IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sb1250-mac.c
1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 *
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21 */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/bitops.h>
35 #include <asm/processor.h> /* Processor type for cache alignment. */
36 #include <asm/io.h>
37 #include <asm/cache.h>
38
39 /* This is only here until the firmware is ready. In that case,
40 the firmware leaves the ethernet address in the register for us. */
41 #ifdef CONFIG_SIBYTE_STANDALONE
42 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
43 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
44 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
45 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
46 #endif
47
48
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
54
55
56 /* Operational parameters that usually are not changed. */
57
58 #define CONFIG_SBMAC_COALESCE
59
60 #define MAX_UNITS 4 /* More are supported, limit only on options */
61
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
64
65
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
68
69 /* A few user-configurable values which may be modified when a driver
70 module is loaded. */
71
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
76
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
81
82 /* Used to pass the media type, etc.
83 Both 'options[]' and 'full_duplex[]' should exist for driver
84 interoperability.
85 The media type is usually passed in 'options[]'.
86 */
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
91
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
96
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt = 0;
99 module_param(int_pktcnt, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt, "Packet count");
101
102 static int int_timeout = 0;
103 module_param(int_timeout, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout, "Timeout value");
105 #endif
106
107 #include <asm/sibyte/sb1250.h>
108 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
109 #include <asm/sibyte/bcm1480_regs.h>
110 #include <asm/sibyte/bcm1480_int.h>
111 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
112 #include <asm/sibyte/sb1250_regs.h>
113 #include <asm/sibyte/sb1250_int.h>
114 #else
115 #error invalid SiByte MAC configuation
116 #endif
117 #include <asm/sibyte/sb1250_scd.h>
118 #include <asm/sibyte/sb1250_mac.h>
119 #include <asm/sibyte/sb1250_dma.h>
120
121 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
122 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
123 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
124 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
125 #else
126 #error invalid SiByte MAC configuation
127 #endif
128
129 /**********************************************************************
130 * Simple types
131 ********************************************************************* */
132
133
134 typedef enum { sbmac_speed_auto, sbmac_speed_10,
135 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
136
137 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
138 sbmac_duplex_full } sbmac_duplex_t;
139
140 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
141 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
142
143 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
144 sbmac_state_broken } sbmac_state_t;
145
146
147 /**********************************************************************
148 * Macros
149 ********************************************************************* */
150
151
152 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
153 (d)->sbdma_dscrtable : (d)->f+1)
154
155
156 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
157
158 #define SBMAC_MAX_TXDESCR 32
159 #define SBMAC_MAX_RXDESCR 32
160
161 #define ETHER_ALIGN 2
162 #define ETHER_ADDR_LEN 6
163 #define ENET_PACKET_SIZE 1518
164 /*#define ENET_PACKET_SIZE 9216 */
165
166 /**********************************************************************
167 * DMA Descriptor structure
168 ********************************************************************* */
169
170 typedef struct sbdmadscr_s {
171 uint64_t dscr_a;
172 uint64_t dscr_b;
173 } sbdmadscr_t;
174
175 typedef unsigned long paddr_t;
176
177 /**********************************************************************
178 * DMA Controller structure
179 ********************************************************************* */
180
181 typedef struct sbmacdma_s {
182
183 /*
184 * This stuff is used to identify the channel and the registers
185 * associated with it.
186 */
187
188 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
189 int sbdma_channel; /* channel number */
190 int sbdma_txdir; /* direction (1=transmit) */
191 int sbdma_maxdescr; /* total # of descriptors in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193 int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt*/
194 int sbdma_int_timeout; /* # usec rx/tx interrupt */
195 #endif
196
197 volatile void __iomem *sbdma_config0; /* DMA config register 0 */
198 volatile void __iomem *sbdma_config1; /* DMA config register 1 */
199 volatile void __iomem *sbdma_dscrbase; /* Descriptor base address */
200 volatile void __iomem *sbdma_dscrcnt; /* Descriptor count register */
201 volatile void __iomem *sbdma_curdscr; /* current descriptor address */
202
203 /*
204 * This stuff is for maintenance of the ring
205 */
206
207 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
208 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
209
210 struct sk_buff **sbdma_ctxtable; /* context table, one per descr */
211
212 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
213 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
214 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
215 } sbmacdma_t;
216
217
218 /**********************************************************************
219 * Ethernet softc structure
220 ********************************************************************* */
221
222 struct sbmac_softc {
223
224 /*
225 * Linux-specific things
226 */
227
228 struct net_device *sbm_dev; /* pointer to linux device */
229 spinlock_t sbm_lock; /* spin lock */
230 struct timer_list sbm_timer; /* for monitoring MII */
231 struct net_device_stats sbm_stats;
232 int sbm_devflags; /* current device flags */
233
234 int sbm_phy_oldbmsr;
235 int sbm_phy_oldanlpar;
236 int sbm_phy_oldk1stsr;
237 int sbm_phy_oldlinkstat;
238 int sbm_buffersize;
239
240 unsigned char sbm_phys[2];
241
242 /*
243 * Controller-specific things
244 */
245
246 volatile void __iomem *sbm_base; /* MAC's base address */
247 sbmac_state_t sbm_state; /* current state */
248
249 volatile void __iomem *sbm_macenable; /* MAC Enable Register */
250 volatile void __iomem *sbm_maccfg; /* MAC Configuration Register */
251 volatile void __iomem *sbm_fifocfg; /* FIFO configuration register */
252 volatile void __iomem *sbm_framecfg; /* Frame configuration register */
253 volatile void __iomem *sbm_rxfilter; /* receive filter register */
254 volatile void __iomem *sbm_isr; /* Interrupt status register */
255 volatile void __iomem *sbm_imr; /* Interrupt mask register */
256 volatile void __iomem *sbm_mdio; /* MDIO register */
257
258 sbmac_speed_t sbm_speed; /* current speed */
259 sbmac_duplex_t sbm_duplex; /* current duplex */
260 sbmac_fc_t sbm_fc; /* current flow control setting */
261
262 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
263
264 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
265 sbmacdma_t sbm_rxdma;
266 int rx_hw_checksum;
267 int sbe_idx;
268 };
269
270
271 /**********************************************************************
272 * Externs
273 ********************************************************************* */
274
275 /**********************************************************************
276 * Prototypes
277 ********************************************************************* */
278
279 static void sbdma_initctx(sbmacdma_t *d,
280 struct sbmac_softc *s,
281 int chan,
282 int txrx,
283 int maxdescr);
284 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
285 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
286 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
287 static void sbdma_emptyring(sbmacdma_t *d);
288 static void sbdma_fillring(sbmacdma_t *d);
289 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d);
290 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d);
291 static int sbmac_initctx(struct sbmac_softc *s);
292 static void sbmac_channel_start(struct sbmac_softc *s);
293 static void sbmac_channel_stop(struct sbmac_softc *s);
294 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
295 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
296 static uint64_t sbmac_addr2reg(unsigned char *ptr);
297 static irqreturn_t sbmac_intr(int irq,void *dev_instance);
298 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
299 static void sbmac_setmulti(struct sbmac_softc *sc);
300 static int sbmac_init(struct net_device *dev, int idx);
301 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
302 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
303
304 static int sbmac_open(struct net_device *dev);
305 static void sbmac_timer(unsigned long data);
306 static void sbmac_tx_timeout (struct net_device *dev);
307 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
308 static void sbmac_set_rx_mode(struct net_device *dev);
309 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
310 static int sbmac_close(struct net_device *dev);
311 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
312 static int sbmac_mii_probe(struct net_device *dev);
313
314 static void sbmac_mii_sync(struct sbmac_softc *s);
315 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
316 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
317 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
318 unsigned int regval);
319
320
321 /**********************************************************************
322 * Globals
323 ********************************************************************* */
324
325 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
326
327
328 /**********************************************************************
329 * MDIO constants
330 ********************************************************************* */
331
332 #define MII_COMMAND_START 0x01
333 #define MII_COMMAND_READ 0x02
334 #define MII_COMMAND_WRITE 0x01
335 #define MII_COMMAND_ACK 0x02
336
337 #define BMCR_RESET 0x8000
338 #define BMCR_LOOPBACK 0x4000
339 #define BMCR_SPEED0 0x2000
340 #define BMCR_ANENABLE 0x1000
341 #define BMCR_POWERDOWN 0x0800
342 #define BMCR_ISOLATE 0x0400
343 #define BMCR_RESTARTAN 0x0200
344 #define BMCR_DUPLEX 0x0100
345 #define BMCR_COLTEST 0x0080
346 #define BMCR_SPEED1 0x0040
347 #define BMCR_SPEED1000 BMCR_SPEED1
348 #define BMCR_SPEED100 BMCR_SPEED0
349 #define BMCR_SPEED10 0
350
351 #define BMSR_100BT4 0x8000
352 #define BMSR_100BT_FDX 0x4000
353 #define BMSR_100BT_HDX 0x2000
354 #define BMSR_10BT_FDX 0x1000
355 #define BMSR_10BT_HDX 0x0800
356 #define BMSR_100BT2_FDX 0x0400
357 #define BMSR_100BT2_HDX 0x0200
358 #define BMSR_1000BT_XSR 0x0100
359 #define BMSR_PRESUP 0x0040
360 #define BMSR_ANCOMPLT 0x0020
361 #define BMSR_REMFAULT 0x0010
362 #define BMSR_AUTONEG 0x0008
363 #define BMSR_LINKSTAT 0x0004
364 #define BMSR_JABDETECT 0x0002
365 #define BMSR_EXTCAPAB 0x0001
366
367 #define PHYIDR1 0x2000
368 #define PHYIDR2 0x5C60
369
370 #define ANAR_NP 0x8000
371 #define ANAR_RF 0x2000
372 #define ANAR_ASYPAUSE 0x0800
373 #define ANAR_PAUSE 0x0400
374 #define ANAR_T4 0x0200
375 #define ANAR_TXFD 0x0100
376 #define ANAR_TXHD 0x0080
377 #define ANAR_10FD 0x0040
378 #define ANAR_10HD 0x0020
379 #define ANAR_PSB 0x0001
