sis190: RTNL and flush_scheduled_work deadlock
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/ethtool.h>
63 #include <linux/workqueue.h>
64 #include <linux/if_vlan.h>
65 #include <linux/ip.h>
66 #include <linux/tcp.h>
67 #include <net/tcp.h>
68
69 #include <asm/system.h>
70 #include <asm/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/div64.h>
73 #include <asm/irq.h>
74
75 /* local include */
76 #include "s2io.h"
77 #include "s2io-regs.h"
78
79 #define DRV_VERSION "2.0.16.1"
80
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
84
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
87
88 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
89 {
90 int ret;
91
92 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
94
95 return ret;
96 }
97
98 /*
99 * Cards with following subsystem_id have a link state indication
100 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101 * macro below identifies these cards given the subsystem_id.
102 */
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104 (dev_type == XFRAME_I_DEVICE) ? \
105 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
107
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
111 #define PANIC 1
112 #define LOW 2
113 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
114 {
115 struct mac_info *mac_control;
116
117 mac_control = &sp->mac_control;
118 if (rxb_size <= rxd_count[sp->rxd_mode])
119 return PANIC;
120 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
121 return LOW;
122 return 0;
123 }
124
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127 "Register test\t(offline)",
128 "Eeprom test\t(offline)",
129 "Link test\t(online)",
130 "RLDRAM test\t(offline)",
131 "BIST Test\t(offline)"
132 };
133
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
135 {"tmac_frms"},
136 {"tmac_data_octets"},
137 {"tmac_drop_frms"},
138 {"tmac_mcst_frms"},
139 {"tmac_bcst_frms"},
140 {"tmac_pause_ctrl_frms"},
141 {"tmac_ttl_octets"},
142 {"tmac_ucst_frms"},
143 {"tmac_nucst_frms"},
144 {"tmac_any_err_frms"},
145 {"tmac_ttl_less_fb_octets"},
146 {"tmac_vld_ip_octets"},
147 {"tmac_vld_ip"},
148 {"tmac_drop_ip"},
149 {"tmac_icmp"},
150 {"tmac_rst_tcp"},
151 {"tmac_tcp"},
152 {"tmac_udp"},
153 {"rmac_vld_frms"},
154 {"rmac_data_octets"},
155 {"rmac_fcs_err_frms"},
156 {"rmac_drop_frms"},
157 {"rmac_vld_mcst_frms"},
158 {"rmac_vld_bcst_frms"},
159 {"rmac_in_rng_len_err_frms"},
160 {"rmac_out_rng_len_err_frms"},
161 {"rmac_long_frms"},
162 {"rmac_pause_ctrl_frms"},
163 {"rmac_unsup_ctrl_frms"},
164 {"rmac_ttl_octets"},
165 {"rmac_accepted_ucst_frms"},
166 {"rmac_accepted_nucst_frms"},
167 {"rmac_discarded_frms"},
168 {"rmac_drop_events"},
169 {"rmac_ttl_less_fb_octets"},
170 {"rmac_ttl_frms"},
171 {"rmac_usized_frms"},
172 {"rmac_osized_frms"},
173 {"rmac_frag_frms"},
174 {"rmac_jabber_frms"},
175 {"rmac_ttl_64_frms"},
176 {"rmac_ttl_65_127_frms"},
177 {"rmac_ttl_128_255_frms"},
178 {"rmac_ttl_256_511_frms"},
179 {"rmac_ttl_512_1023_frms"},
180 {"rmac_ttl_1024_1518_frms"},
181 {"rmac_ip"},
182 {"rmac_ip_octets"},
183 {"rmac_hdr_err_ip"},
184 {"rmac_drop_ip"},
185 {"rmac_icmp"},
186 {"rmac_tcp"},
187 {"rmac_udp"},
188 {"rmac_err_drp_udp"},
189 {"rmac_xgmii_err_sym"},
190 {"rmac_frms_q0"},
191 {"rmac_frms_q1"},
192 {"rmac_frms_q2"},
193 {"rmac_frms_q3"},
194 {"rmac_frms_q4"},
195 {"rmac_frms_q5"},
196 {"rmac_frms_q6"},
197 {"rmac_frms_q7"},
198 {"rmac_full_q0"},
199 {"rmac_full_q1"},
200 {"rmac_full_q2"},
201 {"rmac_full_q3"},
202 {"rmac_full_q4"},
203 {"rmac_full_q5"},
204 {"rmac_full_q6"},
205 {"rmac_full_q7"},
206 {"rmac_pause_cnt"},
207 {"rmac_xgmii_data_err_cnt"},
208 {"rmac_xgmii_ctrl_err_cnt"},
209 {"rmac_accepted_ip"},
210 {"rmac_err_tcp"},
211 {"rd_req_cnt"},
212 {"new_rd_req_cnt"},
213 {"new_rd_req_rtry_cnt"},
214 {"rd_rtry_cnt"},
215 {"wr_rtry_rd_ack_cnt"},
216 {"wr_req_cnt"},
217 {"new_wr_req_cnt"},
218 {"new_wr_req_rtry_cnt"},
219 {"wr_rtry_cnt"},
220 {"wr_disc_cnt"},
221 {"rd_rtry_wr_ack_cnt"},
222 {"txp_wr_cnt"},
223 {"txd_rd_cnt"},
224 {"txd_wr_cnt"},
225 {"rxd_rd_cnt"},
226 {"rxd_wr_cnt"},
227 {"txf_rd_cnt"},
228 {"rxf_wr_cnt"},
229 {"rmac_ttl_1519_4095_frms"},
230 {"rmac_ttl_4096_8191_frms"},
231 {"rmac_ttl_8192_max_frms"},
232 {"rmac_ttl_gt_max_frms"},
233 {"rmac_osized_alt_frms"},
234 {"rmac_jabber_alt_frms"},
235 {"rmac_gt_max_alt_frms"},
236 {"rmac_vlan_frms"},
237 {"rmac_len_discard"},
238 {"rmac_fcs_discard"},
239 {"rmac_pf_discard"},
240 {"rmac_da_discard"},
241 {"rmac_red_discard"},
242 {"rmac_rts_discard"},
243 {"rmac_ingm_full_discard"},
244 {"link_fault_cnt"},
245 {"\n DRIVER STATISTICS"},
246 {"single_bit_ecc_errs"},
247 {"double_bit_ecc_errs"},
248 {"parity_err_cnt"},
249 {"serious_err_cnt"},
250 {"soft_reset_cnt"},
251 {"fifo_full_cnt"},
252 {"ring_full_cnt"},
253 ("alarm_transceiver_temp_high"),
254 ("alarm_transceiver_temp_low"),
255 ("alarm_laser_bias_current_high"),
256 ("alarm_laser_bias_current_low"),
257 ("alarm_laser_output_power_high"),
258 ("alarm_laser_output_power_low"),
259 ("warn_transceiver_temp_high"),
260 ("warn_transceiver_temp_low"),
261 ("warn_laser_bias_current_high"),
262 ("warn_laser_bias_current_low"),
263 ("warn_laser_output_power_high"),
264 ("warn_laser_output_power_low"),
265 ("lro_aggregated_pkts"),
266 ("lro_flush_both_count"),
267 ("lro_out_of_sequence_pkts"),
268 ("lro_flush_due_to_max_pkts"),
269 ("lro_avg_aggr_pkts"),
270 };
271
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
274
275 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
277
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
279 init_timer(&timer); \
280 timer.function = handle; \
281 timer.data = (unsigned long) arg; \
282 mod_timer(&timer, (jiffies + exp)) \
283
284 /* Add the vlan */
285 static void s2io_vlan_rx_register(struct net_device *dev,
286 struct vlan_group *grp)
287 {
288 struct s2io_nic *nic = dev->priv;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nic->tx_lock, flags);
292 nic->vlgrp = grp;
293 spin_unlock_irqrestore(&nic->tx_lock, flags);
294 }
295
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
298 {
299 struct s2io_nic *nic = dev->priv;
300 unsigned long flags;
301
302 spin_lock_irqsave(&nic->tx_lock, flags);
303 if (nic->vlgrp)
304 nic->vlgrp->vlan_devices[vid] = NULL;
305 spin_unlock_irqrestore(&nic->tx_lock, flags);
306 }
307
308 /*
309 * Constants to be programmed into the Xena's registers, to configure
310 * the XAUI.
311 */
312
313 #define END_SIGN 0x0
314 static const u64 herc_act_dtx_cfg[] = {
315 /* Set address */
316 0x8000051536750000ULL, 0x80000515367500E0ULL,
317 /* Write data */
318 0x8000051536750004ULL, 0x80000515367500E4ULL,
319 /* Set address */
320 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
321 /* Write data */
322 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
323 /* Set address */
324 0x801205150D440000ULL, 0x801205150D4400E0ULL,
325 /* Write data */
326 0x801205150D440004ULL, 0x801205150D4400E4ULL,
327 /* Set address */
328 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
329 /* Write data */
330 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
331 /* Done */
332 END_SIGN
333 };
334
335 static const u64 xena_dtx_cfg[] = {
336 /* Set address */
337 0x8000051500000000ULL, 0x80000515000000E0ULL,
338 /* Write data */
339 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
340 /* Set address */
341 0x8001051500000000ULL, 0x80010515000000E0ULL,
342 /* Write data */
343 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
344 /* Set address */
345 0x8002051500000000ULL, 0x80020515000000E0ULL,
346 /* Write data */
347 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
348 END_SIGN
349 };
350
351 /*
352 * Constants for Fixing the MacAddress problem seen mostly on
353 * Alpha machines.
354 */
355 static const u64 fix_mac[] = {
356 0x0060000000000000ULL, 0x0060600000000000ULL,
357 0x0040600000000000ULL, 0x0000600000000000ULL,
358 0x0020600000000000ULL, 0x0060600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0000600000000000ULL,
369 0x0040600000000000ULL, 0x0060600000000000ULL,
370 END_SIGN
371 };
372
373 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
374 MODULE_LICENSE("GPL");
375 MODULE_VERSION(DRV_VERSION);
376
377
378 /* Module Loadable parameters. */
379 S2IO_PARM_INT(tx_fifo_num, 1);
380 S2IO_PARM_INT(rx_ring_num, 1);
381
382
383 S2IO_PARM_INT(rx_ring_mode, 1);
384 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
385 S2IO_PARM_INT(rmac_pause_time, 0x100);
386 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
387 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
388 S2IO_PARM_INT(shared_splits, 0);
389 S2IO_PARM_INT(tmac_util_period, 5);
390 S2IO_PARM_INT(rmac_util_period, 5);
391 S2IO_PARM_INT(bimodal, 0);
392 S2IO_PARM_INT(l3l4hdr_size, 128);
393 /* Frequency of Rx desc syncs expressed as power of 2 */
394 S2IO_PARM_INT(rxsync_frequency, 3);
395 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
396 S2IO_PARM_INT(intr_type, 0);
397 /* Large receive offload feature */
398 S2IO_PARM_INT(lro, 0);
399 /* Max pkts to be aggregated by LRO at one time. If not specified,
400 * aggregation happens until we hit max IP pkt size(64K)
401 */
402 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
403 S2IO_PARM_INT(indicate_max_pkts, 0);
404
405 S2IO_PARM_INT(napi, 1);
406 S2IO_PARM_INT(ufo, 0);
407
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
414
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
418
419 /*
420 * S2IO device table.
421 * This table lists all the devices that this driver supports.
422 */
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425 PCI_ANY_ID, PCI_ANY_ID},
426 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427 PCI_ANY_ID, PCI_ANY_ID},
428 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429 PCI_ANY_ID, PCI_ANY_ID},
430 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431 PCI_ANY_ID, PCI_ANY_ID},
432 {0,}
433 };
434
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
436
437 static struct pci_driver s2io_driver = {
438 .name = "S2IO",
439 .id_table = s2io_tbl,
440 .probe = s2io_init_nic,
441 .remove = __devexit_p(s2io_rem_nic),
442 };
443
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
446
447 /**
448 * init_shared_mem - Allocation and Initialization of Memory
449 * @nic: Device private variable.
450 * Description: The function allocates all the memory areas shared
451 * between the NIC and the driver. This includes Tx descriptors,
452 * Rx descriptors and the statistics block.
453 */
454
455 static int init_shared_mem(struct s2io_nic *nic)
456 {
457 u32 size;
458 void *tmp_v_addr, *tmp_v_addr_next;
459 dma_addr_t tmp_p_addr, tmp_p_addr_next;
460 struct RxD_block *pre_rxd_blk = NULL;
461 int i, j, blk_cnt;
462 int lst_size, lst_per_page;
463 struct net_device *dev = nic->dev;
464 unsigned long tmp;
465 struct buffAdd *ba;
466
467 struct mac_info *mac_control;
468 struct config_param *config;
469
470 mac_control = &nic->mac_control;
471 config = &nic->config;
472
473
474 /* Allocation and initialization of TXDLs in FIOFs */
475 size = 0;
476 for (i = 0; i < config->tx_fifo_num; i++) {
477 size += config->tx_cfg[i].fifo_len;
478 }
479 if (size > MAX_AVAILABLE_TXDS) {
480 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482 return -EINVAL;
483 }
484
485 lst_size = (sizeof(struct TxD) * config->max_txds);
486 lst_per_page = PAGE_SIZE / lst_size;
487
488 for (i = 0; i < config->tx_fifo_num; i++) {
489 int fifo_len = config->tx_cfg[i].fifo_len;
490 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
491 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
492 GFP_KERNEL);
493 if (!mac_control->fifos[i].list_info) {
494 DBG_PRINT(ERR_DBG,
495 "Malloc failed for list_info\n");
496 return -ENOMEM;
497 }
498 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
499 }
500 for (i = 0; i < config->tx_fifo_num; i++) {
501 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
502 lst_per_page);
503 mac_control->fifos[i].tx_curr_put_info.offset = 0;
504 mac_control->fifos[i].tx_curr_put_info.fifo_len =
505 config->tx_cfg[i].fifo_len - 1;
506 mac_control->fifos[i].tx_curr_get_info.offset = 0;
507 mac_control->fifos[i].tx_curr_get_info.fifo_len =
508 config->tx_cfg[i].fifo_len - 1;
509 mac_control->fifos[i].fifo_no = i;
510 mac_control->fifos[i].nic = nic;
511 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
512
513 for (j = 0; j < page_num; j++) {
514 int k = 0;
515 dma_addr_t tmp_p;
516 void *tmp_v;
517 tmp_v = pci_alloc_consistent(nic->pdev,
518 PAGE_SIZE, &tmp_p);
519 if (!tmp_v) {
520 DBG_PRINT(ERR_DBG,
521 "pci_alloc_consistent ");
522 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
523 return -ENOMEM;
524 }
525 /* If we got a zero DMA address(can happen on
526 * certain platforms like PPC), reallocate.
527 * Store virtual address of page we don't want,
528 * to be freed later.
529 */
530 if (!tmp_p) {
531 mac_control->zerodma_virt_addr = tmp_v;
532 DBG_PRINT(INIT_DBG,
533 "%s: Zero DMA address for TxDL. ", dev->name);
534 DBG_PRINT(INIT_DBG,
535 "Virtual address %p\n", tmp_v);
536 tmp_v = pci_alloc_consistent(nic->pdev,
537 PAGE_SIZE, &tmp_p);
538 if (!tmp_v) {
539 DBG_PRINT(ERR_DBG,
540 "pci_alloc_consistent ");
541 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
542 return -ENOMEM;
543 }
544 }
545 while (k < lst_per_page) {
546 int l = (j * lst_per_page) + k;
547 if (l == config->tx_cfg[i].fifo_len)
548 break;
549 mac_control->fifos[i].list_info[l].list_virt_addr =
550 tmp_v + (k * lst_size);
551 mac_control->fifos[i].list_info[l].list_phy_addr =
552 tmp_p + (k * lst_size);
553 k++;
554 }
555 }
556 }
557
558 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
559 if (!nic->ufo_in_band_v)
560 return -ENOMEM;
561
562 /* Allocation and initialization of RXDs in Rings */
563 size = 0;
564 for (i = 0; i < config->rx_ring_num; i++) {
565 if (config->rx_cfg[i].num_rxd %
566 (rxd_count[nic->rxd_mode] + 1)) {
567 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
568 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
569 i);
570 DBG_PRINT(ERR_DBG, "RxDs per Block");
571 return FAILURE;
572 }
573 size += config->rx_cfg[i].num_rxd;
574 mac_control->rings[i].block_count =
575 config->rx_cfg[i].num_rxd /
576 (rxd_count[nic->rxd_mode] + 1 );
577 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
578 mac_control->rings[i].block_count;
579 }
580 if (nic->rxd_mode == RXD_MODE_1)
581 size = (size * (sizeof(struct RxD1)));
582 else
583 size = (size * (sizeof(struct RxD3)));
584
585 for (i = 0; i < config->rx_ring_num; i++) {
586 mac_control->rings[i].rx_curr_get_info.block_index = 0;
587 mac_control->rings[i].rx_curr_get_info.offset = 0;
588 mac_control->rings[i].rx_curr_get_info.ring_len =
589 config->rx_cfg[i].num_rxd - 1;
590 mac_control->rings[i].rx_curr_put_info.block_index = 0;
591 mac_control->rings[i].rx_curr_put_info.offset = 0;
592 mac_control->rings[i].rx_curr_put_info.ring_len =
593 config->rx_cfg[i].num_rxd - 1;
594 mac_control->rings[i].nic = nic;
595 mac_control->rings[i].ring_no = i;
596
597 blk_cnt = config->rx_cfg[i].num_rxd /
598 (rxd_count[nic->rxd_mode] + 1);
599 /* Allocating all the Rx blocks */
600 for (j = 0; j < blk_cnt; j++) {
601 struct rx_block_info *rx_blocks;
602 int l;
603
604 rx_blocks = &mac_control->rings[i].rx_blocks[j];
605 size = SIZE_OF_BLOCK; //size is always page size
606 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
607 &tmp_p_addr);
608 if (tmp_v_addr == NULL) {
609 /*
610 * In case of failure, free_shared_mem()
611 * is called, which should free any
612 * memory that was alloced till the
613 * failure happened.
614 */
615 rx_blocks->block_virt_addr = tmp_v_addr;
616 return -ENOMEM;
617 }
618 memset(tmp_v_addr, 0, size);
619 rx_blocks->block_virt_addr = tmp_v_addr;
620 rx_blocks->block_dma_addr = tmp_p_addr;
621 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
622 rxd_count[nic->rxd_mode],
623 GFP_KERNEL);
624 if (!rx_blocks->rxds)
625 return -ENOMEM;
626 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
627 rx_blocks->rxds[l].virt_addr =
628 rx_blocks->block_virt_addr +
629 (rxd_size[nic->rxd_mode] * l);
630 rx_blocks->rxds[l].dma_addr =
631 rx_blocks->block_dma_addr +
632 (rxd_size[nic->rxd_mode] * l);
633 }
634 }
635 /* Interlinking all Rx Blocks */
636 for (j = 0; j < blk_cnt; j++) {
637 tmp_v_addr =
638 mac_control->rings[i].rx_blocks[j].block_virt_addr;
639 tmp_v_addr_next =
640 mac_control->rings[i].rx_blocks[(j + 1) %
641 blk_cnt].block_virt_addr;
642 tmp_p_addr =
643 mac_control->rings[i].rx_blocks[j].block_dma_addr;
644 tmp_p_addr_next =
645 mac_control->rings[i].rx_blocks[(j + 1) %
646 blk_cnt].block_dma_addr;
647
648 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
649 pre_rxd_blk->reserved_2_pNext_RxD_block =
650 (unsigned long) tmp_v_addr_next;
651 pre_rxd_blk->pNext_RxD_Blk_physical =
652 (u64) tmp_p_addr_next;
653 }
654 }
655 if (nic->rxd_mode >= RXD_MODE_3A) {
656 /*
657 * Allocation of Storages for buffer addresses in 2BUFF mode
658 * and the buffers as well.
659 */
660 for (i = 0; i < config->rx_ring_num; i++) {
661 blk_cnt = config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode]+ 1);
663 mac_control->rings[i].ba =
664 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
665 GFP_KERNEL);
666 if (!mac_control->rings[i].ba)
667 return -ENOMEM;
668 for (j = 0; j < blk_cnt; j++) {
669 int k = 0;
670 mac_control->rings[i].ba[j] =
671 kmalloc((sizeof(struct buffAdd) *
672 (rxd_count[nic->rxd_mode] + 1)),
673 GFP_KERNEL);
674 if (!mac_control->rings[i].ba[j])
675 return -ENOMEM;
676 while (k != rxd_count[nic->rxd_mode]) {
677 ba = &mac_control->rings[i].ba[j][k];
678
679 ba->ba_0_org = (void *) kmalloc
680 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
681 if (!ba->ba_0_org)
682 return -ENOMEM;
683 tmp = (unsigned long)ba->ba_0_org;
684 tmp += ALIGN_SIZE;
685 tmp &= ~((unsigned long) ALIGN_SIZE);
686 ba->ba_0 = (void *) tmp;
687
688 ba->ba_1_org = (void *) kmalloc
689 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
690 if (!ba->ba_1_org)
691 return -ENOMEM;
692 tmp = (unsigned long) ba->ba_1_org;
693 tmp += ALIGN_SIZE;
694 tmp &= ~((unsigned long) ALIGN_SIZE);
695 ba->ba_1 = (void *) tmp;
696 k++;
697 }
698 }
699 }
700 }
701
702 /* Allocation and initialization of Statistics block */
703 size = sizeof(struct stat_block);
704 mac_control->stats_mem = pci_alloc_consistent
705 (nic->pdev, size, &mac_control->stats_mem_phy);
706
707 if (!mac_control->stats_mem) {
708 /*
709 * In case of failure, free_shared_mem() is called, which
710 * should free any memory that was alloced till the
711 * failure happened.
712 */
713 return -ENOMEM;
714 }
715 mac_control->stats_mem_sz = size;
716
717 tmp_v_addr = mac_control->stats_mem;
718 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
719 memset(tmp_v_addr, 0, size);
720 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
721 (unsigned long long) tmp_p_addr);
722
723 return SUCCESS;
724 }
725
726 /**
727 * free_shared_mem - Free the allocated Memory
728 * @nic: Device private variable.
729 * Description: This function is to free all memory locations allocated by
730 * the init_shared_mem() function and return it to the kernel.
731 */
732
733 static void free_shared_mem(struct s2io_nic *nic)
734 {
735 int i, j, blk_cnt, size;
736 void *tmp_v_addr;
737 dma_addr_t tmp_p_addr;
738 struct mac_info *mac_control;
739 struct config_param *config;
740 int lst_size, lst_per_page;
741 struct net_device *dev = nic->dev;
742
743 if (!nic)
744 return;
745
746 mac_control = &nic->mac_control;
747 config = &nic->config;
748
749 lst_size = (sizeof(struct TxD) * config->max_txds);
750 lst_per_page = PAGE_SIZE / lst_size;
751
752 for (i = 0; i < config->tx_fifo_num; i++) {
753 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
754 lst_per_page);
755 for (j = 0; j < page_num; j++) {
756 int mem_blks = (j * lst_per_page);
757 if (!mac_control->fifos[i].list_info)
758 return;
759 if (!mac_control->fifos[i].list_info[mem_blks].
760 list_virt_addr)
761 break;
762 pci_free_consistent(nic->pdev, PAGE_SIZE,
763 mac_control->fifos[i].
764 list_info[mem_blks].
765 list_virt_addr,
766 mac_control->fifos[i].
767 list_info[mem_blks].
768 list_phy_addr);
769 }
770 /* If we got a zero DMA address during allocation,
771 * free the page now
772 */
773 if (mac_control->zerodma_virt_addr) {
774 pci_free_consistent(nic->pdev, PAGE_SIZE,
775 mac_control->zerodma_virt_addr,
776 (dma_addr_t)0);
777 DBG_PRINT(INIT_DBG,
778 "%s: Freeing TxDL with zero DMA addr. ",
779 dev->name);
780 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
781 mac_control->zerodma_virt_addr);
782 }
783 kfree(mac_control->fifos[i].list_info);
784 }
785
786 size = SIZE_OF_BLOCK;
787 for (i = 0; i < config->rx_ring_num; i++) {
788 blk_cnt = mac_control->rings[i].block_count;
789 for (j = 0; j < blk_cnt; j++) {
790 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
791 block_virt_addr;
792 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
793 block_dma_addr;
794 if (tmp_v_addr == NULL)
795 break;
796 pci_free_consistent(nic->pdev, size,
797 tmp_v_addr, tmp_p_addr);
798 kfree(mac_control->rings[i].rx_blocks[j].rxds);
799 }
800 }
801
802 if (nic->rxd_mode >= RXD_MODE_3A) {
803 /* Freeing buffer storage addresses in 2BUFF mode. */
804 for (i = 0; i < config->rx_ring_num; i++) {
805 blk_cnt = config->rx_cfg[i].num_rxd /
806 (rxd_count[nic->rxd_mode] + 1);
807 for (j = 0; j < blk_cnt; j++) {
808 int k = 0;
809 if (!mac_control->rings[i].ba[j])
810 continue;
811 while (k != rxd_count[nic->rxd_mode]) {
812 struct buffAdd *ba =
813 &mac_control->rings[i].ba[j][k];
814 kfree(ba->ba_0_org);
815 kfree(ba->ba_1_org);
816 k++;
817 }
818 kfree(mac_control->rings[i].ba[j]);
819 }
820 kfree(mac_control->rings[i].ba);
821 }
822 }
823
824 if (mac_control->stats_mem) {
825 pci_free_consistent(nic->pdev,
826 mac_control->stats_mem_sz,
827 mac_control->stats_mem,
828 mac_control->stats_mem_phy);
829 }
830 if (nic->ufo_in_band_v)
831 kfree(nic->ufo_in_band_v);
832 }
833
834 /**
835 * s2io_verify_pci_mode -
836 */
837
838 static int s2io_verify_pci_mode(struct s2io_nic *nic)
839 {
840 struct XENA_dev_config __iomem *bar0 = nic->bar0;
841 register u64 val64 = 0;
842 int mode;
843
844 val64 = readq(&bar0->pci_mode);
845 mode = (u8)GET_PCI_MODE(val64);
846
847 if ( val64 & PCI_MODE_UNKNOWN_MODE)
848 return -1; /* Unknown PCI mode */
849 return mode;
850 }
851
852 #define NEC_VENID 0x1033
853 #define NEC_DEVID 0x0125
854 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
855 {
856 struct pci_dev *tdev = NULL;
857 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
858 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
859 if (tdev->bus == s2io_pdev->bus->parent)
860 pci_dev_put(tdev);
861 return 1;
862 }
863 }
864 return 0;
865 }
866
867 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
868 /**
869 * s2io_print_pci_mode -
870 */
871 static int s2io_print_pci_mode(struct s2io_nic *nic)
872 {
873 struct XENA_dev_config __iomem *bar0 = nic->bar0;
874 register u64 val64 = 0;
875 int mode;
876 struct config_param *config = &nic->config;
877
878 val64 = readq(&bar0->pci_mode);
879 mode = (u8)GET_PCI_MODE(val64);
880
881 if ( val64 & PCI_MODE_UNKNOWN_MODE)
882 return -1; /* Unknown PCI mode */
883
884 config->bus_speed = bus_speed[mode];
885
886 if (s2io_on_nec_bridge(nic->pdev)) {
887 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
888 nic->dev->name);
889 return mode;
890 }
891
892 if (val64 & PCI_MODE_32_BITS) {
893 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
894 } else {
895 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
896 }
897
898 switch(mode) {
899 case PCI_MODE_PCI_33:
900 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
901 break;
902 case PCI_MODE_PCI_66:
903 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
904 break;
905 case PCI_MODE_PCIX_M1_66:
906 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
907 break;
908 case PCI_MODE_PCIX_M1_100:
909 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
910 break;
911 case PCI_MODE_PCIX_M1_133:
912 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
913 break;
914 case PCI_MODE_PCIX_M2_66:
915 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
916 break;
917 case PCI_MODE_PCIX_M2_100:
918 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
919 break;
920 case PCI_MODE_PCIX_M2_133:
921 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
922 break;
923 default:
924 return -1; /* Unsupported bus speed */
925 }
926
927 return mode;
928 }
929
930 /**
931 * init_nic - Initialization of hardware
932 * @nic: device peivate variable
933 * Description: The function sequentially configures every block
934 * of the H/W from their reset values.
