Remove obsolete #include <linux/config.h>
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74
75 /* local include */
76 #include "s2io.h"
77 #include "s2io-regs.h"
78
79 #define DRV_VERSION "2.0.14.2"
80
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
84
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
87
88 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
89 {
90 int ret;
91
92 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
94
95 return ret;
96 }
97
98 /*
99 * Cards with following subsystem_id have a link state indication
100 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101 * macro below identifies these cards given the subsystem_id.
102 */
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104 (dev_type == XFRAME_I_DEVICE) ? \
105 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
107
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
111 #define PANIC 1
112 #define LOW 2
113 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
114 {
115 mac_info_t *mac_control;
116
117 mac_control = &sp->mac_control;
118 if (rxb_size <= rxd_count[sp->rxd_mode])
119 return PANIC;
120 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
121 return LOW;
122 return 0;
123 }
124
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127 "Register test\t(offline)",
128 "Eeprom test\t(offline)",
129 "Link test\t(online)",
130 "RLDRAM test\t(offline)",
131 "BIST Test\t(offline)"
132 };
133
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
135 {"tmac_frms"},
136 {"tmac_data_octets"},
137 {"tmac_drop_frms"},
138 {"tmac_mcst_frms"},
139 {"tmac_bcst_frms"},
140 {"tmac_pause_ctrl_frms"},
141 {"tmac_ttl_octets"},
142 {"tmac_ucst_frms"},
143 {"tmac_nucst_frms"},
144 {"tmac_any_err_frms"},
145 {"tmac_ttl_less_fb_octets"},
146 {"tmac_vld_ip_octets"},
147 {"tmac_vld_ip"},
148 {"tmac_drop_ip"},
149 {"tmac_icmp"},
150 {"tmac_rst_tcp"},
151 {"tmac_tcp"},
152 {"tmac_udp"},
153 {"rmac_vld_frms"},
154 {"rmac_data_octets"},
155 {"rmac_fcs_err_frms"},
156 {"rmac_drop_frms"},
157 {"rmac_vld_mcst_frms"},
158 {"rmac_vld_bcst_frms"},
159 {"rmac_in_rng_len_err_frms"},
160 {"rmac_out_rng_len_err_frms"},
161 {"rmac_long_frms"},
162 {"rmac_pause_ctrl_frms"},
163 {"rmac_unsup_ctrl_frms"},
164 {"rmac_ttl_octets"},
165 {"rmac_accepted_ucst_frms"},
166 {"rmac_accepted_nucst_frms"},
167 {"rmac_discarded_frms"},
168 {"rmac_drop_events"},
169 {"rmac_ttl_less_fb_octets"},
170 {"rmac_ttl_frms"},
171 {"rmac_usized_frms"},
172 {"rmac_osized_frms"},
173 {"rmac_frag_frms"},
174 {"rmac_jabber_frms"},
175 {"rmac_ttl_64_frms"},
176 {"rmac_ttl_65_127_frms"},
177 {"rmac_ttl_128_255_frms"},
178 {"rmac_ttl_256_511_frms"},
179 {"rmac_ttl_512_1023_frms"},
180 {"rmac_ttl_1024_1518_frms"},
181 {"rmac_ip"},
182 {"rmac_ip_octets"},
183 {"rmac_hdr_err_ip"},
184 {"rmac_drop_ip"},
185 {"rmac_icmp"},
186 {"rmac_tcp"},
187 {"rmac_udp"},
188 {"rmac_err_drp_udp"},
189 {"rmac_xgmii_err_sym"},
190 {"rmac_frms_q0"},
191 {"rmac_frms_q1"},
192 {"rmac_frms_q2"},
193 {"rmac_frms_q3"},
194 {"rmac_frms_q4"},
195 {"rmac_frms_q5"},
196 {"rmac_frms_q6"},
197 {"rmac_frms_q7"},
198 {"rmac_full_q0"},
199 {"rmac_full_q1"},
200 {"rmac_full_q2"},
201 {"rmac_full_q3"},
202 {"rmac_full_q4"},
203 {"rmac_full_q5"},
204 {"rmac_full_q6"},
205 {"rmac_full_q7"},
206 {"rmac_pause_cnt"},
207 {"rmac_xgmii_data_err_cnt"},
208 {"rmac_xgmii_ctrl_err_cnt"},
209 {"rmac_accepted_ip"},
210 {"rmac_err_tcp"},
211 {"rd_req_cnt"},
212 {"new_rd_req_cnt"},
213 {"new_rd_req_rtry_cnt"},
214 {"rd_rtry_cnt"},
215 {"wr_rtry_rd_ack_cnt"},
216 {"wr_req_cnt"},
217 {"new_wr_req_cnt"},
218 {"new_wr_req_rtry_cnt"},
219 {"wr_rtry_cnt"},
220 {"wr_disc_cnt"},
221 {"rd_rtry_wr_ack_cnt"},
222 {"txp_wr_cnt"},
223 {"txd_rd_cnt"},
224 {"txd_wr_cnt"},
225 {"rxd_rd_cnt"},
226 {"rxd_wr_cnt"},
227 {"txf_rd_cnt"},
228 {"rxf_wr_cnt"},
229 {"rmac_ttl_1519_4095_frms"},
230 {"rmac_ttl_4096_8191_frms"},
231 {"rmac_ttl_8192_max_frms"},
232 {"rmac_ttl_gt_max_frms"},
233 {"rmac_osized_alt_frms"},
234 {"rmac_jabber_alt_frms"},
235 {"rmac_gt_max_alt_frms"},
236 {"rmac_vlan_frms"},
237 {"rmac_len_discard"},
238 {"rmac_fcs_discard"},
239 {"rmac_pf_discard"},
240 {"rmac_da_discard"},
241 {"rmac_red_discard"},
242 {"rmac_rts_discard"},
243 {"rmac_ingm_full_discard"},
244 {"link_fault_cnt"},
245 {"\n DRIVER STATISTICS"},
246 {"single_bit_ecc_errs"},
247 {"double_bit_ecc_errs"},
248 {"parity_err_cnt"},
249 {"serious_err_cnt"},
250 {"soft_reset_cnt"},
251 {"fifo_full_cnt"},
252 {"ring_full_cnt"},
253 ("alarm_transceiver_temp_high"),
254 ("alarm_transceiver_temp_low"),
255 ("alarm_laser_bias_current_high"),
256 ("alarm_laser_bias_current_low"),
257 ("alarm_laser_output_power_high"),
258 ("alarm_laser_output_power_low"),
259 ("warn_transceiver_temp_high"),
260 ("warn_transceiver_temp_low"),
261 ("warn_laser_bias_current_high"),
262 ("warn_laser_bias_current_low"),
263 ("warn_laser_output_power_high"),
264 ("warn_laser_output_power_low"),
265 ("lro_aggregated_pkts"),
266 ("lro_flush_both_count"),
267 ("lro_out_of_sequence_pkts"),
268 ("lro_flush_due_to_max_pkts"),
269 ("lro_avg_aggr_pkts"),
270 };
271
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
274
275 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
277
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
279 init_timer(&timer); \
280 timer.function = handle; \
281 timer.data = (unsigned long) arg; \
282 mod_timer(&timer, (jiffies + exp)) \
283
284 /* Add the vlan */
285 static void s2io_vlan_rx_register(struct net_device *dev,
286 struct vlan_group *grp)
287 {
288 nic_t *nic = dev->priv;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nic->tx_lock, flags);
292 nic->vlgrp = grp;
293 spin_unlock_irqrestore(&nic->tx_lock, flags);
294 }
295
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
298 {
299 nic_t *nic = dev->priv;
300 unsigned long flags;
301
302 spin_lock_irqsave(&nic->tx_lock, flags);
303 if (nic->vlgrp)
304 nic->vlgrp->vlan_devices[vid] = NULL;
305 spin_unlock_irqrestore(&nic->tx_lock, flags);
306 }
307
308 /*
309 * Constants to be programmed into the Xena's registers, to configure
310 * the XAUI.
311 */
312
313 #define END_SIGN 0x0
314 static const u64 herc_act_dtx_cfg[] = {
315 /* Set address */
316 0x8000051536750000ULL, 0x80000515367500E0ULL,
317 /* Write data */
318 0x8000051536750004ULL, 0x80000515367500E4ULL,
319 /* Set address */
320 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
321 /* Write data */
322 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
323 /* Set address */
324 0x801205150D440000ULL, 0x801205150D4400E0ULL,
325 /* Write data */
326 0x801205150D440004ULL, 0x801205150D4400E4ULL,
327 /* Set address */
328 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
329 /* Write data */
330 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
331 /* Done */
332 END_SIGN
333 };
334
335 static const u64 xena_dtx_cfg[] = {
336 /* Set address */
337 0x8000051500000000ULL, 0x80000515000000E0ULL,
338 /* Write data */
339 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
340 /* Set address */
341 0x8001051500000000ULL, 0x80010515000000E0ULL,
342 /* Write data */
343 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
344 /* Set address */
345 0x8002051500000000ULL, 0x80020515000000E0ULL,
346 /* Write data */
347 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
348 END_SIGN
349 };
350
351 /*
352 * Constants for Fixing the MacAddress problem seen mostly on
353 * Alpha machines.
354 */
355 static const u64 fix_mac[] = {
356 0x0060000000000000ULL, 0x0060600000000000ULL,
357 0x0040600000000000ULL, 0x0000600000000000ULL,
358 0x0020600000000000ULL, 0x0060600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0000600000000000ULL,
369 0x0040600000000000ULL, 0x0060600000000000ULL,
370 END_SIGN
371 };
372
373 /* Module Loadable parameters. */
374 static unsigned int tx_fifo_num = 1;
375 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
376 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
377 static unsigned int rx_ring_num = 1;
378 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
379 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
380 static unsigned int rts_frm_len[MAX_RX_RINGS] =
381 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
382 static unsigned int rx_ring_mode = 1;
383 static unsigned int use_continuous_tx_intrs = 1;
384 static unsigned int rmac_pause_time = 0x100;
385 static unsigned int mc_pause_threshold_q0q3 = 187;
386 static unsigned int mc_pause_threshold_q4q7 = 187;
387 static unsigned int shared_splits;
388 static unsigned int tmac_util_period = 5;
389 static unsigned int rmac_util_period = 5;
390 static unsigned int bimodal = 0;
391 static unsigned int l3l4hdr_size = 128;
392 #ifndef CONFIG_S2IO_NAPI
393 static unsigned int indicate_max_pkts;
394 #endif
395 /* Frequency of Rx desc syncs expressed as power of 2 */
396 static unsigned int rxsync_frequency = 3;
397 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
398 static unsigned int intr_type = 0;
399 /* Large receive offload feature */
400 static unsigned int lro = 0;
401 /* Max pkts to be aggregated by LRO at one time. If not specified,
402 * aggregation happens until we hit max IP pkt size(64K)
403 */
404 static unsigned int lro_max_pkts = 0xFFFF;
405
406 /*
407 * S2IO device table.
408 * This table lists all the devices that this driver supports.
409 */
410 static struct pci_device_id s2io_tbl[] __devinitdata = {
411 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
412 PCI_ANY_ID, PCI_ANY_ID},
413 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
414 PCI_ANY_ID, PCI_ANY_ID},
415 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
416 PCI_ANY_ID, PCI_ANY_ID},
417 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
418 PCI_ANY_ID, PCI_ANY_ID},
419 {0,}
420 };
421
422 MODULE_DEVICE_TABLE(pci, s2io_tbl);
423
424 static struct pci_driver s2io_driver = {
425 .name = "S2IO",
426 .id_table = s2io_tbl,
427 .probe = s2io_init_nic,
428 .remove = __devexit_p(s2io_rem_nic),
429 };
430
431 /* A simplifier macro used both by init and free shared_mem Fns(). */
432 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
433
434 /**
435 * init_shared_mem - Allocation and Initialization of Memory
436 * @nic: Device private variable.
437 * Description: The function allocates all the memory areas shared
438 * between the NIC and the driver. This includes Tx descriptors,
439 * Rx descriptors and the statistics block.
440 */
441
442 static int init_shared_mem(struct s2io_nic *nic)
443 {
444 u32 size;
445 void *tmp_v_addr, *tmp_v_addr_next;
446 dma_addr_t tmp_p_addr, tmp_p_addr_next;
447 RxD_block_t *pre_rxd_blk = NULL;
448 int i, j, blk_cnt, rx_sz, tx_sz;
449 int lst_size, lst_per_page;
450 struct net_device *dev = nic->dev;
451 unsigned long tmp;
452 buffAdd_t *ba;
453
454 mac_info_t *mac_control;
455 struct config_param *config;
456
457 mac_control = &nic->mac_control;
458 config = &nic->config;
459
460
461 /* Allocation and initialization of TXDLs in FIOFs */
462 size = 0;
463 for (i = 0; i < config->tx_fifo_num; i++) {
464 size += config->tx_cfg[i].fifo_len;
465 }
466 if (size > MAX_AVAILABLE_TXDS) {
467 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
468 __FUNCTION__);
469 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
470 return FAILURE;
471 }
472
473 lst_size = (sizeof(TxD_t) * config->max_txds);
474 tx_sz = lst_size * size;
475 lst_per_page = PAGE_SIZE / lst_size;
476
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 int fifo_len = config->tx_cfg[i].fifo_len;
479 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
480 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
481 GFP_KERNEL);
482 if (!mac_control->fifos[i].list_info) {
483 DBG_PRINT(ERR_DBG,
484 "Malloc failed for list_info\n");
485 return -ENOMEM;
486 }
487 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
488 }
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
491 lst_per_page);
492 mac_control->fifos[i].tx_curr_put_info.offset = 0;
493 mac_control->fifos[i].tx_curr_put_info.fifo_len =
494 config->tx_cfg[i].fifo_len - 1;
495 mac_control->fifos[i].tx_curr_get_info.offset = 0;
496 mac_control->fifos[i].tx_curr_get_info.fifo_len =
497 config->tx_cfg[i].fifo_len - 1;
498 mac_control->fifos[i].fifo_no = i;
499 mac_control->fifos[i].nic = nic;
500 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
501
502 for (j = 0; j < page_num; j++) {
503 int k = 0;
504 dma_addr_t tmp_p;
505 void *tmp_v;
506 tmp_v = pci_alloc_consistent(nic->pdev,
507 PAGE_SIZE, &tmp_p);
508 if (!tmp_v) {
509 DBG_PRINT(ERR_DBG,
510 "pci_alloc_consistent ");
511 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
512 return -ENOMEM;
513 }
514 /* If we got a zero DMA address(can happen on
515 * certain platforms like PPC), reallocate.
516 * Store virtual address of page we don't want,
517 * to be freed later.
518 */
519 if (!tmp_p) {
520 mac_control->zerodma_virt_addr = tmp_v;
521 DBG_PRINT(INIT_DBG,
522 "%s: Zero DMA address for TxDL. ", dev->name);
523 DBG_PRINT(INIT_DBG,
524 "Virtual address %p\n", tmp_v);
525 tmp_v = pci_alloc_consistent(nic->pdev,
526 PAGE_SIZE, &tmp_p);
527 if (!tmp_v) {
528 DBG_PRINT(ERR_DBG,
529 "pci_alloc_consistent ");
530 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
531 return -ENOMEM;
532 }
533 }
534 while (k < lst_per_page) {
535 int l = (j * lst_per_page) + k;
536 if (l == config->tx_cfg[i].fifo_len)
537 break;
538 mac_control->fifos[i].list_info[l].list_virt_addr =
539 tmp_v + (k * lst_size);
540 mac_control->fifos[i].list_info[l].list_phy_addr =
541 tmp_p + (k * lst_size);
542 k++;
543 }
544 }
545 }
546
547 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
548 if (!nic->ufo_in_band_v)
549 return -ENOMEM;
550
551 /* Allocation and initialization of RXDs in Rings */
552 size = 0;
553 for (i = 0; i < config->rx_ring_num; i++) {
554 if (config->rx_cfg[i].num_rxd %
555 (rxd_count[nic->rxd_mode] + 1)) {
556 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
557 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
558 i);
559 DBG_PRINT(ERR_DBG, "RxDs per Block");
560 return FAILURE;
561 }
562 size += config->rx_cfg[i].num_rxd;
563 mac_control->rings[i].block_count =
564 config->rx_cfg[i].num_rxd /
565 (rxd_count[nic->rxd_mode] + 1 );
566 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
567 mac_control->rings[i].block_count;
568 }
569 if (nic->rxd_mode == RXD_MODE_1)
570 size = (size * (sizeof(RxD1_t)));
571 else
572 size = (size * (sizeof(RxD3_t)));
573 rx_sz = size;
574
575 for (i = 0; i < config->rx_ring_num; i++) {
576 mac_control->rings[i].rx_curr_get_info.block_index = 0;
577 mac_control->rings[i].rx_curr_get_info.offset = 0;
578 mac_control->rings[i].rx_curr_get_info.ring_len =
579 config->rx_cfg[i].num_rxd - 1;
580 mac_control->rings[i].rx_curr_put_info.block_index = 0;
581 mac_control->rings[i].rx_curr_put_info.offset = 0;
582 mac_control->rings[i].rx_curr_put_info.ring_len =
583 config->rx_cfg[i].num_rxd - 1;
584 mac_control->rings[i].nic = nic;
585 mac_control->rings[i].ring_no = i;
586
587 blk_cnt = config->rx_cfg[i].num_rxd /
588 (rxd_count[nic->rxd_mode] + 1);
589 /* Allocating all the Rx blocks */
590 for (j = 0; j < blk_cnt; j++) {
591 rx_block_info_t *rx_blocks;
592 int l;
593
594 rx_blocks = &mac_control->rings[i].rx_blocks[j];
595 size = SIZE_OF_BLOCK; //size is always page size
596 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
597 &tmp_p_addr);
598 if (tmp_v_addr == NULL) {
599 /*
600 * In case of failure, free_shared_mem()
601 * is called, which should free any
602 * memory that was alloced till the
603 * failure happened.
604 */
605 rx_blocks->block_virt_addr = tmp_v_addr;
606 return -ENOMEM;
607 }
608 memset(tmp_v_addr, 0, size);
609 rx_blocks->block_virt_addr = tmp_v_addr;
610 rx_blocks->block_dma_addr = tmp_p_addr;
611 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
612 rxd_count[nic->rxd_mode],
613 GFP_KERNEL);
614 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
615 rx_blocks->rxds[l].virt_addr =
616 rx_blocks->block_virt_addr +
617 (rxd_size[nic->rxd_mode] * l);
618 rx_blocks->rxds[l].dma_addr =
619 rx_blocks->block_dma_addr +
620 (rxd_size[nic->rxd_mode] * l);
621 }
622 }
623 /* Interlinking all Rx Blocks */
624 for (j = 0; j < blk_cnt; j++) {
625 tmp_v_addr =
626 mac_control->rings[i].rx_blocks[j].block_virt_addr;
627 tmp_v_addr_next =
628 mac_control->rings[i].rx_blocks[(j + 1) %
629 blk_cnt].block_virt_addr;
630 tmp_p_addr =
631 mac_control->rings[i].rx_blocks[j].block_dma_addr;
632 tmp_p_addr_next =
633 mac_control->rings[i].rx_blocks[(j + 1) %
634 blk_cnt].block_dma_addr;
635
636 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
637 pre_rxd_blk->reserved_2_pNext_RxD_block =
638 (unsigned long) tmp_v_addr_next;
639 pre_rxd_blk->pNext_RxD_Blk_physical =
640 (u64) tmp_p_addr_next;
641 }
642 }
643 if (nic->rxd_mode >= RXD_MODE_3A) {
644 /*
645 * Allocation of Storages for buffer addresses in 2BUFF mode
646 * and the buffers as well.
647 */
648 for (i = 0; i < config->rx_ring_num; i++) {
649 blk_cnt = config->rx_cfg[i].num_rxd /
650 (rxd_count[nic->rxd_mode]+ 1);
651 mac_control->rings[i].ba =
652 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
653 GFP_KERNEL);
654 if (!mac_control->rings[i].ba)
655 return -ENOMEM;
656 for (j = 0; j < blk_cnt; j++) {
657 int k = 0;
658 mac_control->rings[i].ba[j] =
659 kmalloc((sizeof(buffAdd_t) *
660 (rxd_count[nic->rxd_mode] + 1)),
661 GFP_KERNEL);
662 if (!mac_control->rings[i].ba[j])
663 return -ENOMEM;
664 while (k != rxd_count[nic->rxd_mode]) {
665 ba = &mac_control->rings[i].ba[j][k];
666
667 ba->ba_0_org = (void *) kmalloc
668 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
669 if (!ba->ba_0_org)
670 return -ENOMEM;
671 tmp = (unsigned long)ba->ba_0_org;
672 tmp += ALIGN_SIZE;
673 tmp &= ~((unsigned long) ALIGN_SIZE);
674 ba->ba_0 = (void *) tmp;
675
676 ba->ba_1_org = (void *) kmalloc
677 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
678 if (!ba->ba_1_org)
679 return -ENOMEM;
680 tmp = (unsigned long) ba->ba_1_org;
681 tmp += ALIGN_SIZE;
682 tmp &= ~((unsigned long) ALIGN_SIZE);
683 ba->ba_1 = (void *) tmp;
684 k++;
685 }
686 }
687 }
688 }
689
690 /* Allocation and initialization of Statistics block */
691 size = sizeof(StatInfo_t);
692 mac_control->stats_mem = pci_alloc_consistent
693 (nic->pdev, size, &mac_control->stats_mem_phy);
694
695 if (!mac_control->stats_mem) {
696 /*
697 * In case of failure, free_shared_mem() is called, which
698 * should free any memory that was alloced till the
699 * failure happened.
700 */
701 return -ENOMEM;
702 }
703 mac_control->stats_mem_sz = size;
704
705 tmp_v_addr = mac_control->stats_mem;
706 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
707 memset(tmp_v_addr, 0, size);
708 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
709 (unsigned long long) tmp_p_addr);
710
711 return SUCCESS;
712 }
713
714 /**
715 * free_shared_mem - Free the allocated Memory
716 * @nic: Device private variable.
717 * Description: This function is to free all memory locations allocated by
718 * the init_shared_mem() function and return it to the kernel.
719 */
720
721 static void free_shared_mem(struct s2io_nic *nic)
722 {
723 int i, j, blk_cnt, size;
724 void *tmp_v_addr;
725 dma_addr_t tmp_p_addr;
726 mac_info_t *mac_control;
727 struct config_param *config;
728 int lst_size, lst_per_page;
729 struct net_device *dev = nic->dev;
730
731 if (!nic)
732 return;
733
734 mac_control = &nic->mac_control;
735 config = &nic->config;
736
737 lst_size = (sizeof(TxD_t) * config->max_txds);
738 lst_per_page = PAGE_SIZE / lst_size;
739
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
742 lst_per_page);
743 for (j = 0; j < page_num; j++) {
744 int mem_blks = (j * lst_per_page);
745 if (!mac_control->fifos[i].list_info)
746 return;
747 if (!mac_control->fifos[i].list_info[mem_blks].
748 list_virt_addr)
749 break;
750 pci_free_consistent(nic->pdev, PAGE_SIZE,
751 mac_control->fifos[i].
752 list_info[mem_blks].
753 list_virt_addr,
754 mac_control->fifos[i].
755 list_info[mem_blks].
756 list_phy_addr);
757 }
758 /* If we got a zero DMA address during allocation,
759 * free the page now
760 */
761 if (mac_control->zerodma_virt_addr) {
762 pci_free_consistent(nic->pdev, PAGE_SIZE,
763 mac_control->zerodma_virt_addr,
764 (dma_addr_t)0);
765 DBG_PRINT(INIT_DBG,
766 "%s: Freeing TxDL with zero DMA addr. ",
767 dev->name);
768 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
769 mac_control->zerodma_virt_addr);
770 }
771 kfree(mac_control->fifos[i].list_info);
772 }
773
774 size = SIZE_OF_BLOCK;
775 for (i = 0; i < config->rx_ring_num; i++) {
776 blk_cnt = mac_control->rings[i].block_count;
777 for (j = 0; j < blk_cnt; j++) {
778 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
779 block_virt_addr;
780 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
781 block_dma_addr;
782 if (tmp_v_addr == NULL)
783 break;
784 pci_free_consistent(nic->pdev, size,
785 tmp_v_addr, tmp_p_addr);
786 kfree(mac_control->rings[i].rx_blocks[j].rxds);
787 }
788 }
789
790 if (nic->rxd_mode >= RXD_MODE_3A) {
791 /* Freeing buffer storage addresses in 2BUFF mode. */
792 for (i = 0; i < config->rx_ring_num; i++) {
793 blk_cnt = config->rx_cfg[i].num_rxd /
794 (rxd_count[nic->rxd_mode] + 1);
795 for (j = 0; j < blk_cnt; j++) {
796 int k = 0;
797 if (!mac_control->rings[i].ba[j])
798 continue;
799 while (k != rxd_count[nic->rxd_mode]) {
800 buffAdd_t *ba =
801 &mac_control->rings[i].ba[j][k];
802 kfree(ba->ba_0_org);
803 kfree(ba->ba_1_org);
804 k++;
805 }
806 kfree(mac_control->rings[i].ba[j]);
807 }
808 kfree(mac_control->rings[i].ba);
809 }
810 }
811
812 if (mac_control->stats_mem) {
813 pci_free_consistent(nic->pdev,
814 mac_control->stats_mem_sz,
815 mac_control->stats_mem,
816 mac_control->stats_mem_phy);
817 }
818 if (nic->ufo_in_band_v)
819 kfree(nic->ufo_in_band_v);
820 }
821
822 /**
823 * s2io_verify_pci_mode -
824 */
825
826 static int s2io_verify_pci_mode(nic_t *nic)
827 {
828 XENA_dev_config_t __iomem *bar0 = nic->bar0;
829 register u64 val64 = 0;
830 int mode;
831
832 val64 = readq(&bar0->pci_mode);
833 mode = (u8)GET_PCI_MODE(val64);
834
835 if ( val64 & PCI_MODE_UNKNOWN_MODE)
836 return -1; /* Unknown PCI mode */
837 return mode;
838 }
839
840 #define NEC_VENID 0x1033
841 #define NEC_DEVID 0x0125
842 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
843 {
844 struct pci_dev *tdev = NULL;
845 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
846 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
847 if (tdev->bus == s2io_pdev->bus->parent)
848 return 1;
849 }
850 }
851 return 0;
852 }
853
854 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
855 /**
856 * s2io_print_pci_mode -
857 */
858 static int s2io_print_pci_mode(nic_t *nic)
859 {
860 XENA_dev_config_t __iomem *bar0 = nic->bar0;
861 register u64 val64 = 0;
862 int mode;
863 struct config_param *config = &nic->config;
864
865 val64 = readq(&bar0->pci_mode);
866 mode = (u8)GET_PCI_MODE(val64);
867
868 if ( val64 & PCI_MODE_UNKNOWN_MODE)
869 return -1; /* Unknown PCI mode */
870
871 config->bus_speed = bus_speed[mode];
872
873 if (s2io_on_nec_bridge(nic->pdev)) {
874 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
875 nic->dev->name);
876 return mode;
877 }
878
879 if (val64 & PCI_MODE_32_BITS) {
880 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
881 } else {
882 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
883 }
884
885 switch(mode) {
886 case PCI_MODE_PCI_33:
887 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
888 break;
889 case PCI_MODE_PCI_66:
890 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
891 break;
892 case PCI_MODE_PCIX_M1_66:
893 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
894 break;
895 case PCI_MODE_PCIX_M1_100:
896 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
897 break;
898 case PCI_MODE_PCIX_M1_133:
899 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
900 break;
901 case PCI_MODE_PCIX_M2_66:
902 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
903 break;
904 case PCI_MODE_PCIX_M2_100:
905 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
906 break;
907 case PCI_MODE_PCIX_M2_133:
908 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
909 break;
910 default:
911 return -1; /* Unsupported bus speed */
912 }
913
914 return mode;
915 }
916
917 /**
918 * init_nic - Initialization of hardware
919 * @nic: device peivate variable
920 * Description: The function sequentially configures every block
921 * of the H/W from their reset values.
922 * Return Value: SUCCESS on success and
923 * '-1' on failure (endian settings incorrect).
924 */
925
926 static int init_nic(struct s2io_nic *nic)
927 {
928 XENA_dev_config_t __iomem *bar0 = nic->bar0;
929 struct net_device *dev = nic->dev;
930 register u64 val64 = 0;
931 void __iomem *add;
932 u32 time;
933 int i, j;
934 mac_info_t *mac_control;
935 struct config_param *config;
936 int dtx_cnt = 0;
937 unsigned long long mem_share;
938 int mem_size;
939
940 mac_control = &nic->mac_control;
941 config = &nic->config;
942
943 /* to set the swapper controle on the card */
944 if(s2io_set_swapper(nic)) {
945 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
946 return -1;
947 }
948
949 /*
950 * Herc requires EOI to be removed from reset before XGXS, so..