380
381 #define ANLPAR_NP 0x8000
382 #define ANLPAR_ACK 0x4000
383 #define ANLPAR_RF 0x2000
384 #define ANLPAR_ASYPAUSE 0x0800
385 #define ANLPAR_PAUSE 0x0400
386 #define ANLPAR_T4 0x0200
387 #define ANLPAR_TXFD 0x0100
388 #define ANLPAR_TXHD 0x0080
389 #define ANLPAR_10FD 0x0040
390 #define ANLPAR_10HD 0x0020
391 #define ANLPAR_PSB 0x0001 /* 802.3 */
392
393 #define ANER_PDF 0x0010
394 #define ANER_LPNPABLE 0x0008
395 #define ANER_NPABLE 0x0004
396 #define ANER_PAGERX 0x0002
397 #define ANER_LPANABLE 0x0001
398
399 #define ANNPTR_NP 0x8000
400 #define ANNPTR_MP 0x2000
401 #define ANNPTR_ACK2 0x1000
402 #define ANNPTR_TOGTX 0x0800
403 #define ANNPTR_CODE 0x0008
404
405 #define ANNPRR_NP 0x8000
406 #define ANNPRR_MP 0x2000
407 #define ANNPRR_ACK3 0x1000
408 #define ANNPRR_TOGTX 0x0800
409 #define ANNPRR_CODE 0x0008
410
411 #define K1TCR_TESTMODE 0x0000
412 #define K1TCR_MSMCE 0x1000
413 #define K1TCR_MSCV 0x0800
414 #define K1TCR_RPTR 0x0400
415 #define K1TCR_1000BT_FDX 0x200
416 #define K1TCR_1000BT_HDX 0x100
417
418 #define K1STSR_MSMCFLT 0x8000
419 #define K1STSR_MSCFGRES 0x4000
420 #define K1STSR_LRSTAT 0x2000
421 #define K1STSR_RRSTAT 0x1000
422 #define K1STSR_LP1KFD 0x0800
423 #define K1STSR_LP1KHD 0x0400
424 #define K1STSR_LPASMDIR 0x0200
425
426 #define K1SCR_1KX_FDX 0x8000
427 #define K1SCR_1KX_HDX 0x4000
428 #define K1SCR_1KT_FDX 0x2000
429 #define K1SCR_1KT_HDX 0x1000
430
431 #define STRAP_PHY1 0x0800
432 #define STRAP_NCMODE 0x0400
433 #define STRAP_MANMSCFG 0x0200
434 #define STRAP_ANENABLE 0x0100
435 #define STRAP_MSVAL 0x0080
436 #define STRAP_1KHDXADV 0x0010
437 #define STRAP_1KFDXADV 0x0008
438 #define STRAP_100ADV 0x0004
439 #define STRAP_SPEEDSEL 0x0000
440 #define STRAP_SPEED100 0x0001
441
442 #define PHYSUP_SPEED1000 0x10
443 #define PHYSUP_SPEED100 0x08
444 #define PHYSUP_SPEED10 0x00
445 #define PHYSUP_LINKUP 0x04
446 #define PHYSUP_FDX 0x02
447
448 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
449 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
450 #define MII_PHYIDR1 0x02
451 #define MII_PHYIDR2 0x03
452
453 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
454 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
455
456
457 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
458
459 #define ENABLE 1
460 #define DISABLE 0
461
462 /**********************************************************************
463 * SBMAC_MII_SYNC(s)
464 *
465 * Synchronize with the MII - send a pattern of bits to the MII
466 * that will guarantee that it is ready to accept a command.
467 *
468 * Input parameters:
469 * s - sbmac structure
470 *
471 * Return value:
472 * nothing
473 ********************************************************************* */
474
475 static void sbmac_mii_sync(struct sbmac_softc *s)
476 {
477 int cnt;
478 uint64_t bits;
479 int mac_mdio_genc;
480
481 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
482
483 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
484
485 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
486
487 for (cnt = 0; cnt < 32; cnt++) {
488 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
489 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
490 }
491 }
492
493 /**********************************************************************
494 * SBMAC_MII_SENDDATA(s,data,bitcnt)
495 *
496 * Send some bits to the MII. The bits to be sent are right-
497 * justified in the 'data' parameter.
498 *
499 * Input parameters:
500 * s - sbmac structure
501 * data - data to send
502 * bitcnt - number of bits to send
503 ********************************************************************* */
504
505 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
506 {
507 int i;
508 uint64_t bits;
509 unsigned int curmask;
510 int mac_mdio_genc;
511
512 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
513
514 bits = M_MAC_MDIO_DIR_OUTPUT;
515 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
516
517 curmask = 1 << (bitcnt - 1);
518
519 for (i = 0; i < bitcnt; i++) {
520 if (data & curmask)
521 bits |= M_MAC_MDIO_OUT;
522 else bits &= ~M_MAC_MDIO_OUT;
523 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
524 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
525 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
526 curmask >>= 1;
527 }
528 }
529
530
531
532 /**********************************************************************
533 * SBMAC_MII_READ(s,phyaddr,regidx)
534 *
535 * Read a PHY register.
536 *
537 * Input parameters:
538 * s - sbmac structure
539 * phyaddr - PHY's address
540 * regidx = index of register to read
541 *
542 * Return value:
543 * value read, or 0 if an error occurred.
544 ********************************************************************* */
545
546 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
547 {
548 int idx;
549 int error;
550 int regval;
551 int mac_mdio_genc;
552
553 /*
554 * Synchronize ourselves so that the PHY knows the next
555 * thing coming down is a command
556 */
557
558 sbmac_mii_sync(s);
559
560 /*
561 * Send the data to the PHY. The sequence is
562 * a "start" command (2 bits)
563 * a "read" command (2 bits)
564 * the PHY addr (5 bits)
565 * the register index (5 bits)
566 */
567
568 sbmac_mii_senddata(s,MII_COMMAND_START, 2);
569 sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
570 sbmac_mii_senddata(s,phyaddr, 5);
571 sbmac_mii_senddata(s,regidx, 5);
572
573 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
574
575 /*
576 * Switch the port around without a clock transition.
577 */
578 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
579
580 /*
581 * Send out a clock pulse to signal we want the status
582 */
583
584 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
585 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
586
587 /*
588 * If an error occurred, the PHY will signal '1' back
589 */
590 error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
591
592 /*
593 * Issue an 'idle' clock pulse, but keep the direction
594 * the same.
595 */
596 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
597 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
598
599 regval = 0;
600
601 for (idx = 0; idx < 16; idx++) {
602 regval <<= 1;
603
604 if (error == 0) {
605 if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
606 regval |= 1;
607 }
608
609 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
610 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
611 }
612
613 /* Switch back to output */
614 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
615
616 if (error == 0)
617 return regval;
618 return 0;
619 }
620
621
622 /**********************************************************************
623 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
624 *
625 * Write a value to a PHY register.
626 *
627 * Input parameters:
628 * s - sbmac structure
629 * phyaddr - PHY to use
630 * regidx - register within the PHY
631 * regval - data to write to register
632 *
633 * Return value:
634 * nothing
635 ********************************************************************* */
636
637 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
638 unsigned int regval)
639 {
640 int mac_mdio_genc;
641
642 sbmac_mii_sync(s);
643
644 sbmac_mii_senddata(s,MII_COMMAND_START,2);
645 sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
646 sbmac_mii_senddata(s,phyaddr, 5);
647 sbmac_mii_senddata(s,regidx, 5);
648 sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
649 sbmac_mii_senddata(s,regval,16);
650
651 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
652
653 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
654 }
655
656
657
658 /**********************************************************************
659 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
660 *
661 * Initialize a DMA channel context. Since there are potentially
662 * eight DMA channels per MAC, it's nice to do this in a standard
663 * way.
664 *
665 * Input parameters:
666 * d - sbmacdma_t structure (DMA channel context)
667 * s - sbmac_softc structure (pointer to a MAC)
668 * chan - channel number (0..1 right now)
669 * txrx - Identifies DMA_TX or DMA_RX for channel direction
670 * maxdescr - number of descriptors
671 *
672 * Return value:
673 * nothing
674 ********************************************************************* */
675
676 static void sbdma_initctx(sbmacdma_t *d,
677 struct sbmac_softc *s,
678 int chan,
679 int txrx,
680 int maxdescr)
681 {
682 /*
683 * Save away interesting stuff in the structure
684 */
685
686 d->sbdma_eth = s;
687 d->sbdma_channel = chan;
688 d->sbdma_txdir = txrx;
689
690 #if 0
691 /* RMON clearing */
692 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
693 #endif
694
695 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
696 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
697 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
698 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
699 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
700 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
701 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
702 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
703 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
704 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
705 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
706 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
707 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
708 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
709 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
710 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
711 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
712 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
713 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
714 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
715 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
716
717 /*
718 * initialize register pointers
719 */
720
721 d->sbdma_config0 =
722 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
723 d->sbdma_config1 =
724 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
725 d->sbdma_dscrbase =
726 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
727 d->sbdma_dscrcnt =
728 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
729 d->sbdma_curdscr =
730 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
731
732 /*
733 * Allocate memory for the ring
734 */
735
736 d->sbdma_maxdescr = maxdescr;
737
738 d->sbdma_dscrtable = (sbdmadscr_t *)
739 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
740
741 /*
742 * The descriptor table must be aligned to at least 16 bytes or the
743 * MAC will corrupt it.
744 */
745 d->sbdma_dscrtable = (sbdmadscr_t *)
746 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
747
748 memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
749
750 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
751
752 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
753
754 /*
755 * And context table
756 */
757
758 d->sbdma_ctxtable = (struct sk_buff **)
759 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
760
761 memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
762
763 #ifdef CONFIG_SBMAC_COALESCE
764 /*
765 * Setup Rx/Tx DMA coalescing defaults
766 */
767
768 if ( int_pktcnt ) {
769 d->sbdma_int_pktcnt = int_pktcnt;
770 } else {
771 d->sbdma_int_pktcnt = 1;
772 }
773
774 if ( int_timeout ) {
775 d->sbdma_int_timeout = int_timeout;
776 } else {
777 d->sbdma_int_timeout = 0;
778 }
779 #endif
780
781 }
782
783 /**********************************************************************
784 * SBDMA_CHANNEL_START(d)
785 *
786 * Initialize the hardware registers for a DMA channel.