935 * Return Value: SUCCESS on success and
936 * '-1' on failure (endian settings incorrect).
937 */
938
939 static int init_nic(struct s2io_nic *nic)
940 {
941 struct XENA_dev_config __iomem *bar0 = nic->bar0;
942 struct net_device *dev = nic->dev;
943 register u64 val64 = 0;
944 void __iomem *add;
945 u32 time;
946 int i, j;
947 struct mac_info *mac_control;
948 struct config_param *config;
949 int dtx_cnt = 0;
950 unsigned long long mem_share;
951 int mem_size;
952
953 mac_control = &nic->mac_control;
954 config = &nic->config;
955
956 /* to set the swapper controle on the card */
957 if(s2io_set_swapper(nic)) {
958 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
959 return -1;
960 }
961
962 /*
963 * Herc requires EOI to be removed from reset before XGXS, so..
964 */
965 if (nic->device_type & XFRAME_II_DEVICE) {
966 val64 = 0xA500000000ULL;
967 writeq(val64, &bar0->sw_reset);
968 msleep(500);
969 val64 = readq(&bar0->sw_reset);
970 }
971
972 /* Remove XGXS from reset state */
973 val64 = 0;
974 writeq(val64, &bar0->sw_reset);
975 msleep(500);
976 val64 = readq(&bar0->sw_reset);
977
978 /* Enable Receiving broadcasts */
979 add = &bar0->mac_cfg;
980 val64 = readq(&bar0->mac_cfg);
981 val64 |= MAC_RMAC_BCAST_ENABLE;
982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
983 writel((u32) val64, add);
984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
985 writel((u32) (val64 >> 32), (add + 4));
986
987 /* Read registers in all blocks */
988 val64 = readq(&bar0->mac_int_mask);
989 val64 = readq(&bar0->mc_int_mask);
990 val64 = readq(&bar0->xgxs_int_mask);
991
992 /* Set MTU */
993 val64 = dev->mtu;
994 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
995
996 if (nic->device_type & XFRAME_II_DEVICE) {
997 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
998 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
999 &bar0->dtx_control, UF);
1000 if (dtx_cnt & 0x1)
1001 msleep(1); /* Necessary!! */
1002 dtx_cnt++;
1003 }
1004 } else {
1005 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1006 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1007 &bar0->dtx_control, UF);
1008 val64 = readq(&bar0->dtx_control);
1009 dtx_cnt++;
1010 }
1011 }
1012
1013 /* Tx DMA Initialization */
1014 val64 = 0;
1015 writeq(val64, &bar0->tx_fifo_partition_0);
1016 writeq(val64, &bar0->tx_fifo_partition_1);
1017 writeq(val64, &bar0->tx_fifo_partition_2);
1018 writeq(val64, &bar0->tx_fifo_partition_3);
1019
1020
1021 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1022 val64 |=
1023 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1024 13) | vBIT(config->tx_cfg[i].fifo_priority,
1025 ((i * 32) + 5), 3);
1026
1027 if (i == (config->tx_fifo_num - 1)) {
1028 if (i % 2 == 0)
1029 i++;
1030 }
1031
1032 switch (i) {
1033 case 1:
1034 writeq(val64, &bar0->tx_fifo_partition_0);
1035 val64 = 0;
1036 break;
1037 case 3:
1038 writeq(val64, &bar0->tx_fifo_partition_1);
1039 val64 = 0;
1040 break;
1041 case 5:
1042 writeq(val64, &bar0->tx_fifo_partition_2);
1043 val64 = 0;
1044 break;
1045 case 7:
1046 writeq(val64, &bar0->tx_fifo_partition_3);
1047 break;
1048 }
1049 }
1050
1051 /*
1052 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1054 */
1055 if ((nic->device_type == XFRAME_I_DEVICE) &&
1056 (get_xena_rev_id(nic->pdev) < 4))
1057 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1058
1059 val64 = readq(&bar0->tx_fifo_partition_0);
1060 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1061 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1062
1063 /*
1064 * Initialization of Tx_PA_CONFIG register to ignore packet
1065 * integrity checking.
1066 */
1067 val64 = readq(&bar0->tx_pa_cfg);
1068 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1069 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1070 writeq(val64, &bar0->tx_pa_cfg);
1071
1072 /* Rx DMA intialization. */
1073 val64 = 0;
1074 for (i = 0; i < config->rx_ring_num; i++) {
1075 val64 |=
1076 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1077 3);
1078 }
1079 writeq(val64, &bar0->rx_queue_priority);
1080
1081 /*
1082 * Allocating equal share of memory to all the
1083 * configured Rings.
1084 */
1085 val64 = 0;
1086 if (nic->device_type & XFRAME_II_DEVICE)
1087 mem_size = 32;
1088 else
1089 mem_size = 64;
1090
1091 for (i = 0; i < config->rx_ring_num; i++) {
1092 switch (i) {
1093 case 0:
1094 mem_share = (mem_size / config->rx_ring_num +
1095 mem_size % config->rx_ring_num);
1096 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1097 continue;
1098 case 1:
1099 mem_share = (mem_size / config->rx_ring_num);
1100 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1101 continue;
1102 case 2:
1103 mem_share = (mem_size / config->rx_ring_num);
1104 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1105 continue;
1106 case 3:
1107 mem_share = (mem_size / config->rx_ring_num);
1108 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1109 continue;
1110 case 4:
1111 mem_share = (mem_size / config->rx_ring_num);
1112 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1113 continue;
1114 case 5:
1115 mem_share = (mem_size / config->rx_ring_num);
1116 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1117 continue;
1118 case 6:
1119 mem_share = (mem_size / config->rx_ring_num);
1120 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1121 continue;
1122 case 7:
1123 mem_share = (mem_size / config->rx_ring_num);
1124 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1125 continue;
1126 }
1127 }
1128 writeq(val64, &bar0->rx_queue_cfg);
1129
1130 /*
1131 * Filling Tx round robin registers
1132 * as per the number of FIFOs
1133 */
1134 switch (config->tx_fifo_num) {
1135 case 1:
1136 val64 = 0x0000000000000000ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_0);
1138 writeq(val64, &bar0->tx_w_round_robin_1);
1139 writeq(val64, &bar0->tx_w_round_robin_2);
1140 writeq(val64, &bar0->tx_w_round_robin_3);
1141 writeq(val64, &bar0->tx_w_round_robin_4);
1142 break;
1143 case 2:
1144 val64 = 0x0000010000010000ULL;
1145 writeq(val64, &bar0->tx_w_round_robin_0);
1146 val64 = 0x0100000100000100ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_1);
1148 val64 = 0x0001000001000001ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_2);
1150 val64 = 0x0000010000010000ULL;
1151 writeq(val64, &bar0->tx_w_round_robin_3);
1152 val64 = 0x0100000000000000ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_4);
1154 break;
1155 case 3:
1156 val64 = 0x0001000102000001ULL;
1157 writeq(val64, &bar0->tx_w_round_robin_0);
1158 val64 = 0x0001020000010001ULL;
1159 writeq(val64, &bar0->tx_w_round_robin_1);
1160 val64 = 0x0200000100010200ULL;
1161 writeq(val64, &bar0->tx_w_round_robin_2);
1162 val64 = 0x0001000102000001ULL;
1163 writeq(val64, &bar0->tx_w_round_robin_3);
1164 val64 = 0x0001020000000000ULL;
1165 writeq(val64, &bar0->tx_w_round_robin_4);
1166 break;
1167 case 4:
1168 val64 = 0x0001020300010200ULL;
1169 writeq(val64, &bar0->tx_w_round_robin_0);
1170 val64 = 0x0100000102030001ULL;
1171 writeq(val64, &bar0->tx_w_round_robin_1);
1172 val64 = 0x0200010000010203ULL;
1173 writeq(val64, &bar0->tx_w_round_robin_2);
1174 val64 = 0x0001020001000001ULL;
1175 writeq(val64, &bar0->tx_w_round_robin_3);
1176 val64 = 0x0203000100000000ULL;
1177 writeq(val64, &bar0->tx_w_round_robin_4);
1178 break;
1179 case 5:
1180 val64 = 0x0001000203000102ULL;
1181 writeq(val64, &bar0->tx_w_round_robin_0);
1182 val64 = 0x0001020001030004ULL;
1183 writeq(val64, &bar0->tx_w_round_robin_1);
1184 val64 = 0x0001000203000102ULL;
1185 writeq(val64, &bar0->tx_w_round_robin_2);
1186 val64 = 0x0001020001030004ULL;
1187 writeq(val64, &bar0->tx_w_round_robin_3);
1188 val64 = 0x0001000000000000ULL;
1189 writeq(val64, &bar0->tx_w_round_robin_4);
1190 break;
1191 case 6:
1192 val64 = 0x0001020304000102ULL;
1193 writeq(val64, &bar0->tx_w_round_robin_0);
1194 val64 = 0x0304050001020001ULL;
1195 writeq(val64, &bar0->tx_w_round_robin_1);
1196 val64 = 0x0203000100000102ULL;
1197 writeq(val64, &bar0->tx_w_round_robin_2);
1198 val64 = 0x0304000102030405ULL;
1199 writeq(val64, &bar0->tx_w_round_robin_3);
1200 val64 = 0x0001000200000000ULL;
1201 writeq(val64, &bar0->tx_w_round_robin_4);
1202 break;
1203 case 7:
1204 val64 = 0x0001020001020300ULL;
1205 writeq(val64, &bar0->tx_w_round_robin_0);
1206 val64 = 0x0102030400010203ULL;
1207 writeq(val64, &bar0->tx_w_round_robin_1);
1208 val64 = 0x0405060001020001ULL;
1209 writeq(val64, &bar0->tx_w_round_robin_2);
1210 val64 = 0x0304050000010200ULL;
1211 writeq(val64, &bar0->tx_w_round_robin_3);
1212 val64 = 0x0102030000000000ULL;
1213 writeq(val64, &bar0->tx_w_round_robin_4);
1214 break;
1215 case 8:
1216 val64 = 0x0001020300040105ULL;
1217 writeq(val64, &bar0->tx_w_round_robin_0);
1218 val64 = 0x0200030106000204ULL;
1219 writeq(val64, &bar0->tx_w_round_robin_1);
1220 val64 = 0x0103000502010007ULL;
1221 writeq(val64, &bar0->tx_w_round_robin_2);
1222 val64 = 0x0304010002060500ULL;
1223 writeq(val64, &bar0->tx_w_round_robin_3);
1224 val64 = 0x0103020400000000ULL;
1225 writeq(val64, &bar0->tx_w_round_robin_4);
1226 break;
1227 }
1228
1229 /* Enable all configured Tx FIFO partitions */
1230 val64 = readq(&bar0->tx_fifo_partition_0);
1231 val64 |= (TX_FIFO_PARTITION_EN);
1232 writeq(val64, &bar0->tx_fifo_partition_0);
1233
1234 /* Filling the Rx round robin registers as per the
1235 * number of Rings and steering based on QoS.
1236 */
1237 switch (config->rx_ring_num) {
1238 case 1:
1239 val64 = 0x8080808080808080ULL;
1240 writeq(val64, &bar0->rts_qos_steering);
1241 break;
1242 case 2:
1243 val64 = 0x0000010000010000ULL;
1244 writeq(val64, &bar0->rx_w_round_robin_0);
1245 val64 = 0x0100000100000100ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_1);
1247 val64 = 0x0001000001000001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_2);
1249 val64 = 0x0000010000010000ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_3);
1251 val64 = 0x0100000000000000ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_4);
1253
1254 val64 = 0x8080808040404040ULL;
1255 writeq(val64, &bar0->rts_qos_steering);
1256 break;
1257 case 3:
1258 val64 = 0x0001000102000001ULL;
1259 writeq(val64, &bar0->rx_w_round_robin_0);
1260 val64 = 0x0001020000010001ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_1);
1262 val64 = 0x0200000100010200ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_2);
1264 val64 = 0x0001000102000001ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_3);
1266 val64 = 0x0001020000000000ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_4);
1268
1269 val64 = 0x8080804040402020ULL;
1270 writeq(val64, &bar0->rts_qos_steering);
1271 break;
1272 case 4:
1273 val64 = 0x0001020300010200ULL;
1274 writeq(val64, &bar0->rx_w_round_robin_0);
1275 val64 = 0x0100000102030001ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_1);
1277 val64 = 0x0200010000010203ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_2);
1279 val64 = 0x0001020001000001ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_3);
1281 val64 = 0x0203000100000000ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_4);
1283
1284 val64 = 0x8080404020201010ULL;
1285 writeq(val64, &bar0->rts_qos_steering);
1286 break;
1287 case 5:
1288 val64 = 0x0001000203000102ULL;
1289 writeq(val64, &bar0->rx_w_round_robin_0);
1290 val64 = 0x0001020001030004ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_1);
1292 val64 = 0x0001000203000102ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_2);
1294 val64 = 0x0001020001030004ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_3);
1296 val64 = 0x0001000000000000ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_4);
1298
1299 val64 = 0x8080404020201008ULL;
1300 writeq(val64, &bar0->rts_qos_steering);
1301 break;
1302 case 6:
1303 val64 = 0x0001020304000102ULL;
1304 writeq(val64, &bar0->rx_w_round_robin_0);
1305 val64 = 0x0304050001020001ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_1);
1307 val64 = 0x0203000100000102ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_2);
1309 val64 = 0x0304000102030405ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_3);
1311 val64 = 0x0001000200000000ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_4);
1313
1314 val64 = 0x8080404020100804ULL;
1315 writeq(val64, &bar0->rts_qos_steering);
1316 break;
1317 case 7:
1318 val64 = 0x0001020001020300ULL;
1319 writeq(val64, &bar0->rx_w_round_robin_0);
1320 val64 = 0x0102030400010203ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_1);
1322 val64 = 0x0405060001020001ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_2);
1324 val64 = 0x0304050000010200ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_3);
1326 val64 = 0x0102030000000000ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_4);
1328
1329 val64 = 0x8080402010080402ULL;
1330 writeq(val64, &bar0->rts_qos_steering);
1331 break;
1332 case 8:
1333 val64 = 0x0001020300040105ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_0);
1335 val64 = 0x0200030106000204ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_1);
1337 val64 = 0x0103000502010007ULL;
1338 writeq(val64, &bar0->rx_w_round_robin_2);
1339 val64 = 0x0304010002060500ULL;
1340 writeq(val64, &bar0->rx_w_round_robin_3);
1341 val64 = 0x0103020400000000ULL;
1342 writeq(val64, &bar0->rx_w_round_robin_4);
1343
1344 val64 = 0x8040201008040201ULL;
1345 writeq(val64, &bar0->rts_qos_steering);
1346 break;
1347 }
1348
1349 /* UDP Fix */
1350 val64 = 0;
1351 for (i = 0; i < 8; i++)
1352 writeq(val64, &bar0->rts_frm_len_n[i]);
1353
1354 /* Set the default rts frame length for the rings configured */
1355 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1356 for (i = 0 ; i < config->rx_ring_num ; i++)
1357 writeq(val64, &bar0->rts_frm_len_n[i]);
1358
1359 /* Set the frame length for the configured rings
1360 * desired by the user
1361 */
1362 for (i = 0; i < config->rx_ring_num; i++) {
1363 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364 * specified frame length steering.
1365 * If the user provides the frame length then program
1366 * the rts_frm_len register for those values or else
1367 * leave it as it is.
1368 */
1369 if (rts_frm_len[i] != 0) {
1370 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1371 &bar0->rts_frm_len_n[i]);
1372 }
1373 }
1374
1375 /* Program statistics memory */
1376 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1377
1378 if (nic->device_type == XFRAME_II_DEVICE) {
1379 val64 = STAT_BC(0x320);
1380 writeq(val64, &bar0->stat_byte_cnt);
1381 }
1382
1383 /*
1384 * Initializing the sampling rate for the device to calculate the
1385 * bandwidth utilization.
1386 */
1387 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1388 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1389 writeq(val64, &bar0->mac_link_util);
1390
1391
1392 /*
1393 * Initializing the Transmit and Receive Traffic Interrupt
1394 * Scheme.
1395 */
1396 /*
1397 * TTI Initialization. Default Tx timer gets us about
1398 * 250 interrupts per sec. Continuous interrupts are enabled
1399 * by default.
1400 */
1401 if (nic->device_type == XFRAME_II_DEVICE) {
1402 int count = (nic->config.bus_speed * 125)/2;
1403 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1404 } else {
1405
1406 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1407 }
1408 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1409 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1410 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1411 if (use_continuous_tx_intrs)
1412 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1413 writeq(val64, &bar0->tti_data1_mem);
1414
1415 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1416 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1417 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1418 writeq(val64, &bar0->tti_data2_mem);
1419
1420 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1421 writeq(val64, &bar0->tti_command_mem);
1422
1423 /*
1424 * Once the operation completes, the Strobe bit of the command
1425 * register will be reset. We poll for this particular condition
1426 * We wait for a maximum of 500ms for the operation to complete,
1427 * if it's not complete by then we return error.
1428 */
1429 time = 0;
1430 while (TRUE) {
1431 val64 = readq(&bar0->tti_command_mem);
1432 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1433 break;
1434 }
1435 if (time > 10) {
1436 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1437 dev->name);
1438 return -1;
1439 }
1440 msleep(50);
1441 time++;
1442 }
1443
1444 if (nic->config.bimodal) {
1445 int k = 0;
1446 for (k = 0; k < config->rx_ring_num; k++) {
1447 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1448 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1449 writeq(val64, &bar0->tti_command_mem);
1450
1451 /*
1452 * Once the operation completes, the Strobe bit of the command
1453 * register will be reset. We poll for this particular condition
1454 * We wait for a maximum of 500ms for the operation to complete,
1455 * if it's not complete by then we return error.
1456 */
1457 time = 0;
1458 while (TRUE) {
1459 val64 = readq(&bar0->tti_command_mem);
1460 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1461 break;
1462 }
1463 if (time > 10) {
1464 DBG_PRINT(ERR_DBG,
1465 "%s: TTI init Failed\n",
1466 dev->name);
1467 return -1;
1468 }
1469 time++;
1470 msleep(50);
1471 }
1472 }
1473 } else {
1474
1475 /* RTI Initialization */
1476 if (nic->device_type == XFRAME_II_DEVICE) {
1477 /*
1478 * Programmed to generate Apprx 500 Intrs per
1479 * second
1480 */
1481 int count = (nic->config.bus_speed * 125)/4;
1482 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1483 } else {
1484 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1485 }
1486 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1487 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1488 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1489
1490 writeq(val64, &bar0->rti_data1_mem);
1491
1492 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1493 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1494 if (nic->intr_type == MSI_X)
1495 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1496 RTI_DATA2_MEM_RX_UFC_D(0x40));
1497 else
1498 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1499 RTI_DATA2_MEM_RX_UFC_D(0x80));
1500 writeq(val64, &bar0->rti_data2_mem);
1501
1502 for (i = 0; i < config->rx_ring_num; i++) {
1503 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1504 | RTI_CMD_MEM_OFFSET(i);
1505 writeq(val64, &bar0->rti_command_mem);
1506
1507 /*
1508 * Once the operation completes, the Strobe bit of the
1509 * command register will be reset. We poll for this
1510 * particular condition. We wait for a maximum of 500ms
1511 * for the operation to complete, if it's not complete
1512 * by then we return error.
1513 */
1514 time = 0;
1515 while (TRUE) {
1516 val64 = readq(&bar0->rti_command_mem);
1517 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1518 break;
1519 }
1520 if (time > 10) {
1521 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1522 dev->name);
1523 return -1;
1524 }
1525 time++;
1526 msleep(50);
1527 }
1528 }
1529 }
1530
1531 /*
1532 * Initializing proper values as Pause threshold into all
1533 * the 8 Queues on Rx side.
1534 */
1535 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1537
1538 /* Disable RMAC PAD STRIPPING */
1539 add = &bar0->mac_cfg;
1540 val64 = readq(&bar0->mac_cfg);
1541 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1546 val64 = readq(&bar0->mac_cfg);
1547
1548 /* Enable FCS stripping by adapter */
1549 add = &bar0->mac_cfg;
1550 val64 = readq(&bar0->mac_cfg);
1551 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1552 if (nic->device_type == XFRAME_II_DEVICE)
1553 writeq(val64, &bar0->mac_cfg);
1554 else {
1555 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1556 writel((u32) (val64), add);
1557 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1558 writel((u32) (val64 >> 32), (add + 4));
1559 }
1560
1561 /*
1562 * Set the time value to be inserted in the pause frame
1563 * generated by xena.
1564 */
1565 val64 = readq(&bar0->rmac_pause_cfg);
1566 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1567 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1568 writeq(val64, &bar0->rmac_pause_cfg);
1569
1570 /*
1571 * Set the Threshold Limit for Generating the pause frame
1572 * If the amount of data in any Queue exceeds ratio of
1573 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1574 * pause frame is generated
1575 */
1576 val64 = 0;
1577 for (i = 0; i < 4; i++) {
1578 val64 |=
1579 (((u64) 0xFF00 | nic->mac_control.
1580 mc_pause_threshold_q0q3)
1581 << (i * 2 * 8));
1582 }
1583 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1584
1585 val64 = 0;
1586 for (i = 0; i < 4; i++) {
1587 val64 |=
1588 (((u64) 0xFF00 | nic->mac_control.
1589 mc_pause_threshold_q4q7)
1590 << (i * 2 * 8));
1591 }
1592 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1593
1594 /*
1595 * TxDMA will stop Read request if the number of read split has
1596 * exceeded the limit pointed by shared_splits
1597 */
1598 val64 = readq(&bar0->pic_control);
1599 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1600 writeq(val64, &bar0->pic_control);
1601
1602 if (nic->config.bus_speed == 266) {
1603 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1604 writeq(0x0, &bar0->read_retry_delay);
1605 writeq(0x0, &bar0->write_retry_delay);
1606 }
1607
1608 /*
1609 * Programming the Herc to split every write transaction
1610 * that does not start on an ADB to reduce disconnects.
1611 */
1612 if (nic->device_type == XFRAME_II_DEVICE) {
1613 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1614 MISC_LINK_STABILITY_PRD(3);
1615 writeq(val64, &bar0->misc_control);
1616 val64 = readq(&bar0->pic_control2);
1617 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1618 writeq(val64, &bar0->pic_control2);
1619 }
1620 if (strstr(nic->product_name, "CX4")) {
1621 val64 = TMAC_AVG_IPG(0x17);
1622 writeq(val64, &bar0->tmac_avg_ipg);
1623 }
1624
1625 return SUCCESS;
1626 }
1627 #define LINK_UP_DOWN_INTERRUPT 1
1628 #define MAC_RMAC_ERR_TIMER 2
1629
1630 static int s2io_link_fault_indication(struct s2io_nic *nic)
1631 {
1632 if (nic->intr_type != INTA)
1633 return MAC_RMAC_ERR_TIMER;
1634 if (nic->device_type == XFRAME_II_DEVICE)
1635 return LINK_UP_DOWN_INTERRUPT;
1636 else
1637 return MAC_RMAC_ERR_TIMER;
1638 }
1639
1640 /**
1641 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1642 * @nic: device private variable,
1643 * @mask: A mask indicating which Intr block must be modified and,
1644 * @flag: A flag indicating whether to enable or disable the Intrs.
1645 * Description: This function will either disable or enable the interrupts
1646 * depending on the flag argument. The mask argument can be used to
1647 * enable/disable any Intr block.
1648 * Return Value: NONE.
1649 */
1650
1651 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1652 {
1653 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1654 register u64 val64 = 0, temp64 = 0;
1655
1656 /* Top level interrupt classification */
1657 /* PIC Interrupts */
1658 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1659 /* Enable PIC Intrs in the general intr mask register */
1660 val64 = TXPIC_INT_M;
1661 if (flag == ENABLE_INTRS) {
1662 temp64 = readq(&bar0->general_int_mask);
1663 temp64 &= ~((u64) val64);
1664 writeq(temp64, &bar0->general_int_mask);
1665 /*
1666 * If Hercules adapter enable GPIO otherwise
1667 * disable all PCIX, Flash, MDIO, IIC and GPIO
1668 * interrupts for now.
1669 * TODO
1670 */
1671 if (s2io_link_fault_indication(nic) ==
1672 LINK_UP_DOWN_INTERRUPT ) {
1673 temp64 = readq(&bar0->pic_int_mask);
1674 temp64 &= ~((u64) PIC_INT_GPIO);
1675 writeq(temp64, &bar0->pic_int_mask);
1676 temp64 = readq(&bar0->gpio_int_mask);
1677 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1678 writeq(temp64, &bar0->gpio_int_mask);
1679 } else {
1680 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1681 }
1682 /*
1683 * No MSI Support is available presently, so TTI and
1684 * RTI interrupts are also disabled.
