0d0243b7ac3430e753127c240179a5d29d31d3e5
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30
31 #define EFX_MAX_MTU (9 * 1024)
32
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38 static struct workqueue_struct *refill_workqueue;
39
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44 static struct workqueue_struct *reset_workqueue;
45
46 /**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52 /*
53 * Use separate channels for TX and RX events
54 *
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
57 *
58 * This is only used in MSI-X interrupt mode
59 */
60 static unsigned int separate_tx_channels;
61 module_param(separate_tx_channels, uint, 0644);
62 MODULE_PARM_DESC(separate_tx_channels,
63 "Use separate channels for TX and RX");
64
65 /* This is the weight assigned to each of the (per-channel) virtual
66 * NAPI devices.
67 */
68 static int napi_weight = 64;
69
70 /* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
73 */
74 unsigned int efx_monitor_interval = 1 * HZ;
75
76 /* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
82 */
83 static unsigned int allow_bad_hwaddr;
84
85 /* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
87 *
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
90 */
91 static unsigned int rx_irq_mod_usec = 60;
92
93 /* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
95 *
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
101 */
102 static unsigned int tx_irq_mod_usec = 150;
103
104 /* This is the first interrupt mode to try out of:
105 * 0 => MSI-X
106 * 1 => MSI
107 * 2 => legacy
108 */
109 static unsigned int interrupt_mode;
110
111 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
114 *
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
117 */
118 static unsigned int rss_cpus;
119 module_param(rss_cpus, uint, 0444);
120 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
121
122 static int phy_flash_cfg;
123 module_param(phy_flash_cfg, int, 0644);
124 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
125
126 static unsigned irq_adapt_low_thresh = 10000;
127 module_param(irq_adapt_low_thresh, uint, 0644);
128 MODULE_PARM_DESC(irq_adapt_low_thresh,
129 "Threshold score for reducing IRQ moderation");
130
131 static unsigned irq_adapt_high_thresh = 20000;
132 module_param(irq_adapt_high_thresh, uint, 0644);
133 MODULE_PARM_DESC(irq_adapt_high_thresh,
134 "Threshold score for increasing IRQ moderation");
135
136 /**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
145
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
148 if (efx->state == STATE_RUNNING) \
149 ASSERT_RTNL(); \
150 } while (0)
151
152 /**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158 /* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
166 {
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
169
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 !channel->enabled))
172 return 0;
173
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_rx_strategy(channel);
186
187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
188
189 return rx_packets;
190 }
191
192 /* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198 static inline void efx_channel_processed(struct efx_channel *channel)
199 {
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel->work_pending = false;
204 smp_wmb();
205
206 falcon_eventq_read_ack(channel);
207 }
208
209 /* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214 static int efx_poll(struct napi_struct *napi, int budget)
215 {
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
223 rx_packets = efx_process_channel(channel, budget);
224
225 if (rx_packets < budget) {
226 struct efx_nic *efx = channel->efx;
227
228 if (channel->used_flags & EFX_USED_BY_RX &&
229 efx->irq_rx_adaptive &&
230 unlikely(++channel->irq_count == 1000)) {
231 if (unlikely(channel->irq_mod_score <
232 irq_adapt_low_thresh)) {
233 if (channel->irq_moderation > 1) {
234 channel->irq_moderation -= 1;
235 falcon_set_int_moderation(channel);
236 }
237 } else if (unlikely(channel->irq_mod_score >
238 irq_adapt_high_thresh)) {
239 if (channel->irq_moderation <
240 efx->irq_rx_moderation) {
241 channel->irq_moderation += 1;
242 falcon_set_int_moderation(channel);
243 }
244 }
245 channel->irq_count = 0;
246 channel->irq_mod_score = 0;
247 }
248
249 /* There is no race here; although napi_disable() will
250 * only wait for napi_complete(), this isn't a problem
251 * since efx_channel_processed() will have no effect if
252 * interrupts have already been disabled.
253 */
254 napi_complete(napi);
255 efx_channel_processed(channel);
256 }
257
258 return rx_packets;
259 }
260
261 /* Process the eventq of the specified channel immediately on this CPU
262 *
263 * Disable hardware generated interrupts, wait for any existing
264 * processing to finish, then directly poll (and ack ) the eventq.
265 * Finally reenable NAPI and interrupts.
266 *
267 * Since we are touching interrupts the caller should hold the suspend lock
268 */
269 void efx_process_channel_now(struct efx_channel *channel)
270 {
271 struct efx_nic *efx = channel->efx;
272
273 BUG_ON(!channel->used_flags);
274 BUG_ON(!channel->enabled);
275
276 /* Disable interrupts and wait for ISRs to complete */
277 falcon_disable_interrupts(efx);
278 if (efx->legacy_irq)
279 synchronize_irq(efx->legacy_irq);
280 if (channel->irq)
281 synchronize_irq(channel->irq);
282
283 /* Wait for any NAPI processing to complete */
284 napi_disable(&channel->napi_str);
285
286 /* Poll the channel */
287 efx_process_channel(channel, EFX_EVQ_SIZE);
288
289 /* Ack the eventq. This may cause an interrupt to be generated
290 * when they are reenabled */
291 efx_channel_processed(channel);
292
293 napi_enable(&channel->napi_str);
294 falcon_enable_interrupts(efx);
295 }
296
297 /* Create event queue
298 * Event queue memory allocations are done only once. If the channel
299 * is reset, the memory buffer will be reused; this guards against
300 * errors during channel reset and also simplifies interrupt handling.
301 */
302 static int efx_probe_eventq(struct efx_channel *channel)
303 {
304 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
305
306 return falcon_probe_eventq(channel);
307 }
308
309 /* Prepare channel's event queue */
310 static void efx_init_eventq(struct efx_channel *channel)
311 {
312 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
313
314 channel->eventq_read_ptr = 0;
315
316 falcon_init_eventq(channel);
317 }
318
319 static void efx_fini_eventq(struct efx_channel *channel)
320 {
321 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
322
323 falcon_fini_eventq(channel);
324 }
325
326 static void efx_remove_eventq(struct efx_channel *channel)
327 {
328 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
329
330 falcon_remove_eventq(channel);
331 }
332
333 /**************************************************************************
334 *
335 * Channel handling
336 *
337 *************************************************************************/
338
339 static int efx_probe_channel(struct efx_channel *channel)
340 {
341 struct efx_tx_queue *tx_queue;
342 struct efx_rx_queue *rx_queue;
343 int rc;
344
345 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
346
347 rc = efx_probe_eventq(channel);
348 if (rc)
349 goto fail1;
350
351 efx_for_each_channel_tx_queue(tx_queue, channel) {
352 rc = efx_probe_tx_queue(tx_queue);
353 if (rc)
354 goto fail2;
355 }
356
357 efx_for_each_channel_rx_queue(rx_queue, channel) {
358 rc = efx_probe_rx_queue(rx_queue);
359 if (rc)
360 goto fail3;
361 }
362
363 channel->n_rx_frm_trunc = 0;
364
365 return 0;
366
367 fail3:
368 efx_for_each_channel_rx_queue(rx_queue, channel)
369 efx_remove_rx_queue(rx_queue);
370 fail2:
371 efx_for_each_channel_tx_queue(tx_queue, channel)
372 efx_remove_tx_queue(tx_queue);
373 fail1:
374 return rc;
375 }
376
377
378 static void efx_set_channel_names(struct efx_nic *efx)
379 {
380 struct efx_channel *channel;
381 const char *type = "";
382 int number;
383
384 efx_for_each_channel(channel, efx) {
385 number = channel->channel;
386 if (efx->n_channels > efx->n_rx_queues) {
387 if (channel->channel < efx->n_rx_queues) {
388 type = "-rx";
389 } else {
390 type = "-tx";
391 number -= efx->n_rx_queues;
392 }
393 }
394 snprintf(channel->name, sizeof(channel->name),
395 "%s%s-%d", efx->name, type, number);
396 }
397 }
398
399 /* Channels are shutdown and reinitialised whilst the NIC is running
400 * to propagate configuration changes (mtu, checksum offload), or
401 * to clear hardware error conditions
402 */
403 static void efx_init_channels(struct efx_nic *efx)
404 {
405 struct efx_tx_queue *tx_queue;
406 struct efx_rx_queue *rx_queue;
407 struct efx_channel *channel;
408
409 /* Calculate the rx buffer allocation parameters required to
410 * support the current MTU, including padding for header
411 * alignment and overruns.
