Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.26"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104 int ret;
105
106 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109 return ret;
110 }
111
112 /*
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
116 */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140 {"tmac_frms"},
141 {"tmac_data_octets"},
142 {"tmac_drop_frms"},
143 {"tmac_mcst_frms"},
144 {"tmac_bcst_frms"},
145 {"tmac_pause_ctrl_frms"},
146 {"tmac_ttl_octets"},
147 {"tmac_ucst_frms"},
148 {"tmac_nucst_frms"},
149 {"tmac_any_err_frms"},
150 {"tmac_ttl_less_fb_octets"},
151 {"tmac_vld_ip_octets"},
152 {"tmac_vld_ip"},
153 {"tmac_drop_ip"},
154 {"tmac_icmp"},
155 {"tmac_rst_tcp"},
156 {"tmac_tcp"},
157 {"tmac_udp"},
158 {"rmac_vld_frms"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
161 {"rmac_drop_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
165 {"rmac_out_rng_len_err_frms"},
166 {"rmac_long_frms"},
167 {"rmac_pause_ctrl_frms"},
168 {"rmac_unsup_ctrl_frms"},
169 {"rmac_ttl_octets"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
172 {"rmac_discarded_frms"},
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
175 {"rmac_ttl_frms"},
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
178 {"rmac_frag_frms"},
179 {"rmac_jabber_frms"},
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
186 {"rmac_ip"},
187 {"rmac_ip_octets"},
188 {"rmac_hdr_err_ip"},
189 {"rmac_drop_ip"},
190 {"rmac_icmp"},
191 {"rmac_tcp"},
192 {"rmac_udp"},
193 {"rmac_err_drp_udp"},
194 {"rmac_xgmii_err_sym"},
195 {"rmac_frms_q0"},
196 {"rmac_frms_q1"},
197 {"rmac_frms_q2"},
198 {"rmac_frms_q3"},
199 {"rmac_frms_q4"},
200 {"rmac_frms_q5"},
201 {"rmac_frms_q6"},
202 {"rmac_frms_q7"},
203 {"rmac_full_q0"},
204 {"rmac_full_q1"},
205 {"rmac_full_q2"},
206 {"rmac_full_q3"},
207 {"rmac_full_q4"},
208 {"rmac_full_q5"},
209 {"rmac_full_q6"},
210 {"rmac_full_q7"},
211 {"rmac_pause_cnt"},
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
214 {"rmac_accepted_ip"},
215 {"rmac_err_tcp"},
216 {"rd_req_cnt"},
217 {"new_rd_req_cnt"},
218 {"new_rd_req_rtry_cnt"},
219 {"rd_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
221 {"wr_req_cnt"},
222 {"new_wr_req_cnt"},
223 {"new_wr_req_rtry_cnt"},
224 {"wr_rtry_cnt"},
225 {"wr_disc_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
227 {"txp_wr_cnt"},
228 {"txd_rd_cnt"},
229 {"txd_wr_cnt"},
230 {"rxd_rd_cnt"},
231 {"rxd_wr_cnt"},
232 {"txf_rd_cnt"},
233 {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
244 {"rmac_vlan_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
247 {"rmac_pf_discard"},
248 {"rmac_da_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
252 {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
259 {"parity_err_cnt"},
260 {"serious_err_cnt"},
261 {"soft_reset_cnt"},
262 {"fifo_full_cnt"},
263 {"ring_0_full_cnt"},
264 {"ring_1_full_cnt"},
265 {"ring_2_full_cnt"},
266 {"ring_3_full_cnt"},
267 {"ring_4_full_cnt"},
268 {"ring_5_full_cnt"},
269 {"ring_6_full_cnt"},
270 {"ring_7_full_cnt"},
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
291 {"mem_allocated"},
292 {"mem_freed"},
293 {"link_up_cnt"},
294 {"link_down_cnt"},
295 {"link_up_time"},
296 {"link_down_time"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
311 {"tda_err_cnt"},
312 {"pfc_err_cnt"},
313 {"pcc_err_cnt"},
314 {"tti_err_cnt"},
315 {"tpa_err_cnt"},
316 {"sm_err_cnt"},
317 {"lso_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
322 {"rc_err_cnt"},
323 {"prc_pcix_err_cnt"},
324 {"rpa_err_cnt"},
325 {"rda_err_cnt"},
326 {"rti_err_cnt"},
327 {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362 struct vlan_group *grp)
363 {
364 int i;
365 struct s2io_nic *nic = netdev_priv(dev);
366 unsigned long flags[MAX_TX_FIFOS];
367 struct config_param *config = &nic->config;
368 struct mac_info *mac_control = &nic->mac_control;
369
370 for (i = 0; i < config->tx_fifo_num; i++) {
371 struct fifo_info *fifo = &mac_control->fifos[i];
372
373 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374 }
375
376 nic->vlgrp = grp;
377
378 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379 struct fifo_info *fifo = &mac_control->fifos[i];
380
381 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382 }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388 int i;
389 struct s2io_nic *nic = netdev_priv(dev);
390 unsigned long flags[MAX_TX_FIFOS];
391 struct config_param *config = &nic->config;
392 struct mac_info *mac_control = &nic->mac_control;
393
394 for (i = 0; i < config->tx_fifo_num; i++) {
395 struct fifo_info *fifo = &mac_control->fifos[i];
396
397 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398 }
399
400 if (nic->vlgrp)
401 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404 struct fifo_info *fifo = &mac_control->fifos[i];
405
406 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407 }
408 }
409
410 /*
411 * Constants to be programmed into the Xena's registers, to configure
412 * the XAUI.
413 */
414
415 #define END_SIGN 0x0
416 static const u64 herc_act_dtx_cfg[] = {
417 /* Set address */
418 0x8000051536750000ULL, 0x80000515367500E0ULL,
419 /* Write data */
420 0x8000051536750004ULL, 0x80000515367500E4ULL,
421 /* Set address */
422 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423 /* Write data */
424 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425 /* Set address */
426 0x801205150D440000ULL, 0x801205150D4400E0ULL,
427 /* Write data */
428 0x801205150D440004ULL, 0x801205150D4400E4ULL,
429 /* Set address */
430 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431 /* Write data */
432 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433 /* Done */
434 END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438 /* Set address */
439 0x8000051500000000ULL, 0x80000515000000E0ULL,
440 /* Write data */
441 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442 /* Set address */
443 0x8001051500000000ULL, 0x80010515000000E0ULL,
444 /* Write data */
445 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446 /* Set address */
447 0x8002051500000000ULL, 0x80020515000000E0ULL,
448 /* Write data */
449 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450 END_SIGN
451 };
452
453 /*
454 * Constants for Fixing the MacAddress problem seen mostly on
455 * Alpha machines.
456 */
457 static const u64 fix_mac[] = {
458 0x0060000000000000ULL, 0x0060600000000000ULL,
459 0x0040600000000000ULL, 0x0000600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0000600000000000ULL,
471 0x0040600000000000ULL, 0x0060600000000000ULL,
472 END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable = 1;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
504 */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524 * S2IO device table.
525 * This table lists all the devices that this driver supports.
526 */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529 PCI_ANY_ID, PCI_ANY_ID},
530 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531 PCI_ANY_ID, PCI_ANY_ID},
532 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533 PCI_ANY_ID, PCI_ANY_ID},
534 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535 PCI_ANY_ID, PCI_ANY_ID},
536 {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542 .error_detected = s2io_io_error_detected,
543 .slot_reset = s2io_io_slot_reset,
544 .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548 .name = "S2IO",
549 .id_table = s2io_tbl,
550 .probe = s2io_init_nic,
551 .remove = __devexit_p(s2io_rem_nic),
552 .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561 if (!sp->config.multiq) {
562 int i;
563
564 for (i = 0; i < sp->config.tx_fifo_num; i++)
565 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566 }
567 netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572 if (!sp->config.multiq)
573 sp->mac_control.fifos[fifo_no].queue_state =
574 FIFO_QUEUE_STOP;
575
576 netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581 if (!sp->config.multiq) {
582 int i;
583
584 for (i = 0; i < sp->config.tx_fifo_num; i++)
585 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586 }
587 netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592 if (!sp->config.multiq)
593 sp->mac_control.fifos[fifo_no].queue_state =
594 FIFO_QUEUE_START;
595
596 netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601 if (!sp->config.multiq) {
602 int i;
603
604 for (i = 0; i < sp->config.tx_fifo_num; i++)
605 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606 }
607 netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611 struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614 if (multiq) {
615 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618 if (netif_queue_stopped(fifo->dev)) {
619 fifo->queue_state = FIFO_QUEUE_START;
620 netif_wake_queue(fifo->dev);
621 }
622 }
623 }
624
625 /**
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
630 * Rx descriptors and the statistics block.
631 */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635 u32 size;
636 void *tmp_v_addr, *tmp_v_addr_next;
637 dma_addr_t tmp_p_addr, tmp_p_addr_next;
638 struct RxD_block *pre_rxd_blk = NULL;
639 int i, j, blk_cnt;
640 int lst_size, lst_per_page;
641 struct net_device *dev = nic->dev;
642 unsigned long tmp;
643 struct buffAdd *ba;
644 struct config_param *config = &nic->config;
645 struct mac_info *mac_control = &nic->mac_control;
646 unsigned long long mem_allocated = 0;
647
648 /* Allocation and initialization of TXDLs in FIFOs */
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
651 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653 size += tx_cfg->fifo_len;
654 }
655 if (size > MAX_AVAILABLE_TXDS) {
656 DBG_PRINT(ERR_DBG,
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size, MAX_AVAILABLE_TXDS);
659 return -EINVAL;
660 }
661
662 size = 0;
663 for (i = 0; i < config->tx_fifo_num; i++) {
664 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666 size = tx_cfg->fifo_len;
667 /*
668 * Legal values are from 2 to 8192
669 */
670 if (size < 2) {
671 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
673 i, size);
674 return -EINVAL;
675 }
676 }
677
678 lst_size = (sizeof(struct TxD) * config->max_txds);
679 lst_per_page = PAGE_SIZE / lst_size;
680
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 struct fifo_info *fifo = &mac_control->fifos[i];
683 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684 int fifo_len = tx_cfg->fifo_len;
685 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688 if (!fifo->list_info) {
689 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690 return -ENOMEM;
691 }
692 mem_allocated += list_holder_size;
693 }
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696 lst_per_page);
697 struct fifo_info *fifo = &mac_control->fifos[i];
698 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700 fifo->tx_curr_put_info.offset = 0;
701 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702 fifo->tx_curr_get_info.offset = 0;
703 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704 fifo->fifo_no = i;
705 fifo->nic = nic;
706 fifo->max_txds = MAX_SKB_FRAGS + 2;
707 fifo->dev = dev;
708
709 for (j = 0; j < page_num; j++) {
710 int k = 0;
711 dma_addr_t tmp_p;
712 void *tmp_v;
713 tmp_v = pci_alloc_consistent(nic->pdev,
714 PAGE_SIZE, &tmp_p);
715 if (!tmp_v) {
716 DBG_PRINT(INFO_DBG,
717 "pci_alloc_consistent failed for TxDL\n");
718 return -ENOMEM;
719 }
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
723 * to be freed later.
724 */
725 if (!tmp_p) {
726 mac_control->zerodma_virt_addr = tmp_v;
727 DBG_PRINT(INIT_DBG,
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
730 dev->name, tmp_v);
731 tmp_v = pci_alloc_consistent(nic->pdev,
732 PAGE_SIZE, &tmp_p);
733 if (!tmp_v) {
734 DBG_PRINT(INFO_DBG,
735 "pci_alloc_consistent failed for TxDL\n");
736 return -ENOMEM;
737 }
738 mem_allocated += PAGE_SIZE;
739 }
740 while (k < lst_per_page) {
741 int l = (j * lst_per_page) + k;
742 if (l == tx_cfg->fifo_len)
743 break;
744 fifo->list_info[l].list_virt_addr =
745 tmp_v + (k * lst_size);
746 fifo->list_info[l].list_phy_addr =
747 tmp_p + (k * lst_size);
748 k++;
749 }
750 }
751 }
752
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 struct fifo_info *fifo = &mac_control->fifos[i];
755 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757 size = tx_cfg->fifo_len;
758 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759 if (!fifo->ufo_in_band_v)
760 return -ENOMEM;
761 mem_allocated += (size * sizeof(u64));
762 }
763
764 /* Allocation and initialization of RXDs in Rings */
765 size = 0;
766 for (i = 0; i < config->rx_ring_num; i++) {
767 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768 struct ring_info *ring = &mac_control->rings[i];
769
770 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
773 dev->name, i);
774 return FAILURE;
775 }
776 size += rx_cfg->num_rxd;
777 ring->block_count = rx_cfg->num_rxd /
778 (rxd_count[nic->rxd_mode] + 1);
779 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780 }
781 if (nic->rxd_mode == RXD_MODE_1)
782 size = (size * (sizeof(struct RxD1)));
783 else
784 size = (size * (sizeof(struct RxD3)));
785
786 for (i = 0; i < config->rx_ring_num; i++) {
787 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788 struct ring_info *ring = &mac_control->rings[i];
789
790 ring->rx_curr_get_info.block_index = 0;
791 ring->rx_curr_get_info.offset = 0;
792 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->rx_curr_put_info.block_index = 0;
794 ring->rx_curr_put_info.offset = 0;
795 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796 ring->nic = nic;
797 ring->ring_no = i;
798
799 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
800 /* Allocating all the Rx blocks */
801 for (j = 0; j < blk_cnt; j++) {
802 struct rx_block_info *rx_blocks;
803 int l;
804
805 rx_blocks = &ring->rx_blocks[j];
806 size = SIZE_OF_BLOCK; /* size is always page size */
807 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808 &tmp_p_addr);
809 if (tmp_v_addr == NULL) {
810 /*
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
814 * failure happened.
815 */
816 rx_blocks->block_virt_addr = tmp_v_addr;
817 return -ENOMEM;
818 }
819 mem_allocated += size;
820 memset(tmp_v_addr, 0, size);
821
822 size = sizeof(struct rxd_info) *
823 rxd_count[nic->rxd_mode];
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 rx_blocks->block_dma_addr = tmp_p_addr;
826 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
827 if (!rx_blocks->rxds)
828 return -ENOMEM;
829 mem_allocated += size;
830 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
831 rx_blocks->rxds[l].virt_addr =
832 rx_blocks->block_virt_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 rx_blocks->rxds[l].dma_addr =
835 rx_blocks->block_dma_addr +
836 (rxd_size[nic->rxd_mode] * l);
837 }
838 }
839 /* Interlinking all Rx Blocks */
840 for (j = 0; j < blk_cnt; j++) {
841 int next = (j + 1) % blk_cnt;
842 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
846
847 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
848 pre_rxd_blk->reserved_2_pNext_RxD_block =
849 (unsigned long)tmp_v_addr_next;
850 pre_rxd_blk->pNext_RxD_Blk_physical =
851 (u64)tmp_p_addr_next;
852 }
853 }
854 if (nic->rxd_mode == RXD_MODE_3B) {
855 /*
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
858 */
859 for (i = 0; i < config->rx_ring_num; i++) {
860 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861 struct ring_info *ring = &mac_control->rings[i];
862
863 blk_cnt = rx_cfg->num_rxd /
864 (rxd_count[nic->rxd_mode] + 1);
865 size = sizeof(struct buffAdd *) * blk_cnt;
866 ring->ba = kmalloc(size, GFP_KERNEL);
867 if (!ring->ba)
868 return -ENOMEM;
869 mem_allocated += size;
870 for (j = 0; j < blk_cnt; j++) {
871 int k = 0;
872
873 size = sizeof(struct buffAdd) *
874 (rxd_count[nic->rxd_mode] + 1);
875 ring->ba[j] = kmalloc(size, GFP_KERNEL);
876 if (!ring->ba[j])
877 return -ENOMEM;
878 mem_allocated += size;
879 while (k != rxd_count[nic->rxd_mode]) {
880 ba = &ring->ba[j][k];
881 size = BUF0_LEN + ALIGN_SIZE;
882 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
883 if (!ba->ba_0_org)
884 return -ENOMEM;
885 mem_allocated += size;
886 tmp = (unsigned long)ba->ba_0_org;
887 tmp += ALIGN_SIZE;
888 tmp &= ~((unsigned long)ALIGN_SIZE);
889 ba->ba_0 = (void *)tmp;
890
891 size = BUF1_LEN + ALIGN_SIZE;
892 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
893 if (!ba->ba_1_org)
894 return -ENOMEM;
895 mem_allocated += size;
896 tmp = (unsigned long)ba->ba_1_org;
897 tmp += ALIGN_SIZE;
898 tmp &= ~((unsigned long)ALIGN_SIZE);
899 ba->ba_1 = (void *)tmp;
900 k++;
901 }
902 }
903 }
904 }
905
906 /* Allocation and initialization of Statistics block */
907 size = sizeof(struct stat_block);
908 mac_control->stats_mem =
909 pci_alloc_consistent(nic->pdev, size,
910 &mac_control->stats_mem_phy);
911
912 if (!mac_control->stats_mem) {
913 /*
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
916 * failure happened.
917 */
918 return -ENOMEM;
919 }
920 mem_allocated += size;
921 mac_control->stats_mem_sz = size;
922
923 tmp_v_addr = mac_control->stats_mem;
924 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
925 memset(tmp_v_addr, 0, size);
926 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
927 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
928 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
929 return SUCCESS;
930 }
931
932 /**
933 * free_shared_mem - Free the allocated Memory
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
937 */
938
939 static void free_shared_mem(struct s2io_nic *nic)
940 {
941 int i, j, blk_cnt, size;
942 void *tmp_v_addr;
943 dma_addr_t tmp_p_addr;
944 int lst_size, lst_per_page;
945 struct net_device *dev;
946 int page_num = 0;
947 struct config_param *config;
948 struct mac_info *mac_control;
949 struct stat_block *stats;
950 struct swStat *swstats;
951
952 if (!nic)
953 return;
954
955 dev = nic->dev;
956
957 config = &nic->config;
958 mac_control = &nic->mac_control;
959 stats = mac_control->stats_info;
960 swstats = &stats->sw_stat;
961
962 lst_size = sizeof(struct TxD) * config->max_txds;
963 lst_per_page = PAGE_SIZE / lst_size;
964
965 for (i = 0; i < config->tx_fifo_num; i++) {
966 struct fifo_info *fifo = &mac_control->fifos[i];
967 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
970 for (j = 0; j < page_num; j++) {
971 int mem_blks = (j * lst_per_page);
972 struct list_info_hold *fli;
973
974 if (!fifo->list_info)
975 return;
976
977 fli = &fifo->list_info[mem_blks];
978 if (!fli->list_virt_addr)
979 break;
980 pci_free_consistent(nic->pdev, PAGE_SIZE,
981 fli->list_virt_addr,
982 fli->list_phy_addr);
983 swstats->mem_freed += PAGE_SIZE;
984 }
985 /* If we got a zero DMA address during allocation,
986 * free the page now
987 */
988 if (mac_control->zerodma_virt_addr) {
989 pci_free_consistent(nic->pdev, PAGE_SIZE,
990 mac_control->zerodma_virt_addr,
991 (dma_addr_t)0);
992 DBG_PRINT(INIT_DBG,
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev->name, mac_control->zerodma_virt_addr);
996 swstats->mem_freed += PAGE_SIZE;
997 }
998 kfree(fifo->list_info);
999 swstats->mem_freed += tx_cfg->fifo_len *
1000 sizeof(struct list_info_hold);
1001 }
1002
1003 size = SIZE_OF_BLOCK;
1004 for (i = 0; i < config->rx_ring_num; i++) {
1005 struct ring_info *ring = &mac_control->rings[i];
1006
1007 blk_cnt = ring->block_count;
1008 for (j = 0; j < blk_cnt; j++) {
1009 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1011 if (tmp_v_addr == NULL)
1012 break;
1013 pci_free_consistent(nic->pdev, size,
1014 tmp_v_addr, tmp_p_addr);
1015 swstats->mem_freed += size;
1016 kfree(ring->rx_blocks[j].rxds);
1017 swstats->mem_freed += sizeof(struct rxd_info) *
1018 rxd_count[nic->rxd_mode];
1019 }
1020 }
1021
1022 if (nic->rxd_mode == RXD_MODE_3B) {
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026 struct ring_info *ring = &mac_control->rings[i];
1027
1028 blk_cnt = rx_cfg->num_rxd /
1029 (rxd_count[nic->rxd_mode] + 1);
1030 for (j = 0; j < blk_cnt; j++) {
1031 int k = 0;
1032 if (!ring->ba[j])
1033 continue;
1034 while (k != rxd_count[nic->rxd_mode]) {
1035 struct buffAdd *ba = &ring->ba[j][k];
1036 kfree(ba->ba_0_org);
1037 swstats->mem_freed +=
1038 BUF0_LEN + ALIGN_SIZE;
1039 kfree(ba->ba_1_org);
1040 swstats->mem_freed +=
1041 BUF1_LEN + ALIGN_SIZE;
1042 k++;
1043 }
1044 kfree(ring->ba[j]);
1045 swstats->mem_freed += sizeof(struct buffAdd) *
1046 (rxd_count[nic->rxd_mode] + 1);
1047 }
1048 kfree(ring->ba);
1049 swstats->mem_freed += sizeof(struct buffAdd *) *
1050 blk_cnt;
1051 }
1052 }
1053
1054 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1055 struct fifo_info *fifo = &mac_control->fifos[i];
1056 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058 if (fifo->ufo_in_band_v) {
1059 swstats->mem_freed += tx_cfg->fifo_len *
1060 sizeof(u64);
1061 kfree(fifo->ufo_in_band_v);
1062 }
1063 }
1064
1065 if (mac_control->stats_mem) {
1066 swstats->mem_freed += mac_control->stats_mem_sz;
1067 pci_free_consistent(nic->pdev,
1068 mac_control->stats_mem_sz,
1069 mac_control->stats_mem,
1070 mac_control->stats_mem_phy);
1071 }
1072 }
1073
1074 /**
1075 * s2io_verify_pci_mode -
1076 */
1077
1078 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1079 {
1080 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1081 register u64 val64 = 0;
1082 int mode;
1083
1084 val64 = readq(&bar0->pci_mode);
1085 mode = (u8)GET_PCI_MODE(val64);
1086
1087 if (val64 & PCI_MODE_UNKNOWN_MODE)
1088 return -1; /* Unknown PCI mode */
1089 return mode;
1090 }
1091
1092 #define NEC_VENID 0x1033
1093 #define NEC_DEVID 0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095 {
1096 struct pci_dev *tdev = NULL;
1097 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1099 if (tdev->bus == s2io_pdev->bus->parent) {
1100 pci_dev_put(tdev);
1101 return 1;
1102 }
1103 }
1104 }
1105 return 0;
1106 }
1107
1108 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1109 /**
1110 * s2io_print_pci_mode -
1111 */
1112 static int s2io_print_pci_mode(struct s2io_nic *nic)
1113 {
1114 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115 register u64 val64 = 0;
1116 int mode;
1117 struct config_param *config = &nic->config;
1118 const char *pcimode;
1119
1120 val64 = readq(&bar0->pci_mode);
1121 mode = (u8)GET_PCI_MODE(val64);
1122
1123 if (val64 & PCI_MODE_UNKNOWN_MODE)
1124 return -1; /* Unknown PCI mode */
1125
1126 config->bus_speed = bus_speed[mode];
1127
1128 if (s2io_on_nec_bridge(nic->pdev)) {
1129 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1130 nic->dev->name);
1131 return mode;
1132 }
1133
1134 switch (mode) {
1135 case PCI_MODE_PCI_33:
1136 pcimode = "33MHz PCI bus";
1137 break;
1138 case PCI_MODE_PCI_66:
1139 pcimode = "66MHz PCI bus";
1140 break;
1141 case PCI_MODE_PCIX_M1_66:
1142 pcimode = "66MHz PCIX(M1) bus";
1143 break;
1144 case PCI_MODE_PCIX_M1_100:
1145 pcimode = "100MHz PCIX(M1) bus";
1146 break;
1147 case PCI_MODE_PCIX_M1_133:
1148 pcimode = "133MHz PCIX(M1) bus";
1149 break;
1150 case PCI_MODE_PCIX_M2_66:
1151 pcimode = "133MHz PCIX(M2) bus";
1152 break;
1153 case PCI_MODE_PCIX_M2_100:
1154 pcimode = "200MHz PCIX(M2) bus";
1155 break;
1156 case PCI_MODE_PCIX_M2_133:
1157 pcimode = "266MHz PCIX(M2) bus";
1158 break;
1159 default:
1160 pcimode = "unsupported bus!";
1161 mode = -1;
1162 }
1163
1164 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
1167 return mode;
1168 }
1169
1170 /**
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1177 * '-1' on failure
1178 */
1179
1180 static int init_tti(struct s2io_nic *nic, int link)
1181 {
1182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183 register u64 val64 = 0;
1184 int i;
1185 struct config_param *config = &nic->config;
1186
1187 for (i = 0; i < config->tx_fifo_num; i++) {
1188 /*
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1191 * by default.
1192 */
1193 if (nic->device_type == XFRAME_II_DEVICE) {
1194 int count = (nic->config.bus_speed * 125)/2;
1195 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196 } else
1197 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1203 if (i == 0)
1204 if (use_continuous_tx_intrs && (link == LINK_UP))
1205 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1206 writeq(val64, &bar0->tti_data1_mem);
1207
1208 if (nic->config.intr_type == MSI_X) {
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213 } else {
1214 if ((nic->config.tx_steering_type ==
1215 TX_DEFAULT_STEERING) &&
1216 (config->tx_fifo_num > 1) &&
1217 (i >= nic->udp_fifo_idx) &&
1218 (i < (nic->udp_fifo_idx +
1219 nic->total_udp_fifos)))
1220 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1224 else
1225 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1229 }
1230
1231 writeq(val64, &bar0->tti_data2_mem);
1232
1233 val64 = TTI_CMD_MEM_WE |
1234 TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
1236 writeq(val64, &bar0->tti_command_mem);
1237
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239 TTI_CMD_MEM_STROBE_NEW_CMD,
1240 S2IO_BIT_RESET) != SUCCESS)
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245 }
1246
1247 /**
1248 * init_nic - Initialization of hardware
1249 * @nic: device private variable
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256 static int init_nic(struct s2io_nic *nic)
1257 {
1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
1264 int dtx_cnt = 0;
1265 unsigned long long mem_share;
1266 int mem_size;
1267 struct config_param *config = &nic->config;
1268 struct mac_info *mac_control = &nic->mac_control;
1269
1270 /* to set the swapper controle on the card */
1271 if (s2io_set_swapper(nic)) {
1272 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1273 return -EIO;
1274 }
1275
1276 /*
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1278 */
1279 if (nic->device_type & XFRAME_II_DEVICE) {
1280 val64 = 0xA500000000ULL;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284 }
1285
1286 /* Remove XGXS from reset state */
1287 val64 = 0;
1288 writeq(val64, &bar0->sw_reset);
1289 msleep(500);
1290 val64 = readq(&bar0->sw_reset);
1291
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294 */
1295 if (nic->device_type == XFRAME_II_DEVICE) {
1296 for (i = 0; i < 50; i++) {
1297 val64 = readq(&bar0->adapter_status);
1298 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 break;
1300 msleep(10);
1301 }
1302 if (i == 50)
1303 return -ENODEV;
1304 }
1305
1306 /* Enable Receiving broadcasts */
1307 add = &bar0->mac_cfg;
1308 val64 = readq(&bar0->mac_cfg);
1309 val64 |= MAC_RMAC_BCAST_ENABLE;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1311 writel((u32)val64, add);
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) (val64 >> 32), (add + 4));
1314
1315 /* Read registers in all blocks */
1316 val64 = readq(&bar0->mac_int_mask);
1317 val64 = readq(&bar0->mc_int_mask);
1318 val64 = readq(&bar0->xgxs_int_mask);
1319
1320 /* Set MTU */
1321 val64 = dev->mtu;
1322 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
1324 if (nic->device_type & XFRAME_II_DEVICE) {
1325 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1327 &bar0->dtx_control, UF);
1328 if (dtx_cnt & 0x1)
1329 msleep(1); /* Necessary!! */
1330 dtx_cnt++;
1331 }
1332 } else {
1333 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335 &bar0->dtx_control, UF);
1336 val64 = readq(&bar0->dtx_control);
1337 dtx_cnt++;
1338 }
1339 }
1340
1341 /* Tx DMA Initialization */
1342 val64 = 0;
1343 writeq(val64, &bar0->tx_fifo_partition_0);
1344 writeq(val64, &bar0->tx_fifo_partition_1);
1345 writeq(val64, &bar0->tx_fifo_partition_2);
1346 writeq(val64, &bar0->tx_fifo_partition_3);
1347
1348 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1349 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1353
1354 if (i == (config->tx_fifo_num - 1)) {
1355 if (i % 2 == 0)
1356 i++;
1357 }
1358
1359 switch (i) {
1360 case 1:
1361 writeq(val64, &bar0->tx_fifo_partition_0);
1362 val64 = 0;
1363 j = 0;
1364 break;
1365 case 3:
1366 writeq(val64, &bar0->tx_fifo_partition_1);
1367 val64 = 0;
1368 j = 0;
1369 break;
1370 case 5:
1371 writeq(val64, &bar0->tx_fifo_partition_2);
1372 val64 = 0;
1373 j = 0;
1374 break;
1375 case 7:
1376 writeq(val64, &bar0->tx_fifo_partition_3);
1377 val64 = 0;
1378 j = 0;
1379 break;
1380 default:
1381 j++;
1382 break;
1383 }
1384 }
1385
1386 /*
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389 */
1390 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1391 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1393 val64 = readq(&bar0->tx_fifo_partition_0);
1394 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1395 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1396
1397 /*
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1399 * integrity checking.
1400 */
1401 val64 = readq(&bar0->tx_pa_cfg);
1402 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403 TX_PA_CFG_IGNORE_SNAP_OUI |
1404 TX_PA_CFG_IGNORE_LLC_CTRL |
1405 TX_PA_CFG_IGNORE_L2_ERR;
1406 writeq(val64, &bar0->tx_pa_cfg);
1407
1408 /* Rx DMA intialization. */
1409 val64 = 0;
1410 for (i = 0; i < config->rx_ring_num; i++) {
1411 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1414 }
1415 writeq(val64, &bar0->rx_queue_priority);
1416
1417 /*
1418 * Allocating equal share of memory to all the
1419 * configured Rings.