787 *
788 * Input parameters:
789 * d - DMA channel to init (context must be previously init'd
790 * rxtx - DMA_RX or DMA_TX depending on what type of channel
791 *
792 * Return value:
793 * nothing
794 ********************************************************************* */
795
796 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
797 {
798 /*
799 * Turn on the DMA channel
800 */
801
802 #ifdef CONFIG_SBMAC_COALESCE
803 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
804 0, d->sbdma_config1);
805 __raw_writeq(M_DMA_EOP_INT_EN |
806 V_DMA_RINGSZ(d->sbdma_maxdescr) |
807 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
808 0, d->sbdma_config0);
809 #else
810 __raw_writeq(0, d->sbdma_config1);
811 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
812 0, d->sbdma_config0);
813 #endif
814
815 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
816
817 /*
818 * Initialize ring pointers
819 */
820
821 d->sbdma_addptr = d->sbdma_dscrtable;
822 d->sbdma_remptr = d->sbdma_dscrtable;
823 }
824
825 /**********************************************************************
826 * SBDMA_CHANNEL_STOP(d)
827 *
828 * Initialize the hardware registers for a DMA channel.
829 *
830 * Input parameters:
831 * d - DMA channel to init (context must be previously init'd
832 *
833 * Return value:
834 * nothing
835 ********************************************************************* */
836
837 static void sbdma_channel_stop(sbmacdma_t *d)
838 {
839 /*
840 * Turn off the DMA channel
841 */
842
843 __raw_writeq(0, d->sbdma_config1);
844
845 __raw_writeq(0, d->sbdma_dscrbase);
846
847 __raw_writeq(0, d->sbdma_config0);
848
849 /*
850 * Zero ring pointers
851 */
852
853 d->sbdma_addptr = NULL;
854 d->sbdma_remptr = NULL;
855 }
856
857 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
858 {
859 unsigned long addr;
860 unsigned long newaddr;
861
862 addr = (unsigned long) skb->data;
863
864 newaddr = (addr + power2 - 1) & ~(power2 - 1);
865
866 skb_reserve(skb,newaddr-addr+offset);
867 }
868
869
870 /**********************************************************************
871 * SBDMA_ADD_RCVBUFFER(d,sb)
872 *
873 * Add a buffer to the specified DMA channel. For receive channels,
874 * this queues a buffer for inbound packets.
875 *
876 * Input parameters:
877 * d - DMA channel descriptor
878 * sb - sk_buff to add, or NULL if we should allocate one
879 *
880 * Return value:
881 * 0 if buffer could not be added (ring is full)
882 * 1 if buffer added successfully
883 ********************************************************************* */
884
885
886 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
887 {
888 sbdmadscr_t *dsc;
889 sbdmadscr_t *nextdsc;
890 struct sk_buff *sb_new = NULL;
891 int pktsize = ENET_PACKET_SIZE;
892
893 /* get pointer to our current place in the ring */
894
895 dsc = d->sbdma_addptr;
896 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
897
898 /*
899 * figure out if the ring is full - if the next descriptor
900 * is the same as the one that we're going to remove from
901 * the ring, the ring is full
902 */
903
904 if (nextdsc == d->sbdma_remptr) {
905 return -ENOSPC;
906 }
907
908 /*
909 * Allocate a sk_buff if we don't already have one.
910 * If we do have an sk_buff, reset it so that it's empty.
911 *
912 * Note: sk_buffs don't seem to be guaranteed to have any sort
913 * of alignment when they are allocated. Therefore, allocate enough
914 * extra space to make sure that:
915 *
916 * 1. the data does not start in the middle of a cache line.
917 * 2. The data does not end in the middle of a cache line
918 * 3. The buffer can be aligned such that the IP addresses are
919 * naturally aligned.
920 *
921 * Remember, the SOCs MAC writes whole cache lines at a time,
922 * without reading the old contents first. So, if the sk_buff's
923 * data portion starts in the middle of a cache line, the SOC
924 * DMA will trash the beginning (and ending) portions.
925 */
926
927 if (sb == NULL) {
928 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
929 if (sb_new == NULL) {
930 printk(KERN_INFO "%s: sk_buff allocation failed\n",
931 d->sbdma_eth->sbm_dev->name);
932 return -ENOBUFS;
933 }
934
935 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
936
937 /* mark skbuff owned by our device */
938 sb_new->dev = d->sbdma_eth->sbm_dev;
939 }
940 else {
941 sb_new = sb;
942 /*
943 * nothing special to reinit buffer, it's already aligned
944 * and sb->data already points to a good place.
945 */
946 }
947
948 /*
949 * fill in the descriptor
950 */
951
952 #ifdef CONFIG_SBMAC_COALESCE
953 /*
954 * Do not interrupt per DMA transfer.
955 */
956 dsc->dscr_a = virt_to_phys(sb_new->data) |
957 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
958 #else
959 dsc->dscr_a = virt_to_phys(sb_new->data) |
960 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
961 M_DMA_DSCRA_INTERRUPT;
962 #endif
963
964 /* receiving: no options */
965 dsc->dscr_b = 0;
966
967 /*
968 * fill in the context
969 */
970
971 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
972
973 /*
974 * point at next packet
975 */
976
977 d->sbdma_addptr = nextdsc;
978
979 /*
980 * Give the buffer to the DMA engine.
981 */
982
983 __raw_writeq(1, d->sbdma_dscrcnt);
984
985 return 0; /* we did it */
986 }
987
988 /**********************************************************************
989 * SBDMA_ADD_TXBUFFER(d,sb)
990 *
991 * Add a transmit buffer to the specified DMA channel, causing a
992 * transmit to start.
993 *
994 * Input parameters:
995 * d - DMA channel descriptor
996 * sb - sk_buff to add
997 *
998 * Return value:
999 * 0 transmit queued successfully
1000 * otherwise error code
1001 ********************************************************************* */
1002
1003
1004 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
1005 {
1006 sbdmadscr_t *dsc;
1007 sbdmadscr_t *nextdsc;
1008 uint64_t phys;
1009 uint64_t ncb;
1010 int length;
1011
1012 /* get pointer to our current place in the ring */
1013
1014 dsc = d->sbdma_addptr;
1015 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1016
1017 /*
1018 * figure out if the ring is full - if the next descriptor
1019 * is the same as the one that we're going to remove from
1020 * the ring, the ring is full
1021 */
1022
1023 if (nextdsc == d->sbdma_remptr) {
1024 return -ENOSPC;
1025 }
1026
1027 /*
1028 * Under Linux, it's not necessary to copy/coalesce buffers
1029 * like it is on NetBSD. We think they're all contiguous,
1030 * but that may not be true for GBE.
1031 */
1032
1033 length = sb->len;
1034
1035 /*
1036 * fill in the descriptor. Note that the number of cache
1037 * blocks in the descriptor is the number of blocks
1038 * *spanned*, so we need to add in the offset (if any)
1039 * while doing the calculation.
1040 */
1041
1042 phys = virt_to_phys(sb->data);
1043 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1044
1045 dsc->dscr_a = phys |
1046 V_DMA_DSCRA_A_SIZE(ncb) |
1047 #ifndef CONFIG_SBMAC_COALESCE
1048 M_DMA_DSCRA_INTERRUPT |
1049 #endif
1050 M_DMA_ETHTX_SOP;
1051
1052 /* transmitting: set outbound options and length */
1053
1054 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1055 V_DMA_DSCRB_PKT_SIZE(length);
1056
1057 /*
1058 * fill in the context
1059 */
1060
1061 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1062
1063 /*
1064 * point at next packet
1065 */
1066
1067 d->sbdma_addptr = nextdsc;
1068
1069 /*
1070 * Give the buffer to the DMA engine.
1071 */
1072
1073 __raw_writeq(1, d->sbdma_dscrcnt);
1074
1075 return 0; /* we did it */
1076 }
1077
1078
1079
1080
1081 /**********************************************************************
1082 * SBDMA_EMPTYRING(d)
1083 *
1084 * Free all allocated sk_buffs on the specified DMA channel;
1085 *
1086 * Input parameters:
1087 * d - DMA channel
1088 *
1089 * Return value:
1090 * nothing
1091 ********************************************************************* */
1092
1093 static void sbdma_emptyring(sbmacdma_t *d)
1094 {
1095 int idx;
1096 struct sk_buff *sb;
1097
1098 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1099 sb = d->sbdma_ctxtable[idx];
1100 if (sb) {
1101 dev_kfree_skb(sb);
1102 d->sbdma_ctxtable[idx] = NULL;
1103 }
1104 }
1105 }
1106
1107
1108 /**********************************************************************
1109 * SBDMA_FILLRING(d)
1110 *
1111 * Fill the specified DMA channel (must be receive channel)
1112 * with sk_buffs
1113 *
1114 * Input parameters:
1115 * d - DMA channel
1116 *
1117 * Return value:
1118 * nothing
1119 ********************************************************************* */
1120
1121 static void sbdma_fillring(sbmacdma_t *d)
1122 {
1123 int idx;
1124
1125 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1126 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1127 break;
1128 }
1129 }
1130
1131
1132 /**********************************************************************
1133 * SBDMA_RX_PROCESS(sc,d)
1134 *
1135 * Process "completed" receive buffers on the specified DMA channel.
1136 * Note that this isn't really ideal for priority channels, since
1137 * it processes all of the packets on a given channel before
1138 * returning.
