 static void efx_fini_port(struct efx_nic *efx)
820 {
821 EFX_LOG(efx, "shut down port\n");
822
823 if (!efx->port_initialized)
824 return;
825
826 efx->phy_op->fini(efx);
827 efx->port_initialized = false;
828
829 efx->link_state.up = false;
830 efx_link_status_changed(efx);
831 }
832
833 static void efx_remove_port(struct efx_nic *efx)
834 {
835 EFX_LOG(efx, "destroying port\n");
836
837 efx->type->remove_port(efx);
838 }
839
840 /**************************************************************************
841 *
842 * NIC handling
843 *
844 **************************************************************************/
845
846 /* This configures the PCI device to enable I/O and DMA. */
847 static int efx_init_io(struct efx_nic *efx)
848 {
849 struct pci_dev *pci_dev = efx->pci_dev;
850 dma_addr_t dma_mask = efx->type->max_dma_mask;
851 int rc;
852
853 EFX_LOG(efx, "initialising I/O\n");
854
855 rc = pci_enable_device(pci_dev);
856 if (rc) {
857 EFX_ERR(efx, "failed to enable PCI device\n");
858 goto fail1;
859 }
860
861 pci_set_master(pci_dev);
862
863 /* Set the PCI DMA mask. Try all possibilities from our
864 * genuine mask down to 32 bits, because some architectures
865 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
866 * masks event though they reject 46 bit masks.
867 */
868 while (dma_mask > 0x7fffffffUL) {
869 if (pci_dma_supported(pci_dev, dma_mask) &&
870 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
871 break;
872 dma_mask >>= 1;
873 }
874 if (rc) {
875 EFX_ERR(efx, "could not find a suitable DMA mask\n");
876 goto fail2;
877 }
878 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
879 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
880 if (rc) {
881 /* pci_set_consistent_dma_mask() is not *allowed* to
882 * fail with a mask that pci_set_dma_mask() accepted,
883 * but just in case...
884 */
885 EFX_ERR(efx, "failed to set consistent DMA mask\n");
886 goto fail2;
887 }
888
889 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
890 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
891 if (rc) {
892 EFX_ERR(efx, "request for memory BAR failed\n");
893 rc = -EIO;
894 goto fail3;
895 }
896 efx->membase = ioremap_nocache(efx->membase_phys,
897 efx->type->mem_map_size);
898 if (!efx->membase) {
899 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
900 (unsigned long long)efx->membase_phys,
901 efx->type->mem_map_size);
902 rc = -ENOMEM;
903 goto fail4;
904 }
905 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
906 (unsigned long long)efx->membase_phys,
907 efx->type->mem_map_size, efx->membase);
908
909 return 0;
910
911 fail4:
912 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
913 fail3:
914 efx->membase_phys = 0;
915 fail2:
916 pci_disable_device(efx->pci_dev);
917 fail1:
918 return rc;
919 }
920
921 static void efx_fini_io(struct efx_nic *efx)
922 {
923 EFX_LOG(efx, "shutting down I/O\n");
924
925 if (efx->membase) {
926 iounmap(efx->membase);
927 efx->membase = NULL;
928 }
929
930 if (efx->membase_phys) {
931 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
932 efx->membase_phys = 0;
933 }
934
935 pci_disable_device(efx->pci_dev);
936 }
937
938 /* Get number of RX queues wanted. Return number of online CPU
939 * packages in the expectation that an IRQ balancer will spread
940 * interrupts across them. */
941 static int efx_wanted_rx_queues(void)
942 {
943 cpumask_var_t core_mask;
944 int count;
945 int cpu;
946
947 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
948 printk(KERN_WARNING
949 "sfc: RSS disabled due to allocation failure\n");
950 return 1;
951 }
952
953 count = 0;
954 for_each_online_cpu(cpu) {
955 if (!cpumask_test_cpu(cpu, core_mask)) {
956 ++count;
957 cpumask_or(core_mask, core_mask,
958 topology_core_cpumask(cpu));
959 }
960 }
961
962 free_cpumask_var(core_mask);
963 return count;
964 }
965
966 /* Probe the number and type of interrupts we are able to obtain, and
967 * the resulting numbers of channels and RX queues.
968 */
969 static void efx_probe_interrupts(struct efx_nic *efx)
970 {
971 int max_channels =
972 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
973 int rc, i;
974
975 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
976 struct msix_entry xentries[EFX_MAX_CHANNELS];
977 int wanted_ints;
978 int rx_queues;
979
980 /* We want one RX queue and interrupt per CPU package
981 * (or as specified by the rss_cpus module parameter).
982 * We will need one channel per interrupt.