951 */
952 if (nic->device_type & XFRAME_II_DEVICE) {
953 val64 = 0xA500000000ULL;
954 writeq(val64, &bar0->sw_reset);
955 msleep(500);
956 val64 = readq(&bar0->sw_reset);
957 }
958
959 /* Remove XGXS from reset state */
960 val64 = 0;
961 writeq(val64, &bar0->sw_reset);
962 msleep(500);
963 val64 = readq(&bar0->sw_reset);
964
965 /* Enable Receiving broadcasts */
966 add = &bar0->mac_cfg;
967 val64 = readq(&bar0->mac_cfg);
968 val64 |= MAC_RMAC_BCAST_ENABLE;
969 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
970 writel((u32) val64, add);
971 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
972 writel((u32) (val64 >> 32), (add + 4));
973
974 /* Read registers in all blocks */
975 val64 = readq(&bar0->mac_int_mask);
976 val64 = readq(&bar0->mc_int_mask);
977 val64 = readq(&bar0->xgxs_int_mask);
978
979 /* Set MTU */
980 val64 = dev->mtu;
981 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
982
983 if (nic->device_type & XFRAME_II_DEVICE) {
984 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
985 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
986 &bar0->dtx_control, UF);
987 if (dtx_cnt & 0x1)
988 msleep(1); /* Necessary!! */
989 dtx_cnt++;
990 }
991 } else {
992 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
993 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
994 &bar0->dtx_control, UF);
995 val64 = readq(&bar0->dtx_control);
996 dtx_cnt++;
997 }
998 }
999
1000 /* Tx DMA Initialization */
1001 val64 = 0;
1002 writeq(val64, &bar0->tx_fifo_partition_0);
1003 writeq(val64, &bar0->tx_fifo_partition_1);
1004 writeq(val64, &bar0->tx_fifo_partition_2);
1005 writeq(val64, &bar0->tx_fifo_partition_3);
1006
1007
1008 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1009 val64 |=
1010 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1011 13) | vBIT(config->tx_cfg[i].fifo_priority,
1012 ((i * 32) + 5), 3);
1013
1014 if (i == (config->tx_fifo_num - 1)) {
1015 if (i % 2 == 0)
1016 i++;
1017 }
1018
1019 switch (i) {
1020 case 1:
1021 writeq(val64, &bar0->tx_fifo_partition_0);
1022 val64 = 0;
1023 break;
1024 case 3:
1025 writeq(val64, &bar0->tx_fifo_partition_1);
1026 val64 = 0;
1027 break;
1028 case 5:
1029 writeq(val64, &bar0->tx_fifo_partition_2);
1030 val64 = 0;
1031 break;
1032 case 7:
1033 writeq(val64, &bar0->tx_fifo_partition_3);
1034 break;
1035 }
1036 }
1037
1038 /*
1039 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1040 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1041 */
1042 if ((nic->device_type == XFRAME_I_DEVICE) &&
1043 (get_xena_rev_id(nic->pdev) < 4))
1044 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1045
1046 val64 = readq(&bar0->tx_fifo_partition_0);
1047 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1048 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1049
1050 /*
1051 * Initialization of Tx_PA_CONFIG register to ignore packet
1052 * integrity checking.
1053 */
1054 val64 = readq(&bar0->tx_pa_cfg);
1055 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1056 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1057 writeq(val64, &bar0->tx_pa_cfg);
1058
1059 /* Rx DMA intialization. */
1060 val64 = 0;
1061 for (i = 0; i < config->rx_ring_num; i++) {
1062 val64 |=
1063 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1064 3);
1065 }
1066 writeq(val64, &bar0->rx_queue_priority);
1067
1068 /*
1069 * Allocating equal share of memory to all the
1070 * configured Rings.
1071 */
1072 val64 = 0;
1073 if (nic->device_type & XFRAME_II_DEVICE)
1074 mem_size = 32;
1075 else
1076 mem_size = 64;
1077
1078 for (i = 0; i < config->rx_ring_num; i++) {
1079 switch (i) {
1080 case 0:
1081 mem_share = (mem_size / config->rx_ring_num +
1082 mem_size % config->rx_ring_num);
1083 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1084 continue;
1085 case 1:
1086 mem_share = (mem_size / config->rx_ring_num);
1087 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1088 continue;
1089 case 2:
1090 mem_share = (mem_size / config->rx_ring_num);
1091 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1092 continue;
1093 case 3:
1094 mem_share = (mem_size / config->rx_ring_num);
1095 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1096 continue;
1097 case 4:
1098 mem_share = (mem_size / config->rx_ring_num);
1099 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1100 continue;
1101 case 5:
1102 mem_share = (mem_size / config->rx_ring_num);
1103 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1104 continue;
1105 case 6:
1106 mem_share = (mem_size / config->rx_ring_num);
1107 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1108 continue;
1109 case 7:
1110 mem_share = (mem_size / config->rx_ring_num);
1111 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1112 continue;
1113 }
1114 }
1115 writeq(val64, &bar0->rx_queue_cfg);
1116
1117 /*
1118 * Filling Tx round robin registers
1119 * as per the number of FIFOs
1120 */
1121 switch (config->tx_fifo_num) {
1122 case 1:
1123 val64 = 0x0000000000000000ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_0);
1125 writeq(val64, &bar0->tx_w_round_robin_1);
1126 writeq(val64, &bar0->tx_w_round_robin_2);
1127 writeq(val64, &bar0->tx_w_round_robin_3);
1128 writeq(val64, &bar0->tx_w_round_robin_4);
1129 break;
1130 case 2:
1131 val64 = 0x0000010000010000ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_0);
1133 val64 = 0x0100000100000100ULL;
1134 writeq(val64, &bar0->tx_w_round_robin_1);
1135 val64 = 0x0001000001000001ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_2);
1137 val64 = 0x0000010000010000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_3);
1139 val64 = 0x0100000000000000ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_4);
1141 break;
1142 case 3:
1143 val64 = 0x0001000102000001ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_0);
1145 val64 = 0x0001020000010001ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_1);
1147 val64 = 0x0200000100010200ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_2);
1149 val64 = 0x0001000102000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_3);
1151 val64 = 0x0001020000000000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_4);
1153 break;
1154 case 4:
1155 val64 = 0x0001020300010200ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_0);
1157 val64 = 0x0100000102030001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_1);
1159 val64 = 0x0200010000010203ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_2);
1161 val64 = 0x0001020001000001ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_3);
1163 val64 = 0x0203000100000000ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_4);
1165 break;
1166 case 5:
1167 val64 = 0x0001000203000102ULL;
1168 writeq(val64, &bar0->tx_w_round_robin_0);
1169 val64 = 0x0001020001030004ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_1);
1171 val64 = 0x0001000203000102ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_2);
1173 val64 = 0x0001020001030004ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_3);
1175 val64 = 0x0001000000000000ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_4);
1177 break;
1178 case 6:
1179 val64 = 0x0001020304000102ULL;
1180 writeq(val64, &bar0->tx_w_round_robin_0);
1181 val64 = 0x0304050001020001ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_1);
1183 val64 = 0x0203000100000102ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_2);
1185 val64 = 0x0304000102030405ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_3);
1187 val64 = 0x0001000200000000ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_4);
1189 break;
1190 case 7:
1191 val64 = 0x0001020001020300ULL;
1192 writeq(val64, &bar0->tx_w_round_robin_0);
1193 val64 = 0x0102030400010203ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_1);
1195 val64 = 0x0405060001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_2);
1197 val64 = 0x0304050000010200ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_3);
1199 val64 = 0x0102030000000000ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_4);
1201 break;
1202 case 8:
1203 val64 = 0x0001020300040105ULL;
1204 writeq(val64, &bar0->tx_w_round_robin_0);
1205 val64 = 0x0200030106000204ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_1);
1207 val64 = 0x0103000502010007ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_2);
1209 val64 = 0x0304010002060500ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_3);
1211 val64 = 0x0103020400000000ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_4);
1213 break;
1214 }
1215
1216 /* Enable Tx FIFO partition 0. */
1217 val64 = readq(&bar0->tx_fifo_partition_0);
1218 val64 |= (TX_FIFO_PARTITION_EN);
1219 writeq(val64, &bar0->tx_fifo_partition_0);
1220
1221 /* Filling the Rx round robin registers as per the
1222 * number of Rings and steering based on QoS.
1223 */
1224 switch (config->rx_ring_num) {
1225 case 1:
1226 val64 = 0x8080808080808080ULL;
1227 writeq(val64, &bar0->rts_qos_steering);
1228 break;
1229 case 2:
1230 val64 = 0x0000010000010000ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_0);
1232 val64 = 0x0100000100000100ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_1);
1234 val64 = 0x0001000001000001ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_2);
1236 val64 = 0x0000010000010000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_3);
1238 val64 = 0x0100000000000000ULL;
1239 writeq(val64, &bar0->rx_w_round_robin_4);
1240
1241 val64 = 0x8080808040404040ULL;
1242 writeq(val64, &bar0->rts_qos_steering);
1243 break;
1244 case 3:
1245 val64 = 0x0001000102000001ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_0);
1247 val64 = 0x0001020000010001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_1);
1249 val64 = 0x0200000100010200ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_2);
1251 val64 = 0x0001000102000001ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_3);
1253 val64 = 0x0001020000000000ULL;
1254 writeq(val64, &bar0->rx_w_round_robin_4);
1255
1256 val64 = 0x8080804040402020ULL;
1257 writeq(val64, &bar0->rts_qos_steering);
1258 break;
1259 case 4:
1260 val64 = 0x0001020300010200ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_0);
1262 val64 = 0x0100000102030001ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_1);
1264 val64 = 0x0200010000010203ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_2);
1266 val64 = 0x0001020001000001ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_3);
1268 val64 = 0x0203000100000000ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_4);
1270
1271 val64 = 0x8080404020201010ULL;
1272 writeq(val64, &bar0->rts_qos_steering);
1273 break;
1274 case 5:
1275 val64 = 0x0001000203000102ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_0);
1277 val64 = 0x0001020001030004ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_1);
1279 val64 = 0x0001000203000102ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_2);
1281 val64 = 0x0001020001030004ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_3);
1283 val64 = 0x0001000000000000ULL;
1284 writeq(val64, &bar0->rx_w_round_robin_4);
1285
1286 val64 = 0x8080404020201008ULL;
1287 writeq(val64, &bar0->rts_qos_steering);
1288 break;
1289 case 6:
1290 val64 = 0x0001020304000102ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_0);
1292 val64 = 0x0304050001020001ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_1);
1294 val64 = 0x0203000100000102ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_2);
1296 val64 = 0x0304000102030405ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_3);
1298 val64 = 0x0001000200000000ULL;
1299 writeq(val64, &bar0->rx_w_round_robin_4);
1300
1301 val64 = 0x8080404020100804ULL;
1302 writeq(val64, &bar0->rts_qos_steering);
1303 break;
1304 case 7:
1305 val64 = 0x0001020001020300ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_0);
1307 val64 = 0x0102030400010203ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_1);
1309 val64 = 0x0405060001020001ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_2);
1311 val64 = 0x0304050000010200ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_3);
1313 val64 = 0x0102030000000000ULL;
1314 writeq(val64, &bar0->rx_w_round_robin_4);
1315
1316 val64 = 0x8080402010080402ULL;
1317 writeq(val64, &bar0->rts_qos_steering);
1318 break;
1319 case 8:
1320 val64 = 0x0001020300040105ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_0);
1322 val64 = 0x0200030106000204ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_1);
1324 val64 = 0x0103000502010007ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_2);
1326 val64 = 0x0304010002060500ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_3);
1328 val64 = 0x0103020400000000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_4);
1330
1331 val64 = 0x8040201008040201ULL;
1332 writeq(val64, &bar0->rts_qos_steering);
1333 break;
1334 }
1335
1336 /* UDP Fix */
1337 val64 = 0;
1338 for (i = 0; i < 8; i++)
1339 writeq(val64, &bar0->rts_frm_len_n[i]);
1340
1341 /* Set the default rts frame length for the rings configured */
1342 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1343 for (i = 0 ; i < config->rx_ring_num ; i++)
1344 writeq(val64, &bar0->rts_frm_len_n[i]);
1345
1346 /* Set the frame length for the configured rings
1347 * desired by the user
1348 */
1349 for (i = 0; i < config->rx_ring_num; i++) {
1350 /* If rts_frm_len[i] == 0 then it is assumed that user not
1351 * specified frame length steering.
1352 * If the user provides the frame length then program
1353 * the rts_frm_len register for those values or else
1354 * leave it as it is.
1355 */
1356 if (rts_frm_len[i] != 0) {
1357 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1358 &bar0->rts_frm_len_n[i]);
1359 }
1360 }
1361
1362 /* Program statistics memory */
1363 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1364
1365 if (nic->device_type == XFRAME_II_DEVICE) {
1366 val64 = STAT_BC(0x320);
1367 writeq(val64, &bar0->stat_byte_cnt);
1368 }
1369
1370 /*
1371 * Initializing the sampling rate for the device to calculate the
1372 * bandwidth utilization.
1373 */
1374 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1375 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1376 writeq(val64, &bar0->mac_link_util);
1377
1378
1379 /*
1380 * Initializing the Transmit and Receive Traffic Interrupt
1381 * Scheme.
1382 */
1383 /*
1384 * TTI Initialization. Default Tx timer gets us about
1385 * 250 interrupts per sec. Continuous interrupts are enabled
1386 * by default.
1387 */
1388 if (nic->device_type == XFRAME_II_DEVICE) {
1389 int count = (nic->config.bus_speed * 125)/2;
1390 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1391 } else {
1392
1393 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1394 }
1395 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1396 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1397 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1398 if (use_continuous_tx_intrs)
1399 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1400 writeq(val64, &bar0->tti_data1_mem);
1401
1402 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1403 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1404 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1405 writeq(val64, &bar0->tti_data2_mem);
1406
1407 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1408 writeq(val64, &bar0->tti_command_mem);
1409
1410 /*
1411 * Once the operation completes, the Strobe bit of the command
1412 * register will be reset. We poll for this particular condition
1413 * We wait for a maximum of 500ms for the operation to complete,
1414 * if it's not complete by then we return error.
1415 */
1416 time = 0;
1417 while (TRUE) {
1418 val64 = readq(&bar0->tti_command_mem);
1419 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1420 break;
1421 }
1422 if (time > 10) {
1423 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1424 dev->name);
1425 return -1;
1426 }
1427 msleep(50);
1428 time++;
1429 }
1430
1431 if (nic->config.bimodal) {
1432 int k = 0;
1433 for (k = 0; k < config->rx_ring_num; k++) {
1434 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1435 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1436 writeq(val64, &bar0->tti_command_mem);
1437
1438 /*
1439 * Once the operation completes, the Strobe bit of the command
1440 * register will be reset. We poll for this particular condition
1441 * We wait for a maximum of 500ms for the operation to complete,
1442 * if it's not complete by then we return error.
1443 */
1444 time = 0;
1445 while (TRUE) {
1446 val64 = readq(&bar0->tti_command_mem);
1447 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1448 break;
1449 }
1450 if (time > 10) {
1451 DBG_PRINT(ERR_DBG,
1452 "%s: TTI init Failed\n",
1453 dev->name);
1454 return -1;
1455 }
1456 time++;
1457 msleep(50);
1458 }
1459 }
1460 } else {
1461
1462 /* RTI Initialization */
1463 if (nic->device_type == XFRAME_II_DEVICE) {
1464 /*
1465 * Programmed to generate Apprx 500 Intrs per
1466 * second
1467 */
1468 int count = (nic->config.bus_speed * 125)/4;
1469 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1470 } else {
1471 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1472 }
1473 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1474 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1475 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1476
1477 writeq(val64, &bar0->rti_data1_mem);
1478
1479 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1480 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1481 if (nic->intr_type == MSI_X)
1482 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1483 RTI_DATA2_MEM_RX_UFC_D(0x40));
1484 else
1485 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1486 RTI_DATA2_MEM_RX_UFC_D(0x80));
1487 writeq(val64, &bar0->rti_data2_mem);
1488
1489 for (i = 0; i < config->rx_ring_num; i++) {
1490 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1491 | RTI_CMD_MEM_OFFSET(i);
1492 writeq(val64, &bar0->rti_command_mem);
1493
1494 /*
1495 * Once the operation completes, the Strobe bit of the
1496 * command register will be reset. We poll for this
1497 * particular condition. We wait for a maximum of 500ms
1498 * for the operation to complete, if it's not complete
1499 * by then we return error.
1500 */
1501 time = 0;
1502 while (TRUE) {
1503 val64 = readq(&bar0->rti_command_mem);
1504 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1505 break;
1506 }
1507 if (time > 10) {
1508 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1509 dev->name);
1510 return -1;
1511 }
1512 time++;
1513 msleep(50);
1514 }
1515 }
1516 }
1517
1518 /*
1519 * Initializing proper values as Pause threshold into all
1520 * the 8 Queues on Rx side.
1521 */
1522 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1523 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1524
1525 /* Disable RMAC PAD STRIPPING */
1526 add = &bar0->mac_cfg;
1527 val64 = readq(&bar0->mac_cfg);
1528 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1529 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1530 writel((u32) (val64), add);
1531 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1532 writel((u32) (val64 >> 32), (add + 4));
1533 val64 = readq(&bar0->mac_cfg);
1534
1535 /* Enable FCS stripping by adapter */
1536 add = &bar0->mac_cfg;
1537 val64 = readq(&bar0->mac_cfg);
1538 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1539 if (nic->device_type == XFRAME_II_DEVICE)
1540 writeq(val64, &bar0->mac_cfg);
1541 else {
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1546 }
1547
1548 /*
1549 * Set the time value to be inserted in the pause frame
1550 * generated by xena.
1551 */
1552 val64 = readq(&bar0->rmac_pause_cfg);
1553 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1554 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1555 writeq(val64, &bar0->rmac_pause_cfg);
1556
1557 /*
1558 * Set the Threshold Limit for Generating the pause frame
1559 * If the amount of data in any Queue exceeds ratio of
1560 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1561 * pause frame is generated
1562 */
1563 val64 = 0;
1564 for (i = 0; i < 4; i++) {
1565 val64 |=
1566 (((u64) 0xFF00 | nic->mac_control.
1567 mc_pause_threshold_q0q3)
1568 << (i * 2 * 8));
1569 }
1570 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1571
1572 val64 = 0;
1573 for (i = 0; i < 4; i++) {
1574 val64 |=
1575 (((u64) 0xFF00 | nic->mac_control.
1576 mc_pause_threshold_q4q7)
1577 << (i * 2 * 8));
1578 }
1579 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1580
1581 /*
1582 * TxDMA will stop Read request if the number of read split has
1583 * exceeded the limit pointed by shared_splits
1584 */
1585 val64 = readq(&bar0->pic_control);
1586 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1587 writeq(val64, &bar0->pic_control);
1588
1589 if (nic->config.bus_speed == 266) {
1590 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1591 writeq(0x0, &bar0->read_retry_delay);
1592 writeq(0x0, &bar0->write_retry_delay);
1593 }
1594
1595 /*
1596 * Programming the Herc to split every write transaction
1597 * that does not start on an ADB to reduce disconnects.
1598 */
1599 if (nic->device_type == XFRAME_II_DEVICE) {
1600 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1601 writeq(val64, &bar0->misc_control);
1602 val64 = readq(&bar0->pic_control2);
1603 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1604 writeq(val64, &bar0->pic_control2);
1605 }
1606 if (strstr(nic->product_name, "CX4")) {
1607 val64 = TMAC_AVG_IPG(0x17);
1608 writeq(val64, &bar0->tmac_avg_ipg);
1609 }
1610
1611 return SUCCESS;
1612 }
1613 #define LINK_UP_DOWN_INTERRUPT 1
1614 #define MAC_RMAC_ERR_TIMER 2
1615
1616 static int s2io_link_fault_indication(nic_t *nic)
1617 {
1618 if (nic->intr_type != INTA)
1619 return MAC_RMAC_ERR_TIMER;
1620 if (nic->device_type == XFRAME_II_DEVICE)
1621 return LINK_UP_DOWN_INTERRUPT;
1622 else
1623 return MAC_RMAC_ERR_TIMER;
1624 }
1625
1626 /**
1627 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1628 * @nic: device private variable,
1629 * @mask: A mask indicating which Intr block must be modified and,
1630 * @flag: A flag indicating whether to enable or disable the Intrs.
1631 * Description: This function will either disable or enable the interrupts
1632 * depending on the flag argument. The mask argument can be used to
1633 * enable/disable any Intr block.
1634 * Return Value: NONE.
1635 */
1636
1637 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1638 {
1639 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1640 register u64 val64 = 0, temp64 = 0;
1641
1642 /* Top level interrupt classification */
1643 /* PIC Interrupts */
1644 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1645 /* Enable PIC Intrs in the general intr mask register */
1646 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1647 if (flag == ENABLE_INTRS) {
1648 temp64 = readq(&bar0->general_int_mask);
1649 temp64 &= ~((u64) val64);
1650 writeq(temp64, &bar0->general_int_mask);
1651 /*
1652 * If Hercules adapter enable GPIO otherwise
1653 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1654 * interrupts for now.
1655 * TODO
1656 */
1657 if (s2io_link_fault_indication(nic) ==
1658 LINK_UP_DOWN_INTERRUPT ) {
1659 temp64 = readq(&bar0->pic_int_mask);
1660 temp64 &= ~((u64) PIC_INT_GPIO);
1661 writeq(temp64, &bar0->pic_int_mask);
1662 temp64 = readq(&bar0->gpio_int_mask);
1663 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1664 writeq(temp64, &bar0->gpio_int_mask);
1665 } else {
1666 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1667 }
1668 /*
1669 * No MSI Support is available presently, so TTI and
1670 * RTI interrupts are also disabled.
1671 */
1672 } else if (flag == DISABLE_INTRS) {
1673 /*
1674 * Disable PIC Intrs in the general
1675 * intr mask register
1676 */
1677 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1678 temp64 = readq(&bar0->general_int_mask);
1679 val64 |= temp64;
1680 writeq(val64, &bar0->general_int_mask);
1681 }
1682 }
1683
1684 /* DMA Interrupts */
1685 /* Enabling/Disabling Tx DMA interrupts */
1686 if (mask & TX_DMA_INTR) {
1687 /* Enable TxDMA Intrs in the general intr mask register */
1688 val64 = TXDMA_INT_M;
1689 if (flag == ENABLE_INTRS) {
1690 temp64 = readq(&bar0->general_int_mask);
1691 temp64 &= ~((u64) val64);
1692 writeq(temp64, &bar0->general_int_mask);
1693 /*
1694 * Keep all interrupts other than PFC interrupt
1695 * and PCC interrupt disabled in DMA level.
1696 */
1697 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1698 TXDMA_PCC_INT_M);
1699 writeq(val64, &bar0->txdma_int_mask);
1700 /*
1701 * Enable only the MISC error 1 interrupt in PFC block
1702 */
1703 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1704 writeq(val64, &bar0->pfc_err_mask);
1705 /*
1706 * Enable only the FB_ECC error interrupt in PCC block
1707 */
1708 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1709 writeq(val64, &bar0->pcc_err_mask);
1710 } else if (flag == DISABLE_INTRS) {
1711 /*
1712 * Disable TxDMA Intrs in the general intr mask
1713 * register
1714 */
1715 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1716 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1717 temp64 = readq(&bar0->general_int_mask);
1718 val64 |= temp64;
1719 writeq(val64, &bar0->general_int_mask);
1720 }
1721 }
1722
1723 /* Enabling/Disabling Rx DMA interrupts */
1724 if (mask & RX_DMA_INTR) {
1725 /* Enable RxDMA Intrs in the general intr mask register */
1726 val64 = RXDMA_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
1731 /*
1732 * All RxDMA block interrupts are disabled for now
1733 * TODO
1734 */
1735 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1736 } else if (flag == DISABLE_INTRS) {
1737 /*
1738 * Disable RxDMA Intrs in the general intr mask
1739 * register
1740 */
1741 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1743 val64 |= temp64;
1744 writeq(val64, &bar0->general_int_mask);
1745 }
1746 }
1747
1748 /* MAC Interrupts */
1749 /* Enabling/Disabling MAC interrupts */
1750 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1751 val64 = TXMAC_INT_M | RXMAC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
1756 /*
1757 * All MAC block error interrupts are disabled for now
1758 * TODO
1759 */
1760 } else if (flag == DISABLE_INTRS) {
1761 /*
1762 * Disable MAC Intrs in the general intr mask register
1763 */
1764 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1765 writeq(DISABLE_ALL_INTRS,
1766 &bar0->mac_rmac_err_mask);
1767
1768 temp64 = readq(&bar0->general_int_mask);
1769 val64 |= temp64;
1770 writeq(val64, &bar0->general_int_mask);
1771 }
1772 }
1773
1774 /* XGXS Interrupts */
1775 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1776 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1777 if (flag == ENABLE_INTRS) {
1778 temp64 = readq(&bar0->general_int_mask);
1779 temp64 &= ~((u64) val64);
1780 writeq(temp64, &bar0->general_int_mask);
1781 /*
1782 * All XGXS block error interrupts are disabled for now
1783 * TODO
1784 */
1785 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1786 } else if (flag == DISABLE_INTRS) {
1787 /*
1788 * Disable MC Intrs in the general intr mask register
1789 */
1790 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1791 temp64 = readq(&bar0->general_int_mask);
1792 val64 |= temp64;
1793 writeq(val64, &bar0->general_int_mask);
1794 }
1795 }
1796
1797 /* Memory Controller(MC) interrupts */
1798 if (mask & MC_INTR) {
1799 val64 = MC_INT_M;
1800 if (flag == ENABLE_INTRS) {
1801 temp64 = readq(&bar0->general_int_mask);
1802 temp64 &= ~((u64) val64);
1803 writeq(temp64, &bar0->general_int_mask);
1804 /*
1805 * Enable all MC Intrs.
1806 */
1807 writeq(0x0, &bar0->mc_int_mask);
1808 writeq(0x0, &bar0->mc_err_mask);
1809 } else if (flag == DISABLE_INTRS) {
1810 /*
1811 * Disable MC Intrs in the general intr mask register
1812 */
1813 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1814 temp64 = readq(&bar0->general_int_mask);
1815 val64 |= temp64;
1816 writeq(val64, &bar0->general_int_mask);
1817 }
1818 }
1819
1820
1821 /* Tx traffic interrupts */
1822 if (mask & TX_TRAFFIC_INTR) {
1823 val64 = TXTRAFFIC_INT_M;
1824 if (flag == ENABLE_INTRS) {
1825 temp64 = readq(&bar0->general_int_mask);
1826 temp64 &= ~((u64) val64);
1827 writeq(temp64, &bar0->general_int_mask);
1828 /*
1829 * Enable all the Tx side interrupts
1830 * writing 0 Enables all 64 TX interrupt levels
1831 */
1832 writeq(0x0, &bar0->tx_traffic_mask);
1833 } else if (flag == DISABLE_INTRS) {
1834 /*
1835 * Disable Tx Traffic Intrs in the general intr mask
1836 * register.
1837 */
1838 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1839 temp64 = readq(&bar0->general_int_mask);
1840 val64 |= temp64;
1841 writeq(val64, &bar0->general_int_mask);
1842 }
1843 }
1844
1845 /* Rx traffic interrupts */
1846 if (mask & RX_TRAFFIC_INTR) {
1847 val64 = RXTRAFFIC_INT_M;
1848 if (flag == ENABLE_INTRS) {
1849 temp64 = readq(&bar0->general_int_mask);
1850 temp64 &= ~((u64) val64);
1851 writeq(temp64, &bar0->general_int_mask);
1852 /* writing 0 Enables all 8 RX interrupt levels */
1853 writeq(0x0, &bar0->rx_traffic_mask);
1854 } else if (flag == DISABLE_INTRS) {
1855 /*
1856 * Disable Rx Traffic Intrs in the general intr mask
1857 * register.
1858 */
1859 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1860 temp64 = readq(&bar0->general_int_mask);
1861 val64 |= temp64;
1862 writeq(val64, &bar0->general_int_mask);
1863 }
1864 }
1865 }
1866
1867 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1868 {
1869 int ret = 0;
1870
1871 if (flag == FALSE) {
1872 if ((!herc && (rev_id >= 4)) || herc) {
1873 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1874 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1875 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1876 ret = 1;
1877 }
1878 }else {
1879 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1880 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1881 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1882 ret = 1;
1883 }
1884 }
1885 } else {
1886 if ((!herc && (rev_id >= 4)) || herc) {
1887 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1888 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1889 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1890 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1891 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1892 ret = 1;
1893 }
1894 } else {
1895 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1896 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1897 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1898 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1899 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1900 ret = 1;
1901 }
1902 }
1903 }
1904
1905 return ret;
1906 }
1907 /**
1908 * verify_xena_quiescence - Checks whether the H/W is ready
1909 * @val64 : Value read from adapter status register.
1910 * @flag : indicates if the adapter enable bit was ever written once
1911 * before.
1912 * Description: Returns whether the H/W is ready to go or not. Depending
1913 * on whether adapter enable bit was written or not the comparison
1914 * differs and the calling function passes the input argument flag to
1915 * indicate this.
1916 * Return: 1 If xena is quiescence
1917 * 0 If Xena is not quiescence
1918 */
1919
1920 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1921 {
1922 int ret = 0, herc;
1923 u64 tmp64 = ~((u64) val64);
1924 int rev_id = get_xena_rev_id(sp->pdev);
1925
1926 herc = (sp->device_type == XFRAME_II_DEVICE);
1927 if (!