1420 */
1421 val64 = 0;
1422 if (nic->device_type & XFRAME_II_DEVICE)
1423 mem_size = 32;
1424 else
1425 mem_size = 64;
1426
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 switch (i) {
1429 case 0:
1430 mem_share = (mem_size / config->rx_ring_num +
1431 mem_size % config->rx_ring_num);
1432 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433 continue;
1434 case 1:
1435 mem_share = (mem_size / config->rx_ring_num);
1436 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437 continue;
1438 case 2:
1439 mem_share = (mem_size / config->rx_ring_num);
1440 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441 continue;
1442 case 3:
1443 mem_share = (mem_size / config->rx_ring_num);
1444 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445 continue;
1446 case 4:
1447 mem_share = (mem_size / config->rx_ring_num);
1448 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449 continue;
1450 case 5:
1451 mem_share = (mem_size / config->rx_ring_num);
1452 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453 continue;
1454 case 6:
1455 mem_share = (mem_size / config->rx_ring_num);
1456 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457 continue;
1458 case 7:
1459 mem_share = (mem_size / config->rx_ring_num);
1460 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461 continue;
1462 }
1463 }
1464 writeq(val64, &bar0->rx_queue_cfg);
1465
1466 /*
1467 * Filling Tx round robin registers
1468 * as per the number of FIFOs for equal scheduling priority
1469 */
1470 switch (config->tx_fifo_num) {
1471 case 1:
1472 val64 = 0x0;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 2:
1480 val64 = 0x0001000100010001ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_0);
1482 writeq(val64, &bar0->tx_w_round_robin_1);
1483 writeq(val64, &bar0->tx_w_round_robin_2);
1484 writeq(val64, &bar0->tx_w_round_robin_3);
1485 val64 = 0x0001000100000000ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_4);
1487 break;
1488 case 3:
1489 val64 = 0x0001020001020001ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_0);
1491 val64 = 0x0200010200010200ULL;
1492 writeq(val64, &bar0->tx_w_round_robin_1);
1493 val64 = 0x0102000102000102ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_2);
1495 val64 = 0x0001020001020001ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_3);
1497 val64 = 0x0200010200000000ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 4:
1501 val64 = 0x0001020300010203ULL;
1502 writeq(val64, &bar0->tx_w_round_robin_0);
1503 writeq(val64, &bar0->tx_w_round_robin_1);
1504 writeq(val64, &bar0->tx_w_round_robin_2);
1505 writeq(val64, &bar0->tx_w_round_robin_3);
1506 val64 = 0x0001020300000000ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 5:
1510 val64 = 0x0001020304000102ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_0);
1512 val64 = 0x0304000102030400ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_1);
1514 val64 = 0x0102030400010203ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_2);
1516 val64 = 0x0400010203040001ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_3);
1518 val64 = 0x0203040000000000ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 6:
1522 val64 = 0x0001020304050001ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_0);
1524 val64 = 0x0203040500010203ULL;
1525 writeq(val64, &bar0->tx_w_round_robin_1);
1526 val64 = 0x0405000102030405ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_2);
1528 val64 = 0x0001020304050001ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_3);
1530 val64 = 0x0203040500000000ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_4);
1532 break;
1533 case 7:
1534 val64 = 0x0001020304050600ULL;
1535 writeq(val64, &bar0->tx_w_round_robin_0);
1536 val64 = 0x0102030405060001ULL;
1537 writeq(val64, &bar0->tx_w_round_robin_1);
1538 val64 = 0x0203040506000102ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_2);
1540 val64 = 0x0304050600010203ULL;
1541 writeq(val64, &bar0->tx_w_round_robin_3);
1542 val64 = 0x0405060000000000ULL;
1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 case 8:
1546 val64 = 0x0001020304050607ULL;
1547 writeq(val64, &bar0->tx_w_round_robin_0);
1548 writeq(val64, &bar0->tx_w_round_robin_1);
1549 writeq(val64, &bar0->tx_w_round_robin_2);
1550 writeq(val64, &bar0->tx_w_round_robin_3);
1551 val64 = 0x0001020300000000ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 }
1555
1556 /* Enable all configured Tx FIFO partitions */
1557 val64 = readq(&bar0->tx_fifo_partition_0);
1558 val64 |= (TX_FIFO_PARTITION_EN);
1559 writeq(val64, &bar0->tx_fifo_partition_0);
1560
1561 /* Filling the Rx round robin registers as per the
1562 * number of Rings and steering based on QoS with
1563 * equal priority.
1564 */
1565 switch (config->rx_ring_num) {
1566 case 1:
1567 val64 = 0x0;
1568 writeq(val64, &bar0->rx_w_round_robin_0);
1569 writeq(val64, &bar0->rx_w_round_robin_1);
1570 writeq(val64, &bar0->rx_w_round_robin_2);
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574 val64 = 0x8080808080808080ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 2:
1578 val64 = 0x0001000100010001ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_0);
1580 writeq(val64, &bar0->rx_w_round_robin_1);
1581 writeq(val64, &bar0->rx_w_round_robin_2);
1582 writeq(val64, &bar0->rx_w_round_robin_3);
1583 val64 = 0x0001000100000000ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586 val64 = 0x8080808040404040ULL;
1587 writeq(val64, &bar0->rts_qos_steering);
1588 break;
1589 case 3:
1590 val64 = 0x0001020001020001ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_0);
1592 val64 = 0x0200010200010200ULL;
1593 writeq(val64, &bar0->rx_w_round_robin_1);
1594 val64 = 0x0102000102000102ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_2);
1596 val64 = 0x0001020001020001ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_3);
1598 val64 = 0x0200010200000000ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601 val64 = 0x8080804040402020ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1603 break;
1604 case 4:
1605 val64 = 0x0001020300010203ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_0);
1607 writeq(val64, &bar0->rx_w_round_robin_1);
1608 writeq(val64, &bar0->rx_w_round_robin_2);
1609 writeq(val64, &bar0->rx_w_round_robin_3);
1610 val64 = 0x0001020300000000ULL;
1611 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613 val64 = 0x8080404020201010ULL;
1614 writeq(val64, &bar0->rts_qos_steering);
1615 break;
1616 case 5:
1617 val64 = 0x0001020304000102ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_0);
1619 val64 = 0x0304000102030400ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_1);
1621 val64 = 0x0102030400010203ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_2);
1623 val64 = 0x0400010203040001ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_3);
1625 val64 = 0x0203040000000000ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628 val64 = 0x8080404020201008ULL;
1629 writeq(val64, &bar0->rts_qos_steering);
1630 break;
1631 case 6:
1632 val64 = 0x0001020304050001ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_0);
1634 val64 = 0x0203040500010203ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_1);
1636 val64 = 0x0405000102030405ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_2);
1638 val64 = 0x0001020304050001ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_3);
1640 val64 = 0x0203040500000000ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643 val64 = 0x8080404020100804ULL;
1644 writeq(val64, &bar0->rts_qos_steering);
1645 break;
1646 case 7:
1647 val64 = 0x0001020304050600ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_0);
1649 val64 = 0x0102030405060001ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_1);
1651 val64 = 0x0203040506000102ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_2);
1653 val64 = 0x0304050600010203ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_3);
1655 val64 = 0x0405060000000000ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658 val64 = 0x8080402010080402ULL;
1659 writeq(val64, &bar0->rts_qos_steering);
1660 break;
1661 case 8:
1662 val64 = 0x0001020304050607ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_0);
1664 writeq(val64, &bar0->rx_w_round_robin_1);
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 writeq(val64, &bar0->rx_w_round_robin_3);
1667 val64 = 0x0001020300000000ULL;
1668 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670 val64 = 0x8040201008040201ULL;
1671 writeq(val64, &bar0->rts_qos_steering);
1672 break;
1673 }
1674
1675 /* UDP Fix */
1676 val64 = 0;
1677 for (i = 0; i < 8; i++)
1678 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
1680 /* Set the default rts frame length for the rings configured */
1681 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682 for (i = 0 ; i < config->rx_ring_num ; i++)
1683 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1687 */
1688 for (i = 0; i < config->rx_ring_num; i++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1694 */
1695 if (rts_frm_len[i] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1697 &bar0->rts_frm_len_n[i]);
1698 }
1699 }
1700
1701 /* Disable differentiated services steering logic */
1702 for (i = 0; i < 64; i++) {
1703 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1704 DBG_PRINT(ERR_DBG,
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1706 dev->name, i);
1707 return -ENODEV;
1708 }
1709 }
1710
1711 /* Program statistics memory */
1712 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1713
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = STAT_BC(0x320);
1716 writeq(val64, &bar0->stat_byte_cnt);
1717 }
1718
1719 /*
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1722 */
1723 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1725 writeq(val64, &bar0->mac_link_util);
1726
1727 /*
1728 * Initializing the Transmit and Receive Traffic Interrupt
1729 * Scheme.
1730 */
1731
1732 /* Initialize TTI */
1733 if (SUCCESS != init_tti(nic, nic->last_link_state))
1734 return -ENODEV;
1735
1736 /* RTI Initialization */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
1738 /*
1739 * Programmed to generate Apprx 500 Intrs per
1740 * second
1741 */
1742 int count = (nic->config.bus_speed * 125)/4;
1743 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744 } else
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1750
1751 writeq(val64, &bar0->rti_data1_mem);
1752
1753 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic->config.intr_type == MSI_X)
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
1758 else
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
1761 writeq(val64, &bar0->rti_data2_mem);
1762
1763 for (i = 0; i < config->rx_ring_num; i++) {
1764 val64 = RTI_CMD_MEM_WE |
1765 RTI_CMD_MEM_STROBE_NEW_CMD |
1766 RTI_CMD_MEM_OFFSET(i);
1767 writeq(val64, &bar0->rti_command_mem);
1768
1769 /*
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1775 */
1776 time = 0;
1777 while (true) {
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
1781
1782 if (time > 10) {
1783 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1784 dev->name);
1785 return -ENODEV;
1786 }
1787 time++;
1788 msleep(50);
1789 }
1790 }
1791
1792 /*
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1795 */
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799 /* Disable RMAC PAD STRIPPING */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1808
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 }
1821
1822 /*
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1825 */
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1830
1831 /*
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1836 */
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
1839 val64 |= (((u64)0xFF00 |
1840 nic->mac_control.mc_pause_threshold_q0q3)
1841 << (i * 2 * 8));
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845 val64 = 0;
1846 for (i = 0; i < 4; i++) {
1847 val64 |= (((u64)0xFF00 |
1848 nic->mac_control.mc_pause_threshold_q4q7)
1849 << (i * 2 * 8));
1850 }
1851 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
1853 /*
1854 * TxDMA will stop Read request if the number of read split has
1855 * exceeded the limit pointed by shared_splits
1856 */
1857 val64 = readq(&bar0->pic_control);
1858 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859 writeq(val64, &bar0->pic_control);
1860
1861 if (nic->config.bus_speed == 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863 writeq(0x0, &bar0->read_retry_delay);
1864 writeq(0x0, &bar0->write_retry_delay);
1865 }
1866
1867 /*
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1870 */
1871 if (nic->device_type == XFRAME_II_DEVICE) {
1872 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873 MISC_LINK_STABILITY_PRD(3);
1874 writeq(val64, &bar0->misc_control);
1875 val64 = readq(&bar0->pic_control2);
1876 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877 writeq(val64, &bar0->pic_control2);
1878 }
1879 if (strstr(nic->product_name, "CX4")) {
1880 val64 = TMAC_AVG_IPG(0x17);
1881 writeq(val64, &bar0->tmac_avg_ipg);
1882 }
1883
1884 return SUCCESS;
1885 }
1886 #define LINK_UP_DOWN_INTERRUPT 1
1887 #define MAC_RMAC_ERR_TIMER 2
1888
1889 static int s2io_link_fault_indication(struct s2io_nic *nic)
1890 {
1891 if (nic->device_type == XFRAME_II_DEVICE)
1892 return LINK_UP_DOWN_INTERRUPT;
1893 else
1894 return MAC_RMAC_ERR_TIMER;
1895 }
1896
1897 /**
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1903 * Return Value:
1904 * NONE.
1905 */
1906 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907 {
1908 u64 temp64;
1909
1910 temp64 = readq(addr);
1911
1912 if (flag == ENABLE_INTRS)
1913 temp64 &= ~((u64)value);
1914 else
1915 temp64 |= ((u64)value);
1916 writeq(temp64, addr);
1917 }
1918
1919 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1920 {
1921 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922 register u64 gen_int_mask = 0;
1923 u64 interruptible;
1924
1925 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1926 if (mask & TX_DMA_INTR) {
1927 gen_int_mask |= TXDMA_INT_M;
1928
1929 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1930 TXDMA_PCC_INT | TXDMA_TTI_INT |
1931 TXDMA_LSO_INT | TXDMA_TPA_INT |
1932 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1933
1934 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1935 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937 &bar0->pfc_err_mask);
1938
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1940 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1942
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1944 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945 PCC_N_SERR | PCC_6_COF_OV_ERR |
1946 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948 PCC_TXB_ECC_SG_ERR,
1949 flag, &bar0->pcc_err_mask);
1950
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1952 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1953
1954 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1955 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957 flag, &bar0->lso_err_mask);
1958
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1960 flag, &bar0->tpa_err_mask);
1961
1962 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1963 }
1964
1965 if (mask & TX_MAC_INTR) {
1966 gen_int_mask |= TXMAC_INT_M;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1968 &bar0->mac_int_mask);
1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1970 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972 flag, &bar0->mac_tmac_err_mask);
1973 }
1974
1975 if (mask & TX_XGXS_INTR) {
1976 gen_int_mask |= TXXGXS_INT_M;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1978 &bar0->xgxs_int_mask);
1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1980 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981 flag, &bar0->xgxs_txgxs_err_mask);
1982 }
1983
1984 if (mask & RX_DMA_INTR) {
1985 gen_int_mask |= RXDMA_INT_M;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1987 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988 flag, &bar0->rxdma_int_mask);
1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1990 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1994 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996 &bar0->prc_pcix_err_mask);
1997 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1998 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999 &bar0->rpa_err_mask);
2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2001 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003 RDA_FRM_ECC_SG_ERR |
2004 RDA_MISC_ERR|RDA_PCIX_ERR,
2005 flag, &bar0->rda_err_mask);
2006 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2007 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008 flag, &bar0->rti_err_mask);
2009 }
2010
2011 if (mask & RX_MAC_INTR) {
2012 gen_int_mask |= RXMAC_INT_M;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2014 &bar0->mac_int_mask);
2015 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017 RMAC_DOUBLE_ECC_ERR);
2018 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020 do_s2io_write_bits(interruptible,
2021 flag, &bar0->mac_rmac_err_mask);
2022 }
2023
2024 if (mask & RX_XGXS_INTR) {
2025 gen_int_mask |= RXXGXS_INT_M;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2027 &bar0->xgxs_int_mask);
2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2029 &bar0->xgxs_rxgxs_err_mask);
2030 }
2031
2032 if (mask & MC_INTR) {
2033 gen_int_mask |= MC_INT_M;
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035 flag, &bar0->mc_int_mask);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
2039 }
2040 nic->general_int_mask = gen_int_mask;
2041
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2044 }
2045
2046 /**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
2054 * Return Value: NONE.
2055 */
2056
2057 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 {
2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
2066 if (mask & TX_PIC_INTR) {
2067 /* Enable PIC Intrs in the general intr mask register */
2068 intr_mask |= TXPIC_INT_M;
2069 if (flag == ENABLE_INTRS) {
2070 /*
2071 * If Hercules adapter enable GPIO otherwise
2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
2073 * interrupts for now.
2074 * TODO
2075 */
2076 if (s2io_link_fault_indication(nic) ==
2077 LINK_UP_DOWN_INTERRUPT) {
2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
2079 &bar0->pic_int_mask);
2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2081 &bar0->gpio_int_mask);
2082 } else
2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084 } else if (flag == DISABLE_INTRS) {
2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2090 }
2091 }
2092
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
2095 intr_mask |= TXTRAFFIC_INT_M;
2096 if (flag == ENABLE_INTRS) {
2097 /*
2098 * Enable all the Tx side interrupts
2099 * writing 0 Enables all 64 TX interrupt levels
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
2113 intr_mask |= RXTRAFFIC_INT_M;
2114 if (flag == ENABLE_INTRS) {
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2123 }
2124 }
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
2128 temp64 &= ~((u64)intr_mask);
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
2134 }
2135
2136 /**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
2141 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2142 {
2143 int ret = 0, herc;
2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145 u64 val64 = readq(&bar0->adapter_status);
2146
2147 herc = (sp->device_type == XFRAME_II_DEVICE);
2148
2149 if (flag == false) {
2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2152 ret = 1;
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155 ret = 1;
2156 }
2157 } else {
2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
2161 ret = 1;
2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2165 ret = 1;
2166 }
2167 }
2168
2169 return ret;
2170 }
2171 /**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
2173 * Description: Returns whether the H/W is ready to go or not. Depending
2174 * on whether adapter enable bit was written or not the comparison
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
2177 * Return: 1 If xena is quiescence
2178 * 0 If Xena is not quiescence
2179 */
2180
2181 static int verify_xena_quiescence(struct s2io_nic *sp)
2182 {
2183 int mode;
2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
2187
2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2189 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2193 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2197 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2201 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2205 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2209 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2213 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2217 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2218 return 0;
2219 }
2220
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2227 sp->device_type == XFRAME_II_DEVICE &&
2228 mode != PCI_MODE_PCI_33) {
2229 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2234 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2235 return 0;
2236 }
2237 return 1;
2238 }
2239
2240 /**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
2243 * Description :
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
2248 static void fix_mac_address(struct s2io_nic *sp)
2249 {
2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
2256 udelay(10);
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259 }
2260
2261 /**
2262 * start_nic - Turns the device on
2263 * @nic : device private variable.
2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
2270 * Return Value:
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274 static int start_nic(struct s2io_nic *nic)
2275 {
2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
2279 u16 subid, i;
2280 struct config_param *config = &nic->config;
2281 struct mac_info *mac_control = &nic->mac_control;
2282
2283 /* PRC Initialization and configuration */
2284 for (i = 0; i < config->rx_ring_num; i++) {
2285 struct ring_info *ring = &mac_control->rings[i];
2286
2287 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2288 &bar0->prc_rxd0_n[i]);
2289
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2300 }
2301
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2307 }
2308
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
2313 nic->vlan_strip_flag = 0;
2314 }
2315
2316 /*
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2320 */
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325
2326 msleep(100); /* Delay by around 100 ms. */
2327
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2332
2333 /*
2334 * Verify if the device is ready to be enabled, if so enable
2335 * it.
2336 */
2337 val64 = readq(&bar0->adapter_status);
2338 if (!verify_xena_quiescence(nic)) {
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev->name, (unsigned long long)val64);
2342 return FAILURE;
2343 }
2344
2345 /*
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2351 */
2352
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2357
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359 /*
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2362 */
2363 schedule_work(&nic->set_link_task);
2364 }
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
2374 }
2375
2376 return SUCCESS;
2377 }
2378 /**
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380 */
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382 struct TxD *txdlp, int get_off)
2383 {
2384 struct s2io_nic *nic = fifo_data->nic;
2385 struct sk_buff *skb;
2386 struct TxD *txds;
2387 u16 j, frg_cnt;
2388
2389 txds = txdlp;
2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392 sizeof(u64), PCI_DMA_TODEVICE);
2393 txds++;
2394 }
2395
2396 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2397 if (!skb) {
2398 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2399 return NULL;
2400 }
2401 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402 skb_headlen(skb), PCI_DMA_TODEVICE);
2403 frg_cnt = skb_shinfo(skb)->nr_frags;
2404 if (frg_cnt) {
2405 txds++;
2406 for (j = 0; j < frg_cnt; j++, txds++) {
2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408 if (!txds->Buffer_Pointer)
2409 break;
2410 pci_unmap_page(nic->pdev,
2411 (dma_addr_t)txds->Buffer_Pointer,
2412 frag->size, PCI_DMA_TODEVICE);
2413 }
2414 }
2415 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 return skb;
2417 }
2418
2419 /**
2420 * free_tx_buffers - Free all queued Tx buffers
2421 * @nic : device private variable.
2422 * Description:
2423 * Free all queued Tx buffers.
2424 * Return Value: void
2425 */
2426
2427 static void free_tx_buffers(struct s2io_nic *nic)
2428 {
2429 struct net_device *dev = nic->dev;
2430 struct sk_buff *skb;
2431 struct TxD *txdp;
2432 int i, j;
2433 int cnt = 0;
2434 struct config_param *config = &nic->config;
2435 struct mac_info *mac_control = &nic->mac_control;
2436 struct stat_block *stats = mac_control->stats_info;
2437 struct swStat *swstats = &stats->sw_stat;
2438
2439 for (i = 0; i < config->tx_fifo_num; i++) {
2440 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441 struct fifo_info *fifo = &mac_control->fifos[i];
2442 unsigned long flags;
2443
2444 spin_lock_irqsave(&fifo->tx_lock, flags);
2445 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2447 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448 if (skb) {
2449 swstats->mem_freed += skb->truesize;
2450 dev_kfree_skb(skb);
2451 cnt++;
2452 }
2453 }
2454 DBG_PRINT(INTR_DBG,
2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
2456 dev->name, cnt, i);
2457 fifo->tx_curr_get_info.offset = 0;
2458 fifo->tx_curr_put_info.offset = 0;
2459 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2460 }
2461 }
2462
2463 /**
2464 * stop_nic - To stop the nic
2465 * @nic ; device private variable.
2466 * Description:
2467 * This function does exactly the opposite of what the start_nic()
2468 * function does. This function is called to stop the device.
2469 * Return Value:
2470 * void.
2471 */
2472
2473 static void stop_nic(struct s2io_nic *nic)
2474 {
2475 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2476 register u64 val64 = 0;
2477 u16 interruptible;
2478
2479 /* Disable all interrupts */
2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482 interruptible |= TX_PIC_INTR;
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492 * fill_rx_buffers - Allocates the Rx side skbs
2493 * @ring_info: per ring structure
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
2497 * Description:
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514 int from_card_up)
2515 {
2516 struct sk_buff *skb;
2517 struct RxD_t *rxdp;
2518 int off, size, block_no, block_no1;
2519 u32 alloc_tab = 0;
2520 u32 alloc_cnt;
2521 u64 tmp;
2522 struct buffAdd *ba;
2523 struct RxD_t *first_rxdp = NULL;
2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525 int rxd_index = 0;
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
2528 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532 block_no1 = ring->rx_curr_get_info.block_index;
2533 while (alloc_tab < alloc_cnt) {
2534 block_no = ring->rx_curr_put_info.block_index;
2535
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
2543
2544 if ((block_no == block_no1) &&
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548 ring->dev->name);
2549 goto end;
2550 }
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
2554 ring->block_count)
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2561 ring->dev->name, rxdp);
2562
2563 }
2564
2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
2568 ring->rx_curr_put_info.offset = off;
2569 goto end;
2570 }
2571 /* calculate size of skb based on ring mode */
2572 size = ring->mtu +
2573 HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575 if (ring->rxd_mode == RXD_MODE_1)
2576 size += NET_IP_ALIGN;
2577 else
2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
2582 if (!skb) {
2583 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584 ring->dev->name);
2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
2589 swstats->mem_alloc_fail_cnt++;
2590
2591 return -ENOMEM ;
2592 }
2593 swstats->mem_allocated += skb->truesize;
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
2596 /* 1 buffer mode - normal operation mode */
2597 rxdp1 = (struct RxD1 *)rxdp;
2598 memset(rxdp, 0, sizeof(struct RxD1));
2599 skb_reserve(skb, NET_IP_ALIGN);
2600 rxdp1->Buffer0_ptr =
2601 pci_map_single(ring->pdev, skb->data,
2602 size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
2604 if (pci_dma_mapping_error(nic->pdev,
2605 rxdp1->Buffer0_ptr))
2606 goto pci_map_failed;
2607
2608 rxdp->Control_2 =
2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610 rxdp->Host_Control = (unsigned long)skb;
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612 /*
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2616 */
2617
2618 rxdp3 = (struct RxD3 *)rxdp;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
2622 memset(rxdp, 0, sizeof(struct RxD3));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627 ba = &ring->ba[block_no][off];
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long)skb->data;
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
2633 skb_reset_tail_pointer(skb);
2634
2635 if (from_card_up) {
2636 rxdp3->Buffer0_ptr =
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN,
2639 PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
2642 goto pci_map_failed;
2643 } else
2644 pci_dma_sync_single_for_device(ring->pdev,
2645 (dma_addr_t)rxdp3->Buffer0_ptr,
2646 BUF0_LEN,
2647 PCI_DMA_FROMDEVICE);
2648
2649 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2650 if (ring->rxd_mode == RXD_MODE_3B) {
2651 /* Two buffer mode */
2652
2653 /*
2654 * Buffer2 will have L3/L4 header plus
2655 * L4 payload
2656 */
2657 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658 skb->data,
2659 ring->mtu + 4,
2660 PCI_DMA_FROMDEVICE);
2661
2662 if (pci_dma_mapping_error(nic->pdev,
2663 rxdp3->Buffer2_ptr))
2664 goto pci_map_failed;
2665
2666 if (from_card_up) {
2667 rxdp3->Buffer1_ptr =
2668 pci_map_single(ring->pdev,
2669 ba->ba_1,
2670 BUF1_LEN,
2671 PCI_DMA_FROMDEVICE);
2672
2673 if (pci_dma_mapping_error(nic->pdev,
2674 rxdp3->Buffer1_ptr)) {
2675 pci_unmap_single(ring->pdev,
2676 (dma_addr_t)(unsigned long)
2677 skb->data,
2678 ring->mtu + 4,
2679 PCI_DMA_FROMDEVICE);
2680 goto pci_map_failed;
2681 }
2682 }
2683 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2685 (ring->mtu + 4);
2686 }
2687 rxdp->Control_2 |= s2BIT(0);
2688 rxdp->Host_Control = (unsigned long) (skb);
2689 }
2690 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691 rxdp->Control_1 |= RXD_OWN_XENA;
2692 off++;
2693 if (off == (ring->rxd_count + 1))
2694 off = 0;
2695 ring->rx_curr_put_info.offset = off;
2696
2697 rxdp->Control_2 |= SET_RXD_MARKER;
2698 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 if (first_rxdp) {
2700 wmb();
2701 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 }
2703 first_rxdp = rxdp;
2704 }
2705 ring->rx_bufs_left += 1;
2706 alloc_tab++;
2707 }
2708
2709 end:
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2713 */
2714 if (first_rxdp) {
2715 wmb();
2716 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717 }
2718
2719 return SUCCESS;
2720
2721 pci_map_failed:
2722 swstats->pci_map_fail_cnt++;
2723 swstats->mem_freed += skb->truesize;
2724 dev_kfree_skb_irq(skb);
2725 return -ENOMEM;
2726 }
2727
2728 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729 {
2730 struct net_device *dev = sp->dev;
2731 int j;
2732 struct sk_buff *skb;
2733 struct RxD_t *rxdp;
2734 struct buffAdd *ba;
2735 struct RxD1 *rxdp1;
2736 struct RxD3 *rxdp3;
2737 struct mac_info *mac_control = &sp->mac_control;
2738 struct stat_block *stats = mac_control->stats_info;
2739 struct swStat *swstats = &stats->sw_stat;
2740
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745 if (!skb)
2746 continue;
2747 if (sp->rxd_mode == RXD_MODE_1) {
2748 rxdp1 = (struct RxD1 *)rxdp;
2749 pci_unmap_single(sp->pdev,
2750 (dma_addr_t)rxdp1->Buffer0_ptr,
2751 dev->mtu +
2752 HEADER_ETHERNET_II_802_3_SIZE +
2753 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754 PCI_DMA_FROMDEVICE);
2755 memset(rxdp, 0, sizeof(struct RxD1));
2756 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757 rxdp3 = (struct RxD3 *)rxdp;
2758 ba = &mac_control->rings[ring_no].ba[blk][j];
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev,
2768 (dma_addr_t)rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
2771 memset(rxdp, 0, sizeof(struct RxD3));
2772 }
2773 swstats->mem_freed += skb->truesize;
2774 dev_kfree_skb(skb);
2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
2776 }
2777 }
2778
2779 /**
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2782 * Description:
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788 static void free_rx_buffers(struct s2io_nic *sp)
2789 {
2790 struct net_device *dev = sp->dev;
2791 int i, blk = 0, buf_cnt = 0;
2792 struct config_param *config = &sp->config;
2793 struct mac_info *mac_control = &sp->mac_control;
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
2796 struct ring_info *ring = &mac_control->rings[i];
2797
2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799 free_rxd_blk(sp, i, blk);
2800
2801 ring->rx_curr_put_info.block_index = 0;
2802 ring->rx_curr_get_info.block_index = 0;
2803 ring->rx_curr_put_info.offset = 0;
2804 ring->rx_curr_get_info.offset = 0;
2805 ring->rx_bufs_left = 0;
2806 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807 dev->name, buf_cnt, i);
2808 }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815 ring->dev->name);
2816 }
2817 return 0;
2818 }
2819
2820 /**
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
2837 int pkts_processed = 0;
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
2840 struct s2io_nic *nic = netdev_priv(dev);
2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2842 int budget_org = budget;
2843
2844 if (unlikely(!is_s2io_card_up(nic)))
2845 return 0;
2846
2847 pkts_processed = rx_intr_handler(ring, budget);
2848 s2io_chk_rx_buffers(nic, ring);
2849
2850 if (pkts_processed < budget_org) {
2851 napi_complete(napi);
2852 /*Re Enable MSI-Rx Vector*/
2853 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2854 addr += 7 - ring->ring_no;
2855 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856 writeb(val8, addr);
2857 val8 = readb(addr);
2858 }
2859 return pkts_processed;
2860 }
2861
2862 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863 {
2864 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2865 int pkts_processed = 0;
2866 int ring_pkts_processed, i;
2867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868 int budget_org = budget;
2869 struct config_param *config = &nic->config;
2870 struct mac_info *mac_control = &nic->mac_control;
2871
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
2874
2875 for (i = 0; i < config->rx_ring_num; i++) {
2876 struct ring_info *ring = &mac_control->rings[i];
2877 ring_pkts_processed = rx_intr_handler(ring, budget);
2878 s2io_chk_rx_buffers(nic, ring);
2879 pkts_processed += ring_pkts_processed;
2880 budget -= ring_pkts_processed;
2881 if (budget <= 0)
2882 break;
2883 }
2884 if (pkts_processed < budget_org) {
2885 napi_complete(napi);
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0->rx_traffic_mask);
2888 readl(&bar0->rx_traffic_mask);
2889 }
2890 return pkts_processed;
2891 }
2892
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2894 /**
2895 * s2io_netpoll - netpoll event handler entry point
2896 * @dev : pointer to the device structure.
