sfc: Change MAC promiscuity and multicast hash at the same time
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "mdio_10g.h"
26 #include "falcon.h"
27
28 /**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
37 const char *efx_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_GMAC] = "GMAC",
40 [LOOPBACK_XGMII] = "XGMII",
41 [LOOPBACK_XGXS] = "XGXS",
42 [LOOPBACK_XAUI] = "XAUI",
43 [LOOPBACK_GPHY] = "GPHY",
44 [LOOPBACK_PHYXS] = "PHYXS",
45 [LOOPBACK_PCS] = "PCS",
46 [LOOPBACK_PMAPMD] = "PMA/PMD",
47 [LOOPBACK_NETWORK] = "NETWORK",
48 };
49
50 /* Interrupt mode names (see INT_MODE())) */
51 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
52 const char *efx_interrupt_mode_names[] = {
53 [EFX_INT_MODE_MSIX] = "MSI-X",
54 [EFX_INT_MODE_MSI] = "MSI",
55 [EFX_INT_MODE_LEGACY] = "legacy",
56 };
57
58 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
59 const char *efx_reset_type_names[] = {
60 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
61 [RESET_TYPE_ALL] = "ALL",
62 [RESET_TYPE_WORLD] = "WORLD",
63 [RESET_TYPE_DISABLE] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
66 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
67 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
68 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
69 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
70 };
71
72 #define EFX_MAX_MTU (9 * 1024)
73
74 /* RX slow fill workqueue. If memory allocation fails in the fast path,
75 * a work item is pushed onto this work queue to retry the allocation later,
76 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
77 * workqueue, there is nothing to be gained in making it per NIC
78 */
79 static struct workqueue_struct *refill_workqueue;
80
81 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
82 * queued onto this work queue. This is not a per-nic work queue, because
83 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
84 */
85 static struct workqueue_struct *reset_workqueue;
86
87 /**************************************************************************
88 *
89 * Configurable values
90 *
91 *************************************************************************/
92
93 /*
94 * Use separate channels for TX and RX events
95 *
96 * Set this to 1 to use separate channels for TX and RX. It allows us
97 * to control interrupt affinity separately for TX and RX.
98 *
99 * This is only used in MSI-X interrupt mode
100 */
101 static unsigned int separate_tx_channels;
102 module_param(separate_tx_channels, uint, 0644);
103 MODULE_PARM_DESC(separate_tx_channels,
104 "Use separate channels for TX and RX");
105
106 /* This is the weight assigned to each of the (per-channel) virtual
107 * NAPI devices.
108 */
109 static int napi_weight = 64;
110
111 /* This is the time (in jiffies) between invocations of the hardware
112 * monitor, which checks for known hardware bugs and resets the
113 * hardware and driver as necessary.
114 */
115 unsigned int efx_monitor_interval = 1 * HZ;
116
117 /* This controls whether or not the driver will initialise devices
118 * with invalid MAC addresses stored in the EEPROM or flash. If true,
119 * such devices will be initialised with a random locally-generated
120 * MAC address. This allows for loading the sfc_mtd driver to
121 * reprogram the flash, even if the flash contents (including the MAC
122 * address) have previously been erased.
123 */
124 static unsigned int allow_bad_hwaddr;
125
126 /* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132 static unsigned int rx_irq_mod_usec = 60;
133
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
142 */
143 static unsigned int tx_irq_mod_usec = 150;
144
145 /* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150 static unsigned int interrupt_mode;
151
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each package (level II cache)
158 */
159 static unsigned int rss_cpus;
160 module_param(rss_cpus, uint, 0444);
161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
163 static int phy_flash_cfg;
164 module_param(phy_flash_cfg, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
167 static unsigned irq_adapt_low_thresh = 10000;
168 module_param(irq_adapt_low_thresh, uint, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh,
170 "Threshold score for reducing IRQ moderation");
171
172 static unsigned irq_adapt_high_thresh = 20000;
173 module_param(irq_adapt_high_thresh, uint, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh,
175 "Threshold score for increasing IRQ moderation");
176
177 /**************************************************************************
178 *
179 * Utility functions and prototypes
180 *
181 *************************************************************************/
182 static void efx_remove_channel(struct efx_channel *channel);
183 static void efx_remove_port(struct efx_nic *efx);
184 static void efx_fini_napi(struct efx_nic *efx);
185 static void efx_fini_channels(struct efx_nic *efx);
186
187 #define EFX_ASSERT_RESET_SERIALISED(efx) \
188 do { \
189 if ((efx->state == STATE_RUNNING) || \
190 (efx->state == STATE_DISABLED)) \
191 ASSERT_RTNL(); \
192 } while (0)
193
194 /**************************************************************************
195 *
196 * Event queue processing
197 *
198 *************************************************************************/
199
200 /* Process channel's event queue
201 *
202 * This function is responsible for processing the event queue of a
203 * single channel. The caller must guarantee that this function will
204 * never be concurrently called more than once on the same channel,
205 * though different channels may be being processed concurrently.
206 */
207 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
208 {
209 struct efx_nic *efx = channel->efx;
210 int rx_packets;
211
212 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
213 !channel->enabled))
214 return 0;
215
216 rx_packets = falcon_process_eventq(channel, rx_quota);
217 if (rx_packets == 0)
218 return 0;
219
220 /* Deliver last RX packet. */
221 if (channel->rx_pkt) {
222 __efx_rx_packet(channel, channel->rx_pkt,
223 channel->rx_pkt_csummed);
224 channel->rx_pkt = NULL;
225 }
226
227 efx_rx_strategy(channel);
228
229 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
230
231 return rx_packets;
232 }
233
234 /* Mark channel as finished processing
235 *
236 * Note that since we will not receive further interrupts for this
237 * channel before we finish processing and call the eventq_read_ack()
238 * method, there is no need to use the interrupt hold-off timers.
239 */
240 static inline void efx_channel_processed(struct efx_channel *channel)
241 {
242 /* The interrupt handler for this channel may set work_pending
243 * as soon as we acknowledge the events we've seen. Make sure
244 * it's cleared before then. */
245 channel->work_pending = false;
246 smp_wmb();
247
248 falcon_eventq_read_ack(channel);
249 }
250
251 /* NAPI poll handler
252 *
253 * NAPI guarantees serialisation of polls of the same device, which
254 * provides the guarantee required by efx_process_channel().
255 */
256 static int efx_poll(struct napi_struct *napi, int budget)
257 {
258 struct efx_channel *channel =
259 container_of(napi, struct efx_channel, napi_str);
260 int rx_packets;
261
262 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
263 channel->channel, raw_smp_processor_id());
264
265 rx_packets = efx_process_channel(channel, budget);
266
267 if (rx_packets < budget) {
268 struct efx_nic *efx = channel->efx;
269
270 if (channel->used_flags & EFX_USED_BY_RX &&
271 efx->irq_rx_adaptive &&
272 unlikely(++channel->irq_count == 1000)) {
273 if (unlikely(channel->irq_mod_score <
274 irq_adapt_low_thresh)) {
275 if (channel->irq_moderation > 1) {
276 channel->irq_moderation -= 1;
277 falcon_set_int_moderation(channel);
278 }
279 } else if (unlikely(channel->irq_mod_score >
280 irq_adapt_high_thresh)) {
281 if (channel->irq_moderation <
282 efx->irq_rx_moderation) {
283 channel->irq_moderation += 1;
284 falcon_set_int_moderation(channel);
285 }
286 }
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289 }
290
291 /* There is no race here; although napi_disable() will
292 * only wait for napi_complete(), this isn't a problem
293 * since efx_channel_processed() will have no effect if
294 * interrupts have already been disabled.
295 */
296 napi_complete(napi);
297 efx_channel_processed(channel);
298 }
299
300 return rx_packets;
301 }
302
303 /* Process the eventq of the specified channel immediately on this CPU
304 *
305 * Disable hardware generated interrupts, wait for any existing
306 * processing to finish, then directly poll (and ack ) the eventq.
307 * Finally reenable NAPI and interrupts.
308 *
309 * Since we are touching interrupts the caller should hold the suspend lock
310 */
311 void efx_process_channel_now(struct efx_channel *channel)
312 {
313 struct efx_nic *efx = channel->efx;
314
315 BUG_ON(!channel->used_flags);
316 BUG_ON(!channel->enabled);
317
318 /* Disable interrupts and wait for ISRs to complete */
319 falcon_disable_interrupts(efx);
320 if (efx->legacy_irq)
321 synchronize_irq(efx->legacy_irq);
322 if (channel->irq)
323 synchronize_irq(channel->irq);
324
325 /* Wait for any NAPI processing to complete */
326 napi_disable(&channel->napi_str);
327
328 /* Poll the channel */
329 efx_process_channel(channel, EFX_EVQ_SIZE);
330
331 /* Ack the eventq. This may cause an interrupt to be generated
332 * when they are reenabled */
333 efx_channel_processed(channel);
334
335 napi_enable(&channel->napi_str);
336 falcon_enable_interrupts(efx);
337 }
338
339 /* Create event queue
340 * Event queue memory allocations are done only once. If the channel
341 * is reset, the memory buffer will be reused; this guards against
342 * errors during channel reset and also simplifies interrupt handling.