1928 (tmp64 &
1929 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1930 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1931 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1932 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1933 ADAPTER_STATUS_P_PLL_LOCK))) {
1934 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1935 }
1936
1937 return ret;
1938 }
1939
1940 /**
1941 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1942 * @sp: Pointer to device specifc structure
1943 * Description :
1944 * New procedure to clear mac address reading problems on Alpha platforms
1945 *
1946 */
1947
1948 static void fix_mac_address(nic_t * sp)
1949 {
1950 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1951 u64 val64;
1952 int i = 0;
1953
1954 while (fix_mac[i] != END_SIGN) {
1955 writeq(fix_mac[i++], &bar0->gpio_control);
1956 udelay(10);
1957 val64 = readq(&bar0->gpio_control);
1958 }
1959 }
1960
1961 /**
1962 * start_nic - Turns the device on
1963 * @nic : device private variable.
1964 * Description:
1965 * This function actually turns the device on. Before this function is
1966 * called,all Registers are configured from their reset states
1967 * and shared memory is allocated but the NIC is still quiescent. On
1968 * calling this function, the device interrupts are cleared and the NIC is
1969 * literally switched on by writing into the adapter control register.
1970 * Return Value:
1971 * SUCCESS on success and -1 on failure.
1972 */
1973
1974 static int start_nic(struct s2io_nic *nic)
1975 {
1976 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1977 struct net_device *dev = nic->dev;
1978 register u64 val64 = 0;
1979 u16 interruptible;
1980 u16 subid, i;
1981 mac_info_t *mac_control;
1982 struct config_param *config;
1983
1984 mac_control = &nic->mac_control;
1985 config = &nic->config;
1986
1987 /* PRC Initialization and configuration */
1988 for (i = 0; i < config->rx_ring_num; i++) {
1989 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1990 &bar0->prc_rxd0_n[i]);
1991
1992 val64 = readq(&bar0->prc_ctrl_n[i]);
1993 if (nic->config.bimodal)
1994 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1995 if (nic->rxd_mode == RXD_MODE_1)
1996 val64 |= PRC_CTRL_RC_ENABLED;
1997 else
1998 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1999 if (nic->device_type == XFRAME_II_DEVICE)
2000 val64 |= PRC_CTRL_GROUP_READS;
2001 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2002 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2003 writeq(val64, &bar0->prc_ctrl_n[i]);
2004 }
2005
2006 if (nic->rxd_mode == RXD_MODE_3B) {
2007 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2008 val64 = readq(&bar0->rx_pa_cfg);
2009 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2010 writeq(val64, &bar0->rx_pa_cfg);
2011 }
2012
2013 /*
2014 * Enabling MC-RLDRAM. After enabling the device, we timeout
2015 * for around 100ms, which is approximately the time required
2016 * for the device to be ready for operation.
2017 */
2018 val64 = readq(&bar0->mc_rldram_mrs);
2019 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2020 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2021 val64 = readq(&bar0->mc_rldram_mrs);
2022
2023 msleep(100); /* Delay by around 100 ms. */
2024
2025 /* Enabling ECC Protection. */
2026 val64 = readq(&bar0->adapter_control);
2027 val64 &= ~ADAPTER_ECC_EN;
2028 writeq(val64, &bar0->adapter_control);
2029
2030 /*
2031 * Clearing any possible Link state change interrupts that
2032 * could have popped up just before Enabling the card.
2033 */
2034 val64 = readq(&bar0->mac_rmac_err_reg);
2035 if (val64)
2036 writeq(val64, &bar0->mac_rmac_err_reg);
2037
2038 /*
2039 * Verify if the device is ready to be enabled, if so enable
2040 * it.
2041 */
2042 val64 = readq(&bar0->adapter_status);
2043 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2044 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2045 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2046 (unsigned long long) val64);
2047 return FAILURE;
2048 }
2049
2050 /* Enable select interrupts */
2051 if (nic->intr_type != INTA)
2052 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2053 else {
2054 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2055 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2056 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2057 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
2058 }
2059
2060 /*
2061 * With some switches, link might be already up at this point.
2062 * Because of this weird behavior, when we enable laser,
2063 * we may not get link. We need to handle this. We cannot
2064 * figure out which switch is misbehaving. So we are forced to
2065 * make a global change.
2066 */
2067
2068 /* Enabling Laser. */
2069 val64 = readq(&bar0->adapter_control);
2070 val64 |= ADAPTER_EOI_TX_ON;
2071 writeq(val64, &bar0->adapter_control);
2072
2073 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2074 /*
2075 * Dont see link state interrupts initally on some switches,
2076 * so directly scheduling the link state task here.
2077 */
2078 schedule_work(&nic->set_link_task);
2079 }
2080 /* SXE-002: Initialize link and activity LED */
2081 subid = nic->pdev->subsystem_device;
2082 if (((subid & 0xFF) >= 0x07) &&
2083 (nic->device_type == XFRAME_I_DEVICE)) {
2084 val64 = readq(&bar0->gpio_control);
2085 val64 |= 0x0000800000000000ULL;
2086 writeq(val64, &bar0->gpio_control);
2087 val64 = 0x0411040400000000ULL;
2088 writeq(val64, (void __iomem *)bar0 + 0x2700);
2089 }
2090
2091 return SUCCESS;
2092 }
2093 /**
2094 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2095 */
2096 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2097 {
2098 nic_t *nic = fifo_data->nic;
2099 struct sk_buff *skb;
2100 TxD_t *txds;
2101 u16 j, frg_cnt;
2102
2103 txds = txdlp;
2104 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2105 pci_unmap_single(nic->pdev, (dma_addr_t)
2106 txds->Buffer_Pointer, sizeof(u64),
2107 PCI_DMA_TODEVICE);
2108 txds++;
2109 }
2110
2111 skb = (struct sk_buff *) ((unsigned long)
2112 txds->Host_Control);
2113 if (!skb) {
2114 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2115 return NULL;
2116 }
2117 pci_unmap_single(nic->pdev, (dma_addr_t)
2118 txds->Buffer_Pointer,
2119 skb->len - skb->data_len,
2120 PCI_DMA_TODEVICE);
2121 frg_cnt = skb_shinfo(skb)->nr_frags;
2122 if (frg_cnt) {
2123 txds++;
2124 for (j = 0; j < frg_cnt; j++, txds++) {
2125 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2126 if (!txds->Buffer_Pointer)
2127 break;
2128 pci_unmap_page(nic->pdev, (dma_addr_t)
2129 txds->Buffer_Pointer,
2130 frag->size, PCI_DMA_TODEVICE);
2131 }
2132 }
2133 txdlp->Host_Control = 0;
2134 return(skb);
2135 }
2136
2137 /**
2138 * free_tx_buffers - Free all queued Tx buffers
2139 * @nic : device private variable.
2140 * Description:
2141 * Free all queued Tx buffers.
2142 * Return Value: void
2143 */
2144
2145 static void free_tx_buffers(struct s2io_nic *nic)
2146 {
2147 struct net_device *dev = nic->dev;
2148 struct sk_buff *skb;
2149 TxD_t *txdp;
2150 int i, j;
2151 mac_info_t *mac_control;
2152 struct config_param *config;
2153 int cnt = 0;
2154
2155 mac_control = &nic->mac_control;
2156 config = &nic->config;
2157
2158 for (i = 0; i < config->tx_fifo_num; i++) {
2159 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2160 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2161 list_virt_addr;
2162 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2163 if (skb) {
2164 dev_kfree_skb(skb);
2165 cnt++;
2166 }
2167 }
2168 DBG_PRINT(INTR_DBG,
2169 "%s:forcibly freeing %d skbs on FIFO%d\n",
2170 dev->name, cnt, i);
2171 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2172 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2173 }
2174 }
2175
2176 /**
2177 * stop_nic - To stop the nic
2178 * @nic ; device private variable.
2179 * Description:
2180 * This function does exactly the opposite of what the start_nic()
2181 * function does. This function is called to stop the device.
2182 * Return Value:
2183 * void.
2184 */
2185
2186 static void stop_nic(struct s2io_nic *nic)
2187 {
2188 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2189 register u64 val64 = 0;
2190 u16 interruptible;
2191 mac_info_t *mac_control;
2192 struct config_param *config;
2193
2194 mac_control = &nic->mac_control;
2195 config = &nic->config;
2196
2197 /* Disable all interrupts */
2198 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2199 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2200 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2201 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2202
2203 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2204 val64 = readq(&bar0->adapter_control);
2205 val64 &= ~(ADAPTER_CNTL_EN);
2206 writeq(val64, &bar0->adapter_control);
2207 }
2208
2209 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2210 {
2211 struct net_device *dev = nic->dev;
2212 struct sk_buff *frag_list;
2213 void *tmp;
2214
2215 /* Buffer-1 receives L3/L4 headers */
2216 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2217 (nic->pdev, skb->data, l3l4hdr_size + 4,
2218 PCI_DMA_FROMDEVICE);
2219
2220 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2221 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2222 if (skb_shinfo(skb)->frag_list == NULL) {
2223 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2224 return -ENOMEM ;
2225 }
2226 frag_list = skb_shinfo(skb)->frag_list;
2227 frag_list->next = NULL;
2228 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2229 frag_list->data = tmp;
2230 frag_list->tail = tmp;
2231
2232 /* Buffer-2 receives L4 data payload */
2233 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2234 frag_list->data, dev->mtu,
2235 PCI_DMA_FROMDEVICE);
2236 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2237 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2238
2239 return SUCCESS;
2240 }
2241
2242 /**
2243 * fill_rx_buffers - Allocates the Rx side skbs
2244 * @nic: device private variable
2245 * @ring_no: ring number
2246 * Description:
2247 * The function allocates Rx side skbs and puts the physical
2248 * address of these buffers into the RxD buffer pointers, so that the NIC
2249 * can DMA the received frame into these locations.
2250 * The NIC supports 3 receive modes, viz
2251 * 1. single buffer,
2252 * 2. three buffer and
2253 * 3. Five buffer modes.
2254 * Each mode defines how many fragments the received frame will be split
2255 * up into by the NIC. The frame is split into L3 header, L4 Header,
2256 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2257 * is split into 3 fragments. As of now only single buffer mode is
2258 * supported.
2259 * Return Value:
2260 * SUCCESS on success or an appropriate -ve value on failure.
2261 */
2262
2263 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2264 {
2265 struct net_device *dev = nic->dev;
2266 struct sk_buff *skb;
2267 RxD_t *rxdp;
2268 int off, off1, size, block_no, block_no1;
2269 u32 alloc_tab = 0;
2270 u32 alloc_cnt;
2271 mac_info_t *mac_control;
2272 struct config_param *config;
2273 u64 tmp;
2274 buffAdd_t *ba;
2275 #ifndef CONFIG_S2IO_NAPI
2276 unsigned long flags;
2277 #endif
2278 RxD_t *first_rxdp = NULL;
2279
2280 mac_control = &nic->mac_control;
2281 config = &nic->config;
2282 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2283 atomic_read(&nic->rx_bufs_left[ring_no]);
2284
2285 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2286 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2287 while (alloc_tab < alloc_cnt) {
2288 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2289 block_index;
2290 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2291
2292 rxdp = mac_control->rings[ring_no].
2293 rx_blocks[block_no].rxds[off].virt_addr;
2294
2295 if ((block_no == block_no1) && (off == off1) &&
2296 (rxdp->Host_Control)) {
2297 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2298 dev->name);
2299 DBG_PRINT(INTR_DBG, " info equated\n");
2300 goto end;
2301 }
2302 if (off && (off == rxd_count[nic->rxd_mode])) {
2303 mac_control->rings[ring_no].rx_curr_put_info.
2304 block_index++;
2305 if (mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index == mac_control->rings[ring_no].
2307 block_count)
2308 mac_control->rings[ring_no].rx_curr_put_info.
2309 block_index = 0;
2310 block_no = mac_control->rings[ring_no].
2311 rx_curr_put_info.block_index;
2312 if (off == rxd_count[nic->rxd_mode])
2313 off = 0;
2314 mac_control->rings[ring_no].rx_curr_put_info.
2315 offset = off;
2316 rxdp = mac_control->rings[ring_no].
2317 rx_blocks[block_no].block_virt_addr;
2318 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2319 dev->name, rxdp);
2320 }
2321 #ifndef CONFIG_S2IO_NAPI
2322 spin_lock_irqsave(&nic->put_lock, flags);
2323 mac_control->rings[ring_no].put_pos =
2324 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2325 spin_unlock_irqrestore(&nic->put_lock, flags);
2326 #endif
2327 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2328 ((nic->rxd_mode >= RXD_MODE_3A) &&
2329 (rxdp->Control_2 & BIT(0)))) {
2330 mac_control->rings[ring_no].rx_curr_put_info.
2331 offset = off;
2332 goto end;
2333 }
2334 /* calculate size of skb based on ring mode */
2335 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337 if (nic->rxd_mode == RXD_MODE_1)
2338 size += NET_IP_ALIGN;
2339 else if (nic->rxd_mode == RXD_MODE_3B)
2340 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2341 else
2342 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2343
2344 /* allocate skb */
2345 skb = dev_alloc_skb(size);
2346 if(!skb) {
2347 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2348 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2349 if (first_rxdp) {
2350 wmb();
2351 first_rxdp->Control_1 |= RXD_OWN_XENA;
2352 }
2353 return -ENOMEM ;
2354 }
2355 if (nic->rxd_mode == RXD_MODE_1) {
2356 /* 1 buffer mode - normal operation mode */
2357 memset(rxdp, 0, sizeof(RxD1_t));
2358 skb_reserve(skb, NET_IP_ALIGN);
2359 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2360 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2361 PCI_DMA_FROMDEVICE);
2362 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2363
2364 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2365 /*
2366 * 2 or 3 buffer mode -
2367 * Both 2 buffer mode and 3 buffer mode provides 128
2368 * byte aligned receive buffers.
2369 *
2370 * 3 buffer mode provides header separation where in
2371 * skb->data will have L3/L4 headers where as
2372 * skb_shinfo(skb)->frag_list will have the L4 data
2373 * payload
2374 */
2375
2376 memset(rxdp, 0, sizeof(RxD3_t));
2377 ba = &mac_control->rings[ring_no].ba[block_no][off];
2378 skb_reserve(skb, BUF0_LEN);
2379 tmp = (u64)(unsigned long) skb->data;
2380 tmp += ALIGN_SIZE;
2381 tmp &= ~ALIGN_SIZE;
2382 skb->data = (void *) (unsigned long)tmp;
2383 skb->tail = (void *) (unsigned long)tmp;
2384
2385 ((RxD3_t*)rxdp)->Buffer0_ptr =
2386 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2387 PCI_DMA_FROMDEVICE);
2388 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2389 if (nic->rxd_mode == RXD_MODE_3B) {
2390 /* Two buffer mode */
2391
2392 /*
2393 * Buffer2 will have L3/L4 header plus
2394 * L4 payload
2395 */
2396 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2397 (nic->pdev, skb->data, dev->mtu + 4,
2398 PCI_DMA_FROMDEVICE);
2399
2400 /* Buffer-1 will be dummy buffer not used */
2401 ((RxD3_t*)rxdp)->Buffer1_ptr =
2402 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2403 PCI_DMA_FROMDEVICE);
2404 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2405 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2406 (dev->mtu + 4);
2407 } else {
2408 /* 3 buffer mode */
2409 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2410 dev_kfree_skb_irq(skb);
2411 if (first_rxdp) {
2412 wmb();
2413 first_rxdp->Control_1 |=
2414 RXD_OWN_XENA;
2415 }
2416 return -ENOMEM ;
2417 }
2418 }
2419 rxdp->Control_2 |= BIT(0);
2420 }
2421 rxdp->Host_Control = (unsigned long) (skb);
2422 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2423 rxdp->Control_1 |= RXD_OWN_XENA;
2424 off++;
2425 if (off == (rxd_count[nic->rxd_mode] + 1))
2426 off = 0;
2427 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2428
2429 rxdp->Control_2 |= SET_RXD_MARKER;
2430 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2431 if (first_rxdp) {
2432 wmb();
2433 first_rxdp->Control_1 |= RXD_OWN_XENA;
2434 }
2435 first_rxdp = rxdp;
2436 }
2437 atomic_inc(&nic->rx_bufs_left[ring_no]);
2438 alloc_tab++;
2439 }
2440
2441 end:
2442 /* Transfer ownership of first descriptor to adapter just before
2443 * exiting. Before that, use memory barrier so that ownership
2444 * and other fields are seen by adapter correctly.
2445 */
2446 if (first_rxdp) {
2447 wmb();
2448 first_rxdp->Control_1 |= RXD_OWN_XENA;
2449 }
2450
2451 return SUCCESS;
2452 }
2453
2454 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2455 {
2456 struct net_device *dev = sp->dev;
2457 int j;
2458 struct sk_buff *skb;
2459 RxD_t *rxdp;
2460 mac_info_t *mac_control;
2461 buffAdd_t *ba;
2462
2463 mac_control = &sp->mac_control;
2464 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2465 rxdp = mac_control->rings[ring_no].
2466 rx_blocks[blk].rxds[j].virt_addr;
2467 skb = (struct sk_buff *)
2468 ((unsigned long) rxdp->Host_Control);
2469 if (!skb) {
2470 continue;
2471 }
2472 if (sp->rxd_mode == RXD_MODE_1) {
2473 pci_unmap_single(sp->pdev, (dma_addr_t)
2474 ((RxD1_t*)rxdp)->Buffer0_ptr,
2475 dev->mtu +
2476 HEADER_ETHERNET_II_802_3_SIZE
2477 + HEADER_802_2_SIZE +
2478 HEADER_SNAP_SIZE,
2479 PCI_DMA_FROMDEVICE);
2480 memset(rxdp, 0, sizeof(RxD1_t));
2481 } else if(sp->rxd_mode == RXD_MODE_3B) {
2482 ba = &mac_control->rings[ring_no].
2483 ba[blk][j];
2484 pci_unmap_single(sp->pdev, (dma_addr_t)
2485 ((RxD3_t*)rxdp)->Buffer0_ptr,
2486 BUF0_LEN,
2487 PCI_DMA_FROMDEVICE);
2488 pci_unmap_single(sp->pdev, (dma_addr_t)
2489 ((RxD3_t*)rxdp)->Buffer1_ptr,
2490 BUF1_LEN,
2491 PCI_DMA_FROMDEVICE);
2492 pci_unmap_single(sp->pdev, (dma_addr_t)
2493 ((RxD3_t*)rxdp)->Buffer2_ptr,
2494 dev->mtu + 4,
2495 PCI_DMA_FROMDEVICE);
2496 memset(rxdp, 0, sizeof(RxD3_t));
2497 } else {
2498 pci_unmap_single(sp->pdev, (dma_addr_t)
2499 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2500 PCI_DMA_FROMDEVICE);
2501 pci_unmap_single(sp->pdev, (dma_addr_t)
2502 ((RxD3_t*)rxdp)->Buffer1_ptr,
2503 l3l4hdr_size + 4,
2504 PCI_DMA_FROMDEVICE);
2505 pci_unmap_single(sp->pdev, (dma_addr_t)
2506 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2507 PCI_DMA_FROMDEVICE);
2508 memset(rxdp, 0, sizeof(RxD3_t));
2509 }
2510 dev_kfree_skb(skb);
2511 atomic_dec(&sp->rx_bufs_left[ring_no]);
2512 }
2513 }
2514
2515 /**
2516 * free_rx_buffers - Frees all Rx buffers
2517 * @sp: device private variable.
2518 * Description:
2519 * This function will free all Rx buffers allocated by host.
2520 * Return Value:
2521 * NONE.
2522 */
2523
2524 static void free_rx_buffers(struct s2io_nic *sp)
2525 {
2526 struct net_device *dev = sp->dev;
2527 int i, blk = 0, buf_cnt = 0;
2528 mac_info_t *mac_control;
2529 struct config_param *config;
2530
2531 mac_control = &sp->mac_control;
2532 config = &sp->config;
2533
2534 for (i = 0; i < config->rx_ring_num; i++) {
2535 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2536 free_rxd_blk(sp,i,blk);
2537
2538 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2539 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2540 mac_control->rings[i].rx_curr_put_info.offset = 0;
2541 mac_control->rings[i].rx_curr_get_info.offset = 0;
2542 atomic_set(&sp->rx_bufs_left[i], 0);
2543 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2544 dev->name, buf_cnt, i);
2545 }
2546 }
2547
2548 /**
2549 * s2io_poll - Rx interrupt handler for NAPI support
2550 * @dev : pointer to the device structure.
2551 * @budget : The number of packets that were budgeted to be processed
2552 * during one pass through the 'Poll" function.
2553 * Description:
2554 * Comes into picture only if NAPI support has been incorporated. It does
2555 * the same thing that rx_intr_handler does, but not in a interrupt context
2556 * also It will process only a given number of packets.
2557 * Return value:
2558 * 0 on success and 1 if there are No Rx packets to be processed.
2559 */
2560
2561 #if defined(CONFIG_S2IO_NAPI)
2562 static int s2io_poll(struct net_device *dev, int *budget)
2563 {
2564 nic_t *nic = dev->priv;
2565 int pkt_cnt = 0, org_pkts_to_process;
2566 mac_info_t *mac_control;
2567 struct config_param *config;
2568 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2569 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2570 int i;
2571
2572 atomic_inc(&nic->isr_cnt);
2573 mac_control = &nic->mac_control;
2574 config = &nic->config;
2575
2576 nic->pkts_to_process = *budget;
2577 if (nic->pkts_to_process > dev->quota)
2578 nic->pkts_to_process = dev->quota;
2579 org_pkts_to_process = nic->pkts_to_process;
2580
2581 writeq(val64, &bar0->rx_traffic_int);
2582 val64 = readl(&bar0->rx_traffic_int);
2583
2584 for (i = 0; i < config->rx_ring_num; i++) {
2585 rx_intr_handler(&mac_control->rings[i]);
2586 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2587 if (!nic->pkts_to_process) {
2588 /* Quota for the current iteration has been met */
2589 goto no_rx;
2590 }
2591 }
2592 if (!pkt_cnt)
2593 pkt_cnt = 1;
2594
2595 dev->quota -= pkt_cnt;
2596 *budget -= pkt_cnt;
2597 netif_rx_complete(dev);
2598
2599 for (i = 0; i < config->rx_ring_num; i++) {
2600 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2601 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2602 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2603 break;
2604 }
2605 }
2606 /* Re enable the Rx interrupts. */
2607 writeq(0x0, &bar0->rx_traffic_mask);
2608 val64 = readl(&bar0->rx_traffic_mask);
2609 atomic_dec(&nic->isr_cnt);
2610 return 0;
2611
2612 no_rx:
2613 dev->quota -= pkt_cnt;
2614 *budget -= pkt_cnt;
2615
2616 for (i = 0; i < config->rx_ring_num; i++) {
2617 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2618 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2619 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2620 break;
2621 }
2622 }
2623 atomic_dec(&nic->isr_cnt);
2624 return 1;
2625 }
2626 #endif
2627
2628 /**
2629 * s2io_netpoll - Rx interrupt service handler for netpoll support
2630 * @dev : pointer to the device structure.
2631 * Description:
2632 * Polling 'interrupt' - used by things like netconsole to send skbs
2633 * without having to re-enable interrupts. It's not called while
2634 * the interrupt routine is executing.
2635 */
2636
2637 #ifdef CONFIG_NET_POLL_CONTROLLER
2638 static void s2io_netpoll(struct net_device *dev)
2639 {
2640 nic_t *nic = dev->priv;
2641 mac_info_t *mac_control;
2642 struct config_param *config;
2643 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2644 u64 val64;
2645 int i;
2646
2647 disable_irq(dev->irq);
2648
2649 atomic_inc(&nic->isr_cnt);
2650 mac_control = &nic->mac_control;
2651 config = &nic->config;
2652
2653 val64 = readq(&bar0->rx_traffic_int);
2654 writeq(val64, &bar0->rx_traffic_int);
2655
2656 for (i = 0; i < config->rx_ring_num; i++)
2657 rx_intr_handler(&mac_control->rings[i]);
2658
2659 for (i = 0; i < config->rx_ring_num; i++) {
2660 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2661 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2662 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2663 break;
2664 }
2665 }
2666 atomic_dec(&nic->isr_cnt);
2667 enable_irq(dev->irq);
2668 return;
2669 }
2670 #endif
2671
2672 /**
2673 * rx_intr_handler - Rx interrupt handler
2674 * @nic: device private variable.
2675 * Description:
2676 * If the interrupt is because of a received frame or if the
2677 * receive ring contains fresh as yet un-processed frames,this function is
2678 * called. It picks out the RxD at which place the last Rx processing had
2679 * stopped and sends the skb to the OSM's Rx handler and then increments
2680 * the offset.
2681 * Return Value:
2682 * NONE.
2683 */
2684 static void rx_intr_handler(ring_info_t *ring_data)
2685 {
2686 nic_t *nic = ring_data->nic;
2687 struct net_device *dev = (struct net_device *) nic->dev;
2688 int get_block, put_block, put_offset;
2689 rx_curr_get_info_t get_info, put_info;
2690 RxD_t *rxdp;
2691 struct sk_buff *skb;
2692 #ifndef CONFIG_S2IO_NAPI
2693 int pkt_cnt = 0;
2694 #endif
2695 int i;
2696
2697 spin_lock(&nic->rx_lock);
2698 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2699 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2700 __FUNCTION__, dev->name);
2701 spin_unlock(&nic->rx_lock);
2702 return;
2703 }
2704
2705 get_info = ring_data->rx_curr_get_info;
2706 get_block = get_info.block_index;
2707 put_info = ring_data->rx_curr_put_info;
2708 put_block = put_info.block_index;
2709 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2710 #ifndef CONFIG_S2IO_NAPI
2711 spin_lock(&nic->put_lock);
2712 put_offset = ring_data->put_pos;
2713 spin_unlock(&nic->put_lock);
2714 #else
2715 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2716 put_info.offset;
2717 #endif
2718 while (RXD_IS_UP2DT(rxdp)) {
2719 /* If your are next to put index then it's FIFO full condition */
2720 if ((get_block == put_block) &&
2721 (get_info.offset + 1) == put_info.offset) {
2722 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2723 break;
2724 }
2725 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2726 if (skb == NULL) {
2727 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2728 dev->name);
2729 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2730 spin_unlock(&nic->rx_lock);
2731 return;
2732 }
2733 if (nic->rxd_mode == RXD_MODE_1) {
2734 pci_unmap_single(nic->pdev, (dma_addr_t)
2735 ((RxD1_t*)rxdp)->Buffer0_ptr,
2736 dev->mtu +
2737 HEADER_ETHERNET_II_802_3_SIZE +
2738 HEADER_802_2_SIZE +
2739 HEADER_SNAP_SIZE,
2740 PCI_DMA_FROMDEVICE);
2741 } else if (nic->rxd_mode == RXD_MODE_3B) {
2742 pci_unmap_single(nic->pdev, (dma_addr_t)
2743 ((RxD3_t*)rxdp)->Buffer0_ptr,
2744 BUF0_LEN, PCI_DMA_FROMDEVICE);
2745 pci_unmap_single(nic->pdev, (dma_addr_t)
2746 ((RxD3_t*)rxdp)->Buffer1_ptr,
2747 BUF1_LEN, PCI_DMA_FROMDEVICE);
2748 pci_unmap_single(nic->pdev, (dma_addr_t)
2749 ((RxD3_t*)rxdp)->Buffer2_ptr,
2750 dev->mtu + 4,
2751 PCI_DMA_FROMDEVICE);
2752 } else {
2753 pci_unmap_single(nic->pdev, (dma_addr_t)
2754 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2755 PCI_DMA_FROMDEVICE);
2756 pci_unmap_single(nic->pdev, (dma_addr_t)
2757 ((RxD3_t*)rxdp)->Buffer1_ptr,
2758 l3l4hdr_size + 4,
2759 PCI_DMA_FROMDEVICE);
2760 pci_unmap_single(nic->pdev, (dma_addr_t)
2761 ((RxD3_t*)rxdp)->Buffer2_ptr,
2762 dev->mtu, PCI_DMA_FROMDEVICE);
2763 }
2764 prefetch(skb->data);
2765 rx_osm_handler(ring_data, rxdp);
2766 get_info.offset++;
2767 ring_data->rx_curr_get_info.offset = get_info.offset;
2768 rxdp = ring_data->rx_blocks[get_block].
2769 rxds[get_info.offset].virt_addr;
2770 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2771 get_info.offset = 0;
2772 ring_data->rx_curr_get_info.offset = get_info.offset;
2773 get_block++;
2774 if (get_block == ring_data->block_count)
2775 get_block = 0;
2776 ring_data->rx_curr_get_info.block_index = get_block;
2777 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2778 }
2779
2780 #ifdef CONFIG_S2IO_NAPI
2781 nic->pkts_to_process -= 1;
2782 if (!nic->pkts_to_process)
2783 break;
2784 #else
2785 pkt_cnt++;
2786 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2787 break;
2788 #endif
2789 }
2790 if (nic->lro) {
2791 /* Clear all LRO sessions before exiting */
2792 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2793 lro_t *lro = &nic->lro0_n[i];
2794 if (lro->in_use) {
2795 update_L3L4_header(nic, lro);
2796 queue_rx_frame(lro->parent);
2797 clear_lro_session(lro);
2798 }
2799 }
2800 }
2801
2802 spin_unlock(&nic->rx_lock);
2803 }
2804
2805 /**
2806 * tx_intr_handler - Transmit interrupt handler
2807 * @nic : device private variable
2808 * Description:
2809 * If an interrupt was raised to indicate DMA complete of the
2810 * Tx packet, this function is called. It identifies the last TxD
2811 * whose buffer was freed and frees all skbs whose data have already
2812 * DMA'ed into the NICs internal memory.