983 */
984 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
985 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
986 wanted_ints = min(wanted_ints, max_channels);
987
988 for (i = 0; i < wanted_ints; i++)
989 xentries[i].entry = i;
990 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
991 if (rc > 0) {
992 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
993 " available (%d < %d).\n", rc, wanted_ints);
994 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
995 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
996 wanted_ints = rc;
997 rc = pci_enable_msix(efx->pci_dev, xentries,
998 wanted_ints);
999 }
1000
1001 if (rc == 0) {
1002 efx->n_rx_queues = min(rx_queues, wanted_ints);
1003 efx->n_channels = wanted_ints;
1004 for (i = 0; i < wanted_ints; i++)
1005 efx->channel[i].irq = xentries[i].vector;
1006 } else {
1007 /* Fall back to single channel MSI */
1008 efx->interrupt_mode = EFX_INT_MODE_MSI;
1009 EFX_ERR(efx, "could not enable MSI-X\n");
1010 }
1011 }
1012
1013 /* Try single interrupt MSI */
1014 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1015 efx->n_rx_queues = 1;
1016 efx->n_channels = 1;
1017 rc = pci_enable_msi(efx->pci_dev);
1018 if (rc == 0) {
1019 efx->channel[0].irq = efx->pci_dev->irq;
1020 } else {
1021 EFX_ERR(efx, "could not enable MSI\n");
1022 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1023 }
1024 }
1025
1026 /* Assume legacy interrupts */
1027 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1028 efx->n_rx_queues = 1;
1029 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1030 efx->legacy_irq = efx->pci_dev->irq;
1031 }
1032 }
1033
1034 static void efx_remove_interrupts(struct efx_nic *efx)
1035 {
1036 struct efx_channel *channel;
1037
1038 /* Remove MSI/MSI-X interrupts */
1039 efx_for_each_channel(channel, efx)
1040 channel->irq = 0;
1041 pci_disable_msi(efx->pci_dev);
1042 pci_disable_msix(efx->pci_dev);
1043
1044 /* Remove legacy interrupt */
1045 efx->legacy_irq = 0;
1046 }
1047
1048 static void efx_set_channels(struct efx_nic *efx)
1049 {
1050 struct efx_tx_queue *tx_queue;
1051 struct efx_rx_queue *rx_queue;
1052
1053 efx_for_each_tx_queue(tx_queue, efx) {
1054 if (separate_tx_channels)
1055 tx_queue->channel = &efx->channel[efx->n_channels-1];
1056 else
1057 tx_queue->channel = &efx->channel[0];
1058 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1059 }
1060
1061 efx_for_each_rx_queue(rx_queue, efx) {
1062 rx_queue->channel = &efx->channel[rx_queue->queue];
1063 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1064 }
1065 }
1066
1067 static int efx_probe_nic(struct efx_nic *efx)
1068 {
1069 int rc;
1070
1071 EFX_LOG(efx, "creating NIC\n");
1072
1073 /* Carry out hardware-type specific initialisation */
1074 rc = efx->type->probe(efx);
1075 if (rc)
1076 return rc;
1077
1078 /* Determine the number of channels and RX queues by trying to hook
1079 * in MSI-X interrupts. */
1080 efx_probe_interrupts(efx);
1081
1082 efx_set_channels(efx);
1083
1084 /* Initialise the interrupt moderation settings */
1085 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1086
1087 return 0;
1088 }
1089
1090 static void efx_remove_nic(struct efx_nic *efx)
1091 {
1092 EFX_LOG(efx, "destroying NIC\n");
1093
1094 efx_remove_interrupts(efx);
1095 efx->type->remove(efx);
1096 }
1097
1098 /**************************************************************************
1099 *
1100 * NIC startup/shutdown
1101 *
1102 *************************************************************************/
1103
1104 static int efx_probe_all(struct efx_nic *efx)
1105 {
1106 struct efx_channel *channel;
1107 int rc;
1108
1109 /* Create NIC */
1110 rc = efx_probe_nic(efx);
1111 if (rc) {
1112 EFX_ERR(efx, "failed to create NIC\n");
1113 goto fail1;
1114 }
1115
1116 /* Create port */
1117 rc = efx_probe_port(efx);
1118 if (rc) {
1119 EFX_ERR(efx, "failed to create port\n");
1120 goto fail2;
1121 }
1122
1123 /* Create channels */
1124 efx_for_each_channel(channel, efx) {
1125 rc = efx_probe_channel(channel);
1126 if (rc) {
1127 EFX_ERR(efx, "failed to create channel %d\n",
1128 channel->channel);
1129 goto fail3;
1130 }
1131 }
1132 efx_set_channel_names(efx);
1133
1134 return 0;
1135
1136 fail3:
1137 efx_for_each_channel(channel, efx)
1138 efx_remove_channel(channel);
1139 efx_remove_port(efx);
1140 fail2:
1141 efx_remove_nic(efx);
1142 fail1:
1143 return rc;
1144 }
1145
1146 /* Called after previous invocation(s) of efx_stop_all, restarts the
1147 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1148 * and ensures that the port is scheduled to be reconfigured.
1149 * This function is safe to call multiple times when the NIC is in any
1150 * state. */
1151 static void efx_start_all(struct efx_nic *efx)
1152 {
1153 struct efx_channel *channel;
1154
1155 EFX_ASSERT_RESET_SERIALISED(efx);
1156
1157 /* Check that it is appropriate to restart the interface. All
1158 * of these flags are safe to read under just the rtnl lock */
1159 if (efx->port_enabled)
1160 return;
1161 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1162 return;
1163 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1164 return;
1165
1166 /* Mark the port as enabled so port reconfigurations can start, then
1167 * restart the transmit interface early so the watchdog timer stops */
1168 efx_start_port(efx);
1169 if (efx_dev_registered(efx))
1170 efx_wake_queue(efx);
1171
1172 efx_for_each_channel(channel, efx)
1173 efx_start_channel(channel);
1174
1175 falcon_enable_interrupts(efx);
1176
1177 /* Start the hardware monitor if there is one. Otherwise (we're link
1178 * event driven), we have to poll the PHY because after an event queue
1179 * flush, we could have a missed a link state change */
1180 if (efx->type->monitor != NULL) {
1181 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1182 efx_monitor_interval);
1183 } else {
1184 mutex_lock(&efx->mac_lock);
1185 if (efx->phy_op->poll(efx))
1186 efx_link_status_changed(efx);
1187 mutex_unlock(&efx->mac_lock);
1188 }
1189
1190 efx->type->start_stats(efx);
1191 }
1192
1193 /* Flush all delayed work. Should only be called when no more delayed work
1194 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1195 * since we're holding the rtnl_lock at this point. */
1196 static void efx_flush_all(struct efx_nic *efx)
1197 {
1198 struct efx_rx_queue *rx_queue;
1199
1200 /* Make sure the hardware monitor is stopped */
1201 cancel_delayed_work_sync(&efx->monitor_work);
1202
1203 /* Ensure that all RX slow refills are complete. */
1204 efx_for_each_rx_queue(rx_queue, efx)
1205 cancel_delayed_work_sync(&rx_queue->work);
1206
1207 /* Stop scheduled port reconfigurations */
1208 cancel_work_sync(&efx->mac_work);
1209 }
1210
1211 /* Quiesce hardware and software without bringing the link down.