1139 *
1140 * Input parameters:
1141 * sc - softc structure
1142 * d - DMA channel context
1143 *
1144 * Return value:
1145 * nothing
1146 ********************************************************************* */
1147
1148 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1149 {
1150 int curidx;
1151 int hwidx;
1152 sbdmadscr_t *dsc;
1153 struct sk_buff *sb;
1154 int len;
1155
1156 for (;;) {
1157 /*
1158 * figure out where we are (as an index) and where
1159 * the hardware is (also as an index)
1160 *
1161 * This could be done faster if (for example) the
1162 * descriptor table was page-aligned and contiguous in
1163 * both virtual and physical memory -- you could then
1164 * just compare the low-order bits of the virtual address
1165 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1166 */
1167
1168 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1169 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1170 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1171
1172 /*
1173 * If they're the same, that means we've processed all
1174 * of the descriptors up to (but not including) the one that
1175 * the hardware is working on right now.
1176 */
1177
1178 if (curidx == hwidx)
1179 break;
1180
1181 /*
1182 * Otherwise, get the packet's sk_buff ptr back
1183 */
1184
1185 dsc = &(d->sbdma_dscrtable[curidx]);
1186 sb = d->sbdma_ctxtable[curidx];
1187 d->sbdma_ctxtable[curidx] = NULL;
1188
1189 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1190
1191 /*
1192 * Check packet status. If good, process it.
1193 * If not, silently drop it and put it back on the
1194 * receive ring.
1195 */
1196
1197 if (!(dsc->dscr_a & M_DMA_ETHRX_BAD)) {
1198
1199 /*
1200 * Add a new buffer to replace the old one. If we fail
1201 * to allocate a buffer, we're going to drop this
1202 * packet and put it right back on the receive ring.
1203 */
1204
1205 if (sbdma_add_rcvbuffer(d,NULL) == -ENOBUFS) {
1206 sc->sbm_stats.rx_dropped++;
1207 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1208 } else {
1209 /*
1210 * Set length into the packet
1211 */
1212 skb_put(sb,len);
1213
1214 /*
1215 * Buffer has been replaced on the
1216 * receive ring. Pass the buffer to
1217 * the kernel
1218 */
1219 sc->sbm_stats.rx_bytes += len;
1220 sc->sbm_stats.rx_packets++;
1221 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1222 /* Check hw IPv4/TCP checksum if supported */
1223 if (sc->rx_hw_checksum == ENABLE) {
1224 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1225 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1226 sb->ip_summed = CHECKSUM_UNNECESSARY;
1227 /* don't need to set sb->csum */
1228 } else {
1229 sb->ip_summed = CHECKSUM_NONE;
1230 }
1231 }
1232
1233 netif_rx(sb);
1234 }
1235 } else {
1236 /*
1237 * Packet was mangled somehow. Just drop it and
1238 * put it back on the receive ring.
1239 */
1240 sc->sbm_stats.rx_errors++;
1241 sbdma_add_rcvbuffer(d,sb);
1242 }
1243
1244
1245 /*
1246 * .. and advance to the next buffer.
1247 */
1248
1249 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1250
1251 }
1252 }
1253
1254
1255
1256 /**********************************************************************
1257 * SBDMA_TX_PROCESS(sc,d)
1258 *
1259 * Process "completed" transmit buffers on the specified DMA channel.
1260 * This is normally called within the interrupt service routine.
1261 * Note that this isn't really ideal for priority channels, since
1262 * it processes all of the packets on a given channel before
1263 * returning.
1264 *
1265 * Input parameters:
1266 * sc - softc structure
1267 * d - DMA channel context
1268 *
1269 * Return value:
1270 * nothing
1271 ********************************************************************* */
1272
1273 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1274 {
1275 int curidx;
1276 int hwidx;
1277 sbdmadscr_t *dsc;
1278 struct sk_buff *sb;
1279 unsigned long flags;
1280
1281 spin_lock_irqsave(&(sc->sbm_lock), flags);
1282
1283 for (;;) {
1284 /*
1285 * figure out where we are (as an index) and where
1286 * the hardware is (also as an index)
1287 *
1288 * This could be done faster if (for example) the
1289 * descriptor table was page-aligned and contiguous in
1290 * both virtual and physical memory -- you could then
1291 * just compare the low-order bits of the virtual address
1292 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1293 */
1294
1295 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1296 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1297 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1298
1299 /*
1300 * If they're the same, that means we've processed all
1301 * of the descriptors up to (but not including) the one that
1302 * the hardware is working on right now.
1303 */
1304
1305 if (curidx == hwidx)
1306 break;
1307
1308 /*
1309 * Otherwise, get the packet's sk_buff ptr back
1310 */
1311
1312 dsc = &(d->sbdma_dscrtable[curidx]);
1313 sb = d->sbdma_ctxtable[curidx];
1314 d->sbdma_ctxtable[curidx] = NULL;
1315
1316 /*
1317 * Stats
1318 */
1319
1320 sc->sbm_stats.tx_bytes += sb->len;
1321 sc->sbm_stats.tx_packets++;
1322
1323 /*
1324 * for transmits, we just free buffers.
1325 */
1326
1327 dev_kfree_skb_irq(sb);
1328
1329 /*
1330 * .. and advance to the next buffer.
1331 */
1332
1333 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1334
1335 }
1336
1337 /*
1338 * Decide if we should wake up the protocol or not.
1339 * Other drivers seem to do this when we reach a low
1340 * watermark on the transmit queue.
1341 */
1342
1343 netif_wake_queue(d->sbdma_eth->sbm_dev);
1344
1345 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1346
1347 }
1348
1349
1350
1351 /**********************************************************************
1352 * SBMAC_INITCTX(s)
1353 *
1354 * Initialize an Ethernet context structure - this is called
1355 * once per MAC on the 1250. Memory is allocated here, so don't
1356 * call it again from inside the ioctl routines that bring the
1357 * interface up/down
1358 *
1359 * Input parameters:
1360 * s - sbmac context structure
1361 *
1362 * Return value:
1363 * 0
1364 ********************************************************************* */
1365
1366 static int sbmac_initctx(struct sbmac_softc *s)
1367 {
1368
1369 /*
1370 * figure out the addresses of some ports
1371 */
1372
1373 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1374 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1375 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1376 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1377 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1378 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1379 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1380 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1381
1382 s->sbm_phys[0] = 1;
1383 s->sbm_phys[1] = 0;
1384
1385 s->sbm_phy_oldbmsr = 0;
1386 s->sbm_phy_oldanlpar = 0;
1387 s->sbm_phy_oldk1stsr = 0;
1388 s->sbm_phy_oldlinkstat = 0;
1389
1390 /*
1391 * Initialize the DMA channels. Right now, only one per MAC is used
1392 * Note: Only do this _once_, as it allocates memory from the kernel!
1393 */
1394
1395 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1396 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1397
1398 /*
1399 * initial state is OFF
1400 */
1401
1402 s->sbm_state = sbmac_state_off;
1403
1404 /*
1405 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1406 */
1407
1408 s->sbm_speed = sbmac_speed_10;
1409 s->sbm_duplex = sbmac_duplex_half;
1410 s->sbm_fc = sbmac_fc_disabled;
1411
1412 return 0;
1413 }
1414
1415
1416 static void sbdma_uninitctx(struct sbmacdma_s *d)
1417 {
1418 if (d->sbdma_dscrtable) {
1419 kfree(d->sbdma_dscrtable);
1420 d->sbdma_dscrtable = NULL;
1421 }
1422
1423 if (d->sbdma_ctxtable) {
1424 kfree(d->sbdma_ctxtable);
1425 d->sbdma_ctxtable = NULL;
1426 }
1427 }
1428
1429
1430 static void sbmac_uninitctx(struct sbmac_softc *sc)
1431 {
1432 sbdma_uninitctx(&(sc->sbm_txdma));
1433 sbdma_uninitctx(&(sc->sbm_rxdma));
1434 }
1435
1436
1437 /**********************************************************************
1438 * SBMAC_CHANNEL_START(s)
1439 *
1440 * Start packet processing on this MAC.
1441 *
1442 * Input parameters:
1443 * s - sbmac structure
1444 *
1445 * Return value:
1446 * nothing
1447 ********************************************************************* */
1448
1449 static void sbmac_channel_start(struct sbmac_softc *s)
1450 {
1451 uint64_t reg;
1452 volatile void __iomem *port;
1453 uint64_t cfg,fifo,framecfg;
1454 int idx, th_value;
1455
1456 /*
1457 * Don't do this if running
1458 */
1459
1460 if (s->sbm_state == sbmac_state_on)
1461 return;
1462
1463 /*
1464 * Bring the controller out of reset, but leave it off.
1465 */
1466
1467 __raw_writeq(0, s->sbm_macenable);
1468
1469 /*
1470 * Ignore all received packets
1471 */
1472
1473 __raw_writeq(0, s->sbm_rxfilter);
1474
1475 /*
1476 * Calculate values for various control registers.
1477 */
1478
1479 cfg = M_MAC_RETRY_EN |
1480 M_MAC_TX_HOLD_SOP_EN |
1481 V_MAC_TX_PAUSE_CNT_16K |
1482 M_MAC_AP_STAT_EN |
1483 M_MAC_FAST_SYNC |
1484 M_MAC_SS_EN |
1485 0;
1486
1487 /*
1488 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1489 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1490 * Use a larger RD_THRSH for gigabit
1491 */
1492 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1493 th_value = 28;
1494 else
1495 th_value = 64;
1496
1497 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1498 ((s->sbm_speed == sbmac_speed_1000)
1499 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1500 V_MAC_TX_RL_THRSH(4) |
1501 V_MAC_RX_PL_THRSH(4) |
1502 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1503 V_MAC_RX_PL_THRSH(4) |
1504 V_MAC_RX_RL_THRSH(8) |
1505 0;
1506
1507 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1508 V_MAC_MAX_FRAMESZ_DEFAULT |
1509 V_MAC_BACKOFF_SEL(1);
1510
1511 /*
1512 * Clear out the hash address map
1513 */
1514
1515 port = s->sbm_base + R_MAC_HASH_BASE;
1516 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1517 __raw_writeq(0, port);
1518 port += sizeof(uint64_t);
1519 }
1520
1521 /*
1522 * Clear out the exact-match table
1523 */
1524
1525 port = s->sbm_base + R_MAC_ADDR_BASE;
1526 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1527 __raw_writeq(0, port);
1528 port += sizeof(uint64_t);
1529 }
1530
1531 /*
1532 * Clear out the DMA Channel mapping table registers
1533 */
1534
1535 port = s->sbm_base + R_MAC_CHUP0_BASE;
1536 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1537 __raw_writeq(0, port);
1538 port += sizeof(uint64_t);
1539 }
1540
1541
1542 port = s->sbm_base + R_MAC_CHLO0_BASE;
1543 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1544 __raw_writeq(0, port);
1545 port += sizeof(uint64_t);
1546 }
1547
1548 /*
1549 * Program the hardware address. It goes into the hardware-address
1550 * register as well as the first filter register.