2813 * Return Value:
2814 * NONE
2815 */
2816
2817 static void tx_intr_handler(fifo_info_t *fifo_data)
2818 {
2819 nic_t *nic = fifo_data->nic;
2820 struct net_device *dev = (struct net_device *) nic->dev;
2821 tx_curr_get_info_t get_info, put_info;
2822 struct sk_buff *skb;
2823 TxD_t *txdlp;
2824
2825 get_info = fifo_data->tx_curr_get_info;
2826 put_info = fifo_data->tx_curr_put_info;
2827 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2828 list_virt_addr;
2829 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2830 (get_info.offset != put_info.offset) &&
2831 (txdlp->Host_Control)) {
2832 /* Check for TxD errors */
2833 if (txdlp->Control_1 & TXD_T_CODE) {
2834 unsigned long long err;
2835 err = txdlp->Control_1 & TXD_T_CODE;
2836 if (err & 0x1) {
2837 nic->mac_control.stats_info->sw_stat.
2838 parity_err_cnt++;
2839 }
2840 if ((err >> 48) == 0xA) {
2841 DBG_PRINT(TX_DBG, "TxD returned due \
2842 to loss of link\n");
2843 }
2844 else {
2845 DBG_PRINT(ERR_DBG, "***TxD error \
2846 %llx\n", err);
2847 }
2848 }
2849
2850 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2851 if (skb == NULL) {
2852 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2853 __FUNCTION__);
2854 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2855 return;
2856 }
2857
2858 /* Updating the statistics block */
2859 nic->stats.tx_bytes += skb->len;
2860 dev_kfree_skb_irq(skb);
2861
2862 get_info.offset++;
2863 if (get_info.offset == get_info.fifo_len + 1)
2864 get_info.offset = 0;
2865 txdlp = (TxD_t *) fifo_data->list_info
2866 [get_info.offset].list_virt_addr;
2867 fifo_data->tx_curr_get_info.offset =
2868 get_info.offset;
2869 }
2870
2871 spin_lock(&nic->tx_lock);
2872 if (netif_queue_stopped(dev))
2873 netif_wake_queue(dev);
2874 spin_unlock(&nic->tx_lock);
2875 }
2876
2877 /**
2878 * s2io_mdio_write - Function to write in to MDIO registers
2879 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2880 * @addr : address value
2881 * @value : data value
2882 * @dev : pointer to net_device structure
2883 * Description:
2884 * This function is used to write values to the MDIO registers
2885 * NONE
2886 */
2887 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2888 {
2889 u64 val64 = 0x0;
2890 nic_t *sp = dev->priv;
2891 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2892
2893 //address transaction
2894 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2895 | MDIO_MMD_DEV_ADDR(mmd_type)
2896 | MDIO_MMS_PRT_ADDR(0x0);
2897 writeq(val64, &bar0->mdio_control);
2898 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2899 writeq(val64, &bar0->mdio_control);
2900 udelay(100);
2901
2902 //Data transaction
2903 val64 = 0x0;
2904 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2905 | MDIO_MMD_DEV_ADDR(mmd_type)
2906 | MDIO_MMS_PRT_ADDR(0x0)
2907 | MDIO_MDIO_DATA(value)
2908 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2909 writeq(val64, &bar0->mdio_control);
2910 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2911 writeq(val64, &bar0->mdio_control);
2912 udelay(100);
2913
2914 val64 = 0x0;
2915 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2916 | MDIO_MMD_DEV_ADDR(mmd_type)
2917 | MDIO_MMS_PRT_ADDR(0x0)
2918 | MDIO_OP(MDIO_OP_READ_TRANS);
2919 writeq(val64, &bar0->mdio_control);
2920 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2921 writeq(val64, &bar0->mdio_control);
2922 udelay(100);
2923
2924 }
2925
2926 /**
2927 * s2io_mdio_read - Function to write in to MDIO registers
2928 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2929 * @addr : address value
2930 * @dev : pointer to net_device structure
2931 * Description:
2932 * This function is used to read values to the MDIO registers
2933 * NONE
2934 */
2935 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2936 {
2937 u64 val64 = 0x0;
2938 u64 rval64 = 0x0;
2939 nic_t *sp = dev->priv;
2940 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2941
2942 /* address transaction */
2943 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2944 | MDIO_MMD_DEV_ADDR(mmd_type)
2945 | MDIO_MMS_PRT_ADDR(0x0);
2946 writeq(val64, &bar0->mdio_control);
2947 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2948 writeq(val64, &bar0->mdio_control);
2949 udelay(100);
2950
2951 /* Data transaction */
2952 val64 = 0x0;
2953 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2954 | MDIO_MMD_DEV_ADDR(mmd_type)
2955 | MDIO_MMS_PRT_ADDR(0x0)
2956 | MDIO_OP(MDIO_OP_READ_TRANS);
2957 writeq(val64, &bar0->mdio_control);
2958 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2959 writeq(val64, &bar0->mdio_control);
2960 udelay(100);
2961
2962 /* Read the value from regs */
2963 rval64 = readq(&bar0->mdio_control);
2964 rval64 = rval64 & 0xFFFF0000;
2965 rval64 = rval64 >> 16;
2966 return rval64;
2967 }
2968 /**
2969 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2970 * @counter : couter value to be updated
2971 * @flag : flag to indicate the status
2972 * @type : counter type
2973 * Description:
2974 * This function is to check the status of the xpak counters value
2975 * NONE
2976 */
2977
2978 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2979 {
2980 u64 mask = 0x3;
2981 u64 val64;
2982 int i;
2983 for(i = 0; i <index; i++)
2984 mask = mask << 0x2;
2985
2986 if(flag > 0)
2987 {
2988 *counter = *counter + 1;
2989 val64 = *regs_stat & mask;
2990 val64 = val64 >> (index * 0x2);
2991 val64 = val64 + 1;
2992 if(val64 == 3)
2993 {
2994 switch(type)
2995 {
2996 case 1:
2997 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2998 "service. Excessive temperatures may "
2999 "result in premature transceiver "
3000 "failure \n");
3001 break;
3002 case 2:
3003 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3004 "service Excessive bias currents may "
3005 "indicate imminent laser diode "
3006 "failure \n");
3007 break;
3008 case 3:
3009 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3010 "service Excessive laser output "
3011 "power may saturate far-end "
3012 "receiver\n");
3013 break;
3014 default:
3015 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3016 "type \n");
3017 }
3018 val64 = 0x0;
3019 }
3020 val64 = val64 << (index * 0x2);
3021 *regs_stat = (*regs_stat & (~mask)) | (val64);
3022
3023 } else {
3024 *regs_stat = *regs_stat & (~mask);
3025 }
3026 }
3027
3028 /**
3029 * s2io_updt_xpak_counter - Function to update the xpak counters
3030 * @dev : pointer to net_device struct
3031 * Description:
3032 * This function is to upate the status of the xpak counters value
3033 * NONE
3034 */
3035 static void s2io_updt_xpak_counter(struct net_device *dev)
3036 {
3037 u16 flag = 0x0;
3038 u16 type = 0x0;
3039 u16 val16 = 0x0;
3040 u64 val64 = 0x0;
3041 u64 addr = 0x0;
3042
3043 nic_t *sp = dev->priv;
3044 StatInfo_t *stat_info = sp->mac_control.stats_info;
3045
3046 /* Check the communication with the MDIO slave */
3047 addr = 0x0000;
3048 val64 = 0x0;
3049 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3050 if((val64 == 0xFFFF) || (val64 == 0x0000))
3051 {
3052 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3053 "Returned %llx\n", (unsigned long long)val64);
3054 return;
3055 }
3056
3057 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3058 if(val64 != 0x2040)
3059 {
3060 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3061 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3062 (unsigned long long)val64);
3063 return;
3064 }
3065
3066 /* Loading the DOM register to MDIO register */
3067 addr = 0xA100;
3068 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3069 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3070
3071 /* Reading the Alarm flags */
3072 addr = 0xA070;
3073 val64 = 0x0;
3074 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3075
3076 flag = CHECKBIT(val64, 0x7);
3077 type = 1;
3078 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3079 &stat_info->xpak_stat.xpak_regs_stat,
3080 0x0, flag, type);
3081
3082 if(CHECKBIT(val64, 0x6))
3083 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3084
3085 flag = CHECKBIT(val64, 0x3);
3086 type = 2;
3087 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3088 &stat_info->xpak_stat.xpak_regs_stat,
3089 0x2, flag, type);
3090
3091 if(CHECKBIT(val64, 0x2))
3092 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3093
3094 flag = CHECKBIT(val64, 0x1);
3095 type = 3;
3096 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3097 &stat_info->xpak_stat.xpak_regs_stat,
3098 0x4, flag, type);
3099
3100 if(CHECKBIT(val64, 0x0))
3101 stat_info->xpak_stat.alarm_laser_output_power_low++;
3102
3103 /* Reading the Warning flags */
3104 addr = 0xA074;
3105 val64 = 0x0;
3106 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3107
3108 if(CHECKBIT(val64, 0x7))
3109 stat_info->xpak_stat.warn_transceiver_temp_high++;
3110
3111 if(CHECKBIT(val64, 0x6))
3112 stat_info->xpak_stat.warn_transceiver_temp_low++;
3113
3114 if(CHECKBIT(val64, 0x3))
3115 stat_info->xpak_stat.warn_laser_bias_current_high++;
3116
3117 if(CHECKBIT(val64, 0x2))
3118 stat_info->xpak_stat.warn_laser_bias_current_low++;
3119
3120 if(CHECKBIT(val64, 0x1))
3121 stat_info->xpak_stat.warn_laser_output_power_high++;
3122
3123 if(CHECKBIT(val64, 0x0))
3124 stat_info->xpak_stat.warn_laser_output_power_low++;
3125 }
3126
3127 /**
3128 * alarm_intr_handler - Alarm Interrrupt handler
3129 * @nic: device private variable
3130 * Description: If the interrupt was neither because of Rx packet or Tx
3131 * complete, this function is called. If the interrupt was to indicate
3132 * a loss of link, the OSM link status handler is invoked for any other
3133 * alarm interrupt the block that raised the interrupt is displayed
3134 * and a H/W reset is issued.
3135 * Return Value:
3136 * NONE
3137 */
3138
3139 static void alarm_intr_handler(struct s2io_nic *nic)
3140 {
3141 struct net_device *dev = (struct net_device *) nic->dev;
3142 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3143 register u64 val64 = 0, err_reg = 0;
3144 u64 cnt;
3145 int i;
3146 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3147 /* Handling the XPAK counters update */
3148 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3149 /* waiting for an hour */
3150 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3151 } else {
3152 s2io_updt_xpak_counter(dev);
3153 /* reset the count to zero */
3154 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3155 }
3156
3157 /* Handling link status change error Intr */
3158 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3159 err_reg = readq(&bar0->mac_rmac_err_reg);
3160 writeq(err_reg, &bar0->mac_rmac_err_reg);
3161 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3162 schedule_work(&nic->set_link_task);
3163 }
3164 }
3165
3166 /* Handling Ecc errors */
3167 val64 = readq(&bar0->mc_err_reg);
3168 writeq(val64, &bar0->mc_err_reg);
3169 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3170 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3171 nic->mac_control.stats_info->sw_stat.
3172 double_ecc_errs++;
3173 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3174 dev->name);
3175 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3176 if (nic->device_type != XFRAME_II_DEVICE) {
3177 /* Reset XframeI only if critical error */
3178 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3179 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3180 netif_stop_queue(dev);
3181 schedule_work(&nic->rst_timer_task);
3182 nic->mac_control.stats_info->sw_stat.
3183 soft_reset_cnt++;
3184 }
3185 }
3186 } else {
3187 nic->mac_control.stats_info->sw_stat.
3188 single_ecc_errs++;
3189 }
3190 }
3191
3192 /* In case of a serious error, the device will be Reset. */
3193 val64 = readq(&bar0->serr_source);
3194 if (val64 & SERR_SOURCE_ANY) {
3195 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3196 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3197 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3198 (unsigned long long)val64);
3199 netif_stop_queue(dev);
3200 schedule_work(&nic->rst_timer_task);
3201 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3202 }
3203
3204 /*
3205 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3206 * Error occurs, the adapter will be recycled by disabling the
3207 * adapter enable bit and enabling it again after the device
3208 * becomes Quiescent.
3209 */
3210 val64 = readq(&bar0->pcc_err_reg);
3211 writeq(val64, &bar0->pcc_err_reg);
3212 if (val64 & PCC_FB_ECC_DB_ERR) {
3213 u64 ac = readq(&bar0->adapter_control);
3214 ac &= ~(ADAPTER_CNTL_EN);
3215 writeq(ac, &bar0->adapter_control);
3216 ac = readq(&bar0->adapter_control);
3217 schedule_work(&nic->set_link_task);
3218 }
3219 /* Check for data parity error */
3220 val64 = readq(&bar0->pic_int_status);
3221 if (val64 & PIC_INT_GPIO) {
3222 val64 = readq(&bar0->gpio_int_reg);
3223 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3224 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3225 schedule_work(&nic->rst_timer_task);
3226 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3227 }
3228 }
3229
3230 /* Check for ring full counter */
3231 if (nic->device_type & XFRAME_II_DEVICE) {
3232 val64 = readq(&bar0->ring_bump_counter1);
3233 for (i=0; i<4; i++) {
3234 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3235 cnt >>= 64 - ((i+1)*16);
3236 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3237 += cnt;
3238 }
3239
3240 val64 = readq(&bar0->ring_bump_counter2);
3241 for (i=0; i<4; i++) {
3242 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3243 cnt >>= 64 - ((i+1)*16);
3244 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3245 += cnt;
3246 }
3247 }
3248
3249 /* Other type of interrupts are not being handled now, TODO */
3250 }
3251
3252 /**
3253 * wait_for_cmd_complete - waits for a command to complete.
3254 * @sp : private member of the device structure, which is a pointer to the
3255 * s2io_nic structure.
3256 * Description: Function that waits for a command to Write into RMAC
3257 * ADDR DATA registers to be completed and returns either success or
3258 * error depending on whether the command was complete or not.
3259 * Return value:
3260 * SUCCESS on success and FAILURE on failure.
3261 */
3262
3263 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3264 {
3265 int ret = FAILURE, cnt = 0;
3266 u64 val64;
3267
3268 while (TRUE) {
3269 val64 = readq(addr);
3270 if (!(val64 & busy_bit)) {
3271 ret = SUCCESS;
3272 break;
3273 }
3274
3275 if(in_interrupt())
3276 mdelay(50);
3277 else
3278 msleep(50);
3279
3280 if (cnt++ > 10)
3281 break;
3282 }
3283 return ret;
3284 }
3285
3286 /**
3287 * s2io_reset - Resets the card.
3288 * @sp : private member of the device structure.
3289 * Description: Function to Reset the card. This function then also
3290 * restores the previously saved PCI configuration space registers as
3291 * the card reset also resets the configuration space.
3292 * Return value:
3293 * void.
3294 */
3295
3296 static void s2io_reset(nic_t * sp)
3297 {
3298 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3299 u64 val64;
3300 u16 subid, pci_cmd;
3301
3302 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3303 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3304
3305 val64 = SW_RESET_ALL;
3306 writeq(val64, &bar0->sw_reset);
3307
3308 /*
3309 * At this stage, if the PCI write is indeed completed, the
3310 * card is reset and so is the PCI Config space of the device.
3311 * So a read cannot be issued at this stage on any of the
3312 * registers to ensure the write into "sw_reset" register
3313 * has gone through.
3314 * Question: Is there any system call that will explicitly force
3315 * all the write commands still pending on the bus to be pushed
3316 * through?
3317 * As of now I'am just giving a 250ms delay and hoping that the
3318 * PCI write to sw_reset register is done by this time.
3319 */
3320 msleep(250);
3321 if (strstr(sp->product_name, "CX4")) {
3322 msleep(750);
3323 }
3324
3325 /* Restore the PCI state saved during initialization. */
3326 pci_restore_state(sp->pdev);
3327 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3328 pci_cmd);
3329 s2io_init_pci(sp);
3330
3331 msleep(250);
3332
3333 /* Set swapper to enable I/O register access */
3334 s2io_set_swapper(sp);
3335
3336 /* Restore the MSIX table entries from local variables */
3337 restore_xmsi_data(sp);
3338
3339 /* Clear certain PCI/PCI-X fields after reset */
3340 if (sp->device_type == XFRAME_II_DEVICE) {
3341 /* Clear parity err detect bit */
3342 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3343
3344 /* Clearing PCIX Ecc status register */
3345 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3346
3347 /* Clearing PCI_STATUS error reflected here */
3348 writeq(BIT(62), &bar0->txpic_int_reg);
3349 }
3350
3351 /* Reset device statistics maintained by OS */
3352 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3353
3354 /* SXE-002: Configure link and activity LED to turn it off */
3355 subid = sp->pdev->subsystem_device;
3356 if (((subid & 0xFF) >= 0x07) &&
3357 (sp->device_type == XFRAME_I_DEVICE)) {
3358 val64 = readq(&bar0->gpio_control);
3359 val64 |= 0x0000800000000000ULL;
3360 writeq(val64, &bar0->gpio_control);
3361 val64 = 0x0411040400000000ULL;
3362 writeq(val64, (void __iomem *)bar0 + 0x2700);
3363 }
3364
3365 /*
3366 * Clear spurious ECC interrupts that would have occured on
3367 * XFRAME II cards after reset.
3368 */
3369 if (sp->device_type == XFRAME_II_DEVICE) {
3370 val64 = readq(&bar0->pcc_err_reg);
3371 writeq(val64, &bar0->pcc_err_reg);
3372 }
3373
3374 sp->device_enabled_once = FALSE;
3375 }
3376
3377 /**
3378 * s2io_set_swapper - to set the swapper controle on the card
3379 * @sp : private member of the device structure,
3380 * pointer to the s2io_nic structure.
3381 * Description: Function to set the swapper control on the card
3382 * correctly depending on the 'endianness' of the system.
3383 * Return value:
3384 * SUCCESS on success and FAILURE on failure.
3385 */
3386
3387 static int s2io_set_swapper(nic_t * sp)
3388 {
3389 struct net_device *dev = sp->dev;
3390 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3391 u64 val64, valt, valr;
3392
3393 /*
3394 * Set proper endian settings and verify the same by reading
3395 * the PIF Feed-back register.
3396 */
3397
3398 val64 = readq(&bar0->pif_rd_swapper_fb);
3399 if (val64 != 0x0123456789ABCDEFULL) {
3400 int i = 0;
3401 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3402 0x8100008181000081ULL, /* FE=1, SE=0 */
3403 0x4200004242000042ULL, /* FE=0, SE=1 */
3404 0}; /* FE=0, SE=0 */
3405
3406 while(i<4) {
3407 writeq(value[i], &bar0->swapper_ctrl);
3408 val64 = readq(&bar0->pif_rd_swapper_fb);
3409 if (val64 == 0x0123456789ABCDEFULL)
3410 break;
3411 i++;
3412 }
3413 if (i == 4) {
3414 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3415 dev->name);
3416 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3417 (unsigned long long) val64);
3418 return FAILURE;
3419 }
3420 valr = value[i];
3421 } else {
3422 valr = readq(&bar0->swapper_ctrl);
3423 }
3424
3425 valt = 0x0123456789ABCDEFULL;
3426 writeq(valt, &bar0->xmsi_address);
3427 val64 = readq(&bar0->xmsi_address);
3428
3429 if(val64 != valt) {
3430 int i = 0;
3431 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3432 0x0081810000818100ULL, /* FE=1, SE=0 */
3433 0x0042420000424200ULL, /* FE=0, SE=1 */
3434 0}; /* FE=0, SE=0 */
3435
3436 while(i<4) {
3437 writeq((value[i] | valr), &bar0->swapper_ctrl);
3438 writeq(valt, &bar0->xmsi_address);
3439 val64 = readq(&bar0->xmsi_address);
3440 if(val64 == valt)
3441 break;
3442 i++;
3443 }
3444 if(i == 4) {
3445 unsigned long long x = val64;
3446 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3447 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3448 return FAILURE;
3449 }
3450 }
3451 val64 = readq(&bar0->swapper_ctrl);
3452 val64 &= 0xFFFF000000000000ULL;
3453
3454 #ifdef __BIG_ENDIAN
3455 /*
3456 * The device by default set to a big endian format, so a
3457 * big endian driver need not set anything.
3458 */
3459 val64 |= (SWAPPER_CTRL_TXP_FE |
3460 SWAPPER_CTRL_TXP_SE |
3461 SWAPPER_CTRL_TXD_R_FE |
3462 SWAPPER_CTRL_TXD_W_FE |
3463 SWAPPER_CTRL_TXF_R_FE |
3464 SWAPPER_CTRL_RXD_R_FE |
3465 SWAPPER_CTRL_RXD_W_FE |
3466 SWAPPER_CTRL_RXF_W_FE |
3467 SWAPPER_CTRL_XMSI_FE |
3468 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3469 if (sp->intr_type == INTA)
3470 val64 |= SWAPPER_CTRL_XMSI_SE;
3471 writeq(val64, &bar0->swapper_ctrl);
3472 #else
3473 /*
3474 * Initially we enable all bits to make it accessible by the
3475 * driver, then we selectively enable only those bits that
3476 * we want to set.
3477 */
3478 val64 |= (SWAPPER_CTRL_TXP_FE |
3479 SWAPPER_CTRL_TXP_SE |
3480 SWAPPER_CTRL_TXD_R_FE |
3481 SWAPPER_CTRL_TXD_R_SE |
3482 SWAPPER_CTRL_TXD_W_FE |
3483 SWAPPER_CTRL_TXD_W_SE |
3484 SWAPPER_CTRL_TXF_R_FE |
3485 SWAPPER_CTRL_RXD_R_FE |
3486 SWAPPER_CTRL_RXD_R_SE |
3487 SWAPPER_CTRL_RXD_W_FE |
3488 SWAPPER_CTRL_RXD_W_SE |
3489 SWAPPER_CTRL_RXF_W_FE |
3490 SWAPPER_CTRL_XMSI_FE |
3491 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3492 if (sp->intr_type == INTA)
3493 val64 |= SWAPPER_CTRL_XMSI_SE;
3494 writeq(val64, &bar0->swapper_ctrl);
3495 #endif
3496 val64 = readq(&bar0->swapper_ctrl);
3497
3498 /*
3499 * Verifying if endian settings are accurate by reading a
3500 * feedback register.
3501 */
3502 val64 = readq(&bar0->pif_rd_swapper_fb);
3503 if (val64 != 0x0123456789ABCDEFULL) {
3504 /* Endian settings are incorrect, calls for another dekko. */
3505 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3506 dev->name);
3507 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3508 (unsigned long long) val64);
3509 return FAILURE;
3510 }
3511
3512 return SUCCESS;
3513 }
3514
3515 static int wait_for_msix_trans(nic_t *nic, int i)
3516 {
3517 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3518 u64 val64;
3519 int ret = 0, cnt = 0;
3520
3521 do {
3522 val64 = readq(&bar0->xmsi_access);
3523 if (!(val64 & BIT(15)))
3524 break;
3525 mdelay(1);
3526 cnt++;
3527 } while(cnt < 5);
3528 if (cnt == 5) {
3529 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3530 ret = 1;
3531 }
3532
3533 return ret;
3534 }
3535
3536 static void restore_xmsi_data(nic_t *nic)
3537 {
3538 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3539 u64 val64;
3540 int i;
3541
3542 for (i=0; i< nic->avail_msix_vectors; i++) {
3543 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3544 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3545 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3546 writeq(val64, &bar0->xmsi_access);
3547 if (wait_for_msix_trans(nic, i)) {
3548 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3549 continue;
3550 }
3551 }
3552 }
3553
3554 static void store_xmsi_data(nic_t *nic)
3555 {
3556 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3557 u64 val64, addr, data;
3558 int i;
3559
3560 /* Store and display */
3561 for (i=0; i< nic->avail_msix_vectors; i++) {
3562 val64 = (BIT(15) | vBIT(i, 26, 6));
3563 writeq(val64, &bar0->xmsi_access);
3564 if (wait_for_msix_trans(nic, i)) {
3565 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3566 continue;
3567 }
3568 addr = readq(&bar0->xmsi_address);
3569 data = readq(&bar0->xmsi_data);
3570 if (addr && data) {
3571 nic->msix_info[i].addr = addr;
3572 nic->msix_info[i].data = data;
3573 }
3574 }
3575 }
3576
3577 int s2io_enable_msi(nic_t *nic)
3578 {
3579 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3580 u16 msi_ctrl, msg_val;
3581 struct config_param *config = &nic->config;
3582 struct net_device *dev = nic->dev;
3583 u64 val64, tx_mat, rx_mat;
3584 int i, err;
3585
3586 val64 = readq(&bar0->pic_control);
3587 val64 &= ~BIT(1);
3588 writeq(val64, &bar0->pic_control);
3589
3590 err = pci_enable_msi(nic->pdev);
3591 if (err) {
3592 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3593 nic->dev->name);
3594 return err;
3595 }
3596
3597 /*
3598 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3599 * for interrupt handling.
3600 */
3601 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3602 msg_val ^= 0x1;
3603 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3604 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3605
3606 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3607 msi_ctrl |= 0x10;
3608 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3609
3610 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3611 tx_mat = readq(&bar0->tx_mat0_n[0]);
3612 for (i=0; i<config->tx_fifo_num; i++) {
3613 tx_mat |= TX_MAT_SET(i, 1);
3614 }
3615 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3616
3617 rx_mat = readq(&bar0->rx_mat);
3618 for (i=0; i<config->rx_ring_num; i++) {
3619 rx_mat |= RX_MAT_SET(i, 1);
3620 }
3621 writeq(rx_mat, &bar0->rx_mat);
3622
3623 dev->irq = nic->pdev->irq;
3624 return 0;
3625 }
3626
3627 static int s2io_enable_msi_x(nic_t *nic)
3628 {
3629 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3630 u64 tx_mat, rx_mat;
3631 u16 msi_control; /* Temp variable */
3632 int ret, i, j, msix_indx = 1;
3633
3634 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3635 GFP_KERNEL);
3636 if (nic->entries == NULL) {
3637 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3638 return -ENOMEM;
3639 }
3640 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3641
3642 nic->s2io_entries =
3643 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3644 GFP_KERNEL);
3645 if (nic->s2io_entries == NULL) {
3646 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3647 kfree(nic->entries);
3648 return -ENOMEM;
3649 }
3650 memset(nic->s2io_entries, 0,
3651 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3652
3653 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3654 nic->entries[i].entry = i;
3655 nic->s2io_entries[i].entry = i;
3656 nic->s2io_entries[i].arg = NULL;
3657 nic->s2io_entries[i].in_use = 0;
3658 }
3659
3660 tx_mat = readq(&bar0->tx_mat0_n[0]);
3661 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3662 tx_mat |= TX_MAT_SET(i, msix_indx);
3663 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3664 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3665 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3666 }
3667 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3668
3669 if (!nic->config.bimodal) {
3670 rx_mat = readq(&bar0->rx_mat);
3671 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3672 rx_mat |= RX_MAT_SET(j, msix_indx);
3673 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3674 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3675 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3676 }
3677 writeq(rx_mat, &bar0->rx_mat);
3678 } else {
3679 tx_mat = readq(&bar0->tx_mat0_n[7]);
3680 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3681 tx_mat |= TX_MAT_SET(i, msix_indx);
3682 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3683 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3684 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3685 }
3686 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3687 }
3688
3689 nic->avail_msix_vectors = 0;
3690 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3691 /* We fail init if error or we get less vectors than min required */
3692 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3693 nic->avail_msix_vectors = ret;
3694 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3695 }
3696 if (ret) {
3697 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3698 kfree(nic->entries);
3699 kfree(nic->s2io_entries);
3700 nic->entries = NULL;
3701 nic->s2io_entries = NULL;
3702 nic->avail_msix_vectors = 0;
3703 return -ENOMEM;
3704 }
3705 if (!nic->avail_msix_vectors)
3706 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3707
3708 /*
3709 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3710 * in the herc NIC. (Temp change, needs to be removed later)
3711 */
3712 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3713 msi_control |= 0x1; /* Enable MSI */
3714 pci_write_config_word(nic->pdev, 0x42, msi_control);
3715
3716 return 0;
3717 }
3718
3719 /* ********************************************************* *
3720 * Functions defined below concern the OS part of the driver *
3721 * ********************************************************* */
3722
3723 /**
3724 * s2io_open - open entry point of the driver
3725 * @dev : pointer to the device structure.
3726 * Description:
3727 * This function is the open entry point of the driver. It mainly calls a
3728 * function to allocate Rx buffers and inserts them into the buffer
3729 * descriptors and then enables the Rx part of the NIC.
3730 * Return value:
3731 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3732 * file on failure.