2897 * Description:
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
2902 */
2903 static void s2io_netpoll(struct net_device *dev)
2904 {
2905 struct s2io_nic *nic = netdev_priv(dev);
2906 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2907 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2908 int i;
2909 struct config_param *config = &nic->config;
2910 struct mac_info *mac_control = &nic->mac_control;
2911
2912 if (pci_channel_offline(nic->pdev))
2913 return;
2914
2915 disable_irq(dev->irq);
2916
2917 writeq(val64, &bar0->rx_traffic_int);
2918 writeq(val64, &bar0->tx_traffic_int);
2919
2920 /* we need to free up the transmitted skbufs or else netpoll will
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2923 */
2924 for (i = 0; i < config->tx_fifo_num; i++)
2925 tx_intr_handler(&mac_control->fifos[i]);
2926
2927 /* check for received packet and indicate up to network */
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 rx_intr_handler(ring, 0);
2932 }
2933
2934 for (i = 0; i < config->rx_ring_num; i++) {
2935 struct ring_info *ring = &mac_control->rings[i];
2936
2937 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2938 DBG_PRINT(INFO_DBG,
2939 "%s: Out of memory in Rx Netpoll!!\n",
2940 dev->name);
2941 break;
2942 }
2943 }
2944 enable_irq(dev->irq);
2945 }
2946 #endif
2947
2948 /**
2949 * rx_intr_handler - Rx interrupt handler
2950 * @ring_info: per ring structure.
2951 * @budget: budget for napi processing.
2952 * Description:
2953 * If the interrupt is because of a received frame or if the
2954 * receive ring contains fresh as yet un-processed frames,this function is
2955 * called. It picks out the RxD at which place the last Rx processing had
2956 * stopped and sends the skb to the OSM's Rx handler and then increments
2957 * the offset.
2958 * Return Value:
2959 * No. of napi packets processed.
2960 */
2961 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2962 {
2963 int get_block, put_block;
2964 struct rx_curr_get_info get_info, put_info;
2965 struct RxD_t *rxdp;
2966 struct sk_buff *skb;
2967 int pkt_cnt = 0, napi_pkts = 0;
2968 int i;
2969 struct RxD1 *rxdp1;
2970 struct RxD3 *rxdp3;
2971
2972 get_info = ring_data->rx_curr_get_info;
2973 get_block = get_info.block_index;
2974 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2975 put_block = put_info.block_index;
2976 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2977
2978 while (RXD_IS_UP2DT(rxdp)) {
2979 /*
2980 * If your are next to put index then it's
2981 * FIFO full condition
2982 */
2983 if ((get_block == put_block) &&
2984 (get_info.offset + 1) == put_info.offset) {
2985 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2986 ring_data->dev->name);
2987 break;
2988 }
2989 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2990 if (skb == NULL) {
2991 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2992 ring_data->dev->name);
2993 return 0;
2994 }
2995 if (ring_data->rxd_mode == RXD_MODE_1) {
2996 rxdp1 = (struct RxD1 *)rxdp;
2997 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2998 rxdp1->Buffer0_ptr,
2999 ring_data->mtu +
3000 HEADER_ETHERNET_II_802_3_SIZE +
3001 HEADER_802_2_SIZE +
3002 HEADER_SNAP_SIZE,
3003 PCI_DMA_FROMDEVICE);
3004 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3005 rxdp3 = (struct RxD3 *)rxdp;
3006 pci_dma_sync_single_for_cpu(ring_data->pdev,
3007 (dma_addr_t)rxdp3->Buffer0_ptr,
3008 BUF0_LEN,
3009 PCI_DMA_FROMDEVICE);
3010 pci_unmap_single(ring_data->pdev,
3011 (dma_addr_t)rxdp3->Buffer2_ptr,
3012 ring_data->mtu + 4,
3013 PCI_DMA_FROMDEVICE);
3014 }
3015 prefetch(skb->data);
3016 rx_osm_handler(ring_data, rxdp);
3017 get_info.offset++;
3018 ring_data->rx_curr_get_info.offset = get_info.offset;
3019 rxdp = ring_data->rx_blocks[get_block].
3020 rxds[get_info.offset].virt_addr;
3021 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3022 get_info.offset = 0;
3023 ring_data->rx_curr_get_info.offset = get_info.offset;
3024 get_block++;
3025 if (get_block == ring_data->block_count)
3026 get_block = 0;
3027 ring_data->rx_curr_get_info.block_index = get_block;
3028 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3029 }
3030
3031 if (ring_data->nic->config.napi) {
3032 budget--;
3033 napi_pkts++;
3034 if (!budget)
3035 break;
3036 }
3037 pkt_cnt++;
3038 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3039 break;
3040 }
3041 if (ring_data->lro) {
3042 /* Clear all LRO sessions before exiting */
3043 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3044 struct lro *lro = &ring_data->lro0_n[i];
3045 if (lro->in_use) {
3046 update_L3L4_header(ring_data->nic, lro);
3047 queue_rx_frame(lro->parent, lro->vlan_tag);
3048 clear_lro_session(lro);
3049 }
3050 }
3051 }
3052 return napi_pkts;
3053 }
3054
3055 /**
3056 * tx_intr_handler - Transmit interrupt handler
3057 * @nic : device private variable
3058 * Description:
3059 * If an interrupt was raised to indicate DMA complete of the
3060 * Tx packet, this function is called. It identifies the last TxD
3061 * whose buffer was freed and frees all skbs whose data have already
3062 * DMA'ed into the NICs internal memory.
3063 * Return Value:
3064 * NONE
3065 */
3066
3067 static void tx_intr_handler(struct fifo_info *fifo_data)
3068 {
3069 struct s2io_nic *nic = fifo_data->nic;
3070 struct tx_curr_get_info get_info, put_info;
3071 struct sk_buff *skb = NULL;
3072 struct TxD *txdlp;
3073 int pkt_cnt = 0;
3074 unsigned long flags = 0;
3075 u8 err_mask;
3076 struct stat_block *stats = nic->mac_control.stats_info;
3077 struct swStat *swstats = &stats->sw_stat;
3078
3079 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3080 return;
3081
3082 get_info = fifo_data->tx_curr_get_info;
3083 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3084 txdlp = (struct TxD *)
3085 fifo_data->list_info[get_info.offset].list_virt_addr;
3086 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3087 (get_info.offset != put_info.offset) &&
3088 (txdlp->Host_Control)) {
3089 /* Check for TxD errors */
3090 if (txdlp->Control_1 & TXD_T_CODE) {
3091 unsigned long long err;
3092 err = txdlp->Control_1 & TXD_T_CODE;
3093 if (err & 0x1) {
3094 swstats->parity_err_cnt++;
3095 }
3096
3097 /* update t_code statistics */
3098 err_mask = err >> 48;
3099 switch (err_mask) {
3100 case 2:
3101 swstats->tx_buf_abort_cnt++;
3102 break;
3103
3104 case 3:
3105 swstats->tx_desc_abort_cnt++;
3106 break;
3107
3108 case 7:
3109 swstats->tx_parity_err_cnt++;
3110 break;
3111
3112 case 10:
3113 swstats->tx_link_loss_cnt++;
3114 break;
3115
3116 case 15:
3117 swstats->tx_list_proc_err_cnt++;
3118 break;
3119 }
3120 }
3121
3122 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3123 if (skb == NULL) {
3124 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3125 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3126 __func__);
3127 return;
3128 }
3129 pkt_cnt++;
3130
3131 /* Updating the statistics block */
3132 swstats->mem_freed += skb->truesize;
3133 dev_kfree_skb_irq(skb);
3134
3135 get_info.offset++;
3136 if (get_info.offset == get_info.fifo_len + 1)
3137 get_info.offset = 0;
3138 txdlp = (struct TxD *)
3139 fifo_data->list_info[get_info.offset].list_virt_addr;
3140 fifo_data->tx_curr_get_info.offset = get_info.offset;
3141 }
3142
3143 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3144
3145 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3146 }
3147
3148 /**
3149 * s2io_mdio_write - Function to write in to MDIO registers
3150 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3151 * @addr : address value
3152 * @value : data value
3153 * @dev : pointer to net_device structure
3154 * Description:
3155 * This function is used to write values to the MDIO registers
3156 * NONE
3157 */
3158 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3159 struct net_device *dev)
3160 {
3161 u64 val64;
3162 struct s2io_nic *sp = netdev_priv(dev);
3163 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3164
3165 /* address transaction */
3166 val64 = MDIO_MMD_INDX_ADDR(addr) |
3167 MDIO_MMD_DEV_ADDR(mmd_type) |
3168 MDIO_MMS_PRT_ADDR(0x0);
3169 writeq(val64, &bar0->mdio_control);
3170 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3171 writeq(val64, &bar0->mdio_control);
3172 udelay(100);
3173
3174 /* Data transaction */
3175 val64 = MDIO_MMD_INDX_ADDR(addr) |
3176 MDIO_MMD_DEV_ADDR(mmd_type) |
3177 MDIO_MMS_PRT_ADDR(0x0) |
3178 MDIO_MDIO_DATA(value) |
3179 MDIO_OP(MDIO_OP_WRITE_TRANS);
3180 writeq(val64, &bar0->mdio_control);
3181 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3182 writeq(val64, &bar0->mdio_control);
3183 udelay(100);
3184
3185 val64 = MDIO_MMD_INDX_ADDR(addr) |
3186 MDIO_MMD_DEV_ADDR(mmd_type) |
3187 MDIO_MMS_PRT_ADDR(0x0) |
3188 MDIO_OP(MDIO_OP_READ_TRANS);
3189 writeq(val64, &bar0->mdio_control);
3190 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3191 writeq(val64, &bar0->mdio_control);
3192 udelay(100);
3193 }
3194
3195 /**
3196 * s2io_mdio_read - Function to write in to MDIO registers
3197 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3198 * @addr : address value
3199 * @dev : pointer to net_device structure
3200 * Description:
3201 * This function is used to read values to the MDIO registers
3202 * NONE
3203 */
3204 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3205 {
3206 u64 val64 = 0x0;
3207 u64 rval64 = 0x0;
3208 struct s2io_nic *sp = netdev_priv(dev);
3209 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3210
3211 /* address transaction */
3212 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3213 | MDIO_MMD_DEV_ADDR(mmd_type)
3214 | MDIO_MMS_PRT_ADDR(0x0));
3215 writeq(val64, &bar0->mdio_control);
3216 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3217 writeq(val64, &bar0->mdio_control);
3218 udelay(100);
3219
3220 /* Data transaction */
3221 val64 = MDIO_MMD_INDX_ADDR(addr) |
3222 MDIO_MMD_DEV_ADDR(mmd_type) |
3223 MDIO_MMS_PRT_ADDR(0x0) |
3224 MDIO_OP(MDIO_OP_READ_TRANS);
3225 writeq(val64, &bar0->mdio_control);
3226 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3227 writeq(val64, &bar0->mdio_control);
3228 udelay(100);
3229
3230 /* Read the value from regs */
3231 rval64 = readq(&bar0->mdio_control);
3232 rval64 = rval64 & 0xFFFF0000;
3233 rval64 = rval64 >> 16;
3234 return rval64;
3235 }
3236
3237 /**
3238 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3239 * @counter : counter value to be updated
3240 * @flag : flag to indicate the status
3241 * @type : counter type
3242 * Description:
3243 * This function is to check the status of the xpak counters value
3244 * NONE
3245 */
3246
3247 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3248 u16 flag, u16 type)
3249 {
3250 u64 mask = 0x3;
3251 u64 val64;
3252 int i;
3253 for (i = 0; i < index; i++)
3254 mask = mask << 0x2;
3255
3256 if (flag > 0) {
3257 *counter = *counter + 1;
3258 val64 = *regs_stat & mask;
3259 val64 = val64 >> (index * 0x2);
3260 val64 = val64 + 1;
3261 if (val64 == 3) {
3262 switch (type) {
3263 case 1:
3264 DBG_PRINT(ERR_DBG,
3265 "Take Xframe NIC out of service.\n");
3266 DBG_PRINT(ERR_DBG,
3267 "Excessive temperatures may result in premature transceiver failure.\n");
3268 break;
3269 case 2:
3270 DBG_PRINT(ERR_DBG,
3271 "Take Xframe NIC out of service.\n");
3272 DBG_PRINT(ERR_DBG,
3273 "Excessive bias currents may indicate imminent laser diode failure.\n");
3274 break;
3275 case 3:
3276 DBG_PRINT(ERR_DBG,
3277 "Take Xframe NIC out of service.\n");
3278 DBG_PRINT(ERR_DBG,
3279 "Excessive laser output power may saturate far-end receiver.\n");
3280 break;
3281 default:
3282 DBG_PRINT(ERR_DBG,
3283 "Incorrect XPAK Alarm type\n");
3284 }
3285 val64 = 0x0;
3286 }
3287 val64 = val64 << (index * 0x2);
3288 *regs_stat = (*regs_stat & (~mask)) | (val64);
3289
3290 } else {
3291 *regs_stat = *regs_stat & (~mask);
3292 }
3293 }
3294
3295 /**
3296 * s2io_updt_xpak_counter - Function to update the xpak counters
3297 * @dev : pointer to net_device struct
3298 * Description:
3299 * This function is to upate the status of the xpak counters value
3300 * NONE
3301 */
3302 static void s2io_updt_xpak_counter(struct net_device *dev)
3303 {
3304 u16 flag = 0x0;
3305 u16 type = 0x0;
3306 u16 val16 = 0x0;
3307 u64 val64 = 0x0;
3308 u64 addr = 0x0;
3309
3310 struct s2io_nic *sp = netdev_priv(dev);
3311 struct stat_block *stats = sp->mac_control.stats_info;
3312 struct xpakStat *xstats = &stats->xpak_stat;
3313
3314 /* Check the communication with the MDIO slave */
3315 addr = MDIO_CTRL1;
3316 val64 = 0x0;
3317 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3318 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3319 DBG_PRINT(ERR_DBG,
3320 "ERR: MDIO slave access failed - Returned %llx\n",
3321 (unsigned long long)val64);
3322 return;
3323 }
3324
3325 /* Check for the expected value of control reg 1 */
3326 if (val64 != MDIO_CTRL1_SPEED10G) {
3327 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3328 "Returned: %llx- Expected: 0x%x\n",
3329 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3330 return;
3331 }
3332
3333 /* Loading the DOM register to MDIO register */
3334 addr = 0xA100;
3335 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3336 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3337
3338 /* Reading the Alarm flags */
3339 addr = 0xA070;
3340 val64 = 0x0;
3341 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3342
3343 flag = CHECKBIT(val64, 0x7);
3344 type = 1;
3345 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3346 &xstats->xpak_regs_stat,
3347 0x0, flag, type);
3348
3349 if (CHECKBIT(val64, 0x6))
3350 xstats->alarm_transceiver_temp_low++;
3351
3352 flag = CHECKBIT(val64, 0x3);
3353 type = 2;
3354 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3355 &xstats->xpak_regs_stat,
3356 0x2, flag, type);
3357
3358 if (CHECKBIT(val64, 0x2))
3359 xstats->alarm_laser_bias_current_low++;
3360
3361 flag = CHECKBIT(val64, 0x1);
3362 type = 3;
3363 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3364 &xstats->xpak_regs_stat,
3365 0x4, flag, type);
3366
3367 if (CHECKBIT(val64, 0x0))
3368 xstats->alarm_laser_output_power_low++;
3369
3370 /* Reading the Warning flags */
3371 addr = 0xA074;
3372 val64 = 0x0;
3373 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3374
3375 if (CHECKBIT(val64, 0x7))
3376 xstats->warn_transceiver_temp_high++;
3377
3378 if (CHECKBIT(val64, 0x6))
3379 xstats->warn_transceiver_temp_low++;
3380
3381 if (CHECKBIT(val64, 0x3))
3382 xstats->warn_laser_bias_current_high++;
3383
3384 if (CHECKBIT(val64, 0x2))
3385 xstats->warn_laser_bias_current_low++;
3386
3387 if (CHECKBIT(val64, 0x1))
3388 xstats->warn_laser_output_power_high++;
3389
3390 if (CHECKBIT(val64, 0x0))
3391 xstats->warn_laser_output_power_low++;
3392 }
3393
3394 /**
3395 * wait_for_cmd_complete - waits for a command to complete.
3396 * @sp : private member of the device structure, which is a pointer to the
3397 * s2io_nic structure.
3398 * Description: Function that waits for a command to Write into RMAC
3399 * ADDR DATA registers to be completed and returns either success or
3400 * error depending on whether the command was complete or not.
3401 * Return value:
3402 * SUCCESS on success and FAILURE on failure.
3403 */
3404
3405 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3406 int bit_state)
3407 {
3408 int ret = FAILURE, cnt = 0, delay = 1;
3409 u64 val64;
3410
3411 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3412 return FAILURE;
3413
3414 do {
3415 val64 = readq(addr);
3416 if (bit_state == S2IO_BIT_RESET) {
3417 if (!(val64 & busy_bit)) {
3418 ret = SUCCESS;
3419 break;
3420 }
3421 } else {
3422 if (val64 & busy_bit) {
3423 ret = SUCCESS;
3424 break;
3425 }
3426 }
3427
3428 if (in_interrupt())
3429 mdelay(delay);
3430 else
3431 msleep(delay);
3432
3433 if (++cnt >= 10)
3434 delay = 50;
3435 } while (cnt < 20);
3436 return ret;
3437 }
3438 /*
3439 * check_pci_device_id - Checks if the device id is supported
3440 * @id : device id
3441 * Description: Function to check if the pci device id is supported by driver.
3442 * Return value: Actual device id if supported else PCI_ANY_ID
3443 */
3444 static u16 check_pci_device_id(u16 id)
3445 {
3446 switch (id) {
3447 case PCI_DEVICE_ID_HERC_WIN:
3448 case PCI_DEVICE_ID_HERC_UNI:
3449 return XFRAME_II_DEVICE;
3450 case PCI_DEVICE_ID_S2IO_UNI:
3451 case PCI_DEVICE_ID_S2IO_WIN:
3452 return XFRAME_I_DEVICE;
3453 default:
3454 return PCI_ANY_ID;
3455 }
3456 }
3457
3458 /**
3459 * s2io_reset - Resets the card.
3460 * @sp : private member of the device structure.
3461 * Description: Function to Reset the card. This function then also
3462 * restores the previously saved PCI configuration space registers as
3463 * the card reset also resets the configuration space.
3464 * Return value:
3465 * void.
3466 */
3467
3468 static void s2io_reset(struct s2io_nic *sp)
3469 {
3470 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3471 u64 val64;
3472 u16 subid, pci_cmd;
3473 int i;
3474 u16 val16;
3475 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3476 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3477 struct stat_block *stats;
3478 struct swStat *swstats;
3479
3480 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3481 __func__, pci_name(sp->pdev));
3482
3483 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3484 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3485
3486 val64 = SW_RESET_ALL;
3487 writeq(val64, &bar0->sw_reset);
3488 if (strstr(sp->product_name, "CX4"))
3489 msleep(750);
3490 msleep(250);
3491 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3492
3493 /* Restore the PCI state saved during initialization. */
3494 pci_restore_state(sp->pdev);
3495 pci_save_state(sp->pdev);
3496 pci_read_config_word(sp->pdev, 0x2, &val16);
3497 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3498 break;
3499 msleep(200);
3500 }
3501
3502 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3503 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3504
3505 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3506
3507 s2io_init_pci(sp);
3508
3509 /* Set swapper to enable I/O register access */
3510 s2io_set_swapper(sp);
3511
3512 /* restore mac_addr entries */
3513 do_s2io_restore_unicast_mc(sp);
3514
3515 /* Restore the MSIX table entries from local variables */
3516 restore_xmsi_data(sp);
3517
3518 /* Clear certain PCI/PCI-X fields after reset */
3519 if (sp->device_type == XFRAME_II_DEVICE) {
3520 /* Clear "detected parity error" bit */
3521 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3522
3523 /* Clearing PCIX Ecc status register */
3524 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3525
3526 /* Clearing PCI_STATUS error reflected here */
3527 writeq(s2BIT(62), &bar0->txpic_int_reg);
3528 }
3529
3530 /* Reset device statistics maintained by OS */
3531 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3532
3533 stats = sp->mac_control.stats_info;
3534 swstats = &stats->sw_stat;
3535
3536 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3537 up_cnt = swstats->link_up_cnt;
3538 down_cnt = swstats->link_down_cnt;
3539 up_time = swstats->link_up_time;
3540 down_time = swstats->link_down_time;
3541 reset_cnt = swstats->soft_reset_cnt;
3542 mem_alloc_cnt = swstats->mem_allocated;
3543 mem_free_cnt = swstats->mem_freed;
3544 watchdog_cnt = swstats->watchdog_timer_cnt;
3545
3546 memset(stats, 0, sizeof(struct stat_block));
3547
3548 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3549 swstats->link_up_cnt = up_cnt;
3550 swstats->link_down_cnt = down_cnt;
3551 swstats->link_up_time = up_time;
3552 swstats->link_down_time = down_time;
3553 swstats->soft_reset_cnt = reset_cnt;
3554 swstats->mem_allocated = mem_alloc_cnt;
3555 swstats->mem_freed = mem_free_cnt;
3556 swstats->watchdog_timer_cnt = watchdog_cnt;
3557
3558 /* SXE-002: Configure link and activity LED to turn it off */
3559 subid = sp->pdev->subsystem_device;
3560 if (((subid & 0xFF) >= 0x07) &&
3561 (sp->device_type == XFRAME_I_DEVICE)) {
3562 val64 = readq(&bar0->gpio_control);
3563 val64 |= 0x0000800000000000ULL;
3564 writeq(val64, &bar0->gpio_control);
3565 val64 = 0x0411040400000000ULL;
3566 writeq(val64, (void __iomem *)bar0 + 0x2700);
3567 }
3568
3569 /*
3570 * Clear spurious ECC interrupts that would have occured on
3571 * XFRAME II cards after reset.
3572 */
3573 if (sp->device_type == XFRAME_II_DEVICE) {
3574 val64 = readq(&bar0->pcc_err_reg);
3575 writeq(val64, &bar0->pcc_err_reg);
3576 }
3577
3578 sp->device_enabled_once = false;
3579 }
3580
3581 /**
3582 * s2io_set_swapper - to set the swapper controle on the card
3583 * @sp : private member of the device structure,
3584 * pointer to the s2io_nic structure.
3585 * Description: Function to set the swapper control on the card
3586 * correctly depending on the 'endianness' of the system.
3587 * Return value:
3588 * SUCCESS on success and FAILURE on failure.
3589 */
3590
3591 static int s2io_set_swapper(struct s2io_nic *sp)
3592 {
3593 struct net_device *dev = sp->dev;
3594 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3595 u64 val64, valt, valr;
3596
3597 /*
3598 * Set proper endian settings and verify the same by reading
3599 * the PIF Feed-back register.
3600 */
3601
3602 val64 = readq(&bar0->pif_rd_swapper_fb);
3603 if (val64 != 0x0123456789ABCDEFULL) {
3604 int i = 0;
3605 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3606 0x8100008181000081ULL, /* FE=1, SE=0 */
3607 0x4200004242000042ULL, /* FE=0, SE=1 */
3608 0}; /* FE=0, SE=0 */
3609
3610 while (i < 4) {
3611 writeq(value[i], &bar0->swapper_ctrl);
3612 val64 = readq(&bar0->pif_rd_swapper_fb);
3613 if (val64 == 0x0123456789ABCDEFULL)
3614 break;
3615 i++;
3616 }
3617 if (i == 4) {
3618 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3619 "feedback read %llx\n",
3620 dev->name, (unsigned long long)val64);
3621 return FAILURE;
3622 }
3623 valr = value[i];
3624 } else {
3625 valr = readq(&bar0->swapper_ctrl);
3626 }
3627
3628 valt = 0x0123456789ABCDEFULL;
3629 writeq(valt, &bar0->xmsi_address);
3630 val64 = readq(&bar0->xmsi_address);
3631
3632 if (val64 != valt) {
3633 int i = 0;
3634 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3635 0x0081810000818100ULL, /* FE=1, SE=0 */
3636 0x0042420000424200ULL, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3638
3639 while (i < 4) {
3640 writeq((value[i] | valr), &bar0->swapper_ctrl);
3641 writeq(valt, &bar0->xmsi_address);
3642 val64 = readq(&bar0->xmsi_address);
3643 if (val64 == valt)
3644 break;
3645 i++;
3646 }
3647 if (i == 4) {
3648 unsigned long long x = val64;
3649 DBG_PRINT(ERR_DBG,
3650 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3651 return FAILURE;
3652 }
3653 }
3654 val64 = readq(&bar0->swapper_ctrl);
3655 val64 &= 0xFFFF000000000000ULL;
3656
3657 #ifdef __BIG_ENDIAN
3658 /*
3659 * The device by default set to a big endian format, so a
3660 * big endian driver need not set anything.
3661 */
3662 val64 |= (SWAPPER_CTRL_TXP_FE |
3663 SWAPPER_CTRL_TXP_SE |
3664 SWAPPER_CTRL_TXD_R_FE |
3665 SWAPPER_CTRL_TXD_W_FE |
3666 SWAPPER_CTRL_TXF_R_FE |
3667 SWAPPER_CTRL_RXD_R_FE |
3668 SWAPPER_CTRL_RXD_W_FE |
3669 SWAPPER_CTRL_RXF_W_FE |
3670 SWAPPER_CTRL_XMSI_FE |
3671 SWAPPER_CTRL_STATS_FE |
3672 SWAPPER_CTRL_STATS_SE);
3673 if (sp->config.intr_type == INTA)
3674 val64 |= SWAPPER_CTRL_XMSI_SE;
3675 writeq(val64, &bar0->swapper_ctrl);
3676 #else
3677 /*
3678 * Initially we enable all bits to make it accessible by the
3679 * driver, then we selectively enable only those bits that
3680 * we want to set.
3681 */
3682 val64 |= (SWAPPER_CTRL_TXP_FE |
3683 SWAPPER_CTRL_TXP_SE |
3684 SWAPPER_CTRL_TXD_R_FE |
3685 SWAPPER_CTRL_TXD_R_SE |
3686 SWAPPER_CTRL_TXD_W_FE |
3687 SWAPPER_CTRL_TXD_W_SE |
3688 SWAPPER_CTRL_TXF_R_FE |
3689 SWAPPER_CTRL_RXD_R_FE |
3690 SWAPPER_CTRL_RXD_R_SE |
3691 SWAPPER_CTRL_RXD_W_FE |
3692 SWAPPER_CTRL_RXD_W_SE |
3693 SWAPPER_CTRL_RXF_W_FE |
3694 SWAPPER_CTRL_XMSI_FE |
3695 SWAPPER_CTRL_STATS_FE |
3696 SWAPPER_CTRL_STATS_SE);
3697 if (sp->config.intr_type == INTA)
3698 val64 |= SWAPPER_CTRL_XMSI_SE;
3699 writeq(val64, &bar0->swapper_ctrl);
3700 #endif
3701 val64 = readq(&bar0->swapper_ctrl);
3702
3703 /*
3704 * Verifying if endian settings are accurate by reading a
3705 * feedback register.