412 */
413 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
414 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
415 efx->type->rx_buffer_padding);
416 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
417
418 /* Initialise the channels */
419 efx_for_each_channel(channel, efx) {
420 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
421
422 efx_init_eventq(channel);
423
424 efx_for_each_channel_tx_queue(tx_queue, channel)
425 efx_init_tx_queue(tx_queue);
426
427 /* The rx buffer allocation strategy is MTU dependent */
428 efx_rx_strategy(channel);
429
430 efx_for_each_channel_rx_queue(rx_queue, channel)
431 efx_init_rx_queue(rx_queue);
432
433 WARN_ON(channel->rx_pkt != NULL);
434 efx_rx_strategy(channel);
435 }
436 }
437
438 /* This enables event queue processing and packet transmission.
439 *
440 * Note that this function is not allowed to fail, since that would
441 * introduce too much complexity into the suspend/resume path.
442 */
443 static void efx_start_channel(struct efx_channel *channel)
444 {
445 struct efx_rx_queue *rx_queue;
446
447 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
448
449 /* The interrupt handler for this channel may set work_pending
450 * as soon as we enable it. Make sure it's cleared before
451 * then. Similarly, make sure it sees the enabled flag set. */
452 channel->work_pending = false;
453 channel->enabled = true;
454 smp_wmb();
455
456 napi_enable(&channel->napi_str);
457
458 /* Load up RX descriptors */
459 efx_for_each_channel_rx_queue(rx_queue, channel)
460 efx_fast_push_rx_descriptors(rx_queue);
461 }
462
463 /* This disables event queue processing and packet transmission.
464 * This function does not guarantee that all queue processing
465 * (e.g. RX refill) is complete.
466 */
467 static void efx_stop_channel(struct efx_channel *channel)
468 {
469 struct efx_rx_queue *rx_queue;
470
471 if (!channel->enabled)
472 return;
473
474 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
475
476 channel->enabled = false;
477 napi_disable(&channel->napi_str);
478
479 /* Ensure that any worker threads have exited or will be no-ops */
480 efx_for_each_channel_rx_queue(rx_queue, channel) {
481 spin_lock_bh(&rx_queue->add_lock);
482 spin_unlock_bh(&rx_queue->add_lock);
483 }
484 }
485
486 static void efx_fini_channels(struct efx_nic *efx)
487 {
488 struct efx_channel *channel;
489 struct efx_tx_queue *tx_queue;
490 struct efx_rx_queue *rx_queue;
491 int rc;
492
493 EFX_ASSERT_RESET_SERIALISED(efx);
494 BUG_ON(efx->port_enabled);
495
496 rc = falcon_flush_queues(efx);
497 if (rc)
498 EFX_ERR(efx, "failed to flush queues\n");
499 else
500 EFX_LOG(efx, "successfully flushed all queues\n");
501
502 efx_for_each_channel(channel, efx) {
503 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
504
505 efx_for_each_channel_rx_queue(rx_queue, channel)
506 efx_fini_rx_queue(rx_queue);
507 efx_for_each_channel_tx_queue(tx_queue, channel)
508 efx_fini_tx_queue(tx_queue);
509 efx_fini_eventq(channel);
510 }
511 }
512
513 static void efx_remove_channel(struct efx_channel *channel)
514 {
515 struct efx_tx_queue *tx_queue;
516 struct efx_rx_queue *rx_queue;
517
518 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
519
520 efx_for_each_channel_rx_queue(rx_queue, channel)
521 efx_remove_rx_queue(rx_queue);
522 efx_for_each_channel_tx_queue(tx_queue, channel)
523 efx_remove_tx_queue(tx_queue);
524 efx_remove_eventq(channel);
525
526 channel->used_flags = 0;
527 }
528
529 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
530 {
531 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
532 }
533
534 /**************************************************************************
535 *
536 * Port handling
537 *
538 **************************************************************************/
539
540 /* This ensures that the kernel is kept informed (via
541 * netif_carrier_on/off) of the link status, and also maintains the
542 * link status's stop on the port's TX queue.
543 */
544 static void efx_link_status_changed(struct efx_nic *efx)
545 {
546 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
547 * that no events are triggered between unregister_netdev() and the
548 * driver unloading. A more general condition is that NETDEV_CHANGE
549 * can only be generated between NETDEV_UP and NETDEV_DOWN */
550 if (!netif_running(efx->net_dev))
551 return;
552
553 if (efx->port_inhibited) {
554 netif_carrier_off(efx->net_dev);
555 return;
556 }
557
558 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
559 efx->n_link_state_changes++;
560
561 if (efx->link_up)
562 netif_carrier_on(efx->net_dev);
563 else
564 netif_carrier_off(efx->net_dev);
565 }
566
567 /* Status message for kernel log */
568 if (efx->link_up) {
569 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
570 efx->link_speed, efx->link_fd ? "full" : "half",
571 efx->net_dev->mtu,
572 (efx->promiscuous ? " [PROMISC]" : ""));
573 } else {
574 EFX_INFO(efx, "link down\n");
575 }
576
577 }
578
579 static void efx_fini_port(struct efx_nic *efx);
580
581 /* This call reinitialises the MAC to pick up new PHY settings. The
582 * caller must hold the mac_lock */
583 void __efx_reconfigure_port(struct efx_nic *efx)
584 {
585 WARN_ON(!mutex_is_locked(&efx->mac_lock));
586
587 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
588 raw_smp_processor_id());
589
590 /* Serialise the promiscuous flag with efx_set_multicast_list. */
591 if (efx_dev_registered(efx)) {
592 netif_addr_lock_bh(efx->net_dev);
593 netif_addr_unlock_bh(efx->net_dev);
594 }
595
596 falcon_deconfigure_mac_wrapper(efx);
597
598 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
599 if (LOOPBACK_INTERNAL(efx))
600 efx->phy_mode |= PHY_MODE_TX_DISABLED;
601 else
602 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
603 efx->phy_op->reconfigure(efx);
604
605 if (falcon_switch_mac(efx))
606 goto fail;
607
608 efx->mac_op->reconfigure(efx);
609
610 /* Inform kernel of loss/gain of carrier */
611 efx_link_status_changed(efx);
612 return;
613
614 fail:
615 EFX_ERR(efx, "failed to reconfigure MAC\n");
616 efx->port_enabled = false;
617 efx_fini_port(efx);
618 }
619
620 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
621 * disabled. */
622 void efx_reconfigure_port(struct efx_nic *efx)
623 {
624 EFX_ASSERT_RESET_SERIALISED(efx);
625
626 mutex_lock(&efx->mac_lock);
627 __efx_reconfigure_port(efx);
628 mutex_unlock(&efx->mac_lock);
629 }
630
631 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
632 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
633 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
634 static void efx_phy_work(struct work_struct *data)
635 {
636 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
637
638 mutex_lock(&efx->mac_lock);
639 if (efx->port_enabled)
640 __efx_reconfigure_port(efx);
641 mutex_unlock(&efx->mac_lock);
642 }
643
644 static void efx_mac_work(struct work_struct *data)
645 {
646 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
647
648 mutex_lock(&efx->mac_lock);