1685 */
1686 } else if (flag == DISABLE_INTRS) {
1687 /*
1688 * Disable PIC Intrs in the general
1689 * intr mask register
1690 */
1691 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1692 temp64 = readq(&bar0->general_int_mask);
1693 val64 |= temp64;
1694 writeq(val64, &bar0->general_int_mask);
1695 }
1696 }
1697
1698 /* MAC Interrupts */
1699 /* Enabling/Disabling MAC interrupts */
1700 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1701 val64 = TXMAC_INT_M | RXMAC_INT_M;
1702 if (flag == ENABLE_INTRS) {
1703 temp64 = readq(&bar0->general_int_mask);
1704 temp64 &= ~((u64) val64);
1705 writeq(temp64, &bar0->general_int_mask);
1706 /*
1707 * All MAC block error interrupts are disabled for now
1708 * TODO
1709 */
1710 } else if (flag == DISABLE_INTRS) {
1711 /*
1712 * Disable MAC Intrs in the general intr mask register
1713 */
1714 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1715 writeq(DISABLE_ALL_INTRS,
1716 &bar0->mac_rmac_err_mask);
1717
1718 temp64 = readq(&bar0->general_int_mask);
1719 val64 |= temp64;
1720 writeq(val64, &bar0->general_int_mask);
1721 }
1722 }
1723
1724 /* Tx traffic interrupts */
1725 if (mask & TX_TRAFFIC_INTR) {
1726 val64 = TXTRAFFIC_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
1731 /*
1732 * Enable all the Tx side interrupts
1733 * writing 0 Enables all 64 TX interrupt levels
1734 */
1735 writeq(0x0, &bar0->tx_traffic_mask);
1736 } else if (flag == DISABLE_INTRS) {
1737 /*
1738 * Disable Tx Traffic Intrs in the general intr mask
1739 * register.
1740 */
1741 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1743 val64 |= temp64;
1744 writeq(val64, &bar0->general_int_mask);
1745 }
1746 }
1747
1748 /* Rx traffic interrupts */
1749 if (mask & RX_TRAFFIC_INTR) {
1750 val64 = RXTRAFFIC_INT_M;
1751 if (flag == ENABLE_INTRS) {
1752 temp64 = readq(&bar0->general_int_mask);
1753 temp64 &= ~((u64) val64);
1754 writeq(temp64, &bar0->general_int_mask);
1755 /* writing 0 Enables all 8 RX interrupt levels */
1756 writeq(0x0, &bar0->rx_traffic_mask);
1757 } else if (flag == DISABLE_INTRS) {
1758 /*
1759 * Disable Rx Traffic Intrs in the general intr mask
1760 * register.
1761 */
1762 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1763 temp64 = readq(&bar0->general_int_mask);
1764 val64 |= temp64;
1765 writeq(val64, &bar0->general_int_mask);
1766 }
1767 }
1768 }
1769
1770 /**
1771 * verify_pcc_quiescent- Checks for PCC quiescent state
1772 * Return: 1 If PCC is quiescence
1773 * 0 If PCC is not quiescence
1774 */
1775 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1776 {
1777 int ret = 0, herc;
1778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1779 u64 val64 = readq(&bar0->adapter_status);
1780
1781 herc = (sp->device_type == XFRAME_II_DEVICE);
1782
1783 if (flag == FALSE) {
1784 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1785 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1786 ret = 1;
1787 } else {
1788 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1789 ret = 1;
1790 }
1791 } else {
1792 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1793 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1794 ADAPTER_STATUS_RMAC_PCC_IDLE))
1795 ret = 1;
1796 } else {
1797 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1798 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1799 ret = 1;
1800 }
1801 }
1802
1803 return ret;
1804 }
1805 /**
1806 * verify_xena_quiescence - Checks whether the H/W is ready
1807 * Description: Returns whether the H/W is ready to go or not. Depending
1808 * on whether adapter enable bit was written or not the comparison
1809 * differs and the calling function passes the input argument flag to
1810 * indicate this.
1811 * Return: 1 If xena is quiescence
1812 * 0 If Xena is not quiescence
1813 */
1814
1815 static int verify_xena_quiescence(struct s2io_nic *sp)
1816 {
1817 int mode;
1818 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1819 u64 val64 = readq(&bar0->adapter_status);
1820 mode = s2io_verify_pci_mode(sp);
1821
1822 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1823 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1824 return 0;
1825 }
1826 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1827 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1828 return 0;
1829 }
1830 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1831 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1832 return 0;
1833 }
1834 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1835 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1836 return 0;
1837 }
1838 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1839 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1840 return 0;
1841 }
1842 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1843 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1844 return 0;
1845 }
1846 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1847 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1848 return 0;
1849 }
1850 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1851 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1852 return 0;
1853 }
1854
1855 /*
1856 * In PCI 33 mode, the P_PLL is not used, and therefore,
1857 * the the P_PLL_LOCK bit in the adapter_status register will
1858 * not be asserted.
1859 */
1860 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1861 sp->device_type == XFRAME_II_DEVICE && mode !=
1862 PCI_MODE_PCI_33) {
1863 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1864 return 0;
1865 }
1866 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1867 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1868 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1869 return 0;
1870 }
1871 return 1;
1872 }
1873
1874 /**
1875 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1876 * @sp: Pointer to device specifc structure
1877 * Description :
1878 * New procedure to clear mac address reading problems on Alpha platforms
1879 *
1880 */
1881
1882 static void fix_mac_address(struct s2io_nic * sp)
1883 {
1884 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1885 u64 val64;
1886 int i = 0;
1887
1888 while (fix_mac[i] != END_SIGN) {
1889 writeq(fix_mac[i++], &bar0->gpio_control);
1890 udelay(10);
1891 val64 = readq(&bar0->gpio_control);
1892 }
1893 }
1894
1895 /**
1896 * start_nic - Turns the device on
1897 * @nic : device private variable.
1898 * Description:
1899 * This function actually turns the device on. Before this function is
1900 * called,all Registers are configured from their reset states
1901 * and shared memory is allocated but the NIC is still quiescent. On
1902 * calling this function, the device interrupts are cleared and the NIC is
1903 * literally switched on by writing into the adapter control register.
1904 * Return Value:
1905 * SUCCESS on success and -1 on failure.
1906 */
1907
1908 static int start_nic(struct s2io_nic *nic)
1909 {
1910 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1911 struct net_device *dev = nic->dev;
1912 register u64 val64 = 0;
1913 u16 subid, i;
1914 struct mac_info *mac_control;
1915 struct config_param *config;
1916
1917 mac_control = &nic->mac_control;
1918 config = &nic->config;
1919
1920 /* PRC Initialization and configuration */
1921 for (i = 0; i < config->rx_ring_num; i++) {
1922 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1923 &bar0->prc_rxd0_n[i]);
1924
1925 val64 = readq(&bar0->prc_ctrl_n[i]);
1926 if (nic->config.bimodal)
1927 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1928 if (nic->rxd_mode == RXD_MODE_1)
1929 val64 |= PRC_CTRL_RC_ENABLED;
1930 else
1931 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1932 if (nic->device_type == XFRAME_II_DEVICE)
1933 val64 |= PRC_CTRL_GROUP_READS;
1934 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1935 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1936 writeq(val64, &bar0->prc_ctrl_n[i]);
1937 }
1938
1939 if (nic->rxd_mode == RXD_MODE_3B) {
1940 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1941 val64 = readq(&bar0->rx_pa_cfg);
1942 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1943 writeq(val64, &bar0->rx_pa_cfg);
1944 }
1945
1946 /*
1947 * Enabling MC-RLDRAM. After enabling the device, we timeout
1948 * for around 100ms, which is approximately the time required
1949 * for the device to be ready for operation.
1950 */
1951 val64 = readq(&bar0->mc_rldram_mrs);
1952 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1953 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1954 val64 = readq(&bar0->mc_rldram_mrs);
1955
1956 msleep(100); /* Delay by around 100 ms. */
1957
1958 /* Enabling ECC Protection. */
1959 val64 = readq(&bar0->adapter_control);
1960 val64 &= ~ADAPTER_ECC_EN;
1961 writeq(val64, &bar0->adapter_control);
1962
1963 /*
1964 * Clearing any possible Link state change interrupts that
1965 * could have popped up just before Enabling the card.
1966 */
1967 val64 = readq(&bar0->mac_rmac_err_reg);
1968 if (val64)
1969 writeq(val64, &bar0->mac_rmac_err_reg);
1970
1971 /*
1972 * Verify if the device is ready to be enabled, if so enable
1973 * it.
1974 */
1975 val64 = readq(&bar0->adapter_status);
1976 if (!verify_xena_quiescence(nic)) {
1977 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1978 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1979 (unsigned long long) val64);
1980 return FAILURE;
1981 }
1982
1983 /*
1984 * With some switches, link might be already up at this point.
1985 * Because of this weird behavior, when we enable laser,
1986 * we may not get link. We need to handle this. We cannot
1987 * figure out which switch is misbehaving. So we are forced to
1988 * make a global change.
1989 */
1990
1991 /* Enabling Laser. */
1992 val64 = readq(&bar0->adapter_control);
1993 val64 |= ADAPTER_EOI_TX_ON;
1994 writeq(val64, &bar0->adapter_control);
1995
1996 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1997 /*
1998 * Dont see link state interrupts initally on some switches,
1999 * so directly scheduling the link state task here.
2000 */
2001 schedule_work(&nic->set_link_task);
2002 }
2003 /* SXE-002: Initialize link and activity LED */
2004 subid = nic->pdev->subsystem_device;
2005 if (((subid & 0xFF) >= 0x07) &&
2006 (nic->device_type == XFRAME_I_DEVICE)) {
2007 val64 = readq(&bar0->gpio_control);
2008 val64 |= 0x0000800000000000ULL;
2009 writeq(val64, &bar0->gpio_control);
2010 val64 = 0x0411040400000000ULL;
2011 writeq(val64, (void __iomem *)bar0 + 0x2700);
2012 }
2013
2014 return SUCCESS;
2015 }
2016 /**
2017 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2018 */
2019 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2020 TxD *txdlp, int get_off)
2021 {
2022 struct s2io_nic *nic = fifo_data->nic;
2023 struct sk_buff *skb;
2024 struct TxD *txds;
2025 u16 j, frg_cnt;
2026
2027 txds = txdlp;
2028 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2029 pci_unmap_single(nic->pdev, (dma_addr_t)
2030 txds->Buffer_Pointer, sizeof(u64),
2031 PCI_DMA_TODEVICE);
2032 txds++;
2033 }
2034
2035 skb = (struct sk_buff *) ((unsigned long)
2036 txds->Host_Control);
2037 if (!skb) {
2038 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2039 return NULL;
2040 }
2041 pci_unmap_single(nic->pdev, (dma_addr_t)
2042 txds->Buffer_Pointer,
2043 skb->len - skb->data_len,
2044 PCI_DMA_TODEVICE);
2045 frg_cnt = skb_shinfo(skb)->nr_frags;
2046 if (frg_cnt) {
2047 txds++;
2048 for (j = 0; j < frg_cnt; j++, txds++) {
2049 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2050 if (!txds->Buffer_Pointer)
2051 break;
2052 pci_unmap_page(nic->pdev, (dma_addr_t)
2053 txds->Buffer_Pointer,
2054 frag->size, PCI_DMA_TODEVICE);
2055 }
2056 }
2057 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2058 return(skb);
2059 }
2060
2061 /**
2062 * free_tx_buffers - Free all queued Tx buffers
2063 * @nic : device private variable.
2064 * Description:
2065 * Free all queued Tx buffers.
2066 * Return Value: void
2067 */
2068
2069 static void free_tx_buffers(struct s2io_nic *nic)
2070 {
2071 struct net_device *dev = nic->dev;
2072 struct sk_buff *skb;
2073 struct TxD *txdp;
2074 int i, j;
2075 struct mac_info *mac_control;
2076 struct config_param *config;
2077 int cnt = 0;
2078
2079 mac_control = &nic->mac_control;
2080 config = &nic->config;
2081
2082 for (i = 0; i < config->tx_fifo_num; i++) {
2083 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2084 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2085 list_virt_addr;
2086 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2087 if (skb) {
2088 dev_kfree_skb(skb);
2089 cnt++;
2090 }
2091 }
2092 DBG_PRINT(INTR_DBG,
2093 "%s:forcibly freeing %d skbs on FIFO%d\n",
2094 dev->name, cnt, i);
2095 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2096 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2097 }
2098 }
2099
2100 /**
2101 * stop_nic - To stop the nic
2102 * @nic ; device private variable.
2103 * Description:
2104 * This function does exactly the opposite of what the start_nic()
2105 * function does. This function is called to stop the device.
2106 * Return Value:
2107 * void.
2108 */
2109
2110 static void stop_nic(struct s2io_nic *nic)
2111 {
2112 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2113 register u64 val64 = 0;
2114 u16 interruptible;
2115 struct mac_info *mac_control;
2116 struct config_param *config;
2117
2118 mac_control = &nic->mac_control;
2119 config = &nic->config;
2120
2121 /* Disable all interrupts */
2122 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2123 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2124 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2125 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2126
2127 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2128 val64 = readq(&bar0->adapter_control);
2129 val64 &= ~(ADAPTER_CNTL_EN);
2130 writeq(val64, &bar0->adapter_control);
2131 }
2132
2133 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2134 sk_buff *skb)
2135 {
2136 struct net_device *dev = nic->dev;
2137 struct sk_buff *frag_list;
2138 void *tmp;
2139
2140 /* Buffer-1 receives L3/L4 headers */
2141 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2142 (nic->pdev, skb->data, l3l4hdr_size + 4,
2143 PCI_DMA_FROMDEVICE);
2144
2145 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2146 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2147 if (skb_shinfo(skb)->frag_list == NULL) {
2148 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2149 return -ENOMEM ;
2150 }
2151 frag_list = skb_shinfo(skb)->frag_list;
2152 skb->truesize += frag_list->truesize;
2153 frag_list->next = NULL;
2154 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2155 frag_list->data = tmp;
2156 frag_list->tail = tmp;
2157
2158 /* Buffer-2 receives L4 data payload */
2159 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2160 frag_list->data, dev->mtu,
2161 PCI_DMA_FROMDEVICE);
2162 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2163 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2164
2165 return SUCCESS;
2166 }
2167
2168 /**
2169 * fill_rx_buffers - Allocates the Rx side skbs
2170 * @nic: device private variable
2171 * @ring_no: ring number
2172 * Description:
2173 * The function allocates Rx side skbs and puts the physical
2174 * address of these buffers into the RxD buffer pointers, so that the NIC
2175 * can DMA the received frame into these locations.
2176 * The NIC supports 3 receive modes, viz
2177 * 1. single buffer,
2178 * 2. three buffer and
2179 * 3. Five buffer modes.
2180 * Each mode defines how many fragments the received frame will be split
2181 * up into by the NIC. The frame is split into L3 header, L4 Header,
2182 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2183 * is split into 3 fragments. As of now only single buffer mode is
2184 * supported.
2185 * Return Value:
2186 * SUCCESS on success or an appropriate -ve value on failure.
2187 */
2188
2189 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2190 {
2191 struct net_device *dev = nic->dev;
2192 struct sk_buff *skb;
2193 struct RxD_t *rxdp;
2194 int off, off1, size, block_no, block_no1;
2195 u32 alloc_tab = 0;
2196 u32 alloc_cnt;
2197 struct mac_info *mac_control;
2198 struct config_param *config;
2199 u64 tmp;
2200 struct buffAdd *ba;
2201 unsigned long flags;
2202 struct RxD_t *first_rxdp = NULL;
2203
2204 mac_control = &nic->mac_control;
2205 config = &nic->config;
2206 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2207 atomic_read(&nic->rx_bufs_left[ring_no]);
2208
2209 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2210 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2211 while (alloc_tab < alloc_cnt) {
2212 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2213 block_index;
2214 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2215
2216 rxdp = mac_control->rings[ring_no].
2217 rx_blocks[block_no].rxds[off].virt_addr;
2218
2219 if ((block_no == block_no1) && (off == off1) &&
2220 (rxdp->Host_Control)) {
2221 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2222 dev->name);
2223 DBG_PRINT(INTR_DBG, " info equated\n");
2224 goto end;
2225 }
2226 if (off && (off == rxd_count[nic->rxd_mode])) {
2227 mac_control->rings[ring_no].rx_curr_put_info.
2228 block_index++;
2229 if (mac_control->rings[ring_no].rx_curr_put_info.
2230 block_index == mac_control->rings[ring_no].
2231 block_count)
2232 mac_control->rings[ring_no].rx_curr_put_info.
2233 block_index = 0;
2234 block_no = mac_control->rings[ring_no].
2235 rx_curr_put_info.block_index;
2236 if (off == rxd_count[nic->rxd_mode])
2237 off = 0;
2238 mac_control->rings[ring_no].rx_curr_put_info.
2239 offset = off;
2240 rxdp = mac_control->rings[ring_no].
2241 rx_blocks[block_no].block_virt_addr;
2242 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2243 dev->name, rxdp);
2244 }
2245 if(!napi) {
2246 spin_lock_irqsave(&nic->put_lock, flags);
2247 mac_control->rings[ring_no].put_pos =
2248 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2249 spin_unlock_irqrestore(&nic->put_lock, flags);
2250 } else {
2251 mac_control->rings[ring_no].put_pos =
2252 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2253 }
2254 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2255 ((nic->rxd_mode >= RXD_MODE_3A) &&
2256 (rxdp->Control_2 & BIT(0)))) {
2257 mac_control->rings[ring_no].rx_curr_put_info.
2258 offset = off;
2259 goto end;
2260 }
2261 /* calculate size of skb based on ring mode */
2262 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2263 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2264 if (nic->rxd_mode == RXD_MODE_1)
2265 size += NET_IP_ALIGN;
2266 else if (nic->rxd_mode == RXD_MODE_3B)
2267 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2268 else
2269 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2270
2271 /* allocate skb */
2272 skb = dev_alloc_skb(size);
2273 if(!skb) {
2274 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2275 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2276 if (first_rxdp) {
2277 wmb();
2278 first_rxdp->Control_1 |= RXD_OWN_XENA;
2279 }
2280 return -ENOMEM ;
2281 }
2282 if (nic->rxd_mode == RXD_MODE_1) {
2283 /* 1 buffer mode - normal operation mode */
2284 memset(rxdp, 0, sizeof(struct RxD1));
2285 skb_reserve(skb, NET_IP_ALIGN);
2286 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2287 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2288 PCI_DMA_FROMDEVICE);
2289 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2290
2291 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2292 /*
2293 * 2 or 3 buffer mode -
2294 * Both 2 buffer mode and 3 buffer mode provides 128
2295 * byte aligned receive buffers.
2296 *
2297 * 3 buffer mode provides header separation where in
2298 * skb->data will have L3/L4 headers where as
2299 * skb_shinfo(skb)->frag_list will have the L4 data
2300 * payload
2301 */
2302
2303 memset(rxdp, 0, sizeof(struct RxD3));
2304 ba = &mac_control->rings[ring_no].ba[block_no][off];
2305 skb_reserve(skb, BUF0_LEN);
2306 tmp = (u64)(unsigned long) skb->data;
2307 tmp += ALIGN_SIZE;
2308 tmp &= ~ALIGN_SIZE;
2309 skb->data = (void *) (unsigned long)tmp;
2310 skb->tail = (void *) (unsigned long)tmp;
2311
2312 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2313 ((struct RxD3*)rxdp)->Buffer0_ptr =
2314 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2315 PCI_DMA_FROMDEVICE);
2316 else
2317 pci_dma_sync_single_for_device(nic->pdev,
2318 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2319 BUF0_LEN, PCI_DMA_FROMDEVICE);
2320 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2321 if (nic->rxd_mode == RXD_MODE_3B) {
2322 /* Two buffer mode */
2323
2324 /*
2325 * Buffer2 will have L3/L4 header plus
2326 * L4 payload
2327 */
2328 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2329 (nic->pdev, skb->data, dev->mtu + 4,
2330 PCI_DMA_FROMDEVICE);
2331
2332 /* Buffer-1 will be dummy buffer. Not used */
2333 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2334 ((struct RxD3*)rxdp)->Buffer1_ptr =
2335 pci_map_single(nic->pdev,
2336 ba->ba_1, BUF1_LEN,
2337 PCI_DMA_FROMDEVICE);
2338 }
2339 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2340 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2341 (dev->mtu + 4);
2342 } else {
2343 /* 3 buffer mode */
2344 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2345 dev_kfree_skb_irq(skb);
2346 if (first_rxdp) {
2347 wmb();
2348 first_rxdp->Control_1 |=
2349 RXD_OWN_XENA;
2350 }
2351 return -ENOMEM ;
2352 }
2353 }
2354 rxdp->Control_2 |= BIT(0);
2355 }
2356 rxdp->Host_Control = (unsigned long) (skb);
2357 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2358 rxdp->Control_1 |= RXD_OWN_XENA;
2359 off++;
2360 if (off == (rxd_count[nic->rxd_mode] + 1))
2361 off = 0;
2362 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2363
2364 rxdp->Control_2 |= SET_RXD_MARKER;
2365 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2366 if (first_rxdp) {
2367 wmb();
2368 first_rxdp->Control_1 |= RXD_OWN_XENA;
2369 }
2370 first_rxdp = rxdp;
2371 }
2372 atomic_inc(&nic->rx_bufs_left[ring_no]);
2373 alloc_tab++;
2374 }
2375
2376 end:
2377 /* Transfer ownership of first descriptor to adapter just before
2378 * exiting. Before that, use memory barrier so that ownership
2379 * and other fields are seen by adapter correctly.
2380 */
2381 if (first_rxdp) {
2382 wmb();
2383 first_rxdp->Control_1 |= RXD_OWN_XENA;
2384 }
2385
2386 return SUCCESS;
2387 }
2388
2389 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2390 {
2391 struct net_device *dev = sp->dev;
2392 int j;
2393 struct sk_buff *skb;
2394 struct RxD_t *rxdp;
2395 struct mac_info *mac_control;
2396 struct buffAdd *ba;
2397
2398 mac_control = &sp->mac_control;
2399 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2400 rxdp = mac_control->rings[ring_no].
2401 rx_blocks[blk].rxds[j].virt_addr;
2402 skb = (struct sk_buff *)
2403 ((unsigned long) rxdp->Host_Control);
2404 if (!skb) {
2405 continue;
2406 }
2407 if (sp->rxd_mode == RXD_MODE_1) {
2408 pci_unmap_single(sp->pdev, (dma_addr_t)
2409 ((struct RxD1*)rxdp)->Buffer0_ptr,
2410 dev->mtu +
2411 HEADER_ETHERNET_II_802_3_SIZE
2412 + HEADER_802_2_SIZE +
2413 HEADER_SNAP_SIZE,
2414 PCI_DMA_FROMDEVICE);
2415 memset(rxdp, 0, sizeof(struct RxD1));
2416 } else if(sp->rxd_mode == RXD_MODE_3B) {
2417 ba = &mac_control->rings[ring_no].
2418 ba[blk][j];
2419 pci_unmap_single(sp->pdev, (dma_addr_t)
2420 ((struct RxD3*)rxdp)->Buffer0_ptr,
2421 BUF0_LEN,
2422 PCI_DMA_FROMDEVICE);
2423 pci_unmap_single(sp->pdev, (dma_addr_t)
2424 ((struct RxD3*)rxdp)->Buffer1_ptr,
2425 BUF1_LEN,
2426 PCI_DMA_FROMDEVICE);
2427 pci_unmap_single(sp->pdev, (dma_addr_t)
2428 ((struct RxD3*)rxdp)->Buffer2_ptr,
2429 dev->mtu + 4,
2430 PCI_DMA_FROMDEVICE);
2431 memset(rxdp, 0, sizeof(struct RxD3));
2432 } else {
2433 pci_unmap_single(sp->pdev, (dma_addr_t)
2434 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2435 PCI_DMA_FROMDEVICE);
2436 pci_unmap_single(sp->pdev, (dma_addr_t)
2437 ((struct RxD3*)rxdp)->Buffer1_ptr,
2438 l3l4hdr_size + 4,
2439 PCI_DMA_FROMDEVICE);
2440 pci_unmap_single(sp->pdev, (dma_addr_t)
2441 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2442 PCI_DMA_FROMDEVICE);
2443 memset(rxdp, 0, sizeof(struct RxD3));
2444 }
2445 dev_kfree_skb(skb);
2446 atomic_dec(&sp->rx_bufs_left[ring_no]);
2447 }
2448 }
2449
2450 /**
2451 * free_rx_buffers - Frees all Rx buffers
2452 * @sp: device private variable.
2453 * Description:
2454 * This function will free all Rx buffers allocated by host.
2455 * Return Value:
2456 * NONE.
2457 */
2458
2459 static void free_rx_buffers(struct s2io_nic *sp)
2460 {
2461 struct net_device *dev = sp->dev;
2462 int i, blk = 0, buf_cnt = 0;
2463 struct mac_info *mac_control;
2464 struct config_param *config;
2465
2466 mac_control = &sp->mac_control;
2467 config = &sp->config;
2468
2469 for (i = 0; i < config->rx_ring_num; i++) {
2470 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2471 free_rxd_blk(sp,i,blk);
2472
2473 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2474 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2475 mac_control->rings[i].rx_curr_put_info.offset = 0;
2476 mac_control->rings[i].rx_curr_get_info.offset = 0;
2477 atomic_set(&sp->rx_bufs_left[i], 0);
2478 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2479 dev->name, buf_cnt, i);
2480 }
2481 }
2482
2483 /**
2484 * s2io_poll - Rx interrupt handler for NAPI support
2485 * @dev : pointer to the device structure.
2486 * @budget : The number of packets that were budgeted to be processed
2487 * during one pass through the 'Poll" function.
2488 * Description:
2489 * Comes into picture only if NAPI support has been incorporated. It does
2490 * the same thing that rx_intr_handler does, but not in a interrupt context
2491 * also It will process only a given number of packets.
2492 * Return value:
2493 * 0 on success and 1 if there are No Rx packets to be processed.