3706 */
3707 val64 = readq(&bar0->pif_rd_swapper_fb);
3708 if (val64 != 0x0123456789ABCDEFULL) {
3709 /* Endian settings are incorrect, calls for another dekko. */
3710 DBG_PRINT(ERR_DBG,
3711 "%s: Endian settings are wrong, feedback read %llx\n",
3712 dev->name, (unsigned long long)val64);
3713 return FAILURE;
3714 }
3715
3716 return SUCCESS;
3717 }
3718
3719 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3720 {
3721 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722 u64 val64;
3723 int ret = 0, cnt = 0;
3724
3725 do {
3726 val64 = readq(&bar0->xmsi_access);
3727 if (!(val64 & s2BIT(15)))
3728 break;
3729 mdelay(1);
3730 cnt++;
3731 } while (cnt < 5);
3732 if (cnt == 5) {
3733 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734 ret = 1;
3735 }
3736
3737 return ret;
3738 }
3739
3740 static void restore_xmsi_data(struct s2io_nic *nic)
3741 {
3742 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3743 u64 val64;
3744 int i, msix_index;
3745
3746 if (nic->device_type == XFRAME_I_DEVICE)
3747 return;
3748
3749 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3751 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3753 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3754 writeq(val64, &bar0->xmsi_access);
3755 if (wait_for_msix_trans(nic, msix_index)) {
3756 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757 __func__, msix_index);
3758 continue;
3759 }
3760 }
3761 }
3762
3763 static void store_xmsi_data(struct s2io_nic *nic)
3764 {
3765 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3766 u64 val64, addr, data;
3767 int i, msix_index;
3768
3769 if (nic->device_type == XFRAME_I_DEVICE)
3770 return;
3771
3772 /* Store and display */
3773 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3775 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3776 writeq(val64, &bar0->xmsi_access);
3777 if (wait_for_msix_trans(nic, msix_index)) {
3778 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779 __func__, msix_index);
3780 continue;
3781 }
3782 addr = readq(&bar0->xmsi_address);
3783 data = readq(&bar0->xmsi_data);
3784 if (addr && data) {
3785 nic->msix_info[i].addr = addr;
3786 nic->msix_info[i].data = data;
3787 }
3788 }
3789 }
3790
3791 static int s2io_enable_msi_x(struct s2io_nic *nic)
3792 {
3793 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3794 u64 rx_mat;
3795 u16 msi_control; /* Temp variable */
3796 int ret, i, j, msix_indx = 1;
3797 int size;
3798 struct stat_block *stats = nic->mac_control.stats_info;
3799 struct swStat *swstats = &stats->sw_stat;
3800
3801 size = nic->num_entries * sizeof(struct msix_entry);
3802 nic->entries = kzalloc(size, GFP_KERNEL);
3803 if (!nic->entries) {
3804 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805 __func__);
3806 swstats->mem_alloc_fail_cnt++;
3807 return -ENOMEM;
3808 }
3809 swstats->mem_allocated += size;
3810
3811 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3812 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3813 if (!nic->s2io_entries) {
3814 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3815 __func__);
3816 swstats->mem_alloc_fail_cnt++;
3817 kfree(nic->entries);
3818 swstats->mem_freed
3819 += (nic->num_entries * sizeof(struct msix_entry));
3820 return -ENOMEM;
3821 }
3822 swstats->mem_allocated += size;
3823
3824 nic->entries[0].entry = 0;
3825 nic->s2io_entries[0].entry = 0;
3826 nic->s2io_entries[0].in_use = MSIX_FLG;
3827 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829
3830 for (i = 1; i < nic->num_entries; i++) {
3831 nic->entries[i].entry = ((i - 1) * 8) + 1;
3832 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3833 nic->s2io_entries[i].arg = NULL;
3834 nic->s2io_entries[i].in_use = 0;
3835 }
3836
3837 rx_mat = readq(&bar0->rx_mat);
3838 for (j = 0; j < nic->config.rx_ring_num; j++) {
3839 rx_mat |= RX_MAT_SET(j, msix_indx);
3840 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843 msix_indx += 8;
3844 }
3845 writeq(rx_mat, &bar0->rx_mat);
3846 readq(&bar0->rx_mat);
3847
3848 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3849 /* We fail init if error or we get less vectors than min required */
3850 if (ret) {
3851 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3852 kfree(nic->entries);
3853 swstats->mem_freed += nic->num_entries *
3854 sizeof(struct msix_entry);
3855 kfree(nic->s2io_entries);
3856 swstats->mem_freed += nic->num_entries *
3857 sizeof(struct s2io_msix_entry);
3858 nic->entries = NULL;
3859 nic->s2io_entries = NULL;
3860 return -ENOMEM;
3861 }
3862
3863 /*
3864 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865 * in the herc NIC. (Temp change, needs to be removed later)
3866 */
3867 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868 msi_control |= 0x1; /* Enable MSI */
3869 pci_write_config_word(nic->pdev, 0x42, msi_control);
3870
3871 return 0;
3872 }
3873
3874 /* Handle software interrupt used during MSI(X) test */
3875 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3876 {
3877 struct s2io_nic *sp = dev_id;
3878
3879 sp->msi_detected = 1;
3880 wake_up(&sp->msi_wait);
3881
3882 return IRQ_HANDLED;
3883 }
3884
3885 /* Test interrupt path by forcing a a software IRQ */
3886 static int s2io_test_msi(struct s2io_nic *sp)
3887 {
3888 struct pci_dev *pdev = sp->pdev;
3889 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890 int err;
3891 u64 val64, saved64;
3892
3893 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3894 sp->name, sp);
3895 if (err) {
3896 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3897 sp->dev->name, pci_name(pdev), pdev->irq);
3898 return err;
3899 }
3900
3901 init_waitqueue_head(&sp->msi_wait);
3902 sp->msi_detected = 0;
3903
3904 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906 val64 |= SCHED_INT_CTRL_TIMER_EN;
3907 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908 writeq(val64, &bar0->scheduled_int_ctrl);
3909
3910 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911
3912 if (!sp->msi_detected) {
3913 /* MSI(X) test failed, go back to INTx mode */
3914 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3915 "using MSI(X) during test\n",
3916 sp->dev->name, pci_name(pdev));
3917
3918 err = -EOPNOTSUPP;
3919 }
3920
3921 free_irq(sp->entries[1].vector, sp);
3922
3923 writeq(saved64, &bar0->scheduled_int_ctrl);
3924
3925 return err;
3926 }
3927
3928 static void remove_msix_isr(struct s2io_nic *sp)
3929 {
3930 int i;
3931 u16 msi_control;
3932
3933 for (i = 0; i < sp->num_entries; i++) {
3934 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3935 int vector = sp->entries[i].vector;
3936 void *arg = sp->s2io_entries[i].arg;
3937 free_irq(vector, arg);
3938 }
3939 }
3940
3941 kfree(sp->entries);
3942 kfree(sp->s2io_entries);
3943 sp->entries = NULL;
3944 sp->s2io_entries = NULL;
3945
3946 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947 msi_control &= 0xFFFE; /* Disable MSI */
3948 pci_write_config_word(sp->pdev, 0x42, msi_control);
3949
3950 pci_disable_msix(sp->pdev);
3951 }
3952
3953 static void remove_inta_isr(struct s2io_nic *sp)
3954 {
3955 struct net_device *dev = sp->dev;
3956
3957 free_irq(sp->pdev->irq, dev);
3958 }
3959
3960 /* ********************************************************* *
3961 * Functions defined below concern the OS part of the driver *
3962 * ********************************************************* */
3963
3964 /**
3965 * s2io_open - open entry point of the driver
3966 * @dev : pointer to the device structure.
3967 * Description:
3968 * This function is the open entry point of the driver. It mainly calls a
3969 * function to allocate Rx buffers and inserts them into the buffer
3970 * descriptors and then enables the Rx part of the NIC.
3971 * Return value:
3972 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3973 * file on failure.
3974 */
3975
3976 static int s2io_open(struct net_device *dev)
3977 {
3978 struct s2io_nic *sp = netdev_priv(dev);
3979 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3980 int err = 0;
3981
3982 /*
3983 * Make sure you have link off by default every time
3984 * Nic is initialized
3985 */
3986 netif_carrier_off(dev);
3987 sp->last_link_state = 0;
3988
3989 /* Initialize H/W and enable interrupts */
3990 err = s2io_card_up(sp);
3991 if (err) {
3992 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993 dev->name);
3994 goto hw_init_failed;
3995 }
3996
3997 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3998 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3999 s2io_card_down(sp);
4000 err = -ENODEV;
4001 goto hw_init_failed;
4002 }
4003 s2io_start_all_tx_queue(sp);
4004 return 0;
4005
4006 hw_init_failed:
4007 if (sp->config.intr_type == MSI_X) {
4008 if (sp->entries) {
4009 kfree(sp->entries);
4010 swstats->mem_freed += sp->num_entries *
4011 sizeof(struct msix_entry);
4012 }
4013 if (sp->s2io_entries) {
4014 kfree(sp->s2io_entries);
4015 swstats->mem_freed += sp->num_entries *
4016 sizeof(struct s2io_msix_entry);
4017 }
4018 }
4019 return err;
4020 }
4021
4022 /**
4023 * s2io_close -close entry point of the driver
4024 * @dev : device pointer.
4025 * Description:
4026 * This is the stop entry point of the driver. It needs to undo exactly
4027 * whatever was done by the open entry point,thus it's usually referred to
4028 * as the close function.Among other things this function mainly stops the
4029 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030 * Return value:
4031 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4032 * file on failure.
4033 */
4034
4035 static int s2io_close(struct net_device *dev)
4036 {
4037 struct s2io_nic *sp = netdev_priv(dev);
4038 struct config_param *config = &sp->config;
4039 u64 tmp64;
4040 int offset;
4041
4042 /* Return if the device is already closed *
4043 * Can happen when s2io_card_up failed in change_mtu *
4044 */
4045 if (!is_s2io_card_up(sp))
4046 return 0;
4047
4048 s2io_stop_all_tx_queue(sp);
4049 /* delete all populated mac entries */
4050 for (offset = 1; offset < config->max_mc_addr; offset++) {
4051 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053 do_s2io_delete_unicast_mc(sp, tmp64);
4054 }
4055
4056 s2io_card_down(sp);
4057
4058 return 0;
4059 }
4060
4061 /**
4062 * s2io_xmit - Tx entry point of te driver
4063 * @skb : the socket buffer containing the Tx data.
4064 * @dev : device pointer.
4065 * Description :
4066 * This function is the Tx entry point of the driver. S2IO NIC supports
4067 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4068 * NOTE: when device cant queue the pkt,just the trans_start variable will
4069 * not be upadted.
4070 * Return value:
4071 * 0 on success & 1 on failure.
4072 */
4073
4074 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4075 {
4076 struct s2io_nic *sp = netdev_priv(dev);
4077 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078 register u64 val64;
4079 struct TxD *txdp;
4080 struct TxFIFO_element __iomem *tx_fifo;
4081 unsigned long flags = 0;
4082 u16 vlan_tag = 0;
4083 struct fifo_info *fifo = NULL;
4084 int do_spin_lock = 1;
4085 int offload_type;
4086 int enable_per_list_interrupt = 0;
4087 struct config_param *config = &sp->config;
4088 struct mac_info *mac_control = &sp->mac_control;
4089 struct stat_block *stats = mac_control->stats_info;
4090 struct swStat *swstats = &stats->sw_stat;
4091
4092 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4093
4094 if (unlikely(skb->len <= 0)) {
4095 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4096 dev_kfree_skb_any(skb);
4097 return NETDEV_TX_OK;
4098 }
4099
4100 if (!is_s2io_card_up(sp)) {
4101 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4102 dev->name);
4103 dev_kfree_skb(skb);
4104 return NETDEV_TX_OK;
4105 }
4106
4107 queue = 0;
4108 if (sp->vlgrp && vlan_tx_tag_present(skb))
4109 vlan_tag = vlan_tx_tag_get(skb);
4110 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111 if (skb->protocol == htons(ETH_P_IP)) {
4112 struct iphdr *ip;
4113 struct tcphdr *th;
4114 ip = ip_hdr(skb);
4115
4116 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117 th = (struct tcphdr *)(((unsigned char *)ip) +
4118 ip->ihl*4);
4119
4120 if (ip->protocol == IPPROTO_TCP) {
4121 queue_len = sp->total_tcp_fifos;
4122 queue = (ntohs(th->source) +
4123 ntohs(th->dest)) &
4124 sp->fifo_selector[queue_len - 1];
4125 if (queue >= queue_len)
4126 queue = queue_len - 1;
4127 } else if (ip->protocol == IPPROTO_UDP) {
4128 queue_len = sp->total_udp_fifos;
4129 queue = (ntohs(th->source) +
4130 ntohs(th->dest)) &
4131 sp->fifo_selector[queue_len - 1];
4132 if (queue >= queue_len)
4133 queue = queue_len - 1;
4134 queue += sp->udp_fifo_idx;
4135 if (skb->len > 1024)
4136 enable_per_list_interrupt = 1;
4137 do_spin_lock = 0;
4138 }
4139 }
4140 }
4141 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142 /* get fifo number based on skb->priority value */
4143 queue = config->fifo_mapping
4144 [skb->priority & (MAX_TX_FIFOS - 1)];
4145 fifo = &mac_control->fifos[queue];
4146
4147 if (do_spin_lock)
4148 spin_lock_irqsave(&fifo->tx_lock, flags);
4149 else {
4150 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151 return NETDEV_TX_LOCKED;
4152 }
4153
4154 if (sp->config.multiq) {
4155 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157 return NETDEV_TX_BUSY;
4158 }
4159 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4160 if (netif_queue_stopped(dev)) {
4161 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162 return NETDEV_TX_BUSY;
4163 }
4164 }
4165
4166 put_off = (u16)fifo->tx_curr_put_info.offset;
4167 get_off = (u16)fifo->tx_curr_get_info.offset;
4168 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4169
4170 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4171 /* Avoid "put" pointer going beyond "get" pointer */
4172 if (txdp->Host_Control ||
4173 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4174 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4175 s2io_stop_tx_queue(sp, fifo->fifo_no);
4176 dev_kfree_skb(skb);
4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178 return NETDEV_TX_OK;
4179 }
4180
4181 offload_type = s2io_offload_type(skb);
4182 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4183 txdp->Control_1 |= TXD_TCP_LSO_EN;
4184 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4185 }
4186 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4187 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188 TXD_TX_CKO_TCP_EN |
4189 TXD_TX_CKO_UDP_EN);
4190 }
4191 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4193 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4194 if (enable_per_list_interrupt)
4195 if (put_off & (queue_len >> 5))
4196 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4197 if (vlan_tag) {
4198 txdp->Control_2 |= TXD_VLAN_ENABLE;
4199 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200 }
4201
4202 frg_len = skb_headlen(skb);
4203 if (offload_type == SKB_GSO_UDP) {
4204 int ufo_size;
4205
4206 ufo_size = s2io_udp_mss(skb);
4207 ufo_size &= ~7;
4208 txdp->Control_1 |= TXD_UFO_EN;
4209 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211 #ifdef __BIG_ENDIAN
4212 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213 fifo->ufo_in_band_v[put_off] =
4214 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4215 #else
4216 fifo->ufo_in_band_v[put_off] =
4217 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4218 #endif
4219 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4220 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4221 fifo->ufo_in_band_v,
4222 sizeof(u64),
4223 PCI_DMA_TODEVICE);
4224 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4225 goto pci_map_failed;
4226 txdp++;
4227 }
4228
4229 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230 frg_len, PCI_DMA_TODEVICE);
4231 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4232 goto pci_map_failed;
4233
4234 txdp->Host_Control = (unsigned long)skb;
4235 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4236 if (offload_type == SKB_GSO_UDP)
4237 txdp->Control_1 |= TXD_UFO_EN;
4238
4239 frg_cnt = skb_shinfo(skb)->nr_frags;
4240 /* For fragmented SKB. */
4241 for (i = 0; i < frg_cnt; i++) {
4242 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4243 /* A '0' length fragment will be ignored */
4244 if (!frag->size)
4245 continue;
4246 txdp++;
4247 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248 frag->page_offset,
4249 frag->size,
4250 PCI_DMA_TODEVICE);
4251 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4252 if (offload_type == SKB_GSO_UDP)
4253 txdp->Control_1 |= TXD_UFO_EN;
4254 }
4255 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256
4257 if (offload_type == SKB_GSO_UDP)
4258 frg_cnt++; /* as Txd0 was used for inband header */
4259
4260 tx_fifo = mac_control->tx_FIFO_start[queue];
4261 val64 = fifo->list_info[put_off].list_phy_addr;
4262 writeq(val64, &tx_fifo->TxDL_Pointer);
4263
4264 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265 TX_FIFO_LAST_LIST);
4266 if (offload_type)
4267 val64 |= TX_FIFO_SPECIAL_FUNC;
4268
4269 writeq(val64, &tx_fifo->List_Control);
4270
4271 mmiowb();
4272
4273 put_off++;
4274 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4275 put_off = 0;
4276 fifo->tx_curr_put_info.offset = put_off;
4277
4278 /* Avoid "put" pointer going beyond "get" pointer */
4279 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4280 swstats->fifo_full_cnt++;
4281 DBG_PRINT(TX_DBG,
4282 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283 put_off, get_off);
4284 s2io_stop_tx_queue(sp, fifo->fifo_no);
4285 }
4286 swstats->mem_allocated += skb->truesize;
4287 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4288
4289 if (sp->config.intr_type == MSI_X)
4290 tx_intr_handler(fifo);
4291
4292 return NETDEV_TX_OK;
4293
4294 pci_map_failed:
4295 swstats->pci_map_fail_cnt++;
4296 s2io_stop_tx_queue(sp, fifo->fifo_no);
4297 swstats->mem_freed += skb->truesize;
4298 dev_kfree_skb(skb);
4299 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4300 return NETDEV_TX_OK;
4301 }
4302
4303 static void
4304 s2io_alarm_handle(unsigned long data)
4305 {
4306 struct s2io_nic *sp = (struct s2io_nic *)data;
4307 struct net_device *dev = sp->dev;
4308
4309 s2io_handle_errors(dev);
4310 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311 }
4312
4313 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4314 {
4315 struct ring_info *ring = (struct ring_info *)dev_id;
4316 struct s2io_nic *sp = ring->nic;
4317 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4318
4319 if (unlikely(!is_s2io_card_up(sp)))
4320 return IRQ_HANDLED;
4321
4322 if (sp->config.napi) {
4323 u8 __iomem *addr = NULL;
4324 u8 val8 = 0;
4325
4326 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4327 addr += (7 - ring->ring_no);
4328 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329 writeb(val8, addr);
4330 val8 = readb(addr);
4331 napi_schedule(&ring->napi);
4332 } else {
4333 rx_intr_handler(ring, 0);
4334 s2io_chk_rx_buffers(sp, ring);
4335 }
4336
4337 return IRQ_HANDLED;
4338 }
4339
4340 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4341 {
4342 int i;
4343 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344 struct s2io_nic *sp = fifos->nic;
4345 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346 struct config_param *config = &sp->config;
4347 u64 reason;
4348
4349 if (unlikely(!is_s2io_card_up(sp)))
4350 return IRQ_NONE;
4351
4352 reason = readq(&bar0->general_int_status);
4353 if (unlikely(reason == S2IO_MINUS_ONE))
4354 /* Nothing much can be done. Get out */
4355 return IRQ_HANDLED;
4356
4357 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4359
4360 if (reason & GEN_INTR_TXPIC)
4361 s2io_txpic_intr_handle(sp);
4362
4363 if (reason & GEN_INTR_TXTRAFFIC)
4364 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4365
4366 for (i = 0; i < config->tx_fifo_num; i++)
4367 tx_intr_handler(&fifos[i]);
4368
4369 writeq(sp->general_int_mask, &bar0->general_int_mask);
4370 readl(&bar0->general_int_status);
4371 return IRQ_HANDLED;
4372 }
4373 /* The interrupt was not raised by us */
4374 return IRQ_NONE;
4375 }
4376
4377 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4378 {
4379 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4380 u64 val64;
4381
4382 val64 = readq(&bar0->pic_int_status);
4383 if (val64 & PIC_INT_GPIO) {
4384 val64 = readq(&bar0->gpio_int_reg);
4385 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386 (val64 & GPIO_INT_REG_LINK_UP)) {
4387 /*
4388 * This is unstable state so clear both up/down
4389 * interrupt and adapter to re-evaluate the link state.
4390 */
4391 val64 |= GPIO_INT_REG_LINK_DOWN;
4392 val64 |= GPIO_INT_REG_LINK_UP;
4393 writeq(val64, &bar0->gpio_int_reg);
4394 val64 = readq(&bar0->gpio_int_mask);
4395 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396 GPIO_INT_MASK_LINK_DOWN);
4397 writeq(val64, &bar0->gpio_int_mask);
4398 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4399 val64 = readq(&bar0->adapter_status);
4400 /* Enable Adapter */
4401 val64 = readq(&bar0->adapter_control);
4402 val64 |= ADAPTER_CNTL_EN;
4403 writeq(val64, &bar0->adapter_control);
4404 val64 |= ADAPTER_LED_ON;
4405 writeq(val64, &bar0->adapter_control);
4406 if (!sp->device_enabled_once)
4407 sp->device_enabled_once = 1;
4408
4409 s2io_link(sp, LINK_UP);
4410 /*
4411 * unmask link down interrupt and mask link-up
4412 * intr
4413 */
4414 val64 = readq(&bar0->gpio_int_mask);
4415 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416 val64 |= GPIO_INT_MASK_LINK_UP;
4417 writeq(val64, &bar0->gpio_int_mask);
4418
4419 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4420 val64 = readq(&bar0->adapter_status);
4421 s2io_link(sp, LINK_DOWN);
4422 /* Link is down so unmaks link up interrupt */
4423 val64 = readq(&bar0->gpio_int_mask);
4424 val64 &= ~GPIO_INT_MASK_LINK_UP;
4425 val64 |= GPIO_INT_MASK_LINK_DOWN;
4426 writeq(val64, &bar0->gpio_int_mask);
4427
4428 /* turn off LED */
4429 val64 = readq(&bar0->adapter_control);
4430 val64 = val64 & (~ADAPTER_LED_ON);
4431 writeq(val64, &bar0->adapter_control);
4432 }
4433 }
4434 val64 = readq(&bar0->gpio_int_mask);
4435 }
4436
4437 /**
4438 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439 * @value: alarm bits
4440 * @addr: address value
4441 * @cnt: counter variable
4442 * Description: Check for alarm and increment the counter
4443 * Return Value:
4444 * 1 - if alarm bit set
4445 * 0 - if alarm bit is not set
4446 */
4447 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448 unsigned long long *cnt)
4449 {
4450 u64 val64;
4451 val64 = readq(addr);
4452 if (val64 & value) {
4453 writeq(val64, addr);
4454 (*cnt)++;
4455 return 1;
4456 }
4457 return 0;
4458
4459 }
4460
4461 /**
4462 * s2io_handle_errors - Xframe error indication handler
4463 * @nic: device private variable
4464 * Description: Handle alarms such as loss of link, single or
4465 * double ECC errors, critical and serious errors.
4466 * Return Value:
4467 * NONE
4468 */
4469 static void s2io_handle_errors(void *dev_id)
4470 {
4471 struct net_device *dev = (struct net_device *)dev_id;
4472 struct s2io_nic *sp = netdev_priv(dev);
4473 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4474 u64 temp64 = 0, val64 = 0;
4475 int i = 0;
4476
4477 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479
4480 if (!is_s2io_card_up(sp))
4481 return;
4482
4483 if (pci_channel_offline(sp->pdev))
4484 return;
4485
4486 memset(&sw_stat->ring_full_cnt, 0,
4487 sizeof(sw_stat->ring_full_cnt));
4488
4489 /* Handling the XPAK counters update */
4490 if (stats->xpak_timer_count < 72000) {
4491 /* waiting for an hour */
4492 stats->xpak_timer_count++;
4493 } else {
4494 s2io_updt_xpak_counter(dev);
4495 /* reset the count to zero */
4496 stats->xpak_timer_count = 0;
4497 }
4498
4499 /* Handling link status change error Intr */
4500 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501 val64 = readq(&bar0->mac_rmac_err_reg);
4502 writeq(val64, &bar0->mac_rmac_err_reg);
4503 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504 schedule_work(&sp->set_link_task);
4505 }
4506
4507 /* In case of a serious error, the device will be Reset. */
4508 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4509 &sw_stat->serious_err_cnt))
4510 goto reset;
4511
4512 /* Check for data parity error */
4513 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4514 &sw_stat->parity_err_cnt))
4515 goto reset;
4516
4517 /* Check for ring full counter */
4518 if (sp->device_type == XFRAME_II_DEVICE) {
4519 val64 = readq(&bar0->ring_bump_counter1);
4520 for (i = 0; i < 4; i++) {
4521 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4522 temp64 >>= 64 - ((i+1)*16);
4523 sw_stat->ring_full_cnt[i] += temp64;
4524 }
4525
4526 val64 = readq(&bar0->ring_bump_counter2);
4527 for (i = 0; i < 4; i++) {
4528 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4529 temp64 >>= 64 - ((i+1)*16);
4530 sw_stat->ring_full_cnt[i+4] += temp64;
4531 }
4532 }
4533
4534 val64 = readq(&bar0->txdma_int_status);
4535 /*check for pfc_err*/
4536 if (val64 & TXDMA_PFC_INT) {
4537 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539 PFC_PCIX_ERR,
4540 &bar0->pfc_err_reg,
4541 &sw_stat->pfc_err_cnt))
4542 goto reset;
4543 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544 &bar0->pfc_err_reg,
4545 &sw_stat->pfc_err_cnt);
4546 }
4547
4548 /*check for tda_err*/
4549 if (val64 & TXDMA_TDA_INT) {
4550 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551 TDA_SM0_ERR_ALARM |
4552 TDA_SM1_ERR_ALARM,
4553 &bar0->tda_err_reg,
4554 &sw_stat->tda_err_cnt))
4555 goto reset;
4556 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4557 &bar0->tda_err_reg,
4558 &sw_stat->tda_err_cnt);
4559 }
4560 /*check for pcc_err*/
4561 if (val64 & TXDMA_PCC_INT) {
4562 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563 PCC_N_SERR | PCC_6_COF_OV_ERR |
4564 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566 PCC_TXB_ECC_DB_ERR,
4567 &bar0->pcc_err_reg,
4568 &sw_stat->pcc_err_cnt))
4569 goto reset;
4570 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4571 &bar0->pcc_err_reg,
4572 &sw_stat->pcc_err_cnt);
4573 }
4574
4575 /*check for tti_err*/
4576 if (val64 & TXDMA_TTI_INT) {
4577 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578 &bar0->tti_err_reg,
4579 &sw_stat->tti_err_cnt))
4580 goto reset;
4581 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4582 &bar0->tti_err_reg,
4583 &sw_stat->tti_err_cnt);
4584 }
4585
4586 /*check for lso_err*/
4587 if (val64 & TXDMA_LSO_INT) {
4588 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590 &bar0->lso_err_reg,
4591 &sw_stat->lso_err_cnt))
4592 goto reset;
4593 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4594 &bar0->lso_err_reg,
4595 &sw_stat->lso_err_cnt);
4596 }
4597
4598 /*check for tpa_err*/
4599 if (val64 & TXDMA_TPA_INT) {
4600 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601 &bar0->tpa_err_reg,
4602 &sw_stat->tpa_err_cnt))
4603 goto reset;
4604 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605 &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt);
4607 }
4608
4609 /*check for sm_err*/
4610 if (val64 & TXDMA_SM_INT) {
4611 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612 &bar0->sm_err_reg,
4613 &sw_stat->sm_err_cnt))
4614 goto reset;
4615 }
4616
4617 val64 = readq(&bar0->mac_int_status);
4618 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4620 &bar0->mac_tmac_err_reg,
4621 &sw_stat->mac_tmac_err_cnt))
4622 goto reset;
4623 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624 TMAC_DESC_ECC_SG_ERR |
4625 TMAC_DESC_ECC_DB_ERR,
4626 &bar0->mac_tmac_err_reg,
4627 &sw_stat->mac_tmac_err_cnt);
4628 }
4629
4630 val64 = readq(&bar0->xgxs_int_status);
4631 if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt))
4635 goto reset;
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt);
4639 }
4640
4641 val64 = readq(&bar0->rxdma_int_status);
4642 if (val64 & RXDMA_INT_RC_INT_M) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644 RC_FTC_ECC_DB_ERR |
4645 RC_PRCn_SM_ERR_ALARM |
4646 RC_FTC_SM_ERR_ALARM,
4647 &bar0->rc_err_reg,
4648 &sw_stat->rc_err_cnt))
4649 goto reset;
4650 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651 RC_FTC_ECC_SG_ERR |
4652 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653 &sw_stat->rc_err_cnt);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655 PRC_PCI_AB_WR_Rn |
4656 PRC_PCI_AB_F_WR_Rn,
4657 &bar0->prc_pcix_err_reg,
4658 &sw_stat->prc_pcix_err_cnt))
4659 goto reset;
4660 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661 PRC_PCI_DP_WR_Rn |
4662 PRC_PCI_DP_F_WR_Rn,
4663 &bar0->prc_pcix_err_reg,
4664 &sw_stat->prc_pcix_err_cnt);
4665 }
4666
4667 if (val64 & RXDMA_INT_RPA_INT_M) {
4668 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4669 &bar0->rpa_err_reg,
4670 &sw_stat->rpa_err_cnt))
4671 goto reset;
4672 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4673 &bar0->rpa_err_reg,
4674 &sw_stat->rpa_err_cnt);
4675 }
4676
4677 if (val64 & RXDMA_INT_RDA_INT_M) {
4678 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679 RDA_FRM_ECC_DB_N_AERR |
4680 RDA_SM1_ERR_ALARM |
4681 RDA_SM0_ERR_ALARM |
4682 RDA_RXD_ECC_DB_SERR,
4683 &bar0->rda_err_reg,
4684 &sw_stat->rda_err_cnt))
4685 goto reset;
4686 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687 RDA_FRM_ECC_SG_ERR |
4688 RDA_MISC_ERR |
4689 RDA_PCIX_ERR,
4690 &bar0->rda_err_reg,
4691 &sw_stat->rda_err_cnt);
4692 }
4693
4694 if (val64 & RXDMA_INT_RTI_INT_M) {
4695 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696 &bar0->rti_err_reg,
4697 &sw_stat->rti_err_cnt))
4698 goto reset;
4699 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4700 &bar0->rti_err_reg,
4701 &sw_stat->rti_err_cnt);
4702 }
4703
4704 val64 = readq(&bar0->mac_int_status);
4705 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4707 &bar0->mac_rmac_err_reg,
4708 &sw_stat->mac_rmac_err_cnt))
4709 goto reset;
4710 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711 RMAC_SINGLE_ECC_ERR |
4712 RMAC_DOUBLE_ECC_ERR,
4713 &bar0->mac_rmac_err_reg,
4714 &sw_stat->mac_rmac_err_cnt);
4715 }
4716
4717 val64 = readq(&bar0->xgxs_int_status);
4718 if (val64 & XGXS_INT_STATUS_RXGXS) {
4719 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4720 &bar0->xgxs_rxgxs_err_reg,
4721 &sw_stat->xgxs_rxgxs_err_cnt))
4722 goto reset;
4723 }
4724
4725 val64 = readq(&bar0->mc_int_status);
4726 if (val64 & MC_INT_STATUS_MC_INT) {
4727 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728 &bar0->mc_err_reg,
4729 &sw_stat->mc_err_cnt))
4730 goto reset;
4731
4732 /* Handling Ecc errors */
4733 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734 writeq(val64, &bar0->mc_err_reg);
4735 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736 sw_stat->double_ecc_errs++;
4737 if (sp->device_type != XFRAME_II_DEVICE) {
4738 /*
4739 * Reset XframeI only if critical error
4740 */
4741 if (val64 &
4742 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744 goto reset;
4745 }
4746 } else
4747 sw_stat->single_ecc_errs++;
4748 }
4749 }
4750 return;
4751
4752 reset:
4753 s2io_stop_all_tx_queue(sp);
4754 schedule_work(&sp->rst_timer_task);
4755 sw_stat->soft_reset_cnt++;
4756 }
4757
4758 /**
4759 * s2io_isr - ISR handler of the device .
4760 * @irq: the irq of the device.
4761 * @dev_id: a void pointer to the dev structure of the NIC.
4762 * Description: This function is the ISR handler of the device. It
4763 * identifies the reason for the interrupt and calls the relevant
4764 * service routines. As a contongency measure, this ISR allocates the
4765 * recv buffers, if their numbers are below the panic value which is
4766 * presently set to 25% of the original number of rcv buffers allocated.