3733 */
3734
3735 static int s2io_open(struct net_device *dev)
3736 {
3737 nic_t *sp = dev->priv;
3738 int err = 0;
3739
3740 /*
3741 * Make sure you have link off by default every time
3742 * Nic is initialized
3743 */
3744 netif_carrier_off(dev);
3745 sp->last_link_state = 0;
3746
3747 /* Initialize H/W and enable interrupts */
3748 err = s2io_card_up(sp);
3749 if (err) {
3750 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3751 dev->name);
3752 if (err == -ENODEV)
3753 goto hw_init_failed;
3754 else
3755 goto hw_enable_failed;
3756 }
3757
3758 /* Store the values of the MSIX table in the nic_t structure */
3759 store_xmsi_data(sp);
3760
3761 /* After proper initialization of H/W, register ISR */
3762 if (sp->intr_type == MSI) {
3763 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3764 SA_SHIRQ, sp->name, dev);
3765 if (err) {
3766 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3767 failed\n", dev->name);
3768 goto isr_registration_failed;
3769 }
3770 }
3771 if (sp->intr_type == MSI_X) {
3772 int i;
3773
3774 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3775 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3776 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3777 dev->name, i);
3778 err = request_irq(sp->entries[i].vector,
3779 s2io_msix_fifo_handle, 0, sp->desc1,
3780 sp->s2io_entries[i].arg);
3781 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3782 (unsigned long long)sp->msix_info[i].addr);
3783 } else {
3784 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3785 dev->name, i);
3786 err = request_irq(sp->entries[i].vector,
3787 s2io_msix_ring_handle, 0, sp->desc2,
3788 sp->s2io_entries[i].arg);
3789 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3790 (unsigned long long)sp->msix_info[i].addr);
3791 }
3792 if (err) {
3793 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3794 failed\n", dev->name, i);
3795 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3796 goto isr_registration_failed;
3797 }
3798 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3799 }
3800 }
3801 if (sp->intr_type == INTA) {
3802 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3803 sp->name, dev);
3804 if (err) {
3805 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3806 dev->name);
3807 goto isr_registration_failed;
3808 }
3809 }
3810
3811 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3812 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3813 err = -ENODEV;
3814 goto setting_mac_address_failed;
3815 }
3816
3817 netif_start_queue(dev);
3818 return 0;
3819
3820 setting_mac_address_failed:
3821 if (sp->intr_type != MSI_X)
3822 free_irq(sp->pdev->irq, dev);
3823 isr_registration_failed:
3824 del_timer_sync(&sp->alarm_timer);
3825 if (sp->intr_type == MSI_X) {
3826 int i;
3827 u16 msi_control; /* Temp variable */
3828
3829 for (i=1; (sp->s2io_entries[i].in_use ==
3830 MSIX_REGISTERED_SUCCESS); i++) {
3831 int vector = sp->entries[i].vector;
3832 void *arg = sp->s2io_entries[i].arg;
3833
3834 free_irq(vector, arg);
3835 }
3836 pci_disable_msix(sp->pdev);
3837
3838 /* Temp */
3839 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3840 msi_control &= 0xFFFE; /* Disable MSI */
3841 pci_write_config_word(sp->pdev, 0x42, msi_control);
3842 }
3843 else if (sp->intr_type == MSI)
3844 pci_disable_msi(sp->pdev);
3845 hw_enable_failed:
3846 s2io_reset(sp);
3847 hw_init_failed:
3848 if (sp->intr_type == MSI_X) {
3849 if (sp->entries)
3850 kfree(sp->entries);
3851 if (sp->s2io_entries)
3852 kfree(sp->s2io_entries);
3853 }
3854 return err;
3855 }
3856
3857 /**
3858 * s2io_close -close entry point of the driver
3859 * @dev : device pointer.
3860 * Description:
3861 * This is the stop entry point of the driver. It needs to undo exactly
3862 * whatever was done by the open entry point,thus it's usually referred to
3863 * as the close function.Among other things this function mainly stops the
3864 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3865 * Return value:
3866 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3867 * file on failure.
3868 */
3869
3870 static int s2io_close(struct net_device *dev)
3871 {
3872 nic_t *sp = dev->priv;
3873
3874 flush_scheduled_work();
3875 netif_stop_queue(dev);
3876 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3877 s2io_card_down(sp, 1);
3878
3879 sp->device_close_flag = TRUE; /* Device is shut down. */
3880 return 0;
3881 }
3882
3883 /**
3884 * s2io_xmit - Tx entry point of te driver
3885 * @skb : the socket buffer containing the Tx data.
3886 * @dev : device pointer.
3887 * Description :
3888 * This function is the Tx entry point of the driver. S2IO NIC supports
3889 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3890 * NOTE: when device cant queue the pkt,just the trans_start variable will
3891 * not be upadted.
3892 * Return value:
3893 * 0 on success & 1 on failure.
3894 */
3895
3896 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3897 {
3898 nic_t *sp = dev->priv;
3899 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3900 register u64 val64;
3901 TxD_t *txdp;
3902 TxFIFO_element_t __iomem *tx_fifo;
3903 unsigned long flags;
3904 #ifdef NETIF_F_TSO
3905 int mss;
3906 #endif
3907 u16 vlan_tag = 0;
3908 int vlan_priority = 0;
3909 mac_info_t *mac_control;
3910 struct config_param *config;
3911
3912 mac_control = &sp->mac_control;
3913 config = &sp->config;
3914
3915 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3916 spin_lock_irqsave(&sp->tx_lock, flags);
3917 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3918 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3919 dev->name);
3920 spin_unlock_irqrestore(&sp->tx_lock, flags);
3921 dev_kfree_skb(skb);
3922 return 0;
3923 }
3924
3925 queue = 0;
3926
3927 /* Get Fifo number to Transmit based on vlan priority */
3928 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3929 vlan_tag = vlan_tx_tag_get(skb);
3930 vlan_priority = vlan_tag >> 13;
3931 queue = config->fifo_mapping[vlan_priority];
3932 }
3933
3934 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3935 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3936 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3937 list_virt_addr;
3938
3939 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3940 /* Avoid "put" pointer going beyond "get" pointer */
3941 if (txdp->Host_Control ||
3942 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3943 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3944 netif_stop_queue(dev);
3945 dev_kfree_skb(skb);
3946 spin_unlock_irqrestore(&sp->tx_lock, flags);
3947 return 0;
3948 }
3949
3950 /* A buffer with no data will be dropped */
3951 if (!skb->len) {
3952 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3953 dev_kfree_skb(skb);
3954 spin_unlock_irqrestore(&sp->tx_lock, flags);
3955 return 0;
3956 }
3957
3958 txdp->Control_1 = 0;
3959 txdp->Control_2 = 0;
3960 #ifdef NETIF_F_TSO
3961 mss = skb_shinfo(skb)->gso_size;
3962 if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4) {
3963 txdp->Control_1 |= TXD_TCP_LSO_EN;
3964 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3965 }
3966 #endif
3967 if (skb->ip_summed == CHECKSUM_HW) {
3968 txdp->Control_2 |=
3969 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3970 TXD_TX_CKO_UDP_EN);
3971 }
3972 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3973 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3974 txdp->Control_2 |= config->tx_intr_type;
3975
3976 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3977 txdp->Control_2 |= TXD_VLAN_ENABLE;
3978 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3979 }
3980
3981 frg_len = skb->len - skb->data_len;
3982 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDPV4) {
3983 int ufo_size;
3984
3985 ufo_size = skb_shinfo(skb)->gso_size;
3986 ufo_size &= ~7;
3987 txdp->Control_1 |= TXD_UFO_EN;
3988 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3989 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3990 #ifdef __BIG_ENDIAN
3991 sp->ufo_in_band_v[put_off] =
3992 (u64)skb_shinfo(skb)->ip6_frag_id;
3993 #else
3994 sp->ufo_in_band_v[put_off] =
3995 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3996 #endif
3997 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3998 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3999 sp->ufo_in_band_v,
4000 sizeof(u64), PCI_DMA_TODEVICE);
4001 txdp++;
4002 txdp->Control_1 = 0;
4003 txdp->Control_2 = 0;
4004 }
4005
4006 txdp->Buffer_Pointer = pci_map_single
4007 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4008 txdp->Host_Control = (unsigned long) skb;
4009 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4010
4011 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDPV4)
4012 txdp->Control_1 |= TXD_UFO_EN;
4013
4014 frg_cnt = skb_shinfo(skb)->nr_frags;
4015 /* For fragmented SKB. */
4016 for (i = 0; i < frg_cnt; i++) {
4017 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4018 /* A '0' length fragment will be ignored */
4019 if (!frag->size)
4020 continue;
4021 txdp++;
4022 txdp->Buffer_Pointer = (u64) pci_map_page
4023 (sp->pdev, frag->page, frag->page_offset,
4024 frag->size, PCI_DMA_TODEVICE);
4025 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4026 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDPV4)
4027 txdp->Control_1 |= TXD_UFO_EN;
4028 }
4029 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4030
4031 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDPV4)
4032 frg_cnt++; /* as Txd0 was used for inband header */
4033
4034 tx_fifo = mac_control->tx_FIFO_start[queue];
4035 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4036 writeq(val64, &tx_fifo->TxDL_Pointer);
4037
4038 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4039 TX_FIFO_LAST_LIST);
4040
4041 #ifdef NETIF_F_TSO
4042 if (mss)
4043 val64 |= TX_FIFO_SPECIAL_FUNC;
4044 #endif
4045 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDPV4)
4046 val64 |= TX_FIFO_SPECIAL_FUNC;
4047 writeq(val64, &tx_fifo->List_Control);
4048
4049 mmiowb();
4050
4051 put_off++;
4052 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4053 put_off = 0;
4054 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4055
4056 /* Avoid "put" pointer going beyond "get" pointer */
4057 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4058 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4059 DBG_PRINT(TX_DBG,
4060 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4061 put_off, get_off);
4062 netif_stop_queue(dev);
4063 }
4064
4065 dev->trans_start = jiffies;
4066 spin_unlock_irqrestore(&sp->tx_lock, flags);
4067
4068 return 0;
4069 }
4070
4071 static void
4072 s2io_alarm_handle(unsigned long data)
4073 {
4074 nic_t *sp = (nic_t *)data;
4075
4076 alarm_intr_handler(sp);
4077 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4078 }
4079
4080 static irqreturn_t
4081 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4082 {
4083 struct net_device *dev = (struct net_device *) dev_id;
4084 nic_t *sp = dev->priv;
4085 int i;
4086 int ret;
4087 mac_info_t *mac_control;
4088 struct config_param *config;
4089
4090 atomic_inc(&sp->isr_cnt);
4091 mac_control = &sp->mac_control;
4092 config = &sp->config;
4093 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4094
4095 /* If Intr is because of Rx Traffic */
4096 for (i = 0; i < config->rx_ring_num; i++)
4097 rx_intr_handler(&mac_control->rings[i]);
4098
4099 /* If Intr is because of Tx Traffic */
4100 for (i = 0; i < config->tx_fifo_num; i++)
4101 tx_intr_handler(&mac_control->fifos[i]);
4102
4103 /*
4104 * If the Rx buffer count is below the panic threshold then
4105 * reallocate the buffers from the interrupt handler itself,
4106 * else schedule a tasklet to reallocate the buffers.
4107 */
4108 for (i = 0; i < config->rx_ring_num; i++) {
4109 if (!sp->lro) {
4110 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4111 int level = rx_buffer_level(sp, rxb_size, i);
4112
4113 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4114 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4115 dev->name);
4116 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4117 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4118 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4119 dev->name);
4120 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4121 clear_bit(0, (&sp->tasklet_status));
4122 atomic_dec(&sp->isr_cnt);
4123 return IRQ_HANDLED;
4124 }
4125 clear_bit(0, (&sp->tasklet_status));
4126 } else if (level == LOW) {
4127 tasklet_schedule(&sp->task);
4128 }
4129 }
4130 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4131 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4132 dev->name);
4133 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4134 break;
4135 }
4136 }
4137
4138 atomic_dec(&sp->isr_cnt);
4139 return IRQ_HANDLED;
4140 }
4141
4142 static irqreturn_t
4143 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4144 {
4145 ring_info_t *ring = (ring_info_t *)dev_id;
4146 nic_t *sp = ring->nic;
4147 struct net_device *dev = (struct net_device *) dev_id;
4148 int rxb_size, level, rng_n;
4149
4150 atomic_inc(&sp->isr_cnt);
4151 rx_intr_handler(ring);
4152
4153 rng_n = ring->ring_no;
4154 if (!sp->lro) {
4155 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4156 level = rx_buffer_level(sp, rxb_size, rng_n);
4157
4158 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4159 int ret;
4160 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4161 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4162 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4163 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4164 __FUNCTION__);
4165 clear_bit(0, (&sp->tasklet_status));
4166 return IRQ_HANDLED;
4167 }
4168 clear_bit(0, (&sp->tasklet_status));
4169 } else if (level == LOW) {
4170 tasklet_schedule(&sp->task);
4171 }
4172 }
4173 else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4174 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4175 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4176 }
4177
4178 atomic_dec(&sp->isr_cnt);
4179
4180 return IRQ_HANDLED;
4181 }
4182
4183 static irqreturn_t
4184 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4185 {
4186 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4187 nic_t *sp = fifo->nic;
4188
4189 atomic_inc(&sp->isr_cnt);
4190 tx_intr_handler(fifo);
4191 atomic_dec(&sp->isr_cnt);
4192 return IRQ_HANDLED;
4193 }
4194 static void s2io_txpic_intr_handle(nic_t *sp)
4195 {
4196 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4197 u64 val64;
4198
4199 val64 = readq(&bar0->pic_int_status);
4200 if (val64 & PIC_INT_GPIO) {
4201 val64 = readq(&bar0->gpio_int_reg);
4202 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4203 (val64 & GPIO_INT_REG_LINK_UP)) {
4204 /*
4205 * This is unstable state so clear both up/down
4206 * interrupt and adapter to re-evaluate the link state.
4207 */
4208 val64 |= GPIO_INT_REG_LINK_DOWN;
4209 val64 |= GPIO_INT_REG_LINK_UP;
4210 writeq(val64, &bar0->gpio_int_reg);
4211 val64 = readq(&bar0->gpio_int_mask);
4212 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4213 GPIO_INT_MASK_LINK_DOWN);
4214 writeq(val64, &bar0->gpio_int_mask);
4215 }
4216 else if (val64 & GPIO_INT_REG_LINK_UP) {
4217 val64 = readq(&bar0->adapter_status);
4218 if (verify_xena_quiescence(sp, val64,
4219 sp->device_enabled_once)) {
4220 /* Enable Adapter */
4221 val64 = readq(&bar0->adapter_control);
4222 val64 |= ADAPTER_CNTL_EN;
4223 writeq(val64, &bar0->adapter_control);
4224 val64 |= ADAPTER_LED_ON;
4225 writeq(val64, &bar0->adapter_control);
4226 if (!sp->device_enabled_once)
4227 sp->device_enabled_once = 1;
4228
4229 s2io_link(sp, LINK_UP);
4230 /*
4231 * unmask link down interrupt and mask link-up
4232 * intr
4233 */
4234 val64 = readq(&bar0->gpio_int_mask);
4235 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4236 val64 |= GPIO_INT_MASK_LINK_UP;
4237 writeq(val64, &bar0->gpio_int_mask);
4238
4239 }
4240 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4241 val64 = readq(&bar0->adapter_status);
4242 if (verify_xena_quiescence(sp, val64,
4243 sp->device_enabled_once)) {
4244 s2io_link(sp, LINK_DOWN);
4245 /* Link is down so unmaks link up interrupt */
4246 val64 = readq(&bar0->gpio_int_mask);
4247 val64 &= ~GPIO_INT_MASK_LINK_UP;
4248 val64 |= GPIO_INT_MASK_LINK_DOWN;
4249 writeq(val64, &bar0->gpio_int_mask);
4250 }
4251 }
4252 }
4253 val64 = readq(&bar0->gpio_int_mask);
4254 }
4255
4256 /**
4257 * s2io_isr - ISR handler of the device .
4258 * @irq: the irq of the device.
4259 * @dev_id: a void pointer to the dev structure of the NIC.
4260 * @pt_regs: pointer to the registers pushed on the stack.
4261 * Description: This function is the ISR handler of the device. It
4262 * identifies the reason for the interrupt and calls the relevant
4263 * service routines. As a contongency measure, this ISR allocates the
4264 * recv buffers, if their numbers are below the panic value which is
4265 * presently set to 25% of the original number of rcv buffers allocated.
4266 * Return value:
4267 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4268 * IRQ_NONE: will be returned if interrupt is not from our device
4269 */
4270 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4271 {
4272 struct net_device *dev = (struct net_device *) dev_id;
4273 nic_t *sp = dev->priv;
4274 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4275 int i;
4276 u64 reason = 0, val64, org_mask;
4277 mac_info_t *mac_control;
4278 struct config_param *config;
4279
4280 atomic_inc(&sp->isr_cnt);
4281 mac_control = &sp->mac_control;
4282 config = &sp->config;
4283
4284 /*
4285 * Identify the cause for interrupt and call the appropriate
4286 * interrupt handler. Causes for the interrupt could be;
4287 * 1. Rx of packet.
4288 * 2. Tx complete.
4289 * 3. Link down.
4290 * 4. Error in any functional blocks of the NIC.
4291 */
4292 reason = readq(&bar0->general_int_status);
4293
4294 if (!reason) {
4295 /* The interrupt was not raised by Xena. */
4296 atomic_dec(&sp->isr_cnt);
4297 return IRQ_NONE;
4298 }
4299
4300 val64 = 0xFFFFFFFFFFFFFFFFULL;
4301 /* Store current mask before masking all interrupts */
4302 org_mask = readq(&bar0->general_int_mask);
4303 writeq(val64, &bar0->general_int_mask);
4304
4305 #ifdef CONFIG_S2IO_NAPI
4306 if (reason & GEN_INTR_RXTRAFFIC) {
4307 if (netif_rx_schedule_prep(dev)) {
4308 writeq(val64, &bar0->rx_traffic_mask);
4309 __netif_rx_schedule(dev);
4310 }
4311 }
4312 #else
4313 /*
4314 * Rx handler is called by default, without checking for the
4315 * cause of interrupt.
4316 * rx_traffic_int reg is an R1 register, writing all 1's
4317 * will ensure that the actual interrupt causing bit get's
4318 * cleared and hence a read can be avoided.
4319 */
4320 writeq(val64, &bar0->rx_traffic_int);
4321 for (i = 0; i < config->rx_ring_num; i++) {
4322 rx_intr_handler(&mac_control->rings[i]);
4323 }
4324 #endif
4325
4326 /*
4327 * tx_traffic_int reg is an R1 register, writing all 1's
4328 * will ensure that the actual interrupt causing bit get's
4329 * cleared and hence a read can be avoided.
4330 */
4331 writeq(val64, &bar0->tx_traffic_int);
4332
4333 for (i = 0; i < config->tx_fifo_num; i++)
4334 tx_intr_handler(&mac_control->fifos[i]);
4335
4336 if (reason & GEN_INTR_TXPIC)
4337 s2io_txpic_intr_handle(sp);
4338 /*
4339 * If the Rx buffer count is below the panic threshold then
4340 * reallocate the buffers from the interrupt handler itself,
4341 * else schedule a tasklet to reallocate the buffers.
4342 */
4343 #ifndef CONFIG_S2IO_NAPI
4344 for (i = 0; i < config->rx_ring_num; i++) {
4345 if (!sp->lro) {
4346 int ret;
4347 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4348 int level = rx_buffer_level(sp, rxb_size, i);
4349
4350 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4351 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4352 dev->name);
4353 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4354 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4355 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4356 dev->name);
4357 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4358 clear_bit(0, (&sp->tasklet_status));
4359 atomic_dec(&sp->isr_cnt);
4360 writeq(org_mask, &bar0->general_int_mask);
4361 return IRQ_HANDLED;
4362 }
4363 clear_bit(0, (&sp->tasklet_status));
4364 } else if (level == LOW) {
4365 tasklet_schedule(&sp->task);
4366 }
4367 }
4368 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4369 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4370 dev->name);
4371 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4372 break;
4373 }
4374 }
4375 #endif
4376 writeq(org_mask, &bar0->general_int_mask);
4377 atomic_dec(&sp->isr_cnt);
4378 return IRQ_HANDLED;
4379 }
4380
4381 /**
4382 * s2io_updt_stats -
4383 */
4384 static void s2io_updt_stats(nic_t *sp)
4385 {
4386 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4387 u64 val64;
4388 int cnt = 0;
4389
4390 if (atomic_read(&sp->card_state) == CARD_UP) {
4391 /* Apprx 30us on a 133 MHz bus */
4392 val64 = SET_UPDT_CLICKS(10) |
4393 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4394 writeq(val64, &bar0->stat_cfg);
4395 do {
4396 udelay(100);
4397 val64 = readq(&bar0->stat_cfg);
4398 if (!(val64 & BIT(0)))
4399 break;
4400 cnt++;
4401 if (cnt == 5)
4402 break; /* Updt failed */
4403 } while(1);
4404 }
4405 }
4406
4407 /**
4408 * s2io_get_stats - Updates the device statistics structure.
4409 * @dev : pointer to the device structure.
4410 * Description:
4411 * This function updates the device statistics structure in the s2io_nic
4412 * structure and returns a pointer to the same.
4413 * Return value:
4414 * pointer to the updated net_device_stats structure.
4415 */
4416
4417 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4418 {
4419 nic_t *sp = dev->priv;
4420 mac_info_t *mac_control;
4421 struct config_param *config;
4422
4423
4424 mac_control = &sp->mac_control;
4425 config = &sp->config;
4426
4427 /* Configure Stats for immediate updt */
4428 s2io_updt_stats(sp);
4429
4430 sp->stats.tx_packets =
4431 le32_to_cpu(mac_control->stats_info->tmac_frms);
4432 sp->stats.tx_errors =
4433 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4434 sp->stats.rx_errors =
4435 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4436 sp->stats.multicast =
4437 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4438 sp->stats.rx_length_errors =
4439 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4440
4441 return (&sp->stats);
4442 }
4443
4444 /**
4445 * s2io_set_multicast - entry point for multicast address enable/disable.
4446 * @dev : pointer to the device structure
4447 * Description:
4448 * This function is a driver entry point which gets called by the kernel
4449 * whenever multicast addresses must be enabled/disabled. This also gets
4450 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4451 * determine, if multicast address must be enabled or if promiscuous mode
4452 * is to be disabled etc.
4453 * Return value:
4454 * void.
4455 */
4456
4457 static void s2io_set_multicast(struct net_device *dev)
4458 {
4459 int i, j, prev_cnt;
4460 struct dev_mc_list *mclist;
4461 nic_t *sp = dev->priv;
4462 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4463 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4464 0xfeffffffffffULL;
4465 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4466 void __iomem *add;
4467
4468 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4469 /* Enable all Multicast addresses */
4470 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4471 &bar0->rmac_addr_data0_mem);
4472 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4473 &bar0->rmac_addr_data1_mem);
4474 val64 = RMAC_ADDR_CMD_MEM_WE |
4475 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4476 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4477 writeq(val64, &bar0->rmac_addr_cmd_mem);
4478 /* Wait till command completes */
4479 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4480 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4481
4482 sp->m_cast_flg = 1;
4483 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4484 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4485 /* Disable all Multicast addresses */
4486 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4487 &bar0->rmac_addr_data0_mem);
4488 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4489 &bar0->rmac_addr_data1_mem);
4490 val64 = RMAC_ADDR_CMD_MEM_WE |
4491 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4492 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4493 writeq(val64, &bar0->rmac_addr_cmd_mem);
4494 /* Wait till command completes */
4495 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4496 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4497
4498 sp->m_cast_flg = 0;
4499 sp->all_multi_pos = 0;
4500 }
4501
4502 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4503 /* Put the NIC into promiscuous mode */
4504 add = &bar0->mac_cfg;
4505 val64 = readq(&bar0->mac_cfg);
4506 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4507
4508 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4509 writel((u32) val64, add);
4510 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4511 writel((u32) (val64 >> 32), (add + 4));
4512
4513 val64 = readq(&bar0->mac_cfg);
4514 sp->promisc_flg = 1;
4515 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4516 dev->name);
4517 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4518 /* Remove the NIC from promiscuous mode */
4519 add = &bar0->mac_cfg;
4520 val64 = readq(&bar0->mac_cfg);
4521 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4522
4523 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4524 writel((u32) val64, add);
4525 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4526 writel((u32) (val64 >> 32), (add + 4));
4527
4528 val64 = readq(&bar0->mac_cfg);
4529 sp->promisc_flg = 0;
4530 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4531 dev->name);
4532 }
4533
4534 /* Update individual M_CAST address list */
4535 if ((!sp->m_cast_flg) && dev->mc_count) {
4536 if (dev->mc_count >
4537 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4538 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4539 dev->name);
4540 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4541 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4542 return;
4543 }
4544
4545 prev_cnt = sp->mc_addr_count;
4546 sp->mc_addr_count = dev->mc_count;
4547
4548 /* Clear out the previous list of Mc in the H/W. */
4549 for (i = 0; i < prev_cnt; i++) {
4550 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4551 &bar0->rmac_addr_data0_mem);
4552 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4553 &bar0->rmac_addr_data1_mem);
4554 val64 = RMAC_ADDR_CMD_MEM_WE |
4555 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4556 RMAC_ADDR_CMD_MEM_OFFSET
4557 (MAC_MC_ADDR_START_OFFSET + i);
4558 writeq(val64, &bar0->rmac_addr_cmd_mem);
4559
4560 /* Wait for command completes */
4561 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4562 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4563 DBG_PRINT(ERR_DBG, "%s: Adding ",
4564 dev->name);
4565 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4566 return;
4567 }
4568 }
4569
4570 /* Create the new Rx filter list and update the same in H/W. */
4571 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4572 i++, mclist = mclist->next) {
4573 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4574 ETH_ALEN);
4575 mac_addr = 0;
4576 for (j = 0; j < ETH_ALEN; j++) {
4577 mac_addr |= mclist->dmi_addr[j];
4578 mac_addr <<= 8;
4579 }
4580 mac_addr >>= 8;
4581 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4582 &bar0->rmac_addr_data0_mem);
4583 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4584 &bar0->rmac_addr_data1_mem);
4585 val64 = RMAC_ADDR_CMD_MEM_WE |
4586 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4587 RMAC_ADDR_CMD_MEM_OFFSET
4588 (i + MAC_MC_ADDR_START_OFFSET);
4589 writeq(val64, &bar0->rmac_addr_cmd_mem);
4590
4591 /* Wait for command completes */
4592 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4593 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4594 DBG_PRINT(ERR_DBG, "%s: Adding ",
4595 dev->name);
4596 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4597 return;
4598 }
4599 }
4600 }
4601 }
4602
4603 /**
4604 * s2io_set_mac_addr - Programs the Xframe mac address
4605 * @dev : pointer to the device structure.
4606 * @addr: a uchar pointer to the new mac address which is to be set.
4607 * Description : This procedure will program the Xframe to receive
4608 * frames with new Mac Address
4609 * Return value: SUCCESS on success and an appropriate (-)ve integer
4610 * as defined in errno.h file on failure.
4611 */
4612
4613 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4614 {
4615 nic_t *sp = dev->priv;
4616 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4617 register u64 val64, mac_addr = 0;
4618 int i;
4619
4620 /*
4621 * Set the new MAC address as the new unicast filter and reflect this
4622 * change on the device address registered with the OS. It will be
4623 * at offset 0.
4624 */
4625 for (i = 0; i < ETH_ALEN; i++) {
4626 mac_addr <<= 8;
4627 mac_addr |= addr[i];
4628 }
4629
4630 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4631 &bar0->rmac_addr_data0_mem);
4632
4633 val64 =
4634 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4635 RMAC_ADDR_CMD_MEM_OFFSET(0);
4636 writeq(val64, &bar0->rmac_addr_cmd_mem);
4637 /* Wait till command completes */
4638 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4639 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4640 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4641 return FAILURE;
4642 }
4643
4644 return SUCCESS;
4645 }
4646
4647 /**
4648 * s2io_ethtool_sset - Sets different link parameters.
4649 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4650 * @info: pointer to the structure with parameters given by ethtool to set
4651 * link information.
4652 * Description:
4653 * The function sets different link parameters provided by the user onto
4654 * the NIC.
4655 * Return value:
4656 * 0 on success.
4657 */
4658
4659 static int s2io_ethtool_sset(struct net_device *dev,
4660 struct ethtool_cmd *info)
4661 {
4662 nic_t *sp = dev->priv;
4663 if ((info->autoneg == AUTONEG_ENABLE) ||
4664 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4665 return -EINVAL;
4666 else {
4667 s2io_close(sp->dev);
4668 s2io_open(sp->dev);
4669 }
4670
4671 return 0;
4672 }
4673
4674 /**
4675 * s2io_ethtol_gset - Return link specific information.
4676 * @sp : private member of the device structure, pointer to the
4677 * s2io_nic structure.
4678 * @info : pointer to the structure with parameters given by ethtool
4679 * to return link information.
4680 * Description:
4681 * Returns link specific information like speed, duplex etc.. to ethtool.
4682 * Return value :
4683 * return 0 on success.