1212 * Safe to call multiple times, when the nic and interface is in any
1213 * state. The caller is guaranteed to subsequently be in a position
1214 * to modify any hardware and software state they see fit without
1215 * taking locks. */
1216 static void efx_stop_all(struct efx_nic *efx)
1217 {
1218 struct efx_channel *channel;
1219
1220 EFX_ASSERT_RESET_SERIALISED(efx);
1221
1222 /* port_enabled can be read safely under the rtnl lock */
1223 if (!efx->port_enabled)
1224 return;
1225
1226 efx->type->stop_stats(efx);
1227
1228 /* Disable interrupts and wait for ISR to complete */
1229 falcon_disable_interrupts(efx);
1230 if (efx->legacy_irq)
1231 synchronize_irq(efx->legacy_irq);
1232 efx_for_each_channel(channel, efx) {
1233 if (channel->irq)
1234 synchronize_irq(channel->irq);
1235 }
1236
1237 /* Stop all NAPI processing and synchronous rx refills */
1238 efx_for_each_channel(channel, efx)
1239 efx_stop_channel(channel);
1240
1241 /* Stop all asynchronous port reconfigurations. Since all
1242 * event processing has already been stopped, there is no
1243 * window to loose phy events */
1244 efx_stop_port(efx);
1245
1246 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1247 efx_flush_all(efx);
1248
1249 /* Stop the kernel transmit interface late, so the watchdog
1250 * timer isn't ticking over the flush */
1251 if (efx_dev_registered(efx)) {
1252 efx_stop_queue(efx);
1253 netif_tx_lock_bh(efx->net_dev);
1254 netif_tx_unlock_bh(efx->net_dev);
1255 }
1256 }
1257
1258 static void efx_remove_all(struct efx_nic *efx)
1259 {
1260 struct efx_channel *channel;
1261
1262 efx_for_each_channel(channel, efx)
1263 efx_remove_channel(channel);
1264 efx_remove_port(efx);
1265 efx_remove_nic(efx);
1266 }
1267
1268 /**************************************************************************
1269 *
1270 * Interrupt moderation
1271 *
1272 **************************************************************************/
1273
1274 static unsigned irq_mod_ticks(int usecs, int resolution)
1275 {
1276 if (usecs <= 0)
1277 return 0; /* cannot receive interrupts ahead of time :-) */
1278 if (usecs < resolution)
1279 return 1; /* never round down to 0 */
1280 return usecs / resolution;
1281 }
1282
1283 /* Set interrupt moderation parameters */
1284 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1285 bool rx_adaptive)
1286 {
1287 struct efx_tx_queue *tx_queue;
1288 struct efx_rx_queue *rx_queue;
1289 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1290 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1291
1292 EFX_ASSERT_RESET_SERIALISED(efx);
1293
1294 efx_for_each_tx_queue(tx_queue, efx)
1295 tx_queue->channel->irq_moderation = tx_ticks;
1296
1297 efx->irq_rx_adaptive = rx_adaptive;
1298 efx->irq_rx_moderation = rx_ticks;
1299 efx_for_each_rx_queue(rx_queue, efx)
1300 rx_queue->channel->irq_moderation = rx_ticks;
1301 }
1302
1303 /**************************************************************************
1304 *
1305 * Hardware monitor
1306 *
1307 **************************************************************************/
1308
1309 /* Run periodically off the general workqueue. Serialised against
1310 * efx_reconfigure_port via the mac_lock */
1311 static void efx_monitor(struct work_struct *data)
1312 {
1313 struct efx_nic *efx = container_of(data, struct efx_nic,
1314 monitor_work.work);
1315
1316 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1317 raw_smp_processor_id());
1318 BUG_ON(efx->type->monitor == NULL);
1319
1320 /* If the mac_lock is already held then it is likely a port
1321 * reconfiguration is already in place, which will likely do
1322 * most of the work of check_hw() anyway. */
1323 if (!mutex_trylock(&efx->mac_lock))
1324 goto out_requeue;
1325 if (!efx->port_enabled)
1326 goto out_unlock;
1327 efx->type->monitor(efx);
1328
1329 out_unlock:
1330 mutex_unlock(&efx->mac_lock);
1331 out_requeue:
1332 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1333 efx_monitor_interval);
1334 }
1335
1336 /**************************************************************************
1337 *
1338 * ioctls
1339 *
1340 *************************************************************************/
1341
1342 /* Net device ioctl
1343 * Context: process, rtnl_lock() held.
1344 */
1345 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1346 {
1347 struct efx_nic *efx = netdev_priv(net_dev);
1348 struct mii_ioctl_data *data = if_mii(ifr);
1349
1350 EFX_ASSERT_RESET_SERIALISED(efx);
1351
1352 /* Convert phy_id from older PRTAD/DEVAD format */
1353 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1354 (data->phy_id & 0xfc00) == 0x0400)
1355 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1356
1357 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1358 }
1359
1360 /**************************************************************************
1361 *
1362 * NAPI interface
1363 *
1364 **************************************************************************/
1365
1366 static int efx_init_napi(struct efx_nic *efx)
1367 {
1368 struct efx_channel *channel;
1369
1370 efx_for_each_channel(channel, efx) {
1371 channel->napi_dev = efx->net_dev;
1372 netif_napi_add(channel->napi_dev, &channel->napi_str,
1373 efx_poll, napi_weight);
1374 }
1375 return 0;
1376 }
1377
1378 static void efx_fini_napi(struct efx_nic *efx)
1379 {
1380 struct efx_channel *channel;
1381
1382 efx_for_each_channel(channel, efx) {
1383 if (channel->napi_dev)
1384 netif_napi_del(&channel->napi_str);
1385 channel->napi_dev = NULL;
1386 }
1387 }
1388
1389 /**************************************************************************
1390 *
1391 * Kernel netpoll interface
1392 *
1393 *************************************************************************/
1394
1395 #ifdef CONFIG_NET_POLL_CONTROLLER
1396
1397 /* Although in the common case interrupts will be disabled, this is not
1398 * guaranteed. However, all our work happens inside the NAPI callback,
1399 * so no locking is required.
1400 */
1401 static void efx_netpoll(struct net_device *net_dev)
1402 {
1403 struct efx_nic *efx = netdev_priv(net_dev);
1404 struct efx_channel *channel;
1405
1406 efx_for_each_channel(channel, efx)
1407 efx_schedule_channel(channel);
1408 }
1409
1410 #endif
1411
1412 /**************************************************************************
1413 *
1414 * Kernel net device interface
1415 *
1416 *************************************************************************/
1417
1418 /* Context: process, rtnl_lock() held. */
1419 static int efx_net_open(struct net_device *net_dev)
1420 {
1421 struct efx_nic *efx = netdev_priv(net_dev);
1422 EFX_ASSERT_RESET_SERIALISED(efx);
1423
1424 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1425 raw_smp_processor_id());
1426
1427 if (efx->state == STATE_DISABLED)
1428 return -EIO;
1429 if (efx->phy_mode & PHY_MODE_SPECIAL)
1430 return -EBUSY;
1431
1432 /* Notify the kernel of the link state polled during driver load,
1433 * before the monitor starts running */
1434 efx_link_status_changed(efx);
1435
1436 efx_start_all(efx);
1437 return 0;
1438 }
1439
1440 /* Context: process, rtnl_lock() held.