2494 */
2495
2496 static int s2io_poll(struct net_device *dev, int *budget)
2497 {
2498 struct s2io_nic *nic = dev->priv;
2499 int pkt_cnt = 0, org_pkts_to_process;
2500 struct mac_info *mac_control;
2501 struct config_param *config;
2502 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2503 int i;
2504
2505 atomic_inc(&nic->isr_cnt);
2506 mac_control = &nic->mac_control;
2507 config = &nic->config;
2508
2509 nic->pkts_to_process = *budget;
2510 if (nic->pkts_to_process > dev->quota)
2511 nic->pkts_to_process = dev->quota;
2512 org_pkts_to_process = nic->pkts_to_process;
2513
2514 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2515 readl(&bar0->rx_traffic_int);
2516
2517 for (i = 0; i < config->rx_ring_num; i++) {
2518 rx_intr_handler(&mac_control->rings[i]);
2519 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2520 if (!nic->pkts_to_process) {
2521 /* Quota for the current iteration has been met */
2522 goto no_rx;
2523 }
2524 }
2525 if (!pkt_cnt)
2526 pkt_cnt = 1;
2527
2528 dev->quota -= pkt_cnt;
2529 *budget -= pkt_cnt;
2530 netif_rx_complete(dev);
2531
2532 for (i = 0; i < config->rx_ring_num; i++) {
2533 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2534 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2535 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2536 break;
2537 }
2538 }
2539 /* Re enable the Rx interrupts. */
2540 writeq(0x0, &bar0->rx_traffic_mask);
2541 readl(&bar0->rx_traffic_mask);
2542 atomic_dec(&nic->isr_cnt);
2543 return 0;
2544
2545 no_rx:
2546 dev->quota -= pkt_cnt;
2547 *budget -= pkt_cnt;
2548
2549 for (i = 0; i < config->rx_ring_num; i++) {
2550 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2551 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2552 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2553 break;
2554 }
2555 }
2556 atomic_dec(&nic->isr_cnt);
2557 return 1;
2558 }
2559
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 /**
2562 * s2io_netpoll - netpoll event handler entry point
2563 * @dev : pointer to the device structure.
2564 * Description:
2565 * This function will be called by upper layer to check for events on the
2566 * interface in situations where interrupts are disabled. It is used for
2567 * specific in-kernel networking tasks, such as remote consoles and kernel
2568 * debugging over the network (example netdump in RedHat).
2569 */
2570 static void s2io_netpoll(struct net_device *dev)
2571 {
2572 struct s2io_nic *nic = dev->priv;
2573 struct mac_info *mac_control;
2574 struct config_param *config;
2575 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2576 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2577 int i;
2578
2579 disable_irq(dev->irq);
2580
2581 atomic_inc(&nic->isr_cnt);
2582 mac_control = &nic->mac_control;
2583 config = &nic->config;
2584
2585 writeq(val64, &bar0->rx_traffic_int);
2586 writeq(val64, &bar0->tx_traffic_int);
2587
2588 /* we need to free up the transmitted skbufs or else netpoll will
2589 * run out of skbs and will fail and eventually netpoll application such
2590 * as netdump will fail.
2591 */
2592 for (i = 0; i < config->tx_fifo_num; i++)
2593 tx_intr_handler(&mac_control->fifos[i]);
2594
2595 /* check for received packet and indicate up to network */
2596 for (i = 0; i < config->rx_ring_num; i++)
2597 rx_intr_handler(&mac_control->rings[i]);
2598
2599 for (i = 0; i < config->rx_ring_num; i++) {
2600 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2601 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2602 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2603 break;
2604 }
2605 }
2606 atomic_dec(&nic->isr_cnt);
2607 enable_irq(dev->irq);
2608 return;
2609 }
2610 #endif
2611
2612 /**
2613 * rx_intr_handler - Rx interrupt handler
2614 * @nic: device private variable.
2615 * Description:
2616 * If the interrupt is because of a received frame or if the
2617 * receive ring contains fresh as yet un-processed frames,this function is
2618 * called. It picks out the RxD at which place the last Rx processing had
2619 * stopped and sends the skb to the OSM's Rx handler and then increments
2620 * the offset.
2621 * Return Value:
2622 * NONE.
2623 */
2624 static void rx_intr_handler(struct ring_info *ring_data)
2625 {
2626 struct s2io_nic *nic = ring_data->nic;
2627 struct net_device *dev = (struct net_device *) nic->dev;
2628 int get_block, put_block, put_offset;
2629 struct rx_curr_get_info get_info, put_info;
2630 struct RxD_t *rxdp;
2631 struct sk_buff *skb;
2632 int pkt_cnt = 0;
2633 int i;
2634
2635 spin_lock(&nic->rx_lock);
2636 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2637 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2638 __FUNCTION__, dev->name);
2639 spin_unlock(&nic->rx_lock);
2640 return;
2641 }
2642
2643 get_info = ring_data->rx_curr_get_info;
2644 get_block = get_info.block_index;
2645 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2646 put_block = put_info.block_index;
2647 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2648 if (!napi) {
2649 spin_lock(&nic->put_lock);
2650 put_offset = ring_data->put_pos;
2651 spin_unlock(&nic->put_lock);
2652 } else
2653 put_offset = ring_data->put_pos;
2654
2655 while (RXD_IS_UP2DT(rxdp)) {
2656 /*
2657 * If your are next to put index then it's
2658 * FIFO full condition
2659 */
2660 if ((get_block == put_block) &&
2661 (get_info.offset + 1) == put_info.offset) {
2662 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2663 break;
2664 }
2665 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2666 if (skb == NULL) {
2667 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2668 dev->name);
2669 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2670 spin_unlock(&nic->rx_lock);
2671 return;
2672 }
2673 if (nic->rxd_mode == RXD_MODE_1) {
2674 pci_unmap_single(nic->pdev, (dma_addr_t)
2675 ((struct RxD1*)rxdp)->Buffer0_ptr,
2676 dev->mtu +
2677 HEADER_ETHERNET_II_802_3_SIZE +
2678 HEADER_802_2_SIZE +
2679 HEADER_SNAP_SIZE,
2680 PCI_DMA_FROMDEVICE);
2681 } else if (nic->rxd_mode == RXD_MODE_3B) {
2682 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2683 ((struct RxD3*)rxdp)->Buffer0_ptr,
2684 BUF0_LEN, PCI_DMA_FROMDEVICE);
2685 pci_unmap_single(nic->pdev, (dma_addr_t)
2686 ((struct RxD3*)rxdp)->Buffer2_ptr,
2687 dev->mtu + 4,
2688 PCI_DMA_FROMDEVICE);
2689 } else {
2690 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2691 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2692 PCI_DMA_FROMDEVICE);
2693 pci_unmap_single(nic->pdev, (dma_addr_t)
2694 ((struct RxD3*)rxdp)->Buffer1_ptr,
2695 l3l4hdr_size + 4,
2696 PCI_DMA_FROMDEVICE);
2697 pci_unmap_single(nic->pdev, (dma_addr_t)
2698 ((struct RxD3*)rxdp)->Buffer2_ptr,
2699 dev->mtu, PCI_DMA_FROMDEVICE);
2700 }
2701 prefetch(skb->data);
2702 rx_osm_handler(ring_data, rxdp);
2703 get_info.offset++;
2704 ring_data->rx_curr_get_info.offset = get_info.offset;
2705 rxdp = ring_data->rx_blocks[get_block].
2706 rxds[get_info.offset].virt_addr;
2707 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2708 get_info.offset = 0;
2709 ring_data->rx_curr_get_info.offset = get_info.offset;
2710 get_block++;
2711 if (get_block == ring_data->block_count)
2712 get_block = 0;
2713 ring_data->rx_curr_get_info.block_index = get_block;
2714 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2715 }
2716
2717 nic->pkts_to_process -= 1;
2718 if ((napi) && (!nic->pkts_to_process))
2719 break;
2720 pkt_cnt++;
2721 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2722 break;
2723 }
2724 if (nic->lro) {
2725 /* Clear all LRO sessions before exiting */
2726 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2727 struct lro *lro = &nic->lro0_n[i];
2728 if (lro->in_use) {
2729 update_L3L4_header(nic, lro);
2730 queue_rx_frame(lro->parent);
2731 clear_lro_session(lro);
2732 }
2733 }
2734 }
2735
2736 spin_unlock(&nic->rx_lock);
2737 }
2738
2739 /**
2740 * tx_intr_handler - Transmit interrupt handler
2741 * @nic : device private variable
2742 * Description:
2743 * If an interrupt was raised to indicate DMA complete of the
2744 * Tx packet, this function is called. It identifies the last TxD
2745 * whose buffer was freed and frees all skbs whose data have already
2746 * DMA'ed into the NICs internal memory.
2747 * Return Value:
2748 * NONE
2749 */
2750
2751 static void tx_intr_handler(struct fifo_info *fifo_data)
2752 {
2753 struct s2io_nic *nic = fifo_data->nic;
2754 struct net_device *dev = (struct net_device *) nic->dev;
2755 struct tx_curr_get_info get_info, put_info;
2756 struct sk_buff *skb;
2757 struct TxD *txdlp;
2758
2759 get_info = fifo_data->tx_curr_get_info;
2760 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2761 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2762 list_virt_addr;
2763 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2764 (get_info.offset != put_info.offset) &&
2765 (txdlp->Host_Control)) {
2766 /* Check for TxD errors */
2767 if (txdlp->Control_1 & TXD_T_CODE) {
2768 unsigned long long err;
2769 err = txdlp->Control_1 & TXD_T_CODE;
2770 if (err & 0x1) {
2771 nic->mac_control.stats_info->sw_stat.
2772 parity_err_cnt++;
2773 }
2774 if ((err >> 48) == 0xA) {
2775 DBG_PRINT(TX_DBG, "TxD returned due \
2776 to loss of link\n");
2777 }
2778 else {
2779 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2780 }
2781 }
2782
2783 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2784 if (skb == NULL) {
2785 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2786 __FUNCTION__);
2787 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2788 return;
2789 }
2790
2791 /* Updating the statistics block */
2792 nic->stats.tx_bytes += skb->len;
2793 dev_kfree_skb_irq(skb);
2794
2795 get_info.offset++;
2796 if (get_info.offset == get_info.fifo_len + 1)
2797 get_info.offset = 0;
2798 txdlp = (struct TxD *) fifo_data->list_info
2799 [get_info.offset].list_virt_addr;
2800 fifo_data->tx_curr_get_info.offset =
2801 get_info.offset;
2802 }
2803
2804 spin_lock(&nic->tx_lock);
2805 if (netif_queue_stopped(dev))
2806 netif_wake_queue(dev);
2807 spin_unlock(&nic->tx_lock);
2808 }
2809
2810 /**
2811 * s2io_mdio_write - Function to write in to MDIO registers
2812 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2813 * @addr : address value
2814 * @value : data value
2815 * @dev : pointer to net_device structure
2816 * Description:
2817 * This function is used to write values to the MDIO registers
2818 * NONE
2819 */
2820 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2821 {
2822 u64 val64 = 0x0;
2823 struct s2io_nic *sp = dev->priv;
2824 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2825
2826 //address transaction
2827 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2828 | MDIO_MMD_DEV_ADDR(mmd_type)
2829 | MDIO_MMS_PRT_ADDR(0x0);
2830 writeq(val64, &bar0->mdio_control);
2831 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2832 writeq(val64, &bar0->mdio_control);
2833 udelay(100);
2834
2835 //Data transaction
2836 val64 = 0x0;
2837 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2838 | MDIO_MMD_DEV_ADDR(mmd_type)
2839 | MDIO_MMS_PRT_ADDR(0x0)
2840 | MDIO_MDIO_DATA(value)
2841 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2842 writeq(val64, &bar0->mdio_control);
2843 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2844 writeq(val64, &bar0->mdio_control);
2845 udelay(100);
2846
2847 val64 = 0x0;
2848 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2849 | MDIO_MMD_DEV_ADDR(mmd_type)
2850 | MDIO_MMS_PRT_ADDR(0x0)
2851 | MDIO_OP(MDIO_OP_READ_TRANS);
2852 writeq(val64, &bar0->mdio_control);
2853 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2854 writeq(val64, &bar0->mdio_control);
2855 udelay(100);
2856
2857 }
2858
2859 /**
2860 * s2io_mdio_read - Function to write in to MDIO registers
2861 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2862 * @addr : address value
2863 * @dev : pointer to net_device structure
2864 * Description:
2865 * This function is used to read values to the MDIO registers
2866 * NONE
2867 */
2868 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2869 {
2870 u64 val64 = 0x0;
2871 u64 rval64 = 0x0;
2872 struct s2io_nic *sp = dev->priv;
2873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2874
2875 /* address transaction */
2876 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2877 | MDIO_MMD_DEV_ADDR(mmd_type)
2878 | MDIO_MMS_PRT_ADDR(0x0);
2879 writeq(val64, &bar0->mdio_control);
2880 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2881 writeq(val64, &bar0->mdio_control);
2882 udelay(100);
2883
2884 /* Data transaction */
2885 val64 = 0x0;
2886 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2887 | MDIO_MMD_DEV_ADDR(mmd_type)
2888 | MDIO_MMS_PRT_ADDR(0x0)
2889 | MDIO_OP(MDIO_OP_READ_TRANS);
2890 writeq(val64, &bar0->mdio_control);
2891 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2892 writeq(val64, &bar0->mdio_control);
2893 udelay(100);
2894
2895 /* Read the value from regs */
2896 rval64 = readq(&bar0->mdio_control);
2897 rval64 = rval64 & 0xFFFF0000;
2898 rval64 = rval64 >> 16;
2899 return rval64;
2900 }
2901 /**
2902 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2903 * @counter : couter value to be updated
2904 * @flag : flag to indicate the status
2905 * @type : counter type
2906 * Description:
2907 * This function is to check the status of the xpak counters value
2908 * NONE
2909 */
2910
2911 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2912 {
2913 u64 mask = 0x3;
2914 u64 val64;
2915 int i;
2916 for(i = 0; i <index; i++)
2917 mask = mask << 0x2;
2918
2919 if(flag > 0)
2920 {
2921 *counter = *counter + 1;
2922 val64 = *regs_stat & mask;
2923 val64 = val64 >> (index * 0x2);
2924 val64 = val64 + 1;
2925 if(val64 == 3)
2926 {
2927 switch(type)
2928 {
2929 case 1:
2930 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2931 "service. Excessive temperatures may "
2932 "result in premature transceiver "
2933 "failure \n");
2934 break;
2935 case 2:
2936 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2937 "service Excessive bias currents may "
2938 "indicate imminent laser diode "
2939 "failure \n");
2940 break;
2941 case 3:
2942 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2943 "service Excessive laser output "
2944 "power may saturate far-end "
2945 "receiver\n");
2946 break;
2947 default:
2948 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2949 "type \n");
2950 }
2951 val64 = 0x0;
2952 }
2953 val64 = val64 << (index * 0x2);
2954 *regs_stat = (*regs_stat & (~mask)) | (val64);
2955
2956 } else {
2957 *regs_stat = *regs_stat & (~mask);
2958 }
2959 }
2960
2961 /**
2962 * s2io_updt_xpak_counter - Function to update the xpak counters
2963 * @dev : pointer to net_device struct
2964 * Description:
2965 * This function is to upate the status of the xpak counters value
2966 * NONE
2967 */
2968 static void s2io_updt_xpak_counter(struct net_device *dev)
2969 {
2970 u16 flag = 0x0;
2971 u16 type = 0x0;
2972 u16 val16 = 0x0;
2973 u64 val64 = 0x0;
2974 u64 addr = 0x0;
2975
2976 struct s2io_nic *sp = dev->priv;
2977 struct stat_block *stat_info = sp->mac_control.stats_info;
2978
2979 /* Check the communication with the MDIO slave */
2980 addr = 0x0000;
2981 val64 = 0x0;
2982 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2983 if((val64 == 0xFFFF) || (val64 == 0x0000))
2984 {
2985 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2986 "Returned %llx\n", (unsigned long long)val64);
2987 return;
2988 }
2989
2990 /* Check for the expecte value of 2040 at PMA address 0x0000 */
2991 if(val64 != 0x2040)
2992 {
2993 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2994 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2995 (unsigned long long)val64);
2996 return;
2997 }
2998
2999 /* Loading the DOM register to MDIO register */
3000 addr = 0xA100;
3001 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3002 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3003
3004 /* Reading the Alarm flags */
3005 addr = 0xA070;
3006 val64 = 0x0;
3007 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3008
3009 flag = CHECKBIT(val64, 0x7);
3010 type = 1;
3011 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3012 &stat_info->xpak_stat.xpak_regs_stat,
3013 0x0, flag, type);
3014
3015 if(CHECKBIT(val64, 0x6))
3016 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3017
3018 flag = CHECKBIT(val64, 0x3);
3019 type = 2;
3020 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3021 &stat_info->xpak_stat.xpak_regs_stat,
3022 0x2, flag, type);
3023
3024 if(CHECKBIT(val64, 0x2))
3025 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3026
3027 flag = CHECKBIT(val64, 0x1);
3028 type = 3;
3029 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3030 &stat_info->xpak_stat.xpak_regs_stat,
3031 0x4, flag, type);
3032
3033 if(CHECKBIT(val64, 0x0))
3034 stat_info->xpak_stat.alarm_laser_output_power_low++;
3035
3036 /* Reading the Warning flags */
3037 addr = 0xA074;
3038 val64 = 0x0;
3039 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3040
3041 if(CHECKBIT(val64, 0x7))
3042 stat_info->xpak_stat.warn_transceiver_temp_high++;
3043
3044 if(CHECKBIT(val64, 0x6))
3045 stat_info->xpak_stat.warn_transceiver_temp_low++;
3046
3047 if(CHECKBIT(val64, 0x3))
3048 stat_info->xpak_stat.warn_laser_bias_current_high++;
3049
3050 if(CHECKBIT(val64, 0x2))
3051 stat_info->xpak_stat.warn_laser_bias_current_low++;
3052
3053 if(CHECKBIT(val64, 0x1))
3054 stat_info->xpak_stat.warn_laser_output_power_high++;
3055
3056 if(CHECKBIT(val64, 0x0))
3057 stat_info->xpak_stat.warn_laser_output_power_low++;
3058 }
3059
3060 /**
3061 * alarm_intr_handler - Alarm Interrrupt handler
3062 * @nic: device private variable
3063 * Description: If the interrupt was neither because of Rx packet or Tx
3064 * complete, this function is called. If the interrupt was to indicate
3065 * a loss of link, the OSM link status handler is invoked for any other
3066 * alarm interrupt the block that raised the interrupt is displayed
3067 * and a H/W reset is issued.
3068 * Return Value:
3069 * NONE
3070 */
3071
3072 static void alarm_intr_handler(struct s2io_nic *nic)
3073 {
3074 struct net_device *dev = (struct net_device *) nic->dev;
3075 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3076 register u64 val64 = 0, err_reg = 0;
3077 u64 cnt;
3078 int i;
3079 if (atomic_read(&nic->card_state) == CARD_DOWN)
3080 return;
3081 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3082 /* Handling the XPAK counters update */
3083 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3084 /* waiting for an hour */
3085 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3086 } else {
3087 s2io_updt_xpak_counter(dev);
3088 /* reset the count to zero */
3089 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3090 }
3091
3092 /* Handling link status change error Intr */
3093 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3094 err_reg = readq(&bar0->mac_rmac_err_reg);
3095 writeq(err_reg, &bar0->mac_rmac_err_reg);
3096 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3097 schedule_work(&nic->set_link_task);
3098 }
3099 }
3100
3101 /* Handling Ecc errors */
3102 val64 = readq(&bar0->mc_err_reg);
3103 writeq(val64, &bar0->mc_err_reg);
3104 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3105 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3106 nic->mac_control.stats_info->sw_stat.
3107 double_ecc_errs++;
3108 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3109 dev->name);
3110 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3111 if (nic->device_type != XFRAME_II_DEVICE) {
3112 /* Reset XframeI only if critical error */
3113 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3114 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3115 netif_stop_queue(dev);
3116 schedule_work(&nic->rst_timer_task);
3117 nic->mac_control.stats_info->sw_stat.
3118 soft_reset_cnt++;
3119 }
3120 }
3121 } else {
3122 nic->mac_control.stats_info->sw_stat.
3123 single_ecc_errs++;
3124 }
3125 }
3126
3127 /* In case of a serious error, the device will be Reset. */
3128 val64 = readq(&bar0->serr_source);
3129 if (val64 & SERR_SOURCE_ANY) {
3130 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3131 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3132 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3133 (unsigned long long)val64);
3134 netif_stop_queue(dev);
3135 schedule_work(&nic->rst_timer_task);
3136 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3137 }
3138
3139 /*
3140 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3141 * Error occurs, the adapter will be recycled by disabling the
3142 * adapter enable bit and enabling it again after the device
3143 * becomes Quiescent.
3144 */
3145 val64 = readq(&bar0->pcc_err_reg);
3146 writeq(val64, &bar0->pcc_err_reg);
3147 if (val64 & PCC_FB_ECC_DB_ERR) {
3148 u64 ac = readq(&bar0->adapter_control);
3149 ac &= ~(ADAPTER_CNTL_EN);
3150 writeq(ac, &bar0->adapter_control);
3151 ac = readq(&bar0->adapter_control);
3152 schedule_work(&nic->set_link_task);
3153 }
3154 /* Check for data parity error */
3155 val64 = readq(&bar0->pic_int_status);
3156 if (val64 & PIC_INT_GPIO) {
3157 val64 = readq(&bar0->gpio_int_reg);
3158 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3159 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3160 schedule_work(&nic->rst_timer_task);
3161 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3162 }
3163 }
3164
3165 /* Check for ring full counter */
3166 if (nic->device_type & XFRAME_II_DEVICE) {
3167 val64 = readq(&bar0->ring_bump_counter1);
3168 for (i=0; i<4; i++) {
3169 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3170 cnt >>= 64 - ((i+1)*16);
3171 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3172 += cnt;
3173 }
3174
3175 val64 = readq(&bar0->ring_bump_counter2);
3176 for (i=0; i<4; i++) {
3177 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3178 cnt >>= 64 - ((i+1)*16);
3179 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3180 += cnt;
3181 }
3182 }
3183
3184 /* Other type of interrupts are not being handled now, TODO */
3185 }
3186
3187 /**
3188 * wait_for_cmd_complete - waits for a command to complete.
3189 * @sp : private member of the device structure, which is a pointer to the
3190 * s2io_nic structure.
3191 * Description: Function that waits for a command to Write into RMAC
3192 * ADDR DATA registers to be completed and returns either success or
3193 * error depending on whether the command was complete or not.
3194 * Return value:
3195 * SUCCESS on success and FAILURE on failure.
3196 */
3197
3198 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3199 {
3200 int ret = FAILURE, cnt = 0;
3201 u64 val64;
3202
3203 while (TRUE) {
3204 val64 = readq(addr);
3205 if (!(val64 & busy_bit)) {
3206 ret = SUCCESS;
3207 break;
3208 }
3209
3210 if(in_interrupt())
3211 mdelay(50);
3212 else
3213 msleep(50);
3214
3215 if (cnt++ > 10)
3216 break;
3217 }
3218 return ret;
3219 }
3220 /*
3221 * check_pci_device_id - Checks if the device id is supported
3222 * @id : device id
3223 * Description: Function to check if the pci device id is supported by driver.
3224 * Return value: Actual device id if supported else PCI_ANY_ID
3225 */
3226 static u16 check_pci_device_id(u16 id)
3227 {
3228 switch (id) {
3229 case PCI_DEVICE_ID_HERC_WIN:
3230 case PCI_DEVICE_ID_HERC_UNI:
3231 return XFRAME_II_DEVICE;
3232 case PCI_DEVICE_ID_S2IO_UNI:
3233 case PCI_DEVICE_ID_S2IO_WIN:
3234 return XFRAME_I_DEVICE;
3235 default:
3236 return PCI_ANY_ID;
3237 }
3238 }
3239
3240 /**
3241 * s2io_reset - Resets the card.
3242 * @sp : private member of the device structure.
3243 * Description: Function to Reset the card. This function then also
3244 * restores the previously saved PCI configuration space registers as
3245 * the card reset also resets the configuration space.
3246 * Return value:
3247 * void.
3248 */
3249
3250 static void s2io_reset(struct s2io_nic * sp)
3251 {
3252 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3253 u64 val64;
3254 u16 subid, pci_cmd;
3255 int i;
3256 u16 val16;
3257 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3258 __FUNCTION__, sp->dev->name);
3259
3260 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3261 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3262
3263 if (sp->device_type == XFRAME_II_DEVICE) {
3264 int ret;
3265 ret = pci_set_power_state(sp->pdev, 3);
3266 if (!ret)
3267 ret = pci_set_power_state(sp->pdev, 0);
3268 else {
3269 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3270 __FUNCTION__);
3271 goto old_way;
3272 }
3273 msleep(20);
3274 goto new_way;
3275 }
3276 old_way:
3277 val64 = SW_RESET_ALL;
3278 writeq(val64, &bar0->sw_reset);
3279 new_way:
3280 if (strstr(sp->product_name, "CX4")) {
3281 msleep(750);
3282 }
3283 msleep(250);
3284 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3285
3286 /* Restore the PCI state saved during initialization. */
3287 pci_restore_state(sp->pdev);
3288 pci_read_config_word(sp->pdev, 0x2, &val16);
3289 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3290 break;
3291 msleep(200);
3292 }
3293
3294 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3295 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3296 }
3297
3298 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3299
3300 s2io_init_pci(sp);
3301
3302 /* Set swapper to enable I/O register access */
3303 s2io_set_swapper(sp);
3304
3305 /* Restore the MSIX table entries from local variables */
3306 restore_xmsi_data(sp);
3307
3308 /* Clear certain PCI/PCI-X fields after reset */
3309 if (sp->device_type == XFRAME_II_DEVICE) {
3310 /* Clear "detected parity error" bit */
3311 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3312
3313 /* Clearing PCIX Ecc status register */
3314 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3315
3316 /* Clearing PCI_STATUS error reflected here */
3317 writeq(BIT(62), &bar0->txpic_int_reg);
3318 }
3319
3320 /* Reset device statistics maintained by OS */
3321 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3322
3323 /* SXE-002: Configure link and activity LED to turn it off */
3324 subid = sp->pdev->subsystem_device;
3325 if (((subid & 0xFF) >= 0x07) &&
3326 (sp->device_type == XFRAME_I_DEVICE)) {
3327 val64 = readq(&bar0->gpio_control);
3328 val64 |= 0x0000800000000000ULL;
3329 writeq(val64, &bar0->gpio_control);
3330 val64 = 0x0411040400000000ULL;
3331 writeq(val64, (void __iomem *)bar0 + 0x2700);
3332 }
3333
3334 /*
3335 * Clear spurious ECC interrupts that would have occured on
3336 * XFRAME II cards after reset.
3337 */
3338 if (sp->device_type == XFRAME_II_DEVICE) {
3339 val64 = readq(&bar0->pcc_err_reg);
3340 writeq(val64, &bar0->pcc_err_reg);
3341 }
3342
3343 sp->device_enabled_once = FALSE;
3344 }
3345
3346 /**
3347 * s2io_set_swapper - to set the swapper controle on the card
3348 * @sp : private member of the device structure,
3349 * pointer to the s2io_nic structure.
3350 * Description: Function to set the swapper control on the card
3351 * correctly depending on the 'endianness' of the system.
3352 * Return value:
3353 * SUCCESS on success and FAILURE on failure.