343 */
344 static int efx_probe_eventq(struct efx_channel *channel)
345 {
346 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
347
348 return falcon_probe_eventq(channel);
349 }
350
351 /* Prepare channel's event queue */
352 static void efx_init_eventq(struct efx_channel *channel)
353 {
354 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
355
356 channel->eventq_read_ptr = 0;
357
358 falcon_init_eventq(channel);
359 }
360
361 static void efx_fini_eventq(struct efx_channel *channel)
362 {
363 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
364
365 falcon_fini_eventq(channel);
366 }
367
368 static void efx_remove_eventq(struct efx_channel *channel)
369 {
370 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
371
372 falcon_remove_eventq(channel);
373 }
374
375 /**************************************************************************
376 *
377 * Channel handling
378 *
379 *************************************************************************/
380
381 static int efx_probe_channel(struct efx_channel *channel)
382 {
383 struct efx_tx_queue *tx_queue;
384 struct efx_rx_queue *rx_queue;
385 int rc;
386
387 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
388
389 rc = efx_probe_eventq(channel);
390 if (rc)
391 goto fail1;
392
393 efx_for_each_channel_tx_queue(tx_queue, channel) {
394 rc = efx_probe_tx_queue(tx_queue);
395 if (rc)
396 goto fail2;
397 }
398
399 efx_for_each_channel_rx_queue(rx_queue, channel) {
400 rc = efx_probe_rx_queue(rx_queue);
401 if (rc)
402 goto fail3;
403 }
404
405 channel->n_rx_frm_trunc = 0;
406
407 return 0;
408
409 fail3:
410 efx_for_each_channel_rx_queue(rx_queue, channel)
411 efx_remove_rx_queue(rx_queue);
412 fail2:
413 efx_for_each_channel_tx_queue(tx_queue, channel)
414 efx_remove_tx_queue(tx_queue);
415 fail1:
416 return rc;
417 }
418
419
420 static void efx_set_channel_names(struct efx_nic *efx)
421 {
422 struct efx_channel *channel;
423 const char *type = "";
424 int number;
425
426 efx_for_each_channel(channel, efx) {
427 number = channel->channel;
428 if (efx->n_channels > efx->n_rx_queues) {
429 if (channel->channel < efx->n_rx_queues) {
430 type = "-rx";
431 } else {
432 type = "-tx";
433 number -= efx->n_rx_queues;
434 }
435 }
436 snprintf(channel->name, sizeof(channel->name),
437 "%s%s-%d", efx->name, type, number);
438 }
439 }
440
441 /* Channels are shutdown and reinitialised whilst the NIC is running
442 * to propagate configuration changes (mtu, checksum offload), or
443 * to clear hardware error conditions
444 */
445 static void efx_init_channels(struct efx_nic *efx)
446 {
447 struct efx_tx_queue *tx_queue;
448 struct efx_rx_queue *rx_queue;
449 struct efx_channel *channel;
450
451 /* Calculate the rx buffer allocation parameters required to
452 * support the current MTU, including padding for header
453 * alignment and overruns.
454 */
455 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
456 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
457 efx->type->rx_buffer_padding);
458 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
459
460 /* Initialise the channels */
461 efx_for_each_channel(channel, efx) {
462 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
463
464 efx_init_eventq(channel);
465
466 efx_for_each_channel_tx_queue(tx_queue, channel)
467 efx_init_tx_queue(tx_queue);
468
469 /* The rx buffer allocation strategy is MTU dependent */
470 efx_rx_strategy(channel);
471
472 efx_for_each_channel_rx_queue(rx_queue, channel)
473 efx_init_rx_queue(rx_queue);
474
475 WARN_ON(channel->rx_pkt != NULL);
476 efx_rx_strategy(channel);
477 }
478 }
479
480 /* This enables event queue processing and packet transmission.
481 *
482 * Note that this function is not allowed to fail, since that would
483 * introduce too much complexity into the suspend/resume path.
484 */
485 static void efx_start_channel(struct efx_channel *channel)
486 {
487 struct efx_rx_queue *rx_queue;
488
489 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
490
491 /* The interrupt handler for this channel may set work_pending
492 * as soon as we enable it. Make sure it's cleared before
493 * then. Similarly, make sure it sees the enabled flag set. */
494 channel->work_pending = false;
495 channel->enabled = true;
496 smp_wmb();
497
498 napi_enable(&channel->napi_str);
499
500 /* Load up RX descriptors */
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_fast_push_rx_descriptors(rx_queue);
503 }
504
505 /* This disables event queue processing and packet transmission.
506 * This function does not guarantee that all queue processing
507 * (e.g. RX refill) is complete.
508 */
509 static void efx_stop_channel(struct efx_channel *channel)
510 {
511 struct efx_rx_queue *rx_queue;
512
513 if (!channel->enabled)
514 return;
515
516 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
517
518 channel->enabled = false;
519 napi_disable(&channel->napi_str);
520
521 /* Ensure that any worker threads have exited or will be no-ops */
522 efx_for_each_channel_rx_queue(rx_queue, channel) {
523 spin_lock_bh(&rx_queue->add_lock);
524 spin_unlock_bh(&rx_queue->add_lock);
525 }
526 }
527
528 static void efx_fini_channels(struct efx_nic *efx)
529 {
530 struct efx_channel *channel;
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
533 int rc;
534
535 EFX_ASSERT_RESET_SERIALISED(efx);
536 BUG_ON(efx->port_enabled);
537
538 rc = falcon_flush_queues(efx);
539 if (rc)
540 EFX_ERR(efx, "failed to flush queues\n");
541 else
542 EFX_LOG(efx, "successfully flushed all queues\n");
543
544 efx_for_each_channel(channel, efx) {
545 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
546
547 efx_for_each_channel_rx_queue(rx_queue, channel)
548 efx_fini_rx_queue(rx_queue);
549 efx_for_each_channel_tx_queue(tx_queue, channel)
550 efx_fini_tx_queue(tx_queue);
551 efx_fini_eventq(channel);
552 }
553 }
554
555 static void efx_remove_channel(struct efx_channel *channel)
556 {
557 struct efx_tx_queue *tx_queue;
558 struct efx_rx_queue *rx_queue;
559
560 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
561
562 efx_for_each_channel_rx_queue(rx_queue, channel)
563 efx_remove_rx_queue(rx_queue);
564 efx_for_each_channel_tx_queue(tx_queue, channel)
565 efx_remove_tx_queue(tx_queue);
566 efx_remove_eventq(channel);
567
568 channel->used_flags = 0;
569 }
570
571 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
572 {
573 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
574 }
575
576 /**************************************************************************
577 *
578 * Port handling
579 *
580 **************************************************************************/
581
582 /* This ensures that the kernel is kept informed (via
583 * netif_carrier_on/off) of the link status, and also maintains the
584 * link status's stop on the port's TX queue.