1441 * Note that the kernel will ignore our return code; this method
1442 * should really be a void.
1443 */
1444 static int efx_net_stop(struct net_device *net_dev)
1445 {
1446 struct efx_nic *efx = netdev_priv(net_dev);
1447
1448 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1449 raw_smp_processor_id());
1450
1451 if (efx->state != STATE_DISABLED) {
1452 /* Stop the device and flush all the channels */
1453 efx_stop_all(efx);
1454 efx_fini_channels(efx);
1455 efx_init_channels(efx);
1456 }
1457
1458 return 0;
1459 }
1460
1461 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1462 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1463 {
1464 struct efx_nic *efx = netdev_priv(net_dev);
1465 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1466 struct net_device_stats *stats = &net_dev->stats;
1467
1468 spin_lock_bh(&efx->stats_lock);
1469 efx->type->update_stats(efx);
1470 spin_unlock_bh(&efx->stats_lock);
1471
1472 stats->rx_packets = mac_stats->rx_packets;
1473 stats->tx_packets = mac_stats->tx_packets;
1474 stats->rx_bytes = mac_stats->rx_bytes;
1475 stats->tx_bytes = mac_stats->tx_bytes;
1476 stats->multicast = mac_stats->rx_multicast;
1477 stats->collisions = mac_stats->tx_collision;
1478 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1479 mac_stats->rx_length_error);
1480 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1481 stats->rx_crc_errors = mac_stats->rx_bad;
1482 stats->rx_frame_errors = mac_stats->rx_align_error;
1483 stats->rx_fifo_errors = mac_stats->rx_overflow;
1484 stats->rx_missed_errors = mac_stats->rx_missed;
1485 stats->tx_window_errors = mac_stats->tx_late_collision;
1486
1487 stats->rx_errors = (stats->rx_length_errors +
1488 stats->rx_over_errors +
1489 stats->rx_crc_errors +
1490 stats->rx_frame_errors +
1491 stats->rx_fifo_errors +
1492 stats->rx_missed_errors +
1493 mac_stats->rx_symbol_error);
1494 stats->tx_errors = (stats->tx_window_errors +
1495 mac_stats->tx_bad);
1496
1497 return stats;
1498 }
1499
1500 /* Context: netif_tx_lock held, BHs disabled. */
1501 static void efx_watchdog(struct net_device *net_dev)
1502 {
1503 struct efx_nic *efx = netdev_priv(net_dev);
1504
1505 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1506 " resetting channels\n",
1507 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1508
1509 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1510 }
1511
1512
1513 /* Context: process, rtnl_lock() held. */
1514 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1515 {
1516 struct efx_nic *efx = netdev_priv(net_dev);
1517 int rc = 0;
1518
1519 EFX_ASSERT_RESET_SERIALISED(efx);
1520
1521 if (new_mtu > EFX_MAX_MTU)
1522 return -EINVAL;
1523
1524 efx_stop_all(efx);
1525
1526 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1527
1528 efx_fini_channels(efx);
1529
1530 mutex_lock(&efx->mac_lock);
1531 /* Reconfigure the MAC before enabling the dma queues so that
1532 * the RX buffers don't overflow */
1533 net_dev->mtu = new_mtu;
1534 efx->mac_op->reconfigure(efx);
1535 mutex_unlock(&efx->mac_lock);
1536
1537 efx_init_channels(efx);
1538
1539 efx_start_all(efx);
1540 return rc;
1541 }
1542
1543 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1544 {
1545 struct efx_nic *efx = netdev_priv(net_dev);
1546 struct sockaddr *addr = data;
1547 char *new_addr = addr->sa_data;
1548
1549 EFX_ASSERT_RESET_SERIALISED(efx);
1550
1551 if (!is_valid_ether_addr(new_addr)) {
1552 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1553 new_addr);
1554 return -EINVAL;
1555 }
1556
1557 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1558
1559 /* Reconfigure the MAC */
1560 mutex_lock(&efx->mac_lock);
1561 efx->mac_op->reconfigure(efx);
1562 mutex_unlock(&efx->mac_lock);
1563
1564 return 0;
1565 }
1566
1567 /* Context: netif_addr_lock held, BHs disabled. */
1568 static void efx_set_multicast_list(struct net_device *net_dev)
1569 {
1570 struct efx_nic *efx = netdev_priv(net_dev);
1571 struct dev_mc_list *mc_list = net_dev->mc_list;
1572 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1573 u32 crc;
1574 int bit;
1575 int i;
1576
1577 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1578
1579 /* Build multicast hash table */
1580 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1581 memset(mc_hash, 0xff, sizeof(*mc_hash));
1582 } else {
1583 memset(mc_hash, 0x00, sizeof(*mc_hash));
1584 for (i = 0; i < net_dev->mc_count; i++) {
1585 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1586 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1587 set_bit_le(bit, mc_hash->byte);
1588 mc_list = mc_list->next;
1589 }
1590
1591 /* Broadcast packets go through the multicast hash filter.
1592 * ether_crc_le() of the broadcast address is 0xbe2612ff
1593 * so we always add bit 0xff to the mask.