4684 */
4685
4686 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4687 {
4688 nic_t *sp = dev->priv;
4689 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4690 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4691 info->port = PORT_FIBRE;
4692 /* info->transceiver?? TODO */
4693
4694 if (netif_carrier_ok(sp->dev)) {
4695 info->speed = 10000;
4696 info->duplex = DUPLEX_FULL;
4697 } else {
4698 info->speed = -1;
4699 info->duplex = -1;
4700 }
4701
4702 info->autoneg = AUTONEG_DISABLE;
4703 return 0;
4704 }
4705
4706 /**
4707 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4708 * @sp : private member of the device structure, which is a pointer to the
4709 * s2io_nic structure.
4710 * @info : pointer to the structure with parameters given by ethtool to
4711 * return driver information.
4712 * Description:
4713 * Returns driver specefic information like name, version etc.. to ethtool.
4714 * Return value:
4715 * void
4716 */
4717
4718 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4719 struct ethtool_drvinfo *info)
4720 {
4721 nic_t *sp = dev->priv;
4722
4723 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4724 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4725 strncpy(info->fw_version, "", sizeof(info->fw_version));
4726 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4727 info->regdump_len = XENA_REG_SPACE;
4728 info->eedump_len = XENA_EEPROM_SPACE;
4729 info->testinfo_len = S2IO_TEST_LEN;
4730 info->n_stats = S2IO_STAT_LEN;
4731 }
4732
4733 /**
4734 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4735 * @sp: private member of the device structure, which is a pointer to the
4736 * s2io_nic structure.
4737 * @regs : pointer to the structure with parameters given by ethtool for
4738 * dumping the registers.
4739 * @reg_space: The input argumnet into which all the registers are dumped.
4740 * Description:
4741 * Dumps the entire register space of xFrame NIC into the user given
4742 * buffer area.
4743 * Return value :
4744 * void .
4745 */
4746
4747 static void s2io_ethtool_gregs(struct net_device *dev,
4748 struct ethtool_regs *regs, void *space)
4749 {
4750 int i;
4751 u64 reg;
4752 u8 *reg_space = (u8 *) space;
4753 nic_t *sp = dev->priv;
4754
4755 regs->len = XENA_REG_SPACE;
4756 regs->version = sp->pdev->subsystem_device;
4757
4758 for (i = 0; i < regs->len; i += 8) {
4759 reg = readq(sp->bar0 + i);
4760 memcpy((reg_space + i), &reg, 8);
4761 }
4762 }
4763
4764 /**
4765 * s2io_phy_id - timer function that alternates adapter LED.
4766 * @data : address of the private member of the device structure, which
4767 * is a pointer to the s2io_nic structure, provided as an u32.
4768 * Description: This is actually the timer function that alternates the
4769 * adapter LED bit of the adapter control bit to set/reset every time on
4770 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4771 * once every second.
4772 */
4773 static void s2io_phy_id(unsigned long data)
4774 {
4775 nic_t *sp = (nic_t *) data;
4776 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4777 u64 val64 = 0;
4778 u16 subid;
4779
4780 subid = sp->pdev->subsystem_device;
4781 if ((sp->device_type == XFRAME_II_DEVICE) ||
4782 ((subid & 0xFF) >= 0x07)) {
4783 val64 = readq(&bar0->gpio_control);
4784 val64 ^= GPIO_CTRL_GPIO_0;
4785 writeq(val64, &bar0->gpio_control);
4786 } else {
4787 val64 = readq(&bar0->adapter_control);
4788 val64 ^= ADAPTER_LED_ON;
4789 writeq(val64, &bar0->adapter_control);
4790 }
4791
4792 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4793 }
4794
4795 /**
4796 * s2io_ethtool_idnic - To physically identify the nic on the system.
4797 * @sp : private member of the device structure, which is a pointer to the
4798 * s2io_nic structure.
4799 * @id : pointer to the structure with identification parameters given by
4800 * ethtool.
4801 * Description: Used to physically identify the NIC on the system.
4802 * The Link LED will blink for a time specified by the user for
4803 * identification.
4804 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4805 * identification is possible only if it's link is up.
4806 * Return value:
4807 * int , returns 0 on success
4808 */
4809
4810 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4811 {
4812 u64 val64 = 0, last_gpio_ctrl_val;
4813 nic_t *sp = dev->priv;
4814 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4815 u16 subid;
4816
4817 subid = sp->pdev->subsystem_device;
4818 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4819 if ((sp->device_type == XFRAME_I_DEVICE) &&
4820 ((subid & 0xFF) < 0x07)) {
4821 val64 = readq(&bar0->adapter_control);
4822 if (!(val64 & ADAPTER_CNTL_EN)) {
4823 printk(KERN_ERR
4824 "Adapter Link down, cannot blink LED\n");
4825 return -EFAULT;
4826 }
4827 }
4828 if (sp->id_timer.function == NULL) {
4829 init_timer(&sp->id_timer);
4830 sp->id_timer.function = s2io_phy_id;
4831 sp->id_timer.data = (unsigned long) sp;
4832 }
4833 mod_timer(&sp->id_timer, jiffies);
4834 if (data)
4835 msleep_interruptible(data * HZ);
4836 else
4837 msleep_interruptible(MAX_FLICKER_TIME);
4838 del_timer_sync(&sp->id_timer);
4839
4840 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4841 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4842 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4843 }
4844
4845 return 0;
4846 }
4847
4848 /**
4849 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4850 * @sp : private member of the device structure, which is a pointer to the
4851 * s2io_nic structure.
4852 * @ep : pointer to the structure with pause parameters given by ethtool.
4853 * Description:
4854 * Returns the Pause frame generation and reception capability of the NIC.
4855 * Return value:
4856 * void
4857 */
4858 static void s2io_ethtool_getpause_data(struct net_device *dev,
4859 struct ethtool_pauseparam *ep)
4860 {
4861 u64 val64;
4862 nic_t *sp = dev->priv;
4863 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4864
4865 val64 = readq(&bar0->rmac_pause_cfg);
4866 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4867 ep->tx_pause = TRUE;
4868 if (val64 & RMAC_PAUSE_RX_ENABLE)
4869 ep->rx_pause = TRUE;
4870 ep->autoneg = FALSE;
4871 }
4872
4873 /**
4874 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4875 * @sp : private member of the device structure, which is a pointer to the
4876 * s2io_nic structure.
4877 * @ep : pointer to the structure with pause parameters given by ethtool.
4878 * Description:
4879 * It can be used to set or reset Pause frame generation or reception
4880 * support of the NIC.
4881 * Return value:
4882 * int, returns 0 on Success
4883 */
4884
4885 static int s2io_ethtool_setpause_data(struct net_device *dev,
4886 struct ethtool_pauseparam *ep)
4887 {
4888 u64 val64;
4889 nic_t *sp = dev->priv;
4890 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4891
4892 val64 = readq(&bar0->rmac_pause_cfg);
4893 if (ep->tx_pause)
4894 val64 |= RMAC_PAUSE_GEN_ENABLE;
4895 else
4896 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4897 if (ep->rx_pause)
4898 val64 |= RMAC_PAUSE_RX_ENABLE;
4899 else
4900 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4901 writeq(val64, &bar0->rmac_pause_cfg);
4902 return 0;
4903 }
4904
4905 /**
4906 * read_eeprom - reads 4 bytes of data from user given offset.
4907 * @sp : private member of the device structure, which is a pointer to the
4908 * s2io_nic structure.
4909 * @off : offset at which the data must be written
4910 * @data : Its an output parameter where the data read at the given
4911 * offset is stored.
4912 * Description:
4913 * Will read 4 bytes of data from the user given offset and return the
4914 * read data.
4915 * NOTE: Will allow to read only part of the EEPROM visible through the
4916 * I2C bus.
4917 * Return value:
4918 * -1 on failure and 0 on success.
4919 */
4920
4921 #define S2IO_DEV_ID 5
4922 static int read_eeprom(nic_t * sp, int off, u64 * data)
4923 {
4924 int ret = -1;
4925 u32 exit_cnt = 0;
4926 u64 val64;
4927 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4928
4929 if (sp->device_type == XFRAME_I_DEVICE) {
4930 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4931 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4932 I2C_CONTROL_CNTL_START;
4933 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4934
4935 while (exit_cnt < 5) {
4936 val64 = readq(&bar0->i2c_control);
4937 if (I2C_CONTROL_CNTL_END(val64)) {
4938 *data = I2C_CONTROL_GET_DATA(val64);
4939 ret = 0;
4940 break;
4941 }
4942 msleep(50);
4943 exit_cnt++;
4944 }
4945 }
4946
4947 if (sp->device_type == XFRAME_II_DEVICE) {
4948 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4949 SPI_CONTROL_BYTECNT(0x3) |
4950 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4951 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4952 val64 |= SPI_CONTROL_REQ;
4953 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4954 while (exit_cnt < 5) {
4955 val64 = readq(&bar0->spi_control);
4956 if (val64 & SPI_CONTROL_NACK) {
4957 ret = 1;
4958 break;
4959 } else if (val64 & SPI_CONTROL_DONE) {
4960 *data = readq(&bar0->spi_data);
4961 *data &= 0xffffff;
4962 ret = 0;
4963 break;
4964 }
4965 msleep(50);
4966 exit_cnt++;
4967 }
4968 }
4969 return ret;
4970 }
4971
4972 /**
4973 * write_eeprom - actually writes the relevant part of the data value.
4974 * @sp : private member of the device structure, which is a pointer to the
4975 * s2io_nic structure.
4976 * @off : offset at which the data must be written
4977 * @data : The data that is to be written
4978 * @cnt : Number of bytes of the data that are actually to be written into
4979 * the Eeprom. (max of 3)
4980 * Description:
4981 * Actually writes the relevant part of the data value into the Eeprom
4982 * through the I2C bus.
4983 * Return value:
4984 * 0 on success, -1 on failure.
4985 */
4986
4987 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4988 {
4989 int exit_cnt = 0, ret = -1;
4990 u64 val64;
4991 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4992
4993 if (sp->device_type == XFRAME_I_DEVICE) {
4994 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4995 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4996 I2C_CONTROL_CNTL_START;
4997 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4998
4999 while (exit_cnt < 5) {
5000 val64 = readq(&bar0->i2c_control);
5001 if (I2C_CONTROL_CNTL_END(val64)) {
5002 if (!(val64 & I2C_CONTROL_NACK))
5003 ret = 0;
5004 break;
5005 }
5006 msleep(50);
5007 exit_cnt++;
5008 }
5009 }
5010
5011 if (sp->device_type == XFRAME_II_DEVICE) {
5012 int write_cnt = (cnt == 8) ? 0 : cnt;
5013 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5014
5015 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5016 SPI_CONTROL_BYTECNT(write_cnt) |
5017 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5018 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5019 val64 |= SPI_CONTROL_REQ;
5020 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5021 while (exit_cnt < 5) {
5022 val64 = readq(&bar0->spi_control);
5023 if (val64 & SPI_CONTROL_NACK) {
5024 ret = 1;
5025 break;
5026 } else if (val64 & SPI_CONTROL_DONE) {
5027 ret = 0;
5028 break;
5029 }
5030 msleep(50);
5031 exit_cnt++;
5032 }
5033 }
5034 return ret;
5035 }
5036 static void s2io_vpd_read(nic_t *nic)
5037 {
5038 u8 vpd_data[256],data;
5039 int i=0, cnt, fail = 0;
5040 int vpd_addr = 0x80;
5041
5042 if (nic->device_type == XFRAME_II_DEVICE) {
5043 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5044 vpd_addr = 0x80;
5045 }
5046 else {
5047 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5048 vpd_addr = 0x50;
5049 }
5050
5051 for (i = 0; i < 256; i +=4 ) {
5052 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5053 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5054 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5055 for (cnt = 0; cnt <5; cnt++) {
5056 msleep(2);
5057 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5058 if (data == 0x80)
5059 break;
5060 }
5061 if (cnt >= 5) {
5062 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5063 fail = 1;
5064 break;
5065 }
5066 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5067 (u32 *)&vpd_data[i]);
5068 }
5069 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5070 memset(nic->product_name, 0, vpd_data[1]);
5071 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5072 }
5073 }
5074
5075 /**
5076 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5077 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5078 * @eeprom : pointer to the user level structure provided by ethtool,
5079 * containing all relevant information.
5080 * @data_buf : user defined value to be written into Eeprom.
5081 * Description: Reads the values stored in the Eeprom at given offset
5082 * for a given length. Stores these values int the input argument data
5083 * buffer 'data_buf' and returns these to the caller (ethtool.)
5084 * Return value:
5085 * int 0 on success
5086 */
5087
5088 static int s2io_ethtool_geeprom(struct net_device *dev,
5089 struct ethtool_eeprom *eeprom, u8 * data_buf)
5090 {
5091 u32 i, valid;
5092 u64 data;
5093 nic_t *sp = dev->priv;
5094
5095 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5096
5097 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5098 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5099
5100 for (i = 0; i < eeprom->len; i += 4) {
5101 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5102 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5103 return -EFAULT;
5104 }
5105 valid = INV(data);
5106 memcpy((data_buf + i), &valid, 4);
5107 }
5108 return 0;
5109 }
5110
5111 /**
5112 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5113 * @sp : private member of the device structure, which is a pointer to the
5114 * s2io_nic structure.
5115 * @eeprom : pointer to the user level structure provided by ethtool,
5116 * containing all relevant information.
5117 * @data_buf ; user defined value to be written into Eeprom.
5118 * Description:
5119 * Tries to write the user provided value in the Eeprom, at the offset
5120 * given by the user.
5121 * Return value:
5122 * 0 on success, -EFAULT on failure.
5123 */
5124
5125 static int s2io_ethtool_seeprom(struct net_device *dev,
5126 struct ethtool_eeprom *eeprom,
5127 u8 * data_buf)
5128 {
5129 int len = eeprom->len, cnt = 0;
5130 u64 valid = 0, data;
5131 nic_t *sp = dev->priv;
5132
5133 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5134 DBG_PRINT(ERR_DBG,
5135 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5136 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5137 eeprom->magic);
5138 return -EFAULT;
5139 }
5140
5141 while (len) {
5142 data = (u32) data_buf[cnt] & 0x000000FF;
5143 if (data) {
5144 valid = (u32) (data << 24);
5145 } else
5146 valid = data;
5147
5148 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5149 DBG_PRINT(ERR_DBG,
5150 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5151 DBG_PRINT(ERR_DBG,
5152 "write into the specified offset\n");
5153 return -EFAULT;
5154 }
5155 cnt++;
5156 len--;
5157 }
5158
5159 return 0;
5160 }
5161
5162 /**
5163 * s2io_register_test - reads and writes into all clock domains.
5164 * @sp : private member of the device structure, which is a pointer to the
5165 * s2io_nic structure.
5166 * @data : variable that returns the result of each of the test conducted b
5167 * by the driver.
5168 * Description:
5169 * Read and write into all clock domains. The NIC has 3 clock domains,
5170 * see that registers in all the three regions are accessible.
5171 * Return value:
5172 * 0 on success.
5173 */
5174
5175 static int s2io_register_test(nic_t * sp, uint64_t * data)
5176 {
5177 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5178 u64 val64 = 0, exp_val;
5179 int fail = 0;
5180
5181 val64 = readq(&bar0->pif_rd_swapper_fb);
5182 if (val64 != 0x123456789abcdefULL) {
5183 fail = 1;
5184 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5185 }
5186
5187 val64 = readq(&bar0->rmac_pause_cfg);
5188 if (val64 != 0xc000ffff00000000ULL) {
5189 fail = 1;
5190 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5191 }
5192
5193 val64 = readq(&bar0->rx_queue_cfg);
5194 if (sp->device_type == XFRAME_II_DEVICE)
5195 exp_val = 0x0404040404040404ULL;
5196 else
5197 exp_val = 0x0808080808080808ULL;
5198 if (val64 != exp_val) {
5199 fail = 1;
5200 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5201 }
5202
5203 val64 = readq(&bar0->xgxs_efifo_cfg);
5204 if (val64 != 0x000000001923141EULL) {
5205 fail = 1;
5206 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5207 }
5208
5209 val64 = 0x5A5A5A5A5A5A5A5AULL;
5210 writeq(val64, &bar0->xmsi_data);
5211 val64 = readq(&bar0->xmsi_data);
5212 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5213 fail = 1;
5214 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5215 }
5216
5217 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5218 writeq(val64, &bar0->xmsi_data);
5219 val64 = readq(&bar0->xmsi_data);
5220 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5221 fail = 1;
5222 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5223 }
5224
5225 *data = fail;
5226 return fail;
5227 }
5228
5229 /**
5230 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5231 * @sp : private member of the device structure, which is a pointer to the
5232 * s2io_nic structure.
5233 * @data:variable that returns the result of each of the test conducted by
5234 * the driver.
5235 * Description:
5236 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5237 * register.
5238 * Return value:
5239 * 0 on success.
5240 */
5241
5242 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5243 {
5244 int fail = 0;
5245 u64 ret_data, org_4F0, org_7F0;
5246 u8 saved_4F0 = 0, saved_7F0 = 0;
5247 struct net_device *dev = sp->dev;
5248
5249 /* Test Write Error at offset 0 */
5250 /* Note that SPI interface allows write access to all areas
5251 * of EEPROM. Hence doing all negative testing only for Xframe I.
5252 */
5253 if (sp->device_type == XFRAME_I_DEVICE)
5254 if (!write_eeprom(sp, 0, 0, 3))
5255 fail = 1;
5256
5257 /* Save current values at offsets 0x4F0 and 0x7F0 */
5258 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5259 saved_4F0 = 1;
5260 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5261 saved_7F0 = 1;
5262
5263 /* Test Write at offset 4f0 */
5264 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5265 fail = 1;
5266 if (read_eeprom(sp, 0x4F0, &ret_data))
5267 fail = 1;
5268
5269 if (ret_data != 0x012345) {
5270 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5271 "Data written %llx Data read %llx\n",
5272 dev->name, (unsigned long long)0x12345,
5273 (unsigned long long)ret_data);
5274 fail = 1;
5275 }
5276
5277 /* Reset the EEPROM data go FFFF */
5278 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5279
5280 /* Test Write Request Error at offset 0x7c */
5281 if (sp->device_type == XFRAME_I_DEVICE)
5282 if (!write_eeprom(sp, 0x07C, 0, 3))
5283 fail = 1;
5284
5285 /* Test Write Request at offset 0x7f0 */
5286 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5287 fail = 1;
5288 if (read_eeprom(sp, 0x7F0, &ret_data))
5289 fail = 1;
5290
5291 if (ret_data != 0x012345) {
5292 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5293 "Data written %llx Data read %llx\n",
5294 dev->name, (unsigned long long)0x12345,
5295 (unsigned long long)ret_data);
5296 fail = 1;
5297 }
5298
5299 /* Reset the EEPROM data go FFFF */
5300 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5301
5302 if (sp->device_type == XFRAME_I_DEVICE) {
5303 /* Test Write Error at offset 0x80 */
5304 if (!write_eeprom(sp, 0x080, 0, 3))
5305 fail = 1;
5306
5307 /* Test Write Error at offset 0xfc */
5308 if (!write_eeprom(sp, 0x0FC, 0, 3))
5309 fail = 1;
5310
5311 /* Test Write Error at offset 0x100 */
5312 if (!write_eeprom(sp, 0x100, 0, 3))
5313 fail = 1;
5314
5315 /* Test Write Error at offset 4ec */
5316 if (!write_eeprom(sp, 0x4EC, 0, 3))
5317 fail = 1;
5318 }
5319
5320 /* Restore values at offsets 0x4F0 and 0x7F0 */
5321 if (saved_4F0)
5322 write_eeprom(sp, 0x4F0, org_4F0, 3);
5323 if (saved_7F0)
5324 write_eeprom(sp, 0x7F0, org_7F0, 3);
5325
5326 *data = fail;
5327 return fail;
5328 }
5329
5330 /**
5331 * s2io_bist_test - invokes the MemBist test of the card .
5332 * @sp : private member of the device structure, which is a pointer to the
5333 * s2io_nic structure.
5334 * @data:variable that returns the result of each of the test conducted by
5335 * the driver.
5336 * Description:
5337 * This invokes the MemBist test of the card. We give around
5338 * 2 secs time for the Test to complete. If it's still not complete
5339 * within this peiod, we consider that the test failed.
5340 * Return value:
5341 * 0 on success and -1 on failure.
5342 */
5343
5344 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5345 {
5346 u8 bist = 0;
5347 int cnt = 0, ret = -1;
5348
5349 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5350 bist |= PCI_BIST_START;
5351 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5352
5353 while (cnt < 20) {
5354 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5355 if (!(bist & PCI_BIST_START)) {
5356 *data = (bist & PCI_BIST_CODE_MASK);
5357 ret = 0;
5358 break;
5359 }
5360 msleep(100);
5361 cnt++;
5362 }
5363
5364 return ret;
5365 }
5366
5367 /**
5368 * s2io-link_test - verifies the link state of the nic
5369 * @sp ; private member of the device structure, which is a pointer to the
5370 * s2io_nic structure.
5371 * @data: variable that returns the result of each of the test conducted by
5372 * the driver.
5373 * Description:
5374 * The function verifies the link state of the NIC and updates the input
5375 * argument 'data' appropriately.
5376 * Return value:
5377 * 0 on success.
5378 */
5379
5380 static int s2io_link_test(nic_t * sp, uint64_t * data)
5381 {
5382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5383 u64 val64;
5384
5385 val64 = readq(&bar0->adapter_status);
5386 if(!(LINK_IS_UP(val64)))
5387 *data = 1;
5388 else
5389 *data = 0;
5390
5391 return 0;
5392 }
5393
5394 /**
5395 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5396 * @sp - private member of the device structure, which is a pointer to the
5397 * s2io_nic structure.
5398 * @data - variable that returns the result of each of the test
5399 * conducted by the driver.
5400 * Description:
5401 * This is one of the offline test that tests the read and write
5402 * access to the RldRam chip on the NIC.
5403 * Return value:
5404 * 0 on success.
5405 */
5406
5407 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5408 {
5409 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5410 u64 val64;
5411 int cnt, iteration = 0, test_fail = 0;
5412
5413 val64 = readq(&bar0->adapter_control);
5414 val64 &= ~ADAPTER_ECC_EN;
5415 writeq(val64, &bar0->adapter_control);
5416
5417 val64 = readq(&bar0->mc_rldram_test_ctrl);
5418 val64 |= MC_RLDRAM_TEST_MODE;
5419 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5420
5421 val64 = readq(&bar0->mc_rldram_mrs);
5422 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5423 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5424
5425 val64 |= MC_RLDRAM_MRS_ENABLE;
5426 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5427
5428 while (iteration < 2) {
5429 val64 = 0x55555555aaaa0000ULL;
5430 if (iteration == 1) {
5431 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5432 }
5433 writeq(val64, &bar0->mc_rldram_test_d0);
5434
5435 val64 = 0xaaaa5a5555550000ULL;
5436 if (iteration == 1) {
5437 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5438 }
5439 writeq(val64, &bar0->mc_rldram_test_d1);
5440
5441 val64 = 0x55aaaaaaaa5a0000ULL;
5442 if (iteration == 1) {
5443 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5444 }
5445 writeq(val64, &bar0->mc_rldram_test_d2);
5446
5447 val64 = (u64) (0x0000003ffffe0100ULL);
5448 writeq(val64, &bar0->mc_rldram_test_add);
5449
5450 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5451 MC_RLDRAM_TEST_GO;
5452 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5453
5454 for (cnt = 0; cnt < 5; cnt++) {
5455 val64 = readq(&bar0->mc_rldram_test_ctrl);
5456 if (val64 & MC_RLDRAM_TEST_DONE)
5457 break;
5458 msleep(200);
5459 }
5460
5461 if (cnt == 5)
5462 break;
5463
5464 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5465 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5466
5467 for (cnt = 0; cnt < 5; cnt++) {
5468 val64 = readq(&bar0->mc_rldram_test_ctrl);
5469 if (val64 & MC_RLDRAM_TEST_DONE)
5470 break;
5471 msleep(500);
5472 }
5473
5474 if (cnt == 5)
5475 break;
5476
5477 val64 = readq(&bar0->mc_rldram_test_ctrl);
5478 if (!(val64 & MC_RLDRAM_TEST_PASS))
5479 test_fail = 1;
5480
5481 iteration++;
5482 }
5483
5484 *data = test_fail;
5485
5486 /* Bring the adapter out of test mode */
5487 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5488
5489 return test_fail;
5490 }
5491
5492 /**
5493 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5494 * @sp : private member of the device structure, which is a pointer to the
5495 * s2io_nic structure.
5496 * @ethtest : pointer to a ethtool command specific structure that will be
5497 * returned to the user.
5498 * @data : variable that returns the result of each of the test
5499 * conducted by the driver.
5500 * Description:
5501 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5502 * the health of the card.
5503 * Return value:
5504 * void
5505 */
5506
5507 static void s2io_ethtool_test(struct net_device *dev,
5508 struct ethtool_test *ethtest,
5509 uint64_t * data)
5510 {
5511 nic_t *sp = dev->priv;
5512 int orig_state = netif_running(sp->dev);
5513
5514 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5515 /* Offline Tests. */
5516 if (orig_state)
5517 s2io_close(sp->dev);
5518
5519 if (s2io_register_test(sp, &data[0]))
5520 ethtest->flags |= ETH_TEST_FL_FAILED;
5521
5522 s2io_reset(sp);
5523
5524 if (s2io_rldram_test(sp, &data[3]))
5525 ethtest->flags |= ETH_TEST_FL_FAILED;
5526
5527 s2io_reset(sp);
5528
5529 if (s2io_eeprom_test(sp, &data[1]))
5530 ethtest->flags |= ETH_TEST_FL_FAILED;
5531
5532 if (s2io_bist_test(sp, &data[4]))
5533 ethtest->flags |= ETH_TEST_FL_FAILED;
5534
5535 if (orig_state)
5536 s2io_open(sp->dev);
5537
5538 data[2] = 0;
5539 } else {
5540 /* Online Tests. */
5541 if (!orig_state) {
5542 DBG_PRINT(ERR_DBG,
5543 "%s: is not up, cannot run test\n",
5544 dev->name);
5545 data[0] = -1;
5546 data[1] = -1;
5547 data[2] = -1;
5548 data[3] = -1;
5549 data[4] = -1;
5550 }
5551
5552 if (s2io_link_test(sp, &data[2]))
5553 ethtest->flags |= ETH_TEST_FL_FAILED;
5554
5555 data[0] = 0;
5556 data[1] = 0;
5557 data[3] = 0;
5558 data[4] = 0;
5559 }
5560 }
5561
5562 static void s2io_get_ethtool_stats(struct net_device *dev,
5563 struct ethtool_stats *estats,
5564 u64 * tmp_stats)
5565 {
5566 int i = 0;
5567 nic_t *sp = dev->priv;
5568 StatInfo_t *stat_info = sp->mac_control.stats_info;
5569
5570 s2io_updt_stats(sp);
5571 tmp_stats[i++] =
5572 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5573 le32_to_cpu(stat_info->tmac_frms);
5574 tmp_stats[i++] =
5575 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5576 le32_to_cpu(stat_info->tmac_data_octets);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5578 tmp_stats[i++] =
5579 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5580 le32_to_cpu(stat_info->tmac_mcst_frms);
5581 tmp_stats[i++] =
5582 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5583 le32_to_cpu(stat_info->tmac_bcst_frms);
5584 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5585 tmp_stats[i++] =
5586 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5587 le32_to_cpu(stat_info->tmac_ttl_octets);
5588 tmp_stats[i++] =
5589 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5590 le32_to_cpu(stat_info->tmac_ucst_frms);
5591 tmp_stats[i++] =
5592 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5593 le32_to_cpu(stat_info->tmac_nucst_frms);
5594 tmp_stats[i++] =
5595 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5596 le32_to_cpu(stat_info->tmac_any_err_frms);
5597 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5598 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5599 tmp_stats[i++] =
5600 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5601 le32_to_cpu(stat_info->tmac_vld_ip);
5602 tmp_stats[i++] =
5603 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5604 le32_to_cpu(stat_info->tmac_drop_ip);
5605 tmp_stats[i++] =
5606 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5607 le32_to_cpu(stat_info->tmac_icmp);
5608 tmp_stats[i++] =
5609 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5610 le32_to_cpu(stat_info->tmac_rst_tcp);
5611 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5612 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5613 le32_to_cpu(stat_info->tmac_udp);
5614 tmp_stats[i++] =
5615 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5616 le32_to_cpu(stat_info->rmac_vld_frms);
5617 tmp_stats[i++] =
5618 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5619 le32_to_cpu(stat_info->rmac_data_octets);
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5621 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5622 tmp_stats[i++] =
5623 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5624 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5625 tmp_stats[i++] =
5626 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5627 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5628 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5629 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5630 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5631 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5632 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5633 tmp_stats[i++] =
5634 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5635 le32_to_cpu(stat_info->rmac_ttl_octets);
5636 tmp_stats[i++] =
5637 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5638 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5639 tmp_stats[i++] =
5640 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5641 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5642 tmp_stats[i++] =
5643 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5644 le32_to_cpu(stat_info->rmac_discarded_frms);
5645 tmp_stats[i++] =
5646 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5647 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5649 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5650 tmp_stats[i++] =
5651 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5652 le32_to_cpu(stat_info->rmac_usized_frms);
5653 tmp_stats[i++] =
5654 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5655 le32_to_cpu(stat_info->rmac_osized_frms);
5656 tmp_stats[i++] =
5657 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5658 le32_to_cpu(stat_info->rmac_frag_frms);
5659 tmp_stats[i++] =
5660 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5661 le32_to_cpu(stat_info->rmac_jabber_frms);
5662 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5663 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5664 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5665 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5666 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5667 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5668 tmp_stats[i++] =
5669 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5670 le32_to_cpu(stat_info->rmac_ip);
5671 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5673 tmp_stats[i++] =
5674 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5675 le32_to_cpu(stat_info->rmac_drop_ip);
5676 tmp_stats[i++] =
5677 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5678 le32_to_cpu(stat_info->rmac_icmp);
5679 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5680 tmp_stats[i++] =
5681 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5682 le32_to_cpu(stat_info->rmac_udp);
5683 tmp_stats[i++] =
5684 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5685 le32_to_cpu(stat_info->rmac_err_drp_udp);
5686 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5687 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5688 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5689 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5695 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5696 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5697 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5698 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5699 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5700 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5701 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5702 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5703 tmp_stats[i++] =
5704 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5705 le32_to_cpu(stat_info->rmac_pause_cnt);
5706 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5707 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5708 tmp_stats[i++] =
5709 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5710 le32_to_cpu(stat_info->rmac_accepted_ip);
5711 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5712 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5713 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5714 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5715 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5716 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5717 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5718 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5719 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5720 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5721 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5722 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5723 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5724 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5725 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5726 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5727 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5728 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5729 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5730 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5731 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5732 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5733 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5734 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5735 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5736 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5737 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5738 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5739 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5740 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5741 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5742 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5743 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5744 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5745 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5746 tmp_stats[i++] = 0;
5747 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5748 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5749 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5750 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5751 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5752 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5753 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5754 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5755 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5756 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5757 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5758 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5759 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5760 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5761 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5762 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5763 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5764 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5765 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5766 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5767 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5768 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5769 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5770 if (stat_info->sw_stat.num_aggregations) {
5771 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5772 int count = 0;
5773 /*
5774 * Since 64-bit divide does not work on all platforms,
5775 * do repeated subtraction.