4767 * Return value:
4768 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769 * IRQ_NONE: will be returned if interrupt is not from our device
4770 */
4771 static irqreturn_t s2io_isr(int irq, void *dev_id)
4772 {
4773 struct net_device *dev = (struct net_device *)dev_id;
4774 struct s2io_nic *sp = netdev_priv(dev);
4775 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4776 int i;
4777 u64 reason = 0;
4778 struct mac_info *mac_control;
4779 struct config_param *config;
4780
4781 /* Pretend we handled any irq's from a disconnected card */
4782 if (pci_channel_offline(sp->pdev))
4783 return IRQ_NONE;
4784
4785 if (!is_s2io_card_up(sp))
4786 return IRQ_NONE;
4787
4788 config = &sp->config;
4789 mac_control = &sp->mac_control;
4790
4791 /*
4792 * Identify the cause for interrupt and call the appropriate
4793 * interrupt handler. Causes for the interrupt could be;
4794 * 1. Rx of packet.
4795 * 2. Tx complete.
4796 * 3. Link down.
4797 */
4798 reason = readq(&bar0->general_int_status);
4799
4800 if (unlikely(reason == S2IO_MINUS_ONE))
4801 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4802
4803 if (reason &
4804 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4805 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806
4807 if (config->napi) {
4808 if (reason & GEN_INTR_RXTRAFFIC) {
4809 napi_schedule(&sp->napi);
4810 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812 readl(&bar0->rx_traffic_int);
4813 }
4814 } else {
4815 /*
4816 * rx_traffic_int reg is an R1 register, writing all 1's
4817 * will ensure that the actual interrupt causing bit
4818 * get's cleared and hence a read can be avoided.
4819 */
4820 if (reason & GEN_INTR_RXTRAFFIC)
4821 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4822
4823 for (i = 0; i < config->rx_ring_num; i++) {
4824 struct ring_info *ring = &mac_control->rings[i];
4825
4826 rx_intr_handler(ring, 0);
4827 }
4828 }
4829
4830 /*
4831 * tx_traffic_int reg is an R1 register, writing all 1's
4832 * will ensure that the actual interrupt causing bit get's
4833 * cleared and hence a read can be avoided.
4834 */
4835 if (reason & GEN_INTR_TXTRAFFIC)
4836 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4837
4838 for (i = 0; i < config->tx_fifo_num; i++)
4839 tx_intr_handler(&mac_control->fifos[i]);
4840
4841 if (reason & GEN_INTR_TXPIC)
4842 s2io_txpic_intr_handle(sp);
4843
4844 /*
4845 * Reallocate the buffers from the interrupt handler itself.
4846 */
4847 if (!config->napi) {
4848 for (i = 0; i < config->rx_ring_num; i++) {
4849 struct ring_info *ring = &mac_control->rings[i];
4850
4851 s2io_chk_rx_buffers(sp, ring);
4852 }
4853 }
4854 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855 readl(&bar0->general_int_status);
4856
4857 return IRQ_HANDLED;
4858
4859 } else if (!reason) {
4860 /* The interrupt was not raised by us */
4861 return IRQ_NONE;
4862 }
4863
4864 return IRQ_HANDLED;
4865 }
4866
4867 /**
4868 * s2io_updt_stats -
4869 */
4870 static void s2io_updt_stats(struct s2io_nic *sp)
4871 {
4872 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4873 u64 val64;
4874 int cnt = 0;
4875
4876 if (is_s2io_card_up(sp)) {
4877 /* Apprx 30us on a 133 MHz bus */
4878 val64 = SET_UPDT_CLICKS(10) |
4879 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880 writeq(val64, &bar0->stat_cfg);
4881 do {
4882 udelay(100);
4883 val64 = readq(&bar0->stat_cfg);
4884 if (!(val64 & s2BIT(0)))
4885 break;
4886 cnt++;
4887 if (cnt == 5)
4888 break; /* Updt failed */
4889 } while (1);
4890 }
4891 }
4892
4893 /**
4894 * s2io_get_stats - Updates the device statistics structure.
4895 * @dev : pointer to the device structure.
4896 * Description:
4897 * This function updates the device statistics structure in the s2io_nic
4898 * structure and returns a pointer to the same.
4899 * Return value:
4900 * pointer to the updated net_device_stats structure.
4901 */
4902 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4903 {
4904 struct s2io_nic *sp = netdev_priv(dev);
4905 struct mac_info *mac_control = &sp->mac_control;
4906 struct stat_block *stats = mac_control->stats_info;
4907 u64 delta;
4908
4909 /* Configure Stats for immediate updt */
4910 s2io_updt_stats(sp);
4911
4912 /* A device reset will cause the on-adapter statistics to be zero'ed.
4913 * This can be done while running by changing the MTU. To prevent the
4914 * system from having the stats zero'ed, the driver keeps a copy of the
4915 * last update to the system (which is also zero'ed on reset). This
4916 * enables the driver to accurately know the delta between the last
4917 * update and the current update.
4918 */
4919 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921 sp->stats.rx_packets += delta;
4922 dev->stats.rx_packets += delta;
4923
4924 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926 sp->stats.tx_packets += delta;
4927 dev->stats.tx_packets += delta;
4928
4929 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931 sp->stats.rx_bytes += delta;
4932 dev->stats.rx_bytes += delta;
4933
4934 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936 sp->stats.tx_bytes += delta;
4937 dev->stats.tx_bytes += delta;
4938
4939 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940 sp->stats.rx_errors += delta;
4941 dev->stats.rx_errors += delta;
4942
4943 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945 sp->stats.tx_errors += delta;
4946 dev->stats.tx_errors += delta;
4947
4948 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949 sp->stats.rx_dropped += delta;
4950 dev->stats.rx_dropped += delta;
4951
4952 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953 sp->stats.tx_dropped += delta;
4954 dev->stats.tx_dropped += delta;
4955
4956 /* The adapter MAC interprets pause frames as multicast packets, but
4957 * does not pass them up. This erroneously increases the multicast
4958 * packet count and needs to be deducted when the multicast frame count
4959 * is queried.
4960 */
4961 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962 le32_to_cpu(stats->rmac_vld_mcst_frms);
4963 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964 delta -= sp->stats.multicast;
4965 sp->stats.multicast += delta;
4966 dev->stats.multicast += delta;
4967
4968 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969 le32_to_cpu(stats->rmac_usized_frms)) +
4970 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971 sp->stats.rx_length_errors += delta;
4972 dev->stats.rx_length_errors += delta;
4973
4974 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975 sp->stats.rx_crc_errors += delta;
4976 dev->stats.rx_crc_errors += delta;
4977
4978 return &dev->stats;
4979 }
4980
4981 /**
4982 * s2io_set_multicast - entry point for multicast address enable/disable.
4983 * @dev : pointer to the device structure
4984 * Description:
4985 * This function is a driver entry point which gets called by the kernel
4986 * whenever multicast addresses must be enabled/disabled. This also gets
4987 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4988 * determine, if multicast address must be enabled or if promiscuous mode
4989 * is to be disabled etc.
4990 * Return value:
4991 * void.
4992 */
4993
4994 static void s2io_set_multicast(struct net_device *dev)
4995 {
4996 int i, j, prev_cnt;
4997 struct netdev_hw_addr *ha;
4998 struct s2io_nic *sp = netdev_priv(dev);
4999 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5000 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5001 0xfeffffffffffULL;
5002 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5003 void __iomem *add;
5004 struct config_param *config = &sp->config;
5005
5006 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007 /* Enable all Multicast addresses */
5008 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009 &bar0->rmac_addr_data0_mem);
5010 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011 &bar0->rmac_addr_data1_mem);
5012 val64 = RMAC_ADDR_CMD_MEM_WE |
5013 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5015 writeq(val64, &bar0->rmac_addr_cmd_mem);
5016 /* Wait till command completes */
5017 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5018 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019 S2IO_BIT_RESET);
5020
5021 sp->m_cast_flg = 1;
5022 sp->all_multi_pos = config->max_mc_addr - 1;
5023 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024 /* Disable all Multicast addresses */
5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026 &bar0->rmac_addr_data0_mem);
5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028 &bar0->rmac_addr_data1_mem);
5029 val64 = RMAC_ADDR_CMD_MEM_WE |
5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5032 writeq(val64, &bar0->rmac_addr_cmd_mem);
5033 /* Wait till command completes */
5034 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5035 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036 S2IO_BIT_RESET);
5037
5038 sp->m_cast_flg = 0;
5039 sp->all_multi_pos = 0;
5040 }
5041
5042 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043 /* Put the NIC into promiscuous mode */
5044 add = &bar0->mac_cfg;
5045 val64 = readq(&bar0->mac_cfg);
5046 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5049 writel((u32)val64, add);
5050 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051 writel((u32) (val64 >> 32), (add + 4));
5052
5053 if (vlan_tag_strip != 1) {
5054 val64 = readq(&bar0->rx_pa_cfg);
5055 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056 writeq(val64, &bar0->rx_pa_cfg);
5057 sp->vlan_strip_flag = 0;
5058 }
5059
5060 val64 = readq(&bar0->mac_cfg);
5061 sp->promisc_flg = 1;
5062 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5063 dev->name);
5064 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065 /* Remove the NIC from promiscuous mode */
5066 add = &bar0->mac_cfg;
5067 val64 = readq(&bar0->mac_cfg);
5068 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5071 writel((u32)val64, add);
5072 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073 writel((u32) (val64 >> 32), (add + 4));
5074
5075 if (vlan_tag_strip != 0) {
5076 val64 = readq(&bar0->rx_pa_cfg);
5077 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078 writeq(val64, &bar0->rx_pa_cfg);
5079 sp->vlan_strip_flag = 1;
5080 }
5081
5082 val64 = readq(&bar0->mac_cfg);
5083 sp->promisc_flg = 0;
5084 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5085 }
5086
5087 /* Update individual M_CAST address list */
5088 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089 if (netdev_mc_count(dev) >
5090 (config->max_mc_addr - config->max_mac_addr)) {
5091 DBG_PRINT(ERR_DBG,
5092 "%s: No more Rx filters can be added - "
5093 "please enable ALL_MULTI instead\n",
5094 dev->name);
5095 return;
5096 }
5097
5098 prev_cnt = sp->mc_addr_count;
5099 sp->mc_addr_count = netdev_mc_count(dev);
5100
5101 /* Clear out the previous list of Mc in the H/W. */
5102 for (i = 0; i < prev_cnt; i++) {
5103 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104 &bar0->rmac_addr_data0_mem);
5105 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106 &bar0->rmac_addr_data1_mem);
5107 val64 = RMAC_ADDR_CMD_MEM_WE |
5108 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109 RMAC_ADDR_CMD_MEM_OFFSET
5110 (config->mc_start_offset + i);
5111 writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113 /* Wait for command completes */
5114 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116 S2IO_BIT_RESET)) {
5117 DBG_PRINT(ERR_DBG,
5118 "%s: Adding Multicasts failed\n",
5119 dev->name);
5120 return;
5121 }
5122 }
5123
5124 /* Create the new Rx filter list and update the same in H/W. */
5125 i = 0;
5126 netdev_for_each_mc_addr(ha, dev) {
5127 memcpy(sp->usr_addrs[i].addr, ha->addr,
5128 ETH_ALEN);
5129 mac_addr = 0;
5130 for (j = 0; j < ETH_ALEN; j++) {
5131 mac_addr |= ha->addr[j];
5132 mac_addr <<= 8;
5133 }
5134 mac_addr >>= 8;
5135 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5136 &bar0->rmac_addr_data0_mem);
5137 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5138 &bar0->rmac_addr_data1_mem);
5139 val64 = RMAC_ADDR_CMD_MEM_WE |
5140 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5141 RMAC_ADDR_CMD_MEM_OFFSET
5142 (i + config->mc_start_offset);
5143 writeq(val64, &bar0->rmac_addr_cmd_mem);
5144
5145 /* Wait for command completes */
5146 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5147 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5148 S2IO_BIT_RESET)) {
5149 DBG_PRINT(ERR_DBG,
5150 "%s: Adding Multicasts failed\n",
5151 dev->name);
5152 return;
5153 }
5154 i++;
5155 }
5156 }
5157 }
5158
5159 /* read from CAM unicast & multicast addresses and store it in
5160 * def_mac_addr structure
5161 */
5162 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5163 {
5164 int offset;
5165 u64 mac_addr = 0x0;
5166 struct config_param *config = &sp->config;
5167
5168 /* store unicast & multicast mac addresses */
5169 for (offset = 0; offset < config->max_mc_addr; offset++) {
5170 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5171 /* if read fails disable the entry */
5172 if (mac_addr == FAILURE)
5173 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5174 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5175 }
5176 }
5177
5178 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5179 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5180 {
5181 int offset;
5182 struct config_param *config = &sp->config;
5183 /* restore unicast mac address */
5184 for (offset = 0; offset < config->max_mac_addr; offset++)
5185 do_s2io_prog_unicast(sp->dev,
5186 sp->def_mac_addr[offset].mac_addr);
5187
5188 /* restore multicast mac address */
5189 for (offset = config->mc_start_offset;
5190 offset < config->max_mc_addr; offset++)
5191 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5192 }
5193
5194 /* add a multicast MAC address to CAM */
5195 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5196 {
5197 int i;
5198 u64 mac_addr = 0;
5199 struct config_param *config = &sp->config;
5200
5201 for (i = 0; i < ETH_ALEN; i++) {
5202 mac_addr <<= 8;
5203 mac_addr |= addr[i];
5204 }
5205 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5206 return SUCCESS;
5207
5208 /* check if the multicast mac already preset in CAM */
5209 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5210 u64 tmp64;
5211 tmp64 = do_s2io_read_unicast_mc(sp, i);
5212 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5213 break;
5214
5215 if (tmp64 == mac_addr)
5216 return SUCCESS;
5217 }
5218 if (i == config->max_mc_addr) {
5219 DBG_PRINT(ERR_DBG,
5220 "CAM full no space left for multicast MAC\n");
5221 return FAILURE;
5222 }
5223 /* Update the internal structure with this new mac address */
5224 do_s2io_copy_mac_addr(sp, i, mac_addr);
5225
5226 return do_s2io_add_mac(sp, mac_addr, i);
5227 }
5228
5229 /* add MAC address to CAM */
5230 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5231 {
5232 u64 val64;
5233 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5234
5235 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5236 &bar0->rmac_addr_data0_mem);
5237
5238 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5239 RMAC_ADDR_CMD_MEM_OFFSET(off);
5240 writeq(val64, &bar0->rmac_addr_cmd_mem);
5241
5242 /* Wait till command completes */
5243 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5244 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5245 S2IO_BIT_RESET)) {
5246 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5247 return FAILURE;
5248 }
5249 return SUCCESS;
5250 }
5251 /* deletes a specified unicast/multicast mac entry from CAM */
5252 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5253 {
5254 int offset;
5255 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5256 struct config_param *config = &sp->config;
5257
5258 for (offset = 1;
5259 offset < config->max_mc_addr; offset++) {
5260 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5261 if (tmp64 == addr) {
5262 /* disable the entry by writing 0xffffffffffffULL */
5263 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5264 return FAILURE;
5265 /* store the new mac list from CAM */
5266 do_s2io_store_unicast_mc(sp);
5267 return SUCCESS;
5268 }
5269 }
5270 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5271 (unsigned long long)addr);
5272 return FAILURE;
5273 }
5274
5275 /* read mac entries from CAM */
5276 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5277 {
5278 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5279 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5280
5281 /* read mac addr */
5282 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5283 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5284 writeq(val64, &bar0->rmac_addr_cmd_mem);
5285
5286 /* Wait till command completes */
5287 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5288 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5289 S2IO_BIT_RESET)) {
5290 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5291 return FAILURE;
5292 }
5293 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5294
5295 return tmp64 >> 16;
5296 }
5297
5298 /**
5299 * s2io_set_mac_addr driver entry point
5300 */
5301
5302 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5303 {
5304 struct sockaddr *addr = p;
5305
5306 if (!is_valid_ether_addr(addr->sa_data))
5307 return -EINVAL;
5308
5309 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5310
5311 /* store the MAC address in CAM */
5312 return do_s2io_prog_unicast(dev, dev->dev_addr);
5313 }
5314 /**
5315 * do_s2io_prog_unicast - Programs the Xframe mac address
5316 * @dev : pointer to the device structure.
5317 * @addr: a uchar pointer to the new mac address which is to be set.
5318 * Description : This procedure will program the Xframe to receive
5319 * frames with new Mac Address
5320 * Return value: SUCCESS on success and an appropriate (-)ve integer
5321 * as defined in errno.h file on failure.
5322 */
5323
5324 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5325 {
5326 struct s2io_nic *sp = netdev_priv(dev);
5327 register u64 mac_addr = 0, perm_addr = 0;
5328 int i;
5329 u64 tmp64;
5330 struct config_param *config = &sp->config;
5331
5332 /*
5333 * Set the new MAC address as the new unicast filter and reflect this
5334 * change on the device address registered with the OS. It will be
5335 * at offset 0.
5336 */
5337 for (i = 0; i < ETH_ALEN; i++) {
5338 mac_addr <<= 8;
5339 mac_addr |= addr[i];
5340 perm_addr <<= 8;
5341 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5342 }
5343
5344 /* check if the dev_addr is different than perm_addr */
5345 if (mac_addr == perm_addr)
5346 return SUCCESS;
5347
5348 /* check if the mac already preset in CAM */
5349 for (i = 1; i < config->max_mac_addr; i++) {
5350 tmp64 = do_s2io_read_unicast_mc(sp, i);
5351 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5352 break;
5353
5354 if (tmp64 == mac_addr) {
5355 DBG_PRINT(INFO_DBG,
5356 "MAC addr:0x%llx already present in CAM\n",
5357 (unsigned long long)mac_addr);
5358 return SUCCESS;
5359 }
5360 }
5361 if (i == config->max_mac_addr) {
5362 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5363 return FAILURE;
5364 }
5365 /* Update the internal structure with this new mac address */
5366 do_s2io_copy_mac_addr(sp, i, mac_addr);
5367
5368 return do_s2io_add_mac(sp, mac_addr, i);
5369 }
5370
5371 /**
5372 * s2io_ethtool_sset - Sets different link parameters.
5373 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5374 * @info: pointer to the structure with parameters given by ethtool to set
5375 * link information.
5376 * Description:
5377 * The function sets different link parameters provided by the user onto
5378 * the NIC.
5379 * Return value:
5380 * 0 on success.
5381 */
5382
5383 static int s2io_ethtool_sset(struct net_device *dev,
5384 struct ethtool_cmd *info)
5385 {
5386 struct s2io_nic *sp = netdev_priv(dev);
5387 if ((info->autoneg == AUTONEG_ENABLE) ||
5388 (info->speed != SPEED_10000) ||
5389 (info->duplex != DUPLEX_FULL))
5390 return -EINVAL;
5391 else {
5392 s2io_close(sp->dev);
5393 s2io_open(sp->dev);
5394 }
5395
5396 return 0;
5397 }
5398
5399 /**
5400 * s2io_ethtol_gset - Return link specific information.
5401 * @sp : private member of the device structure, pointer to the
5402 * s2io_nic structure.
5403 * @info : pointer to the structure with parameters given by ethtool
5404 * to return link information.
5405 * Description:
5406 * Returns link specific information like speed, duplex etc.. to ethtool.
5407 * Return value :
5408 * return 0 on success.
5409 */
5410
5411 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5412 {
5413 struct s2io_nic *sp = netdev_priv(dev);
5414 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5415 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5416 info->port = PORT_FIBRE;
5417
5418 /* info->transceiver */
5419 info->transceiver = XCVR_EXTERNAL;
5420
5421 if (netif_carrier_ok(sp->dev)) {
5422 info->speed = 10000;
5423 info->duplex = DUPLEX_FULL;
5424 } else {
5425 info->speed = -1;
5426 info->duplex = -1;
5427 }
5428
5429 info->autoneg = AUTONEG_DISABLE;
5430 return 0;
5431 }
5432
5433 /**
5434 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5435 * @sp : private member of the device structure, which is a pointer to the
5436 * s2io_nic structure.
5437 * @info : pointer to the structure with parameters given by ethtool to
5438 * return driver information.
5439 * Description:
5440 * Returns driver specefic information like name, version etc.. to ethtool.
5441 * Return value:
5442 * void
5443 */
5444
5445 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5446 struct ethtool_drvinfo *info)
5447 {
5448 struct s2io_nic *sp = netdev_priv(dev);
5449
5450 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5451 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5452 strncpy(info->fw_version, "", sizeof(info->fw_version));
5453 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5454 info->regdump_len = XENA_REG_SPACE;
5455 info->eedump_len = XENA_EEPROM_SPACE;
5456 }
5457
5458 /**
5459 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5460 * @sp: private member of the device structure, which is a pointer to the
5461 * s2io_nic structure.
5462 * @regs : pointer to the structure with parameters given by ethtool for
5463 * dumping the registers.
5464 * @reg_space: The input argumnet into which all the registers are dumped.
5465 * Description:
5466 * Dumps the entire register space of xFrame NIC into the user given
5467 * buffer area.
5468 * Return value :
5469 * void .
5470 */
5471
5472 static void s2io_ethtool_gregs(struct net_device *dev,
5473 struct ethtool_regs *regs, void *space)
5474 {
5475 int i;
5476 u64 reg;
5477 u8 *reg_space = (u8 *)space;
5478 struct s2io_nic *sp = netdev_priv(dev);
5479
5480 regs->len = XENA_REG_SPACE;
5481 regs->version = sp->pdev->subsystem_device;
5482
5483 for (i = 0; i < regs->len; i += 8) {
5484 reg = readq(sp->bar0 + i);
5485 memcpy((reg_space + i), &reg, 8);
5486 }
5487 }
5488
5489 /**
5490 * s2io_phy_id - timer function that alternates adapter LED.
5491 * @data : address of the private member of the device structure, which
5492 * is a pointer to the s2io_nic structure, provided as an u32.
5493 * Description: This is actually the timer function that alternates the
5494 * adapter LED bit of the adapter control bit to set/reset every time on
5495 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5496 * once every second.
5497 */
5498 static void s2io_phy_id(unsigned long data)
5499 {
5500 struct s2io_nic *sp = (struct s2io_nic *)data;
5501 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5502 u64 val64 = 0;
5503 u16 subid;
5504
5505 subid = sp->pdev->subsystem_device;
5506 if ((sp->device_type == XFRAME_II_DEVICE) ||
5507 ((subid & 0xFF) >= 0x07)) {
5508 val64 = readq(&bar0->gpio_control);
5509 val64 ^= GPIO_CTRL_GPIO_0;
5510 writeq(val64, &bar0->gpio_control);
5511 } else {
5512 val64 = readq(&bar0->adapter_control);
5513 val64 ^= ADAPTER_LED_ON;
5514 writeq(val64, &bar0->adapter_control);
5515 }
5516
5517 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5518 }
5519
5520 /**
5521 * s2io_ethtool_idnic - To physically identify the nic on the system.
5522 * @sp : private member of the device structure, which is a pointer to the
5523 * s2io_nic structure.
5524 * @id : pointer to the structure with identification parameters given by
5525 * ethtool.
5526 * Description: Used to physically identify the NIC on the system.
5527 * The Link LED will blink for a time specified by the user for
5528 * identification.
5529 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5530 * identification is possible only if it's link is up.
5531 * Return value:
5532 * int , returns 0 on success
5533 */
5534
5535 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5536 {
5537 u64 val64 = 0, last_gpio_ctrl_val;
5538 struct s2io_nic *sp = netdev_priv(dev);
5539 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5540 u16 subid;
5541
5542 subid = sp->pdev->subsystem_device;
5543 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5544 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5545 val64 = readq(&bar0->adapter_control);
5546 if (!(val64 & ADAPTER_CNTL_EN)) {
5547 pr_err("Adapter Link down, cannot blink LED\n");
5548 return -EFAULT;
5549 }
5550 }
5551 if (sp->id_timer.function == NULL) {
5552 init_timer(&sp->id_timer);
5553 sp->id_timer.function = s2io_phy_id;
5554 sp->id_timer.data = (unsigned long)sp;
5555 }
5556 mod_timer(&sp->id_timer, jiffies);
5557 if (data)
5558 msleep_interruptible(data * HZ);
5559 else
5560 msleep_interruptible(MAX_FLICKER_TIME);
5561 del_timer_sync(&sp->id_timer);
5562
5563 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5564 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5565 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5566 }
5567
5568 return 0;
5569 }
5570
5571 static void s2io_ethtool_gringparam(struct net_device *dev,
5572 struct ethtool_ringparam *ering)
5573 {
5574 struct s2io_nic *sp = netdev_priv(dev);
5575 int i, tx_desc_count = 0, rx_desc_count = 0;
5576
5577 if (sp->rxd_mode == RXD_MODE_1)
5578 ering->rx_max_pending = MAX_RX_DESC_1;
5579 else if (sp->rxd_mode == RXD_MODE_3B)
5580 ering->rx_max_pending = MAX_RX_DESC_2;
5581
5582 ering->tx_max_pending = MAX_TX_DESC;
5583 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5584 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5585
5586 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5587 ering->tx_pending = tx_desc_count;
5588 rx_desc_count = 0;
5589 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5590 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5591
5592 ering->rx_pending = rx_desc_count;
5593
5594 ering->rx_mini_max_pending = 0;
5595 ering->rx_mini_pending = 0;
5596 if (sp->rxd_mode == RXD_MODE_1)
5597 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5598 else if (sp->rxd_mode == RXD_MODE_3B)
5599 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5600 ering->rx_jumbo_pending = rx_desc_count;
5601 }
5602
5603 /**
5604 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5605 * @sp : private member of the device structure, which is a pointer to the
5606 * s2io_nic structure.
5607 * @ep : pointer to the structure with pause parameters given by ethtool.
5608 * Description:
5609 * Returns the Pause frame generation and reception capability of the NIC.
5610 * Return value:
5611 * void
5612 */
5613 static void s2io_ethtool_getpause_data(struct net_device *dev,
5614 struct ethtool_pauseparam *ep)
5615 {
5616 u64 val64;
5617 struct s2io_nic *sp = netdev_priv(dev);
5618 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5619
5620 val64 = readq(&bar0->rmac_pause_cfg);
5621 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5622 ep->tx_pause = true;
5623 if (val64 & RMAC_PAUSE_RX_ENABLE)
5624 ep->rx_pause = true;
5625 ep->autoneg = false;
5626 }
5627
5628 /**
5629 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5630 * @sp : private member of the device structure, which is a pointer to the
5631 * s2io_nic structure.
5632 * @ep : pointer to the structure with pause parameters given by ethtool.
5633 * Description:
5634 * It can be used to set or reset Pause frame generation or reception
5635 * support of the NIC.
5636 * Return value:
5637 * int, returns 0 on Success
5638 */
5639
5640 static int s2io_ethtool_setpause_data(struct net_device *dev,
5641 struct ethtool_pauseparam *ep)
5642 {
5643 u64 val64;
5644 struct s2io_nic *sp = netdev_priv(dev);
5645 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5646
5647 val64 = readq(&bar0->rmac_pause_cfg);
5648 if (ep->tx_pause)
5649 val64 |= RMAC_PAUSE_GEN_ENABLE;
5650 else
5651 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5652 if (ep->rx_pause)
5653 val64 |= RMAC_PAUSE_RX_ENABLE;
5654 else
5655 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5656 writeq(val64, &bar0->rmac_pause_cfg);
5657 return 0;
5658 }
5659
5660 /**
5661 * read_eeprom - reads 4 bytes of data from user given offset.
5662 * @sp : private member of the device structure, which is a pointer to the
5663 * s2io_nic structure.
5664 * @off : offset at which the data must be written
5665 * @data : Its an output parameter where the data read at the given
5666 * offset is stored.
5667 * Description:
5668 * Will read 4 bytes of data from the user given offset and return the
5669 * read data.
5670 * NOTE: Will allow to read only part of the EEPROM visible through the
5671 * I2C bus.
5672 * Return value:
5673 * -1 on failure and 0 on success.
5674 */
5675
5676 #define S2IO_DEV_ID 5
5677 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5678 {
5679 int ret = -1;
5680 u32 exit_cnt = 0;
5681 u64 val64;
5682 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5683
5684 if (sp->device_type == XFRAME_I_DEVICE) {
5685 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5686 I2C_CONTROL_ADDR(off) |
5687 I2C_CONTROL_BYTE_CNT(0x3) |
5688 I2C_CONTROL_READ |
5689 I2C_CONTROL_CNTL_START;
5690 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5691
5692 while (exit_cnt < 5) {
5693 val64 = readq(&bar0->i2c_control);
5694 if (I2C_CONTROL_CNTL_END(val64)) {
5695 *data = I2C_CONTROL_GET_DATA(val64);
5696 ret = 0;
5697 break;
5698 }
5699 msleep(50);
5700 exit_cnt++;
5701 }
5702 }
5703
5704 if (sp->device_type == XFRAME_II_DEVICE) {
5705 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5706 SPI_CONTROL_BYTECNT(0x3) |
5707 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5708 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5709 val64 |= SPI_CONTROL_REQ;
5710 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5711 while (exit_cnt < 5) {
5712 val64 = readq(&bar0->spi_control);
5713 if (val64 & SPI_CONTROL_NACK) {
5714 ret = 1;
5715 break;
5716 } else if (val64 & SPI_CONTROL_DONE) {
5717 *data = readq(&bar0->spi_data);
5718 *data &= 0xffffff;
5719 ret = 0;
5720 break;
5721 }
5722 msleep(50);
5723 exit_cnt++;
5724 }
5725 }
5726 return ret;
5727 }
5728
5729 /**
5730 * write_eeprom - actually writes the relevant part of the data value.
5731 * @sp : private member of the device structure, which is a pointer to the
5732 * s2io_nic structure.
5733 * @off : offset at which the data must be written
5734 * @data : The data that is to be written
5735 * @cnt : Number of bytes of the data that are actually to be written into
5736 * the Eeprom. (max of 3)
5737 * Description:
5738 * Actually writes the relevant part of the data value into the Eeprom
5739 * through the I2C bus.
5740 * Return value:
5741 * 0 on success, -1 on failure.