3354 */
3355
3356 static int s2io_set_swapper(struct s2io_nic * sp)
3357 {
3358 struct net_device *dev = sp->dev;
3359 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3360 u64 val64, valt, valr;
3361
3362 /*
3363 * Set proper endian settings and verify the same by reading
3364 * the PIF Feed-back register.
3365 */
3366
3367 val64 = readq(&bar0->pif_rd_swapper_fb);
3368 if (val64 != 0x0123456789ABCDEFULL) {
3369 int i = 0;
3370 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3371 0x8100008181000081ULL, /* FE=1, SE=0 */
3372 0x4200004242000042ULL, /* FE=0, SE=1 */
3373 0}; /* FE=0, SE=0 */
3374
3375 while(i<4) {
3376 writeq(value[i], &bar0->swapper_ctrl);
3377 val64 = readq(&bar0->pif_rd_swapper_fb);
3378 if (val64 == 0x0123456789ABCDEFULL)
3379 break;
3380 i++;
3381 }
3382 if (i == 4) {
3383 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3384 dev->name);
3385 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3386 (unsigned long long) val64);
3387 return FAILURE;
3388 }
3389 valr = value[i];
3390 } else {
3391 valr = readq(&bar0->swapper_ctrl);
3392 }
3393
3394 valt = 0x0123456789ABCDEFULL;
3395 writeq(valt, &bar0->xmsi_address);
3396 val64 = readq(&bar0->xmsi_address);
3397
3398 if(val64 != valt) {
3399 int i = 0;
3400 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3401 0x0081810000818100ULL, /* FE=1, SE=0 */
3402 0x0042420000424200ULL, /* FE=0, SE=1 */
3403 0}; /* FE=0, SE=0 */
3404
3405 while(i<4) {
3406 writeq((value[i] | valr), &bar0->swapper_ctrl);
3407 writeq(valt, &bar0->xmsi_address);
3408 val64 = readq(&bar0->xmsi_address);
3409 if(val64 == valt)
3410 break;
3411 i++;
3412 }
3413 if(i == 4) {
3414 unsigned long long x = val64;
3415 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3416 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3417 return FAILURE;
3418 }
3419 }
3420 val64 = readq(&bar0->swapper_ctrl);
3421 val64 &= 0xFFFF000000000000ULL;
3422
3423 #ifdef __BIG_ENDIAN
3424 /*
3425 * The device by default set to a big endian format, so a
3426 * big endian driver need not set anything.
3427 */
3428 val64 |= (SWAPPER_CTRL_TXP_FE |
3429 SWAPPER_CTRL_TXP_SE |
3430 SWAPPER_CTRL_TXD_R_FE |
3431 SWAPPER_CTRL_TXD_W_FE |
3432 SWAPPER_CTRL_TXF_R_FE |
3433 SWAPPER_CTRL_RXD_R_FE |
3434 SWAPPER_CTRL_RXD_W_FE |
3435 SWAPPER_CTRL_RXF_W_FE |
3436 SWAPPER_CTRL_XMSI_FE |
3437 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3438 if (sp->intr_type == INTA)
3439 val64 |= SWAPPER_CTRL_XMSI_SE;
3440 writeq(val64, &bar0->swapper_ctrl);
3441 #else
3442 /*
3443 * Initially we enable all bits to make it accessible by the
3444 * driver, then we selectively enable only those bits that
3445 * we want to set.
3446 */
3447 val64 |= (SWAPPER_CTRL_TXP_FE |
3448 SWAPPER_CTRL_TXP_SE |
3449 SWAPPER_CTRL_TXD_R_FE |
3450 SWAPPER_CTRL_TXD_R_SE |
3451 SWAPPER_CTRL_TXD_W_FE |
3452 SWAPPER_CTRL_TXD_W_SE |
3453 SWAPPER_CTRL_TXF_R_FE |
3454 SWAPPER_CTRL_RXD_R_FE |
3455 SWAPPER_CTRL_RXD_R_SE |
3456 SWAPPER_CTRL_RXD_W_FE |
3457 SWAPPER_CTRL_RXD_W_SE |
3458 SWAPPER_CTRL_RXF_W_FE |
3459 SWAPPER_CTRL_XMSI_FE |
3460 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3461 if (sp->intr_type == INTA)
3462 val64 |= SWAPPER_CTRL_XMSI_SE;
3463 writeq(val64, &bar0->swapper_ctrl);
3464 #endif
3465 val64 = readq(&bar0->swapper_ctrl);
3466
3467 /*
3468 * Verifying if endian settings are accurate by reading a
3469 * feedback register.
3470 */
3471 val64 = readq(&bar0->pif_rd_swapper_fb);
3472 if (val64 != 0x0123456789ABCDEFULL) {
3473 /* Endian settings are incorrect, calls for another dekko. */
3474 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3475 dev->name);
3476 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3477 (unsigned long long) val64);
3478 return FAILURE;
3479 }
3480
3481 return SUCCESS;
3482 }
3483
3484 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3485 {
3486 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3487 u64 val64;
3488 int ret = 0, cnt = 0;
3489
3490 do {
3491 val64 = readq(&bar0->xmsi_access);
3492 if (!(val64 & BIT(15)))
3493 break;
3494 mdelay(1);
3495 cnt++;
3496 } while(cnt < 5);
3497 if (cnt == 5) {
3498 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3499 ret = 1;
3500 }
3501
3502 return ret;
3503 }
3504
3505 static void restore_xmsi_data(struct s2io_nic *nic)
3506 {
3507 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3508 u64 val64;
3509 int i;
3510
3511 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3512 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3513 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3514 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3515 writeq(val64, &bar0->xmsi_access);
3516 if (wait_for_msix_trans(nic, i)) {
3517 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3518 continue;
3519 }
3520 }
3521 }
3522
3523 static void store_xmsi_data(struct s2io_nic *nic)
3524 {
3525 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3526 u64 val64, addr, data;
3527 int i;
3528
3529 /* Store and display */
3530 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3531 val64 = (BIT(15) | vBIT(i, 26, 6));
3532 writeq(val64, &bar0->xmsi_access);
3533 if (wait_for_msix_trans(nic, i)) {
3534 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3535 continue;
3536 }
3537 addr = readq(&bar0->xmsi_address);
3538 data = readq(&bar0->xmsi_data);
3539 if (addr && data) {
3540 nic->msix_info[i].addr = addr;
3541 nic->msix_info[i].data = data;
3542 }
3543 }
3544 }
3545
3546 int s2io_enable_msi(struct s2io_nic *nic)
3547 {
3548 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3549 u16 msi_ctrl, msg_val;
3550 struct config_param *config = &nic->config;
3551 struct net_device *dev = nic->dev;
3552 u64 val64, tx_mat, rx_mat;
3553 int i, err;
3554
3555 val64 = readq(&bar0->pic_control);
3556 val64 &= ~BIT(1);
3557 writeq(val64, &bar0->pic_control);
3558
3559 err = pci_enable_msi(nic->pdev);
3560 if (err) {
3561 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3562 nic->dev->name);
3563 return err;
3564 }
3565
3566 /*
3567 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3568 * for interrupt handling.
3569 */
3570 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3571 msg_val ^= 0x1;
3572 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3573 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3574
3575 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3576 msi_ctrl |= 0x10;
3577 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3578
3579 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3580 tx_mat = readq(&bar0->tx_mat0_n[0]);
3581 for (i=0; i<config->tx_fifo_num; i++) {
3582 tx_mat |= TX_MAT_SET(i, 1);
3583 }
3584 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3585
3586 rx_mat = readq(&bar0->rx_mat);
3587 for (i=0; i<config->rx_ring_num; i++) {
3588 rx_mat |= RX_MAT_SET(i, 1);
3589 }
3590 writeq(rx_mat, &bar0->rx_mat);
3591
3592 dev->irq = nic->pdev->irq;
3593 return 0;
3594 }
3595
3596 static int s2io_enable_msi_x(struct s2io_nic *nic)
3597 {
3598 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3599 u64 tx_mat, rx_mat;
3600 u16 msi_control; /* Temp variable */
3601 int ret, i, j, msix_indx = 1;
3602
3603 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3604 GFP_KERNEL);
3605 if (nic->entries == NULL) {
3606 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3607 return -ENOMEM;
3608 }
3609 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3610
3611 nic->s2io_entries =
3612 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3613 GFP_KERNEL);
3614 if (nic->s2io_entries == NULL) {
3615 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3616 kfree(nic->entries);
3617 return -ENOMEM;
3618 }
3619 memset(nic->s2io_entries, 0,
3620 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3621
3622 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3623 nic->entries[i].entry = i;
3624 nic->s2io_entries[i].entry = i;
3625 nic->s2io_entries[i].arg = NULL;
3626 nic->s2io_entries[i].in_use = 0;
3627 }
3628
3629 tx_mat = readq(&bar0->tx_mat0_n[0]);
3630 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3631 tx_mat |= TX_MAT_SET(i, msix_indx);
3632 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3633 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3634 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3635 }
3636 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3637
3638 if (!nic->config.bimodal) {
3639 rx_mat = readq(&bar0->rx_mat);
3640 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3641 rx_mat |= RX_MAT_SET(j, msix_indx);
3642 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3643 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3644 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3645 }
3646 writeq(rx_mat, &bar0->rx_mat);
3647 } else {
3648 tx_mat = readq(&bar0->tx_mat0_n[7]);
3649 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3650 tx_mat |= TX_MAT_SET(i, msix_indx);
3651 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3652 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3653 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3654 }
3655 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3656 }
3657
3658 nic->avail_msix_vectors = 0;
3659 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3660 /* We fail init if error or we get less vectors than min required */
3661 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3662 nic->avail_msix_vectors = ret;
3663 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3664 }
3665 if (ret) {
3666 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3667 kfree(nic->entries);
3668 kfree(nic->s2io_entries);
3669 nic->entries = NULL;
3670 nic->s2io_entries = NULL;
3671 nic->avail_msix_vectors = 0;
3672 return -ENOMEM;
3673 }
3674 if (!nic->avail_msix_vectors)
3675 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3676
3677 /*
3678 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3679 * in the herc NIC. (Temp change, needs to be removed later)
3680 */
3681 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3682 msi_control |= 0x1; /* Enable MSI */
3683 pci_write_config_word(nic->pdev, 0x42, msi_control);
3684
3685 return 0;
3686 }
3687
3688 /* ********************************************************* *
3689 * Functions defined below concern the OS part of the driver *
3690 * ********************************************************* */
3691
3692 /**
3693 * s2io_open - open entry point of the driver
3694 * @dev : pointer to the device structure.
3695 * Description:
3696 * This function is the open entry point of the driver. It mainly calls a
3697 * function to allocate Rx buffers and inserts them into the buffer
3698 * descriptors and then enables the Rx part of the NIC.
3699 * Return value:
3700 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3701 * file on failure.
3702 */
3703
3704 static int s2io_open(struct net_device *dev)
3705 {
3706 struct s2io_nic *sp = dev->priv;
3707 int err = 0;
3708
3709 /*
3710 * Make sure you have link off by default every time
3711 * Nic is initialized
3712 */
3713 netif_carrier_off(dev);
3714 sp->last_link_state = 0;
3715
3716 /* Initialize H/W and enable interrupts */
3717 err = s2io_card_up(sp);
3718 if (err) {
3719 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3720 dev->name);
3721 goto hw_init_failed;
3722 }
3723
3724 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3725 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3726 s2io_card_down(sp);
3727 err = -ENODEV;
3728 goto hw_init_failed;
3729 }
3730
3731 netif_start_queue(dev);
3732 return 0;
3733
3734 hw_init_failed:
3735 if (sp->intr_type == MSI_X) {
3736 if (sp->entries)
3737 kfree(sp->entries);
3738 if (sp->s2io_entries)
3739 kfree(sp->s2io_entries);
3740 }
3741 return err;
3742 }
3743
3744 /**
3745 * s2io_close -close entry point of the driver
3746 * @dev : device pointer.
3747 * Description:
3748 * This is the stop entry point of the driver. It needs to undo exactly
3749 * whatever was done by the open entry point,thus it's usually referred to
3750 * as the close function.Among other things this function mainly stops the
3751 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3752 * Return value:
3753 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3754 * file on failure.
3755 */
3756
3757 static int s2io_close(struct net_device *dev)
3758 {
3759 struct s2io_nic *sp = dev->priv;
3760
3761 flush_scheduled_work();
3762 netif_stop_queue(dev);
3763 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3764 s2io_card_down(sp);
3765
3766 sp->device_close_flag = TRUE; /* Device is shut down. */
3767 return 0;
3768 }
3769
3770 /**
3771 * s2io_xmit - Tx entry point of te driver
3772 * @skb : the socket buffer containing the Tx data.
3773 * @dev : device pointer.
3774 * Description :
3775 * This function is the Tx entry point of the driver. S2IO NIC supports
3776 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3777 * NOTE: when device cant queue the pkt,just the trans_start variable will
3778 * not be upadted.
3779 * Return value:
3780 * 0 on success & 1 on failure.
3781 */
3782
3783 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3784 {
3785 struct s2io_nic *sp = dev->priv;
3786 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3787 register u64 val64;
3788 struct TxD *txdp;
3789 struct TxFIFO_element __iomem *tx_fifo;
3790 unsigned long flags;
3791 u16 vlan_tag = 0;
3792 int vlan_priority = 0;
3793 struct mac_info *mac_control;
3794 struct config_param *config;
3795 int offload_type;
3796
3797 mac_control = &sp->mac_control;
3798 config = &sp->config;
3799
3800 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3801 spin_lock_irqsave(&sp->tx_lock, flags);
3802 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3803 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3804 dev->name);
3805 spin_unlock_irqrestore(&sp->tx_lock, flags);
3806 dev_kfree_skb(skb);
3807 return 0;
3808 }
3809
3810 queue = 0;
3811
3812 /* Get Fifo number to Transmit based on vlan priority */
3813 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3814 vlan_tag = vlan_tx_tag_get(skb);
3815 vlan_priority = vlan_tag >> 13;
3816 queue = config->fifo_mapping[vlan_priority];
3817 }
3818
3819 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3820 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3821 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3822 list_virt_addr;
3823
3824 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3825 /* Avoid "put" pointer going beyond "get" pointer */
3826 if (txdp->Host_Control ||
3827 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3828 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3829 netif_stop_queue(dev);
3830 dev_kfree_skb(skb);
3831 spin_unlock_irqrestore(&sp->tx_lock, flags);
3832 return 0;
3833 }
3834
3835 /* A buffer with no data will be dropped */
3836 if (!skb->len) {
3837 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3838 dev_kfree_skb(skb);
3839 spin_unlock_irqrestore(&sp->tx_lock, flags);
3840 return 0;
3841 }
3842
3843 offload_type = s2io_offload_type(skb);
3844 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3845 txdp->Control_1 |= TXD_TCP_LSO_EN;
3846 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3847 }
3848 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3849 txdp->Control_2 |=
3850 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3851 TXD_TX_CKO_UDP_EN);
3852 }
3853 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3854 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3855 txdp->Control_2 |= config->tx_intr_type;
3856
3857 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3858 txdp->Control_2 |= TXD_VLAN_ENABLE;
3859 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3860 }
3861
3862 frg_len = skb->len - skb->data_len;
3863 if (offload_type == SKB_GSO_UDP) {
3864 int ufo_size;
3865
3866 ufo_size = s2io_udp_mss(skb);
3867 ufo_size &= ~7;
3868 txdp->Control_1 |= TXD_UFO_EN;
3869 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3870 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3871 #ifdef __BIG_ENDIAN
3872 sp->ufo_in_band_v[put_off] =
3873 (u64)skb_shinfo(skb)->ip6_frag_id;
3874 #else
3875 sp->ufo_in_band_v[put_off] =
3876 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3877 #endif
3878 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3879 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3880 sp->ufo_in_band_v,
3881 sizeof(u64), PCI_DMA_TODEVICE);
3882 txdp++;
3883 }
3884
3885 txdp->Buffer_Pointer = pci_map_single
3886 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3887 txdp->Host_Control = (unsigned long) skb;
3888 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3889 if (offload_type == SKB_GSO_UDP)
3890 txdp->Control_1 |= TXD_UFO_EN;
3891
3892 frg_cnt = skb_shinfo(skb)->nr_frags;
3893 /* For fragmented SKB. */
3894 for (i = 0; i < frg_cnt; i++) {
3895 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3896 /* A '0' length fragment will be ignored */
3897 if (!frag->size)
3898 continue;
3899 txdp++;
3900 txdp->Buffer_Pointer = (u64) pci_map_page
3901 (sp->pdev, frag->page, frag->page_offset,
3902 frag->size, PCI_DMA_TODEVICE);
3903 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3904 if (offload_type == SKB_GSO_UDP)
3905 txdp->Control_1 |= TXD_UFO_EN;
3906 }
3907 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3908
3909 if (offload_type == SKB_GSO_UDP)
3910 frg_cnt++; /* as Txd0 was used for inband header */
3911
3912 tx_fifo = mac_control->tx_FIFO_start[queue];
3913 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3914 writeq(val64, &tx_fifo->TxDL_Pointer);
3915
3916 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3917 TX_FIFO_LAST_LIST);
3918 if (offload_type)
3919 val64 |= TX_FIFO_SPECIAL_FUNC;
3920
3921 writeq(val64, &tx_fifo->List_Control);
3922
3923 mmiowb();
3924
3925 put_off++;
3926 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3927 put_off = 0;
3928 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3929
3930 /* Avoid "put" pointer going beyond "get" pointer */
3931 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3932 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3933 DBG_PRINT(TX_DBG,
3934 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3935 put_off, get_off);
3936 netif_stop_queue(dev);
3937 }
3938
3939 dev->trans_start = jiffies;
3940 spin_unlock_irqrestore(&sp->tx_lock, flags);
3941
3942 return 0;
3943 }
3944
3945 static void
3946 s2io_alarm_handle(unsigned long data)
3947 {
3948 struct s2io_nic *sp = (struct s2io_nic *)data;
3949
3950 alarm_intr_handler(sp);
3951 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3952 }
3953
3954 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
3955 {
3956 int rxb_size, level;
3957
3958 if (!sp->lro) {
3959 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3960 level = rx_buffer_level(sp, rxb_size, rng_n);
3961
3962 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3963 int ret;
3964 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3965 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3966 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3967 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3968 __FUNCTION__);
3969 clear_bit(0, (&sp->tasklet_status));
3970 return -1;
3971 }
3972 clear_bit(0, (&sp->tasklet_status));
3973 } else if (level == LOW)
3974 tasklet_schedule(&sp->task);
3975
3976 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3977 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3978 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3979 }
3980 return 0;
3981 }
3982
3983 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
3984 {
3985 struct net_device *dev = (struct net_device *) dev_id;
3986 struct s2io_nic *sp = dev->priv;
3987 int i;
3988 struct mac_info *mac_control;
3989 struct config_param *config;
3990
3991 atomic_inc(&sp->isr_cnt);
3992 mac_control = &sp->mac_control;
3993 config = &sp->config;
3994 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3995
3996 /* If Intr is because of Rx Traffic */
3997 for (i = 0; i < config->rx_ring_num; i++)
3998 rx_intr_handler(&mac_control->rings[i]);
3999
4000 /* If Intr is because of Tx Traffic */
4001 for (i = 0; i < config->tx_fifo_num; i++)
4002 tx_intr_handler(&mac_control->fifos[i]);
4003
4004 /*
4005 * If the Rx buffer count is below the panic threshold then
4006 * reallocate the buffers from the interrupt handler itself,
4007 * else schedule a tasklet to reallocate the buffers.
4008 */
4009 for (i = 0; i < config->rx_ring_num; i++)
4010 s2io_chk_rx_buffers(sp, i);
4011
4012 atomic_dec(&sp->isr_cnt);
4013 return IRQ_HANDLED;
4014 }
4015
4016 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4017 {
4018 struct ring_info *ring = (struct ring_info *)dev_id;
4019 struct s2io_nic *sp = ring->nic;
4020
4021 atomic_inc(&sp->isr_cnt);
4022
4023 rx_intr_handler(ring);
4024 s2io_chk_rx_buffers(sp, ring->ring_no);
4025
4026 atomic_dec(&sp->isr_cnt);
4027 return IRQ_HANDLED;
4028 }
4029
4030 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4031 {
4032 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4033 struct s2io_nic *sp = fifo->nic;
4034
4035 atomic_inc(&sp->isr_cnt);
4036 tx_intr_handler(fifo);
4037 atomic_dec(&sp->isr_cnt);
4038 return IRQ_HANDLED;
4039 }
4040 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4041 {
4042 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4043 u64 val64;
4044
4045 val64 = readq(&bar0->pic_int_status);
4046 if (val64 & PIC_INT_GPIO) {
4047 val64 = readq(&bar0->gpio_int_reg);
4048 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4049 (val64 & GPIO_INT_REG_LINK_UP)) {
4050 /*
4051 * This is unstable state so clear both up/down
4052 * interrupt and adapter to re-evaluate the link state.
4053 */
4054 val64 |= GPIO_INT_REG_LINK_DOWN;
4055 val64 |= GPIO_INT_REG_LINK_UP;
4056 writeq(val64, &bar0->gpio_int_reg);
4057 val64 = readq(&bar0->gpio_int_mask);
4058 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4059 GPIO_INT_MASK_LINK_DOWN);
4060 writeq(val64, &bar0->gpio_int_mask);
4061 }
4062 else if (val64 & GPIO_INT_REG_LINK_UP) {
4063 val64 = readq(&bar0->adapter_status);
4064 /* Enable Adapter */
4065 val64 = readq(&bar0->adapter_control);
4066 val64 |= ADAPTER_CNTL_EN;
4067 writeq(val64, &bar0->adapter_control);
4068 val64 |= ADAPTER_LED_ON;
4069 writeq(val64, &bar0->adapter_control);
4070 if (!sp->device_enabled_once)
4071 sp->device_enabled_once = 1;
4072
4073 s2io_link(sp, LINK_UP);
4074 /*
4075 * unmask link down interrupt and mask link-up
4076 * intr
4077 */
4078 val64 = readq(&bar0->gpio_int_mask);
4079 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4080 val64 |= GPIO_INT_MASK_LINK_UP;
4081 writeq(val64, &bar0->gpio_int_mask);
4082
4083 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4084 val64 = readq(&bar0->adapter_status);
4085 s2io_link(sp, LINK_DOWN);
4086 /* Link is down so unmaks link up interrupt */
4087 val64 = readq(&bar0->gpio_int_mask);
4088 val64 &= ~GPIO_INT_MASK_LINK_UP;
4089 val64 |= GPIO_INT_MASK_LINK_DOWN;
4090 writeq(val64, &bar0->gpio_int_mask);
4091 }
4092 }
4093 val64 = readq(&bar0->gpio_int_mask);
4094 }
4095
4096 /**
4097 * s2io_isr - ISR handler of the device .
4098 * @irq: the irq of the device.
4099 * @dev_id: a void pointer to the dev structure of the NIC.
4100 * Description: This function is the ISR handler of the device. It
4101 * identifies the reason for the interrupt and calls the relevant
4102 * service routines. As a contongency measure, this ISR allocates the
4103 * recv buffers, if their numbers are below the panic value which is
4104 * presently set to 25% of the original number of rcv buffers allocated.
4105 * Return value:
4106 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4107 * IRQ_NONE: will be returned if interrupt is not from our device
4108 */
4109 static irqreturn_t s2io_isr(int irq, void *dev_id)
4110 {
4111 struct net_device *dev = (struct net_device *) dev_id;
4112 struct s2io_nic *sp = dev->priv;
4113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4114 int i;
4115 u64 reason = 0;
4116 struct mac_info *mac_control;
4117 struct config_param *config;
4118
4119 atomic_inc(&sp->isr_cnt);
4120 mac_control = &sp->mac_control;
4121 config = &sp->config;
4122
4123 /*
4124 * Identify the cause for interrupt and call the appropriate
4125 * interrupt handler. Causes for the interrupt could be;
4126 * 1. Rx of packet.
4127 * 2. Tx complete.
4128 * 3. Link down.
4129 * 4. Error in any functional blocks of the NIC.
4130 */
4131 reason = readq(&bar0->general_int_status);
4132
4133 if (!reason) {
4134 /* The interrupt was not raised by us. */
4135 atomic_dec(&sp->isr_cnt);
4136 return IRQ_NONE;
4137 }
4138 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4139 /* Disable device and get out */
4140 atomic_dec(&sp->isr_cnt);
4141 return IRQ_NONE;
4142 }
4143
4144 if (napi) {
4145 if (reason & GEN_INTR_RXTRAFFIC) {
4146 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4147 __netif_rx_schedule(dev);
4148 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4149 }
4150 else
4151 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4152 }
4153 } else {
4154 /*
4155 * Rx handler is called by default, without checking for the
4156 * cause of interrupt.
4157 * rx_traffic_int reg is an R1 register, writing all 1's
4158 * will ensure that the actual interrupt causing bit get's
4159 * cleared and hence a read can be avoided.
4160 */
4161 if (reason & GEN_INTR_RXTRAFFIC)
4162 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4163
4164 for (i = 0; i < config->rx_ring_num; i++) {
4165 rx_intr_handler(&mac_control->rings[i]);
4166 }
4167 }
4168
4169 /*
4170 * tx_traffic_int reg is an R1 register, writing all 1's
4171 * will ensure that the actual interrupt causing bit get's
4172 * cleared and hence a read can be avoided.
4173 */
4174 if (reason & GEN_INTR_TXTRAFFIC)
4175 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4176
4177 for (i = 0; i < config->tx_fifo_num; i++)
4178 tx_intr_handler(&mac_control->fifos[i]);
4179
4180 if (reason & GEN_INTR_TXPIC)
4181 s2io_txpic_intr_handle(sp);
4182 /*
4183 * If the Rx buffer count is below the panic threshold then
4184 * reallocate the buffers from the interrupt handler itself,
4185 * else schedule a tasklet to reallocate the buffers.
4186 */
4187 if (!napi) {
4188 for (i = 0; i < config->rx_ring_num; i++)
4189 s2io_chk_rx_buffers(sp, i);
4190 }
4191
4192 writeq(0, &bar0->general_int_mask);
4193 readl(&bar0->general_int_status);
4194
4195 atomic_dec(&sp->isr_cnt);
4196 return IRQ_HANDLED;
4197 }
4198
4199 /**
4200 * s2io_updt_stats -
4201 */
4202 static void s2io_updt_stats(struct s2io_nic *sp)
4203 {
4204 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4205 u64 val64;
4206 int cnt = 0;
4207
4208 if (atomic_read(&sp->card_state) == CARD_UP) {
4209 /* Apprx 30us on a 133 MHz bus */
4210 val64 = SET_UPDT_CLICKS(10) |
4211 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4212 writeq(val64, &bar0->stat_cfg);
4213 do {
4214 udelay(100);
4215 val64 = readq(&bar0->stat_cfg);
4216 if (!(val64 & BIT(0)))
4217 break;
4218 cnt++;
4219 if (cnt == 5)
4220 break; /* Updt failed */
4221 } while(1);
4222 } else {
4223 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
4224 }
4225 }
4226
4227 /**
4228 * s2io_get_stats - Updates the device statistics structure.