5776 */
5777 while (tmp >= stat_info->sw_stat.num_aggregations) {
5778 tmp -= stat_info->sw_stat.num_aggregations;
5779 count++;
5780 }
5781 tmp_stats[i++] = count;
5782 }
5783 else
5784 tmp_stats[i++] = 0;
5785 }
5786
5787 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5788 {
5789 return (XENA_REG_SPACE);
5790 }
5791
5792
5793 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5794 {
5795 nic_t *sp = dev->priv;
5796
5797 return (sp->rx_csum);
5798 }
5799
5800 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5801 {
5802 nic_t *sp = dev->priv;
5803
5804 if (data)
5805 sp->rx_csum = 1;
5806 else
5807 sp->rx_csum = 0;
5808
5809 return 0;
5810 }
5811
5812 static int s2io_get_eeprom_len(struct net_device *dev)
5813 {
5814 return (XENA_EEPROM_SPACE);
5815 }
5816
5817 static int s2io_ethtool_self_test_count(struct net_device *dev)
5818 {
5819 return (S2IO_TEST_LEN);
5820 }
5821
5822 static void s2io_ethtool_get_strings(struct net_device *dev,
5823 u32 stringset, u8 * data)
5824 {
5825 switch (stringset) {
5826 case ETH_SS_TEST:
5827 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5828 break;
5829 case ETH_SS_STATS:
5830 memcpy(data, &ethtool_stats_keys,
5831 sizeof(ethtool_stats_keys));
5832 }
5833 }
5834 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5835 {
5836 return (S2IO_STAT_LEN);
5837 }
5838
5839 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5840 {
5841 if (data)
5842 dev->features |= NETIF_F_IP_CSUM;
5843 else
5844 dev->features &= ~NETIF_F_IP_CSUM;
5845
5846 return 0;
5847 }
5848
5849
5850 static struct ethtool_ops netdev_ethtool_ops = {
5851 .get_settings = s2io_ethtool_gset,
5852 .set_settings = s2io_ethtool_sset,
5853 .get_drvinfo = s2io_ethtool_gdrvinfo,
5854 .get_regs_len = s2io_ethtool_get_regs_len,
5855 .get_regs = s2io_ethtool_gregs,
5856 .get_link = ethtool_op_get_link,
5857 .get_eeprom_len = s2io_get_eeprom_len,
5858 .get_eeprom = s2io_ethtool_geeprom,
5859 .set_eeprom = s2io_ethtool_seeprom,
5860 .get_pauseparam = s2io_ethtool_getpause_data,
5861 .set_pauseparam = s2io_ethtool_setpause_data,
5862 .get_rx_csum = s2io_ethtool_get_rx_csum,
5863 .set_rx_csum = s2io_ethtool_set_rx_csum,
5864 .get_tx_csum = ethtool_op_get_tx_csum,
5865 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5866 .get_sg = ethtool_op_get_sg,
5867 .set_sg = ethtool_op_set_sg,
5868 #ifdef NETIF_F_TSO
5869 .get_tso = ethtool_op_get_tso,
5870 .set_tso = ethtool_op_set_tso,
5871 #endif
5872 .get_ufo = ethtool_op_get_ufo,
5873 .set_ufo = ethtool_op_set_ufo,
5874 .self_test_count = s2io_ethtool_self_test_count,
5875 .self_test = s2io_ethtool_test,
5876 .get_strings = s2io_ethtool_get_strings,
5877 .phys_id = s2io_ethtool_idnic,
5878 .get_stats_count = s2io_ethtool_get_stats_count,
5879 .get_ethtool_stats = s2io_get_ethtool_stats
5880 };
5881
5882 /**
5883 * s2io_ioctl - Entry point for the Ioctl
5884 * @dev : Device pointer.
5885 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5886 * a proprietary structure used to pass information to the driver.
5887 * @cmd : This is used to distinguish between the different commands that
5888 * can be passed to the IOCTL functions.
5889 * Description:
5890 * Currently there are no special functionality supported in IOCTL, hence
5891 * function always return EOPNOTSUPPORTED
5892 */
5893
5894 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5895 {
5896 return -EOPNOTSUPP;
5897 }
5898
5899 /**
5900 * s2io_change_mtu - entry point to change MTU size for the device.
5901 * @dev : device pointer.
5902 * @new_mtu : the new MTU size for the device.
5903 * Description: A driver entry point to change MTU size for the device.
5904 * Before changing the MTU the device must be stopped.
5905 * Return value:
5906 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5907 * file on failure.
5908 */
5909
5910 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5911 {
5912 nic_t *sp = dev->priv;
5913
5914 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5915 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5916 dev->name);
5917 return -EPERM;
5918 }
5919
5920 dev->mtu = new_mtu;
5921 if (netif_running(dev)) {
5922 s2io_card_down(sp, 0);
5923 netif_stop_queue(dev);
5924 if (s2io_card_up(sp)) {
5925 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5926 __FUNCTION__);
5927 }
5928 if (netif_queue_stopped(dev))
5929 netif_wake_queue(dev);
5930 } else { /* Device is down */
5931 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5932 u64 val64 = new_mtu;
5933
5934 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5935 }
5936
5937 return 0;
5938 }
5939
5940 /**
5941 * s2io_tasklet - Bottom half of the ISR.
5942 * @dev_adr : address of the device structure in dma_addr_t format.
5943 * Description:
5944 * This is the tasklet or the bottom half of the ISR. This is
5945 * an extension of the ISR which is scheduled by the scheduler to be run
5946 * when the load on the CPU is low. All low priority tasks of the ISR can
5947 * be pushed into the tasklet. For now the tasklet is used only to
5948 * replenish the Rx buffers in the Rx buffer descriptors.
5949 * Return value:
5950 * void.
5951 */
5952
5953 static void s2io_tasklet(unsigned long dev_addr)
5954 {
5955 struct net_device *dev = (struct net_device *) dev_addr;
5956 nic_t *sp = dev->priv;
5957 int i, ret;
5958 mac_info_t *mac_control;
5959 struct config_param *config;
5960
5961 mac_control = &sp->mac_control;
5962 config = &sp->config;
5963
5964 if (!TASKLET_IN_USE) {
5965 for (i = 0; i < config->rx_ring_num; i++) {
5966 ret = fill_rx_buffers(sp, i);
5967 if (ret == -ENOMEM) {
5968 DBG_PRINT(ERR_DBG, "%s: Out of ",
5969 dev->name);
5970 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5971 break;
5972 } else if (ret == -EFILL) {
5973 DBG_PRINT(ERR_DBG,
5974 "%s: Rx Ring %d is full\n",
5975 dev->name, i);
5976 break;
5977 }
5978 }
5979 clear_bit(0, (&sp->tasklet_status));
5980 }
5981 }
5982
5983 /**
5984 * s2io_set_link - Set the LInk status
5985 * @data: long pointer to device private structue
5986 * Description: Sets the link status for the adapter
5987 */
5988
5989 static void s2io_set_link(unsigned long data)
5990 {
5991 nic_t *nic = (nic_t *) data;
5992 struct net_device *dev = nic->dev;
5993 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5994 register u64 val64;
5995 u16 subid;
5996
5997 if (test_and_set_bit(0, &(nic->link_state))) {
5998 /* The card is being reset, no point doing anything */
5999 return;
6000 }
6001
6002 subid = nic->pdev->subsystem_device;
6003 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6004 /*
6005 * Allow a small delay for the NICs self initiated
6006 * cleanup to complete.
6007 */
6008 msleep(100);
6009 }
6010
6011 val64 = readq(&bar0->adapter_status);
6012 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
6013 if (LINK_IS_UP(val64)) {
6014 val64 = readq(&bar0->adapter_control);
6015 val64 |= ADAPTER_CNTL_EN;
6016 writeq(val64, &bar0->adapter_control);
6017 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6018 subid)) {
6019 val64 = readq(&bar0->gpio_control);
6020 val64 |= GPIO_CTRL_GPIO_0;
6021 writeq(val64, &bar0->gpio_control);
6022 val64 = readq(&bar0->gpio_control);
6023 } else {
6024 val64 |= ADAPTER_LED_ON;
6025 writeq(val64, &bar0->adapter_control);
6026 }
6027 if (s2io_link_fault_indication(nic) ==
6028 MAC_RMAC_ERR_TIMER) {
6029 val64 = readq(&bar0->adapter_status);
6030 if (!LINK_IS_UP(val64)) {
6031 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6032 DBG_PRINT(ERR_DBG, " Link down");
6033 DBG_PRINT(ERR_DBG, "after ");
6034 DBG_PRINT(ERR_DBG, "enabling ");
6035 DBG_PRINT(ERR_DBG, "device \n");
6036 }
6037 }
6038 if (nic->device_enabled_once == FALSE) {
6039 nic->device_enabled_once = TRUE;
6040 }
6041 s2io_link(nic, LINK_UP);
6042 } else {
6043 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6044 subid)) {
6045 val64 = readq(&bar0->gpio_control);
6046 val64 &= ~GPIO_CTRL_GPIO_0;
6047 writeq(val64, &bar0->gpio_control);
6048 val64 = readq(&bar0->gpio_control);
6049 }
6050 s2io_link(nic, LINK_DOWN);
6051 }
6052 } else { /* NIC is not Quiescent. */
6053 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6054 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6055 netif_stop_queue(dev);
6056 }
6057 clear_bit(0, &(nic->link_state));
6058 }
6059
6060 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6061 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6062 u64 *temp2, int size)
6063 {
6064 struct net_device *dev = sp->dev;
6065 struct sk_buff *frag_list;
6066
6067 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6068 /* allocate skb */
6069 if (*skb) {
6070 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6071 /*
6072 * As Rx frame are not going to be processed,
6073 * using same mapped address for the Rxd
6074 * buffer pointer
6075 */
6076 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6077 } else {
6078 *skb = dev_alloc_skb(size);
6079 if (!(*skb)) {
6080 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6081 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6082 return -ENOMEM ;
6083 }
6084 /* storing the mapped addr in a temp variable
6085 * such it will be used for next rxd whose
6086 * Host Control is NULL
6087 */
6088 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6089 pci_map_single( sp->pdev, (*skb)->data,
6090 size - NET_IP_ALIGN,
6091 PCI_DMA_FROMDEVICE);
6092 rxdp->Host_Control = (unsigned long) (*skb);
6093 }
6094 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6095 /* Two buffer Mode */
6096 if (*skb) {
6097 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6098 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6099 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6100 } else {
6101 *skb = dev_alloc_skb(size);
6102 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6103 pci_map_single(sp->pdev, (*skb)->data,
6104 dev->mtu + 4,
6105 PCI_DMA_FROMDEVICE);
6106 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6107 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6108 PCI_DMA_FROMDEVICE);
6109 rxdp->Host_Control = (unsigned long) (*skb);
6110
6111 /* Buffer-1 will be dummy buffer not used */
6112 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6113 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6114 PCI_DMA_FROMDEVICE);
6115 }
6116 } else if ((rxdp->Host_Control == 0)) {
6117 /* Three buffer mode */
6118 if (*skb) {
6119 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6120 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6121 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6122 } else {
6123 *skb = dev_alloc_skb(size);
6124
6125 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6126 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6127 PCI_DMA_FROMDEVICE);
6128 /* Buffer-1 receives L3/L4 headers */
6129 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6130 pci_map_single( sp->pdev, (*skb)->data,
6131 l3l4hdr_size + 4,
6132 PCI_DMA_FROMDEVICE);
6133 /*
6134 * skb_shinfo(skb)->frag_list will have L4
6135 * data payload
6136 */
6137 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6138 ALIGN_SIZE);
6139 if (skb_shinfo(*skb)->frag_list == NULL) {
6140 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6141 failed\n ", dev->name);
6142 return -ENOMEM ;
6143 }
6144 frag_list = skb_shinfo(*skb)->frag_list;
6145 frag_list->next = NULL;
6146 /*
6147 * Buffer-2 receives L4 data payload
6148 */
6149 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6150 pci_map_single( sp->pdev, frag_list->data,
6151 dev->mtu, PCI_DMA_FROMDEVICE);
6152 }
6153 }
6154 return 0;
6155 }
6156 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6157 {
6158 struct net_device *dev = sp->dev;
6159 if (sp->rxd_mode == RXD_MODE_1) {
6160 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6161 } else if (sp->rxd_mode == RXD_MODE_3B) {
6162 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6163 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6164 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6165 } else {
6166 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6167 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6168 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6169 }
6170 }
6171
6172 static int rxd_owner_bit_reset(nic_t *sp)
6173 {
6174 int i, j, k, blk_cnt = 0, size;
6175 mac_info_t * mac_control = &sp->mac_control;
6176 struct config_param *config = &sp->config;
6177 struct net_device *dev = sp->dev;
6178 RxD_t *rxdp = NULL;
6179 struct sk_buff *skb = NULL;
6180 buffAdd_t *ba = NULL;
6181 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6182
6183 /* Calculate the size based on ring mode */
6184 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6185 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6186 if (sp->rxd_mode == RXD_MODE_1)
6187 size += NET_IP_ALIGN;
6188 else if (sp->rxd_mode == RXD_MODE_3B)
6189 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6190 else
6191 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6192
6193 for (i = 0; i < config->rx_ring_num; i++) {
6194 blk_cnt = config->rx_cfg[i].num_rxd /
6195 (rxd_count[sp->rxd_mode] +1);
6196
6197 for (j = 0; j < blk_cnt; j++) {
6198 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6199 rxdp = mac_control->rings[i].
6200 rx_blocks[j].rxds[k].virt_addr;
6201 if(sp->rxd_mode >= RXD_MODE_3A)
6202 ba = &mac_control->rings[i].ba[j][k];
6203 set_rxd_buffer_pointer(sp, rxdp, ba,
6204 &skb,(u64 *)&temp0_64,
6205 (u64 *)&temp1_64,
6206 (u64 *)&temp2_64, size);
6207
6208 set_rxd_buffer_size(sp, rxdp, size);
6209 wmb();
6210 /* flip the Ownership bit to Hardware */
6211 rxdp->Control_1 |= RXD_OWN_XENA;
6212 }
6213 }
6214 }
6215 return 0;
6216
6217 }
6218
6219 static void s2io_card_down(nic_t * sp, int flag)
6220 {
6221 int cnt = 0;
6222 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6223 unsigned long flags;
6224 register u64 val64 = 0;
6225 struct net_device *dev = sp->dev;
6226
6227 del_timer_sync(&sp->alarm_timer);
6228 /* If s2io_set_link task is executing, wait till it completes. */
6229 while (test_and_set_bit(0, &(sp->link_state))) {
6230 msleep(50);
6231 }
6232 atomic_set(&sp->card_state, CARD_DOWN);
6233
6234 /* disable Tx and Rx traffic on the NIC */
6235 stop_nic(sp);
6236 if (flag) {
6237 if (sp->intr_type == MSI_X) {
6238 int i;
6239 u16 msi_control;
6240
6241 for (i=1; (sp->s2io_entries[i].in_use ==
6242 MSIX_REGISTERED_SUCCESS); i++) {
6243 int vector = sp->entries[i].vector;
6244 void *arg = sp->s2io_entries[i].arg;
6245
6246 free_irq(vector, arg);
6247 }
6248 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6249 msi_control &= 0xFFFE; /* Disable MSI */
6250 pci_write_config_word(sp->pdev, 0x42, msi_control);
6251 pci_disable_msix(sp->pdev);
6252 } else {
6253 free_irq(sp->pdev->irq, dev);
6254 if (sp->intr_type == MSI)
6255 pci_disable_msi(sp->pdev);
6256 }
6257 }
6258 /* Waiting till all Interrupt handlers are complete */
6259 cnt = 0;
6260 do {
6261 msleep(10);
6262 if (!atomic_read(&sp->isr_cnt))
6263 break;
6264 cnt++;
6265 } while(cnt < 5);
6266
6267 /* Kill tasklet. */
6268 tasklet_kill(&sp->task);
6269
6270 /* Check if the device is Quiescent and then Reset the NIC */
6271 do {
6272 /* As per the HW requirement we need to replenish the
6273 * receive buffer to avoid the ring bump. Since there is
6274 * no intention of processing the Rx frame at this pointwe are
6275 * just settting the ownership bit of rxd in Each Rx
6276 * ring to HW and set the appropriate buffer size
6277 * based on the ring mode
6278 */
6279 rxd_owner_bit_reset(sp);
6280
6281 val64 = readq(&bar0->adapter_status);
6282 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6283 break;
6284 }
6285
6286 msleep(50);
6287 cnt++;
6288 if (cnt == 10) {
6289 DBG_PRINT(ERR_DBG,
6290 "s2io_close:Device not Quiescent ");
6291 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6292 (unsigned long long) val64);
6293 break;
6294 }
6295 } while (1);
6296 s2io_reset(sp);
6297
6298 spin_lock_irqsave(&sp->tx_lock, flags);
6299 /* Free all Tx buffers */
6300 free_tx_buffers(sp);
6301 spin_unlock_irqrestore(&sp->tx_lock, flags);
6302
6303 /* Free all Rx buffers */
6304 spin_lock_irqsave(&sp->rx_lock, flags);
6305 free_rx_buffers(sp);
6306 spin_unlock_irqrestore(&sp->rx_lock, flags);
6307
6308 clear_bit(0, &(sp->link_state));
6309 }
6310
6311 static int s2io_card_up(nic_t * sp)
6312 {
6313 int i, ret = 0;
6314 mac_info_t *mac_control;
6315 struct config_param *config;
6316 struct net_device *dev = (struct net_device *) sp->dev;
6317
6318 /* Initialize the H/W I/O registers */
6319 if (init_nic(sp) != 0) {
6320 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6321 dev->name);
6322 return -ENODEV;
6323 }
6324
6325 if (sp->intr_type == MSI)
6326 ret = s2io_enable_msi(sp);
6327 else if (sp->intr_type == MSI_X)
6328 ret = s2io_enable_msi_x(sp);
6329 if (ret) {
6330 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6331 sp->intr_type = INTA;
6332 }
6333
6334 /*
6335 * Initializing the Rx buffers. For now we are considering only 1
6336 * Rx ring and initializing buffers into 30 Rx blocks
6337 */
6338 mac_control = &sp->mac_control;
6339 config = &sp->config;
6340
6341 for (i = 0; i < config->rx_ring_num; i++) {
6342 if ((ret = fill_rx_buffers(sp, i))) {
6343 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6344 dev->name);
6345 s2io_reset(sp);
6346 free_rx_buffers(sp);
6347 return -ENOMEM;
6348 }
6349 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6350 atomic_read(&sp->rx_bufs_left[i]));
6351 }
6352
6353 /* Setting its receive mode */
6354 s2io_set_multicast(dev);
6355
6356 if (sp->lro) {
6357 /* Initialize max aggregatable pkts based on MTU */
6358 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6359 /* Check if we can use(if specified) user provided value */
6360 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6361 sp->lro_max_aggr_per_sess = lro_max_pkts;
6362 }
6363
6364 /* Enable tasklet for the device */
6365 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6366
6367 /* Enable Rx Traffic and interrupts on the NIC */
6368 if (start_nic(sp)) {
6369 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6370 tasklet_kill(&sp->task);
6371 s2io_reset(sp);
6372 free_irq(dev->irq, dev);
6373 free_rx_buffers(sp);
6374 return -ENODEV;
6375 }
6376
6377 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6378
6379 atomic_set(&sp->card_state, CARD_UP);
6380 return 0;
6381 }
6382
6383 /**
6384 * s2io_restart_nic - Resets the NIC.
6385 * @data : long pointer to the device private structure
6386 * Description:
6387 * This function is scheduled to be run by the s2io_tx_watchdog
6388 * function after 0.5 secs to reset the NIC. The idea is to reduce
6389 * the run time of the watch dog routine which is run holding a
6390 * spin lock.
6391 */
6392
6393 static void s2io_restart_nic(unsigned long data)
6394 {
6395 struct net_device *dev = (struct net_device *) data;
6396 nic_t *sp = dev->priv;
6397
6398 s2io_card_down(sp, 0);
6399 if (s2io_card_up(sp)) {
6400 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6401 dev->name);
6402 }
6403 netif_wake_queue(dev);
6404 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6405 dev->name);
6406
6407 }
6408
6409 /**
6410 * s2io_tx_watchdog - Watchdog for transmit side.
6411 * @dev : Pointer to net device structure
6412 * Description:
6413 * This function is triggered if the Tx Queue is stopped
6414 * for a pre-defined amount of time when the Interface is still up.
6415 * If the Interface is jammed in such a situation, the hardware is
6416 * reset (by s2io_close) and restarted again (by s2io_open) to
6417 * overcome any problem that might have been caused in the hardware.
6418 * Return value:
6419 * void
6420 */
6421
6422 static void s2io_tx_watchdog(struct net_device *dev)
6423 {
6424 nic_t *sp = dev->priv;
6425
6426 if (netif_carrier_ok(dev)) {
6427 schedule_work(&sp->rst_timer_task);
6428 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6429 }
6430 }
6431
6432 /**
6433 * rx_osm_handler - To perform some OS related operations on SKB.
6434 * @sp: private member of the device structure,pointer to s2io_nic structure.
6435 * @skb : the socket buffer pointer.
6436 * @len : length of the packet
6437 * @cksum : FCS checksum of the frame.
6438 * @ring_no : the ring from which this RxD was extracted.
6439 * Description:
6440 * This function is called by the Tx interrupt serivce routine to perform
6441 * some OS related operations on the SKB before passing it to the upper
6442 * layers. It mainly checks if the checksum is OK, if so adds it to the
6443 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6444 * to the upper layer. If the checksum is wrong, it increments the Rx
6445 * packet error count, frees the SKB and returns error.
6446 * Return value:
6447 * SUCCESS on success and -1 on failure.
6448 */
6449 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6450 {
6451 nic_t *sp = ring_data->nic;
6452 struct net_device *dev = (struct net_device *) sp->dev;
6453 struct sk_buff *skb = (struct sk_buff *)
6454 ((unsigned long) rxdp->Host_Control);
6455 int ring_no = ring_data->ring_no;
6456 u16 l3_csum, l4_csum;
6457 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6458 lro_t *lro;
6459
6460 skb->dev = dev;
6461
6462 if (err) {
6463 /* Check for parity error */
6464 if (err & 0x1) {
6465 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6466 }
6467
6468 /*
6469 * Drop the packet if bad transfer code. Exception being
6470 * 0x5, which could be due to unsupported IPv6 extension header.
6471 * In this case, we let stack handle the packet.
6472 * Note that in this case, since checksum will be incorrect,
6473 * stack will validate the same.
6474 */
6475 if (err && ((err >> 48) != 0x5)) {
6476 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6477 dev->name, err);
6478 sp->stats.rx_crc_errors++;
6479 dev_kfree_skb(skb);
6480 atomic_dec(&sp->rx_bufs_left[ring_no]);
6481 rxdp->Host_Control = 0;
6482 return 0;
6483 }
6484 }
6485
6486 /* Updating statistics */
6487 rxdp->Host_Control = 0;
6488 sp->rx_pkt_count++;
6489 sp->stats.rx_packets++;
6490 if (sp->rxd_mode == RXD_MODE_1) {
6491 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6492
6493 sp->stats.rx_bytes += len;
6494 skb_put(skb, len);
6495
6496 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6497 int get_block = ring_data->rx_curr_get_info.block_index;
6498 int get_off = ring_data->rx_curr_get_info.offset;
6499 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6500 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6501 unsigned char *buff = skb_push(skb, buf0_len);
6502
6503 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6504 sp->stats.rx_bytes += buf0_len + buf2_len;
6505 memcpy(buff, ba->ba_0, buf0_len);
6506
6507 if (sp->rxd_mode == RXD_MODE_3A) {
6508 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6509
6510 skb_put(skb, buf1_len);
6511 skb->len += buf2_len;
6512 skb->data_len += buf2_len;
6513 skb->truesize += buf2_len;
6514 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6515 sp->stats.rx_bytes += buf1_len;
6516
6517 } else
6518 skb_put(skb, buf2_len);
6519 }
6520
6521 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6522 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6523 (sp->rx_csum)) {
6524 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6525 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6526 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6527 /*
6528 * NIC verifies if the Checksum of the received
6529 * frame is Ok or not and accordingly returns
6530 * a flag in the RxD.
6531 */
6532 skb->ip_summed = CHECKSUM_UNNECESSARY;
6533 if (sp->lro) {
6534 u32 tcp_len;
6535 u8 *tcp;
6536 int ret = 0;
6537
6538 ret = s2io_club_tcp_session(skb->data, &tcp,
6539 &tcp_len, &lro, rxdp, sp);
6540 switch (ret) {
6541 case 3: /* Begin anew */
6542 lro->parent = skb;
6543 goto aggregate;
6544 case 1: /* Aggregate */
6545 {
6546 lro_append_pkt(sp, lro,
6547 skb, tcp_len);
6548 goto aggregate;
6549 }
6550 case 4: /* Flush session */
6551 {
6552 lro_append_pkt(sp, lro,
6553 skb, tcp_len);
6554 queue_rx_frame(lro->parent);
6555 clear_lro_session(lro);
6556 sp->mac_control.stats_info->
6557 sw_stat.flush_max_pkts++;
6558 goto aggregate;
6559 }
6560 case 2: /* Flush both */
6561 lro->parent->data_len =
6562 lro->frags_len;
6563 sp->mac_control.stats_info->
6564 sw_stat.sending_both++;
6565 queue_rx_frame(lro->parent);
6566 clear_lro_session(lro);
6567 goto send_up;
6568 case 0: /* sessions exceeded */
6569 case -1: /* non-TCP or not
6570 * L2 aggregatable
6571 */
6572 case 5: /*
6573 * First pkt in session not
6574 * L3/L4 aggregatable
6575 */
6576 break;
6577 default:
6578 DBG_PRINT(ERR_DBG,
6579 "%s: Samadhana!!\n",
6580 __FUNCTION__);
6581 BUG();
6582 }
6583 }
6584 } else {
6585 /*
6586 * Packet with erroneous checksum, let the
6587 * upper layers deal with it.
6588 */
6589 skb->ip_summed = CHECKSUM_NONE;
6590 }
6591 } else {
6592 skb->ip_summed = CHECKSUM_NONE;
6593 }
6594
6595 if (!sp->lro) {
6596 skb->protocol = eth_type_trans(skb, dev);
6597 #ifdef CONFIG_S2IO_NAPI
6598 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6599 /* Queueing the vlan frame to the upper layer */
6600 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6601 RXD_GET_VLAN_TAG(rxdp->Control_2));
6602 } else {
6603 netif_receive_skb(skb);
6604 }
6605 #else
6606 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6607 /* Queueing the vlan frame to the upper layer */
6608 vlan_hwaccel_rx(skb, sp->vlgrp,
6609 RXD_GET_VLAN_TAG(rxdp->Control_2));
6610 } else {
6611 netif_rx(skb);
6612 }
6613 #endif
6614 } else {
6615 send_up:
6616 queue_rx_frame(skb);
6617 }
6618 dev->last_rx = jiffies;
6619 aggregate:
6620 atomic_dec(&sp->rx_bufs_left[ring_no]);
6621 return SUCCESS;
6622 }
6623
6624 /**
6625 * s2io_link - stops/starts the Tx queue.