1594 */
1595 set_bit_le(0xff, mc_hash->byte);
1596 }
1597
1598 if (efx->port_enabled)
1599 queue_work(efx->workqueue, &efx->mac_work);
1600 /* Otherwise efx_start_port() will do this */
1601 }
1602
1603 static const struct net_device_ops efx_netdev_ops = {
1604 .ndo_open = efx_net_open,
1605 .ndo_stop = efx_net_stop,
1606 .ndo_get_stats = efx_net_stats,
1607 .ndo_tx_timeout = efx_watchdog,
1608 .ndo_start_xmit = efx_hard_start_xmit,
1609 .ndo_validate_addr = eth_validate_addr,
1610 .ndo_do_ioctl = efx_ioctl,
1611 .ndo_change_mtu = efx_change_mtu,
1612 .ndo_set_mac_address = efx_set_mac_address,
1613 .ndo_set_multicast_list = efx_set_multicast_list,
1614 #ifdef CONFIG_NET_POLL_CONTROLLER
1615 .ndo_poll_controller = efx_netpoll,
1616 #endif
1617 };
1618
1619 static void efx_update_name(struct efx_nic *efx)
1620 {
1621 strcpy(efx->name, efx->net_dev->name);
1622 efx_mtd_rename(efx);
1623 efx_set_channel_names(efx);
1624 }
1625
1626 static int efx_netdev_event(struct notifier_block *this,
1627 unsigned long event, void *ptr)
1628 {
1629 struct net_device *net_dev = ptr;
1630
1631 if (net_dev->netdev_ops == &efx_netdev_ops &&
1632 event == NETDEV_CHANGENAME)
1633 efx_update_name(netdev_priv(net_dev));
1634
1635 return NOTIFY_DONE;
1636 }
1637
1638 static struct notifier_block efx_netdev_notifier = {
1639 .notifier_call = efx_netdev_event,
1640 };
1641
1642 static ssize_t
1643 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1644 {
1645 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1646 return sprintf(buf, "%d\n", efx->phy_type);
1647 }
1648 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1649
1650 static int efx_register_netdev(struct efx_nic *efx)
1651 {
1652 struct net_device *net_dev = efx->net_dev;
1653 int rc;
1654
1655 net_dev->watchdog_timeo = 5 * HZ;
1656 net_dev->irq = efx->pci_dev->irq;
1657 net_dev->netdev_ops = &efx_netdev_ops;
1658 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1659 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1660
1661 /* Clear MAC statistics */
1662 efx->mac_op->update_stats(efx);
1663 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1664
1665 rtnl_lock();
1666
1667 rc = dev_alloc_name(net_dev, net_dev->name);
1668 if (rc < 0)
1669 goto fail_locked;
1670 efx_update_name(efx);
1671
1672 rc = register_netdevice(net_dev);
1673 if (rc)
1674 goto fail_locked;
1675
1676 /* Always start with carrier off; PHY events will detect the link */
1677 netif_carrier_off(efx->net_dev);
1678
1679 rtnl_unlock();
1680
1681 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1682 if (rc) {
1683 EFX_ERR(efx, "failed to init net dev attributes\n");
1684 goto fail_registered;
1685 }
1686
1687 return 0;
1688
1689 fail_locked:
1690 rtnl_unlock();
1691 EFX_ERR(efx, "could not register net dev\n");
1692 return rc;
1693
1694 fail_registered:
1695 unregister_netdev(net_dev);
1696 return rc;
1697 }
1698
1699 static void efx_unregister_netdev(struct efx_nic *efx)
1700 {
1701 struct efx_tx_queue *tx_queue;
1702
1703 if (!efx->net_dev)
1704 return;
1705
1706 BUG_ON(netdev_priv(efx->net_dev) != efx);
1707
1708 /* Free up any skbs still remaining. This has to happen before
1709 * we try to unregister the netdev as running their destructors
1710 * may be needed to get the device ref. count to 0. */
1711 efx_for_each_tx_queue(tx_queue, efx)
1712 efx_release_tx_buffers(tx_queue);
1713
1714 if (efx_dev_registered(efx)) {
1715 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1716 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1717 unregister_netdev(efx->net_dev);
1718 }
1719 }
1720
1721 /**************************************************************************
1722 *
1723 * Device reset and suspend
1724 *
1725 **************************************************************************/
1726
1727 /* Tears down the entire software state and most of the hardware state
1728 * before reset. */
1729 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1730 {
1731 EFX_ASSERT_RESET_SERIALISED(efx);
1732
1733 efx_stop_all(efx);
1734 mutex_lock(&efx->mac_lock);
1735 mutex_lock(&efx->spi_lock);
1736
1737 efx_fini_channels(efx);
1738 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1739 efx->phy_op->fini(efx);
1740 efx->type->fini(efx);
1741 }
1742
1743 /* This function will always ensure that the locks acquired in
1744 * efx_reset_down() are released. A failure return code indicates
1745 * that we were unable to reinitialise the hardware, and the
1746 * driver should be disabled. If ok is false, then the rx and tx
1747 * engines are not restarted, pending a RESET_DISABLE. */
1748 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1749 {
1750 int rc;
1751
1752 EFX_ASSERT_RESET_SERIALISED(efx);
1753
1754 rc = efx->type->init(efx);
1755 if (rc) {
1756 EFX_ERR(efx, "failed to initialise NIC\n");
1757 goto fail;
1758 }
1759
1760 if (!ok)
1761 goto fail;
1762
1763 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1764 rc = efx->phy_op->init(efx);
1765 if (rc)
1766 goto fail;
1767 if (efx->phy_op->reconfigure(efx))
1768 EFX_ERR(efx, "could not restore PHY settings\n");
1769 }
1770
1771 efx->mac_op->reconfigure(efx);
1772
1773 efx_init_channels(efx);
1774
1775 mutex_unlock(&efx->spi_lock);
1776 mutex_unlock(&efx->mac_lock);
1777
1778 efx_start_all(efx);
1779
1780 return 0;
1781
1782 fail:
1783 efx->port_initialized = false;
1784
1785 mutex_unlock(&efx->spi_lock);
1786 mutex_unlock(&efx->mac_lock);
1787
1788 return rc;
1789 }
1790
1791 /* Reset the NIC using the specified method. Note that the reset may
1792 * fail, in which case the card will be left in an unusable state.
1793 *
1794 * Caller must hold the rtnl_lock.