5742 */
5743
5744 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5745 {
5746 int exit_cnt = 0, ret = -1;
5747 u64 val64;
5748 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5749
5750 if (sp->device_type == XFRAME_I_DEVICE) {
5751 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5752 I2C_CONTROL_ADDR(off) |
5753 I2C_CONTROL_BYTE_CNT(cnt) |
5754 I2C_CONTROL_SET_DATA((u32)data) |
5755 I2C_CONTROL_CNTL_START;
5756 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5757
5758 while (exit_cnt < 5) {
5759 val64 = readq(&bar0->i2c_control);
5760 if (I2C_CONTROL_CNTL_END(val64)) {
5761 if (!(val64 & I2C_CONTROL_NACK))
5762 ret = 0;
5763 break;
5764 }
5765 msleep(50);
5766 exit_cnt++;
5767 }
5768 }
5769
5770 if (sp->device_type == XFRAME_II_DEVICE) {
5771 int write_cnt = (cnt == 8) ? 0 : cnt;
5772 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5773
5774 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5775 SPI_CONTROL_BYTECNT(write_cnt) |
5776 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5777 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5778 val64 |= SPI_CONTROL_REQ;
5779 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5780 while (exit_cnt < 5) {
5781 val64 = readq(&bar0->spi_control);
5782 if (val64 & SPI_CONTROL_NACK) {
5783 ret = 1;
5784 break;
5785 } else if (val64 & SPI_CONTROL_DONE) {
5786 ret = 0;
5787 break;
5788 }
5789 msleep(50);
5790 exit_cnt++;
5791 }
5792 }
5793 return ret;
5794 }
5795 static void s2io_vpd_read(struct s2io_nic *nic)
5796 {
5797 u8 *vpd_data;
5798 u8 data;
5799 int i = 0, cnt, len, fail = 0;
5800 int vpd_addr = 0x80;
5801 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5802
5803 if (nic->device_type == XFRAME_II_DEVICE) {
5804 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5805 vpd_addr = 0x80;
5806 } else {
5807 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5808 vpd_addr = 0x50;
5809 }
5810 strcpy(nic->serial_num, "NOT AVAILABLE");
5811
5812 vpd_data = kmalloc(256, GFP_KERNEL);
5813 if (!vpd_data) {
5814 swstats->mem_alloc_fail_cnt++;
5815 return;
5816 }
5817 swstats->mem_allocated += 256;
5818
5819 for (i = 0; i < 256; i += 4) {
5820 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5821 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5822 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5823 for (cnt = 0; cnt < 5; cnt++) {
5824 msleep(2);
5825 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5826 if (data == 0x80)
5827 break;
5828 }
5829 if (cnt >= 5) {
5830 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5831 fail = 1;
5832 break;
5833 }
5834 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5835 (u32 *)&vpd_data[i]);
5836 }
5837
5838 if (!fail) {
5839 /* read serial number of adapter */
5840 for (cnt = 0; cnt < 252; cnt++) {
5841 if ((vpd_data[cnt] == 'S') &&
5842 (vpd_data[cnt+1] == 'N')) {
5843 len = vpd_data[cnt+2];
5844 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5845 memcpy(nic->serial_num,
5846 &vpd_data[cnt + 3],
5847 len);
5848 memset(nic->serial_num+len,
5849 0,
5850 VPD_STRING_LEN-len);
5851 break;
5852 }
5853 }
5854 }
5855 }
5856
5857 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5858 len = vpd_data[1];
5859 memcpy(nic->product_name, &vpd_data[3], len);
5860 nic->product_name[len] = 0;
5861 }
5862 kfree(vpd_data);
5863 swstats->mem_freed += 256;
5864 }
5865
5866 /**
5867 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5868 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5869 * @eeprom : pointer to the user level structure provided by ethtool,
5870 * containing all relevant information.
5871 * @data_buf : user defined value to be written into Eeprom.
5872 * Description: Reads the values stored in the Eeprom at given offset
5873 * for a given length. Stores these values int the input argument data
5874 * buffer 'data_buf' and returns these to the caller (ethtool.)
5875 * Return value:
5876 * int 0 on success
5877 */
5878
5879 static int s2io_ethtool_geeprom(struct net_device *dev,
5880 struct ethtool_eeprom *eeprom, u8 * data_buf)
5881 {
5882 u32 i, valid;
5883 u64 data;
5884 struct s2io_nic *sp = netdev_priv(dev);
5885
5886 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5887
5888 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5889 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5890
5891 for (i = 0; i < eeprom->len; i += 4) {
5892 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5893 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5894 return -EFAULT;
5895 }
5896 valid = INV(data);
5897 memcpy((data_buf + i), &valid, 4);
5898 }
5899 return 0;
5900 }
5901
5902 /**
5903 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5904 * @sp : private member of the device structure, which is a pointer to the
5905 * s2io_nic structure.
5906 * @eeprom : pointer to the user level structure provided by ethtool,
5907 * containing all relevant information.
5908 * @data_buf ; user defined value to be written into Eeprom.
5909 * Description:
5910 * Tries to write the user provided value in the Eeprom, at the offset
5911 * given by the user.
5912 * Return value:
5913 * 0 on success, -EFAULT on failure.
5914 */
5915
5916 static int s2io_ethtool_seeprom(struct net_device *dev,
5917 struct ethtool_eeprom *eeprom,
5918 u8 *data_buf)
5919 {
5920 int len = eeprom->len, cnt = 0;
5921 u64 valid = 0, data;
5922 struct s2io_nic *sp = netdev_priv(dev);
5923
5924 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5925 DBG_PRINT(ERR_DBG,
5926 "ETHTOOL_WRITE_EEPROM Err: "
5927 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5928 (sp->pdev->vendor | (sp->pdev->device << 16)),
5929 eeprom->magic);
5930 return -EFAULT;
5931 }
5932
5933 while (len) {
5934 data = (u32)data_buf[cnt] & 0x000000FF;
5935 if (data)
5936 valid = (u32)(data << 24);
5937 else
5938 valid = data;
5939
5940 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5941 DBG_PRINT(ERR_DBG,
5942 "ETHTOOL_WRITE_EEPROM Err: "
5943 "Cannot write into the specified offset\n");
5944 return -EFAULT;
5945 }
5946 cnt++;
5947 len--;
5948 }
5949
5950 return 0;
5951 }
5952
5953 /**
5954 * s2io_register_test - reads and writes into all clock domains.
5955 * @sp : private member of the device structure, which is a pointer to the
5956 * s2io_nic structure.
5957 * @data : variable that returns the result of each of the test conducted b
5958 * by the driver.
5959 * Description:
5960 * Read and write into all clock domains. The NIC has 3 clock domains,
5961 * see that registers in all the three regions are accessible.
5962 * Return value:
5963 * 0 on success.
5964 */
5965
5966 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5967 {
5968 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5969 u64 val64 = 0, exp_val;
5970 int fail = 0;
5971
5972 val64 = readq(&bar0->pif_rd_swapper_fb);
5973 if (val64 != 0x123456789abcdefULL) {
5974 fail = 1;
5975 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5976 }
5977
5978 val64 = readq(&bar0->rmac_pause_cfg);
5979 if (val64 != 0xc000ffff00000000ULL) {
5980 fail = 1;
5981 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5982 }
5983
5984 val64 = readq(&bar0->rx_queue_cfg);
5985 if (sp->device_type == XFRAME_II_DEVICE)
5986 exp_val = 0x0404040404040404ULL;
5987 else
5988 exp_val = 0x0808080808080808ULL;
5989 if (val64 != exp_val) {
5990 fail = 1;
5991 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5992 }
5993
5994 val64 = readq(&bar0->xgxs_efifo_cfg);
5995 if (val64 != 0x000000001923141EULL) {
5996 fail = 1;
5997 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5998 }
5999
6000 val64 = 0x5A5A5A5A5A5A5A5AULL;
6001 writeq(val64, &bar0->xmsi_data);
6002 val64 = readq(&bar0->xmsi_data);
6003 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
6004 fail = 1;
6005 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
6006 }
6007
6008 val64 = 0xA5A5A5A5A5A5A5A5ULL;
6009 writeq(val64, &bar0->xmsi_data);
6010 val64 = readq(&bar0->xmsi_data);
6011 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6012 fail = 1;
6013 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6014 }
6015
6016 *data = fail;
6017 return fail;
6018 }
6019
6020 /**
6021 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6022 * @sp : private member of the device structure, which is a pointer to the
6023 * s2io_nic structure.
6024 * @data:variable that returns the result of each of the test conducted by
6025 * the driver.
6026 * Description:
6027 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6028 * register.
6029 * Return value:
6030 * 0 on success.
6031 */
6032
6033 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6034 {
6035 int fail = 0;
6036 u64 ret_data, org_4F0, org_7F0;
6037 u8 saved_4F0 = 0, saved_7F0 = 0;
6038 struct net_device *dev = sp->dev;
6039
6040 /* Test Write Error at offset 0 */
6041 /* Note that SPI interface allows write access to all areas
6042 * of EEPROM. Hence doing all negative testing only for Xframe I.
6043 */
6044 if (sp->device_type == XFRAME_I_DEVICE)
6045 if (!write_eeprom(sp, 0, 0, 3))
6046 fail = 1;
6047
6048 /* Save current values at offsets 0x4F0 and 0x7F0 */
6049 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6050 saved_4F0 = 1;
6051 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6052 saved_7F0 = 1;
6053
6054 /* Test Write at offset 4f0 */
6055 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6056 fail = 1;
6057 if (read_eeprom(sp, 0x4F0, &ret_data))
6058 fail = 1;
6059
6060 if (ret_data != 0x012345) {
6061 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6062 "Data written %llx Data read %llx\n",
6063 dev->name, (unsigned long long)0x12345,
6064 (unsigned long long)ret_data);
6065 fail = 1;
6066 }
6067
6068 /* Reset the EEPROM data go FFFF */
6069 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6070
6071 /* Test Write Request Error at offset 0x7c */
6072 if (sp->device_type == XFRAME_I_DEVICE)
6073 if (!write_eeprom(sp, 0x07C, 0, 3))
6074 fail = 1;
6075
6076 /* Test Write Request at offset 0x7f0 */
6077 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6078 fail = 1;
6079 if (read_eeprom(sp, 0x7F0, &ret_data))
6080 fail = 1;
6081
6082 if (ret_data != 0x012345) {
6083 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6084 "Data written %llx Data read %llx\n",
6085 dev->name, (unsigned long long)0x12345,
6086 (unsigned long long)ret_data);
6087 fail = 1;
6088 }
6089
6090 /* Reset the EEPROM data go FFFF */
6091 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6092
6093 if (sp->device_type == XFRAME_I_DEVICE) {
6094 /* Test Write Error at offset 0x80 */
6095 if (!write_eeprom(sp, 0x080, 0, 3))
6096 fail = 1;
6097
6098 /* Test Write Error at offset 0xfc */
6099 if (!write_eeprom(sp, 0x0FC, 0, 3))
6100 fail = 1;
6101
6102 /* Test Write Error at offset 0x100 */
6103 if (!write_eeprom(sp, 0x100, 0, 3))
6104 fail = 1;
6105
6106 /* Test Write Error at offset 4ec */
6107 if (!write_eeprom(sp, 0x4EC, 0, 3))
6108 fail = 1;
6109 }
6110
6111 /* Restore values at offsets 0x4F0 and 0x7F0 */
6112 if (saved_4F0)
6113 write_eeprom(sp, 0x4F0, org_4F0, 3);
6114 if (saved_7F0)
6115 write_eeprom(sp, 0x7F0, org_7F0, 3);
6116
6117 *data = fail;
6118 return fail;
6119 }
6120
6121 /**
6122 * s2io_bist_test - invokes the MemBist test of the card .
6123 * @sp : private member of the device structure, which is a pointer to the
6124 * s2io_nic structure.
6125 * @data:variable that returns the result of each of the test conducted by
6126 * the driver.
6127 * Description:
6128 * This invokes the MemBist test of the card. We give around
6129 * 2 secs time for the Test to complete. If it's still not complete
6130 * within this peiod, we consider that the test failed.
6131 * Return value:
6132 * 0 on success and -1 on failure.
6133 */
6134
6135 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6136 {
6137 u8 bist = 0;
6138 int cnt = 0, ret = -1;
6139
6140 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6141 bist |= PCI_BIST_START;
6142 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6143
6144 while (cnt < 20) {
6145 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6146 if (!(bist & PCI_BIST_START)) {
6147 *data = (bist & PCI_BIST_CODE_MASK);
6148 ret = 0;
6149 break;
6150 }
6151 msleep(100);
6152 cnt++;
6153 }
6154
6155 return ret;
6156 }
6157
6158 /**
6159 * s2io-link_test - verifies the link state of the nic
6160 * @sp ; private member of the device structure, which is a pointer to the
6161 * s2io_nic structure.
6162 * @data: variable that returns the result of each of the test conducted by
6163 * the driver.
6164 * Description:
6165 * The function verifies the link state of the NIC and updates the input
6166 * argument 'data' appropriately.
6167 * Return value:
6168 * 0 on success.
6169 */
6170
6171 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6172 {
6173 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6174 u64 val64;
6175
6176 val64 = readq(&bar0->adapter_status);
6177 if (!(LINK_IS_UP(val64)))
6178 *data = 1;
6179 else
6180 *data = 0;
6181
6182 return *data;
6183 }
6184
6185 /**
6186 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6187 * @sp - private member of the device structure, which is a pointer to the
6188 * s2io_nic structure.
6189 * @data - variable that returns the result of each of the test
6190 * conducted by the driver.
6191 * Description:
6192 * This is one of the offline test that tests the read and write
6193 * access to the RldRam chip on the NIC.
6194 * Return value:
6195 * 0 on success.
6196 */
6197
6198 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6199 {
6200 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6201 u64 val64;
6202 int cnt, iteration = 0, test_fail = 0;
6203
6204 val64 = readq(&bar0->adapter_control);
6205 val64 &= ~ADAPTER_ECC_EN;
6206 writeq(val64, &bar0->adapter_control);
6207
6208 val64 = readq(&bar0->mc_rldram_test_ctrl);
6209 val64 |= MC_RLDRAM_TEST_MODE;
6210 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6211
6212 val64 = readq(&bar0->mc_rldram_mrs);
6213 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6214 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6215
6216 val64 |= MC_RLDRAM_MRS_ENABLE;
6217 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6218
6219 while (iteration < 2) {
6220 val64 = 0x55555555aaaa0000ULL;
6221 if (iteration == 1)
6222 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6223 writeq(val64, &bar0->mc_rldram_test_d0);
6224
6225 val64 = 0xaaaa5a5555550000ULL;
6226 if (iteration == 1)
6227 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6228 writeq(val64, &bar0->mc_rldram_test_d1);
6229
6230 val64 = 0x55aaaaaaaa5a0000ULL;
6231 if (iteration == 1)
6232 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6233 writeq(val64, &bar0->mc_rldram_test_d2);
6234
6235 val64 = (u64) (0x0000003ffffe0100ULL);
6236 writeq(val64, &bar0->mc_rldram_test_add);
6237
6238 val64 = MC_RLDRAM_TEST_MODE |
6239 MC_RLDRAM_TEST_WRITE |
6240 MC_RLDRAM_TEST_GO;
6241 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6242
6243 for (cnt = 0; cnt < 5; cnt++) {
6244 val64 = readq(&bar0->mc_rldram_test_ctrl);
6245 if (val64 & MC_RLDRAM_TEST_DONE)
6246 break;
6247 msleep(200);
6248 }
6249
6250 if (cnt == 5)
6251 break;
6252
6253 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6254 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6255
6256 for (cnt = 0; cnt < 5; cnt++) {
6257 val64 = readq(&bar0->mc_rldram_test_ctrl);
6258 if (val64 & MC_RLDRAM_TEST_DONE)
6259 break;
6260 msleep(500);
6261 }
6262
6263 if (cnt == 5)
6264 break;
6265
6266 val64 = readq(&bar0->mc_rldram_test_ctrl);
6267 if (!(val64 & MC_RLDRAM_TEST_PASS))
6268 test_fail = 1;
6269
6270 iteration++;
6271 }
6272
6273 *data = test_fail;
6274
6275 /* Bring the adapter out of test mode */
6276 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6277
6278 return test_fail;
6279 }
6280
6281 /**
6282 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6283 * @sp : private member of the device structure, which is a pointer to the
6284 * s2io_nic structure.
6285 * @ethtest : pointer to a ethtool command specific structure that will be
6286 * returned to the user.
6287 * @data : variable that returns the result of each of the test
6288 * conducted by the driver.
6289 * Description:
6290 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6291 * the health of the card.
6292 * Return value:
6293 * void
6294 */
6295
6296 static void s2io_ethtool_test(struct net_device *dev,
6297 struct ethtool_test *ethtest,
6298 uint64_t *data)
6299 {
6300 struct s2io_nic *sp = netdev_priv(dev);
6301 int orig_state = netif_running(sp->dev);
6302
6303 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6304 /* Offline Tests. */
6305 if (orig_state)
6306 s2io_close(sp->dev);
6307
6308 if (s2io_register_test(sp, &data[0]))
6309 ethtest->flags |= ETH_TEST_FL_FAILED;
6310
6311 s2io_reset(sp);
6312
6313 if (s2io_rldram_test(sp, &data[3]))
6314 ethtest->flags |= ETH_TEST_FL_FAILED;
6315
6316 s2io_reset(sp);
6317
6318 if (s2io_eeprom_test(sp, &data[1]))
6319 ethtest->flags |= ETH_TEST_FL_FAILED;
6320
6321 if (s2io_bist_test(sp, &data[4]))
6322 ethtest->flags |= ETH_TEST_FL_FAILED;
6323
6324 if (orig_state)
6325 s2io_open(sp->dev);
6326
6327 data[2] = 0;
6328 } else {
6329 /* Online Tests. */
6330 if (!orig_state) {
6331 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6332 dev->name);
6333 data[0] = -1;
6334 data[1] = -1;
6335 data[2] = -1;
6336 data[3] = -1;
6337 data[4] = -1;
6338 }
6339
6340 if (s2io_link_test(sp, &data[2]))
6341 ethtest->flags |= ETH_TEST_FL_FAILED;
6342
6343 data[0] = 0;
6344 data[1] = 0;
6345 data[3] = 0;
6346 data[4] = 0;
6347 }
6348 }
6349
6350 static void s2io_get_ethtool_stats(struct net_device *dev,
6351 struct ethtool_stats *estats,
6352 u64 *tmp_stats)
6353 {
6354 int i = 0, k;
6355 struct s2io_nic *sp = netdev_priv(dev);
6356 struct stat_block *stats = sp->mac_control.stats_info;
6357 struct swStat *swstats = &stats->sw_stat;
6358 struct xpakStat *xstats = &stats->xpak_stat;
6359
6360 s2io_updt_stats(sp);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6363 le32_to_cpu(stats->tmac_frms);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6366 le32_to_cpu(stats->tmac_data_octets);
6367 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6370 le32_to_cpu(stats->tmac_mcst_frms);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6373 le32_to_cpu(stats->tmac_bcst_frms);
6374 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6375 tmp_stats[i++] =
6376 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6377 le32_to_cpu(stats->tmac_ttl_octets);
6378 tmp_stats[i++] =
6379 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6380 le32_to_cpu(stats->tmac_ucst_frms);
6381 tmp_stats[i++] =
6382 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6383 le32_to_cpu(stats->tmac_nucst_frms);
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6386 le32_to_cpu(stats->tmac_any_err_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6388 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6389 tmp_stats[i++] =
6390 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6391 le32_to_cpu(stats->tmac_vld_ip);
6392 tmp_stats[i++] =
6393 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6394 le32_to_cpu(stats->tmac_drop_ip);
6395 tmp_stats[i++] =
6396 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6397 le32_to_cpu(stats->tmac_icmp);
6398 tmp_stats[i++] =
6399 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6400 le32_to_cpu(stats->tmac_rst_tcp);
6401 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6402 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6403 le32_to_cpu(stats->tmac_udp);
6404 tmp_stats[i++] =
6405 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6406 le32_to_cpu(stats->rmac_vld_frms);
6407 tmp_stats[i++] =
6408 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6409 le32_to_cpu(stats->rmac_data_octets);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6412 tmp_stats[i++] =
6413 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6414 le32_to_cpu(stats->rmac_vld_mcst_frms);
6415 tmp_stats[i++] =
6416 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6417 le32_to_cpu(stats->rmac_vld_bcst_frms);
6418 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6419 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6420 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6421 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6422 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6425 le32_to_cpu(stats->rmac_ttl_octets);
6426 tmp_stats[i++] =
6427 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6428 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6429 tmp_stats[i++] =
6430 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6431 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6432 tmp_stats[i++] =
6433 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6434 le32_to_cpu(stats->rmac_discarded_frms);
6435 tmp_stats[i++] =
6436 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6437 << 32 | le32_to_cpu(stats->rmac_drop_events);
6438 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6439 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6440 tmp_stats[i++] =
6441 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6442 le32_to_cpu(stats->rmac_usized_frms);
6443 tmp_stats[i++] =
6444 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6445 le32_to_cpu(stats->rmac_osized_frms);
6446 tmp_stats[i++] =
6447 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6448 le32_to_cpu(stats->rmac_frag_frms);
6449 tmp_stats[i++] =
6450 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6451 le32_to_cpu(stats->rmac_jabber_frms);
6452 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6453 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6454 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6455 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6456 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6457 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6458 tmp_stats[i++] =
6459 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6460 le32_to_cpu(stats->rmac_ip);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6462 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6463 tmp_stats[i++] =
6464 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6465 le32_to_cpu(stats->rmac_drop_ip);
6466 tmp_stats[i++] =
6467 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6468 le32_to_cpu(stats->rmac_icmp);
6469 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6470 tmp_stats[i++] =
6471 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6472 le32_to_cpu(stats->rmac_udp);
6473 tmp_stats[i++] =
6474 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6475 le32_to_cpu(stats->rmac_err_drp_udp);
6476 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6477 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6478 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6479 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6480 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6481 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6482 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6483 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6484 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6485 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6486 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6487 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6488 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6489 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6490 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6491 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6492 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6493 tmp_stats[i++] =
6494 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6495 le32_to_cpu(stats->rmac_pause_cnt);
6496 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6497 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6498 tmp_stats[i++] =
6499 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6500 le32_to_cpu(stats->rmac_accepted_ip);
6501 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6502 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6509 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6510 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6511 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6512 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6513 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6514 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6515 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6516 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6517 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6518 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6519 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6520
6521 /* Enhanced statistics exist only for Hercules */
6522 if (sp->device_type == XFRAME_II_DEVICE) {
6523 tmp_stats[i++] =
6524 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6525 tmp_stats[i++] =
6526 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6527 tmp_stats[i++] =
6528 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6529 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6530 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6531 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6532 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6533 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6534 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6535 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6536 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6537 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6538 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6539 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6540 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6541 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6542 }
6543
6544 tmp_stats[i++] = 0;
6545 tmp_stats[i++] = swstats->single_ecc_errs;
6546 tmp_stats[i++] = swstats->double_ecc_errs;
6547 tmp_stats[i++] = swstats->parity_err_cnt;
6548 tmp_stats[i++] = swstats->serious_err_cnt;
6549 tmp_stats[i++] = swstats->soft_reset_cnt;
6550 tmp_stats[i++] = swstats->fifo_full_cnt;
6551 for (k = 0; k < MAX_RX_RINGS; k++)
6552 tmp_stats[i++] = swstats->ring_full_cnt[k];
6553 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6554 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6555 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6556 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6557 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6558 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6559 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6560 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6561 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6562 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6563 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6564 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6565 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6566 tmp_stats[i++] = swstats->sending_both;
6567 tmp_stats[i++] = swstats->outof_sequence_pkts;
6568 tmp_stats[i++] = swstats->flush_max_pkts;
6569 if (swstats->num_aggregations) {
6570 u64 tmp = swstats->sum_avg_pkts_aggregated;
6571 int count = 0;
6572 /*
6573 * Since 64-bit divide does not work on all platforms,
6574 * do repeated subtraction.
6575 */
6576 while (tmp >= swstats->num_aggregations) {
6577 tmp -= swstats->num_aggregations;
6578 count++;
6579 }
6580 tmp_stats[i++] = count;
6581 } else
6582 tmp_stats[i++] = 0;
6583 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6584 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6585 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6586 tmp_stats[i++] = swstats->mem_allocated;
6587 tmp_stats[i++] = swstats->mem_freed;
6588 tmp_stats[i++] = swstats->link_up_cnt;
6589 tmp_stats[i++] = swstats->link_down_cnt;
6590 tmp_stats[i++] = swstats->link_up_time;
6591 tmp_stats[i++] = swstats->link_down_time;
6592
6593 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6594 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6595 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6596 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6597 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6598
6599 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6600 tmp_stats[i++] = swstats->rx_abort_cnt;
6601 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6602 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6603 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6604 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6605 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6606 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6607 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6608 tmp_stats[i++] = swstats->tda_err_cnt;
6609 tmp_stats[i++] = swstats->pfc_err_cnt;
6610 tmp_stats[i++] = swstats->pcc_err_cnt;
6611 tmp_stats[i++] = swstats->tti_err_cnt;
6612 tmp_stats[i++] = swstats->tpa_err_cnt;
6613 tmp_stats[i++] = swstats->sm_err_cnt;
6614 tmp_stats[i++] = swstats->lso_err_cnt;
6615 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6616 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6617 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6618 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6619 tmp_stats[i++] = swstats->rc_err_cnt;
6620 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6621 tmp_stats[i++] = swstats->rpa_err_cnt;
6622 tmp_stats[i++] = swstats->rda_err_cnt;
6623 tmp_stats[i++] = swstats->rti_err_cnt;
6624 tmp_stats[i++] = swstats->mc_err_cnt;
6625 }
6626
6627 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6628 {
6629 return XENA_REG_SPACE;
6630 }
6631
6632
6633 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6634 {
6635 struct s2io_nic *sp = netdev_priv(dev);
6636
6637 return sp->rx_csum;
6638 }
6639
6640 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6641 {
6642 struct s2io_nic *sp = netdev_priv(dev);
6643
6644 if (data)
6645 sp->rx_csum = 1;
6646 else
6647 sp->rx_csum = 0;
6648
6649 return 0;
6650 }
6651
6652 static int s2io_get_eeprom_len(struct net_device *dev)
6653 {
6654 return XENA_EEPROM_SPACE;
6655 }
6656
6657 static int s2io_get_sset_count(struct net_device *dev, int sset)
6658 {
6659 struct s2io_nic *sp = netdev_priv(dev);
6660
6661 switch (sset) {
6662 case ETH_SS_TEST:
6663 return S2IO_TEST_LEN;
6664 case ETH_SS_STATS:
6665 switch (sp->device_type) {
6666 case XFRAME_I_DEVICE:
6667 return XFRAME_I_STAT_LEN;
6668 case XFRAME_II_DEVICE:
6669 return XFRAME_II_STAT_LEN;
6670 default:
6671 return 0;
6672 }
6673 default:
6674 return -EOPNOTSUPP;
6675 }
6676 }
6677
6678 static void s2io_ethtool_get_strings(struct net_device *dev,
6679 u32 stringset, u8 *data)
6680 {
6681 int stat_size = 0;
6682 struct s2io_nic *sp = netdev_priv(dev);
6683
6684 switch (stringset) {
6685 case ETH_SS_TEST:
6686 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6687 break;
6688 case ETH_SS_STATS:
6689 stat_size = sizeof(ethtool_xena_stats_keys);
6690 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6691 if (sp->device_type == XFRAME_II_DEVICE) {
6692 memcpy(data + stat_size,
6693 &ethtool_enhanced_stats_keys,
6694 sizeof(ethtool_enhanced_stats_keys));
6695 stat_size += sizeof(ethtool_enhanced_stats_keys);
6696 }
6697
6698 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6699 sizeof(ethtool_driver_stats_keys));
6700 }
6701 }
6702
6703 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6704 {
6705 if (data)
6706 dev->features |= NETIF_F_IP_CSUM;
6707 else
6708 dev->features &= ~NETIF_F_IP_CSUM;
6709
6710 return 0;
6711 }
6712
6713 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6714 {
6715 return (dev->features & NETIF_F_TSO) != 0;
6716 }
6717
6718 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6719 {
6720 if (data)
6721 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6722 else
6723 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6724
6725 return 0;
6726 }
6727
6728 static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6729 {
6730 struct s2io_nic *sp = netdev_priv(dev);
6731 int rc = 0;
6732 int changed = 0;
6733
6734 if (data & ~ETH_FLAG_LRO)
6735 return -EINVAL;
6736
6737 if (data & ETH_FLAG_LRO) {
6738 if (lro_enable) {
6739 if (!(dev->features & NETIF_F_LRO)) {
6740 dev->features |= NETIF_F_LRO;
6741 changed = 1;
6742 }
6743 } else
6744 rc = -EINVAL;
6745 } else if (dev->features & NETIF_F_LRO) {
6746 dev->features &= ~NETIF_F_LRO;
6747 changed = 1;
6748 }
6749
6750 if (changed && netif_running(dev)) {
6751 s2io_stop_all_tx_queue(sp);
6752 s2io_card_down(sp);
6753 sp->lro = !!(dev->features & NETIF_F_LRO);
6754 rc = s2io_card_up(sp);
6755 if (rc)
6756 s2io_reset(sp);
6757 else
6758 s2io_start_all_tx_queue(sp);
6759 }
6760
6761 return rc;
6762 }
6763
6764 static const struct ethtool_ops netdev_ethtool_ops = {
6765 .get_settings = s2io_ethtool_gset,
6766 .set_settings = s2io_ethtool_sset,
6767 .get_drvinfo = s2io_ethtool_gdrvinfo,
6768 .get_regs_len = s2io_ethtool_get_regs_len,
6769 .get_regs = s2io_ethtool_gregs,
6770 .get_link = ethtool_op_get_link,
6771 .get_eeprom_len = s2io_get_eeprom_len,
6772 .get_eeprom = s2io_ethtool_geeprom,
6773 .set_eeprom = s2io_ethtool_seeprom,
6774 .get_ringparam = s2io_ethtool_gringparam,
6775 .get_pauseparam = s2io_ethtool_getpause_data,
6776 .set_pauseparam = s2io_ethtool_setpause_data,
6777 .get_rx_csum = s2io_ethtool_get_rx_csum,
6778 .set_rx_csum = s2io_ethtool_set_rx_csum,
6779 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6780 .set_flags = s2io_ethtool_set_flags,
6781 .get_flags = ethtool_op_get_flags,
6782 .set_sg = ethtool_op_set_sg,
6783 .get_tso = s2io_ethtool_op_get_tso,
6784 .set_tso = s2io_ethtool_op_set_tso,
6785 .set_ufo = ethtool_op_set_ufo,
6786 .self_test = s2io_ethtool_test,
6787 .get_strings = s2io_ethtool_get_strings,
6788 .phys_id = s2io_ethtool_idnic,
6789 .get_ethtool_stats = s2io_get_ethtool_stats,
6790 .get_sset_count = s2io_get_sset_count,
6791 };
6792
6793 /**
6794 * s2io_ioctl - Entry point for the Ioctl
6795 * @dev : Device pointer.