6626 * @sp : private member of the device structure, which is a pointer to the
6627 * s2io_nic structure.
6628 * @link : inidicates whether link is UP/DOWN.
6629 * Description:
6630 * This function stops/starts the Tx queue depending on whether the link
6631 * status of the NIC is is down or up. This is called by the Alarm
6632 * interrupt handler whenever a link change interrupt comes up.
6633 * Return value:
6634 * void.
6635 */
6636
6637 static void s2io_link(nic_t * sp, int link)
6638 {
6639 struct net_device *dev = (struct net_device *) sp->dev;
6640
6641 if (link != sp->last_link_state) {
6642 if (link == LINK_DOWN) {
6643 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6644 netif_carrier_off(dev);
6645 } else {
6646 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6647 netif_carrier_on(dev);
6648 }
6649 }
6650 sp->last_link_state = link;
6651 }
6652
6653 /**
6654 * get_xena_rev_id - to identify revision ID of xena.
6655 * @pdev : PCI Dev structure
6656 * Description:
6657 * Function to identify the Revision ID of xena.
6658 * Return value:
6659 * returns the revision ID of the device.
6660 */
6661
6662 static int get_xena_rev_id(struct pci_dev *pdev)
6663 {
6664 u8 id = 0;
6665 int ret;
6666 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6667 return id;
6668 }
6669
6670 /**
6671 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6672 * @sp : private member of the device structure, which is a pointer to the
6673 * s2io_nic structure.
6674 * Description:
6675 * This function initializes a few of the PCI and PCI-X configuration registers
6676 * with recommended values.
6677 * Return value:
6678 * void
6679 */
6680
6681 static void s2io_init_pci(nic_t * sp)
6682 {
6683 u16 pci_cmd = 0, pcix_cmd = 0;
6684
6685 /* Enable Data Parity Error Recovery in PCI-X command register. */
6686 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6687 &(pcix_cmd));
6688 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6689 (pcix_cmd | 1));
6690 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6691 &(pcix_cmd));
6692
6693 /* Set the PErr Response bit in PCI command register. */
6694 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6695 pci_write_config_word(sp->pdev, PCI_COMMAND,
6696 (pci_cmd | PCI_COMMAND_PARITY));
6697 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6698 }
6699
6700 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6701 MODULE_LICENSE("GPL");
6702 MODULE_VERSION(DRV_VERSION);
6703
6704 module_param(tx_fifo_num, int, 0);
6705 module_param(rx_ring_num, int, 0);
6706 module_param(rx_ring_mode, int, 0);
6707 module_param_array(tx_fifo_len, uint, NULL, 0);
6708 module_param_array(rx_ring_sz, uint, NULL, 0);
6709 module_param_array(rts_frm_len, uint, NULL, 0);
6710 module_param(use_continuous_tx_intrs, int, 1);
6711 module_param(rmac_pause_time, int, 0);
6712 module_param(mc_pause_threshold_q0q3, int, 0);
6713 module_param(mc_pause_threshold_q4q7, int, 0);
6714 module_param(shared_splits, int, 0);
6715 module_param(tmac_util_period, int, 0);
6716 module_param(rmac_util_period, int, 0);
6717 module_param(bimodal, bool, 0);
6718 module_param(l3l4hdr_size, int , 0);
6719 #ifndef CONFIG_S2IO_NAPI
6720 module_param(indicate_max_pkts, int, 0);
6721 #endif
6722 module_param(rxsync_frequency, int, 0);
6723 module_param(intr_type, int, 0);
6724 module_param(lro, int, 0);
6725 module_param(lro_max_pkts, int, 0);
6726
6727 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6728 {
6729 if ( tx_fifo_num > 8) {
6730 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6731 "supported\n");
6732 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6733 tx_fifo_num = 8;
6734 }
6735 if ( rx_ring_num > 8) {
6736 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6737 "supported\n");
6738 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6739 rx_ring_num = 8;
6740 }
6741 #ifdef CONFIG_S2IO_NAPI
6742 if (*dev_intr_type != INTA) {
6743 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6744 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6745 *dev_intr_type = INTA;
6746 }
6747 #endif
6748 #ifndef CONFIG_PCI_MSI
6749 if (*dev_intr_type != INTA) {
6750 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6751 "MSI/MSI-X. Defaulting to INTA\n");
6752 *dev_intr_type = INTA;
6753 }
6754 #else
6755 if (*dev_intr_type > MSI_X) {
6756 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6757 "Defaulting to INTA\n");
6758 *dev_intr_type = INTA;
6759 }
6760 #endif
6761 if ((*dev_intr_type == MSI_X) &&
6762 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6763 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6764 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6765 "Defaulting to INTA\n");
6766 *dev_intr_type = INTA;
6767 }
6768 if (rx_ring_mode > 3) {
6769 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6770 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6771 rx_ring_mode = 3;
6772 }
6773 return SUCCESS;
6774 }
6775
6776 /**
6777 * s2io_init_nic - Initialization of the adapter .
6778 * @pdev : structure containing the PCI related information of the device.
6779 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6780 * Description:
6781 * The function initializes an adapter identified by the pci_dec structure.
6782 * All OS related initialization including memory and device structure and
6783 * initlaization of the device private variable is done. Also the swapper
6784 * control register is initialized to enable read and write into the I/O
6785 * registers of the device.
6786 * Return value:
6787 * returns 0 on success and negative on failure.
6788 */
6789
6790 static int __devinit
6791 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6792 {
6793 nic_t *sp;
6794 struct net_device *dev;
6795 int i, j, ret;
6796 int dma_flag = FALSE;
6797 u32 mac_up, mac_down;
6798 u64 val64 = 0, tmp64 = 0;
6799 XENA_dev_config_t __iomem *bar0 = NULL;
6800 u16 subid;
6801 mac_info_t *mac_control;
6802 struct config_param *config;
6803 int mode;
6804 u8 dev_intr_type = intr_type;
6805
6806 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6807 return ret;
6808
6809 if ((ret = pci_enable_device(pdev))) {
6810 DBG_PRINT(ERR_DBG,
6811 "s2io_init_nic: pci_enable_device failed\n");
6812 return ret;
6813 }
6814
6815 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6816 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6817 dma_flag = TRUE;
6818 if (pci_set_consistent_dma_mask
6819 (pdev, DMA_64BIT_MASK)) {
6820 DBG_PRINT(ERR_DBG,
6821 "Unable to obtain 64bit DMA for \
6822 consistent allocations\n");
6823 pci_disable_device(pdev);
6824 return -ENOMEM;
6825 }
6826 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6827 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6828 } else {
6829 pci_disable_device(pdev);
6830 return -ENOMEM;
6831 }
6832 if (dev_intr_type != MSI_X) {
6833 if (pci_request_regions(pdev, s2io_driver_name)) {
6834 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6835 pci_disable_device(pdev);
6836 return -ENODEV;
6837 }
6838 }
6839 else {
6840 if (!(request_mem_region(pci_resource_start(pdev, 0),
6841 pci_resource_len(pdev, 0), s2io_driver_name))) {
6842 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6843 pci_disable_device(pdev);
6844 return -ENODEV;
6845 }
6846 if (!(request_mem_region(pci_resource_start(pdev, 2),
6847 pci_resource_len(pdev, 2), s2io_driver_name))) {
6848 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6849 release_mem_region(pci_resource_start(pdev, 0),
6850 pci_resource_len(pdev, 0));
6851 pci_disable_device(pdev);
6852 return -ENODEV;
6853 }
6854 }
6855
6856 dev = alloc_etherdev(sizeof(nic_t));
6857 if (dev == NULL) {
6858 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6859 pci_disable_device(pdev);
6860 pci_release_regions(pdev);
6861 return -ENODEV;
6862 }
6863
6864 pci_set_master(pdev);
6865 pci_set_drvdata(pdev, dev);
6866 SET_MODULE_OWNER(dev);
6867 SET_NETDEV_DEV(dev, &pdev->dev);
6868
6869 /* Private member variable initialized to s2io NIC structure */
6870 sp = dev->priv;
6871 memset(sp, 0, sizeof(nic_t));
6872 sp->dev = dev;
6873 sp->pdev = pdev;
6874 sp->high_dma_flag = dma_flag;
6875 sp->device_enabled_once = FALSE;
6876 if (rx_ring_mode == 1)
6877 sp->rxd_mode = RXD_MODE_1;
6878 if (rx_ring_mode == 2)
6879 sp->rxd_mode = RXD_MODE_3B;
6880 if (rx_ring_mode == 3)
6881 sp->rxd_mode = RXD_MODE_3A;
6882
6883 sp->intr_type = dev_intr_type;
6884
6885 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6886 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6887 sp->device_type = XFRAME_II_DEVICE;
6888 else
6889 sp->device_type = XFRAME_I_DEVICE;
6890
6891 sp->lro = lro;
6892
6893 /* Initialize some PCI/PCI-X fields of the NIC. */
6894 s2io_init_pci(sp);
6895
6896 /*
6897 * Setting the device configuration parameters.
6898 * Most of these parameters can be specified by the user during
6899 * module insertion as they are module loadable parameters. If
6900 * these parameters are not not specified during load time, they
6901 * are initialized with default values.
6902 */
6903 mac_control = &sp->mac_control;
6904 config = &sp->config;
6905
6906 /* Tx side parameters. */
6907 config->tx_fifo_num = tx_fifo_num;
6908 for (i = 0; i < MAX_TX_FIFOS; i++) {
6909 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6910 config->tx_cfg[i].fifo_priority = i;
6911 }
6912
6913 /* mapping the QoS priority to the configured fifos */
6914 for (i = 0; i < MAX_TX_FIFOS; i++)
6915 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6916
6917 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6918 for (i = 0; i < config->tx_fifo_num; i++) {
6919 config->tx_cfg[i].f_no_snoop =
6920 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6921 if (config->tx_cfg[i].fifo_len < 65) {
6922 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6923 break;
6924 }
6925 }
6926 /* + 2 because one Txd for skb->data and one Txd for UFO */
6927 config->max_txds = MAX_SKB_FRAGS + 2;
6928
6929 /* Rx side parameters. */
6930 config->rx_ring_num = rx_ring_num;
6931 for (i = 0; i < MAX_RX_RINGS; i++) {
6932 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6933 (rxd_count[sp->rxd_mode] + 1);
6934 config->rx_cfg[i].ring_priority = i;
6935 }
6936
6937 for (i = 0; i < rx_ring_num; i++) {
6938 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6939 config->rx_cfg[i].f_no_snoop =
6940 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6941 }
6942
6943 /* Setting Mac Control parameters */
6944 mac_control->rmac_pause_time = rmac_pause_time;
6945 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6946 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6947
6948
6949 /* Initialize Ring buffer parameters. */
6950 for (i = 0; i < config->rx_ring_num; i++)
6951 atomic_set(&sp->rx_bufs_left[i], 0);
6952
6953 /* Initialize the number of ISRs currently running */
6954 atomic_set(&sp->isr_cnt, 0);
6955
6956 /* initialize the shared memory used by the NIC and the host */
6957 if (init_shared_mem(sp)) {
6958 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6959 __FUNCTION__);
6960 ret = -ENOMEM;
6961 goto mem_alloc_failed;
6962 }
6963
6964 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6965 pci_resource_len(pdev, 0));
6966 if (!sp->bar0) {
6967 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6968 dev->name);
6969 ret = -ENOMEM;
6970 goto bar0_remap_failed;
6971 }
6972
6973 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6974 pci_resource_len(pdev, 2));
6975 if (!sp->bar1) {
6976 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6977 dev->name);
6978 ret = -ENOMEM;
6979 goto bar1_remap_failed;
6980 }
6981
6982 dev->irq = pdev->irq;
6983 dev->base_addr = (unsigned long) sp->bar0;
6984
6985 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6986 for (j = 0; j < MAX_TX_FIFOS; j++) {
6987 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6988 (sp->bar1 + (j * 0x00020000));
6989 }
6990
6991 /* Driver entry points */
6992 dev->open = &s2io_open;
6993 dev->stop = &s2io_close;
6994 dev->hard_start_xmit = &s2io_xmit;
6995 dev->get_stats = &s2io_get_stats;
6996 dev->set_multicast_list = &s2io_set_multicast;
6997 dev->do_ioctl = &s2io_ioctl;
6998 dev->change_mtu = &s2io_change_mtu;
6999 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7000 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7001 dev->vlan_rx_register = s2io_vlan_rx_register;
7002 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7003
7004 /*
7005 * will use eth_mac_addr() for dev->set_mac_address
7006 * mac address will be set every time dev->open() is called
7007 */
7008 #if defined(CONFIG_S2IO_NAPI)
7009 dev->poll = s2io_poll;
7010 dev->weight = 32;
7011 #endif
7012
7013 #ifdef CONFIG_NET_POLL_CONTROLLER
7014 dev->poll_controller = s2io_netpoll;
7015 #endif
7016
7017 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7018 if (sp->high_dma_flag == TRUE)
7019 dev->features |= NETIF_F_HIGHDMA;
7020 #ifdef NETIF_F_TSO
7021 dev->features |= NETIF_F_TSO;
7022 #endif
7023 if (sp->device_type & XFRAME_II_DEVICE) {
7024 dev->features |= NETIF_F_UFO;
7025 dev->features |= NETIF_F_HW_CSUM;
7026 }
7027
7028 dev->tx_timeout = &s2io_tx_watchdog;
7029 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7030 INIT_WORK(&sp->rst_timer_task,
7031 (void (*)(void *)) s2io_restart_nic, dev);
7032 INIT_WORK(&sp->set_link_task,
7033 (void (*)(void *)) s2io_set_link, sp);
7034
7035 pci_save_state(sp->pdev);
7036
7037 /* Setting swapper control on the NIC, for proper reset operation */
7038 if (s2io_set_swapper(sp)) {
7039 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7040 dev->name);
7041 ret = -EAGAIN;
7042 goto set_swap_failed;
7043 }
7044
7045 /* Verify if the Herc works on the slot its placed into */
7046 if (sp->device_type & XFRAME_II_DEVICE) {
7047 mode = s2io_verify_pci_mode(sp);
7048 if (mode < 0) {
7049 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7050 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7051 ret = -EBADSLT;
7052 goto set_swap_failed;
7053 }
7054 }
7055
7056 /* Not needed for Herc */
7057 if (sp->device_type & XFRAME_I_DEVICE) {
7058 /*
7059 * Fix for all "FFs" MAC address problems observed on
7060 * Alpha platforms
7061 */
7062 fix_mac_address(sp);
7063 s2io_reset(sp);
7064 }
7065
7066 /*
7067 * MAC address initialization.
7068 * For now only one mac address will be read and used.
7069 */
7070 bar0 = sp->bar0;
7071 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7072 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7073 writeq(val64, &bar0->rmac_addr_cmd_mem);
7074 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7075 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7076 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7077 mac_down = (u32) tmp64;
7078 mac_up = (u32) (tmp64 >> 32);
7079
7080 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7081
7082 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7083 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7084 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7085 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7086 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7087 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7088
7089 /* Set the factory defined MAC address initially */
7090 dev->addr_len = ETH_ALEN;
7091 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7092
7093 /*
7094 * Initialize the tasklet status and link state flags
7095 * and the card state parameter
7096 */
7097 atomic_set(&(sp->card_state), 0);
7098 sp->tasklet_status = 0;
7099 sp->link_state = 0;
7100
7101 /* Initialize spinlocks */
7102 spin_lock_init(&sp->tx_lock);
7103 #ifndef CONFIG_S2IO_NAPI
7104 spin_lock_init(&sp->put_lock);
7105 #endif
7106 spin_lock_init(&sp->rx_lock);
7107
7108 /*
7109 * SXE-002: Configure link and activity LED to init state
7110 * on driver load.
7111 */
7112 subid = sp->pdev->subsystem_device;
7113 if ((subid & 0xFF) >= 0x07) {
7114 val64 = readq(&bar0->gpio_control);
7115 val64 |= 0x0000800000000000ULL;
7116 writeq(val64, &bar0->gpio_control);
7117 val64 = 0x0411040400000000ULL;
7118 writeq(val64, (void __iomem *) bar0 + 0x2700);
7119 val64 = readq(&bar0->gpio_control);
7120 }
7121
7122 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7123
7124 if (register_netdev(dev)) {
7125 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7126 ret = -ENODEV;
7127 goto register_failed;
7128 }
7129 s2io_vpd_read(sp);
7130 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
7131 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
7132 get_xena_rev_id(sp->pdev),
7133 s2io_driver_version);
7134 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7135 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7136 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7137 sp->def_mac_addr[0].mac_addr[0],
7138 sp->def_mac_addr[0].mac_addr[1],
7139 sp->def_mac_addr[0].mac_addr[2],
7140 sp->def_mac_addr[0].mac_addr[3],
7141 sp->def_mac_addr[0].mac_addr[4],
7142 sp->def_mac_addr[0].mac_addr[5]);
7143 if (sp->device_type & XFRAME_II_DEVICE) {
7144 mode = s2io_print_pci_mode(sp);
7145 if (mode < 0) {
7146 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7147 ret = -EBADSLT;
7148 unregister_netdev(dev);
7149 goto set_swap_failed;
7150 }
7151 }
7152 switch(sp->rxd_mode) {
7153 case RXD_MODE_1:
7154 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7155 dev->name);
7156 break;
7157 case RXD_MODE_3B:
7158 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7159 dev->name);
7160 break;
7161 case RXD_MODE_3A:
7162 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7163 dev->name);
7164 break;
7165 }
7166 #ifdef CONFIG_S2IO_NAPI
7167 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7168 #endif
7169 switch(sp->intr_type) {
7170 case INTA:
7171 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7172 break;
7173 case MSI:
7174 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7175 break;
7176 case MSI_X:
7177 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7178 break;
7179 }
7180 if (sp->lro)
7181 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7182 dev->name);
7183
7184 /* Initialize device name */
7185 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7186
7187 /* Initialize bimodal Interrupts */
7188 sp->config.bimodal = bimodal;
7189 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7190 sp->config.bimodal = 0;
7191 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7192 dev->name);
7193 }
7194
7195 /*
7196 * Make Link state as off at this point, when the Link change
7197 * interrupt comes the state will be automatically changed to
7198 * the right state.
7199 */
7200 netif_carrier_off(dev);
7201
7202 return 0;
7203
7204 register_failed:
7205 set_swap_failed:
7206 iounmap(sp->bar1);
7207 bar1_remap_failed:
7208 iounmap(sp->bar0);
7209 bar0_remap_failed:
7210 mem_alloc_failed:
7211 free_shared_mem(sp);
7212 pci_disable_device(pdev);
7213 if (dev_intr_type != MSI_X)
7214 pci_release_regions(pdev);
7215 else {
7216 release_mem_region(pci_resource_start(pdev, 0),
7217 pci_resource_len(pdev, 0));
7218 release_mem_region(pci_resource_start(pdev, 2),
7219 pci_resource_len(pdev, 2));
7220 }
7221 pci_set_drvdata(pdev, NULL);
7222 free_netdev(dev);
7223
7224 return ret;
7225 }
7226
7227 /**
7228 * s2io_rem_nic - Free the PCI device
7229 * @pdev: structure containing the PCI related information of the device.
7230 * Description: This function is called by the Pci subsystem to release a
7231 * PCI device and free up all resource held up by the device. This could
7232 * be in response to a Hot plug event or when the driver is to be removed
7233 * from memory.
7234 */
7235
7236 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7237 {
7238 struct net_device *dev =
7239 (struct net_device *) pci_get_drvdata(pdev);
7240 nic_t *sp;
7241
7242 if (dev == NULL) {
7243 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7244 return;
7245 }
7246
7247 sp = dev->priv;
7248 unregister_netdev(dev);
7249
7250 free_shared_mem(sp);
7251 iounmap(sp->bar0);
7252 iounmap(sp->bar1);
7253 pci_disable_device(pdev);
7254 if (sp->intr_type != MSI_X)
7255 pci_release_regions(pdev);
7256 else {
7257 release_mem_region(pci_resource_start(pdev, 0),
7258 pci_resource_len(pdev, 0));
7259 release_mem_region(pci_resource_start(pdev, 2),
7260 pci_resource_len(pdev, 2));
7261 }
7262 pci_set_drvdata(pdev, NULL);
7263 free_netdev(dev);
7264 }
7265
7266 /**
7267 * s2io_starter - Entry point for the driver
7268 * Description: This function is the entry point for the driver. It verifies
7269 * the module loadable parameters and initializes PCI configuration space.
7270 */
7271
7272 int __init s2io_starter(void)
7273 {
7274 return pci_module_init(&s2io_driver);
7275 }
7276
7277 /**
7278 * s2io_closer - Cleanup routine for the driver
7279 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7280 */
7281
7282 static void s2io_closer(void)
7283 {
7284 pci_unregister_driver(&s2io_driver);
7285 DBG_PRINT(INIT_DBG, "cleanup done\n");
7286 }
7287
7288 module_init(s2io_starter);
7289 module_exit(s2io_closer);
7290
7291 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7292 struct tcphdr **tcp, RxD_t *rxdp)
7293 {
7294 int ip_off;
7295 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7296
7297 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7298 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7299 __FUNCTION__);
7300 return -1;
7301 }
7302
7303 /* TODO:
7304 * By default the VLAN field in the MAC is stripped by the card, if this
7305 * feature is turned off in rx_pa_cfg register, then the ip_off field
7306 * has to be shifted by a further 2 bytes
7307 */
7308 switch (l2_type) {
7309 case 0: /* DIX type */
7310 case 4: /* DIX type with VLAN */
7311 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7312 break;
7313 /* LLC, SNAP etc are considered non-mergeable */
7314 default:
7315 return -1;
7316 }
7317
7318 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7319 ip_len = (u8)((*ip)->ihl);
7320 ip_len <<= 2;
7321 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7322
7323 return 0;
7324 }
7325
7326 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7327 struct tcphdr *tcp)
7328 {
7329 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7330 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7331 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7332 return -1;
7333 return 0;
7334 }
7335
7336 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7337 {
7338 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7339 }
7340
7341 static void initiate_new_session(lro_t *lro, u8 *l2h,
7342 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7343 {
7344 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7345 lro->l2h = l2h;
7346 lro->iph = ip;
7347 lro->tcph = tcp;
7348 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7349 lro->tcp_ack = ntohl(tcp->ack_seq);
7350 lro->sg_num = 1;
7351 lro->total_len = ntohs(ip->tot_len);
7352 lro->frags_len = 0;
7353 /*
7354 * check if we saw TCP timestamp. Other consistency checks have
7355 * already been done.
7356 */
7357 if (tcp->doff == 8) {
7358 u32 *ptr;
7359 ptr = (u32 *)(tcp+1);
7360 lro->saw_ts = 1;
7361 lro->cur_tsval = *(ptr+1);
7362 lro->cur_tsecr = *(ptr+2);
7363 }
7364 lro->in_use = 1;
7365 }
7366
7367 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7368 {
7369 struct iphdr *ip = lro->iph;
7370 struct tcphdr *tcp = lro->tcph;
7371 u16 nchk;
7372 StatInfo_t *statinfo = sp->mac_control.stats_info;
7373 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7374
7375 /* Update L3 header */
7376 ip->tot_len = htons(lro->total_len);
7377 ip->check = 0;
7378 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7379 ip->check = nchk;
7380
7381 /* Update L4 header */
7382 tcp->ack_seq = lro->tcp_ack;
7383 tcp->window = lro->window;
7384
7385 /* Update tsecr field if this session has timestamps enabled */
7386 if (lro->saw_ts) {
7387 u32 *ptr = (u32 *)(tcp + 1);
7388 *(ptr+2) = lro->cur_tsecr;
7389 }
7390
7391 /* Update counters required for calculation of
7392 * average no. of packets aggregated.
7393 */
7394 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7395 statinfo->sw_stat.num_aggregations++;
7396 }
7397
7398 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7399 struct tcphdr *tcp, u32 l4_pyld)
7400 {
7401 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7402 lro->total_len += l4_pyld;
7403 lro->frags_len += l4_pyld;
7404 lro->tcp_next_seq += l4_pyld;
7405 lro->sg_num++;
7406
7407 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7408 lro->tcp_ack = tcp->ack_seq;
7409 lro->window = tcp->window;
7410
7411 if (lro->saw_ts) {
7412 u32 *ptr;
7413 /* Update tsecr and tsval from this packet */
7414 ptr = (u32 *) (tcp + 1);
7415 lro->cur_tsval = *(ptr + 1);
7416 lro->cur_tsecr = *(ptr + 2);
7417 }
7418 }
7419
7420 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7421 struct tcphdr *tcp, u32 tcp_pyld_len)
7422 {
7423 u8 *ptr;
7424
7425 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7426
7427 if (!tcp_pyld_len) {
7428 /* Runt frame or a pure ack */
7429 return -1;
7430 }
7431
7432 if (ip->ihl != 5) /* IP has options */
7433 return -1;
7434
7435 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7436 !tcp->ack) {
7437 /*
7438 * Currently recognize only the ack control word and
7439 * any other control field being set would result in
7440 * flushing the LRO session
7441 */
7442 return -1;
7443 }
7444
7445 /*
7446 * Allow only one TCP timestamp option. Don't aggregate if
7447 * any other options are detected.
7448 */
7449 if (tcp->doff != 5 && tcp->doff != 8)
7450 return -1;
7451
7452 if (tcp->doff == 8) {
7453 ptr = (u8 *)(tcp + 1);
7454 while (*ptr == TCPOPT_NOP)
7455 ptr++;
7456 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7457 return -1;
7458
7459 /* Ensure timestamp value increases monotonically */
7460 if (l_lro)
7461 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7462 return -1;
7463
7464 /* timestamp echo reply should be non-zero */
7465 if (*((u32 *)(ptr+6)) == 0)
7466 return -1;
7467 }
7468
7469 return 0;
7470 }
7471
7472 static int
7473 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7474 RxD_t *rxdp, nic_t *sp)
7475 {
7476 struct iphdr *ip;
7477 struct tcphdr *tcph;
7478 int ret = 0, i;
7479
7480 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7481 rxdp))) {
7482 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7483 ip->saddr, ip->daddr);
7484 } else {
7485 return ret;
7486 }
7487
7488 tcph = (struct tcphdr *)*tcp;
7489 *tcp_len = get_l4_pyld_length(ip, tcph);
7490 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7491 lro_t *l_lro = &sp->lro0_n[i];
7492 if (l_lro->in_use) {
7493 if (check_for_socket_match(l_lro, ip, tcph))
7494 continue;
7495 /* Sock pair matched */
7496 *lro = l_lro;
7497
7498 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7499 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7500 "0x%x, actual 0x%x\n", __FUNCTION__,
7501 (*lro)->tcp_next_seq,
7502 ntohl(tcph->seq));
7503
7504 sp->mac_control.stats_info->
7505 sw_stat.outof_sequence_pkts++;
7506 ret = 2;
7507 break;
7508 }
7509
7510 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7511 ret = 1; /* Aggregate */
7512 else
7513 ret = 2; /* Flush both */
7514 break;
7515 }
7516 }
7517
7518 if (ret == 0) {
7519 /* Before searching for available LRO objects,
7520 * check if the pkt is L3/L4 aggregatable. If not
7521 * don't create new LRO session. Just send this
7522 * packet up.
7523 */
7524 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7525 return 5;
7526 }
7527
7528 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7529 lro_t *l_lro = &sp->lro0_n[i];
7530 if (!(l_lro->in_use)) {
7531 *lro = l_lro;
7532 ret = 3; /* Begin anew */
7533 break;
7534 }
7535 }
7536 }
7537
7538 if (ret == 0) { /* sessions exceeded */
7539 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7540 __FUNCTION__);
7541 *lro = NULL;
7542 return ret;
7543 }
7544
7545 switch (ret) {
7546 case 3:
7547 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7548 break;
7549 case 2:
7550 update_L3L4_header(sp, *lro);
7551 break;
7552 case 1:
7553 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7554 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7555 update_L3L4_header(sp, *lro);
7556 ret = 4; /* Flush the LRO */
7557 }
7558 break;
7559 default:
7560 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7561 __FUNCTION__);
7562 break;
7563 }
7564
7565 return ret;
7566 }
7567
7568 static void clear_lro_session(lro_t *lro)
7569 {
7570 static u16 lro_struct_size = sizeof(lro_t);
7571
7572 memset(lro, 0, lro_struct_size);
7573 }
7574
7575 static void queue_rx_frame(struct sk_buff *skb)
7576 {
7577 struct net_device *dev = skb->dev;
7578
7579 skb->protocol = eth_type_trans(skb, dev);
7580 #ifdef CONFIG_S2IO_NAPI
7581 netif_receive_skb(skb);
7582 #else
7583 netif_rx(skb);
7584 #endif
7585 }
7586
7587 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7588 u32 tcp_len)
7589 {
7590 struct sk_buff *tmp, *first = lro->parent;
7591
7592 first->len += tcp_len;
7593 first->data_len = lro->frags_len;
7594 skb_pull(skb, (skb->len - tcp_len));
7595 if ((tmp = skb_shinfo(first)->frag_list)) {
7596 while (tmp->next)
7597 tmp = tmp->next;
7598 tmp->next = skb;
7599 }
7600 else
7601 skb_shinfo(first)->frag_list = skb;
7602 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7603 return;
7604 }