585 */
586 static void efx_link_status_changed(struct efx_nic *efx)
587 {
588 struct efx_link_state *link_state = &efx->link_state;
589
590 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
591 * that no events are triggered between unregister_netdev() and the
592 * driver unloading. A more general condition is that NETDEV_CHANGE
593 * can only be generated between NETDEV_UP and NETDEV_DOWN */
594 if (!netif_running(efx->net_dev))
595 return;
596
597 if (efx->port_inhibited) {
598 netif_carrier_off(efx->net_dev);
599 return;
600 }
601
602 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
603 efx->n_link_state_changes++;
604
605 if (link_state->up)
606 netif_carrier_on(efx->net_dev);
607 else
608 netif_carrier_off(efx->net_dev);
609 }
610
611 /* Status message for kernel log */
612 if (link_state->up) {
613 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
614 link_state->speed, link_state->fd ? "full" : "half",
615 efx->net_dev->mtu,
616 (efx->promiscuous ? " [PROMISC]" : ""));
617 } else {
618 EFX_INFO(efx, "link down\n");
619 }
620
621 }
622
623 static void efx_fini_port(struct efx_nic *efx);
624
625 /* This call reinitialises the MAC to pick up new PHY settings. The
626 * caller must hold the mac_lock */
627 void __efx_reconfigure_port(struct efx_nic *efx)
628 {
629 WARN_ON(!mutex_is_locked(&efx->mac_lock));
630
631 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
632 raw_smp_processor_id());
633
634 /* Serialise the promiscuous flag with efx_set_multicast_list. */
635 if (efx_dev_registered(efx)) {
636 netif_addr_lock_bh(efx->net_dev);
637 netif_addr_unlock_bh(efx->net_dev);
638 }
639
640 falcon_stop_nic_stats(efx);
641 falcon_deconfigure_mac_wrapper(efx);
642
643 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
644 if (LOOPBACK_INTERNAL(efx))
645 efx->phy_mode |= PHY_MODE_TX_DISABLED;
646 else
647 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
648 efx->phy_op->reconfigure(efx);
649
650 if (falcon_switch_mac(efx))
651 goto fail;
652
653 efx->mac_op->reconfigure(efx);
654
655 falcon_start_nic_stats(efx);
656
657 /* Inform kernel of loss/gain of carrier */
658 efx_link_status_changed(efx);
659 return;
660
661 fail:
662 EFX_ERR(efx, "failed to reconfigure MAC\n");
663 efx->port_enabled = false;
664 efx_fini_port(efx);
665 }
666
667 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
668 * disabled. */
669 void efx_reconfigure_port(struct efx_nic *efx)
670 {
671 EFX_ASSERT_RESET_SERIALISED(efx);
672
673 mutex_lock(&efx->mac_lock);
674 __efx_reconfigure_port(efx);
675 mutex_unlock(&efx->mac_lock);
676 }
677
678 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
679 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
680 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
681 static void efx_phy_work(struct work_struct *data)
682 {
683 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
684
685 mutex_lock(&efx->mac_lock);
686 if (efx->port_enabled)
687 __efx_reconfigure_port(efx);
688 mutex_unlock(&efx->mac_lock);
689 }
690
691 /* Asynchronous work item for changing MAC promiscuity and multicast
692 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
693 * MAC directly. */
694 static void efx_mac_work(struct work_struct *data)
695 {
696 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
697
698 mutex_lock(&efx->mac_lock);
699 if (efx->port_enabled) {
700 falcon_push_multicast_hash(efx);
701 efx->mac_op->reconfigure(efx);
702 }
703 mutex_unlock(&efx->mac_lock);
704 }
705
706 static int efx_probe_port(struct efx_nic *efx)
707 {
708 int rc;
709
710 EFX_LOG(efx, "create port\n");
711
712 /* Connect up MAC/PHY operations table and read MAC address */
713 rc = falcon_probe_port(efx);
714 if (rc)
715 goto err;
716
717 if (phy_flash_cfg)
718 efx->phy_mode = PHY_MODE_SPECIAL;
719
720 /* Sanity check MAC address */
721 if (is_valid_ether_addr(efx->mac_address)) {
722 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
723 } else {
724 EFX_ERR(efx, "invalid MAC address %pM\n",
725 efx->mac_address);
726 if (!allow_bad_hwaddr) {
727 rc = -EINVAL;
728 goto err;
729 }
730 random_ether_addr(efx->net_dev->dev_addr);
731 EFX_INFO(efx, "using locally-generated MAC %pM\n",
732 efx->net_dev->dev_addr);
733 }
734
735 return 0;
736
737 err:
738 efx_remove_port(efx);
739 return rc;
740 }
741
742 static int efx_init_port(struct efx_nic *efx)
743 {
744 int rc;
745
746 EFX_LOG(efx, "init port\n");
747
748 mutex_lock(&efx->mac_lock);
749
750 rc = efx->phy_op->init(efx);
751 if (rc)
752 goto fail1;
753 efx->phy_op->reconfigure(efx);
754 rc = falcon_switch_mac(efx);
755 if (rc)
756 goto fail2;
757 efx->mac_op->reconfigure(efx);
758
759 efx->port_initialized = true;
760
761 mutex_unlock(&efx->mac_lock);
762 return 0;
763
764 fail2:
765 efx->phy_op->fini(efx);
766 fail1:
767 mutex_unlock(&efx->mac_lock);
768 return rc;
769 }
770
771 /* Allow efx_reconfigure_port() to be scheduled, and close the window
772 * between efx_stop_port and efx_flush_all whereby a previously scheduled
773 * efx_phy_work()/efx_mac_work() may have been cancelled */
774 static void efx_start_port(struct efx_nic *efx)
775 {
776 EFX_LOG(efx, "start port\n");
777 BUG_ON(efx->port_enabled);
778
779 mutex_lock(&efx->mac_lock);
780 efx->port_enabled = true;
781
782 /* efx_mac_work() might have been scheduled after efx_stop_port(),
783 * and then cancelled by efx_flush_all() */
784 falcon_push_multicast_hash(efx);
785 efx->mac_op->reconfigure(efx);
786
787 mutex_unlock(&efx->mac_lock);
788 }
789
790 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
791 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
792 * and efx_mac_work may still be scheduled via NAPI processing until
793 * efx_flush_all() is called */
794 static void efx_stop_port(struct efx_nic *efx)
795 {
796 EFX_LOG(efx, "stop port\n");
797
798 mutex_lock(&efx->mac_lock);
799 efx->port_enabled = false;
800 mutex_unlock(&efx->mac_lock);
801
802 /* Serialise against efx_set_multicast_list() */
803 if (efx_dev_registered(efx)) {
804 netif_addr_lock_bh(efx->net_dev);
805 netif_addr_unlock_bh(efx->net_dev);
806 }
807 }
808
809 static void efx_fini_port(struct efx_nic *efx)
810 {
811 EFX_LOG(efx, "shut down port\n");
812
813 if (!efx->port_initialized)
814 return;
815
816 efx->phy_op->fini(efx);
817 efx->port_initialized = false;
818
819 efx->link_state.up = false;
820 efx_link_status_changed(efx);
821 }
822
823 static void efx_remove_port(struct efx_nic *efx)
824 {
825 EFX_LOG(efx, "destroying port\n");
826
827 falcon_remove_port(efx);
828 }
829
830 /**************************************************************************
831 *
832 * NIC handling
833 *
834 **************************************************************************/
835
836 /* This configures the PCI device to enable I/O and DMA. */
837 static int efx_init_io(struct efx_nic *efx)
838 {
839 struct pci_dev *pci_dev = efx->pci_dev;
840 dma_addr_t dma_mask = efx->type->max_dma_mask;
841 int rc;
842
843 EFX_LOG(efx, "initialising I/O\n");
844
845 rc = pci_enable_device(pci_dev);
846 if (rc) {
847 EFX_ERR(efx, "failed to enable PCI device\n");
848 goto fail1;
849 }
850
851 pci_set_master(pci_dev);
852
853 /* Set the PCI DMA mask. Try all possibilities from our
854 * genuine mask down to 32 bits, because some architectures
855 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
856 * masks event though they reject 46 bit masks.
857 */
858 while (dma_mask > 0x7fffffffUL) {
859 if (pci_dma_supported(pci_dev, dma_mask) &&
860 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
861 break;
862 dma_mask >>= 1;
863 }
864 if (rc) {
865 EFX_ERR(efx, "could not find a suitable DMA mask\n");
866 goto fail2;
867 }
868 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
869 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
870 if (rc) {
871 /* pci_set_consistent_dma_mask() is not *allowed* to
872 * fail with a mask that pci_set_dma_mask() accepted,
873 * but just in case...
874 */
875 EFX_ERR(efx, "failed to set consistent DMA mask\n");
876 goto fail2;
877 }
878
879 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
880 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
881 if (rc) {
882 EFX_ERR(efx, "request for memory BAR failed\n");
883 rc = -EIO;
884 goto fail3;
885 }
886 efx->membase = ioremap_nocache(efx->membase_phys,
887 efx->type->mem_map_size);
888 if (!efx->membase) {
889 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
890 (unsigned long long)efx->membase_phys,
891 efx->type->mem_map_size);
892 rc = -ENOMEM;
893 goto fail4;
894 }
895 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
896 (unsigned long long)efx->membase_phys,
897 efx->type->mem_map_size, efx->membase);
898
899 return 0;
900
901 fail4:
902 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
903 fail3:
904 efx->membase_phys = 0;
905 fail2:
906 pci_disable_device(efx->pci_dev);
907 fail1:
908 return rc;
909 }
910
911 static void efx_fini_io(struct efx_nic *efx)
912 {
913 EFX_LOG(efx, "shutting down I/O\n");
914
915 if (efx->membase) {
916 iounmap(efx->membase);
917 efx->membase = NULL;
918 }
919
920 if (efx->membase_phys) {
921 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
922 efx->membase_phys = 0;
923 }
924
925 pci_disable_device(efx->pci_dev);
926 }
927
928 /* Get number of RX queues wanted. Return number of online CPU
929 * packages in the expectation that an IRQ balancer will spread
930 * interrupts across them. */
931 static int efx_wanted_rx_queues(void)
932 {
933 cpumask_var_t core_mask;
934 int count;
935 int cpu;
936
937 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
938 printk(KERN_WARNING
939 "sfc: RSS disabled due to allocation failure\n");
940 return 1;
941 }
942
943 count = 0;
944 for_each_online_cpu(cpu) {
945 if (!cpumask_test_cpu(cpu, core_mask)) {
946 ++count;
947 cpumask_or(core_mask, core_mask,
948 topology_core_cpumask(cpu));
949 }
950 }
951
952 free_cpumask_var(core_mask);
953 return count;
954 }
955
956 /* Probe the number and type of interrupts we are able to obtain, and
957 * the resulting numbers of channels and RX queues.