1795 */
1796 int efx_reset(struct efx_nic *efx, enum reset_type method)
1797 {
1798 int rc, rc2;
1799 bool disabled;
1800
1801 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1802
1803 efx_reset_down(efx, method);
1804
1805 rc = efx->type->reset(efx, method);
1806 if (rc) {
1807 EFX_ERR(efx, "failed to reset hardware\n");
1808 goto out;
1809 }
1810
1811 /* Allow resets to be rescheduled. */
1812 efx->reset_pending = RESET_TYPE_NONE;
1813
1814 /* Reinitialise bus-mastering, which may have been turned off before
1815 * the reset was scheduled. This is still appropriate, even in the
1816 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1817 * can respond to requests. */
1818 pci_set_master(efx->pci_dev);
1819
1820 out:
1821 /* Leave device stopped if necessary */
1822 disabled = rc || method == RESET_TYPE_DISABLE;
1823 rc2 = efx_reset_up(efx, method, !disabled);
1824 if (rc2) {
1825 disabled = true;
1826 if (!rc)
1827 rc = rc2;
1828 }
1829
1830 if (disabled) {
1831 EFX_ERR(efx, "has been disabled\n");
1832 efx->state = STATE_DISABLED;
1833 } else {
1834 EFX_LOG(efx, "reset complete\n");
1835 }
1836 return rc;
1837 }
1838
1839 /* The worker thread exists so that code that cannot sleep can
1840 * schedule a reset for later.
1841 */
1842 static void efx_reset_work(struct work_struct *data)
1843 {
1844 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1845
1846 /* If we're not RUNNING then don't reset. Leave the reset_pending
1847 * flag set so that efx_pci_probe_main will be retried */
1848 if (efx->state != STATE_RUNNING) {
1849 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1850 return;
1851 }
1852
1853 rtnl_lock();
1854 if (efx_reset(efx, efx->reset_pending))
1855 dev_close(efx->net_dev);
1856 rtnl_unlock();
1857 }
1858
1859 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1860 {
1861 enum reset_type method;
1862
1863 if (efx->reset_pending != RESET_TYPE_NONE) {
1864 EFX_INFO(efx, "quenching already scheduled reset\n");
1865 return;
1866 }
1867
1868 switch (type) {
1869 case RESET_TYPE_INVISIBLE:
1870 case RESET_TYPE_ALL:
1871 case RESET_TYPE_WORLD:
1872 case RESET_TYPE_DISABLE:
1873 method = type;
1874 break;
1875 case RESET_TYPE_RX_RECOVERY:
1876 case RESET_TYPE_RX_DESC_FETCH:
1877 case RESET_TYPE_TX_DESC_FETCH:
1878 case RESET_TYPE_TX_SKIP:
1879 method = RESET_TYPE_INVISIBLE;
1880 break;
1881 default:
1882 method = RESET_TYPE_ALL;
1883 break;
1884 }
1885
1886 if (method != type)
1887 EFX_LOG(efx, "scheduling %s reset for %s\n",
1888 RESET_TYPE(method), RESET_TYPE(type));
1889 else
1890 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1891
1892 efx->reset_pending = method;
1893
1894 queue_work(reset_workqueue, &efx->reset_work);
1895 }
1896
1897 /**************************************************************************
1898 *
1899 * List of NICs we support
1900 *
1901 **************************************************************************/
1902
1903 /* PCI device ID table */
1904 static struct pci_device_id efx_pci_table[] __devinitdata = {
1905 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1906 .driver_data = (unsigned long) &falcon_a1_nic_type},
1907 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1908 .driver_data = (unsigned long) &falcon_b0_nic_type},
1909 {0} /* end of list */
1910 };
1911
1912 /**************************************************************************
1913 *
1914 * Dummy PHY/MAC operations
1915 *
1916 * Can be used for some unimplemented operations
1917 * Needed so all function pointers are valid and do not have to be tested
1918 * before use
1919 *
1920 **************************************************************************/
1921 int efx_port_dummy_op_int(struct efx_nic *efx)
1922 {
1923 return 0;
1924 }
1925 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1926 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1927 {
1928 }
1929 bool efx_port_dummy_op_poll(struct efx_nic *efx)
1930 {
1931 return false;
1932 }
1933
1934 static struct efx_phy_operations efx_dummy_phy_operations = {
1935 .init = efx_port_dummy_op_int,
1936 .reconfigure = efx_port_dummy_op_int,
1937 .poll = efx_port_dummy_op_poll,
1938 .fini = efx_port_dummy_op_void,
1939 };
1940
1941 /**************************************************************************
1942 *
1943 * Data housekeeping
1944 *
1945 **************************************************************************/
1946
1947 /* This zeroes out and then fills in the invariants in a struct
1948 * efx_nic (including all sub-structures).
1949 */
1950 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1951 struct pci_dev *pci_dev, struct net_device *net_dev)
1952 {
1953 struct efx_channel *channel;
1954 struct efx_tx_queue *tx_queue;
1955 struct efx_rx_queue *rx_queue;
1956 int i;
1957
1958 /* Initialise common structures */
1959 memset(efx, 0, sizeof(*efx));
1960 spin_lock_init(&efx->biu_lock);
1961 mutex_init(&efx->mdio_lock);
1962 mutex_init(&efx->spi_lock);
1963 INIT_WORK(&efx->reset_work, efx_reset_work);
1964 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1965 efx->pci_dev = pci_dev;
1966 efx->state = STATE_INIT;
1967 efx->reset_pending = RESET_TYPE_NONE;
1968 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1969
1970 efx->net_dev = net_dev;
1971 efx->rx_checksum_enabled = true;
1972 spin_lock_init(&efx->netif_stop_lock);
1973 spin_lock_init(&efx->stats_lock);
1974 mutex_init(&efx->mac_lock);
1975 efx->mac_op = type->default_mac_ops;
1976 efx->phy_op = &efx_dummy_phy_operations;
1977 efx->mdio.dev = net_dev;
1978 INIT_WORK(&efx->mac_work, efx_mac_work);
1979 atomic_set(&efx->netif_stop_count, 1);
1980
1981 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1982 channel = &efx->channel[i];
1983 channel->efx = efx;
1984 channel->channel = i;
1985 channel->work_pending = false;
1986 }
1987 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1988 tx_queue = &efx->tx_queue[i];
1989 tx_queue->efx = efx;
1990 tx_queue->queue = i;
1991 tx_queue->buffer = NULL;
1992 tx_queue->channel = &efx->channel[0]; /* for safety */
1993 tx_queue->tso_headers_free = NULL;
1994 }
1995 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1996 rx_queue = &efx->rx_queue[i];
1997 rx_queue->efx = efx;
1998 rx_queue->queue = i;
1999 rx_queue->channel = &efx->channel[0]; /* for safety */
2000 rx_queue->buffer = NULL;
2001 spin_lock_init(&rx_queue->add_lock);
2002 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
2003 }
2004
2005 efx->type = type;
2006
2007 /* As close as we can get to guaranteeing that we don't overflow */
2008 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2009
2010 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2011
2012 /* Higher numbered interrupt modes are less capable! */
2013 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2014 interrupt_mode);
2015
2016 /* Would be good to use the net_dev name, but we're too early */
2017 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2018 pci_name(pci_dev));
2019 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2020 if (!efx->workqueue)
2021 return -ENOMEM;
2022
2023 return 0;
2024 }
2025
2026 static void efx_fini_struct(struct efx_nic *efx)
2027 {
2028 if (efx->workqueue) {
2029 destroy_workqueue(efx->workqueue);
2030 efx->workqueue = NULL;
2031 }
2032 }
2033
2034 /**************************************************************************
2035 *
2036 * PCI interface
2037 *
2038 **************************************************************************/
2039
2040 /* Main body of final NIC shutdown code
2041 * This is called only at module unload (or hotplug removal).