6796 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6797 * a proprietary structure used to pass information to the driver.
6798 * @cmd : This is used to distinguish between the different commands that
6799 * can be passed to the IOCTL functions.
6800 * Description:
6801 * Currently there are no special functionality supported in IOCTL, hence
6802 * function always return EOPNOTSUPPORTED
6803 */
6804
6805 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6806 {
6807 return -EOPNOTSUPP;
6808 }
6809
6810 /**
6811 * s2io_change_mtu - entry point to change MTU size for the device.
6812 * @dev : device pointer.
6813 * @new_mtu : the new MTU size for the device.
6814 * Description: A driver entry point to change MTU size for the device.
6815 * Before changing the MTU the device must be stopped.
6816 * Return value:
6817 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6818 * file on failure.
6819 */
6820
6821 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6822 {
6823 struct s2io_nic *sp = netdev_priv(dev);
6824 int ret = 0;
6825
6826 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6827 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6828 return -EPERM;
6829 }
6830
6831 dev->mtu = new_mtu;
6832 if (netif_running(dev)) {
6833 s2io_stop_all_tx_queue(sp);
6834 s2io_card_down(sp);
6835 ret = s2io_card_up(sp);
6836 if (ret) {
6837 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6838 __func__);
6839 return ret;
6840 }
6841 s2io_wake_all_tx_queue(sp);
6842 } else { /* Device is down */
6843 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6844 u64 val64 = new_mtu;
6845
6846 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6847 }
6848
6849 return ret;
6850 }
6851
6852 /**
6853 * s2io_set_link - Set the LInk status
6854 * @data: long pointer to device private structue
6855 * Description: Sets the link status for the adapter
6856 */
6857
6858 static void s2io_set_link(struct work_struct *work)
6859 {
6860 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6861 set_link_task);
6862 struct net_device *dev = nic->dev;
6863 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6864 register u64 val64;
6865 u16 subid;
6866
6867 rtnl_lock();
6868
6869 if (!netif_running(dev))
6870 goto out_unlock;
6871
6872 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6873 /* The card is being reset, no point doing anything */
6874 goto out_unlock;
6875 }
6876
6877 subid = nic->pdev->subsystem_device;
6878 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6879 /*
6880 * Allow a small delay for the NICs self initiated
6881 * cleanup to complete.
6882 */
6883 msleep(100);
6884 }
6885
6886 val64 = readq(&bar0->adapter_status);
6887 if (LINK_IS_UP(val64)) {
6888 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6889 if (verify_xena_quiescence(nic)) {
6890 val64 = readq(&bar0->adapter_control);
6891 val64 |= ADAPTER_CNTL_EN;
6892 writeq(val64, &bar0->adapter_control);
6893 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6894 nic->device_type, subid)) {
6895 val64 = readq(&bar0->gpio_control);
6896 val64 |= GPIO_CTRL_GPIO_0;
6897 writeq(val64, &bar0->gpio_control);
6898 val64 = readq(&bar0->gpio_control);
6899 } else {
6900 val64 |= ADAPTER_LED_ON;
6901 writeq(val64, &bar0->adapter_control);
6902 }
6903 nic->device_enabled_once = true;
6904 } else {
6905 DBG_PRINT(ERR_DBG,
6906 "%s: Error: device is not Quiescent\n",
6907 dev->name);
6908 s2io_stop_all_tx_queue(nic);
6909 }
6910 }
6911 val64 = readq(&bar0->adapter_control);
6912 val64 |= ADAPTER_LED_ON;
6913 writeq(val64, &bar0->adapter_control);
6914 s2io_link(nic, LINK_UP);
6915 } else {
6916 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6917 subid)) {
6918 val64 = readq(&bar0->gpio_control);
6919 val64 &= ~GPIO_CTRL_GPIO_0;
6920 writeq(val64, &bar0->gpio_control);
6921 val64 = readq(&bar0->gpio_control);
6922 }
6923 /* turn off LED */
6924 val64 = readq(&bar0->adapter_control);
6925 val64 = val64 & (~ADAPTER_LED_ON);
6926 writeq(val64, &bar0->adapter_control);
6927 s2io_link(nic, LINK_DOWN);
6928 }
6929 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6930
6931 out_unlock:
6932 rtnl_unlock();
6933 }
6934
6935 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6936 struct buffAdd *ba,
6937 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6938 u64 *temp2, int size)
6939 {
6940 struct net_device *dev = sp->dev;
6941 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6942
6943 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6944 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6945 /* allocate skb */
6946 if (*skb) {
6947 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6948 /*
6949 * As Rx frame are not going to be processed,
6950 * using same mapped address for the Rxd
6951 * buffer pointer
6952 */
6953 rxdp1->Buffer0_ptr = *temp0;
6954 } else {
6955 *skb = dev_alloc_skb(size);
6956 if (!(*skb)) {
6957 DBG_PRINT(INFO_DBG,
6958 "%s: Out of memory to allocate %s\n",
6959 dev->name, "1 buf mode SKBs");
6960 stats->mem_alloc_fail_cnt++;
6961 return -ENOMEM ;
6962 }
6963 stats->mem_allocated += (*skb)->truesize;
6964 /* storing the mapped addr in a temp variable
6965 * such it will be used for next rxd whose
6966 * Host Control is NULL
6967 */
6968 rxdp1->Buffer0_ptr = *temp0 =
6969 pci_map_single(sp->pdev, (*skb)->data,
6970 size - NET_IP_ALIGN,
6971 PCI_DMA_FROMDEVICE);
6972 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6973 goto memalloc_failed;
6974 rxdp->Host_Control = (unsigned long) (*skb);
6975 }
6976 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6977 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6978 /* Two buffer Mode */
6979 if (*skb) {
6980 rxdp3->Buffer2_ptr = *temp2;
6981 rxdp3->Buffer0_ptr = *temp0;
6982 rxdp3->Buffer1_ptr = *temp1;
6983 } else {
6984 *skb = dev_alloc_skb(size);
6985 if (!(*skb)) {
6986 DBG_PRINT(INFO_DBG,
6987 "%s: Out of memory to allocate %s\n",
6988 dev->name,
6989 "2 buf mode SKBs");
6990 stats->mem_alloc_fail_cnt++;
6991 return -ENOMEM;
6992 }
6993 stats->mem_allocated += (*skb)->truesize;
6994 rxdp3->Buffer2_ptr = *temp2 =
6995 pci_map_single(sp->pdev, (*skb)->data,
6996 dev->mtu + 4,
6997 PCI_DMA_FROMDEVICE);
6998 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6999 goto memalloc_failed;
7000 rxdp3->Buffer0_ptr = *temp0 =
7001 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
7002 PCI_DMA_FROMDEVICE);
7003 if (pci_dma_mapping_error(sp->pdev,
7004 rxdp3->Buffer0_ptr)) {
7005 pci_unmap_single(sp->pdev,
7006 (dma_addr_t)rxdp3->Buffer2_ptr,
7007 dev->mtu + 4,
7008 PCI_DMA_FROMDEVICE);
7009 goto memalloc_failed;
7010 }
7011 rxdp->Host_Control = (unsigned long) (*skb);
7012
7013 /* Buffer-1 will be dummy buffer not used */
7014 rxdp3->Buffer1_ptr = *temp1 =
7015 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
7016 PCI_DMA_FROMDEVICE);
7017 if (pci_dma_mapping_error(sp->pdev,
7018 rxdp3->Buffer1_ptr)) {
7019 pci_unmap_single(sp->pdev,
7020 (dma_addr_t)rxdp3->Buffer0_ptr,
7021 BUF0_LEN, PCI_DMA_FROMDEVICE);
7022 pci_unmap_single(sp->pdev,
7023 (dma_addr_t)rxdp3->Buffer2_ptr,
7024 dev->mtu + 4,
7025 PCI_DMA_FROMDEVICE);
7026 goto memalloc_failed;
7027 }
7028 }
7029 }
7030 return 0;
7031
7032 memalloc_failed:
7033 stats->pci_map_fail_cnt++;
7034 stats->mem_freed += (*skb)->truesize;
7035 dev_kfree_skb(*skb);
7036 return -ENOMEM;
7037 }
7038
7039 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7040 int size)
7041 {
7042 struct net_device *dev = sp->dev;
7043 if (sp->rxd_mode == RXD_MODE_1) {
7044 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7045 } else if (sp->rxd_mode == RXD_MODE_3B) {
7046 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7047 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7048 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7049 }
7050 }
7051
7052 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7053 {
7054 int i, j, k, blk_cnt = 0, size;
7055 struct config_param *config = &sp->config;
7056 struct mac_info *mac_control = &sp->mac_control;
7057 struct net_device *dev = sp->dev;
7058 struct RxD_t *rxdp = NULL;
7059 struct sk_buff *skb = NULL;
7060 struct buffAdd *ba = NULL;
7061 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7062
7063 /* Calculate the size based on ring mode */
7064 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7065 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7066 if (sp->rxd_mode == RXD_MODE_1)
7067 size += NET_IP_ALIGN;
7068 else if (sp->rxd_mode == RXD_MODE_3B)
7069 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7070
7071 for (i = 0; i < config->rx_ring_num; i++) {
7072 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7073 struct ring_info *ring = &mac_control->rings[i];
7074
7075 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7076
7077 for (j = 0; j < blk_cnt; j++) {
7078 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7079 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7080 if (sp->rxd_mode == RXD_MODE_3B)
7081 ba = &ring->ba[j][k];
7082 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7083 (u64 *)&temp0_64,
7084 (u64 *)&temp1_64,
7085 (u64 *)&temp2_64,
7086 size) == -ENOMEM) {
7087 return 0;
7088 }
7089
7090 set_rxd_buffer_size(sp, rxdp, size);
7091 wmb();
7092 /* flip the Ownership bit to Hardware */
7093 rxdp->Control_1 |= RXD_OWN_XENA;
7094 }
7095 }
7096 }
7097 return 0;
7098
7099 }
7100
7101 static int s2io_add_isr(struct s2io_nic *sp)
7102 {
7103 int ret = 0;
7104 struct net_device *dev = sp->dev;
7105 int err = 0;
7106
7107 if (sp->config.intr_type == MSI_X)
7108 ret = s2io_enable_msi_x(sp);
7109 if (ret) {
7110 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7111 sp->config.intr_type = INTA;
7112 }
7113
7114 /*
7115 * Store the values of the MSIX table in
7116 * the struct s2io_nic structure
7117 */
7118 store_xmsi_data(sp);
7119
7120 /* After proper initialization of H/W, register ISR */
7121 if (sp->config.intr_type == MSI_X) {
7122 int i, msix_rx_cnt = 0;
7123
7124 for (i = 0; i < sp->num_entries; i++) {
7125 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7126 if (sp->s2io_entries[i].type ==
7127 MSIX_RING_TYPE) {
7128 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7129 dev->name, i);
7130 err = request_irq(sp->entries[i].vector,
7131 s2io_msix_ring_handle,
7132 0,
7133 sp->desc[i],
7134 sp->s2io_entries[i].arg);
7135 } else if (sp->s2io_entries[i].type ==
7136 MSIX_ALARM_TYPE) {
7137 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7138 dev->name, i);
7139 err = request_irq(sp->entries[i].vector,
7140 s2io_msix_fifo_handle,
7141 0,
7142 sp->desc[i],
7143 sp->s2io_entries[i].arg);
7144
7145 }
7146 /* if either data or addr is zero print it. */
7147 if (!(sp->msix_info[i].addr &&
7148 sp->msix_info[i].data)) {
7149 DBG_PRINT(ERR_DBG,
7150 "%s @Addr:0x%llx Data:0x%llx\n",
7151 sp->desc[i],
7152 (unsigned long long)
7153 sp->msix_info[i].addr,
7154 (unsigned long long)
7155 ntohl(sp->msix_info[i].data));
7156 } else
7157 msix_rx_cnt++;
7158 if (err) {
7159 remove_msix_isr(sp);
7160
7161 DBG_PRINT(ERR_DBG,
7162 "%s:MSI-X-%d registration "
7163 "failed\n", dev->name, i);
7164
7165 DBG_PRINT(ERR_DBG,
7166 "%s: Defaulting to INTA\n",
7167 dev->name);
7168 sp->config.intr_type = INTA;
7169 break;
7170 }
7171 sp->s2io_entries[i].in_use =
7172 MSIX_REGISTERED_SUCCESS;
7173 }
7174 }
7175 if (!err) {
7176 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7177 DBG_PRINT(INFO_DBG,
7178 "MSI-X-TX entries enabled through alarm vector\n");
7179 }
7180 }
7181 if (sp->config.intr_type == INTA) {
7182 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7183 sp->name, dev);
7184 if (err) {
7185 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7186 dev->name);
7187 return -1;
7188 }
7189 }
7190 return 0;
7191 }
7192
7193 static void s2io_rem_isr(struct s2io_nic *sp)
7194 {
7195 if (sp->config.intr_type == MSI_X)
7196 remove_msix_isr(sp);
7197 else
7198 remove_inta_isr(sp);
7199 }
7200
7201 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7202 {
7203 int cnt = 0;
7204 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7205 register u64 val64 = 0;
7206 struct config_param *config;
7207 config = &sp->config;
7208
7209 if (!is_s2io_card_up(sp))
7210 return;
7211
7212 del_timer_sync(&sp->alarm_timer);
7213 /* If s2io_set_link task is executing, wait till it completes. */
7214 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7215 msleep(50);
7216 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7217
7218 /* Disable napi */
7219 if (sp->config.napi) {
7220 int off = 0;
7221 if (config->intr_type == MSI_X) {
7222 for (; off < sp->config.rx_ring_num; off++)
7223 napi_disable(&sp->mac_control.rings[off].napi);
7224 }
7225 else
7226 napi_disable(&sp->napi);
7227 }
7228
7229 /* disable Tx and Rx traffic on the NIC */
7230 if (do_io)
7231 stop_nic(sp);
7232
7233 s2io_rem_isr(sp);
7234
7235 /* stop the tx queue, indicate link down */
7236 s2io_link(sp, LINK_DOWN);
7237
7238 /* Check if the device is Quiescent and then Reset the NIC */
7239 while (do_io) {
7240 /* As per the HW requirement we need to replenish the
7241 * receive buffer to avoid the ring bump. Since there is
7242 * no intention of processing the Rx frame at this pointwe are
7243 * just settting the ownership bit of rxd in Each Rx
7244 * ring to HW and set the appropriate buffer size
7245 * based on the ring mode
7246 */
7247 rxd_owner_bit_reset(sp);
7248
7249 val64 = readq(&bar0->adapter_status);
7250 if (verify_xena_quiescence(sp)) {
7251 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7252 break;
7253 }
7254
7255 msleep(50);
7256 cnt++;
7257 if (cnt == 10) {
7258 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7259 "adapter status reads 0x%llx\n",
7260 (unsigned long long)val64);
7261 break;
7262 }
7263 }
7264 if (do_io)
7265 s2io_reset(sp);
7266
7267 /* Free all Tx buffers */
7268 free_tx_buffers(sp);
7269
7270 /* Free all Rx buffers */
7271 free_rx_buffers(sp);
7272
7273 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7274 }
7275
7276 static void s2io_card_down(struct s2io_nic *sp)
7277 {
7278 do_s2io_card_down(sp, 1);
7279 }
7280
7281 static int s2io_card_up(struct s2io_nic *sp)
7282 {
7283 int i, ret = 0;
7284 struct config_param *config;
7285 struct mac_info *mac_control;
7286 struct net_device *dev = (struct net_device *)sp->dev;
7287 u16 interruptible;
7288
7289 /* Initialize the H/W I/O registers */
7290 ret = init_nic(sp);
7291 if (ret != 0) {
7292 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7293 dev->name);
7294 if (ret != -EIO)
7295 s2io_reset(sp);
7296 return ret;
7297 }
7298
7299 /*
7300 * Initializing the Rx buffers. For now we are considering only 1
7301 * Rx ring and initializing buffers into 30 Rx blocks
7302 */
7303 config = &sp->config;
7304 mac_control = &sp->mac_control;
7305
7306 for (i = 0; i < config->rx_ring_num; i++) {
7307 struct ring_info *ring = &mac_control->rings[i];
7308
7309 ring->mtu = dev->mtu;
7310 ring->lro = sp->lro;
7311 ret = fill_rx_buffers(sp, ring, 1);
7312 if (ret) {
7313 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7314 dev->name);
7315 s2io_reset(sp);
7316 free_rx_buffers(sp);
7317 return -ENOMEM;
7318 }
7319 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7320 ring->rx_bufs_left);
7321 }
7322
7323 /* Initialise napi */
7324 if (config->napi) {
7325 if (config->intr_type == MSI_X) {
7326 for (i = 0; i < sp->config.rx_ring_num; i++)
7327 napi_enable(&sp->mac_control.rings[i].napi);
7328 } else {
7329 napi_enable(&sp->napi);
7330 }
7331 }
7332
7333 /* Maintain the state prior to the open */
7334 if (sp->promisc_flg)
7335 sp->promisc_flg = 0;
7336 if (sp->m_cast_flg) {
7337 sp->m_cast_flg = 0;
7338 sp->all_multi_pos = 0;
7339 }
7340
7341 /* Setting its receive mode */
7342 s2io_set_multicast(dev);
7343
7344 if (sp->lro) {
7345 /* Initialize max aggregatable pkts per session based on MTU */
7346 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7347 /* Check if we can use (if specified) user provided value */
7348 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7349 sp->lro_max_aggr_per_sess = lro_max_pkts;
7350 }
7351
7352 /* Enable Rx Traffic and interrupts on the NIC */
7353 if (start_nic(sp)) {
7354 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7355 s2io_reset(sp);
7356 free_rx_buffers(sp);
7357 return -ENODEV;
7358 }
7359
7360 /* Add interrupt service routine */
7361 if (s2io_add_isr(sp) != 0) {
7362 if (sp->config.intr_type == MSI_X)
7363 s2io_rem_isr(sp);
7364 s2io_reset(sp);
7365 free_rx_buffers(sp);
7366 return -ENODEV;
7367 }
7368
7369 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7370
7371 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7372
7373 /* Enable select interrupts */
7374 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7375 if (sp->config.intr_type != INTA) {
7376 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7377 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7378 } else {
7379 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7380 interruptible |= TX_PIC_INTR;
7381 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7382 }
7383
7384 return 0;
7385 }
7386
7387 /**
7388 * s2io_restart_nic - Resets the NIC.
7389 * @data : long pointer to the device private structure
7390 * Description:
7391 * This function is scheduled to be run by the s2io_tx_watchdog
7392 * function after 0.5 secs to reset the NIC. The idea is to reduce
7393 * the run time of the watch dog routine which is run holding a
7394 * spin lock.
7395 */
7396
7397 static void s2io_restart_nic(struct work_struct *work)
7398 {
7399 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7400 struct net_device *dev = sp->dev;
7401
7402 rtnl_lock();
7403
7404 if (!netif_running(dev))
7405 goto out_unlock;
7406
7407 s2io_card_down(sp);
7408 if (s2io_card_up(sp)) {
7409 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7410 }
7411 s2io_wake_all_tx_queue(sp);
7412 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7413 out_unlock:
7414 rtnl_unlock();
7415 }
7416
7417 /**
7418 * s2io_tx_watchdog - Watchdog for transmit side.
7419 * @dev : Pointer to net device structure
7420 * Description:
7421 * This function is triggered if the Tx Queue is stopped
7422 * for a pre-defined amount of time when the Interface is still up.
7423 * If the Interface is jammed in such a situation, the hardware is
7424 * reset (by s2io_close) and restarted again (by s2io_open) to
7425 * overcome any problem that might have been caused in the hardware.
7426 * Return value:
7427 * void
7428 */
7429
7430 static void s2io_tx_watchdog(struct net_device *dev)
7431 {
7432 struct s2io_nic *sp = netdev_priv(dev);
7433 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7434
7435 if (netif_carrier_ok(dev)) {
7436 swstats->watchdog_timer_cnt++;
7437 schedule_work(&sp->rst_timer_task);
7438 swstats->soft_reset_cnt++;
7439 }
7440 }
7441
7442 /**
7443 * rx_osm_handler - To perform some OS related operations on SKB.
7444 * @sp: private member of the device structure,pointer to s2io_nic structure.
7445 * @skb : the socket buffer pointer.
7446 * @len : length of the packet
7447 * @cksum : FCS checksum of the frame.
7448 * @ring_no : the ring from which this RxD was extracted.
7449 * Description:
7450 * This function is called by the Rx interrupt serivce routine to perform
7451 * some OS related operations on the SKB before passing it to the upper
7452 * layers. It mainly checks if the checksum is OK, if so adds it to the
7453 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7454 * to the upper layer. If the checksum is wrong, it increments the Rx
7455 * packet error count, frees the SKB and returns error.
7456 * Return value:
7457 * SUCCESS on success and -1 on failure.
7458 */
7459 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7460 {
7461 struct s2io_nic *sp = ring_data->nic;
7462 struct net_device *dev = (struct net_device *)ring_data->dev;
7463 struct sk_buff *skb = (struct sk_buff *)
7464 ((unsigned long)rxdp->Host_Control);
7465 int ring_no = ring_data->ring_no;
7466 u16 l3_csum, l4_csum;
7467 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7468 struct lro *uninitialized_var(lro);
7469 u8 err_mask;
7470 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7471
7472 skb->dev = dev;
7473
7474 if (err) {
7475 /* Check for parity error */
7476 if (err & 0x1)
7477 swstats->parity_err_cnt++;
7478
7479 err_mask = err >> 48;
7480 switch (err_mask) {
7481 case 1:
7482 swstats->rx_parity_err_cnt++;
7483 break;
7484
7485 case 2:
7486 swstats->rx_abort_cnt++;
7487 break;
7488
7489 case 3:
7490 swstats->rx_parity_abort_cnt++;
7491 break;
7492
7493 case 4:
7494 swstats->rx_rda_fail_cnt++;
7495 break;
7496
7497 case 5:
7498 swstats->rx_unkn_prot_cnt++;
7499 break;
7500
7501 case 6:
7502 swstats->rx_fcs_err_cnt++;
7503 break;
7504
7505 case 7:
7506 swstats->rx_buf_size_err_cnt++;
7507 break;
7508
7509 case 8:
7510 swstats->rx_rxd_corrupt_cnt++;
7511 break;
7512
7513 case 15:
7514 swstats->rx_unkn_err_cnt++;
7515 break;
7516 }
7517 /*
7518 * Drop the packet if bad transfer code. Exception being
7519 * 0x5, which could be due to unsupported IPv6 extension header.
7520 * In this case, we let stack handle the packet.
7521 * Note that in this case, since checksum will be incorrect,
7522 * stack will validate the same.
7523 */
7524 if (err_mask != 0x5) {
7525 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7526 dev->name, err_mask);
7527 dev->stats.rx_crc_errors++;
7528 swstats->mem_freed
7529 += skb->truesize;
7530 dev_kfree_skb(skb);
7531 ring_data->rx_bufs_left -= 1;
7532 rxdp->Host_Control = 0;
7533 return 0;
7534 }
7535 }
7536
7537 rxdp->Host_Control = 0;
7538 if (sp->rxd_mode == RXD_MODE_1) {
7539 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7540
7541 skb_put(skb, len);
7542 } else if (sp->rxd_mode == RXD_MODE_3B) {
7543 int get_block = ring_data->rx_curr_get_info.block_index;
7544 int get_off = ring_data->rx_curr_get_info.offset;
7545 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7546 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7547 unsigned char *buff = skb_push(skb, buf0_len);
7548
7549 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7550 memcpy(buff, ba->ba_0, buf0_len);
7551 skb_put(skb, buf2_len);
7552 }
7553
7554 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7555 ((!ring_data->lro) ||
7556 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7557 (sp->rx_csum)) {
7558 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7559 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7560 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7561 /*
7562 * NIC verifies if the Checksum of the received
7563 * frame is Ok or not and accordingly returns
7564 * a flag in the RxD.
7565 */
7566 skb->ip_summed = CHECKSUM_UNNECESSARY;
7567 if (ring_data->lro) {
7568 u32 tcp_len;
7569 u8 *tcp;
7570 int ret = 0;
7571
7572 ret = s2io_club_tcp_session(ring_data,
7573 skb->data, &tcp,
7574 &tcp_len, &lro,
7575 rxdp, sp);
7576 switch (ret) {
7577 case 3: /* Begin anew */
7578 lro->parent = skb;
7579 goto aggregate;
7580 case 1: /* Aggregate */
7581 lro_append_pkt(sp, lro, skb, tcp_len);
7582 goto aggregate;
7583 case 4: /* Flush session */
7584 lro_append_pkt(sp, lro, skb, tcp_len);
7585 queue_rx_frame(lro->parent,
7586 lro->vlan_tag);
7587 clear_lro_session(lro);
7588 swstats->flush_max_pkts++;
7589 goto aggregate;
7590 case 2: /* Flush both */
7591 lro->parent->data_len = lro->frags_len;
7592 swstats->sending_both++;
7593 queue_rx_frame(lro->parent,
7594 lro->vlan_tag);
7595 clear_lro_session(lro);
7596 goto send_up;
7597 case 0: /* sessions exceeded */
7598 case -1: /* non-TCP or not L2 aggregatable */
7599 case 5: /*
7600 * First pkt in session not
7601 * L3/L4 aggregatable
7602 */
7603 break;
7604 default:
7605 DBG_PRINT(ERR_DBG,
7606 "%s: Samadhana!!\n",
7607 __func__);
7608 BUG();
7609 }
7610 }
7611 } else {
7612 /*
7613 * Packet with erroneous checksum, let the
7614 * upper layers deal with it.
7615 */
7616 skb->ip_summed = CHECKSUM_NONE;
7617 }
7618 } else
7619 skb->ip_summed = CHECKSUM_NONE;
7620
7621 swstats->mem_freed += skb->truesize;
7622 send_up:
7623 skb_record_rx_queue(skb, ring_no);
7624 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7625 aggregate:
7626 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7627 return SUCCESS;
7628 }
7629
7630 /**
7631 * s2io_link - stops/starts the Tx queue.
7632 * @sp : private member of the device structure, which is a pointer to the
7633 * s2io_nic structure.
7634 * @link : inidicates whether link is UP/DOWN.
7635 * Description:
7636 * This function stops/starts the Tx queue depending on whether the link
7637 * status of the NIC is is down or up. This is called by the Alarm
7638 * interrupt handler whenever a link change interrupt comes up.
7639 * Return value:
7640 * void.
7641 */
7642
7643 static void s2io_link(struct s2io_nic *sp, int link)
7644 {
7645 struct net_device *dev = (struct net_device *)sp->dev;
7646 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7647
7648 if (link != sp->last_link_state) {
7649 init_tti(sp, link);
7650 if (link == LINK_DOWN) {
7651 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7652 s2io_stop_all_tx_queue(sp);
7653 netif_carrier_off(dev);
7654 if (swstats->link_up_cnt)
7655 swstats->link_up_time =
7656 jiffies - sp->start_time;
7657 swstats->link_down_cnt++;
7658 } else {
7659 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7660 if (swstats->link_down_cnt)
7661 swstats->link_down_time =
7662 jiffies - sp->start_time;
7663 swstats->link_up_cnt++;
7664 netif_carrier_on(dev);
7665 s2io_wake_all_tx_queue(sp);
7666 }
7667 }
7668 sp->last_link_state = link;
7669 sp->start_time = jiffies;
7670 }
7671
7672 /**
7673 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7674 * @sp : private member of the device structure, which is a pointer to the
7675 * s2io_nic structure.
7676 * Description:
7677 * This function initializes a few of the PCI and PCI-X configuration registers
7678 * with recommended values.
7679 * Return value:
7680 * void
7681 */
7682
7683 static void s2io_init_pci(struct s2io_nic *sp)
7684 {
7685 u16 pci_cmd = 0, pcix_cmd = 0;
7686
7687 /* Enable Data Parity Error Recovery in PCI-X command register. */
7688 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7689 &(pcix_cmd));
7690 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7691 (pcix_cmd | 1));
7692 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7693 &(pcix_cmd));
7694
7695 /* Set the PErr Response bit in PCI command register. */
7696 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7697 pci_write_config_word(sp->pdev, PCI_COMMAND,
7698 (pci_cmd | PCI_COMMAND_PARITY));
7699 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7700 }
7701
7702 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7703 u8 *dev_multiq)
7704 {
7705 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7706 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7707 "(%d) not supported\n", tx_fifo_num);
7708
7709 if (tx_fifo_num < 1)
7710 tx_fifo_num = 1;
7711 else
7712 tx_fifo_num = MAX_TX_FIFOS;
7713
7714 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7715 }
7716
7717 if (multiq)
7718 *dev_multiq = multiq;
7719
7720 if (tx_steering_type && (1 == tx_fifo_num)) {
7721 if (tx_steering_type != TX_DEFAULT_STEERING)
7722 DBG_PRINT(ERR_DBG,
7723 "Tx steering is not supported with "
7724 "one fifo. Disabling Tx steering.\n");
7725 tx_steering_type = NO_STEERING;
7726 }
7727
7728 if ((tx_steering_type < NO_STEERING) ||
7729 (tx_steering_type > TX_DEFAULT_STEERING)) {
7730 DBG_PRINT(ERR_DBG,
7731 "Requested transmit steering not supported\n");
7732 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7733 tx_steering_type = NO_STEERING;
7734 }
7735
7736 if (rx_ring_num > MAX_RX_RINGS) {
7737 DBG_PRINT(ERR_DBG,
7738 "Requested number of rx rings not supported\n");
7739 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7740 MAX_RX_RINGS);
7741 rx_ring_num = MAX_RX_RINGS;
7742 }
7743
7744 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7745 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7746 "Defaulting to INTA\n");
7747 *dev_intr_type = INTA;
7748 }
7749
7750 if ((*dev_intr_type == MSI_X) &&
7751 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7752 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7753 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7754 "Defaulting to INTA\n");
7755 *dev_intr_type = INTA;
7756 }
7757
7758 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7759 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7760 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7761 rx_ring_mode = 1;
7762 }
7763 return SUCCESS;
7764 }
7765
7766 /**
7767 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7768 * or Traffic class respectively.
7769 * @nic: device private variable
7770 * Description: The function configures the receive steering to
7771 * desired receive ring.