958 */
959 static void efx_probe_interrupts(struct efx_nic *efx)
960 {
961 int max_channels =
962 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
963 int rc, i;
964
965 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
966 struct msix_entry xentries[EFX_MAX_CHANNELS];
967 int wanted_ints;
968 int rx_queues;
969
970 /* We want one RX queue and interrupt per CPU package
971 * (or as specified by the rss_cpus module parameter).
972 * We will need one channel per interrupt.
973 */
974 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
975 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
976 wanted_ints = min(wanted_ints, max_channels);
977
978 for (i = 0; i < wanted_ints; i++)
979 xentries[i].entry = i;
980 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
981 if (rc > 0) {
982 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
983 " available (%d < %d).\n", rc, wanted_ints);
984 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
985 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
986 wanted_ints = rc;
987 rc = pci_enable_msix(efx->pci_dev, xentries,
988 wanted_ints);
989 }
990
991 if (rc == 0) {
992 efx->n_rx_queues = min(rx_queues, wanted_ints);
993 efx->n_channels = wanted_ints;
994 for (i = 0; i < wanted_ints; i++)
995 efx->channel[i].irq = xentries[i].vector;
996 } else {
997 /* Fall back to single channel MSI */
998 efx->interrupt_mode = EFX_INT_MODE_MSI;
999 EFX_ERR(efx, "could not enable MSI-X\n");
1000 }
1001 }
1002
1003 /* Try single interrupt MSI */
1004 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1005 efx->n_rx_queues = 1;
1006 efx->n_channels = 1;
1007 rc = pci_enable_msi(efx->pci_dev);
1008 if (rc == 0) {
1009 efx->channel[0].irq = efx->pci_dev->irq;
1010 } else {
1011 EFX_ERR(efx, "could not enable MSI\n");
1012 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1013 }
1014 }
1015
1016 /* Assume legacy interrupts */
1017 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1018 efx->n_rx_queues = 1;
1019 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1020 efx->legacy_irq = efx->pci_dev->irq;
1021 }
1022 }
1023
1024 static void efx_remove_interrupts(struct efx_nic *efx)
1025 {
1026 struct efx_channel *channel;
1027
1028 /* Remove MSI/MSI-X interrupts */
1029 efx_for_each_channel(channel, efx)
1030 channel->irq = 0;
1031 pci_disable_msi(efx->pci_dev);
1032 pci_disable_msix(efx->pci_dev);
1033
1034 /* Remove legacy interrupt */
1035 efx->legacy_irq = 0;
1036 }
1037
1038 static void efx_set_channels(struct efx_nic *efx)
1039 {
1040 struct efx_tx_queue *tx_queue;
1041 struct efx_rx_queue *rx_queue;
1042
1043 efx_for_each_tx_queue(tx_queue, efx) {
1044 if (separate_tx_channels)
1045 tx_queue->channel = &efx->channel[efx->n_channels-1];
1046 else
1047 tx_queue->channel = &efx->channel[0];
1048 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1049 }
1050
1051 efx_for_each_rx_queue(rx_queue, efx) {
1052 rx_queue->channel = &efx->channel[rx_queue->queue];
1053 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1054 }
1055 }
1056
1057 static int efx_probe_nic(struct efx_nic *efx)
1058 {
1059 int rc;
1060
1061 EFX_LOG(efx, "creating NIC\n");
1062
1063 /* Carry out hardware-type specific initialisation */
1064 rc = falcon_probe_nic(efx);
1065 if (rc)
1066 return rc;
1067
1068 /* Determine the number of channels and RX queues by trying to hook
1069 * in MSI-X interrupts. */
1070 efx_probe_interrupts(efx);
1071
1072 efx_set_channels(efx);
1073
1074 /* Initialise the interrupt moderation settings */
1075 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1076
1077 return 0;
1078 }
1079
1080 static void efx_remove_nic(struct efx_nic *efx)
1081 {
1082 EFX_LOG(efx, "destroying NIC\n");
1083
1084 efx_remove_interrupts(efx);
1085 falcon_remove_nic(efx);
1086 }
1087
1088 /**************************************************************************
1089 *
1090 * NIC startup/shutdown
1091 *
1092 *************************************************************************/
1093
1094 static int efx_probe_all(struct efx_nic *efx)
1095 {
1096 struct efx_channel *channel;
1097 int rc;
1098
1099 /* Create NIC */
1100 rc = efx_probe_nic(efx);
1101 if (rc) {
1102 EFX_ERR(efx, "failed to create NIC\n");
1103 goto fail1;
1104 }
1105
1106 /* Create port */
1107 rc = efx_probe_port(efx);
1108 if (rc) {
1109 EFX_ERR(efx, "failed to create port\n");
1110 goto fail2;
1111 }
1112
1113 /* Create channels */
1114 efx_for_each_channel(channel, efx) {
1115 rc = efx_probe_channel(channel);
1116 if (rc) {
1117 EFX_ERR(efx, "failed to create channel %d\n",
1118 channel->channel);
1119 goto fail3;
1120 }
1121 }
1122 efx_set_channel_names(efx);
1123
1124 return 0;
1125
1126 fail3:
1127 efx_for_each_channel(channel, efx)
1128 efx_remove_channel(channel);
1129 efx_remove_port(efx);
1130 fail2:
1131 efx_remove_nic(efx);
1132 fail1:
1133 return rc;
1134 }
1135
1136 /* Called after previous invocation(s) of efx_stop_all, restarts the
1137 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1138 * and ensures that the port is scheduled to be reconfigured.
1139 * This function is safe to call multiple times when the NIC is in any
1140 * state. */
1141 static void efx_start_all(struct efx_nic *efx)
1142 {
1143 struct efx_channel *channel;
1144
1145 EFX_ASSERT_RESET_SERIALISED(efx);
1146
1147 /* Check that it is appropriate to restart the interface. All
1148 * of these flags are safe to read under just the rtnl lock */
1149 if (efx->port_enabled)
1150 return;
1151 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1152 return;
1153 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1154 return;
1155
1156 /* Mark the port as enabled so port reconfigurations can start, then
1157 * restart the transmit interface early so the watchdog timer stops */
1158 efx_start_port(efx);
1159 if (efx_dev_registered(efx))
1160 efx_wake_queue(efx);
1161
1162 efx_for_each_channel(channel, efx)
1163 efx_start_channel(channel);
1164
1165 falcon_enable_interrupts(efx);
1166
1167 /* Start hardware monitor if we're in RUNNING */
1168 if (efx->state == STATE_RUNNING)
1169 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1170 efx_monitor_interval);
1171
1172 falcon_start_nic_stats(efx);
1173 }
1174
1175 /* Flush all delayed work. Should only be called when no more delayed work
1176 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1177 * since we're holding the rtnl_lock at this point. */
1178 static void efx_flush_all(struct efx_nic *efx)
1179 {
1180 struct efx_rx_queue *rx_queue;
1181
1182 /* Make sure the hardware monitor is stopped */
1183 cancel_delayed_work_sync(&efx->monitor_work);
1184
1185 /* Ensure that all RX slow refills are complete. */
1186 efx_for_each_rx_queue(rx_queue, efx)
1187 cancel_delayed_work_sync(&rx_queue->work);
1188
1189 /* Stop scheduled port reconfigurations */
1190 cancel_work_sync(&efx->mac_work);
1191 cancel_work_sync(&efx->phy_work);
1192
1193 }
1194
1195 /* Quiesce hardware and software without bringing the link down.