649 if (efx->port_enabled)
650 efx->mac_op->irq(efx);
651 mutex_unlock(&efx->mac_lock);
652 }
653
654 static int efx_probe_port(struct efx_nic *efx)
655 {
656 int rc;
657
658 EFX_LOG(efx, "create port\n");
659
660 /* Connect up MAC/PHY operations table and read MAC address */
661 rc = falcon_probe_port(efx);
662 if (rc)
663 goto err;
664
665 if (phy_flash_cfg)
666 efx->phy_mode = PHY_MODE_SPECIAL;
667
668 /* Sanity check MAC address */
669 if (is_valid_ether_addr(efx->mac_address)) {
670 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
671 } else {
672 EFX_ERR(efx, "invalid MAC address %pM\n",
673 efx->mac_address);
674 if (!allow_bad_hwaddr) {
675 rc = -EINVAL;
676 goto err;
677 }
678 random_ether_addr(efx->net_dev->dev_addr);
679 EFX_INFO(efx, "using locally-generated MAC %pM\n",
680 efx->net_dev->dev_addr);
681 }
682
683 return 0;
684
685 err:
686 efx_remove_port(efx);
687 return rc;
688 }
689
690 static int efx_init_port(struct efx_nic *efx)
691 {
692 int rc;
693
694 EFX_LOG(efx, "init port\n");
695
696 rc = efx->phy_op->init(efx);
697 if (rc)
698 return rc;
699 mutex_lock(&efx->mac_lock);
700 efx->phy_op->reconfigure(efx);
701 rc = falcon_switch_mac(efx);
702 mutex_unlock(&efx->mac_lock);
703 if (rc)
704 goto fail;
705 efx->mac_op->reconfigure(efx);
706
707 efx->port_initialized = true;
708 efx_stats_enable(efx);
709 return 0;
710
711 fail:
712 efx->phy_op->fini(efx);
713 return rc;
714 }
715
716 /* Allow efx_reconfigure_port() to be scheduled, and close the window
717 * between efx_stop_port and efx_flush_all whereby a previously scheduled
718 * efx_phy_work()/efx_mac_work() may have been cancelled */
719 static void efx_start_port(struct efx_nic *efx)
720 {
721 EFX_LOG(efx, "start port\n");
722 BUG_ON(efx->port_enabled);
723
724 mutex_lock(&efx->mac_lock);
725 efx->port_enabled = true;
726 __efx_reconfigure_port(efx);
727 efx->mac_op->irq(efx);
728 mutex_unlock(&efx->mac_lock);
729 }
730
731 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
732 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
733 * and efx_mac_work may still be scheduled via NAPI processing until
734 * efx_flush_all() is called */
735 static void efx_stop_port(struct efx_nic *efx)
736 {
737 EFX_LOG(efx, "stop port\n");
738
739 mutex_lock(&efx->mac_lock);
740 efx->port_enabled = false;
741 mutex_unlock(&efx->mac_lock);
742
743 /* Serialise against efx_set_multicast_list() */
744 if (efx_dev_registered(efx)) {
745 netif_addr_lock_bh(efx->net_dev);
746 netif_addr_unlock_bh(efx->net_dev);
747 }
748 }
749
750 static void efx_fini_port(struct efx_nic *efx)
751 {
752 EFX_LOG(efx, "shut down port\n");
753
754 if (!efx->port_initialized)
755 return;
756
757 efx_stats_disable(efx);
758 efx->phy_op->fini(efx);
759 efx->port_initialized = false;
760
761 efx->link_up = false;
762 efx_link_status_changed(efx);
763 }
764
765 static void efx_remove_port(struct efx_nic *efx)
766 {
767 EFX_LOG(efx, "destroying port\n");
768
769 falcon_remove_port(efx);
770 }
771
772 /**************************************************************************
773 *
774 * NIC handling
775 *
776 **************************************************************************/
777
778 /* This configures the PCI device to enable I/O and DMA. */
779 static int efx_init_io(struct efx_nic *efx)
780 {
781 struct pci_dev *pci_dev = efx->pci_dev;
782 dma_addr_t dma_mask = efx->type->max_dma_mask;
783 int rc;
784
785 EFX_LOG(efx, "initialising I/O\n");
786
787 rc = pci_enable_device(pci_dev);
788 if (rc) {
789 EFX_ERR(efx, "failed to enable PCI device\n");
790 goto fail1;
791 }
792
793 pci_set_master(pci_dev);
794
795 /* Set the PCI DMA mask. Try all possibilities from our
796 * genuine mask down to 32 bits, because some architectures
797 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
798 * masks event though they reject 46 bit masks.
799 */
800 while (dma_mask > 0x7fffffffUL) {
801 if (pci_dma_supported(pci_dev, dma_mask) &&
802 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
803 break;
804 dma_mask >>= 1;
805 }
806 if (rc) {
807 EFX_ERR(efx, "could not find a suitable DMA mask\n");
808 goto fail2;
809 }
810 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
811 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
812 if (rc) {
813 /* pci_set_consistent_dma_mask() is not *allowed* to
814 * fail with a mask that pci_set_dma_mask() accepted,
815 * but just in case...
816 */
817 EFX_ERR(efx, "failed to set consistent DMA mask\n");
818 goto fail2;
819 }
820
821 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
822 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
823 if (rc) {
824 EFX_ERR(efx, "request for memory BAR failed\n");
825 rc = -EIO;
826 goto fail3;
827 }
828 efx->membase = ioremap_nocache(efx->membase_phys,
829 efx->type->mem_map_size);
830 if (!efx->membase) {
831 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
832 (unsigned long long)efx->membase_phys,
833 efx->type->mem_map_size);
834 rc = -ENOMEM;
835 goto fail4;
836 }
837 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
838 (unsigned long long)efx->membase_phys,
839 efx->type->mem_map_size, efx->membase);
840
841 return 0;
842
843 fail4:
844 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
845 fail3:
846 efx->membase_phys = 0;
847 fail2:
848 pci_disable_device(efx->pci_dev);
849 fail1:
850 return rc;
851 }
852
853 static void efx_fini_io(struct efx_nic *efx)
854 {
855 EFX_LOG(efx, "shutting down I/O\n");
856
857 if (efx->membase) {
858 iounmap(efx->membase);
859 efx->membase = NULL;
860 }
861
862 if (efx->membase_phys) {
863 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
864 efx->membase_phys = 0;
865 }
866
867 pci_disable_device(efx->pci_dev);
868 }
869
870 /* Get number of RX queues wanted. Return number of online CPU
871 * packages in the expectation that an IRQ balancer will spread
872 * interrupts across them. */
873 static int efx_wanted_rx_queues(void)
874 {
875 cpumask_var_t core_mask;
876 int count;
877 int cpu;
878
879 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
880 printk(KERN_WARNING
881 "sfc: RSS disabled due to allocation failure\n");
882 return 1;
883 }
884
885 count = 0;
886 for_each_online_cpu(cpu) {
887 if (!cpumask_test_cpu(cpu, core_mask)) {
888 ++count;
889 cpumask_or(core_mask, core_mask,
890 topology_core_cpumask(cpu));
891 }
892 }
893
894 free_cpumask_var(core_mask);
895 return count;
896 }
897
898 /* Probe the number and type of interrupts we are able to obtain, and
899 * the resulting numbers of channels and RX queues.
900 */
901 static void efx_probe_interrupts(struct efx_nic *efx)
902 {
903 int max_channels =
904 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
905 int rc, i;
906
907 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
908 struct msix_entry xentries[EFX_MAX_CHANNELS];
909 int wanted_ints;
910 int rx_queues;
911
912 /* We want one RX queue and interrupt per CPU package
913 * (or as specified by the rss_cpus module parameter).
914 * We will need one channel per interrupt.