4229 * @dev : pointer to the device structure.
4230 * Description:
4231 * This function updates the device statistics structure in the s2io_nic
4232 * structure and returns a pointer to the same.
4233 * Return value:
4234 * pointer to the updated net_device_stats structure.
4235 */
4236
4237 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4238 {
4239 struct s2io_nic *sp = dev->priv;
4240 struct mac_info *mac_control;
4241 struct config_param *config;
4242
4243
4244 mac_control = &sp->mac_control;
4245 config = &sp->config;
4246
4247 /* Configure Stats for immediate updt */
4248 s2io_updt_stats(sp);
4249
4250 sp->stats.tx_packets =
4251 le32_to_cpu(mac_control->stats_info->tmac_frms);
4252 sp->stats.tx_errors =
4253 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4254 sp->stats.rx_errors =
4255 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4256 sp->stats.multicast =
4257 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4258 sp->stats.rx_length_errors =
4259 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4260
4261 return (&sp->stats);
4262 }
4263
4264 /**
4265 * s2io_set_multicast - entry point for multicast address enable/disable.
4266 * @dev : pointer to the device structure
4267 * Description:
4268 * This function is a driver entry point which gets called by the kernel
4269 * whenever multicast addresses must be enabled/disabled. This also gets
4270 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4271 * determine, if multicast address must be enabled or if promiscuous mode
4272 * is to be disabled etc.
4273 * Return value:
4274 * void.
4275 */
4276
4277 static void s2io_set_multicast(struct net_device *dev)
4278 {
4279 int i, j, prev_cnt;
4280 struct dev_mc_list *mclist;
4281 struct s2io_nic *sp = dev->priv;
4282 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4283 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4284 0xfeffffffffffULL;
4285 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4286 void __iomem *add;
4287
4288 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4289 /* Enable all Multicast addresses */
4290 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4291 &bar0->rmac_addr_data0_mem);
4292 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4293 &bar0->rmac_addr_data1_mem);
4294 val64 = RMAC_ADDR_CMD_MEM_WE |
4295 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4296 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4297 writeq(val64, &bar0->rmac_addr_cmd_mem);
4298 /* Wait till command completes */
4299 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4300 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4301
4302 sp->m_cast_flg = 1;
4303 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4304 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4305 /* Disable all Multicast addresses */
4306 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4307 &bar0->rmac_addr_data0_mem);
4308 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4309 &bar0->rmac_addr_data1_mem);
4310 val64 = RMAC_ADDR_CMD_MEM_WE |
4311 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4312 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4313 writeq(val64, &bar0->rmac_addr_cmd_mem);
4314 /* Wait till command completes */
4315 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4316 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4317
4318 sp->m_cast_flg = 0;
4319 sp->all_multi_pos = 0;
4320 }
4321
4322 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4323 /* Put the NIC into promiscuous mode */
4324 add = &bar0->mac_cfg;
4325 val64 = readq(&bar0->mac_cfg);
4326 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4327
4328 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4329 writel((u32) val64, add);
4330 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4331 writel((u32) (val64 >> 32), (add + 4));
4332
4333 val64 = readq(&bar0->mac_cfg);
4334 sp->promisc_flg = 1;
4335 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4336 dev->name);
4337 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4338 /* Remove the NIC from promiscuous mode */
4339 add = &bar0->mac_cfg;
4340 val64 = readq(&bar0->mac_cfg);
4341 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4342
4343 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4344 writel((u32) val64, add);
4345 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4346 writel((u32) (val64 >> 32), (add + 4));
4347
4348 val64 = readq(&bar0->mac_cfg);
4349 sp->promisc_flg = 0;
4350 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4351 dev->name);
4352 }
4353
4354 /* Update individual M_CAST address list */
4355 if ((!sp->m_cast_flg) && dev->mc_count) {
4356 if (dev->mc_count >
4357 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4358 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4359 dev->name);
4360 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4361 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4362 return;
4363 }
4364
4365 prev_cnt = sp->mc_addr_count;
4366 sp->mc_addr_count = dev->mc_count;
4367
4368 /* Clear out the previous list of Mc in the H/W. */
4369 for (i = 0; i < prev_cnt; i++) {
4370 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4371 &bar0->rmac_addr_data0_mem);
4372 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4373 &bar0->rmac_addr_data1_mem);
4374 val64 = RMAC_ADDR_CMD_MEM_WE |
4375 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4376 RMAC_ADDR_CMD_MEM_OFFSET
4377 (MAC_MC_ADDR_START_OFFSET + i);
4378 writeq(val64, &bar0->rmac_addr_cmd_mem);
4379
4380 /* Wait for command completes */
4381 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4382 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4383 DBG_PRINT(ERR_DBG, "%s: Adding ",
4384 dev->name);
4385 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4386 return;
4387 }
4388 }
4389
4390 /* Create the new Rx filter list and update the same in H/W. */
4391 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4392 i++, mclist = mclist->next) {
4393 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4394 ETH_ALEN);
4395 mac_addr = 0;
4396 for (j = 0; j < ETH_ALEN; j++) {
4397 mac_addr |= mclist->dmi_addr[j];
4398 mac_addr <<= 8;
4399 }
4400 mac_addr >>= 8;
4401 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4402 &bar0->rmac_addr_data0_mem);
4403 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4404 &bar0->rmac_addr_data1_mem);
4405 val64 = RMAC_ADDR_CMD_MEM_WE |
4406 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4407 RMAC_ADDR_CMD_MEM_OFFSET
4408 (i + MAC_MC_ADDR_START_OFFSET);
4409 writeq(val64, &bar0->rmac_addr_cmd_mem);
4410
4411 /* Wait for command completes */
4412 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4413 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4414 DBG_PRINT(ERR_DBG, "%s: Adding ",
4415 dev->name);
4416 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4417 return;
4418 }
4419 }
4420 }
4421 }
4422
4423 /**
4424 * s2io_set_mac_addr - Programs the Xframe mac address
4425 * @dev : pointer to the device structure.
4426 * @addr: a uchar pointer to the new mac address which is to be set.
4427 * Description : This procedure will program the Xframe to receive
4428 * frames with new Mac Address
4429 * Return value: SUCCESS on success and an appropriate (-)ve integer
4430 * as defined in errno.h file on failure.
4431 */
4432
4433 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4434 {
4435 struct s2io_nic *sp = dev->priv;
4436 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4437 register u64 val64, mac_addr = 0;
4438 int i;
4439
4440 /*
4441 * Set the new MAC address as the new unicast filter and reflect this
4442 * change on the device address registered with the OS. It will be
4443 * at offset 0.
4444 */
4445 for (i = 0; i < ETH_ALEN; i++) {
4446 mac_addr <<= 8;
4447 mac_addr |= addr[i];
4448 }
4449
4450 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4451 &bar0->rmac_addr_data0_mem);
4452
4453 val64 =
4454 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4455 RMAC_ADDR_CMD_MEM_OFFSET(0);
4456 writeq(val64, &bar0->rmac_addr_cmd_mem);
4457 /* Wait till command completes */
4458 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4459 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4460 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4461 return FAILURE;
4462 }
4463
4464 return SUCCESS;
4465 }
4466
4467 /**
4468 * s2io_ethtool_sset - Sets different link parameters.
4469 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4470 * @info: pointer to the structure with parameters given by ethtool to set
4471 * link information.
4472 * Description:
4473 * The function sets different link parameters provided by the user onto
4474 * the NIC.
4475 * Return value:
4476 * 0 on success.
4477 */
4478
4479 static int s2io_ethtool_sset(struct net_device *dev,
4480 struct ethtool_cmd *info)
4481 {
4482 struct s2io_nic *sp = dev->priv;
4483 if ((info->autoneg == AUTONEG_ENABLE) ||
4484 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4485 return -EINVAL;
4486 else {
4487 s2io_close(sp->dev);
4488 s2io_open(sp->dev);
4489 }
4490
4491 return 0;
4492 }
4493
4494 /**
4495 * s2io_ethtol_gset - Return link specific information.
4496 * @sp : private member of the device structure, pointer to the
4497 * s2io_nic structure.
4498 * @info : pointer to the structure with parameters given by ethtool
4499 * to return link information.
4500 * Description:
4501 * Returns link specific information like speed, duplex etc.. to ethtool.
4502 * Return value :
4503 * return 0 on success.
4504 */
4505
4506 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4507 {
4508 struct s2io_nic *sp = dev->priv;
4509 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4510 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4511 info->port = PORT_FIBRE;
4512 /* info->transceiver?? TODO */
4513
4514 if (netif_carrier_ok(sp->dev)) {
4515 info->speed = 10000;
4516 info->duplex = DUPLEX_FULL;
4517 } else {
4518 info->speed = -1;
4519 info->duplex = -1;
4520 }
4521
4522 info->autoneg = AUTONEG_DISABLE;
4523 return 0;
4524 }
4525
4526 /**
4527 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4528 * @sp : private member of the device structure, which is a pointer to the
4529 * s2io_nic structure.
4530 * @info : pointer to the structure with parameters given by ethtool to
4531 * return driver information.
4532 * Description:
4533 * Returns driver specefic information like name, version etc.. to ethtool.
4534 * Return value:
4535 * void
4536 */
4537
4538 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4539 struct ethtool_drvinfo *info)
4540 {
4541 struct s2io_nic *sp = dev->priv;
4542
4543 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4544 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4545 strncpy(info->fw_version, "", sizeof(info->fw_version));
4546 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4547 info->regdump_len = XENA_REG_SPACE;
4548 info->eedump_len = XENA_EEPROM_SPACE;
4549 info->testinfo_len = S2IO_TEST_LEN;
4550 info->n_stats = S2IO_STAT_LEN;
4551 }
4552
4553 /**
4554 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4555 * @sp: private member of the device structure, which is a pointer to the
4556 * s2io_nic structure.
4557 * @regs : pointer to the structure with parameters given by ethtool for
4558 * dumping the registers.
4559 * @reg_space: The input argumnet into which all the registers are dumped.
4560 * Description:
4561 * Dumps the entire register space of xFrame NIC into the user given
4562 * buffer area.
4563 * Return value :
4564 * void .
4565 */
4566
4567 static void s2io_ethtool_gregs(struct net_device *dev,
4568 struct ethtool_regs *regs, void *space)
4569 {
4570 int i;
4571 u64 reg;
4572 u8 *reg_space = (u8 *) space;
4573 struct s2io_nic *sp = dev->priv;
4574
4575 regs->len = XENA_REG_SPACE;
4576 regs->version = sp->pdev->subsystem_device;
4577
4578 for (i = 0; i < regs->len; i += 8) {
4579 reg = readq(sp->bar0 + i);
4580 memcpy((reg_space + i), &reg, 8);
4581 }
4582 }
4583
4584 /**
4585 * s2io_phy_id - timer function that alternates adapter LED.
4586 * @data : address of the private member of the device structure, which
4587 * is a pointer to the s2io_nic structure, provided as an u32.
4588 * Description: This is actually the timer function that alternates the
4589 * adapter LED bit of the adapter control bit to set/reset every time on
4590 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4591 * once every second.
4592 */
4593 static void s2io_phy_id(unsigned long data)
4594 {
4595 struct s2io_nic *sp = (struct s2io_nic *) data;
4596 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4597 u64 val64 = 0;
4598 u16 subid;
4599
4600 subid = sp->pdev->subsystem_device;
4601 if ((sp->device_type == XFRAME_II_DEVICE) ||
4602 ((subid & 0xFF) >= 0x07)) {
4603 val64 = readq(&bar0->gpio_control);
4604 val64 ^= GPIO_CTRL_GPIO_0;
4605 writeq(val64, &bar0->gpio_control);
4606 } else {
4607 val64 = readq(&bar0->adapter_control);
4608 val64 ^= ADAPTER_LED_ON;
4609 writeq(val64, &bar0->adapter_control);
4610 }
4611
4612 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4613 }
4614
4615 /**
4616 * s2io_ethtool_idnic - To physically identify the nic on the system.
4617 * @sp : private member of the device structure, which is a pointer to the
4618 * s2io_nic structure.
4619 * @id : pointer to the structure with identification parameters given by
4620 * ethtool.
4621 * Description: Used to physically identify the NIC on the system.
4622 * The Link LED will blink for a time specified by the user for
4623 * identification.
4624 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4625 * identification is possible only if it's link is up.
4626 * Return value:
4627 * int , returns 0 on success
4628 */
4629
4630 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4631 {
4632 u64 val64 = 0, last_gpio_ctrl_val;
4633 struct s2io_nic *sp = dev->priv;
4634 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4635 u16 subid;
4636
4637 subid = sp->pdev->subsystem_device;
4638 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4639 if ((sp->device_type == XFRAME_I_DEVICE) &&
4640 ((subid & 0xFF) < 0x07)) {
4641 val64 = readq(&bar0->adapter_control);
4642 if (!(val64 & ADAPTER_CNTL_EN)) {
4643 printk(KERN_ERR
4644 "Adapter Link down, cannot blink LED\n");
4645 return -EFAULT;
4646 }
4647 }
4648 if (sp->id_timer.function == NULL) {
4649 init_timer(&sp->id_timer);
4650 sp->id_timer.function = s2io_phy_id;
4651 sp->id_timer.data = (unsigned long) sp;
4652 }
4653 mod_timer(&sp->id_timer, jiffies);
4654 if (data)
4655 msleep_interruptible(data * HZ);
4656 else
4657 msleep_interruptible(MAX_FLICKER_TIME);
4658 del_timer_sync(&sp->id_timer);
4659
4660 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4661 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4662 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4663 }
4664
4665 return 0;
4666 }
4667
4668 /**
4669 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4670 * @sp : private member of the device structure, which is a pointer to the
4671 * s2io_nic structure.
4672 * @ep : pointer to the structure with pause parameters given by ethtool.
4673 * Description:
4674 * Returns the Pause frame generation and reception capability of the NIC.
4675 * Return value:
4676 * void
4677 */
4678 static void s2io_ethtool_getpause_data(struct net_device *dev,
4679 struct ethtool_pauseparam *ep)
4680 {
4681 u64 val64;
4682 struct s2io_nic *sp = dev->priv;
4683 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4684
4685 val64 = readq(&bar0->rmac_pause_cfg);
4686 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4687 ep->tx_pause = TRUE;
4688 if (val64 & RMAC_PAUSE_RX_ENABLE)
4689 ep->rx_pause = TRUE;
4690 ep->autoneg = FALSE;
4691 }
4692
4693 /**
4694 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4695 * @sp : private member of the device structure, which is a pointer to the
4696 * s2io_nic structure.
4697 * @ep : pointer to the structure with pause parameters given by ethtool.
4698 * Description:
4699 * It can be used to set or reset Pause frame generation or reception
4700 * support of the NIC.
4701 * Return value:
4702 * int, returns 0 on Success
4703 */
4704
4705 static int s2io_ethtool_setpause_data(struct net_device *dev,
4706 struct ethtool_pauseparam *ep)
4707 {
4708 u64 val64;
4709 struct s2io_nic *sp = dev->priv;
4710 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4711
4712 val64 = readq(&bar0->rmac_pause_cfg);
4713 if (ep->tx_pause)
4714 val64 |= RMAC_PAUSE_GEN_ENABLE;
4715 else
4716 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4717 if (ep->rx_pause)
4718 val64 |= RMAC_PAUSE_RX_ENABLE;
4719 else
4720 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4721 writeq(val64, &bar0->rmac_pause_cfg);
4722 return 0;
4723 }
4724
4725 /**
4726 * read_eeprom - reads 4 bytes of data from user given offset.
4727 * @sp : private member of the device structure, which is a pointer to the
4728 * s2io_nic structure.
4729 * @off : offset at which the data must be written
4730 * @data : Its an output parameter where the data read at the given
4731 * offset is stored.
4732 * Description:
4733 * Will read 4 bytes of data from the user given offset and return the
4734 * read data.
4735 * NOTE: Will allow to read only part of the EEPROM visible through the
4736 * I2C bus.
4737 * Return value:
4738 * -1 on failure and 0 on success.
4739 */
4740
4741 #define S2IO_DEV_ID 5
4742 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4743 {
4744 int ret = -1;
4745 u32 exit_cnt = 0;
4746 u64 val64;
4747 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4748
4749 if (sp->device_type == XFRAME_I_DEVICE) {
4750 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4751 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4752 I2C_CONTROL_CNTL_START;
4753 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4754
4755 while (exit_cnt < 5) {
4756 val64 = readq(&bar0->i2c_control);
4757 if (I2C_CONTROL_CNTL_END(val64)) {
4758 *data = I2C_CONTROL_GET_DATA(val64);
4759 ret = 0;
4760 break;
4761 }
4762 msleep(50);
4763 exit_cnt++;
4764 }
4765 }
4766
4767 if (sp->device_type == XFRAME_II_DEVICE) {
4768 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4769 SPI_CONTROL_BYTECNT(0x3) |
4770 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4771 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4772 val64 |= SPI_CONTROL_REQ;
4773 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4774 while (exit_cnt < 5) {
4775 val64 = readq(&bar0->spi_control);
4776 if (val64 & SPI_CONTROL_NACK) {
4777 ret = 1;
4778 break;
4779 } else if (val64 & SPI_CONTROL_DONE) {
4780 *data = readq(&bar0->spi_data);
4781 *data &= 0xffffff;
4782 ret = 0;
4783 break;
4784 }
4785 msleep(50);
4786 exit_cnt++;
4787 }
4788 }
4789 return ret;
4790 }
4791
4792 /**
4793 * write_eeprom - actually writes the relevant part of the data value.
4794 * @sp : private member of the device structure, which is a pointer to the
4795 * s2io_nic structure.
4796 * @off : offset at which the data must be written
4797 * @data : The data that is to be written
4798 * @cnt : Number of bytes of the data that are actually to be written into
4799 * the Eeprom. (max of 3)
4800 * Description:
4801 * Actually writes the relevant part of the data value into the Eeprom
4802 * through the I2C bus.
4803 * Return value:
4804 * 0 on success, -1 on failure.
4805 */
4806
4807 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4808 {
4809 int exit_cnt = 0, ret = -1;
4810 u64 val64;
4811 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4812
4813 if (sp->device_type == XFRAME_I_DEVICE) {
4814 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4815 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4816 I2C_CONTROL_CNTL_START;
4817 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4818
4819 while (exit_cnt < 5) {
4820 val64 = readq(&bar0->i2c_control);
4821 if (I2C_CONTROL_CNTL_END(val64)) {
4822 if (!(val64 & I2C_CONTROL_NACK))
4823 ret = 0;
4824 break;
4825 }
4826 msleep(50);
4827 exit_cnt++;
4828 }
4829 }
4830
4831 if (sp->device_type == XFRAME_II_DEVICE) {
4832 int write_cnt = (cnt == 8) ? 0 : cnt;
4833 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4834
4835 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4836 SPI_CONTROL_BYTECNT(write_cnt) |
4837 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4838 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4839 val64 |= SPI_CONTROL_REQ;
4840 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4841 while (exit_cnt < 5) {
4842 val64 = readq(&bar0->spi_control);
4843 if (val64 & SPI_CONTROL_NACK) {
4844 ret = 1;
4845 break;
4846 } else if (val64 & SPI_CONTROL_DONE) {
4847 ret = 0;
4848 break;
4849 }
4850 msleep(50);
4851 exit_cnt++;
4852 }
4853 }
4854 return ret;
4855 }
4856 static void s2io_vpd_read(struct s2io_nic *nic)
4857 {
4858 u8 *vpd_data;
4859 u8 data;
4860 int i=0, cnt, fail = 0;
4861 int vpd_addr = 0x80;
4862
4863 if (nic->device_type == XFRAME_II_DEVICE) {
4864 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4865 vpd_addr = 0x80;
4866 }
4867 else {
4868 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4869 vpd_addr = 0x50;
4870 }
4871 strcpy(nic->serial_num, "NOT AVAILABLE");
4872
4873 vpd_data = kmalloc(256, GFP_KERNEL);
4874 if (!vpd_data)
4875 return;
4876
4877 for (i = 0; i < 256; i +=4 ) {
4878 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4879 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4880 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4881 for (cnt = 0; cnt <5; cnt++) {
4882 msleep(2);
4883 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4884 if (data == 0x80)
4885 break;
4886 }
4887 if (cnt >= 5) {
4888 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4889 fail = 1;
4890 break;
4891 }
4892 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4893 (u32 *)&vpd_data[i]);
4894 }
4895
4896 if(!fail) {
4897 /* read serial number of adapter */
4898 for (cnt = 0; cnt < 256; cnt++) {
4899 if ((vpd_data[cnt] == 'S') &&
4900 (vpd_data[cnt+1] == 'N') &&
4901 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4902 memset(nic->serial_num, 0, VPD_STRING_LEN);
4903 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4904 vpd_data[cnt+2]);
4905 break;
4906 }
4907 }
4908 }
4909
4910 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4911 memset(nic->product_name, 0, vpd_data[1]);
4912 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4913 }
4914 kfree(vpd_data);
4915 }
4916
4917 /**
4918 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4919 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4920 * @eeprom : pointer to the user level structure provided by ethtool,
4921 * containing all relevant information.
4922 * @data_buf : user defined value to be written into Eeprom.
4923 * Description: Reads the values stored in the Eeprom at given offset
4924 * for a given length. Stores these values int the input argument data
4925 * buffer 'data_buf' and returns these to the caller (ethtool.)
4926 * Return value:
4927 * int 0 on success
4928 */
4929
4930 static int s2io_ethtool_geeprom(struct net_device *dev,
4931 struct ethtool_eeprom *eeprom, u8 * data_buf)
4932 {
4933 u32 i, valid;
4934 u64 data;
4935 struct s2io_nic *sp = dev->priv;
4936
4937 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4938
4939 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4940 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4941
4942 for (i = 0; i < eeprom->len; i += 4) {
4943 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4944 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4945 return -EFAULT;
4946 }
4947 valid = INV(data);
4948 memcpy((data_buf + i), &valid, 4);
4949 }
4950 return 0;
4951 }
4952
4953 /**
4954 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4955 * @sp : private member of the device structure, which is a pointer to the
4956 * s2io_nic structure.
4957 * @eeprom : pointer to the user level structure provided by ethtool,
4958 * containing all relevant information.
4959 * @data_buf ; user defined value to be written into Eeprom.
4960 * Description:
4961 * Tries to write the user provided value in the Eeprom, at the offset
4962 * given by the user.
4963 * Return value:
4964 * 0 on success, -EFAULT on failure.
4965 */
4966
4967 static int s2io_ethtool_seeprom(struct net_device *dev,
4968 struct ethtool_eeprom *eeprom,
4969 u8 * data_buf)
4970 {
4971 int len = eeprom->len, cnt = 0;
4972 u64 valid = 0, data;
4973 struct s2io_nic *sp = dev->priv;
4974
4975 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4976 DBG_PRINT(ERR_DBG,
4977 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4978 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4979 eeprom->magic);
4980 return -EFAULT;
4981 }
4982
4983 while (len) {
4984 data = (u32) data_buf[cnt] & 0x000000FF;
4985 if (data) {
4986 valid = (u32) (data << 24);
4987 } else
4988 valid = data;
4989
4990 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4991 DBG_PRINT(ERR_DBG,
4992 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4993 DBG_PRINT(ERR_DBG,
4994 "write into the specified offset\n");
4995 return -EFAULT;
4996 }
4997 cnt++;
4998 len--;
4999 }
5000
5001 return 0;
5002 }
5003
5004 /**
5005 * s2io_register_test - reads and writes into all clock domains.
5006 * @sp : private member of the device structure, which is a pointer to the
5007 * s2io_nic structure.
5008 * @data : variable that returns the result of each of the test conducted b
5009 * by the driver.
5010 * Description:
5011 * Read and write into all clock domains. The NIC has 3 clock domains,
5012 * see that registers in all the three regions are accessible.
5013 * Return value:
5014 * 0 on success.
5015 */
5016
5017 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5018 {
5019 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5020 u64 val64 = 0, exp_val;
5021 int fail = 0;
5022
5023 val64 = readq(&bar0->pif_rd_swapper_fb);
5024 if (val64 != 0x123456789abcdefULL) {
5025 fail = 1;
5026 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5027 }
5028
5029 val64 = readq(&bar0->rmac_pause_cfg);
5030 if (val64 != 0xc000ffff00000000ULL) {
5031 fail = 1;
5032 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5033 }
5034
5035 val64 = readq(&bar0->rx_queue_cfg);
5036 if (sp->device_type == XFRAME_II_DEVICE)
5037 exp_val = 0x0404040404040404ULL;
5038 else
5039 exp_val = 0x0808080808080808ULL;
5040 if (val64 != exp_val) {
5041 fail = 1;
5042 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5043 }
5044
5045 val64 = readq(&bar0->xgxs_efifo_cfg);
5046 if (val64 != 0x000000001923141EULL) {
5047 fail = 1;
5048 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5049 }
5050
5051 val64 = 0x5A5A5A5A5A5A5A5AULL;
5052 writeq(val64, &bar0->xmsi_data);
5053 val64 = readq(&bar0->xmsi_data);
5054 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5055 fail = 1;
5056 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5057 }
5058
5059 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5060 writeq(val64, &bar0->xmsi_data);
5061 val64 = readq(&bar0->xmsi_data);
5062 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5063 fail = 1;
5064 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5065 }
5066
5067 *data = fail;
5068 return fail;
5069 }
5070
5071 /**
5072 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5073 * @sp : private member of the device structure, which is a pointer to the
5074 * s2io_nic structure.
5075 * @data:variable that returns the result of each of the test conducted by
5076 * the driver.
5077 * Description:
5078 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5079 * register.
5080 * Return value:
5081 * 0 on success.
5082 */
5083
5084 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5085 {
5086 int fail = 0;
5087 u64 ret_data, org_4F0, org_7F0;
5088 u8 saved_4F0 = 0, saved_7F0 = 0;
5089 struct net_device *dev = sp->dev;
5090
5091 /* Test Write Error at offset 0 */
5092 /* Note that SPI interface allows write access to all areas
5093 * of EEPROM. Hence doing all negative testing only for Xframe I.