1196 * Safe to call multiple times, when the nic and interface is in any
1197 * state. The caller is guaranteed to subsequently be in a position
1198 * to modify any hardware and software state they see fit without
1199 * taking locks. */
1200 static void efx_stop_all(struct efx_nic *efx)
1201 {
1202 struct efx_channel *channel;
1203
1204 EFX_ASSERT_RESET_SERIALISED(efx);
1205
1206 /* port_enabled can be read safely under the rtnl lock */
1207 if (!efx->port_enabled)
1208 return;
1209
1210 falcon_stop_nic_stats(efx);
1211
1212 /* Disable interrupts and wait for ISR to complete */
1213 falcon_disable_interrupts(efx);
1214 if (efx->legacy_irq)
1215 synchronize_irq(efx->legacy_irq);
1216 efx_for_each_channel(channel, efx) {
1217 if (channel->irq)
1218 synchronize_irq(channel->irq);
1219 }
1220
1221 /* Stop all NAPI processing and synchronous rx refills */
1222 efx_for_each_channel(channel, efx)
1223 efx_stop_channel(channel);
1224
1225 /* Stop all asynchronous port reconfigurations. Since all
1226 * event processing has already been stopped, there is no
1227 * window to loose phy events */
1228 efx_stop_port(efx);
1229
1230 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1231 efx_flush_all(efx);
1232
1233 /* Isolate the MAC from the TX and RX engines, so that queue
1234 * flushes will complete in a timely fashion. */
1235 falcon_deconfigure_mac_wrapper(efx);
1236 msleep(10); /* Let the Rx FIFO drain */
1237 falcon_drain_tx_fifo(efx);
1238
1239 /* Stop the kernel transmit interface late, so the watchdog
1240 * timer isn't ticking over the flush */
1241 if (efx_dev_registered(efx)) {
1242 efx_stop_queue(efx);
1243 netif_tx_lock_bh(efx->net_dev);
1244 netif_tx_unlock_bh(efx->net_dev);
1245 }
1246 }
1247
1248 static void efx_remove_all(struct efx_nic *efx)
1249 {
1250 struct efx_channel *channel;
1251
1252 efx_for_each_channel(channel, efx)
1253 efx_remove_channel(channel);
1254 efx_remove_port(efx);
1255 efx_remove_nic(efx);
1256 }
1257
1258 /**************************************************************************
1259 *
1260 * Interrupt moderation
1261 *
1262 **************************************************************************/
1263
1264 static unsigned irq_mod_ticks(int usecs, int resolution)
1265 {
1266 if (usecs <= 0)
1267 return 0; /* cannot receive interrupts ahead of time :-) */
1268 if (usecs < resolution)
1269 return 1; /* never round down to 0 */
1270 return usecs / resolution;
1271 }
1272
1273 /* Set interrupt moderation parameters */
1274 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1275 bool rx_adaptive)
1276 {
1277 struct efx_tx_queue *tx_queue;
1278 struct efx_rx_queue *rx_queue;
1279 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1280 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1281
1282 EFX_ASSERT_RESET_SERIALISED(efx);
1283
1284 efx_for_each_tx_queue(tx_queue, efx)
1285 tx_queue->channel->irq_moderation = tx_ticks;
1286
1287 efx->irq_rx_adaptive = rx_adaptive;
1288 efx->irq_rx_moderation = rx_ticks;
1289 efx_for_each_rx_queue(rx_queue, efx)
1290 rx_queue->channel->irq_moderation = rx_ticks;
1291 }
1292
1293 /**************************************************************************
1294 *
1295 * Hardware monitor
1296 *
1297 **************************************************************************/
1298
1299 /* Run periodically off the general workqueue. Serialised against
1300 * efx_reconfigure_port via the mac_lock */
1301 static void efx_monitor(struct work_struct *data)
1302 {
1303 struct efx_nic *efx = container_of(data, struct efx_nic,
1304 monitor_work.work);
1305
1306 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1307 raw_smp_processor_id());
1308
1309 /* If the mac_lock is already held then it is likely a port
1310 * reconfiguration is already in place, which will likely do
1311 * most of the work of check_hw() anyway. */
1312 if (!mutex_trylock(&efx->mac_lock))
1313 goto out_requeue;
1314 if (!efx->port_enabled)
1315 goto out_unlock;
1316 falcon_monitor(efx);
1317
1318 out_unlock:
1319 mutex_unlock(&efx->mac_lock);
1320 out_requeue:
1321 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1322 efx_monitor_interval);
1323 }
1324
1325 /**************************************************************************
1326 *
1327 * ioctls
1328 *
1329 *************************************************************************/
1330
1331 /* Net device ioctl
1332 * Context: process, rtnl_lock() held.
1333 */
1334 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1335 {
1336 struct efx_nic *efx = netdev_priv(net_dev);
1337 struct mii_ioctl_data *data = if_mii(ifr);
1338
1339 EFX_ASSERT_RESET_SERIALISED(efx);
1340
1341 /* Convert phy_id from older PRTAD/DEVAD format */
1342 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1343 (data->phy_id & 0xfc00) == 0x0400)
1344 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1345
1346 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1347 }
1348
1349 /**************************************************************************
1350 *
1351 * NAPI interface
1352 *
1353 **************************************************************************/
1354
1355 static int efx_init_napi(struct efx_nic *efx)
1356 {
1357 struct efx_channel *channel;
1358
1359 efx_for_each_channel(channel, efx) {
1360 channel->napi_dev = efx->net_dev;
1361 netif_napi_add(channel->napi_dev, &channel->napi_str,
1362 efx_poll, napi_weight);
1363 }
1364 return 0;
1365 }
1366
1367 static void efx_fini_napi(struct efx_nic *efx)
1368 {
1369 struct efx_channel *channel;
1370
1371 efx_for_each_channel(channel, efx) {
1372 if (channel->napi_dev)
1373 netif_napi_del(&channel->napi_str);
1374 channel->napi_dev = NULL;
1375 }
1376 }
1377
1378 /**************************************************************************
1379 *
1380 * Kernel netpoll interface
1381 *
1382 *************************************************************************/
1383
1384 #ifdef CONFIG_NET_POLL_CONTROLLER
1385
1386 /* Although in the common case interrupts will be disabled, this is not
1387 * guaranteed. However, all our work happens inside the NAPI callback,
1388 * so no locking is required.
1389 */
1390 static void efx_netpoll(struct net_device *net_dev)
1391 {
1392 struct efx_nic *efx = netdev_priv(net_dev);
1393 struct efx_channel *channel;
1394
1395 efx_for_each_channel(channel, efx)
1396 efx_schedule_channel(channel);
1397 }
1398
1399 #endif
1400
1401 /**************************************************************************
1402 *
1403 * Kernel net device interface
1404 *
1405 *************************************************************************/
1406
1407 /* Context: process, rtnl_lock() held. */
1408 static int efx_net_open(struct net_device *net_dev)
1409 {
1410 struct efx_nic *efx = netdev_priv(net_dev);
1411 EFX_ASSERT_RESET_SERIALISED(efx);
1412
1413 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1414 raw_smp_processor_id());
1415
1416 if (efx->state == STATE_DISABLED)
1417 return -EIO;
1418 if (efx->phy_mode & PHY_MODE_SPECIAL)
1419 return -EBUSY;
1420
1421 efx_start_all(efx);
1422 return 0;
1423 }
1424
1425 /* Context: process, rtnl_lock() held.
1426 * Note that the kernel will ignore our return code; this method
1427 * should really be a void.