915 */
916 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
917 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
918 wanted_ints = min(wanted_ints, max_channels);
919
920 for (i = 0; i < wanted_ints; i++)
921 xentries[i].entry = i;
922 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
923 if (rc > 0) {
924 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
925 " available (%d < %d).\n", rc, wanted_ints);
926 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
927 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
928 wanted_ints = rc;
929 rc = pci_enable_msix(efx->pci_dev, xentries,
930 wanted_ints);
931 }
932
933 if (rc == 0) {
934 efx->n_rx_queues = min(rx_queues, wanted_ints);
935 efx->n_channels = wanted_ints;
936 for (i = 0; i < wanted_ints; i++)
937 efx->channel[i].irq = xentries[i].vector;
938 } else {
939 /* Fall back to single channel MSI */
940 efx->interrupt_mode = EFX_INT_MODE_MSI;
941 EFX_ERR(efx, "could not enable MSI-X\n");
942 }
943 }
944
945 /* Try single interrupt MSI */
946 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
947 efx->n_rx_queues = 1;
948 efx->n_channels = 1;
949 rc = pci_enable_msi(efx->pci_dev);
950 if (rc == 0) {
951 efx->channel[0].irq = efx->pci_dev->irq;
952 } else {
953 EFX_ERR(efx, "could not enable MSI\n");
954 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
955 }
956 }
957
958 /* Assume legacy interrupts */
959 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
960 efx->n_rx_queues = 1;
961 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
962 efx->legacy_irq = efx->pci_dev->irq;
963 }
964 }
965
966 static void efx_remove_interrupts(struct efx_nic *efx)
967 {
968 struct efx_channel *channel;
969
970 /* Remove MSI/MSI-X interrupts */
971 efx_for_each_channel(channel, efx)
972 channel->irq = 0;
973 pci_disable_msi(efx->pci_dev);
974 pci_disable_msix(efx->pci_dev);
975
976 /* Remove legacy interrupt */
977 efx->legacy_irq = 0;
978 }
979
980 static void efx_set_channels(struct efx_nic *efx)
981 {
982 struct efx_tx_queue *tx_queue;
983 struct efx_rx_queue *rx_queue;
984
985 efx_for_each_tx_queue(tx_queue, efx) {
986 if (separate_tx_channels)
987 tx_queue->channel = &efx->channel[efx->n_channels-1];
988 else
989 tx_queue->channel = &efx->channel[0];
990 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
991 }
992
993 efx_for_each_rx_queue(rx_queue, efx) {
994 rx_queue->channel = &efx->channel[rx_queue->queue];
995 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
996 }
997 }
998
999 static int efx_probe_nic(struct efx_nic *efx)
1000 {
1001 int rc;
1002
1003 EFX_LOG(efx, "creating NIC\n");
1004
1005 /* Carry out hardware-type specific initialisation */
1006 rc = falcon_probe_nic(efx);
1007 if (rc)
1008 return rc;
1009
1010 /* Determine the number of channels and RX queues by trying to hook
1011 * in MSI-X interrupts. */
1012 efx_probe_interrupts(efx);
1013
1014 efx_set_channels(efx);
1015
1016 /* Initialise the interrupt moderation settings */
1017 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1018
1019 return 0;
1020 }
1021
1022 static void efx_remove_nic(struct efx_nic *efx)
1023 {
1024 EFX_LOG(efx, "destroying NIC\n");
1025
1026 efx_remove_interrupts(efx);
1027 falcon_remove_nic(efx);
1028 }
1029
1030 /**************************************************************************
1031 *
1032 * NIC startup/shutdown
1033 *
1034 *************************************************************************/
1035
1036 static int efx_probe_all(struct efx_nic *efx)
1037 {
1038 struct efx_channel *channel;
1039 int rc;
1040
1041 /* Create NIC */
1042 rc = efx_probe_nic(efx);
1043 if (rc) {
1044 EFX_ERR(efx, "failed to create NIC\n");
1045 goto fail1;
1046 }
1047
1048 /* Create port */
1049 rc = efx_probe_port(efx);
1050 if (rc) {
1051 EFX_ERR(efx, "failed to create port\n");
1052 goto fail2;
1053 }
1054
1055 /* Create channels */
1056 efx_for_each_channel(channel, efx) {
1057 rc = efx_probe_channel(channel);
1058 if (rc) {
1059 EFX_ERR(efx, "failed to create channel %d\n",
1060 channel->channel);
1061 goto fail3;
1062 }
1063 }
1064 efx_set_channel_names(efx);
1065
1066 return 0;
1067
1068 fail3:
1069 efx_for_each_channel(channel, efx)
1070 efx_remove_channel(channel);
1071 efx_remove_port(efx);
1072 fail2:
1073 efx_remove_nic(efx);
1074 fail1:
1075 return rc;
1076 }
1077
1078 /* Called after previous invocation(s) of efx_stop_all, restarts the
1079 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1080 * and ensures that the port is scheduled to be reconfigured.
1081 * This function is safe to call multiple times when the NIC is in any
1082 * state. */
1083 static void efx_start_all(struct efx_nic *efx)
1084 {
1085 struct efx_channel *channel;
1086
1087 EFX_ASSERT_RESET_SERIALISED(efx);
1088
1089 /* Check that it is appropriate to restart the interface. All
1090 * of these flags are safe to read under just the rtnl lock */
1091 if (efx->port_enabled)
1092 return;
1093 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1094 return;
1095 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1096 return;
1097
1098 /* Mark the port as enabled so port reconfigurations can start, then
1099 * restart the transmit interface early so the watchdog timer stops */
1100 efx_start_port(efx);
1101 if (efx_dev_registered(efx))
1102 efx_wake_queue(efx);
1103
1104 efx_for_each_channel(channel, efx)
1105 efx_start_channel(channel);
1106
1107 falcon_enable_interrupts(efx);
1108
1109 /* Start hardware monitor if we're in RUNNING */
1110 if (efx->state == STATE_RUNNING)
1111 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1112 efx_monitor_interval);
1113 }
1114
1115 /* Flush all delayed work. Should only be called when no more delayed work
1116 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1117 * since we're holding the rtnl_lock at this point. */
1118 static void efx_flush_all(struct efx_nic *efx)
1119 {
1120 struct efx_rx_queue *rx_queue;
1121
1122 /* Make sure the hardware monitor is stopped */
1123 cancel_delayed_work_sync(&efx->monitor_work);
1124
1125 /* Ensure that all RX slow refills are complete. */
1126 efx_for_each_rx_queue(rx_queue, efx)
1127 cancel_delayed_work_sync(&rx_queue->work);
1128
1129 /* Stop scheduled port reconfigurations */
1130 cancel_work_sync(&efx->mac_work);
1131 cancel_work_sync(&efx->phy_work);
1132
1133 }
1134
1135 /* Quiesce hardware and software without bringing the link down.
1136 * Safe to call multiple times, when the nic and interface is in any
1137 * state. The caller is guaranteed to subsequently be in a position
1138 * to modify any hardware and software state they see fit without
1139 * taking locks. */
1140 static void efx_stop_all(struct efx_nic *efx)
1141 {
1142 struct efx_channel *channel;
1143
1144 EFX_ASSERT_RESET_SERIALISED(efx);
1145
1146 /* port_enabled can be read safely under the rtnl lock */
1147 if (!efx->port_enabled)
1148 return;
1149
1150 /* Disable interrupts and wait for ISR to complete */
1151 falcon_disable_interrupts(efx);
1152 if (efx->legacy_irq)
1153 synchronize_irq(efx->legacy_irq);
1154 efx_for_each_channel(channel, efx) {
1155 if (channel->irq)
1156 synchronize_irq(channel->irq);
1157 }
1158
1159 /* Stop all NAPI processing and synchronous rx refills */
1160 efx_for_each_channel(channel, efx)
1161 efx_stop_channel(channel);
1162
1163 /* Stop all asynchronous port reconfigurations. Since all
1164 * event processing has already been stopped, there is no
1165 * window to loose phy events */
1166 efx_stop_port(efx);
1167
1168 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1169 efx_flush_all(efx);
1170
1171 /* Isolate the MAC from the TX and RX engines, so that queue
1172 * flushes will complete in a timely fashion. */
1173 falcon_deconfigure_mac_wrapper(efx);
1174 msleep(10); /* Let the Rx FIFO drain */
1175 falcon_drain_tx_fifo(efx);
1176
1177 /* Stop the kernel transmit interface late, so the watchdog
1178 * timer isn't ticking over the flush */
1179 if (efx_dev_registered(efx)) {
1180 efx_stop_queue(efx);
1181 netif_tx_lock_bh(efx->net_dev);
1182 netif_tx_unlock_bh(efx->net_dev);
1183 }
1184 }
1185
1186 static void efx_remove_all(struct efx_nic *efx)
1187 {
1188 struct efx_channel *channel;
1189
1190 efx_for_each_channel(channel, efx)
1191 efx_remove_channel(channel);
1192 efx_remove_port(efx);
1193 efx_remove_nic(efx);
1194 }
1195
1196 /* A convinience function to safely flush all the queues */
1197 void efx_flush_queues(struct efx_nic *efx)
1198 {
1199 EFX_ASSERT_RESET_SERIALISED(efx);
1200
1201 efx_stop_all(efx);
1202
1203 efx_fini_channels(efx);
1204 efx_init_channels(efx);
1205
1206 efx_start_all(efx);
1207 }
1208
1209 /**************************************************************************
1210 *
1211 * Interrupt moderation
1212 *
1213 **************************************************************************/
1214
1215 static unsigned irq_mod_ticks(int usecs, int resolution)
1216 {
1217 if (usecs <= 0)
1218 return 0; /* cannot receive interrupts ahead of time :-) */
1219 if (usecs < resolution)
1220 return 1; /* never round down to 0 */
1221 return usecs / resolution;
1222 }
1223
1224 /* Set interrupt moderation parameters */
1225 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1226 bool rx_adaptive)
1227 {
1228 struct efx_tx_queue *tx_queue;
1229 struct efx_rx_queue *rx_queue;
1230 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1231 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1232
1233 EFX_ASSERT_RESET_SERIALISED(efx);
1234
1235 efx_for_each_tx_queue(tx_queue, efx)
1236 tx_queue->channel->irq_moderation = tx_ticks;
1237
1238 efx->irq_rx_adaptive = rx_adaptive;
1239 efx->irq_rx_moderation = rx_ticks;
1240 efx_for_each_rx_queue(rx_queue, efx)
1241 rx_queue->channel->irq_moderation = rx_ticks;
1242 }
1243
1244 /**************************************************************************
1245 *
1246 * Hardware monitor
1247 *
1248 **************************************************************************/
1249
1250 /* Run periodically off the general workqueue. Serialised against
1251 * efx_reconfigure_port via the mac_lock */
1252 static void efx_monitor(struct work_struct *data)
1253 {
1254 struct efx_nic *efx = container_of(data, struct efx_nic,
1255 monitor_work.work);
1256 int rc;
1257
1258 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1259 raw_smp_processor_id());
1260
1261 /* If the mac_lock is already held then it is likely a port
1262 * reconfiguration is already in place, which will likely do
1263 * most of the work of check_hw() anyway. */
1264 if (!mutex_trylock(&efx->mac_lock))
1265 goto out_requeue;
1266 if (!efx->port_enabled)
1267 goto out_unlock;
1268 rc = efx->board_info.monitor(efx);
1269 if (rc) {
1270 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1271 (rc == -ERANGE) ? "reported fault" : "failed");
1272 efx->phy_mode |= PHY_MODE_LOW_POWER;
1273 falcon_sim_phy_event(efx);
1274 }
1275 efx->phy_op->poll(efx);
1276 efx->mac_op->poll(efx);
1277
1278 out_unlock:
1279 mutex_unlock(&efx->mac_lock);
1280 out_requeue:
1281 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1282 efx_monitor_interval);
1283 }
1284
1285 /**************************************************************************
1286 *
1287 * ioctls
1288 *
1289 *************************************************************************/
1290
1291 /* Net device ioctl
1292 * Context: process, rtnl_lock() held.