1551 */
1552
1553 reg = sbmac_addr2reg(s->sbm_hwaddr);
1554
1555 port = s->sbm_base + R_MAC_ADDR_BASE;
1556 __raw_writeq(reg, port);
1557 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1558
1559 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1560 /*
1561 * Pass1 SOCs do not receive packets addressed to the
1562 * destination address in the R_MAC_ETHERNET_ADDR register.
1563 * Set the value to zero.
1564 */
1565 __raw_writeq(0, port);
1566 #else
1567 __raw_writeq(reg, port);
1568 #endif
1569
1570 /*
1571 * Set the receive filter for no packets, and write values
1572 * to the various config registers
1573 */
1574
1575 __raw_writeq(0, s->sbm_rxfilter);
1576 __raw_writeq(0, s->sbm_imr);
1577 __raw_writeq(framecfg, s->sbm_framecfg);
1578 __raw_writeq(fifo, s->sbm_fifocfg);
1579 __raw_writeq(cfg, s->sbm_maccfg);
1580
1581 /*
1582 * Initialize DMA channels (rings should be ok now)
1583 */
1584
1585 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1586 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1587
1588 /*
1589 * Configure the speed, duplex, and flow control
1590 */
1591
1592 sbmac_set_speed(s,s->sbm_speed);
1593 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1594
1595 /*
1596 * Fill the receive ring
1597 */
1598
1599 sbdma_fillring(&(s->sbm_rxdma));
1600
1601 /*
1602 * Turn on the rest of the bits in the enable register
1603 */
1604
1605 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1606 __raw_writeq(M_MAC_RXDMA_EN0 |
1607 M_MAC_TXDMA_EN0, s->sbm_macenable);
1608 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1609 __raw_writeq(M_MAC_RXDMA_EN0 |
1610 M_MAC_TXDMA_EN0 |
1611 M_MAC_RX_ENABLE |
1612 M_MAC_TX_ENABLE, s->sbm_macenable);
1613 #else
1614 #error invalid SiByte MAC configuation
1615 #endif
1616
1617 #ifdef CONFIG_SBMAC_COALESCE
1618 /*
1619 * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1620 */
1621 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1622 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1623 #else
1624 /*
1625 * Accept any kind of interrupt on TX and RX DMA channel 0
1626 */
1627 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1628 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1629 #endif
1630
1631 /*
1632 * Enable receiving unicasts and broadcasts
1633 */
1634
1635 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1636
1637 /*
1638 * we're running now.
1639 */
1640
1641 s->sbm_state = sbmac_state_on;
1642
1643 /*
1644 * Program multicast addresses
1645 */
1646
1647 sbmac_setmulti(s);
1648
1649 /*
1650 * If channel was in promiscuous mode before, turn that on
1651 */
1652
1653 if (s->sbm_devflags & IFF_PROMISC) {
1654 sbmac_promiscuous_mode(s,1);
1655 }
1656
1657 }
1658
1659
1660 /**********************************************************************
1661 * SBMAC_CHANNEL_STOP(s)
1662 *
1663 * Stop packet processing on this MAC.
1664 *
1665 * Input parameters:
1666 * s - sbmac structure
1667 *
1668 * Return value:
1669 * nothing
1670 ********************************************************************* */
1671
1672 static void sbmac_channel_stop(struct sbmac_softc *s)
1673 {
1674 /* don't do this if already stopped */
1675
1676 if (s->sbm_state == sbmac_state_off)
1677 return;
1678
1679 /* don't accept any packets, disable all interrupts */
1680
1681 __raw_writeq(0, s->sbm_rxfilter);
1682 __raw_writeq(0, s->sbm_imr);
1683
1684 /* Turn off ticker */
1685
1686 /* XXX */
1687
1688 /* turn off receiver and transmitter */
1689
1690 __raw_writeq(0, s->sbm_macenable);
1691
1692 /* We're stopped now. */
1693
1694 s->sbm_state = sbmac_state_off;
1695
1696 /*
1697 * Stop DMA channels (rings should be ok now)
1698 */
1699
1700 sbdma_channel_stop(&(s->sbm_rxdma));
1701 sbdma_channel_stop(&(s->sbm_txdma));
1702
1703 /* Empty the receive and transmit rings */
1704
1705 sbdma_emptyring(&(s->sbm_rxdma));
1706 sbdma_emptyring(&(s->sbm_txdma));
1707
1708 }
1709
1710 /**********************************************************************
1711 * SBMAC_SET_CHANNEL_STATE(state)
1712 *
1713 * Set the channel's state ON or OFF
1714 *
1715 * Input parameters:
1716 * state - new state
1717 *
1718 * Return value:
1719 * old state
1720 ********************************************************************* */
1721 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1722 sbmac_state_t state)
1723 {
1724 sbmac_state_t oldstate = sc->sbm_state;
1725
1726 /*
1727 * If same as previous state, return
1728 */
1729
1730 if (state == oldstate) {
1731 return oldstate;
1732 }
1733
1734 /*
1735 * If new state is ON, turn channel on
1736 */
1737
1738 if (state == sbmac_state_on) {
1739 sbmac_channel_start(sc);
1740 }
1741 else {
1742 sbmac_channel_stop(sc);
1743 }
1744
1745 /*
1746 * Return previous state
1747 */
1748
1749 return oldstate;
1750 }
1751
1752
1753 /**********************************************************************
1754 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1755 *
1756 * Turn on or off promiscuous mode
1757 *
1758 * Input parameters:
1759 * sc - softc
1760 * onoff - 1 to turn on, 0 to turn off
1761 *
1762 * Return value:
1763 * nothing
1764 ********************************************************************* */
1765
1766 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1767 {
1768 uint64_t reg;
1769
1770 if (sc->sbm_state != sbmac_state_on)
1771 return;
1772
1773 if (onoff) {
1774 reg = __raw_readq(sc->sbm_rxfilter);
1775 reg |= M_MAC_ALLPKT_EN;
1776 __raw_writeq(reg, sc->sbm_rxfilter);
1777 }
1778 else {
1779 reg = __raw_readq(sc->sbm_rxfilter);
1780 reg &= ~M_MAC_ALLPKT_EN;
1781 __raw_writeq(reg, sc->sbm_rxfilter);
1782 }
1783 }
1784
1785 /**********************************************************************
1786 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1787 *
1788 * Set the iphdr offset as 15 assuming ethernet encapsulation
1789 *
1790 * Input parameters:
1791 * sc - softc
1792 *
1793 * Return value:
1794 * nothing
1795 ********************************************************************* */
1796
1797 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1798 {
1799 uint64_t reg;
1800
1801 /* Hard code the off set to 15 for now */
1802 reg = __raw_readq(sc->sbm_rxfilter);
1803 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1804 __raw_writeq(reg, sc->sbm_rxfilter);
1805
1806 /* BCM1250 pass1 didn't have hardware checksum. Everything
1807 later does. */
1808 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1809 sc->rx_hw_checksum = DISABLE;
1810 } else {
1811 sc->rx_hw_checksum = ENABLE;
1812 }
1813 }
1814
1815
1816 /**********************************************************************
1817 * SBMAC_ADDR2REG(ptr)
1818 *
1819 * Convert six bytes into the 64-bit register value that
1820 * we typically write into the SBMAC's address/mcast registers
1821 *
1822 * Input parameters:
1823 * ptr - pointer to 6 bytes
1824 *
1825 * Return value:
1826 * register value
1827 ********************************************************************* */
1828
1829 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1830 {
1831 uint64_t reg = 0;
1832
1833 ptr += 6;
1834
1835 reg |= (uint64_t) *(--ptr);
1836 reg <<= 8;
1837 reg |= (uint64_t) *(--ptr);
1838 reg <<= 8;
1839 reg |= (uint64_t) *(--ptr);
1840 reg <<= 8;
1841 reg |= (uint64_t) *(--ptr);
1842 reg <<= 8;
1843 reg |= (uint64_t) *(--ptr);
1844 reg <<= 8;
1845 reg |= (uint64_t) *(--ptr);
1846
1847 return reg;
1848 }
1849
1850
1851 /**********************************************************************
1852 * SBMAC_SET_SPEED(s,speed)
1853 *
1854 * Configure LAN speed for the specified MAC.
1855 * Warning: must be called when MAC is off!