2042 */
2043 static void efx_pci_remove_main(struct efx_nic *efx)
2044 {
2045 falcon_fini_interrupt(efx);
2046 efx_fini_channels(efx);
2047 efx_fini_port(efx);
2048 efx->type->fini(efx);
2049 efx_fini_napi(efx);
2050 efx_remove_all(efx);
2051 }
2052
2053 /* Final NIC shutdown
2054 * This is called only at module unload (or hotplug removal).
2055 */
2056 static void efx_pci_remove(struct pci_dev *pci_dev)
2057 {
2058 struct efx_nic *efx;
2059
2060 efx = pci_get_drvdata(pci_dev);
2061 if (!efx)
2062 return;
2063
2064 /* Mark the NIC as fini, then stop the interface */
2065 rtnl_lock();
2066 efx->state = STATE_FINI;
2067 dev_close(efx->net_dev);
2068
2069 /* Allow any queued efx_resets() to complete */
2070 rtnl_unlock();
2071
2072 efx_unregister_netdev(efx);
2073
2074 efx_mtd_remove(efx);
2075
2076 /* Wait for any scheduled resets to complete. No more will be
2077 * scheduled from this point because efx_stop_all() has been
2078 * called, we are no longer registered with driverlink, and
2079 * the net_device's have been removed. */
2080 cancel_work_sync(&efx->reset_work);
2081
2082 efx_pci_remove_main(efx);
2083
2084 efx_fini_io(efx);
2085 EFX_LOG(efx, "shutdown successful\n");
2086
2087 pci_set_drvdata(pci_dev, NULL);
2088 efx_fini_struct(efx);
2089 free_netdev(efx->net_dev);
2090 };
2091
2092 /* Main body of NIC initialisation
2093 * This is called at module load (or hotplug insertion, theoretically).
2094 */
2095 static int efx_pci_probe_main(struct efx_nic *efx)
2096 {
2097 int rc;
2098
2099 /* Do start-of-day initialisation */
2100 rc = efx_probe_all(efx);
2101 if (rc)
2102 goto fail1;
2103
2104 rc = efx_init_napi(efx);
2105 if (rc)
2106 goto fail2;
2107
2108 rc = efx->type->init(efx);
2109 if (rc) {
2110 EFX_ERR(efx, "failed to initialise NIC\n");
2111 goto fail3;
2112 }
2113
2114 rc = efx_init_port(efx);
2115 if (rc) {
2116 EFX_ERR(efx, "failed to initialise port\n");
2117 goto fail4;
2118 }
2119
2120 efx_init_channels(efx);
2121
2122 rc = falcon_init_interrupt(efx);
2123 if (rc)
2124 goto fail5;
2125
2126 return 0;
2127
2128 fail5:
2129 efx_fini_channels(efx);
2130 efx_fini_port(efx);
2131 fail4:
2132 efx->type->fini(efx);
2133 fail3:
2134 efx_fini_napi(efx);
2135 fail2:
2136 efx_remove_all(efx);
2137 fail1:
2138 return rc;
2139 }
2140
2141 /* NIC initialisation
2142 *
2143 * This is called at module load (or hotplug insertion,
2144 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2145 * sets up and registers the network devices with the kernel and hooks
2146 * the interrupt service routine. It does not prepare the device for
2147 * transmission; this is left to the first time one of the network
2148 * interfaces is brought up (i.e. efx_net_open).