1293 */
1294 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1295 {
1296 struct efx_nic *efx = netdev_priv(net_dev);
1297 struct mii_ioctl_data *data = if_mii(ifr);
1298
1299 EFX_ASSERT_RESET_SERIALISED(efx);
1300
1301 /* Convert phy_id from older PRTAD/DEVAD format */
1302 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1303 (data->phy_id & 0xfc00) == 0x0400)
1304 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1305
1306 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1307 }
1308
1309 /**************************************************************************
1310 *
1311 * NAPI interface
1312 *
1313 **************************************************************************/
1314
1315 static int efx_init_napi(struct efx_nic *efx)
1316 {
1317 struct efx_channel *channel;
1318
1319 efx_for_each_channel(channel, efx) {
1320 channel->napi_dev = efx->net_dev;
1321 netif_napi_add(channel->napi_dev, &channel->napi_str,
1322 efx_poll, napi_weight);
1323 }
1324 return 0;
1325 }
1326
1327 static void efx_fini_napi(struct efx_nic *efx)
1328 {
1329 struct efx_channel *channel;
1330
1331 efx_for_each_channel(channel, efx) {
1332 if (channel->napi_dev)
1333 netif_napi_del(&channel->napi_str);
1334 channel->napi_dev = NULL;
1335 }
1336 }
1337
1338 /**************************************************************************
1339 *
1340 * Kernel netpoll interface
1341 *
1342 *************************************************************************/
1343
1344 #ifdef CONFIG_NET_POLL_CONTROLLER
1345
1346 /* Although in the common case interrupts will be disabled, this is not
1347 * guaranteed. However, all our work happens inside the NAPI callback,
1348 * so no locking is required.
1349 */
1350 static void efx_netpoll(struct net_device *net_dev)
1351 {
1352 struct efx_nic *efx = netdev_priv(net_dev);
1353 struct efx_channel *channel;
1354
1355 efx_for_each_channel(channel, efx)
1356 efx_schedule_channel(channel);
1357 }
1358
1359 #endif
1360
1361 /**************************************************************************
1362 *
1363 * Kernel net device interface
1364 *
1365 *************************************************************************/
1366
1367 /* Context: process, rtnl_lock() held. */
1368 static int efx_net_open(struct net_device *net_dev)
1369 {
1370 struct efx_nic *efx = netdev_priv(net_dev);
1371 EFX_ASSERT_RESET_SERIALISED(efx);
1372
1373 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1374 raw_smp_processor_id());
1375
1376 if (efx->state == STATE_DISABLED)
1377 return -EIO;
1378 if (efx->phy_mode & PHY_MODE_SPECIAL)
1379 return -EBUSY;
1380
1381 efx_start_all(efx);
1382 return 0;
1383 }
1384
1385 /* Context: process, rtnl_lock() held.
1386 * Note that the kernel will ignore our return code; this method
1387 * should really be a void.
1388 */
1389 static int efx_net_stop(struct net_device *net_dev)
1390 {
1391 struct efx_nic *efx = netdev_priv(net_dev);
1392
1393 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1394 raw_smp_processor_id());
1395
1396 if (efx->state != STATE_DISABLED) {
1397 /* Stop the device and flush all the channels */
1398 efx_stop_all(efx);
1399 efx_fini_channels(efx);
1400 efx_init_channels(efx);
1401 }
1402
1403 return 0;
1404 }
1405
1406 void efx_stats_disable(struct efx_nic *efx)
1407 {
1408 spin_lock(&efx->stats_lock);
1409 ++efx->stats_disable_count;
1410 spin_unlock(&efx->stats_lock);
1411 }
1412
1413 void efx_stats_enable(struct efx_nic *efx)
1414 {
1415 spin_lock(&efx->stats_lock);
1416 --efx->stats_disable_count;
1417 spin_unlock(&efx->stats_lock);
1418 }
1419
1420 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1421 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1422 {
1423 struct efx_nic *efx = netdev_priv(net_dev);
1424 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1425 struct net_device_stats *stats = &net_dev->stats;
1426
1427 /* Update stats if possible, but do not wait if another thread
1428 * is updating them or if MAC stats fetches are temporarily
1429 * disabled; slightly stale stats are acceptable.
1430 */
1431 if (!spin_trylock(&efx->stats_lock))
1432 return stats;
1433 if (!efx->stats_disable_count) {
1434 efx->mac_op->update_stats(efx);
1435 falcon_update_nic_stats(efx);
1436 }
1437 spin_unlock(&efx->stats_lock);
1438
1439 stats->rx_packets = mac_stats->rx_packets;
1440 stats->tx_packets = mac_stats->tx_packets;
1441 stats->rx_bytes = mac_stats->rx_bytes;
1442 stats->tx_bytes = mac_stats->tx_bytes;
1443 stats->multicast = mac_stats->rx_multicast;
1444 stats->collisions = mac_stats->tx_collision;
1445 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1446 mac_stats->rx_length_error);
1447 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1448 stats->rx_crc_errors = mac_stats->rx_bad;
1449 stats->rx_frame_errors = mac_stats->rx_align_error;
1450 stats->rx_fifo_errors = mac_stats->rx_overflow;
1451 stats->rx_missed_errors = mac_stats->rx_missed;
1452 stats->tx_window_errors = mac_stats->tx_late_collision;
1453
1454 stats->rx_errors = (stats->rx_length_errors +
1455 stats->rx_over_errors +
1456 stats->rx_crc_errors +
1457 stats->rx_frame_errors +
1458 stats->rx_fifo_errors +
1459 stats->rx_missed_errors +
1460 mac_stats->rx_symbol_error);
1461 stats->tx_errors = (stats->tx_window_errors +
1462 mac_stats->tx_bad);
1463
1464 return stats;
1465 }
1466
1467 /* Context: netif_tx_lock held, BHs disabled. */
1468 static void efx_watchdog(struct net_device *net_dev)
1469 {
1470 struct efx_nic *efx = netdev_priv(net_dev);
1471
1472 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1473 " resetting channels\n",
1474 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1475
1476 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1477 }
1478
1479
1480 /* Context: process, rtnl_lock() held. */
1481 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1482 {
1483 struct efx_nic *efx = netdev_priv(net_dev);
1484 int rc = 0;
1485
1486 EFX_ASSERT_RESET_SERIALISED(efx);
1487
1488 if (new_mtu > EFX_MAX_MTU)
1489 return -EINVAL;
1490
1491 efx_stop_all(efx);
1492
1493 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1494
1495 efx_fini_channels(efx);
1496 net_dev->mtu = new_mtu;
1497 efx_init_channels(efx);
1498
1499 efx_start_all(efx);
1500 return rc;
1501 }
1502
1503 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1504 {
1505 struct efx_nic *efx = netdev_priv(net_dev);
1506 struct sockaddr *addr = data;
1507 char *new_addr = addr->sa_data;
1508
1509 EFX_ASSERT_RESET_SERIALISED(efx);
1510
1511 if (!is_valid_ether_addr(new_addr)) {
1512 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1513 new_addr);
1514 return -EINVAL;
1515 }
1516
1517 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1518
1519 /* Reconfigure the MAC */
1520 efx_reconfigure_port(efx);
1521
1522 return 0;
1523 }
1524
1525 /* Context: netif_addr_lock held, BHs disabled. */