1856 *
1857 * Input parameters:
1858 * s - sbmac structure
1859 * speed - speed to set MAC to (see sbmac_speed_t enum)
1860 *
1861 * Return value:
1862 * 1 if successful
1863 * 0 indicates invalid parameters
1864 ********************************************************************* */
1865
1866 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1867 {
1868 uint64_t cfg;
1869 uint64_t framecfg;
1870
1871 /*
1872 * Save new current values
1873 */
1874
1875 s->sbm_speed = speed;
1876
1877 if (s->sbm_state == sbmac_state_on)
1878 return 0; /* save for next restart */
1879
1880 /*
1881 * Read current register values
1882 */
1883
1884 cfg = __raw_readq(s->sbm_maccfg);
1885 framecfg = __raw_readq(s->sbm_framecfg);
1886
1887 /*
1888 * Mask out the stuff we want to change
1889 */
1890
1891 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1892 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1893 M_MAC_SLOT_SIZE);
1894
1895 /*
1896 * Now add in the new bits
1897 */
1898
1899 switch (speed) {
1900 case sbmac_speed_10:
1901 framecfg |= V_MAC_IFG_RX_10 |
1902 V_MAC_IFG_TX_10 |
1903 K_MAC_IFG_THRSH_10 |
1904 V_MAC_SLOT_SIZE_10;
1905 cfg |= V_MAC_SPEED_SEL_10MBPS;
1906 break;
1907
1908 case sbmac_speed_100:
1909 framecfg |= V_MAC_IFG_RX_100 |
1910 V_MAC_IFG_TX_100 |
1911 V_MAC_IFG_THRSH_100 |
1912 V_MAC_SLOT_SIZE_100;
1913 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1914 break;
1915
1916 case sbmac_speed_1000:
1917 framecfg |= V_MAC_IFG_RX_1000 |
1918 V_MAC_IFG_TX_1000 |
1919 V_MAC_IFG_THRSH_1000 |
1920 V_MAC_SLOT_SIZE_1000;
1921 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1922 break;
1923
1924 case sbmac_speed_auto: /* XXX not implemented */
1925 /* fall through */
1926 default:
1927 return 0;
1928 }
1929
1930 /*
1931 * Send the bits back to the hardware
1932 */
1933
1934 __raw_writeq(framecfg, s->sbm_framecfg);
1935 __raw_writeq(cfg, s->sbm_maccfg);
1936
1937 return 1;
1938 }
1939
1940 /**********************************************************************
1941 * SBMAC_SET_DUPLEX(s,duplex,fc)
1942 *
1943 * Set Ethernet duplex and flow control options for this MAC
1944 * Warning: must be called when MAC is off!
1945 *
1946 * Input parameters:
1947 * s - sbmac structure
1948 * duplex - duplex setting (see sbmac_duplex_t)
1949 * fc - flow control setting (see sbmac_fc_t)
1950 *
1951 * Return value:
1952 * 1 if ok
1953 * 0 if an invalid parameter combination was specified
1954 ********************************************************************* */
1955
1956 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
1957 {
1958 uint64_t cfg;
1959
1960 /*
1961 * Save new current values
1962 */
1963
1964 s->sbm_duplex = duplex;
1965 s->sbm_fc = fc;
1966
1967 if (s->sbm_state == sbmac_state_on)
1968 return 0; /* save for next restart */
1969
1970 /*
1971 * Read current register values
1972 */
1973
1974 cfg = __raw_readq(s->sbm_maccfg);
1975
1976 /*
1977 * Mask off the stuff we're about to change
1978 */
1979
1980 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1981
1982
1983 switch (duplex) {
1984 case sbmac_duplex_half:
1985 switch (fc) {
1986 case sbmac_fc_disabled:
1987 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1988 break;
1989
1990 case sbmac_fc_collision:
1991 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1992 break;
1993
1994 case sbmac_fc_carrier:
1995 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1996 break;
1997
1998 case sbmac_fc_auto: /* XXX not implemented */
1999 /* fall through */
2000 case sbmac_fc_frame: /* not valid in half duplex */
2001 default: /* invalid selection */
2002 return 0;
2003 }
2004 break;
2005
2006 case sbmac_duplex_full:
2007 switch (fc) {
2008 case sbmac_fc_disabled:
2009 cfg |= V_MAC_FC_CMD_DISABLED;
2010 break;
2011
2012 case sbmac_fc_frame:
2013 cfg |= V_MAC_FC_CMD_ENABLED;
2014 break;
2015
2016 case sbmac_fc_collision: /* not valid in full duplex */
2017 case sbmac_fc_carrier: /* not valid in full duplex */
2018 case sbmac_fc_auto: /* XXX not implemented */
2019 /* fall through */
2020 default:
2021 return 0;
2022 }
2023 break;
2024 case sbmac_duplex_auto:
2025 /* XXX not implemented */
2026 break;
2027 }
2028
2029 /*
2030 * Send the bits back to the hardware
2031 */
2032
2033 __raw_writeq(cfg, s->sbm_maccfg);
2034
2035 return 1;
2036 }
2037
2038
2039
2040
2041 /**********************************************************************
2042 * SBMAC_INTR()
2043 *
2044 * Interrupt handler for MAC interrupts
2045 *
2046 * Input parameters:
2047 * MAC structure
2048 *
2049 * Return value:
2050 * nothing
2051 ********************************************************************* */
2052 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2053 {
2054 struct net_device *dev = (struct net_device *) dev_instance;
2055 struct sbmac_softc *sc = netdev_priv(dev);
2056 uint64_t isr;
2057 int handled = 0;
2058
2059 for (;;) {
2060
2061 /*
2062 * Read the ISR (this clears the bits in the real
2063 * register, except for counter addr)
2064 */
2065
2066 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2067
2068 if (isr == 0)
2069 break;
2070
2071 handled = 1;
2072
2073 /*
2074 * Transmits on channel 0
2075 */
2076
2077 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
2078 sbdma_tx_process(sc,&(sc->sbm_txdma));
2079 }
2080
2081 /*
2082 * Receives on channel 0
2083 */
2084
2085 /*
2086 * It's important to test all the bits (or at least the
2087 * EOP_SEEN bit) when deciding to do the RX process
2088 * particularly when coalescing, to make sure we
2089 * take care of the following:
2090 *
2091 * If you have some packets waiting (have been received
2092 * but no interrupt) and get a TX interrupt before
2093 * the RX timer or counter expires, reading the ISR
2094 * above will clear the timer and counter, and you
2095 * won't get another interrupt until a packet shows
2096 * up to start the timer again. Testing
2097 * EOP_SEEN here takes care of this case.
2098 * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2099 */
2100
2101
2102 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2103 sbdma_rx_process(sc,&(sc->sbm_rxdma));
2104 }
2105 }
2106 return IRQ_RETVAL(handled);
2107 }
2108
2109
2110 /**********************************************************************
2111 * SBMAC_START_TX(skb,dev)
2112 *
2113 * Start output on the specified interface. Basically, we
2114 * queue as many buffers as we can until the ring fills up, or
2115 * we run off the end of the queue, whichever comes first.
2116 *
2117 * Input parameters:
2118 *
2119 *
2120 * Return value:
2121 * nothing
2122 ********************************************************************* */
2123 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2124 {
2125 struct sbmac_softc *sc = netdev_priv(dev);
2126
2127 /* lock eth irq */
2128 spin_lock_irq (&sc->sbm_lock);
2129
2130 /*
2131 * Put the buffer on the transmit ring. If we
2132 * don't have room, stop the queue.
2133 */
2134
2135 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2136 /* XXX save skb that we could not send */
2137 netif_stop_queue(dev);
2138 spin_unlock_irq(&sc->sbm_lock);
2139
2140 return 1;
2141 }
2142
2143 dev->trans_start = jiffies;
2144
2145 spin_unlock_irq (&sc->sbm_lock);
2146
2147 return 0;
2148 }
2149
2150 /**********************************************************************
2151 * SBMAC_SETMULTI(sc)
2152 *
2153 * Reprogram the multicast table into the hardware, given
2154 * the list of multicasts associated with the interface
2155 * structure.
2156 *
2157 * Input parameters:
2158 * sc - softc
2159 *
2160 * Return value:
2161 * nothing
2162 ********************************************************************* */
2163
2164 static void sbmac_setmulti(struct sbmac_softc *sc)
2165 {
2166 uint64_t reg;
2167 volatile void __iomem *port;
2168 int idx;
2169 struct dev_mc_list *mclist;
2170 struct net_device *dev = sc->sbm_dev;
2171
2172 /*
2173 * Clear out entire multicast table. We do this by nuking
2174 * the entire hash table and all the direct matches except
2175 * the first one, which is used for our station address
2176 */
2177
2178 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2179 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2180 __raw_writeq(0, port);
2181 }
2182
2183 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2184 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2185 __raw_writeq(0, port);
2186 }
2187
2188 /*
2189 * Clear the filter to say we don't want any multicasts.
2190 */
2191
2192 reg = __raw_readq(sc->sbm_rxfilter);
2193 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2194 __raw_writeq(reg, sc->sbm_rxfilter);
2195
2196 if (dev->flags & IFF_ALLMULTI) {
2197 /*
2198 * Enable ALL multicasts. Do this by inverting the
2199 * multicast enable bit.
2200 */
2201 reg = __raw_readq(sc->sbm_rxfilter);
2202 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2203 __raw_writeq(reg, sc->sbm_rxfilter);
2204 return;
2205 }
2206
2207
2208 /*
2209 * Progam new multicast entries. For now, only use the
2210 * perfect filter. In the future we'll need to use the
2211 * hash filter if the perfect filter overflows
2212 */
2213
2214 /* XXX only using perfect filter for now, need to use hash
2215 * XXX if the table overflows */
2216
2217 idx = 1; /* skip station address */
2218 mclist = dev->mc_list;
2219 while (mclist && (idx < MAC_ADDR_COUNT)) {
2220 reg = sbmac_addr2reg(mclist->dmi_addr);
2221 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2222 __raw_writeq(reg, port);
2223 idx++;
2224 mclist = mclist->next;
2225 }
2226
2227 /*
2228 * Enable the "accept multicast bits" if we programmed at least one
2229 * multicast.