2149 */
2150 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2151 const struct pci_device_id *entry)
2152 {
2153 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2154 struct net_device *net_dev;
2155 struct efx_nic *efx;
2156 int i, rc;
2157
2158 /* Allocate and initialise a struct net_device and struct efx_nic */
2159 net_dev = alloc_etherdev(sizeof(*efx));
2160 if (!net_dev)
2161 return -ENOMEM;
2162 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2163 NETIF_F_HIGHDMA | NETIF_F_TSO |
2164 NETIF_F_GRO);
2165 /* Mask for features that also apply to VLAN devices */
2166 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2167 NETIF_F_HIGHDMA | NETIF_F_TSO);
2168 efx = netdev_priv(net_dev);
2169 pci_set_drvdata(pci_dev, efx);
2170 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2171 if (rc)
2172 goto fail1;
2173
2174 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2175
2176 /* Set up basic I/O (BAR mappings etc) */
2177 rc = efx_init_io(efx);
2178 if (rc)
2179 goto fail2;
2180
2181 /* No serialisation is required with the reset path because
2182 * we're in STATE_INIT. */
2183 for (i = 0; i < 5; i++) {
2184 rc = efx_pci_probe_main(efx);
2185
2186 /* Serialise against efx_reset(). No more resets will be
2187 * scheduled since efx_stop_all() has been called, and we
2188 * have not and never have been registered with either
2189 * the rtnetlink or driverlink layers. */
2190 cancel_work_sync(&efx->reset_work);
2191
2192 if (rc == 0) {
2193 if (efx->reset_pending != RESET_TYPE_NONE) {
2194 /* If there was a scheduled reset during
2195 * probe, the NIC is probably hosed anyway */
2196 efx_pci_remove_main(efx);
2197 rc = -EIO;
2198 } else {
2199 break;
2200 }
2201 }
2202
2203 /* Retry if a recoverably reset event has been scheduled */
2204 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2205 (efx->reset_pending != RESET_TYPE_ALL))
2206 goto fail3;
2207
2208 efx->reset_pending = RESET_TYPE_NONE;
2209 }
2210
2211 if (rc) {
2212 EFX_ERR(efx, "Could not reset NIC\n");
2213 goto fail4;
2214 }
2215
2216 /* Switch to the running state before we expose the device to the OS,
2217 * so that dev_open()|efx_start_all() will actually start the device */
2218 efx->state = STATE_RUNNING;
2219
2220 rc = efx_register_netdev(efx);
2221 if (rc)
2222 goto fail5;
2223
2224 EFX_LOG(efx, "initialisation successful\n");
2225
2226 rtnl_lock();
2227 efx_mtd_probe(efx); /* allowed to fail */
2228 rtnl_unlock();
2229 return 0;
2230
2231 fail5:
2232 efx_pci_remove_main(efx);
2233 fail4:
2234 fail3:
2235 efx_fini_io(efx);
2236 fail2:
2237 efx_fini_struct(efx);
2238 fail1:
2239 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2240 free_netdev(net_dev);
2241 return rc;
2242 }
2243
2244 static int efx_pm_freeze(struct device *dev)
2245 {
2246 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2247
2248 efx->state = STATE_FINI;
2249
2250 netif_device_detach(efx->net_dev);
2251
2252 efx_stop_all(efx);
2253 efx_fini_channels(efx);
2254
2255 return 0;
2256 }
2257
2258 static int efx_pm_thaw(struct device *dev)
2259 {
2260 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2261
2262 efx->state = STATE_INIT;
2263
2264 efx_init_channels(efx);
2265
2266 mutex_lock(&efx->mac_lock);
2267 efx->phy_op->reconfigure(efx);
2268 mutex_unlock(&efx->mac_lock);
2269
2270 efx_start_all(efx);
2271
2272 netif_device_attach(efx->net_dev);
2273
2274 efx->state = STATE_RUNNING;
2275
2276 efx->type->resume_wol(efx);
2277
2278 return 0;
2279 }
2280
2281 static int efx_pm_poweroff(struct device *dev)
2282 {
2283 struct pci_dev *pci_dev = to_pci_dev(dev);
2284 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2285
2286 efx->type->fini(efx);
2287
2288 efx->reset_pending = RESET_TYPE_NONE;
2289
2290 pci_save_state(pci_dev);
2291 return pci_set_power_state(pci_dev, PCI_D3hot);
2292 }
2293
2294 /* Used for both resume and restore */
2295 static int efx_pm_resume(struct device *dev)
2296 {
2297 struct pci_dev *pci_dev = to_pci_dev(dev);
2298 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2299 int rc;
2300
2301 rc = pci_set_power_state(pci_dev, PCI_D0);
2302 if (rc)
2303 return rc;
2304 pci_restore_state(pci_dev);
2305 rc = pci_enable_device(pci_dev);
2306 if (rc)
2307 return rc;
2308 pci_set_master(efx->pci_dev);
2309 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2310 if (rc)
2311 return rc;
2312 rc = efx->type->init(efx);
2313 if (rc)
2314 return rc;
2315 efx_pm_thaw(dev);
2316 return 0;
2317 }
2318
2319 static int efx_pm_suspend(struct device *dev)
2320 {
2321 int rc;
2322
2323 efx_pm_freeze(dev);
2324 rc = efx_pm_poweroff(dev);
2325 if (rc)
2326 efx_pm_resume(dev);
2327 return rc;
2328 }
2329
2330 static struct dev_pm_ops efx_pm_ops = {
2331 .suspend = efx_pm_suspend,
2332 .resume = efx_pm_resume,
2333 .freeze = efx_pm_freeze,
2334 .thaw = efx_pm_thaw,
2335 .poweroff = efx_pm_poweroff,
2336 .restore = efx_pm_resume,
2337 };
2338
2339 static struct pci_driver efx_pci_driver = {
2340 .name = EFX_DRIVER_NAME,
2341 .id_table = efx_pci_table,
2342 .probe = efx_pci_probe,
2343 .remove = efx_pci_remove,
2344 .driver.pm = &efx_pm_ops,
2345 };
2346
2347 /**************************************************************************
2348 *
2349 * Kernel module interface
2350 *
2351 *************************************************************************/
2352
2353 module_param(interrupt_mode, uint, 0444);
2354 MODULE_PARM_DESC(interrupt_mode,
2355 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2356
2357 static int __init efx_init_module(void)
2358 {
2359 int rc;
2360
2361 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2362
2363 rc = register_netdevice_notifier(&efx_netdev_notifier);
2364 if (rc)
2365 goto err_notifier;
2366
2367 refill_workqueue = create_workqueue("sfc_refill");
2368 if (!refill_workqueue) {
2369 rc = -ENOMEM;
2370 goto err_refill;
2371 }
2372 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2373 if (!reset_workqueue) {
2374 rc = -ENOMEM;
2375 goto err_reset;
2376 }
2377
2378 rc = pci_register_driver(&efx_pci_driver);
2379 if (rc < 0)
2380 goto err_pci;
2381
2382 return 0;
2383
2384 err_pci:
2385 destroy_workqueue(reset_workqueue);
2386 err_reset:
2387 destroy_workqueue(refill_workqueue);
2388 err_refill:
2389 unregister_netdevice_notifier(&efx_netdev_notifier);
2390 err_notifier:
2391 return rc;
2392 }
2393
2394 static void __exit efx_exit_module(void)
2395 {
2396 printk(KERN_INFO "Solarflare NET driver unloading\n");
2397
2398 pci_unregister_driver(&efx_pci_driver);
2399 destroy_workqueue(reset_workqueue);
2400 destroy_workqueue(refill_workqueue);
2401 unregister_netdevice_notifier(&efx_netdev_notifier);
2402
2403 }
2404
2405 module_init(efx_init_module);
2406 module_exit(efx_exit_module);
2407
2408 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2409 "Solarflare Communications");
2410 MODULE_DESCRIPTION("Solarflare Communications network driver");
2411 MODULE_LICENSE("GPL");
2412 MODULE_DEVICE_TABLE(pci, efx_pci_table);