7772 * Return Value: SUCCESS on success and
7773 * '-1' on failure (endian settings incorrect).
7774 */
7775 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7776 {
7777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7778 register u64 val64 = 0;
7779
7780 if (ds_codepoint > 63)
7781 return FAILURE;
7782
7783 val64 = RTS_DS_MEM_DATA(ring);
7784 writeq(val64, &bar0->rts_ds_mem_data);
7785
7786 val64 = RTS_DS_MEM_CTRL_WE |
7787 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7788 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7789
7790 writeq(val64, &bar0->rts_ds_mem_ctrl);
7791
7792 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7793 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7794 S2IO_BIT_RESET);
7795 }
7796
7797 static const struct net_device_ops s2io_netdev_ops = {
7798 .ndo_open = s2io_open,
7799 .ndo_stop = s2io_close,
7800 .ndo_get_stats = s2io_get_stats,
7801 .ndo_start_xmit = s2io_xmit,
7802 .ndo_validate_addr = eth_validate_addr,
7803 .ndo_set_multicast_list = s2io_set_multicast,
7804 .ndo_do_ioctl = s2io_ioctl,
7805 .ndo_set_mac_address = s2io_set_mac_addr,
7806 .ndo_change_mtu = s2io_change_mtu,
7807 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7808 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7809 .ndo_tx_timeout = s2io_tx_watchdog,
7810 #ifdef CONFIG_NET_POLL_CONTROLLER
7811 .ndo_poll_controller = s2io_netpoll,
7812 #endif
7813 };
7814
7815 /**
7816 * s2io_init_nic - Initialization of the adapter .
7817 * @pdev : structure containing the PCI related information of the device.
7818 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7819 * Description:
7820 * The function initializes an adapter identified by the pci_dec structure.
7821 * All OS related initialization including memory and device structure and
7822 * initlaization of the device private variable is done. Also the swapper
7823 * control register is initialized to enable read and write into the I/O
7824 * registers of the device.
7825 * Return value:
7826 * returns 0 on success and negative on failure.
7827 */
7828
7829 static int __devinit
7830 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7831 {
7832 struct s2io_nic *sp;
7833 struct net_device *dev;
7834 int i, j, ret;
7835 int dma_flag = false;
7836 u32 mac_up, mac_down;
7837 u64 val64 = 0, tmp64 = 0;
7838 struct XENA_dev_config __iomem *bar0 = NULL;
7839 u16 subid;
7840 struct config_param *config;
7841 struct mac_info *mac_control;
7842 int mode;
7843 u8 dev_intr_type = intr_type;
7844 u8 dev_multiq = 0;
7845
7846 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7847 if (ret)
7848 return ret;
7849
7850 ret = pci_enable_device(pdev);
7851 if (ret) {
7852 DBG_PRINT(ERR_DBG,
7853 "%s: pci_enable_device failed\n", __func__);
7854 return ret;
7855 }
7856
7857 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7858 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7859 dma_flag = true;
7860 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7861 DBG_PRINT(ERR_DBG,
7862 "Unable to obtain 64bit DMA "
7863 "for consistent allocations\n");
7864 pci_disable_device(pdev);
7865 return -ENOMEM;
7866 }
7867 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7868 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7869 } else {
7870 pci_disable_device(pdev);
7871 return -ENOMEM;
7872 }
7873 ret = pci_request_regions(pdev, s2io_driver_name);
7874 if (ret) {
7875 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7876 __func__, ret);
7877 pci_disable_device(pdev);
7878 return -ENODEV;
7879 }
7880 if (dev_multiq)
7881 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7882 else
7883 dev = alloc_etherdev(sizeof(struct s2io_nic));
7884 if (dev == NULL) {
7885 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7886 pci_disable_device(pdev);
7887 pci_release_regions(pdev);
7888 return -ENODEV;
7889 }
7890
7891 pci_set_master(pdev);
7892 pci_set_drvdata(pdev, dev);
7893 SET_NETDEV_DEV(dev, &pdev->dev);
7894
7895 /* Private member variable initialized to s2io NIC structure */
7896 sp = netdev_priv(dev);
7897 sp->dev = dev;
7898 sp->pdev = pdev;
7899 sp->high_dma_flag = dma_flag;
7900 sp->device_enabled_once = false;
7901 if (rx_ring_mode == 1)
7902 sp->rxd_mode = RXD_MODE_1;
7903 if (rx_ring_mode == 2)
7904 sp->rxd_mode = RXD_MODE_3B;
7905
7906 sp->config.intr_type = dev_intr_type;
7907
7908 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7909 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7910 sp->device_type = XFRAME_II_DEVICE;
7911 else
7912 sp->device_type = XFRAME_I_DEVICE;
7913
7914 sp->lro = lro_enable;
7915
7916 /* Initialize some PCI/PCI-X fields of the NIC. */
7917 s2io_init_pci(sp);
7918
7919 /*
7920 * Setting the device configuration parameters.
7921 * Most of these parameters can be specified by the user during
7922 * module insertion as they are module loadable parameters. If
7923 * these parameters are not not specified during load time, they
7924 * are initialized with default values.
7925 */
7926 config = &sp->config;
7927 mac_control = &sp->mac_control;
7928
7929 config->napi = napi;
7930 config->tx_steering_type = tx_steering_type;
7931
7932 /* Tx side parameters. */
7933 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7934 config->tx_fifo_num = MAX_TX_FIFOS;
7935 else
7936 config->tx_fifo_num = tx_fifo_num;
7937
7938 /* Initialize the fifos used for tx steering */
7939 if (config->tx_fifo_num < 5) {
7940 if (config->tx_fifo_num == 1)
7941 sp->total_tcp_fifos = 1;
7942 else
7943 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7944 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7945 sp->total_udp_fifos = 1;
7946 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7947 } else {
7948 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7949 FIFO_OTHER_MAX_NUM);
7950 sp->udp_fifo_idx = sp->total_tcp_fifos;
7951 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7952 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7953 }
7954
7955 config->multiq = dev_multiq;
7956 for (i = 0; i < config->tx_fifo_num; i++) {
7957 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7958
7959 tx_cfg->fifo_len = tx_fifo_len[i];
7960 tx_cfg->fifo_priority = i;
7961 }
7962
7963 /* mapping the QoS priority to the configured fifos */
7964 for (i = 0; i < MAX_TX_FIFOS; i++)
7965 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7966
7967 /* map the hashing selector table to the configured fifos */
7968 for (i = 0; i < config->tx_fifo_num; i++)
7969 sp->fifo_selector[i] = fifo_selector[i];
7970
7971
7972 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7973 for (i = 0; i < config->tx_fifo_num; i++) {
7974 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7975
7976 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7977 if (tx_cfg->fifo_len < 65) {
7978 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7979 break;
7980 }
7981 }
7982 /* + 2 because one Txd for skb->data and one Txd for UFO */
7983 config->max_txds = MAX_SKB_FRAGS + 2;
7984
7985 /* Rx side parameters. */
7986 config->rx_ring_num = rx_ring_num;
7987 for (i = 0; i < config->rx_ring_num; i++) {
7988 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7989 struct ring_info *ring = &mac_control->rings[i];
7990
7991 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7992 rx_cfg->ring_priority = i;
7993 ring->rx_bufs_left = 0;
7994 ring->rxd_mode = sp->rxd_mode;
7995 ring->rxd_count = rxd_count[sp->rxd_mode];
7996 ring->pdev = sp->pdev;
7997 ring->dev = sp->dev;
7998 }
7999
8000 for (i = 0; i < rx_ring_num; i++) {
8001 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
8002
8003 rx_cfg->ring_org = RING_ORG_BUFF1;
8004 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
8005 }
8006
8007 /* Setting Mac Control parameters */
8008 mac_control->rmac_pause_time = rmac_pause_time;
8009 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8010 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8011
8012
8013 /* initialize the shared memory used by the NIC and the host */
8014 if (init_shared_mem(sp)) {
8015 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
8016 ret = -ENOMEM;
8017 goto mem_alloc_failed;
8018 }
8019
8020 sp->bar0 = pci_ioremap_bar(pdev, 0);
8021 if (!sp->bar0) {
8022 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
8023 dev->name);
8024 ret = -ENOMEM;
8025 goto bar0_remap_failed;
8026 }
8027
8028 sp->bar1 = pci_ioremap_bar(pdev, 2);
8029 if (!sp->bar1) {
8030 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
8031 dev->name);
8032 ret = -ENOMEM;
8033 goto bar1_remap_failed;
8034 }
8035
8036 dev->irq = pdev->irq;
8037 dev->base_addr = (unsigned long)sp->bar0;
8038
8039 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8040 for (j = 0; j < MAX_TX_FIFOS; j++) {
8041 mac_control->tx_FIFO_start[j] =
8042 (struct TxFIFO_element __iomem *)
8043 (sp->bar1 + (j * 0x00020000));
8044 }
8045
8046 /* Driver entry points */
8047 dev->netdev_ops = &s2io_netdev_ops;
8048 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8049 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8050 if (lro_enable)
8051 dev->features |= NETIF_F_LRO;
8052 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8053 if (sp->high_dma_flag == true)
8054 dev->features |= NETIF_F_HIGHDMA;
8055 dev->features |= NETIF_F_TSO;
8056 dev->features |= NETIF_F_TSO6;
8057 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8058 dev->features |= NETIF_F_UFO;
8059 dev->features |= NETIF_F_HW_CSUM;
8060 }
8061 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8062 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8063 INIT_WORK(&sp->set_link_task, s2io_set_link);
8064
8065 pci_save_state(sp->pdev);
8066
8067 /* Setting swapper control on the NIC, for proper reset operation */
8068 if (s2io_set_swapper(sp)) {
8069 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8070 dev->name);
8071 ret = -EAGAIN;
8072 goto set_swap_failed;
8073 }
8074
8075 /* Verify if the Herc works on the slot its placed into */
8076 if (sp->device_type & XFRAME_II_DEVICE) {
8077 mode = s2io_verify_pci_mode(sp);
8078 if (mode < 0) {
8079 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8080 __func__);
8081 ret = -EBADSLT;
8082 goto set_swap_failed;
8083 }
8084 }
8085
8086 if (sp->config.intr_type == MSI_X) {
8087 sp->num_entries = config->rx_ring_num + 1;
8088 ret = s2io_enable_msi_x(sp);
8089
8090 if (!ret) {
8091 ret = s2io_test_msi(sp);
8092 /* rollback MSI-X, will re-enable during add_isr() */
8093 remove_msix_isr(sp);
8094 }
8095 if (ret) {
8096
8097 DBG_PRINT(ERR_DBG,
8098 "MSI-X requested but failed to enable\n");
8099 sp->config.intr_type = INTA;
8100 }
8101 }
8102
8103 if (config->intr_type == MSI_X) {
8104 for (i = 0; i < config->rx_ring_num ; i++) {
8105 struct ring_info *ring = &mac_control->rings[i];
8106
8107 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8108 }
8109 } else {
8110 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8111 }
8112
8113 /* Not needed for Herc */
8114 if (sp->device_type & XFRAME_I_DEVICE) {
8115 /*
8116 * Fix for all "FFs" MAC address problems observed on
8117 * Alpha platforms
8118 */
8119 fix_mac_address(sp);
8120 s2io_reset(sp);
8121 }
8122
8123 /*
8124 * MAC address initialization.
8125 * For now only one mac address will be read and used.
8126 */
8127 bar0 = sp->bar0;
8128 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8129 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8130 writeq(val64, &bar0->rmac_addr_cmd_mem);
8131 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8132 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8133 S2IO_BIT_RESET);
8134 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8135 mac_down = (u32)tmp64;
8136 mac_up = (u32) (tmp64 >> 32);
8137
8138 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8139 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8140 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8141 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8142 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8143 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8144
8145 /* Set the factory defined MAC address initially */
8146 dev->addr_len = ETH_ALEN;
8147 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8148 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8149
8150 /* initialize number of multicast & unicast MAC entries variables */
8151 if (sp->device_type == XFRAME_I_DEVICE) {
8152 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8153 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8154 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8155 } else if (sp->device_type == XFRAME_II_DEVICE) {
8156 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8157 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8158 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8159 }
8160
8161 /* store mac addresses from CAM to s2io_nic structure */
8162 do_s2io_store_unicast_mc(sp);
8163
8164 /* Configure MSIX vector for number of rings configured plus one */
8165 if ((sp->device_type == XFRAME_II_DEVICE) &&
8166 (config->intr_type == MSI_X))
8167 sp->num_entries = config->rx_ring_num + 1;
8168
8169 /* Store the values of the MSIX table in the s2io_nic structure */
8170 store_xmsi_data(sp);
8171 /* reset Nic and bring it to known state */
8172 s2io_reset(sp);
8173
8174 /*
8175 * Initialize link state flags
8176 * and the card state parameter
8177 */
8178 sp->state = 0;
8179
8180 /* Initialize spinlocks */
8181 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8182 struct fifo_info *fifo = &mac_control->fifos[i];
8183
8184 spin_lock_init(&fifo->tx_lock);
8185 }
8186
8187 /*
8188 * SXE-002: Configure link and activity LED to init state
8189 * on driver load.
8190 */
8191 subid = sp->pdev->subsystem_device;
8192 if ((subid & 0xFF) >= 0x07) {
8193 val64 = readq(&bar0->gpio_control);
8194 val64 |= 0x0000800000000000ULL;
8195 writeq(val64, &bar0->gpio_control);
8196 val64 = 0x0411040400000000ULL;
8197 writeq(val64, (void __iomem *)bar0 + 0x2700);
8198 val64 = readq(&bar0->gpio_control);
8199 }
8200
8201 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8202
8203 if (register_netdev(dev)) {
8204 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8205 ret = -ENODEV;
8206 goto register_failed;
8207 }
8208 s2io_vpd_read(sp);
8209 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8210 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8211 sp->product_name, pdev->revision);
8212 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8213 s2io_driver_version);
8214 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8215 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8216 if (sp->device_type & XFRAME_II_DEVICE) {
8217 mode = s2io_print_pci_mode(sp);
8218 if (mode < 0) {
8219 ret = -EBADSLT;
8220 unregister_netdev(dev);
8221 goto set_swap_failed;
8222 }
8223 }
8224 switch (sp->rxd_mode) {
8225 case RXD_MODE_1:
8226 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8227 dev->name);
8228 break;
8229 case RXD_MODE_3B:
8230 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8231 dev->name);
8232 break;
8233 }
8234
8235 switch (sp->config.napi) {
8236 case 0:
8237 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8238 break;
8239 case 1:
8240 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8241 break;
8242 }
8243
8244 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8245 sp->config.tx_fifo_num);
8246
8247 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8248 sp->config.rx_ring_num);
8249
8250 switch (sp->config.intr_type) {
8251 case INTA:
8252 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8253 break;
8254 case MSI_X:
8255 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8256 break;
8257 }
8258 if (sp->config.multiq) {
8259 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8260 struct fifo_info *fifo = &mac_control->fifos[i];
8261
8262 fifo->multiq = config->multiq;
8263 }
8264 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8265 dev->name);
8266 } else
8267 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8268 dev->name);
8269
8270 switch (sp->config.tx_steering_type) {
8271 case NO_STEERING:
8272 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8273 dev->name);
8274 break;
8275 case TX_PRIORITY_STEERING:
8276 DBG_PRINT(ERR_DBG,
8277 "%s: Priority steering enabled for transmit\n",
8278 dev->name);
8279 break;
8280 case TX_DEFAULT_STEERING:
8281 DBG_PRINT(ERR_DBG,
8282 "%s: Default steering enabled for transmit\n",
8283 dev->name);
8284 }
8285
8286 if (sp->lro)
8287 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8288 dev->name);
8289 if (ufo)
8290 DBG_PRINT(ERR_DBG,
8291 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8292 dev->name);
8293 /* Initialize device name */
8294 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8295
8296 if (vlan_tag_strip)
8297 sp->vlan_strip_flag = 1;
8298 else
8299 sp->vlan_strip_flag = 0;
8300
8301 /*
8302 * Make Link state as off at this point, when the Link change
8303 * interrupt comes the state will be automatically changed to
8304 * the right state.
8305 */
8306 netif_carrier_off(dev);
8307
8308 return 0;
8309
8310 register_failed:
8311 set_swap_failed:
8312 iounmap(sp->bar1);
8313 bar1_remap_failed:
8314 iounmap(sp->bar0);
8315 bar0_remap_failed:
8316 mem_alloc_failed:
8317 free_shared_mem(sp);
8318 pci_disable_device(pdev);
8319 pci_release_regions(pdev);
8320 pci_set_drvdata(pdev, NULL);
8321 free_netdev(dev);
8322
8323 return ret;
8324 }
8325
8326 /**
8327 * s2io_rem_nic - Free the PCI device
8328 * @pdev: structure containing the PCI related information of the device.
8329 * Description: This function is called by the Pci subsystem to release a
8330 * PCI device and free up all resource held up by the device. This could
8331 * be in response to a Hot plug event or when the driver is to be removed
8332 * from memory.
8333 */
8334
8335 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8336 {
8337 struct net_device *dev =
8338 (struct net_device *)pci_get_drvdata(pdev);
8339 struct s2io_nic *sp;
8340
8341 if (dev == NULL) {
8342 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8343 return;
8344 }
8345
8346 flush_scheduled_work();
8347
8348 sp = netdev_priv(dev);
8349 unregister_netdev(dev);
8350
8351 free_shared_mem(sp);
8352 iounmap(sp->bar0);
8353 iounmap(sp->bar1);
8354 pci_release_regions(pdev);
8355 pci_set_drvdata(pdev, NULL);
8356 free_netdev(dev);
8357 pci_disable_device(pdev);
8358 }
8359
8360 /**
8361 * s2io_starter - Entry point for the driver
8362 * Description: This function is the entry point for the driver. It verifies
8363 * the module loadable parameters and initializes PCI configuration space.
8364 */
8365
8366 static int __init s2io_starter(void)
8367 {
8368 return pci_register_driver(&s2io_driver);
8369 }
8370
8371 /**
8372 * s2io_closer - Cleanup routine for the driver
8373 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8374 */
8375
8376 static __exit void s2io_closer(void)
8377 {
8378 pci_unregister_driver(&s2io_driver);
8379 DBG_PRINT(INIT_DBG, "cleanup done\n");
8380 }
8381
8382 module_init(s2io_starter);
8383 module_exit(s2io_closer);
8384
8385 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8386 struct tcphdr **tcp, struct RxD_t *rxdp,
8387 struct s2io_nic *sp)
8388 {
8389 int ip_off;
8390 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8391
8392 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8393 DBG_PRINT(INIT_DBG,
8394 "%s: Non-TCP frames not supported for LRO\n",
8395 __func__);
8396 return -1;
8397 }
8398
8399 /* Checking for DIX type or DIX type with VLAN */
8400 if ((l2_type == 0) || (l2_type == 4)) {
8401 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8402 /*
8403 * If vlan stripping is disabled and the frame is VLAN tagged,
8404 * shift the offset by the VLAN header size bytes.
8405 */
8406 if ((!sp->vlan_strip_flag) &&
8407 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8408 ip_off += HEADER_VLAN_SIZE;
8409 } else {
8410 /* LLC, SNAP etc are considered non-mergeable */
8411 return -1;
8412 }
8413
8414 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8415 ip_len = (u8)((*ip)->ihl);
8416 ip_len <<= 2;
8417 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8418
8419 return 0;
8420 }
8421
8422 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8423 struct tcphdr *tcp)
8424 {
8425 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8426 if ((lro->iph->saddr != ip->saddr) ||
8427 (lro->iph->daddr != ip->daddr) ||
8428 (lro->tcph->source != tcp->source) ||
8429 (lro->tcph->dest != tcp->dest))
8430 return -1;
8431 return 0;
8432 }
8433
8434 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8435 {
8436 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8437 }
8438
8439 static void initiate_new_session(struct lro *lro, u8 *l2h,
8440 struct iphdr *ip, struct tcphdr *tcp,
8441 u32 tcp_pyld_len, u16 vlan_tag)
8442 {
8443 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8444 lro->l2h = l2h;
8445 lro->iph = ip;
8446 lro->tcph = tcp;
8447 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8448 lro->tcp_ack = tcp->ack_seq;
8449 lro->sg_num = 1;
8450 lro->total_len = ntohs(ip->tot_len);
8451 lro->frags_len = 0;
8452 lro->vlan_tag = vlan_tag;
8453 /*
8454 * Check if we saw TCP timestamp.
8455 * Other consistency checks have already been done.
8456 */
8457 if (tcp->doff == 8) {
8458 __be32 *ptr;
8459 ptr = (__be32 *)(tcp+1);
8460 lro->saw_ts = 1;
8461 lro->cur_tsval = ntohl(*(ptr+1));
8462 lro->cur_tsecr = *(ptr+2);
8463 }
8464 lro->in_use = 1;
8465 }
8466
8467 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8468 {
8469 struct iphdr *ip = lro->iph;
8470 struct tcphdr *tcp = lro->tcph;
8471 __sum16 nchk;
8472 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8473
8474 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8475
8476 /* Update L3 header */
8477 ip->tot_len = htons(lro->total_len);
8478 ip->check = 0;
8479 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8480 ip->check = nchk;
8481
8482 /* Update L4 header */
8483 tcp->ack_seq = lro->tcp_ack;
8484 tcp->window = lro->window;
8485
8486 /* Update tsecr field if this session has timestamps enabled */
8487 if (lro->saw_ts) {
8488 __be32 *ptr = (__be32 *)(tcp + 1);
8489 *(ptr+2) = lro->cur_tsecr;
8490 }
8491
8492 /* Update counters required for calculation of
8493 * average no. of packets aggregated.
8494 */
8495 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8496 swstats->num_aggregations++;
8497 }
8498
8499 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8500 struct tcphdr *tcp, u32 l4_pyld)
8501 {
8502 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8503 lro->total_len += l4_pyld;
8504 lro->frags_len += l4_pyld;
8505 lro->tcp_next_seq += l4_pyld;
8506 lro->sg_num++;
8507
8508 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8509 lro->tcp_ack = tcp->ack_seq;
8510 lro->window = tcp->window;
8511
8512 if (lro->saw_ts) {
8513 __be32 *ptr;
8514 /* Update tsecr and tsval from this packet */
8515 ptr = (__be32 *)(tcp+1);
8516 lro->cur_tsval = ntohl(*(ptr+1));
8517 lro->cur_tsecr = *(ptr + 2);
8518 }
8519 }
8520
8521 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8522 struct tcphdr *tcp, u32 tcp_pyld_len)
8523 {
8524 u8 *ptr;
8525
8526 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8527
8528 if (!tcp_pyld_len) {
8529 /* Runt frame or a pure ack */
8530 return -1;
8531 }
8532
8533 if (ip->ihl != 5) /* IP has options */
8534 return -1;
8535
8536 /* If we see CE codepoint in IP header, packet is not mergeable */
8537 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8538 return -1;
8539
8540 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8541 if (tcp->urg || tcp->psh || tcp->rst ||
8542 tcp->syn || tcp->fin ||
8543 tcp->ece || tcp->cwr || !tcp->ack) {
8544 /*
8545 * Currently recognize only the ack control word and
8546 * any other control field being set would result in
8547 * flushing the LRO session
8548 */
8549 return -1;
8550 }
8551
8552 /*
8553 * Allow only one TCP timestamp option. Don't aggregate if
8554 * any other options are detected.
8555 */
8556 if (tcp->doff != 5 && tcp->doff != 8)
8557 return -1;
8558
8559 if (tcp->doff == 8) {
8560 ptr = (u8 *)(tcp + 1);
8561 while (*ptr == TCPOPT_NOP)
8562 ptr++;
8563 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8564 return -1;
8565
8566 /* Ensure timestamp value increases monotonically */
8567 if (l_lro)
8568 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8569 return -1;
8570
8571 /* timestamp echo reply should be non-zero */
8572 if (*((__be32 *)(ptr+6)) == 0)
8573 return -1;
8574 }
8575
8576 return 0;
8577 }
8578
8579 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8580 u8 **tcp, u32 *tcp_len, struct lro **lro,
8581 struct RxD_t *rxdp, struct s2io_nic *sp)
8582 {
8583 struct iphdr *ip;
8584 struct tcphdr *tcph;
8585 int ret = 0, i;
8586 u16 vlan_tag = 0;
8587 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8588
8589 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8590 rxdp, sp);
8591 if (ret)
8592 return ret;
8593
8594 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8595
8596 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8597 tcph = (struct tcphdr *)*tcp;
8598 *tcp_len = get_l4_pyld_length(ip, tcph);
8599 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8600 struct lro *l_lro = &ring_data->lro0_n[i];
8601 if (l_lro->in_use) {
8602 if (check_for_socket_match(l_lro, ip, tcph))
8603 continue;
8604 /* Sock pair matched */
8605 *lro = l_lro;
8606
8607 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8608 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8609 "expected 0x%x, actual 0x%x\n",
8610 __func__,
8611 (*lro)->tcp_next_seq,
8612 ntohl(tcph->seq));
8613
8614 swstats->outof_sequence_pkts++;
8615 ret = 2;
8616 break;
8617 }
8618
8619 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8620 *tcp_len))
8621 ret = 1; /* Aggregate */
8622 else
8623 ret = 2; /* Flush both */
8624 break;
8625 }
8626 }
8627
8628 if (ret == 0) {
8629 /* Before searching for available LRO objects,
8630 * check if the pkt is L3/L4 aggregatable. If not
8631 * don't create new LRO session. Just send this
8632 * packet up.
8633 */
8634 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8635 return 5;
8636
8637 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8638 struct lro *l_lro = &ring_data->lro0_n[i];
8639 if (!(l_lro->in_use)) {
8640 *lro = l_lro;
8641 ret = 3; /* Begin anew */
8642 break;
8643 }
8644 }
8645 }
8646
8647 if (ret == 0) { /* sessions exceeded */
8648 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8649 __func__);
8650 *lro = NULL;
8651 return ret;
8652 }
8653
8654 switch (ret) {
8655 case 3:
8656 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8657 vlan_tag);
8658 break;
8659 case 2:
8660 update_L3L4_header(sp, *lro);
8661 break;
8662 case 1:
8663 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8664 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8665 update_L3L4_header(sp, *lro);
8666 ret = 4; /* Flush the LRO */
8667 }
8668 break;
8669 default:
8670 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8671 break;
8672 }
8673
8674 return ret;
8675 }
8676
8677 static void clear_lro_session(struct lro *lro)
8678 {
8679 static u16 lro_struct_size = sizeof(struct lro);
8680
8681 memset(lro, 0, lro_struct_size);
8682 }
8683
8684 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8685 {
8686 struct net_device *dev = skb->dev;
8687 struct s2io_nic *sp = netdev_priv(dev);
8688
8689 skb->protocol = eth_type_trans(skb, dev);
8690 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8691 /* Queueing the vlan frame to the upper layer */
8692 if (sp->config.napi)
8693 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8694 else
8695 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8696 } else {
8697 if (sp->config.napi)
8698 netif_receive_skb(skb);
8699 else
8700 netif_rx(skb);
8701 }
8702 }
8703
8704 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8705 struct sk_buff *skb, u32 tcp_len)
8706 {
8707 struct sk_buff *first = lro->parent;
8708 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8709
8710 first->len += tcp_len;
8711 first->data_len = lro->frags_len;
8712 skb_pull(skb, (skb->len - tcp_len));
8713 if (skb_shinfo(first)->frag_list)
8714 lro->last_frag->next = skb;
8715 else
8716 skb_shinfo(first)->frag_list = skb;
8717 first->truesize += skb->truesize;
8718 lro->last_frag = skb;
8719 swstats->clubbed_frms_cnt++;
8720 }
8721
8722 /**
8723 * s2io_io_error_detected - called when PCI error is detected
8724 * @pdev: Pointer to PCI device
8725 * @state: The current pci connection state
8726 *
8727 * This function is called after a PCI bus error affecting
8728 * this device has been detected.
8729 */
8730 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8731 pci_channel_state_t state)
8732 {
8733 struct net_device *netdev = pci_get_drvdata(pdev);
8734 struct s2io_nic *sp = netdev_priv(netdev);
8735
8736 netif_device_detach(netdev);
8737
8738 if (state == pci_channel_io_perm_failure)
8739 return PCI_ERS_RESULT_DISCONNECT;
8740
8741 if (netif_running(netdev)) {
8742 /* Bring down the card, while avoiding PCI I/O */
8743 do_s2io_card_down(sp, 0);
8744 }
8745 pci_disable_device(pdev);
8746
8747 return PCI_ERS_RESULT_NEED_RESET;
8748 }
8749
8750 /**
8751 * s2io_io_slot_reset - called after the pci bus has been reset.
8752 * @pdev: Pointer to PCI device
8753 *
8754 * Restart the card from scratch, as if from a cold-boot.
8755 * At this point, the card has exprienced a hard reset,
8756 * followed by fixups by BIOS, and has its config space
8757 * set up identically to what it was at cold boot.
8758 */
8759 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8760 {
8761 struct net_device *netdev = pci_get_drvdata(pdev);
8762 struct s2io_nic *sp = netdev_priv(netdev);
8763
8764 if (pci_enable_device(pdev)) {
8765 pr_err("Cannot re-enable PCI device after reset.\n");
8766 return PCI_ERS_RESULT_DISCONNECT;
8767 }
8768
8769 pci_set_master(pdev);
8770 s2io_reset(sp);
8771
8772 return PCI_ERS_RESULT_RECOVERED;
8773 }
8774
8775 /**
8776 * s2io_io_resume - called when traffic can start flowing again.
8777 * @pdev: Pointer to PCI device
8778 *
8779 * This callback is called when the error recovery driver tells
8780 * us that its OK to resume normal operation.
8781 */
8782 static void s2io_io_resume(struct pci_dev *pdev)
8783 {
8784 struct net_device *netdev = pci_get_drvdata(pdev);
8785 struct s2io_nic *sp = netdev_priv(netdev);
8786
8787 if (netif_running(netdev)) {
8788 if (s2io_card_up(sp)) {
8789 pr_err("Can't bring device back up after reset.\n");
8790 return;
8791 }
8792
8793 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8794 s2io_card_down(sp);
8795 pr_err("Can't restore mac addr after reset.\n");
8796 return;
8797 }
8798 }
8799
8800 netif_device_attach(netdev);
8801 netif_tx_wake_all_queues(netdev);
8802 }