1428 */
1429 static int efx_net_stop(struct net_device *net_dev)
1430 {
1431 struct efx_nic *efx = netdev_priv(net_dev);
1432
1433 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1434 raw_smp_processor_id());
1435
1436 if (efx->state != STATE_DISABLED) {
1437 /* Stop the device and flush all the channels */
1438 efx_stop_all(efx);
1439 efx_fini_channels(efx);
1440 efx_init_channels(efx);
1441 }
1442
1443 return 0;
1444 }
1445
1446 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1447 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1448 {
1449 struct efx_nic *efx = netdev_priv(net_dev);
1450 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1451 struct net_device_stats *stats = &net_dev->stats;
1452
1453 spin_lock_bh(&efx->stats_lock);
1454 falcon_update_nic_stats(efx);
1455 spin_unlock_bh(&efx->stats_lock);
1456
1457 stats->rx_packets = mac_stats->rx_packets;
1458 stats->tx_packets = mac_stats->tx_packets;
1459 stats->rx_bytes = mac_stats->rx_bytes;
1460 stats->tx_bytes = mac_stats->tx_bytes;
1461 stats->multicast = mac_stats->rx_multicast;
1462 stats->collisions = mac_stats->tx_collision;
1463 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1464 mac_stats->rx_length_error);
1465 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1466 stats->rx_crc_errors = mac_stats->rx_bad;
1467 stats->rx_frame_errors = mac_stats->rx_align_error;
1468 stats->rx_fifo_errors = mac_stats->rx_overflow;
1469 stats->rx_missed_errors = mac_stats->rx_missed;
1470 stats->tx_window_errors = mac_stats->tx_late_collision;
1471
1472 stats->rx_errors = (stats->rx_length_errors +
1473 stats->rx_over_errors +
1474 stats->rx_crc_errors +
1475 stats->rx_frame_errors +
1476 stats->rx_fifo_errors +
1477 stats->rx_missed_errors +
1478 mac_stats->rx_symbol_error);
1479 stats->tx_errors = (stats->tx_window_errors +
1480 mac_stats->tx_bad);
1481
1482 return stats;
1483 }
1484
1485 /* Context: netif_tx_lock held, BHs disabled. */
1486 static void efx_watchdog(struct net_device *net_dev)
1487 {
1488 struct efx_nic *efx = netdev_priv(net_dev);
1489
1490 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1491 " resetting channels\n",
1492 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1493
1494 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1495 }
1496
1497
1498 /* Context: process, rtnl_lock() held. */
1499 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1500 {
1501 struct efx_nic *efx = netdev_priv(net_dev);
1502 int rc = 0;
1503
1504 EFX_ASSERT_RESET_SERIALISED(efx);
1505
1506 if (new_mtu > EFX_MAX_MTU)
1507 return -EINVAL;
1508
1509 efx_stop_all(efx);
1510
1511 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1512
1513 efx_fini_channels(efx);
1514 net_dev->mtu = new_mtu;
1515 efx_init_channels(efx);
1516
1517 efx_start_all(efx);
1518 return rc;
1519 }
1520
1521 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1522 {
1523 struct efx_nic *efx = netdev_priv(net_dev);
1524 struct sockaddr *addr = data;
1525 char *new_addr = addr->sa_data;
1526
1527 EFX_ASSERT_RESET_SERIALISED(efx);
1528
1529 if (!is_valid_ether_addr(new_addr)) {
1530 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1531 new_addr);
1532 return -EINVAL;
1533 }
1534
1535 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1536
1537 /* Reconfigure the MAC */
1538 efx_reconfigure_port(efx);
1539
1540 return 0;
1541 }
1542
1543 /* Context: netif_addr_lock held, BHs disabled. */
1544 static void efx_set_multicast_list(struct net_device *net_dev)
1545 {
1546 struct efx_nic *efx = netdev_priv(net_dev);
1547 struct dev_mc_list *mc_list = net_dev->mc_list;
1548 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1549 u32 crc;
1550 int bit;
1551 int i;
1552
1553 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1554
1555 /* Build multicast hash table */
1556 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1557 memset(mc_hash, 0xff, sizeof(*mc_hash));
1558 } else {
1559 memset(mc_hash, 0x00, sizeof(*mc_hash));
1560 for (i = 0; i < net_dev->mc_count; i++) {
1561 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1562 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1563 set_bit_le(bit, mc_hash->byte);
1564 mc_list = mc_list->next;
1565 }
1566
1567 /* Broadcast packets go through the multicast hash filter.
1568 * ether_crc_le() of the broadcast address is 0xbe2612ff
1569 * so we always add bit 0xff to the mask.
1570 */
1571 set_bit_le(0xff, mc_hash->byte);
1572 }
1573
1574 if (efx->port_enabled)
1575 queue_work(efx->workqueue, &efx->mac_work);
1576 /* Otherwise efx_start_port() will do this */
1577 }
1578
1579 static const struct net_device_ops efx_netdev_ops = {
1580 .ndo_open = efx_net_open,
1581 .ndo_stop = efx_net_stop,
1582 .ndo_get_stats = efx_net_stats,
1583 .ndo_tx_timeout = efx_watchdog,
1584 .ndo_start_xmit = efx_hard_start_xmit,
1585 .ndo_validate_addr = eth_validate_addr,
1586 .ndo_do_ioctl = efx_ioctl,
1587 .ndo_change_mtu = efx_change_mtu,
1588 .ndo_set_mac_address = efx_set_mac_address,
1589 .ndo_set_multicast_list = efx_set_multicast_list,
1590 #ifdef CONFIG_NET_POLL_CONTROLLER
1591 .ndo_poll_controller = efx_netpoll,
1592 #endif
1593 };
1594
1595 static void efx_update_name(struct efx_nic *efx)
1596 {
1597 strcpy(efx->name, efx->net_dev->name);
1598 efx_mtd_rename(efx);
1599 efx_set_channel_names(efx);
1600 }
1601
1602 static int efx_netdev_event(struct notifier_block *this,
1603 unsigned long event, void *ptr)
1604 {
1605 struct net_device *net_dev = ptr;
1606
1607 if (net_dev->netdev_ops == &efx_netdev_ops &&
1608 event == NETDEV_CHANGENAME)
1609 efx_update_name(netdev_priv(net_dev));
1610
1611 return NOTIFY_DONE;
1612 }
1613
1614 static struct notifier_block efx_netdev_notifier = {
1615 .notifier_call = efx_netdev_event,
1616 };
1617
1618 static ssize_t
1619 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1620 {
1621 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1622 return sprintf(buf, "%d\n", efx->phy_type);
1623 }
1624 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1625
1626 static int efx_register_netdev(struct efx_nic *efx)
1627 {
1628 struct net_device *net_dev = efx->net_dev;
1629 int rc;
1630
1631 net_dev->watchdog_timeo = 5 * HZ;
1632 net_dev->irq = efx->pci_dev->irq;
1633 net_dev->netdev_ops = &efx_netdev_ops;
1634 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1635 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1636
1637 /* Clear MAC statistics */
1638 efx->mac_op->update_stats(efx);
1639 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1640
1641 rtnl_lock();
1642
1643 rc = dev_alloc_name(net_dev, net_dev->name);
1644 if (rc < 0)
1645 goto fail_locked;
1646 efx_update_name(efx);
1647
1648 rc = register_netdevice(net_dev);
1649 if (rc)
1650 goto fail_locked;
1651
1652 /* Always start with carrier off; PHY events will detect the link */
1653 netif_carrier_off(efx->net_dev);
1654
1655 rtnl_unlock();
1656
1657 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1658 if (rc) {
1659 EFX_ERR(efx, "failed to init net dev attributes\n");
1660 goto fail_registered;
1661 }
1662
1663 return 0;
1664
1665 fail_locked:
1666 rtnl_unlock();
1667 EFX_ERR(efx, "could not register net dev\n");
1668 return rc;
1669
1670 fail_registered:
1671 unregister_netdev(net_dev);
1672 return rc;
1673 }
1674
1675 static void efx_unregister_netdev(struct efx_nic *efx)
1676 {
1677 struct efx_tx_queue *tx_queue;
1678
1679 if (!efx->net_dev)
1680 return;
1681
1682 BUG_ON(netdev_priv(efx->net_dev) != efx);
1683
1684 /* Free up any skbs still remaining. This has to happen before
1685 * we try to unregister the netdev as running their destructors
1686 * may be needed to get the device ref. count to 0. */
1687 efx_for_each_tx_queue(tx_queue, efx)
1688 efx_release_tx_buffers(tx_queue);
1689
1690 if (efx_dev_registered(efx)) {
1691 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1692 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1693 unregister_netdev(efx->net_dev);
1694 }
1695 }
1696
1697 /**************************************************************************
1698 *
1699 * Device reset and suspend
1700 *
1701 **************************************************************************/
1702
1703 /* Tears down the entire software state and most of the hardware state
1704 * before reset. */
1705 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1706 struct ethtool_cmd *ecmd)
1707 {
1708 EFX_ASSERT_RESET_SERIALISED(efx);
1709
1710 efx_stop_all(efx);
1711 mutex_lock(&efx->mac_lock);
1712 mutex_lock(&efx->spi_lock);
1713
1714 efx->phy_op->get_settings(efx, ecmd);
1715
1716 efx_fini_channels(efx);
1717 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1718 efx->phy_op->fini(efx);
1719 }
1720
1721 /* This function will always ensure that the locks acquired in
1722 * efx_reset_down() are released. A failure return code indicates
1723 * that we were unable to reinitialise the hardware, and the
1724 * driver should be disabled. If ok is false, then the rx and tx
1725 * engines are not restarted, pending a RESET_DISABLE. */
1726 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1727 struct ethtool_cmd *ecmd, bool ok)
1728 {
1729 int rc;
1730
1731 EFX_ASSERT_RESET_SERIALISED(efx);
1732
1733 rc = falcon_init_nic(efx);
1734 if (rc) {
1735 EFX_ERR(efx, "failed to initialise NIC\n");
1736 ok = false;
1737 }
1738
1739 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1740 if (ok) {
1741 rc = efx->phy_op->init(efx);
1742 if (rc)
1743 ok = false;
1744 }
1745 if (!ok)
1746 efx->port_initialized = false;
1747 }
1748
1749 if (ok) {
1750 efx_init_channels(efx);
1751
1752 if (efx->phy_op->set_settings(efx, ecmd))
1753 EFX_ERR(efx, "could not restore PHY settings\n");
1754 }
1755
1756 mutex_unlock(&efx->spi_lock);
1757 mutex_unlock(&efx->mac_lock);
1758
1759 if (ok)
1760 efx_start_all(efx);
1761 return rc;
1762 }
1763
1764 /* Reset the NIC as transparently as possible. Do not reset the PHY
1765 * Note that the reset may fail, in which case the card will be left
1766 * in a most-probably-unusable state.