1526 static void efx_set_multicast_list(struct net_device *net_dev)
1527 {
1528 struct efx_nic *efx = netdev_priv(net_dev);
1529 struct dev_mc_list *mc_list = net_dev->mc_list;
1530 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1531 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1532 bool changed = (efx->promiscuous != promiscuous);
1533 u32 crc;
1534 int bit;
1535 int i;
1536
1537 efx->promiscuous = promiscuous;
1538
1539 /* Build multicast hash table */
1540 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1541 memset(mc_hash, 0xff, sizeof(*mc_hash));
1542 } else {
1543 memset(mc_hash, 0x00, sizeof(*mc_hash));
1544 for (i = 0; i < net_dev->mc_count; i++) {
1545 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1546 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1547 set_bit_le(bit, mc_hash->byte);
1548 mc_list = mc_list->next;
1549 }
1550 }
1551
1552 if (!efx->port_enabled)
1553 /* Delay pushing settings until efx_start_port() */
1554 return;
1555
1556 if (changed)
1557 queue_work(efx->workqueue, &efx->phy_work);
1558
1559 /* Create and activate new global multicast hash table */
1560 falcon_set_multicast_hash(efx);
1561 }
1562
1563 static const struct net_device_ops efx_netdev_ops = {
1564 .ndo_open = efx_net_open,
1565 .ndo_stop = efx_net_stop,
1566 .ndo_get_stats = efx_net_stats,
1567 .ndo_tx_timeout = efx_watchdog,
1568 .ndo_start_xmit = efx_hard_start_xmit,
1569 .ndo_validate_addr = eth_validate_addr,
1570 .ndo_do_ioctl = efx_ioctl,
1571 .ndo_change_mtu = efx_change_mtu,
1572 .ndo_set_mac_address = efx_set_mac_address,
1573 .ndo_set_multicast_list = efx_set_multicast_list,
1574 #ifdef CONFIG_NET_POLL_CONTROLLER
1575 .ndo_poll_controller = efx_netpoll,
1576 #endif
1577 };
1578
1579 static void efx_update_name(struct efx_nic *efx)
1580 {
1581 strcpy(efx->name, efx->net_dev->name);
1582 efx_mtd_rename(efx);
1583 efx_set_channel_names(efx);
1584 }
1585
1586 static int efx_netdev_event(struct notifier_block *this,
1587 unsigned long event, void *ptr)
1588 {
1589 struct net_device *net_dev = ptr;
1590
1591 if (net_dev->netdev_ops == &efx_netdev_ops &&
1592 event == NETDEV_CHANGENAME)
1593 efx_update_name(netdev_priv(net_dev));
1594
1595 return NOTIFY_DONE;
1596 }
1597
1598 static struct notifier_block efx_netdev_notifier = {
1599 .notifier_call = efx_netdev_event,
1600 };
1601
1602 static ssize_t
1603 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1604 {
1605 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1606 return sprintf(buf, "%d\n", efx->phy_type);
1607 }
1608 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1609
1610 static int efx_register_netdev(struct efx_nic *efx)
1611 {
1612 struct net_device *net_dev = efx->net_dev;
1613 int rc;
1614
1615 net_dev->watchdog_timeo = 5 * HZ;
1616 net_dev->irq = efx->pci_dev->irq;
1617 net_dev->netdev_ops = &efx_netdev_ops;
1618 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1619 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1620
1621 /* Clear MAC statistics */
1622 efx->mac_op->update_stats(efx);
1623 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1624
1625 rtnl_lock();
1626
1627 rc = dev_alloc_name(net_dev, net_dev->name);
1628 if (rc < 0)
1629 goto fail_locked;
1630 efx_update_name(efx);
1631
1632 rc = register_netdevice(net_dev);
1633 if (rc)
1634 goto fail_locked;
1635
1636 /* Always start with carrier off; PHY events will detect the link */
1637 netif_carrier_off(efx->net_dev);
1638
1639 rtnl_unlock();
1640
1641 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1642 if (rc) {
1643 EFX_ERR(efx, "failed to init net dev attributes\n");
1644 goto fail_registered;
1645 }
1646
1647 return 0;
1648
1649 fail_locked:
1650 rtnl_unlock();
1651 EFX_ERR(efx, "could not register net dev\n");
1652 return rc;
1653
1654 fail_registered:
1655 unregister_netdev(net_dev);
1656 return rc;
1657 }
1658
1659 static void efx_unregister_netdev(struct efx_nic *efx)
1660 {
1661 struct efx_tx_queue *tx_queue;
1662
1663 if (!efx->net_dev)
1664 return;
1665
1666 BUG_ON(netdev_priv(efx->net_dev) != efx);
1667
1668 /* Free up any skbs still remaining. This has to happen before
1669 * we try to unregister the netdev as running their destructors
1670 * may be needed to get the device ref. count to 0. */
1671 efx_for_each_tx_queue(tx_queue, efx)
1672 efx_release_tx_buffers(tx_queue);
1673
1674 if (efx_dev_registered(efx)) {
1675 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1676 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1677 unregister_netdev(efx->net_dev);
1678 }
1679 }
1680
1681 /**************************************************************************
1682 *
1683 * Device reset and suspend
1684 *
1685 **************************************************************************/
1686
1687 /* Tears down the entire software state and most of the hardware state
1688 * before reset. */
1689 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1690 struct ethtool_cmd *ecmd)
1691 {
1692 EFX_ASSERT_RESET_SERIALISED(efx);
1693
1694 efx_stats_disable(efx);
1695 efx_stop_all(efx);
1696 mutex_lock(&efx->mac_lock);
1697 mutex_lock(&efx->spi_lock);
1698
1699 efx->phy_op->get_settings(efx, ecmd);
1700
1701 efx_fini_channels(efx);
1702 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1703 efx->phy_op->fini(efx);
1704 }
1705
1706 /* This function will always ensure that the locks acquired in
1707 * efx_reset_down() are released. A failure return code indicates
1708 * that we were unable to reinitialise the hardware, and the
1709 * driver should be disabled. If ok is false, then the rx and tx
1710 * engines are not restarted, pending a RESET_DISABLE. */
1711 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1712 struct ethtool_cmd *ecmd, bool ok)
1713 {
1714 int rc;
1715
1716 EFX_ASSERT_RESET_SERIALISED(efx);
1717
1718 rc = falcon_init_nic(efx);
1719 if (rc) {
1720 EFX_ERR(efx, "failed to initialise NIC\n");
1721 ok = false;
1722 }
1723
1724 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1725 if (ok) {
1726 rc = efx->phy_op->init(efx);
1727 if (rc)
1728 ok = false;
1729 }
1730 if (!ok)
1731 efx->port_initialized = false;
1732 }
1733
1734 if (ok) {
1735 efx_init_channels(efx);
1736
1737 if (efx->phy_op->set_settings(efx, ecmd))
1738 EFX_ERR(efx, "could not restore PHY settings\n");
1739 }
1740
1741 mutex_unlock(&efx->spi_lock);
1742 mutex_unlock(&efx->mac_lock);
1743
1744 if (ok) {
1745 efx_start_all(efx);
1746 efx_stats_enable(efx);
1747 }
1748 return rc;
1749 }
1750
1751 /* Reset the NIC as transparently as possible. Do not reset the PHY
1752 * Note that the reset may fail, in which case the card will be left
1753 * in a most-probably-unusable state.
1754 *
1755 * This function will sleep. You cannot reset from within an atomic
1756 * state; use efx_schedule_reset() instead.
1757 *
1758 * Grabs the rtnl_lock.