5094 */
5095 if (sp->device_type == XFRAME_I_DEVICE)
5096 if (!write_eeprom(sp, 0, 0, 3))
5097 fail = 1;
5098
5099 /* Save current values at offsets 0x4F0 and 0x7F0 */
5100 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5101 saved_4F0 = 1;
5102 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5103 saved_7F0 = 1;
5104
5105 /* Test Write at offset 4f0 */
5106 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5107 fail = 1;
5108 if (read_eeprom(sp, 0x4F0, &ret_data))
5109 fail = 1;
5110
5111 if (ret_data != 0x012345) {
5112 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5113 "Data written %llx Data read %llx\n",
5114 dev->name, (unsigned long long)0x12345,
5115 (unsigned long long)ret_data);
5116 fail = 1;
5117 }
5118
5119 /* Reset the EEPROM data go FFFF */
5120 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5121
5122 /* Test Write Request Error at offset 0x7c */
5123 if (sp->device_type == XFRAME_I_DEVICE)
5124 if (!write_eeprom(sp, 0x07C, 0, 3))
5125 fail = 1;
5126
5127 /* Test Write Request at offset 0x7f0 */
5128 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5129 fail = 1;
5130 if (read_eeprom(sp, 0x7F0, &ret_data))
5131 fail = 1;
5132
5133 if (ret_data != 0x012345) {
5134 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5135 "Data written %llx Data read %llx\n",
5136 dev->name, (unsigned long long)0x12345,
5137 (unsigned long long)ret_data);
5138 fail = 1;
5139 }
5140
5141 /* Reset the EEPROM data go FFFF */
5142 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5143
5144 if (sp->device_type == XFRAME_I_DEVICE) {
5145 /* Test Write Error at offset 0x80 */
5146 if (!write_eeprom(sp, 0x080, 0, 3))
5147 fail = 1;
5148
5149 /* Test Write Error at offset 0xfc */
5150 if (!write_eeprom(sp, 0x0FC, 0, 3))
5151 fail = 1;
5152
5153 /* Test Write Error at offset 0x100 */
5154 if (!write_eeprom(sp, 0x100, 0, 3))
5155 fail = 1;
5156
5157 /* Test Write Error at offset 4ec */
5158 if (!write_eeprom(sp, 0x4EC, 0, 3))
5159 fail = 1;
5160 }
5161
5162 /* Restore values at offsets 0x4F0 and 0x7F0 */
5163 if (saved_4F0)
5164 write_eeprom(sp, 0x4F0, org_4F0, 3);
5165 if (saved_7F0)
5166 write_eeprom(sp, 0x7F0, org_7F0, 3);
5167
5168 *data = fail;
5169 return fail;
5170 }
5171
5172 /**
5173 * s2io_bist_test - invokes the MemBist test of the card .
5174 * @sp : private member of the device structure, which is a pointer to the
5175 * s2io_nic structure.
5176 * @data:variable that returns the result of each of the test conducted by
5177 * the driver.
5178 * Description:
5179 * This invokes the MemBist test of the card. We give around
5180 * 2 secs time for the Test to complete. If it's still not complete
5181 * within this peiod, we consider that the test failed.
5182 * Return value:
5183 * 0 on success and -1 on failure.
5184 */
5185
5186 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5187 {
5188 u8 bist = 0;
5189 int cnt = 0, ret = -1;
5190
5191 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5192 bist |= PCI_BIST_START;
5193 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5194
5195 while (cnt < 20) {
5196 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5197 if (!(bist & PCI_BIST_START)) {
5198 *data = (bist & PCI_BIST_CODE_MASK);
5199 ret = 0;
5200 break;
5201 }
5202 msleep(100);
5203 cnt++;
5204 }
5205
5206 return ret;
5207 }
5208
5209 /**
5210 * s2io-link_test - verifies the link state of the nic
5211 * @sp ; private member of the device structure, which is a pointer to the
5212 * s2io_nic structure.
5213 * @data: variable that returns the result of each of the test conducted by
5214 * the driver.
5215 * Description:
5216 * The function verifies the link state of the NIC and updates the input
5217 * argument 'data' appropriately.
5218 * Return value:
5219 * 0 on success.
5220 */
5221
5222 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5223 {
5224 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5225 u64 val64;
5226
5227 val64 = readq(&bar0->adapter_status);
5228 if(!(LINK_IS_UP(val64)))
5229 *data = 1;
5230 else
5231 *data = 0;
5232
5233 return *data;
5234 }
5235
5236 /**
5237 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5238 * @sp - private member of the device structure, which is a pointer to the
5239 * s2io_nic structure.
5240 * @data - variable that returns the result of each of the test
5241 * conducted by the driver.
5242 * Description:
5243 * This is one of the offline test that tests the read and write
5244 * access to the RldRam chip on the NIC.
5245 * Return value:
5246 * 0 on success.
5247 */
5248
5249 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5250 {
5251 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5252 u64 val64;
5253 int cnt, iteration = 0, test_fail = 0;
5254
5255 val64 = readq(&bar0->adapter_control);
5256 val64 &= ~ADAPTER_ECC_EN;
5257 writeq(val64, &bar0->adapter_control);
5258
5259 val64 = readq(&bar0->mc_rldram_test_ctrl);
5260 val64 |= MC_RLDRAM_TEST_MODE;
5261 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5262
5263 val64 = readq(&bar0->mc_rldram_mrs);
5264 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5265 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5266
5267 val64 |= MC_RLDRAM_MRS_ENABLE;
5268 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5269
5270 while (iteration < 2) {
5271 val64 = 0x55555555aaaa0000ULL;
5272 if (iteration == 1) {
5273 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5274 }
5275 writeq(val64, &bar0->mc_rldram_test_d0);
5276
5277 val64 = 0xaaaa5a5555550000ULL;
5278 if (iteration == 1) {
5279 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5280 }
5281 writeq(val64, &bar0->mc_rldram_test_d1);
5282
5283 val64 = 0x55aaaaaaaa5a0000ULL;
5284 if (iteration == 1) {
5285 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5286 }
5287 writeq(val64, &bar0->mc_rldram_test_d2);
5288
5289 val64 = (u64) (0x0000003ffffe0100ULL);
5290 writeq(val64, &bar0->mc_rldram_test_add);
5291
5292 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5293 MC_RLDRAM_TEST_GO;
5294 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5295
5296 for (cnt = 0; cnt < 5; cnt++) {
5297 val64 = readq(&bar0->mc_rldram_test_ctrl);
5298 if (val64 & MC_RLDRAM_TEST_DONE)
5299 break;
5300 msleep(200);
5301 }
5302
5303 if (cnt == 5)
5304 break;
5305
5306 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5307 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5308
5309 for (cnt = 0; cnt < 5; cnt++) {
5310 val64 = readq(&bar0->mc_rldram_test_ctrl);
5311 if (val64 & MC_RLDRAM_TEST_DONE)
5312 break;
5313 msleep(500);
5314 }
5315
5316 if (cnt == 5)
5317 break;
5318
5319 val64 = readq(&bar0->mc_rldram_test_ctrl);
5320 if (!(val64 & MC_RLDRAM_TEST_PASS))
5321 test_fail = 1;
5322
5323 iteration++;
5324 }
5325
5326 *data = test_fail;
5327
5328 /* Bring the adapter out of test mode */
5329 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5330
5331 return test_fail;
5332 }
5333
5334 /**
5335 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5336 * @sp : private member of the device structure, which is a pointer to the
5337 * s2io_nic structure.
5338 * @ethtest : pointer to a ethtool command specific structure that will be
5339 * returned to the user.
5340 * @data : variable that returns the result of each of the test
5341 * conducted by the driver.
5342 * Description:
5343 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5344 * the health of the card.
5345 * Return value:
5346 * void
5347 */
5348
5349 static void s2io_ethtool_test(struct net_device *dev,
5350 struct ethtool_test *ethtest,
5351 uint64_t * data)
5352 {
5353 struct s2io_nic *sp = dev->priv;
5354 int orig_state = netif_running(sp->dev);
5355
5356 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5357 /* Offline Tests. */
5358 if (orig_state)
5359 s2io_close(sp->dev);
5360
5361 if (s2io_register_test(sp, &data[0]))
5362 ethtest->flags |= ETH_TEST_FL_FAILED;
5363
5364 s2io_reset(sp);
5365
5366 if (s2io_rldram_test(sp, &data[3]))
5367 ethtest->flags |= ETH_TEST_FL_FAILED;
5368
5369 s2io_reset(sp);
5370
5371 if (s2io_eeprom_test(sp, &data[1]))
5372 ethtest->flags |= ETH_TEST_FL_FAILED;
5373
5374 if (s2io_bist_test(sp, &data[4]))
5375 ethtest->flags |= ETH_TEST_FL_FAILED;
5376
5377 if (orig_state)
5378 s2io_open(sp->dev);
5379
5380 data[2] = 0;
5381 } else {
5382 /* Online Tests. */
5383 if (!orig_state) {
5384 DBG_PRINT(ERR_DBG,
5385 "%s: is not up, cannot run test\n",
5386 dev->name);
5387 data[0] = -1;
5388 data[1] = -1;
5389 data[2] = -1;
5390 data[3] = -1;
5391 data[4] = -1;
5392 }
5393
5394 if (s2io_link_test(sp, &data[2]))
5395 ethtest->flags |= ETH_TEST_FL_FAILED;
5396
5397 data[0] = 0;
5398 data[1] = 0;
5399 data[3] = 0;
5400 data[4] = 0;
5401 }
5402 }
5403
5404 static void s2io_get_ethtool_stats(struct net_device *dev,
5405 struct ethtool_stats *estats,
5406 u64 * tmp_stats)
5407 {
5408 int i = 0;
5409 struct s2io_nic *sp = dev->priv;
5410 struct stat_block *stat_info = sp->mac_control.stats_info;
5411
5412 s2io_updt_stats(sp);
5413 tmp_stats[i++] =
5414 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5415 le32_to_cpu(stat_info->tmac_frms);
5416 tmp_stats[i++] =
5417 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5418 le32_to_cpu(stat_info->tmac_data_octets);
5419 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5420 tmp_stats[i++] =
5421 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5422 le32_to_cpu(stat_info->tmac_mcst_frms);
5423 tmp_stats[i++] =
5424 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5425 le32_to_cpu(stat_info->tmac_bcst_frms);
5426 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5427 tmp_stats[i++] =
5428 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5429 le32_to_cpu(stat_info->tmac_ttl_octets);
5430 tmp_stats[i++] =
5431 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5432 le32_to_cpu(stat_info->tmac_ucst_frms);
5433 tmp_stats[i++] =
5434 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5435 le32_to_cpu(stat_info->tmac_nucst_frms);
5436 tmp_stats[i++] =
5437 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5438 le32_to_cpu(stat_info->tmac_any_err_frms);
5439 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5440 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5441 tmp_stats[i++] =
5442 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5443 le32_to_cpu(stat_info->tmac_vld_ip);
5444 tmp_stats[i++] =
5445 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5446 le32_to_cpu(stat_info->tmac_drop_ip);
5447 tmp_stats[i++] =
5448 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5449 le32_to_cpu(stat_info->tmac_icmp);
5450 tmp_stats[i++] =
5451 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5452 le32_to_cpu(stat_info->tmac_rst_tcp);
5453 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5454 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5455 le32_to_cpu(stat_info->tmac_udp);
5456 tmp_stats[i++] =
5457 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5458 le32_to_cpu(stat_info->rmac_vld_frms);
5459 tmp_stats[i++] =
5460 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5461 le32_to_cpu(stat_info->rmac_data_octets);
5462 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5463 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5464 tmp_stats[i++] =
5465 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5466 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5467 tmp_stats[i++] =
5468 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5469 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5470 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5471 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5472 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5475 tmp_stats[i++] =
5476 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5477 le32_to_cpu(stat_info->rmac_ttl_octets);
5478 tmp_stats[i++] =
5479 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5480 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5481 tmp_stats[i++] =
5482 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5483 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5484 tmp_stats[i++] =
5485 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5486 le32_to_cpu(stat_info->rmac_discarded_frms);
5487 tmp_stats[i++] =
5488 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5489 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5490 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5491 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5492 tmp_stats[i++] =
5493 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5494 le32_to_cpu(stat_info->rmac_usized_frms);
5495 tmp_stats[i++] =
5496 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5497 le32_to_cpu(stat_info->rmac_osized_frms);
5498 tmp_stats[i++] =
5499 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5500 le32_to_cpu(stat_info->rmac_frag_frms);
5501 tmp_stats[i++] =
5502 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5503 le32_to_cpu(stat_info->rmac_jabber_frms);
5504 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5506 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5507 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5508 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5509 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5510 tmp_stats[i++] =
5511 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5512 le32_to_cpu(stat_info->rmac_ip);
5513 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5514 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5515 tmp_stats[i++] =
5516 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5517 le32_to_cpu(stat_info->rmac_drop_ip);
5518 tmp_stats[i++] =
5519 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5520 le32_to_cpu(stat_info->rmac_icmp);
5521 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5522 tmp_stats[i++] =
5523 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5524 le32_to_cpu(stat_info->rmac_udp);
5525 tmp_stats[i++] =
5526 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5527 le32_to_cpu(stat_info->rmac_err_drp_udp);
5528 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5529 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5530 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5531 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5532 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5533 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5534 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5537 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5538 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5539 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5540 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5541 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5542 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5543 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5544 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5545 tmp_stats[i++] =
5546 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5547 le32_to_cpu(stat_info->rmac_pause_cnt);
5548 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5549 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5550 tmp_stats[i++] =
5551 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5552 le32_to_cpu(stat_info->rmac_accepted_ip);
5553 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5554 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5555 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5556 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5557 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5558 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5559 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5560 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5561 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5562 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5563 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5564 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5565 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5566 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5567 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5568 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5569 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5570 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5571 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5572 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5575 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5576 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5579 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5580 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5583 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5588 tmp_stats[i++] = 0;
5589 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5590 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5591 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5592 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5593 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5594 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5595 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5596 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5597 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5598 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5599 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5600 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5601 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5602 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5603 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5604 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5605 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5606 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5607 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5608 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5609 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5610 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5611 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5612 if (stat_info->sw_stat.num_aggregations) {
5613 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5614 int count = 0;
5615 /*
5616 * Since 64-bit divide does not work on all platforms,
5617 * do repeated subtraction.
5618 */
5619 while (tmp >= stat_info->sw_stat.num_aggregations) {
5620 tmp -= stat_info->sw_stat.num_aggregations;
5621 count++;
5622 }
5623 tmp_stats[i++] = count;
5624 }
5625 else
5626 tmp_stats[i++] = 0;
5627 }
5628
5629 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5630 {
5631 return (XENA_REG_SPACE);
5632 }
5633
5634
5635 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5636 {
5637 struct s2io_nic *sp = dev->priv;
5638
5639 return (sp->rx_csum);
5640 }
5641
5642 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5643 {
5644 struct s2io_nic *sp = dev->priv;
5645
5646 if (data)
5647 sp->rx_csum = 1;
5648 else
5649 sp->rx_csum = 0;
5650
5651 return 0;
5652 }
5653
5654 static int s2io_get_eeprom_len(struct net_device *dev)
5655 {
5656 return (XENA_EEPROM_SPACE);
5657 }
5658
5659 static int s2io_ethtool_self_test_count(struct net_device *dev)
5660 {
5661 return (S2IO_TEST_LEN);
5662 }
5663
5664 static void s2io_ethtool_get_strings(struct net_device *dev,
5665 u32 stringset, u8 * data)
5666 {
5667 switch (stringset) {
5668 case ETH_SS_TEST:
5669 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5670 break;
5671 case ETH_SS_STATS:
5672 memcpy(data, &ethtool_stats_keys,
5673 sizeof(ethtool_stats_keys));
5674 }
5675 }
5676 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5677 {
5678 return (S2IO_STAT_LEN);
5679 }
5680
5681 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5682 {
5683 if (data)
5684 dev->features |= NETIF_F_IP_CSUM;
5685 else
5686 dev->features &= ~NETIF_F_IP_CSUM;
5687
5688 return 0;
5689 }
5690
5691 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5692 {
5693 return (dev->features & NETIF_F_TSO) != 0;
5694 }
5695 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5696 {
5697 if (data)
5698 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5699 else
5700 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5701
5702 return 0;
5703 }
5704
5705 static const struct ethtool_ops netdev_ethtool_ops = {
5706 .get_settings = s2io_ethtool_gset,
5707 .set_settings = s2io_ethtool_sset,
5708 .get_drvinfo = s2io_ethtool_gdrvinfo,
5709 .get_regs_len = s2io_ethtool_get_regs_len,
5710 .get_regs = s2io_ethtool_gregs,
5711 .get_link = ethtool_op_get_link,
5712 .get_eeprom_len = s2io_get_eeprom_len,
5713 .get_eeprom = s2io_ethtool_geeprom,
5714 .set_eeprom = s2io_ethtool_seeprom,
5715 .get_pauseparam = s2io_ethtool_getpause_data,
5716 .set_pauseparam = s2io_ethtool_setpause_data,
5717 .get_rx_csum = s2io_ethtool_get_rx_csum,
5718 .set_rx_csum = s2io_ethtool_set_rx_csum,
5719 .get_tx_csum = ethtool_op_get_tx_csum,
5720 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5721 .get_sg = ethtool_op_get_sg,
5722 .set_sg = ethtool_op_set_sg,
5723 .get_tso = s2io_ethtool_op_get_tso,
5724 .set_tso = s2io_ethtool_op_set_tso,
5725 .get_ufo = ethtool_op_get_ufo,
5726 .set_ufo = ethtool_op_set_ufo,
5727 .self_test_count = s2io_ethtool_self_test_count,
5728 .self_test = s2io_ethtool_test,
5729 .get_strings = s2io_ethtool_get_strings,
5730 .phys_id = s2io_ethtool_idnic,
5731 .get_stats_count = s2io_ethtool_get_stats_count,
5732 .get_ethtool_stats = s2io_get_ethtool_stats
5733 };
5734
5735 /**
5736 * s2io_ioctl - Entry point for the Ioctl
5737 * @dev : Device pointer.
5738 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5739 * a proprietary structure used to pass information to the driver.
5740 * @cmd : This is used to distinguish between the different commands that
5741 * can be passed to the IOCTL functions.
5742 * Description:
5743 * Currently there are no special functionality supported in IOCTL, hence
5744 * function always return EOPNOTSUPPORTED
5745 */
5746
5747 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5748 {
5749 return -EOPNOTSUPP;
5750 }
5751
5752 /**
5753 * s2io_change_mtu - entry point to change MTU size for the device.
5754 * @dev : device pointer.
5755 * @new_mtu : the new MTU size for the device.
5756 * Description: A driver entry point to change MTU size for the device.
5757 * Before changing the MTU the device must be stopped.
5758 * Return value:
5759 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5760 * file on failure.
5761 */
5762
5763 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5764 {
5765 struct s2io_nic *sp = dev->priv;
5766
5767 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5768 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5769 dev->name);
5770 return -EPERM;
5771 }
5772
5773 dev->mtu = new_mtu;
5774 if (netif_running(dev)) {
5775 s2io_card_down(sp);
5776 netif_stop_queue(dev);
5777 if (s2io_card_up(sp)) {
5778 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5779 __FUNCTION__);
5780 }
5781 if (netif_queue_stopped(dev))
5782 netif_wake_queue(dev);
5783 } else { /* Device is down */
5784 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5785 u64 val64 = new_mtu;
5786
5787 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5788 }
5789
5790 return 0;
5791 }
5792
5793 /**
5794 * s2io_tasklet - Bottom half of the ISR.
5795 * @dev_adr : address of the device structure in dma_addr_t format.
5796 * Description:
5797 * This is the tasklet or the bottom half of the ISR. This is
5798 * an extension of the ISR which is scheduled by the scheduler to be run
5799 * when the load on the CPU is low. All low priority tasks of the ISR can
5800 * be pushed into the tasklet. For now the tasklet is used only to
5801 * replenish the Rx buffers in the Rx buffer descriptors.
5802 * Return value:
5803 * void.
5804 */
5805
5806 static void s2io_tasklet(unsigned long dev_addr)
5807 {
5808 struct net_device *dev = (struct net_device *) dev_addr;
5809 struct s2io_nic *sp = dev->priv;
5810 int i, ret;
5811 struct mac_info *mac_control;
5812 struct config_param *config;
5813
5814 mac_control = &sp->mac_control;
5815 config = &sp->config;
5816
5817 if (!TASKLET_IN_USE) {
5818 for (i = 0; i < config->rx_ring_num; i++) {
5819 ret = fill_rx_buffers(sp, i);
5820 if (ret == -ENOMEM) {
5821 DBG_PRINT(ERR_DBG, "%s: Out of ",
5822 dev->name);
5823 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5824 break;
5825 } else if (ret == -EFILL) {
5826 DBG_PRINT(ERR_DBG,
5827 "%s: Rx Ring %d is full\n",
5828 dev->name, i);
5829 break;
5830 }
5831 }
5832 clear_bit(0, (&sp->tasklet_status));
5833 }
5834 }
5835
5836 /**
5837 * s2io_set_link - Set the LInk status
5838 * @data: long pointer to device private structue
5839 * Description: Sets the link status for the adapter
5840 */
5841
5842 static void s2io_set_link(struct work_struct *work)
5843 {
5844 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5845 struct net_device *dev = nic->dev;
5846 struct XENA_dev_config __iomem *bar0 = nic->bar0;
5847 register u64 val64;
5848 u16 subid;
5849
5850 if (test_and_set_bit(0, &(nic->link_state))) {
5851 /* The card is being reset, no point doing anything */
5852 return;
5853 }
5854
5855 subid = nic->pdev->subsystem_device;
5856 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5857 /*
5858 * Allow a small delay for the NICs self initiated
5859 * cleanup to complete.
5860 */
5861 msleep(100);
5862 }
5863
5864 val64 = readq(&bar0->adapter_status);
5865 if (LINK_IS_UP(val64)) {
5866 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5867 if (verify_xena_quiescence(nic)) {
5868 val64 = readq(&bar0->adapter_control);
5869 val64 |= ADAPTER_CNTL_EN;
5870 writeq(val64, &bar0->adapter_control);
5871 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5872 nic->device_type, subid)) {
5873 val64 = readq(&bar0->gpio_control);
5874 val64 |= GPIO_CTRL_GPIO_0;
5875 writeq(val64, &bar0->gpio_control);
5876 val64 = readq(&bar0->gpio_control);
5877 } else {
5878 val64 |= ADAPTER_LED_ON;
5879 writeq(val64, &bar0->adapter_control);
5880 }
5881 nic->device_enabled_once = TRUE;
5882 } else {
5883 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5884 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5885 netif_stop_queue(dev);
5886 }
5887 }
5888 val64 = readq(&bar0->adapter_status);
5889 if (!LINK_IS_UP(val64)) {
5890 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5891 DBG_PRINT(ERR_DBG, " Link down after enabling ");
5892 DBG_PRINT(ERR_DBG, "device \n");
5893 } else
5894 s2io_link(nic, LINK_UP);
5895 } else {
5896 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5897 subid)) {
5898 val64 = readq(&bar0->gpio_control);
5899 val64 &= ~GPIO_CTRL_GPIO_0;
5900 writeq(val64, &bar0->gpio_control);
5901 val64 = readq(&bar0->gpio_control);
5902 }
5903 s2io_link(nic, LINK_DOWN);
5904 }
5905 clear_bit(0, &(nic->link_state));
5906 }
5907
5908 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5909 struct buffAdd *ba,
5910 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5911 u64 *temp2, int size)
5912 {
5913 struct net_device *dev = sp->dev;
5914 struct sk_buff *frag_list;
5915
5916 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5917 /* allocate skb */
5918 if (*skb) {
5919 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5920 /*
5921 * As Rx frame are not going to be processed,
5922 * using same mapped address for the Rxd
5923 * buffer pointer
5924 */
5925 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5926 } else {
5927 *skb = dev_alloc_skb(size);
5928 if (!(*skb)) {
5929 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5930 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5931 return -ENOMEM ;
5932 }
5933 /* storing the mapped addr in a temp variable
5934 * such it will be used for next rxd whose
5935 * Host Control is NULL
5936 */
5937 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5938 pci_map_single( sp->pdev, (*skb)->data,
5939 size - NET_IP_ALIGN,
5940 PCI_DMA_FROMDEVICE);
5941 rxdp->Host_Control = (unsigned long) (*skb);
5942 }
5943 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5944 /* Two buffer Mode */
5945 if (*skb) {
5946 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5947 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5948 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5949 } else {
5950 *skb = dev_alloc_skb(size);
5951 if (!(*skb)) {
5952 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5953 dev->name);
5954 return -ENOMEM;
5955 }
5956 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5957 pci_map_single(sp->pdev, (*skb)->data,
5958 dev->mtu + 4,
5959 PCI_DMA_FROMDEVICE);
5960 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5961 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5962 PCI_DMA_FROMDEVICE);
5963 rxdp->Host_Control = (unsigned long) (*skb);
5964
5965 /* Buffer-1 will be dummy buffer not used */
5966 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5967 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5968 PCI_DMA_FROMDEVICE);
5969 }
5970 } else if ((rxdp->Host_Control == 0)) {
5971 /* Three buffer mode */
5972 if (*skb) {
5973 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5974 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5975 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5976 } else {
5977 *skb = dev_alloc_skb(size);
5978 if (!(*skb)) {
5979 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5980 dev->name);
5981 return -ENOMEM;
5982 }
5983 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5984 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5985 PCI_DMA_FROMDEVICE);
5986 /* Buffer-1 receives L3/L4 headers */
5987 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5988 pci_map_single( sp->pdev, (*skb)->data,
5989 l3l4hdr_size + 4,
5990 PCI_DMA_FROMDEVICE);
5991 /*
5992 * skb_shinfo(skb)->frag_list will have L4
5993 * data payload
5994 */
5995 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
5996 ALIGN_SIZE);
5997 if (skb_shinfo(*skb)->frag_list == NULL) {
5998 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
5999 failed\n ", dev->name);
6000 return -ENOMEM ;
6001 }
6002 frag_list = skb_shinfo(*skb)->frag_list;
6003 frag_list->next = NULL;
6004 /*
6005 * Buffer-2 receives L4 data payload
6006 */
6007 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6008 pci_map_single( sp->pdev, frag_list->data,
6009 dev->mtu, PCI_DMA_FROMDEVICE);
6010 }
6011 }
6012 return 0;
6013 }
6014 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6015 int size)
6016 {
6017 struct net_device *dev = sp->dev;
6018 if (sp->rxd_mode == RXD_MODE_1) {
6019 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6020 } else if (sp->rxd_mode == RXD_MODE_3B) {
6021 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6022 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6023 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6024 } else {
6025 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6026 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6027 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6028 }
6029 }
6030
6031 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6032 {
6033 int i, j, k, blk_cnt = 0, size;
6034 struct mac_info * mac_control = &sp->mac_control;
6035 struct config_param *config = &sp->config;
6036 struct net_device *dev = sp->dev;
6037 struct RxD_t *rxdp = NULL;
6038 struct sk_buff *skb = NULL;
6039 struct buffAdd *ba = NULL;
6040 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6041
6042 /* Calculate the size based on ring mode */
6043 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6044 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6045 if (sp->rxd_mode == RXD_MODE_1)
6046 size += NET_IP_ALIGN;
6047 else if (sp->rxd_mode == RXD_MODE_3B)
6048 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6049 else
6050 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6051
6052 for (i = 0; i < config->rx_ring_num; i++) {
6053 blk_cnt = config->rx_cfg[i].num_rxd /
6054 (rxd_count[sp->rxd_mode] +1);
6055
6056 for (j = 0; j < blk_cnt; j++) {
6057 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6058 rxdp = mac_control->rings[i].