1767 *
1768 * This function will sleep. You cannot reset from within an atomic
1769 * state; use efx_schedule_reset() instead.
1770 *
1771 * Grabs the rtnl_lock.
1772 */
1773 static int efx_reset(struct efx_nic *efx)
1774 {
1775 struct ethtool_cmd ecmd;
1776 enum reset_type method = efx->reset_pending;
1777 int rc = 0;
1778
1779 /* Serialise with kernel interfaces */
1780 rtnl_lock();
1781
1782 /* If we're not RUNNING then don't reset. Leave the reset_pending
1783 * flag set so that efx_pci_probe_main will be retried */
1784 if (efx->state != STATE_RUNNING) {
1785 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1786 goto out_unlock;
1787 }
1788
1789 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1790
1791 efx_reset_down(efx, method, &ecmd);
1792
1793 rc = falcon_reset_hw(efx, method);
1794 if (rc) {
1795 EFX_ERR(efx, "failed to reset hardware\n");
1796 goto out_disable;
1797 }
1798
1799 /* Allow resets to be rescheduled. */
1800 efx->reset_pending = RESET_TYPE_NONE;
1801
1802 /* Reinitialise bus-mastering, which may have been turned off before
1803 * the reset was scheduled. This is still appropriate, even in the
1804 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1805 * can respond to requests. */
1806 pci_set_master(efx->pci_dev);
1807
1808 /* Leave device stopped if necessary */
1809 if (method == RESET_TYPE_DISABLE) {
1810 efx_reset_up(efx, method, &ecmd, false);
1811 rc = -EIO;
1812 } else {
1813 rc = efx_reset_up(efx, method, &ecmd, true);
1814 }
1815
1816 out_disable:
1817 if (rc) {
1818 EFX_ERR(efx, "has been disabled\n");
1819 efx->state = STATE_DISABLED;
1820 dev_close(efx->net_dev);
1821 } else {
1822 EFX_LOG(efx, "reset complete\n");
1823 }
1824
1825 out_unlock:
1826 rtnl_unlock();
1827 return rc;
1828 }
1829
1830 /* The worker thread exists so that code that cannot sleep can
1831 * schedule a reset for later.
1832 */
1833 static void efx_reset_work(struct work_struct *data)
1834 {
1835 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1836
1837 efx_reset(nic);
1838 }
1839
1840 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1841 {
1842 enum reset_type method;
1843
1844 if (efx->reset_pending != RESET_TYPE_NONE) {
1845 EFX_INFO(efx, "quenching already scheduled reset\n");
1846 return;
1847 }
1848
1849 switch (type) {
1850 case RESET_TYPE_INVISIBLE:
1851 case RESET_TYPE_ALL:
1852 case RESET_TYPE_WORLD:
1853 case RESET_TYPE_DISABLE:
1854 method = type;
1855 break;
1856 case RESET_TYPE_RX_RECOVERY:
1857 case RESET_TYPE_RX_DESC_FETCH:
1858 case RESET_TYPE_TX_DESC_FETCH:
1859 case RESET_TYPE_TX_SKIP:
1860 method = RESET_TYPE_INVISIBLE;
1861 break;
1862 default:
1863 method = RESET_TYPE_ALL;
1864 break;
1865 }
1866
1867 if (method != type)
1868 EFX_LOG(efx, "scheduling %s reset for %s\n",
1869 RESET_TYPE(method), RESET_TYPE(type));
1870 else
1871 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1872
1873 efx->reset_pending = method;
1874
1875 queue_work(reset_workqueue, &efx->reset_work);
1876 }
1877
1878 /**************************************************************************
1879 *
1880 * List of NICs we support
1881 *
1882 **************************************************************************/
1883
1884 /* PCI device ID table */
1885 static struct pci_device_id efx_pci_table[] __devinitdata = {
1886 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1887 .driver_data = (unsigned long) &falcon_a_nic_type},
1888 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1889 .driver_data = (unsigned long) &falcon_b_nic_type},
1890 {0} /* end of list */
1891 };
1892
1893 /**************************************************************************
1894 *
1895 * Dummy PHY/MAC operations
1896 *
1897 * Can be used for some unimplemented operations
1898 * Needed so all function pointers are valid and do not have to be tested
1899 * before use
1900 *
1901 **************************************************************************/
1902 int efx_port_dummy_op_int(struct efx_nic *efx)
1903 {
1904 return 0;
1905 }
1906 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1907 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1908 {
1909 }
1910
1911 static struct efx_mac_operations efx_dummy_mac_operations = {
1912 .reconfigure = efx_port_dummy_op_void,
1913 };
1914
1915 static struct efx_phy_operations efx_dummy_phy_operations = {
1916 .init = efx_port_dummy_op_int,
1917 .reconfigure = efx_port_dummy_op_void,
1918 .poll = efx_port_dummy_op_void,
1919 .fini = efx_port_dummy_op_void,
1920 .clear_interrupt = efx_port_dummy_op_void,
1921 };
1922
1923 /**************************************************************************
1924 *
1925 * Data housekeeping
1926 *
1927 **************************************************************************/
1928
1929 /* This zeroes out and then fills in the invariants in a struct
1930 * efx_nic (including all sub-structures).
1931 */
1932 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1933 struct pci_dev *pci_dev, struct net_device *net_dev)
1934 {
1935 struct efx_channel *channel;
1936 struct efx_tx_queue *tx_queue;
1937 struct efx_rx_queue *rx_queue;
1938 int i;
1939
1940 /* Initialise common structures */
1941 memset(efx, 0, sizeof(*efx));
1942 spin_lock_init(&efx->biu_lock);
1943 spin_lock_init(&efx->phy_lock);
1944 mutex_init(&efx->spi_lock);
1945 INIT_WORK(&efx->reset_work, efx_reset_work);
1946 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1947 efx->pci_dev = pci_dev;
1948 efx->state = STATE_INIT;
1949 efx->reset_pending = RESET_TYPE_NONE;
1950 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1951
1952 efx->net_dev = net_dev;
1953 efx->rx_checksum_enabled = true;
1954 spin_lock_init(&efx->netif_stop_lock);
1955 spin_lock_init(&efx->stats_lock);
1956 mutex_init(&efx->mac_lock);
1957 efx->mac_op = &efx_dummy_mac_operations;
1958 efx->phy_op = &efx_dummy_phy_operations;
1959 efx->mdio.dev = net_dev;
1960 INIT_WORK(&efx->phy_work, efx_phy_work);
1961 INIT_WORK(&efx->mac_work, efx_mac_work);
1962 atomic_set(&efx->netif_stop_count, 1);
1963
1964 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1965 channel = &efx->channel[i];
1966 channel->efx = efx;
1967 channel->channel = i;
1968 channel->work_pending = false;
1969 }
1970 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1971 tx_queue = &efx->tx_queue[i];
1972 tx_queue->efx = efx;
1973 tx_queue->queue = i;
1974 tx_queue->buffer = NULL;
1975 tx_queue->channel = &efx->channel[0]; /* for safety */
1976 tx_queue->tso_headers_free = NULL;
1977 }
1978 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1979 rx_queue = &efx->rx_queue[i];
1980 rx_queue->efx = efx;
1981 rx_queue->queue = i;
1982 rx_queue->channel = &efx->channel[0]; /* for safety */
1983 rx_queue->buffer = NULL;
1984 spin_lock_init(&rx_queue->add_lock);
1985 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1986 }
1987
1988 efx->type = type;
1989
1990 /* As close as we can get to guaranteeing that we don't overflow */
1991 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
1992
1993 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1994
1995 /* Higher numbered interrupt modes are less capable! */
1996 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1997 interrupt_mode);
1998
1999 /* Would be good to use the net_dev name, but we're too early */
2000 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2001 pci_name(pci_dev));
2002 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2003 if (!efx->workqueue)
2004 return -ENOMEM;
2005
2006 return 0;
2007 }
2008
2009 static void efx_fini_struct(struct efx_nic *efx)
2010 {
2011 if (efx->workqueue) {
2012 destroy_workqueue(efx->workqueue);
2013 efx->workqueue = NULL;
2014 }
2015 }
2016
2017 /**************************************************************************
2018 *
2019 * PCI interface
2020 *
2021 **************************************************************************/
2022
2023 /* Main body of final NIC shutdown code
2024 * This is called only at module unload (or hotplug removal).