1759 */
1760 static int efx_reset(struct efx_nic *efx)
1761 {
1762 struct ethtool_cmd ecmd;
1763 enum reset_type method = efx->reset_pending;
1764 int rc = 0;
1765
1766 /* Serialise with kernel interfaces */
1767 rtnl_lock();
1768
1769 /* If we're not RUNNING then don't reset. Leave the reset_pending
1770 * flag set so that efx_pci_probe_main will be retried */
1771 if (efx->state != STATE_RUNNING) {
1772 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1773 goto out_unlock;
1774 }
1775
1776 EFX_INFO(efx, "resetting (%d)\n", method);
1777
1778 efx_reset_down(efx, method, &ecmd);
1779
1780 rc = falcon_reset_hw(efx, method);
1781 if (rc) {
1782 EFX_ERR(efx, "failed to reset hardware\n");
1783 goto out_disable;
1784 }
1785
1786 /* Allow resets to be rescheduled. */
1787 efx->reset_pending = RESET_TYPE_NONE;
1788
1789 /* Reinitialise bus-mastering, which may have been turned off before
1790 * the reset was scheduled. This is still appropriate, even in the
1791 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1792 * can respond to requests. */
1793 pci_set_master(efx->pci_dev);
1794
1795 /* Leave device stopped if necessary */
1796 if (method == RESET_TYPE_DISABLE) {
1797 efx_reset_up(efx, method, &ecmd, false);
1798 rc = -EIO;
1799 } else {
1800 rc = efx_reset_up(efx, method, &ecmd, true);
1801 }
1802
1803 out_disable:
1804 if (rc) {
1805 EFX_ERR(efx, "has been disabled\n");
1806 efx->state = STATE_DISABLED;
1807 dev_close(efx->net_dev);
1808 } else {
1809 EFX_LOG(efx, "reset complete\n");
1810 }
1811
1812 out_unlock:
1813 rtnl_unlock();
1814 return rc;
1815 }
1816
1817 /* The worker thread exists so that code that cannot sleep can
1818 * schedule a reset for later.
1819 */
1820 static void efx_reset_work(struct work_struct *data)
1821 {
1822 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1823
1824 efx_reset(nic);
1825 }
1826
1827 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1828 {
1829 enum reset_type method;
1830
1831 if (efx->reset_pending != RESET_TYPE_NONE) {
1832 EFX_INFO(efx, "quenching already scheduled reset\n");
1833 return;
1834 }
1835
1836 switch (type) {
1837 case RESET_TYPE_INVISIBLE:
1838 case RESET_TYPE_ALL:
1839 case RESET_TYPE_WORLD:
1840 case RESET_TYPE_DISABLE:
1841 method = type;
1842 break;
1843 case RESET_TYPE_RX_RECOVERY:
1844 case RESET_TYPE_RX_DESC_FETCH:
1845 case RESET_TYPE_TX_DESC_FETCH:
1846 case RESET_TYPE_TX_SKIP:
1847 method = RESET_TYPE_INVISIBLE;
1848 break;
1849 default:
1850 method = RESET_TYPE_ALL;
1851 break;
1852 }
1853
1854 if (method != type)
1855 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1856 else
1857 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1858
1859 efx->reset_pending = method;
1860
1861 queue_work(reset_workqueue, &efx->reset_work);
1862 }
1863
1864 /**************************************************************************
1865 *
1866 * List of NICs we support
1867 *
1868 **************************************************************************/
1869
1870 /* PCI device ID table */
1871 static struct pci_device_id efx_pci_table[] __devinitdata = {
1872 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1873 .driver_data = (unsigned long) &falcon_a_nic_type},
1874 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1875 .driver_data = (unsigned long) &falcon_b_nic_type},
1876 {0} /* end of list */
1877 };
1878
1879 /**************************************************************************
1880 *
1881 * Dummy PHY/MAC/Board operations
1882 *
1883 * Can be used for some unimplemented operations
1884 * Needed so all function pointers are valid and do not have to be tested
1885 * before use
1886 *
1887 **************************************************************************/
1888 int efx_port_dummy_op_int(struct efx_nic *efx)
1889 {
1890 return 0;
1891 }
1892 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1893 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1894
1895 static struct efx_mac_operations efx_dummy_mac_operations = {
1896 .reconfigure = efx_port_dummy_op_void,
1897 .poll = efx_port_dummy_op_void,
1898 .irq = efx_port_dummy_op_void,
1899 };
1900
1901 static struct efx_phy_operations efx_dummy_phy_operations = {
1902 .init = efx_port_dummy_op_int,
1903 .reconfigure = efx_port_dummy_op_void,
1904 .poll = efx_port_dummy_op_void,
1905 .fini = efx_port_dummy_op_void,
1906 .clear_interrupt = efx_port_dummy_op_void,
1907 };
1908
1909 static struct efx_board efx_dummy_board_info = {
1910 .init = efx_port_dummy_op_int,
1911 .init_leds = efx_port_dummy_op_void,
1912 .set_id_led = efx_port_dummy_op_blink,
1913 .monitor = efx_port_dummy_op_int,
1914 .blink = efx_port_dummy_op_blink,
1915 .fini = efx_port_dummy_op_void,
1916 };
1917
1918 /**************************************************************************
1919 *
1920 * Data housekeeping
1921 *
1922 **************************************************************************/
1923
1924 /* This zeroes out and then fills in the invariants in a struct
1925 * efx_nic (including all sub-structures).
1926 */
1927 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1928 struct pci_dev *pci_dev, struct net_device *net_dev)
1929 {
1930 struct efx_channel *channel;
1931 struct efx_tx_queue *tx_queue;
1932 struct efx_rx_queue *rx_queue;
1933 int i;
1934
1935 /* Initialise common structures */
1936 memset(efx, 0, sizeof(*efx));
1937 spin_lock_init(&efx->biu_lock);
1938 spin_lock_init(&efx->phy_lock);
1939 mutex_init(&efx->spi_lock);
1940 INIT_WORK(&efx->reset_work, efx_reset_work);
1941 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1942 efx->pci_dev = pci_dev;
1943 efx->state = STATE_INIT;
1944 efx->reset_pending = RESET_TYPE_NONE;
1945 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1946 efx->board_info = efx_dummy_board_info;
1947
1948 efx->net_dev = net_dev;
1949 efx->rx_checksum_enabled = true;
1950 spin_lock_init(&efx->netif_stop_lock);
1951 spin_lock_init(&efx->stats_lock);
1952 efx->stats_disable_count = 1;
1953 mutex_init(&efx->mac_lock);
1954 efx->mac_op = &efx_dummy_mac_operations;
1955 efx->phy_op = &efx_dummy_phy_operations;
1956 efx->mdio.dev = net_dev;
1957 INIT_WORK(&efx->phy_work, efx_phy_work);
1958 INIT_WORK(&efx->mac_work, efx_mac_work);
1959 atomic_set(&efx->netif_stop_count, 1);
1960
1961 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1962 channel = &efx->channel[i];
1963 channel->efx = efx;
1964 channel->channel = i;
1965 channel->work_pending = false;
1966 }
1967 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1968 tx_queue = &efx->tx_queue[i];
1969 tx_queue->efx = efx;
1970 tx_queue->queue = i;
1971 tx_queue->buffer = NULL;
1972 tx_queue->channel = &efx->channel[0]; /* for safety */
1973 tx_queue->tso_headers_free = NULL;
1974 }
1975 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1976 rx_queue = &efx->rx_queue[i];
1977 rx_queue->efx = efx;
1978 rx_queue->queue = i;
1979 rx_queue->channel = &efx->channel[0]; /* for safety */
1980 rx_queue->buffer = NULL;
1981 spin_lock_init(&rx_queue->add_lock);
1982 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1983 }
1984
1985 efx->type = type;
1986
1987 /* As close as we can get to guaranteeing that we don't overflow */
1988 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
1989
1990 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1991
1992 /* Higher numbered interrupt modes are less capable! */
1993 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1994 interrupt_mode);
1995
1996 /* Would be good to use the net_dev name, but we're too early */
1997 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1998 pci_name(pci_dev));
1999 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2000 if (!efx->workqueue)
2001 return -ENOMEM;
2002
2003 return 0;
2004 }
2005
2006 static void efx_fini_struct(struct efx_nic *efx)
2007 {
2008 if (efx->workqueue) {
2009 destroy_workqueue(efx->workqueue);
2010 efx->workqueue = NULL;
2011 }
2012 }
2013
2014 /**************************************************************************
2015 *
2016 * PCI interface
2017 *
2018 **************************************************************************/
2019
2020 /* Main body of final NIC shutdown code
2021 * This is called only at module unload (or hotplug removal).
2022 */
2023 static void efx_pci_remove_main(struct efx_nic *efx)
2024 {
2025 falcon_fini_interrupt(efx);
2026 efx_fini_channels(efx);
2027 efx_fini_port(efx);
2028
2029 /* Shutdown the board, then the NIC and board state */
2030 efx->board_info.fini(efx);
2031
2032 efx_fini_napi(efx);
2033 efx_remove_all(efx);
2034 }
2035
2036 /* Final NIC shutdown
2037 * This is called only at module unload (or hotplug removal).