2230 */
2231
2232 if (idx > 1) {
2233 reg = __raw_readq(sc->sbm_rxfilter);
2234 reg |= M_MAC_MCAST_EN;
2235 __raw_writeq(reg, sc->sbm_rxfilter);
2236 }
2237 }
2238
2239
2240
2241 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2242 /**********************************************************************
2243 * SBMAC_PARSE_XDIGIT(str)
2244 *
2245 * Parse a hex digit, returning its value
2246 *
2247 * Input parameters:
2248 * str - character
2249 *
2250 * Return value:
2251 * hex value, or -1 if invalid
2252 ********************************************************************* */
2253
2254 static int sbmac_parse_xdigit(char str)
2255 {
2256 int digit;
2257
2258 if ((str >= '0') && (str <= '9'))
2259 digit = str - '0';
2260 else if ((str >= 'a') && (str <= 'f'))
2261 digit = str - 'a' + 10;
2262 else if ((str >= 'A') && (str <= 'F'))
2263 digit = str - 'A' + 10;
2264 else
2265 return -1;
2266
2267 return digit;
2268 }
2269
2270 /**********************************************************************
2271 * SBMAC_PARSE_HWADDR(str,hwaddr)
2272 *
2273 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2274 * Ethernet address.
2275 *
2276 * Input parameters:
2277 * str - string
2278 * hwaddr - pointer to hardware address
2279 *
2280 * Return value:
2281 * 0 if ok, else -1
2282 ********************************************************************* */
2283
2284 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2285 {
2286 int digit1,digit2;
2287 int idx = 6;
2288
2289 while (*str && (idx > 0)) {
2290 digit1 = sbmac_parse_xdigit(*str);
2291 if (digit1 < 0)
2292 return -1;
2293 str++;
2294 if (!*str)
2295 return -1;
2296
2297 if ((*str == ':') || (*str == '-')) {
2298 digit2 = digit1;
2299 digit1 = 0;
2300 }
2301 else {
2302 digit2 = sbmac_parse_xdigit(*str);
2303 if (digit2 < 0)
2304 return -1;
2305 str++;
2306 }
2307
2308 *hwaddr++ = (digit1 << 4) | digit2;
2309 idx--;
2310
2311 if (*str == '-')
2312 str++;
2313 if (*str == ':')
2314 str++;
2315 }
2316 return 0;
2317 }
2318 #endif
2319
2320 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2321 {
2322 if (new_mtu > ENET_PACKET_SIZE)
2323 return -EINVAL;
2324 _dev->mtu = new_mtu;
2325 printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2326 return 0;
2327 }
2328
2329 /**********************************************************************
2330 * SBMAC_INIT(dev)
2331 *
2332 * Attach routine - init hardware and hook ourselves into linux
2333 *
2334 * Input parameters:
2335 * dev - net_device structure
2336 *
2337 * Return value:
2338 * status
2339 ********************************************************************* */
2340
2341 static int sbmac_init(struct net_device *dev, int idx)
2342 {
2343 struct sbmac_softc *sc;
2344 unsigned char *eaddr;
2345 uint64_t ea_reg;
2346 int i;
2347 int err;
2348
2349 sc = netdev_priv(dev);
2350
2351 /* Determine controller base address */
2352
2353 sc->sbm_base = IOADDR(dev->base_addr);
2354 sc->sbm_dev = dev;
2355 sc->sbe_idx = idx;
2356
2357 eaddr = sc->sbm_hwaddr;
2358
2359 /*
2360 * Read the ethernet address. The firwmare left this programmed
2361 * for us in the ethernet address register for each mac.
2362 */
2363
2364 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2365 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2366 for (i = 0; i < 6; i++) {
2367 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2368 ea_reg >>= 8;
2369 }
2370
2371 for (i = 0; i < 6; i++) {
2372 dev->dev_addr[i] = eaddr[i];
2373 }
2374
2375
2376 /*
2377 * Init packet size
2378 */
2379
2380 sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2381
2382 /*
2383 * Initialize context (get pointers to registers and stuff), then
2384 * allocate the memory for the descriptor tables.
2385 */
2386
2387 sbmac_initctx(sc);
2388
2389 /*
2390 * Set up Linux device callins
2391 */
2392
2393 spin_lock_init(&(sc->sbm_lock));
2394
2395 dev->open = sbmac_open;
2396 dev->hard_start_xmit = sbmac_start_tx;
2397 dev->stop = sbmac_close;
2398 dev->get_stats = sbmac_get_stats;
2399 dev->set_multicast_list = sbmac_set_rx_mode;
2400 dev->do_ioctl = sbmac_mii_ioctl;
2401 dev->tx_timeout = sbmac_tx_timeout;
2402 dev->watchdog_timeo = TX_TIMEOUT;
2403
2404 dev->change_mtu = sb1250_change_mtu;
2405
2406 /* This is needed for PASS2 for Rx H/W checksum feature */
2407 sbmac_set_iphdr_offset(sc);
2408
2409 err = register_netdev(dev);
2410 if (err)
2411 goto out_uninit;
2412
2413 if (sc->rx_hw_checksum == ENABLE) {
2414 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2415 sc->sbm_dev->name);
2416 }
2417
2418 /*
2419 * Display Ethernet address (this is called during the config
2420 * process so we need to finish off the config message that
2421 * was being displayed)
2422 */
2423 printk(KERN_INFO
2424 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2425 dev->name, dev->base_addr,
2426 eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2427
2428
2429 return 0;
2430
2431 out_uninit:
2432 sbmac_uninitctx(sc);
2433
2434 return err;
2435 }
2436
2437
2438 static int sbmac_open(struct net_device *dev)
2439 {
2440 struct sbmac_softc *sc = netdev_priv(dev);
2441
2442 if (debug > 1) {
2443 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2444 }
2445
2446 /*
2447 * map/route interrupt (clear status first, in case something
2448 * weird is pending; we haven't initialized the mac registers
2449 * yet)
2450 */
2451
2452 __raw_readq(sc->sbm_isr);
2453 if (request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev))
2454 return -EBUSY;
2455
2456 /*
2457 * Probe phy address
2458 */
2459
2460 if(sbmac_mii_probe(dev) == -1) {
2461 printk("%s: failed to probe PHY.\n", dev->name);
2462 return -EINVAL;
2463 }
2464
2465 /*
2466 * Configure default speed
2467 */
2468
2469 sbmac_mii_poll(sc,noisy_mii);
2470
2471 /*
2472 * Turn on the channel
2473 */
2474
2475 sbmac_set_channel_state(sc,sbmac_state_on);
2476
2477 /*
2478 * XXX Station address is in dev->dev_addr
2479 */
2480
2481 if (dev->if_port == 0)
2482 dev->if_port = 0;
2483
2484 netif_start_queue(dev);
2485
2486 sbmac_set_rx_mode(dev);
2487
2488 /* Set the timer to check for link beat. */
2489 init_timer(&sc->sbm_timer);
2490 sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2491 sc->sbm_timer.data = (unsigned long)dev;
2492 sc->sbm_timer.function = &sbmac_timer;
2493 add_timer(&sc->sbm_timer);
2494
2495 return 0;
2496 }
2497
2498 static int sbmac_mii_probe(struct net_device *dev)
2499 {
2500 int i;
2501 struct sbmac_softc *s = netdev_priv(dev);
2502 u16 bmsr, id1, id2;
2503 u32 vendor, device;
2504
2505 for (i=1; i<31; i++) {
2506 bmsr = sbmac_mii_read(s, i, MII_BMSR);
2507 if (bmsr != 0) {
2508 s->sbm_phys[0] = i;
2509 id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
2510 id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
2511 vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
2512 device = (id2 >> 4) & 0x3f;
2513
2514 printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
2515 dev->name, i, vendor, device);
2516 return i;
2517 }
2518 }
2519 return -1;
2520 }
2521
2522
2523 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2524 {
2525 int bmsr,bmcr,k1stsr,anlpar;
2526 int chg;
2527 char buffer[100];
2528 char *p = buffer;
2529
2530 /* Read the mode status and mode control registers. */
2531 bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2532 bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2533
2534 /* get the link partner status */
2535 anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2536
2537 /* if supported, read the 1000baseT register */
2538 if (bmsr & BMSR_1000BT_XSR) {
2539 k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2540 }
2541 else {
2542 k1stsr = 0;
2543 }
2544
2545 chg = 0;
2546
2547 if ((bmsr & BMSR_LINKSTAT) == 0) {
2548 /*
2549 * If link status is down, clear out old info so that when
2550 * it comes back up it will force us to reconfigure speed
2551 */
2552 s->sbm_phy_oldbmsr = 0;
2553 s->sbm_phy_oldanlpar = 0;
2554 s->sbm_phy_oldk1stsr = 0;
2555 return 0;
2556 }
2557
2558 if ((s->sbm_phy_oldbmsr != bmsr) ||
2559 (s->sbm_phy_oldanlpar != anlpar) ||
2560 (s->sbm_phy_oldk1stsr != k1stsr)) {
2561 if (debug > 1) {
2562 printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2563 s->sbm_dev->name,
2564 s->sbm_phy_oldbmsr,bmsr,
2565 s->sbm_phy_oldanlpar,anlpar,
2566 s->sbm_phy_oldk1stsr,k1stsr);
2567 }
2568 s->sbm_phy_oldbmsr = bmsr;
2569 s->sbm_phy_oldanlpar = anlpar;
2570 s->sbm_phy_oldk1stsr = k1stsr;
2571 chg = 1;
2572 }
2573
2574 if (chg == 0)
2575 return 0;
2576
2577 p += sprintf(p,"Link speed: ");
2578
2579 if (k1stsr & K1STSR_LP1KFD) {
2580 s->sbm_speed = sbmac_speed_1000;
2581 s->sbm_duplex = sbmac_duplex_full;
2582 s->sbm_fc = sbmac_fc_frame;
2583 p += sprintf(p,"1000BaseT FDX");
2584 }
2585 else if (k1stsr & K1STSR_LP1KHD) {
2586 s->sbm_speed = sbmac_speed_1000;
2587 s->sbm_duplex = sbmac_duplex_half;
2588 s->sbm_fc = sbmac_fc_disabled;
2589 p += sprintf(p,"1000BaseT HDX");
2590 }