2025 */
2026 static void efx_pci_remove_main(struct efx_nic *efx)
2027 {
2028 falcon_fini_interrupt(efx);
2029 efx_fini_channels(efx);
2030 efx_fini_port(efx);
2031 efx_fini_napi(efx);
2032 efx_remove_all(efx);
2033 }
2034
2035 /* Final NIC shutdown
2036 * This is called only at module unload (or hotplug removal).
2037 */
2038 static void efx_pci_remove(struct pci_dev *pci_dev)
2039 {
2040 struct efx_nic *efx;
2041
2042 efx = pci_get_drvdata(pci_dev);
2043 if (!efx)
2044 return;
2045
2046 /* Mark the NIC as fini, then stop the interface */
2047 rtnl_lock();
2048 efx->state = STATE_FINI;
2049 dev_close(efx->net_dev);
2050
2051 /* Allow any queued efx_resets() to complete */
2052 rtnl_unlock();
2053
2054 efx_unregister_netdev(efx);
2055
2056 efx_mtd_remove(efx);
2057
2058 /* Wait for any scheduled resets to complete. No more will be
2059 * scheduled from this point because efx_stop_all() has been
2060 * called, we are no longer registered with driverlink, and
2061 * the net_device's have been removed. */
2062 cancel_work_sync(&efx->reset_work);
2063
2064 efx_pci_remove_main(efx);
2065
2066 efx_fini_io(efx);
2067 EFX_LOG(efx, "shutdown successful\n");
2068
2069 pci_set_drvdata(pci_dev, NULL);
2070 efx_fini_struct(efx);
2071 free_netdev(efx->net_dev);
2072 };
2073
2074 /* Main body of NIC initialisation
2075 * This is called at module load (or hotplug insertion, theoretically).
2076 */
2077 static int efx_pci_probe_main(struct efx_nic *efx)
2078 {
2079 int rc;
2080
2081 /* Do start-of-day initialisation */
2082 rc = efx_probe_all(efx);
2083 if (rc)
2084 goto fail1;
2085
2086 rc = efx_init_napi(efx);
2087 if (rc)
2088 goto fail2;
2089
2090 rc = falcon_init_nic(efx);
2091 if (rc) {
2092 EFX_ERR(efx, "failed to initialise NIC\n");
2093 goto fail3;
2094 }
2095
2096 rc = efx_init_port(efx);
2097 if (rc) {
2098 EFX_ERR(efx, "failed to initialise port\n");
2099 goto fail4;
2100 }
2101
2102 efx_init_channels(efx);
2103
2104 rc = falcon_init_interrupt(efx);
2105 if (rc)
2106 goto fail5;
2107
2108 return 0;
2109
2110 fail5:
2111 efx_fini_channels(efx);
2112 efx_fini_port(efx);
2113 fail4:
2114 fail3:
2115 efx_fini_napi(efx);
2116 fail2:
2117 efx_remove_all(efx);
2118 fail1:
2119 return rc;
2120 }
2121
2122 /* NIC initialisation
2123 *
2124 * This is called at module load (or hotplug insertion,
2125 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2126 * sets up and registers the network devices with the kernel and hooks
2127 * the interrupt service routine. It does not prepare the device for
2128 * transmission; this is left to the first time one of the network
2129 * interfaces is brought up (i.e. efx_net_open).
2130 */
2131 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2132 const struct pci_device_id *entry)
2133 {
2134 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2135 struct net_device *net_dev;
2136 struct efx_nic *efx;
2137 int i, rc;
2138
2139 /* Allocate and initialise a struct net_device and struct efx_nic */
2140 net_dev = alloc_etherdev(sizeof(*efx));
2141 if (!net_dev)
2142 return -ENOMEM;
2143 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2144 NETIF_F_HIGHDMA | NETIF_F_TSO |
2145 NETIF_F_GRO);
2146 /* Mask for features that also apply to VLAN devices */
2147 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2148 NETIF_F_HIGHDMA | NETIF_F_TSO);
2149 efx = netdev_priv(net_dev);
2150 pci_set_drvdata(pci_dev, efx);
2151 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2152 if (rc)
2153 goto fail1;
2154
2155 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2156
2157 /* Set up basic I/O (BAR mappings etc) */
2158 rc = efx_init_io(efx);
2159 if (rc)
2160 goto fail2;
2161
2162 /* No serialisation is required with the reset path because
2163 * we're in STATE_INIT. */
2164 for (i = 0; i < 5; i++) {
2165 rc = efx_pci_probe_main(efx);
2166
2167 /* Serialise against efx_reset(). No more resets will be
2168 * scheduled since efx_stop_all() has been called, and we
2169 * have not and never have been registered with either
2170 * the rtnetlink or driverlink layers. */
2171 cancel_work_sync(&efx->reset_work);
2172
2173 if (rc == 0) {
2174 if (efx->reset_pending != RESET_TYPE_NONE) {
2175 /* If there was a scheduled reset during
2176 * probe, the NIC is probably hosed anyway */
2177 efx_pci_remove_main(efx);
2178 rc = -EIO;
2179 } else {
2180 break;
2181 }
2182 }
2183
2184 /* Retry if a recoverably reset event has been scheduled */
2185 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2186 (efx->reset_pending != RESET_TYPE_ALL))
2187 goto fail3;
2188
2189 efx->reset_pending = RESET_TYPE_NONE;
2190 }
2191
2192 if (rc) {
2193 EFX_ERR(efx, "Could not reset NIC\n");
2194 goto fail4;
2195 }
2196
2197 /* Switch to the running state before we expose the device to the OS,
2198 * so that dev_open()|efx_start_all() will actually start the device */
2199 efx->state = STATE_RUNNING;
2200
2201 rc = efx_register_netdev(efx);
2202 if (rc)
2203 goto fail5;
2204
2205 EFX_LOG(efx, "initialisation successful\n");
2206
2207 rtnl_lock();
2208 efx_mtd_probe(efx); /* allowed to fail */
2209 rtnl_unlock();
2210 return 0;
2211
2212 fail5:
2213 efx_pci_remove_main(efx);
2214 fail4:
2215 fail3:
2216 efx_fini_io(efx);
2217 fail2:
2218 efx_fini_struct(efx);
2219 fail1:
2220 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2221 free_netdev(net_dev);
2222 return rc;
2223 }
2224
2225 static struct pci_driver efx_pci_driver = {
2226 .name = EFX_DRIVER_NAME,
2227 .id_table = efx_pci_table,
2228 .probe = efx_pci_probe,
2229 .remove = efx_pci_remove,
2230 };
2231
2232 /**************************************************************************
2233 *
2234 * Kernel module interface
2235 *
2236 *************************************************************************/
2237
2238 module_param(interrupt_mode, uint, 0444);
2239 MODULE_PARM_DESC(interrupt_mode,
2240 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2241
2242 static int __init efx_init_module(void)
2243 {
2244 int rc;
2245
2246 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2247
2248 rc = register_netdevice_notifier(&efx_netdev_notifier);
2249 if (rc)
2250 goto err_notifier;
2251
2252 refill_workqueue = create_workqueue("sfc_refill");
2253 if (!refill_workqueue) {
2254 rc = -ENOMEM;
2255 goto err_refill;
2256 }
2257 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2258 if (!reset_workqueue) {
2259 rc = -ENOMEM;
2260 goto err_reset;
2261 }
2262
2263 rc = pci_register_driver(&efx_pci_driver);
2264 if (rc < 0)
2265 goto err_pci;
2266
2267 return 0;
2268
2269 err_pci:
2270 destroy_workqueue(reset_workqueue);
2271 err_reset:
2272 destroy_workqueue(refill_workqueue);
2273 err_refill:
2274 unregister_netdevice_notifier(&efx_netdev_notifier);
2275 err_notifier:
2276 return rc;
2277 }
2278
2279 static void __exit efx_exit_module(void)
2280 {
2281 printk(KERN_INFO "Solarflare NET driver unloading\n");
2282
2283 pci_unregister_driver(&efx_pci_driver);
2284 destroy_workqueue(reset_workqueue);
2285 destroy_workqueue(refill_workqueue);
2286 unregister_netdevice_notifier(&efx_netdev_notifier);
2287
2288 }
2289
2290 module_init(efx_init_module);
2291 module_exit(efx_exit_module);
2292
2293 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2294 "Solarflare Communications");
2295 MODULE_DESCRIPTION("Solarflare Communications network driver");
2296 MODULE_LICENSE("GPL");
2297 MODULE_DEVICE_TABLE(pci, efx_pci_table);