2038 */
2039 static void efx_pci_remove(struct pci_dev *pci_dev)
2040 {
2041 struct efx_nic *efx;
2042
2043 efx = pci_get_drvdata(pci_dev);
2044 if (!efx)
2045 return;
2046
2047 /* Mark the NIC as fini, then stop the interface */
2048 rtnl_lock();
2049 efx->state = STATE_FINI;
2050 dev_close(efx->net_dev);
2051
2052 /* Allow any queued efx_resets() to complete */
2053 rtnl_unlock();
2054
2055 efx_unregister_netdev(efx);
2056
2057 efx_mtd_remove(efx);
2058
2059 /* Wait for any scheduled resets to complete. No more will be
2060 * scheduled from this point because efx_stop_all() has been
2061 * called, we are no longer registered with driverlink, and
2062 * the net_device's have been removed. */
2063 cancel_work_sync(&efx->reset_work);
2064
2065 efx_pci_remove_main(efx);
2066
2067 efx_fini_io(efx);
2068 EFX_LOG(efx, "shutdown successful\n");
2069
2070 pci_set_drvdata(pci_dev, NULL);
2071 efx_fini_struct(efx);
2072 free_netdev(efx->net_dev);
2073 };
2074
2075 /* Main body of NIC initialisation
2076 * This is called at module load (or hotplug insertion, theoretically).
2077 */
2078 static int efx_pci_probe_main(struct efx_nic *efx)
2079 {
2080 int rc;
2081
2082 /* Do start-of-day initialisation */
2083 rc = efx_probe_all(efx);
2084 if (rc)
2085 goto fail1;
2086
2087 rc = efx_init_napi(efx);
2088 if (rc)
2089 goto fail2;
2090
2091 /* Initialise the board */
2092 rc = efx->board_info.init(efx);
2093 if (rc) {
2094 EFX_ERR(efx, "failed to initialise board\n");
2095 goto fail3;
2096 }
2097
2098 rc = falcon_init_nic(efx);
2099 if (rc) {
2100 EFX_ERR(efx, "failed to initialise NIC\n");
2101 goto fail4;
2102 }
2103
2104 rc = efx_init_port(efx);
2105 if (rc) {
2106 EFX_ERR(efx, "failed to initialise port\n");
2107 goto fail5;
2108 }
2109
2110 efx_init_channels(efx);
2111
2112 rc = falcon_init_interrupt(efx);
2113 if (rc)
2114 goto fail6;
2115
2116 return 0;
2117
2118 fail6:
2119 efx_fini_channels(efx);
2120 efx_fini_port(efx);
2121 fail5:
2122 fail4:
2123 efx->board_info.fini(efx);
2124 fail3:
2125 efx_fini_napi(efx);
2126 fail2:
2127 efx_remove_all(efx);
2128 fail1:
2129 return rc;
2130 }
2131
2132 /* NIC initialisation
2133 *
2134 * This is called at module load (or hotplug insertion,
2135 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2136 * sets up and registers the network devices with the kernel and hooks
2137 * the interrupt service routine. It does not prepare the device for
2138 * transmission; this is left to the first time one of the network
2139 * interfaces is brought up (i.e. efx_net_open).
2140 */
2141 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2142 const struct pci_device_id *entry)
2143 {
2144 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2145 struct net_device *net_dev;
2146 struct efx_nic *efx;
2147 int i, rc;
2148
2149 /* Allocate and initialise a struct net_device and struct efx_nic */
2150 net_dev = alloc_etherdev(sizeof(*efx));
2151 if (!net_dev)
2152 return -ENOMEM;
2153 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2154 NETIF_F_HIGHDMA | NETIF_F_TSO |
2155 NETIF_F_GRO);
2156 /* Mask for features that also apply to VLAN devices */
2157 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2158 NETIF_F_HIGHDMA | NETIF_F_TSO);
2159 efx = netdev_priv(net_dev);
2160 pci_set_drvdata(pci_dev, efx);
2161 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2162 if (rc)
2163 goto fail1;
2164
2165 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2166
2167 /* Set up basic I/O (BAR mappings etc) */
2168 rc = efx_init_io(efx);
2169 if (rc)
2170 goto fail2;
2171
2172 /* No serialisation is required with the reset path because
2173 * we're in STATE_INIT. */
2174 for (i = 0; i < 5; i++) {
2175 rc = efx_pci_probe_main(efx);
2176
2177 /* Serialise against efx_reset(). No more resets will be
2178 * scheduled since efx_stop_all() has been called, and we
2179 * have not and never have been registered with either
2180 * the rtnetlink or driverlink layers. */
2181 cancel_work_sync(&efx->reset_work);
2182
2183 if (rc == 0) {
2184 if (efx->reset_pending != RESET_TYPE_NONE) {
2185 /* If there was a scheduled reset during
2186 * probe, the NIC is probably hosed anyway */
2187 efx_pci_remove_main(efx);
2188 rc = -EIO;
2189 } else {
2190 break;
2191 }
2192 }
2193
2194 /* Retry if a recoverably reset event has been scheduled */
2195 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2196 (efx->reset_pending != RESET_TYPE_ALL))
2197 goto fail3;
2198
2199 efx->reset_pending = RESET_TYPE_NONE;
2200 }
2201
2202 if (rc) {
2203 EFX_ERR(efx, "Could not reset NIC\n");
2204 goto fail4;
2205 }
2206
2207 /* Switch to the running state before we expose the device to
2208 * the OS. This is to ensure that the initial gathering of
2209 * MAC stats succeeds. */
2210 efx->state = STATE_RUNNING;
2211
2212 rc = efx_register_netdev(efx);
2213 if (rc)
2214 goto fail5;
2215
2216 EFX_LOG(efx, "initialisation successful\n");
2217
2218 rtnl_lock();
2219 efx_mtd_probe(efx); /* allowed to fail */
2220 rtnl_unlock();
2221 return 0;
2222
2223 fail5:
2224 efx_pci_remove_main(efx);
2225 fail4:
2226 fail3:
2227 efx_fini_io(efx);
2228 fail2:
2229 efx_fini_struct(efx);
2230 fail1:
2231 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2232 free_netdev(net_dev);
2233 return rc;
2234 }
2235
2236 static struct pci_driver efx_pci_driver = {
2237 .name = EFX_DRIVER_NAME,
2238 .id_table = efx_pci_table,
2239 .probe = efx_pci_probe,
2240 .remove = efx_pci_remove,
2241 };
2242
2243 /**************************************************************************
2244 *
2245 * Kernel module interface
2246 *
2247 *************************************************************************/
2248
2249 module_param(interrupt_mode, uint, 0444);
2250 MODULE_PARM_DESC(interrupt_mode,
2251 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2252
2253 static int __init efx_init_module(void)
2254 {
2255 int rc;
2256
2257 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2258
2259 rc = register_netdevice_notifier(&efx_netdev_notifier);
2260 if (rc)
2261 goto err_notifier;
2262
2263 refill_workqueue = create_workqueue("sfc_refill");
2264 if (!refill_workqueue) {
2265 rc = -ENOMEM;
2266 goto err_refill;
2267 }
2268 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2269 if (!reset_workqueue) {
2270 rc = -ENOMEM;
2271 goto err_reset;
2272 }
2273
2274 rc = pci_register_driver(&efx_pci_driver);
2275 if (rc < 0)
2276 goto err_pci;
2277
2278 return 0;
2279
2280 err_pci:
2281 destroy_workqueue(reset_workqueue);
2282 err_reset:
2283 destroy_workqueue(refill_workqueue);
2284 err_refill:
2285 unregister_netdevice_notifier(&efx_netdev_notifier);
2286 err_notifier:
2287 return rc;
2288 }
2289
2290 static void __exit efx_exit_module(void)
2291 {
2292 printk(KERN_INFO "Solarflare NET driver unloading\n");
2293
2294 pci_unregister_driver(&efx_pci_driver);
2295 destroy_workqueue(reset_workqueue);
2296 destroy_workqueue(refill_workqueue);
2297 unregister_netdevice_notifier(&efx_netdev_notifier);
2298
2299 }
2300
2301 module_init(efx_init_module);
2302 module_exit(efx_exit_module);
2303
2304 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2305 "Solarflare Communications");
2306 MODULE_DESCRIPTION("Solarflare Communications network driver");
2307 MODULE_LICENSE("GPL");
2308 MODULE_DEVICE_TABLE(pci, efx_pci_table);