2591 else if (anlpar & ANLPAR_TXFD) {
2592 s->sbm_speed = sbmac_speed_100;
2593 s->sbm_duplex = sbmac_duplex_full;
2594 s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2595 p += sprintf(p,"100BaseT FDX");
2596 }
2597 else if (anlpar & ANLPAR_TXHD) {
2598 s->sbm_speed = sbmac_speed_100;
2599 s->sbm_duplex = sbmac_duplex_half;
2600 s->sbm_fc = sbmac_fc_disabled;
2601 p += sprintf(p,"100BaseT HDX");
2602 }
2603 else if (anlpar & ANLPAR_10FD) {
2604 s->sbm_speed = sbmac_speed_10;
2605 s->sbm_duplex = sbmac_duplex_full;
2606 s->sbm_fc = sbmac_fc_frame;
2607 p += sprintf(p,"10BaseT FDX");
2608 }
2609 else if (anlpar & ANLPAR_10HD) {
2610 s->sbm_speed = sbmac_speed_10;
2611 s->sbm_duplex = sbmac_duplex_half;
2612 s->sbm_fc = sbmac_fc_collision;
2613 p += sprintf(p,"10BaseT HDX");
2614 }
2615 else {
2616 p += sprintf(p,"Unknown");
2617 }
2618
2619 if (noisy) {
2620 printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2621 }
2622
2623 return 1;
2624 }
2625
2626
2627 static void sbmac_timer(unsigned long data)
2628 {
2629 struct net_device *dev = (struct net_device *)data;
2630 struct sbmac_softc *sc = netdev_priv(dev);
2631 int next_tick = HZ;
2632 int mii_status;
2633
2634 spin_lock_irq (&sc->sbm_lock);
2635
2636 /* make IFF_RUNNING follow the MII status bit "Link established" */
2637 mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2638
2639 if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2640 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2641 if (mii_status & BMSR_LINKSTAT) {
2642 netif_carrier_on(dev);
2643 }
2644 else {
2645 netif_carrier_off(dev);
2646 }
2647 }
2648
2649 /*
2650 * Poll the PHY to see what speed we should be running at
2651 */
2652
2653 if (sbmac_mii_poll(sc,noisy_mii)) {
2654 if (sc->sbm_state != sbmac_state_off) {
2655 /*
2656 * something changed, restart the channel
2657 */
2658 if (debug > 1) {
2659 printk("%s: restarting channel because speed changed\n",
2660 sc->sbm_dev->name);
2661 }
2662 sbmac_channel_stop(sc);
2663 sbmac_channel_start(sc);
2664 }
2665 }
2666
2667 spin_unlock_irq (&sc->sbm_lock);
2668
2669 sc->sbm_timer.expires = jiffies + next_tick;
2670 add_timer(&sc->sbm_timer);
2671 }
2672
2673
2674 static void sbmac_tx_timeout (struct net_device *dev)
2675 {
2676 struct sbmac_softc *sc = netdev_priv(dev);
2677
2678 spin_lock_irq (&sc->sbm_lock);
2679
2680
2681 dev->trans_start = jiffies;
2682 sc->sbm_stats.tx_errors++;
2683
2684 spin_unlock_irq (&sc->sbm_lock);
2685
2686 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2687 }
2688
2689
2690
2691
2692 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2693 {
2694 struct sbmac_softc *sc = netdev_priv(dev);
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&sc->sbm_lock, flags);
2698
2699 /* XXX update other stats here */
2700
2701 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2702
2703 return &sc->sbm_stats;
2704 }
2705
2706
2707
2708 static void sbmac_set_rx_mode(struct net_device *dev)
2709 {
2710 unsigned long flags;
2711 struct sbmac_softc *sc = netdev_priv(dev);
2712
2713 spin_lock_irqsave(&sc->sbm_lock, flags);
2714 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2715 /*
2716 * Promiscuous changed.
2717 */
2718
2719 if (dev->flags & IFF_PROMISC) {
2720 sbmac_promiscuous_mode(sc,1);
2721 }
2722 else {
2723 sbmac_promiscuous_mode(sc,0);
2724 }
2725 }
2726 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2727
2728 /*
2729 * Program the multicasts. Do this every time.
2730 */
2731
2732 sbmac_setmulti(sc);
2733
2734 }
2735
2736 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2737 {
2738 struct sbmac_softc *sc = netdev_priv(dev);
2739 u16 *data = (u16 *)&rq->ifr_ifru;
2740 unsigned long flags;
2741 int retval;
2742
2743 spin_lock_irqsave(&sc->sbm_lock, flags);
2744 retval = 0;
2745
2746 switch(cmd) {
2747 case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
2748 data[0] = sc->sbm_phys[0] & 0x1f;
2749 /* Fall Through */
2750 case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
2751 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2752 break;
2753 case SIOCDEVPRIVATE+2: /* Write the specified MII register */
2754 if (!capable(CAP_NET_ADMIN)) {
2755 retval = -EPERM;
2756 break;
2757 }
2758 if (debug > 1) {
2759 printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2760 data[0],data[1],data[2]);
2761 }
2762 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2763 break;
2764 default:
2765 retval = -EOPNOTSUPP;
2766 }
2767
2768 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2769 return retval;
2770 }
2771
2772 static int sbmac_close(struct net_device *dev)
2773 {
2774 struct sbmac_softc *sc = netdev_priv(dev);
2775 unsigned long flags;
2776 int irq;
2777
2778 sbmac_set_channel_state(sc,sbmac_state_off);
2779
2780 del_timer_sync(&sc->sbm_timer);
2781
2782 spin_lock_irqsave(&sc->sbm_lock, flags);
2783
2784 netif_stop_queue(dev);
2785
2786 if (debug > 1) {
2787 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2788 }
2789
2790 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2791
2792 irq = dev->irq;
2793 synchronize_irq(irq);
2794 free_irq(irq, dev);
2795
2796 sbdma_emptyring(&(sc->sbm_txdma));
2797 sbdma_emptyring(&(sc->sbm_rxdma));
2798
2799 return 0;
2800 }
2801
2802
2803
2804 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2805 static void
2806 sbmac_setup_hwaddr(int chan,char *addr)
2807 {
2808 uint8_t eaddr[6];
2809 uint64_t val;
2810 unsigned long port;
2811
2812 port = A_MAC_CHANNEL_BASE(chan);
2813 sbmac_parse_hwaddr(addr,eaddr);
2814 val = sbmac_addr2reg(eaddr);
2815 __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2816 val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2817 }
2818 #endif
2819
2820 static struct net_device *dev_sbmac[MAX_UNITS];
2821
2822 static int __init
2823 sbmac_init_module(void)
2824 {
2825 int idx;
2826 struct net_device *dev;
2827 unsigned long port;
2828 int chip_max_units;
2829
2830 /* Set the number of available units based on the SOC type. */
2831 switch (soc_type) {
2832 case K_SYS_SOC_TYPE_BCM1250:
2833 case K_SYS_SOC_TYPE_BCM1250_ALT:
2834 chip_max_units = 3;
2835 break;
2836 case K_SYS_SOC_TYPE_BCM1120:
2837 case K_SYS_SOC_TYPE_BCM1125:
2838 case K_SYS_SOC_TYPE_BCM1125H:
2839 case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2840 chip_max_units = 2;
2841 break;
2842 case K_SYS_SOC_TYPE_BCM1x55:
2843 case K_SYS_SOC_TYPE_BCM1x80:
2844 chip_max_units = 4;
2845 break;
2846 default:
2847 chip_max_units = 0;
2848 break;
2849 }
2850 if (chip_max_units > MAX_UNITS)
2851 chip_max_units = MAX_UNITS;
2852
2853 /*
2854 * For bringup when not using the firmware, we can pre-fill
2855 * the MAC addresses using the environment variables
2856 * specified in this file (or maybe from the config file?)
2857 */
2858 #ifdef SBMAC_ETH0_HWADDR
2859 if (chip_max_units > 0)
2860 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2861 #endif
2862 #ifdef SBMAC_ETH1_HWADDR
2863 if (chip_max_units > 1)
2864 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2865 #endif
2866 #ifdef SBMAC_ETH2_HWADDR
2867 if (chip_max_units > 2)
2868 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2869 #endif
2870 #ifdef SBMAC_ETH3_HWADDR
2871 if (chip_max_units > 3)
2872 sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR);
2873 #endif
2874
2875 /*
2876 * Walk through the Ethernet controllers and find
2877 * those who have their MAC addresses set.
2878 */
2879 for (idx = 0; idx < chip_max_units; idx++) {
2880
2881 /*
2882 * This is the base address of the MAC.
2883 */
2884
2885 port = A_MAC_CHANNEL_BASE(idx);
2886
2887 /*
2888 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2889 * value for us by the firmware if we're going to use this MAC.
2890 * If we find a zero, skip this MAC.
2891 */
2892
2893 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2894 if (sbmac_orig_hwaddr[idx] == 0) {
2895 printk(KERN_DEBUG "sbmac: not configuring MAC at "
2896 "%lx\n", port);
2897 continue;
2898 }
2899
2900 /*
2901 * Okay, cool. Initialize this MAC.
2902 */
2903
2904 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2905 if (!dev)
2906 return -ENOMEM; /* return ENOMEM */
2907
2908 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
2909
2910 dev->irq = UNIT_INT(idx);
2911 dev->base_addr = port;
2912 dev->mem_end = 0;
2913 if (sbmac_init(dev, idx)) {
2914 port = A_MAC_CHANNEL_BASE(idx);
2915 __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
2916 free_netdev(dev);
2917 continue;
2918 }
2919 dev_sbmac[idx] = dev;
2920 }
2921 return 0;
2922 }
2923
2924
2925 static void __exit
2926 sbmac_cleanup_module(void)
2927 {
2928 struct net_device *dev;
2929 int idx;
2930
2931 for (idx = 0; idx < MAX_UNITS; idx++) {
2932 struct sbmac_softc *sc;
2933 dev = dev_sbmac[idx];
2934 if (!dev)
2935 continue;
2936
2937 sc = netdev_priv(dev);
2938 unregister_netdev(dev);
2939 sbmac_uninitctx(sc);
2940 free_netdev(dev);
2941 }
2942 }
2943
2944 module_init(sbmac_init_module);
2945 module_exit(sbmac_cleanup_module);