6059 rx_blocks[j].rxds[k].virt_addr;
6060 if(sp->rxd_mode >= RXD_MODE_3A)
6061 ba = &mac_control->rings[i].ba[j][k];
6062 set_rxd_buffer_pointer(sp, rxdp, ba,
6063 &skb,(u64 *)&temp0_64,
6064 (u64 *)&temp1_64,
6065 (u64 *)&temp2_64, size);
6066
6067 set_rxd_buffer_size(sp, rxdp, size);
6068 wmb();
6069 /* flip the Ownership bit to Hardware */
6070 rxdp->Control_1 |= RXD_OWN_XENA;
6071 }
6072 }
6073 }
6074 return 0;
6075
6076 }
6077
6078 static int s2io_add_isr(struct s2io_nic * sp)
6079 {
6080 int ret = 0;
6081 struct net_device *dev = sp->dev;
6082 int err = 0;
6083
6084 if (sp->intr_type == MSI)
6085 ret = s2io_enable_msi(sp);
6086 else if (sp->intr_type == MSI_X)
6087 ret = s2io_enable_msi_x(sp);
6088 if (ret) {
6089 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6090 sp->intr_type = INTA;
6091 }
6092
6093 /* Store the values of the MSIX table in the struct s2io_nic structure */
6094 store_xmsi_data(sp);
6095
6096 /* After proper initialization of H/W, register ISR */
6097 if (sp->intr_type == MSI) {
6098 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6099 IRQF_SHARED, sp->name, dev);
6100 if (err) {
6101 pci_disable_msi(sp->pdev);
6102 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6103 dev->name);
6104 return -1;
6105 }
6106 }
6107 if (sp->intr_type == MSI_X) {
6108 int i;
6109
6110 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6111 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6112 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6113 dev->name, i);
6114 err = request_irq(sp->entries[i].vector,
6115 s2io_msix_fifo_handle, 0, sp->desc[i],
6116 sp->s2io_entries[i].arg);
6117 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6118 (unsigned long long)sp->msix_info[i].addr);
6119 } else {
6120 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6121 dev->name, i);
6122 err = request_irq(sp->entries[i].vector,
6123 s2io_msix_ring_handle, 0, sp->desc[i],
6124 sp->s2io_entries[i].arg);
6125 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6126 (unsigned long long)sp->msix_info[i].addr);
6127 }
6128 if (err) {
6129 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6130 "failed\n", dev->name, i);
6131 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6132 return -1;
6133 }
6134 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6135 }
6136 }
6137 if (sp->intr_type == INTA) {
6138 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6139 sp->name, dev);
6140 if (err) {
6141 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6142 dev->name);
6143 return -1;
6144 }
6145 }
6146 return 0;
6147 }
6148 static void s2io_rem_isr(struct s2io_nic * sp)
6149 {
6150 int cnt = 0;
6151 struct net_device *dev = sp->dev;
6152
6153 if (sp->intr_type == MSI_X) {
6154 int i;
6155 u16 msi_control;
6156
6157 for (i=1; (sp->s2io_entries[i].in_use ==
6158 MSIX_REGISTERED_SUCCESS); i++) {
6159 int vector = sp->entries[i].vector;
6160 void *arg = sp->s2io_entries[i].arg;
6161
6162 free_irq(vector, arg);
6163 }
6164 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6165 msi_control &= 0xFFFE; /* Disable MSI */
6166 pci_write_config_word(sp->pdev, 0x42, msi_control);
6167
6168 pci_disable_msix(sp->pdev);
6169 } else {
6170 free_irq(sp->pdev->irq, dev);
6171 if (sp->intr_type == MSI) {
6172 u16 val;
6173
6174 pci_disable_msi(sp->pdev);
6175 pci_read_config_word(sp->pdev, 0x4c, &val);
6176 val ^= 0x1;
6177 pci_write_config_word(sp->pdev, 0x4c, val);
6178 }
6179 }
6180 /* Waiting till all Interrupt handlers are complete */
6181 cnt = 0;
6182 do {
6183 msleep(10);
6184 if (!atomic_read(&sp->isr_cnt))
6185 break;
6186 cnt++;
6187 } while(cnt < 5);
6188 }
6189
6190 static void s2io_card_down(struct s2io_nic * sp)
6191 {
6192 int cnt = 0;
6193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6194 unsigned long flags;
6195 register u64 val64 = 0;
6196
6197 del_timer_sync(&sp->alarm_timer);
6198 /* If s2io_set_link task is executing, wait till it completes. */
6199 while (test_and_set_bit(0, &(sp->link_state))) {
6200 msleep(50);
6201 }
6202 atomic_set(&sp->card_state, CARD_DOWN);
6203
6204 /* disable Tx and Rx traffic on the NIC */
6205 stop_nic(sp);
6206
6207 s2io_rem_isr(sp);
6208
6209 /* Kill tasklet. */
6210 tasklet_kill(&sp->task);
6211
6212 /* Check if the device is Quiescent and then Reset the NIC */
6213 do {
6214 /* As per the HW requirement we need to replenish the
6215 * receive buffer to avoid the ring bump. Since there is
6216 * no intention of processing the Rx frame at this pointwe are
6217 * just settting the ownership bit of rxd in Each Rx
6218 * ring to HW and set the appropriate buffer size
6219 * based on the ring mode
6220 */
6221 rxd_owner_bit_reset(sp);
6222
6223 val64 = readq(&bar0->adapter_status);
6224 if (verify_xena_quiescence(sp)) {
6225 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6226 break;
6227 }
6228
6229 msleep(50);
6230 cnt++;
6231 if (cnt == 10) {
6232 DBG_PRINT(ERR_DBG,
6233 "s2io_close:Device not Quiescent ");
6234 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6235 (unsigned long long) val64);
6236 break;
6237 }
6238 } while (1);
6239 s2io_reset(sp);
6240
6241 spin_lock_irqsave(&sp->tx_lock, flags);
6242 /* Free all Tx buffers */
6243 free_tx_buffers(sp);
6244 spin_unlock_irqrestore(&sp->tx_lock, flags);
6245
6246 /* Free all Rx buffers */
6247 spin_lock_irqsave(&sp->rx_lock, flags);
6248 free_rx_buffers(sp);
6249 spin_unlock_irqrestore(&sp->rx_lock, flags);
6250
6251 clear_bit(0, &(sp->link_state));
6252 }
6253
6254 static int s2io_card_up(struct s2io_nic * sp)
6255 {
6256 int i, ret = 0;
6257 struct mac_info *mac_control;
6258 struct config_param *config;
6259 struct net_device *dev = (struct net_device *) sp->dev;
6260 u16 interruptible;
6261
6262 /* Initialize the H/W I/O registers */
6263 if (init_nic(sp) != 0) {
6264 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6265 dev->name);
6266 s2io_reset(sp);
6267 return -ENODEV;
6268 }
6269
6270 /*
6271 * Initializing the Rx buffers. For now we are considering only 1
6272 * Rx ring and initializing buffers into 30 Rx blocks
6273 */
6274 mac_control = &sp->mac_control;
6275 config = &sp->config;
6276
6277 for (i = 0; i < config->rx_ring_num; i++) {
6278 if ((ret = fill_rx_buffers(sp, i))) {
6279 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6280 dev->name);
6281 s2io_reset(sp);
6282 free_rx_buffers(sp);
6283 return -ENOMEM;
6284 }
6285 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6286 atomic_read(&sp->rx_bufs_left[i]));
6287 }
6288 /* Maintain the state prior to the open */
6289 if (sp->promisc_flg)
6290 sp->promisc_flg = 0;
6291 if (sp->m_cast_flg) {
6292 sp->m_cast_flg = 0;
6293 sp->all_multi_pos= 0;
6294 }
6295
6296 /* Setting its receive mode */
6297 s2io_set_multicast(dev);
6298
6299 if (sp->lro) {
6300 /* Initialize max aggregatable pkts per session based on MTU */
6301 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6302 /* Check if we can use(if specified) user provided value */
6303 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6304 sp->lro_max_aggr_per_sess = lro_max_pkts;
6305 }
6306
6307 /* Enable Rx Traffic and interrupts on the NIC */
6308 if (start_nic(sp)) {
6309 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6310 s2io_reset(sp);
6311 free_rx_buffers(sp);
6312 return -ENODEV;
6313 }
6314
6315 /* Add interrupt service routine */
6316 if (s2io_add_isr(sp) != 0) {
6317 if (sp->intr_type == MSI_X)
6318 s2io_rem_isr(sp);
6319 s2io_reset(sp);
6320 free_rx_buffers(sp);
6321 return -ENODEV;
6322 }
6323
6324 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6325
6326 /* Enable tasklet for the device */
6327 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6328
6329 /* Enable select interrupts */
6330 if (sp->intr_type != INTA)
6331 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6332 else {
6333 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6334 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6335 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6336 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6337 }
6338
6339
6340 atomic_set(&sp->card_state, CARD_UP);
6341 return 0;
6342 }
6343
6344 /**
6345 * s2io_restart_nic - Resets the NIC.
6346 * @data : long pointer to the device private structure
6347 * Description:
6348 * This function is scheduled to be run by the s2io_tx_watchdog
6349 * function after 0.5 secs to reset the NIC. The idea is to reduce
6350 * the run time of the watch dog routine which is run holding a
6351 * spin lock.
6352 */
6353
6354 static void s2io_restart_nic(struct work_struct *work)
6355 {
6356 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6357 struct net_device *dev = sp->dev;
6358
6359 s2io_card_down(sp);
6360 if (s2io_card_up(sp)) {
6361 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6362 dev->name);
6363 }
6364 netif_wake_queue(dev);
6365 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6366 dev->name);
6367
6368 }
6369
6370 /**
6371 * s2io_tx_watchdog - Watchdog for transmit side.
6372 * @dev : Pointer to net device structure
6373 * Description:
6374 * This function is triggered if the Tx Queue is stopped
6375 * for a pre-defined amount of time when the Interface is still up.
6376 * If the Interface is jammed in such a situation, the hardware is
6377 * reset (by s2io_close) and restarted again (by s2io_open) to
6378 * overcome any problem that might have been caused in the hardware.
6379 * Return value:
6380 * void
6381 */
6382
6383 static void s2io_tx_watchdog(struct net_device *dev)
6384 {
6385 struct s2io_nic *sp = dev->priv;
6386
6387 if (netif_carrier_ok(dev)) {
6388 schedule_work(&sp->rst_timer_task);
6389 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6390 }
6391 }
6392
6393 /**
6394 * rx_osm_handler - To perform some OS related operations on SKB.
6395 * @sp: private member of the device structure,pointer to s2io_nic structure.
6396 * @skb : the socket buffer pointer.
6397 * @len : length of the packet
6398 * @cksum : FCS checksum of the frame.
6399 * @ring_no : the ring from which this RxD was extracted.
6400 * Description:
6401 * This function is called by the Rx interrupt serivce routine to perform
6402 * some OS related operations on the SKB before passing it to the upper
6403 * layers. It mainly checks if the checksum is OK, if so adds it to the
6404 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6405 * to the upper layer. If the checksum is wrong, it increments the Rx
6406 * packet error count, frees the SKB and returns error.
6407 * Return value:
6408 * SUCCESS on success and -1 on failure.
6409 */
6410 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6411 {
6412 struct s2io_nic *sp = ring_data->nic;
6413 struct net_device *dev = (struct net_device *) sp->dev;
6414 struct sk_buff *skb = (struct sk_buff *)
6415 ((unsigned long) rxdp->Host_Control);
6416 int ring_no = ring_data->ring_no;
6417 u16 l3_csum, l4_csum;
6418 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6419 struct lro *lro;
6420
6421 skb->dev = dev;
6422
6423 if (err) {
6424 /* Check for parity error */
6425 if (err & 0x1) {
6426 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6427 }
6428
6429 /*
6430 * Drop the packet if bad transfer code. Exception being
6431 * 0x5, which could be due to unsupported IPv6 extension header.
6432 * In this case, we let stack handle the packet.
6433 * Note that in this case, since checksum will be incorrect,
6434 * stack will validate the same.
6435 */
6436 if (err && ((err >> 48) != 0x5)) {
6437 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6438 dev->name, err);
6439 sp->stats.rx_crc_errors++;
6440 dev_kfree_skb(skb);
6441 atomic_dec(&sp->rx_bufs_left[ring_no]);
6442 rxdp->Host_Control = 0;
6443 return 0;
6444 }
6445 }
6446
6447 /* Updating statistics */
6448 rxdp->Host_Control = 0;
6449 sp->rx_pkt_count++;
6450 sp->stats.rx_packets++;
6451 if (sp->rxd_mode == RXD_MODE_1) {
6452 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6453
6454 sp->stats.rx_bytes += len;
6455 skb_put(skb, len);
6456
6457 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6458 int get_block = ring_data->rx_curr_get_info.block_index;
6459 int get_off = ring_data->rx_curr_get_info.offset;
6460 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6461 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6462 unsigned char *buff = skb_push(skb, buf0_len);
6463
6464 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6465 sp->stats.rx_bytes += buf0_len + buf2_len;
6466 memcpy(buff, ba->ba_0, buf0_len);
6467
6468 if (sp->rxd_mode == RXD_MODE_3A) {
6469 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6470
6471 skb_put(skb, buf1_len);
6472 skb->len += buf2_len;
6473 skb->data_len += buf2_len;
6474 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6475 sp->stats.rx_bytes += buf1_len;
6476
6477 } else
6478 skb_put(skb, buf2_len);
6479 }
6480
6481 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6482 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6483 (sp->rx_csum)) {
6484 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6485 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6486 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6487 /*
6488 * NIC verifies if the Checksum of the received
6489 * frame is Ok or not and accordingly returns
6490 * a flag in the RxD.
6491 */
6492 skb->ip_summed = CHECKSUM_UNNECESSARY;
6493 if (sp->lro) {
6494 u32 tcp_len;
6495 u8 *tcp;
6496 int ret = 0;
6497
6498 ret = s2io_club_tcp_session(skb->data, &tcp,
6499 &tcp_len, &lro, rxdp, sp);
6500 switch (ret) {
6501 case 3: /* Begin anew */
6502 lro->parent = skb;
6503 goto aggregate;
6504 case 1: /* Aggregate */
6505 {
6506 lro_append_pkt(sp, lro,
6507 skb, tcp_len);
6508 goto aggregate;
6509 }
6510 case 4: /* Flush session */
6511 {
6512 lro_append_pkt(sp, lro,
6513 skb, tcp_len);
6514 queue_rx_frame(lro->parent);
6515 clear_lro_session(lro);
6516 sp->mac_control.stats_info->
6517 sw_stat.flush_max_pkts++;
6518 goto aggregate;
6519 }
6520 case 2: /* Flush both */
6521 lro->parent->data_len =
6522 lro->frags_len;
6523 sp->mac_control.stats_info->
6524 sw_stat.sending_both++;
6525 queue_rx_frame(lro->parent);
6526 clear_lro_session(lro);
6527 goto send_up;
6528 case 0: /* sessions exceeded */
6529 case -1: /* non-TCP or not
6530 * L2 aggregatable
6531 */
6532 case 5: /*
6533 * First pkt in session not
6534 * L3/L4 aggregatable
6535 */
6536 break;
6537 default:
6538 DBG_PRINT(ERR_DBG,
6539 "%s: Samadhana!!\n",
6540 __FUNCTION__);
6541 BUG();
6542 }
6543 }
6544 } else {
6545 /*
6546 * Packet with erroneous checksum, let the
6547 * upper layers deal with it.
6548 */
6549 skb->ip_summed = CHECKSUM_NONE;
6550 }
6551 } else {
6552 skb->ip_summed = CHECKSUM_NONE;
6553 }
6554
6555 if (!sp->lro) {
6556 skb->protocol = eth_type_trans(skb, dev);
6557 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6558 /* Queueing the vlan frame to the upper layer */
6559 if (napi)
6560 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6561 RXD_GET_VLAN_TAG(rxdp->Control_2));
6562 else
6563 vlan_hwaccel_rx(skb, sp->vlgrp,
6564 RXD_GET_VLAN_TAG(rxdp->Control_2));
6565 } else {
6566 if (napi)
6567 netif_receive_skb(skb);
6568 else
6569 netif_rx(skb);
6570 }
6571 } else {
6572 send_up:
6573 queue_rx_frame(skb);
6574 }
6575 dev->last_rx = jiffies;
6576 aggregate:
6577 atomic_dec(&sp->rx_bufs_left[ring_no]);
6578 return SUCCESS;
6579 }
6580
6581 /**
6582 * s2io_link - stops/starts the Tx queue.
6583 * @sp : private member of the device structure, which is a pointer to the
6584 * s2io_nic structure.
6585 * @link : inidicates whether link is UP/DOWN.
6586 * Description:
6587 * This function stops/starts the Tx queue depending on whether the link
6588 * status of the NIC is is down or up. This is called by the Alarm
6589 * interrupt handler whenever a link change interrupt comes up.
6590 * Return value:
6591 * void.
6592 */
6593
6594 static void s2io_link(struct s2io_nic * sp, int link)
6595 {
6596 struct net_device *dev = (struct net_device *) sp->dev;
6597
6598 if (link != sp->last_link_state) {
6599 if (link == LINK_DOWN) {
6600 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6601 netif_carrier_off(dev);
6602 } else {
6603 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6604 netif_carrier_on(dev);
6605 }
6606 }
6607 sp->last_link_state = link;
6608 }
6609
6610 /**
6611 * get_xena_rev_id - to identify revision ID of xena.
6612 * @pdev : PCI Dev structure
6613 * Description:
6614 * Function to identify the Revision ID of xena.
6615 * Return value:
6616 * returns the revision ID of the device.
6617 */
6618
6619 static int get_xena_rev_id(struct pci_dev *pdev)
6620 {
6621 u8 id = 0;
6622 int ret;
6623 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6624 return id;
6625 }
6626
6627 /**
6628 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6629 * @sp : private member of the device structure, which is a pointer to the
6630 * s2io_nic structure.
6631 * Description:
6632 * This function initializes a few of the PCI and PCI-X configuration registers
6633 * with recommended values.
6634 * Return value:
6635 * void
6636 */
6637
6638 static void s2io_init_pci(struct s2io_nic * sp)
6639 {
6640 u16 pci_cmd = 0, pcix_cmd = 0;
6641
6642 /* Enable Data Parity Error Recovery in PCI-X command register. */
6643 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6644 &(pcix_cmd));
6645 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6646 (pcix_cmd | 1));
6647 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6648 &(pcix_cmd));
6649
6650 /* Set the PErr Response bit in PCI command register. */
6651 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6652 pci_write_config_word(sp->pdev, PCI_COMMAND,
6653 (pci_cmd | PCI_COMMAND_PARITY));
6654 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6655 }
6656
6657 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6658 {
6659 if ( tx_fifo_num > 8) {
6660 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6661 "supported\n");
6662 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6663 tx_fifo_num = 8;
6664 }
6665 if ( rx_ring_num > 8) {
6666 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6667 "supported\n");
6668 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6669 rx_ring_num = 8;
6670 }
6671 if (*dev_intr_type != INTA)
6672 napi = 0;
6673
6674 #ifndef CONFIG_PCI_MSI
6675 if (*dev_intr_type != INTA) {
6676 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6677 "MSI/MSI-X. Defaulting to INTA\n");
6678 *dev_intr_type = INTA;
6679 }
6680 #else
6681 if (*dev_intr_type > MSI_X) {
6682 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6683 "Defaulting to INTA\n");
6684 *dev_intr_type = INTA;
6685 }
6686 #endif
6687 if ((*dev_intr_type == MSI_X) &&
6688 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6689 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6690 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6691 "Defaulting to INTA\n");
6692 *dev_intr_type = INTA;
6693 }
6694 if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6695 napi = 0;
6696 if (rx_ring_mode > 3) {
6697 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6698 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6699 rx_ring_mode = 3;
6700 }
6701 return SUCCESS;
6702 }
6703
6704 /**
6705 * s2io_init_nic - Initialization of the adapter .
6706 * @pdev : structure containing the PCI related information of the device.
6707 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6708 * Description:
6709 * The function initializes an adapter identified by the pci_dec structure.
6710 * All OS related initialization including memory and device structure and
6711 * initlaization of the device private variable is done. Also the swapper
6712 * control register is initialized to enable read and write into the I/O
6713 * registers of the device.
6714 * Return value:
6715 * returns 0 on success and negative on failure.
6716 */
6717
6718 static int __devinit
6719 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6720 {
6721 struct s2io_nic *sp;
6722 struct net_device *dev;
6723 int i, j, ret;
6724 int dma_flag = FALSE;
6725 u32 mac_up, mac_down;
6726 u64 val64 = 0, tmp64 = 0;
6727 struct XENA_dev_config __iomem *bar0 = NULL;
6728 u16 subid;
6729 struct mac_info *mac_control;
6730 struct config_param *config;
6731 int mode;
6732 u8 dev_intr_type = intr_type;
6733
6734 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6735 return ret;
6736
6737 if ((ret = pci_enable_device(pdev))) {
6738 DBG_PRINT(ERR_DBG,
6739 "s2io_init_nic: pci_enable_device failed\n");
6740 return ret;
6741 }
6742
6743 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6744 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6745 dma_flag = TRUE;
6746 if (pci_set_consistent_dma_mask
6747 (pdev, DMA_64BIT_MASK)) {
6748 DBG_PRINT(ERR_DBG,
6749 "Unable to obtain 64bit DMA for \
6750 consistent allocations\n");
6751 pci_disable_device(pdev);
6752 return -ENOMEM;
6753 }
6754 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6755 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6756 } else {
6757 pci_disable_device(pdev);
6758 return -ENOMEM;
6759 }
6760 if (dev_intr_type != MSI_X) {
6761 if (pci_request_regions(pdev, s2io_driver_name)) {
6762 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6763 pci_disable_device(pdev);
6764 return -ENODEV;
6765 }
6766 }
6767 else {
6768 if (!(request_mem_region(pci_resource_start(pdev, 0),
6769 pci_resource_len(pdev, 0), s2io_driver_name))) {
6770 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6771 pci_disable_device(pdev);
6772 return -ENODEV;
6773 }
6774 if (!(request_mem_region(pci_resource_start(pdev, 2),
6775 pci_resource_len(pdev, 2), s2io_driver_name))) {
6776 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6777 release_mem_region(pci_resource_start(pdev, 0),
6778 pci_resource_len(pdev, 0));
6779 pci_disable_device(pdev);
6780 return -ENODEV;
6781 }
6782 }
6783
6784 dev = alloc_etherdev(sizeof(struct s2io_nic));
6785 if (dev == NULL) {
6786 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6787 pci_disable_device(pdev);
6788 pci_release_regions(pdev);
6789 return -ENODEV;
6790 }
6791
6792 pci_set_master(pdev);
6793 pci_set_drvdata(pdev, dev);
6794 SET_MODULE_OWNER(dev);
6795 SET_NETDEV_DEV(dev, &pdev->dev);
6796
6797 /* Private member variable initialized to s2io NIC structure */
6798 sp = dev->priv;
6799 memset(sp, 0, sizeof(struct s2io_nic));
6800 sp->dev = dev;
6801 sp->pdev = pdev;
6802 sp->high_dma_flag = dma_flag;
6803 sp->device_enabled_once = FALSE;
6804 if (rx_ring_mode == 1)
6805 sp->rxd_mode = RXD_MODE_1;
6806 if (rx_ring_mode == 2)
6807 sp->rxd_mode = RXD_MODE_3B;
6808 if (rx_ring_mode == 3)
6809 sp->rxd_mode = RXD_MODE_3A;
6810
6811 sp->intr_type = dev_intr_type;
6812
6813 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6814 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6815 sp->device_type = XFRAME_II_DEVICE;
6816 else
6817 sp->device_type = XFRAME_I_DEVICE;
6818
6819 sp->lro = lro;
6820
6821 /* Initialize some PCI/PCI-X fields of the NIC. */
6822 s2io_init_pci(sp);
6823
6824 /*
6825 * Setting the device configuration parameters.
6826 * Most of these parameters can be specified by the user during
6827 * module insertion as they are module loadable parameters. If
6828 * these parameters are not not specified during load time, they
6829 * are initialized with default values.
6830 */
6831 mac_control = &sp->mac_control;
6832 config = &sp->config;
6833
6834 /* Tx side parameters. */
6835 config->tx_fifo_num = tx_fifo_num;
6836 for (i = 0; i < MAX_TX_FIFOS; i++) {
6837 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6838 config->tx_cfg[i].fifo_priority = i;
6839 }
6840
6841 /* mapping the QoS priority to the configured fifos */
6842 for (i = 0; i < MAX_TX_FIFOS; i++)
6843 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6844
6845 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6846 for (i = 0; i < config->tx_fifo_num; i++) {
6847 config->tx_cfg[i].f_no_snoop =
6848 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6849 if (config->tx_cfg[i].fifo_len < 65) {
6850 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6851 break;
6852 }
6853 }
6854 /* + 2 because one Txd for skb->data and one Txd for UFO */
6855 config->max_txds = MAX_SKB_FRAGS + 2;
6856
6857 /* Rx side parameters. */
6858 config->rx_ring_num = rx_ring_num;
6859 for (i = 0; i < MAX_RX_RINGS; i++) {
6860 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6861 (rxd_count[sp->rxd_mode] + 1);
6862 config->rx_cfg[i].ring_priority = i;
6863 }
6864
6865 for (i = 0; i < rx_ring_num; i++) {
6866 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6867 config->rx_cfg[i].f_no_snoop =
6868 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6869 }
6870
6871 /* Setting Mac Control parameters */
6872 mac_control->rmac_pause_time = rmac_pause_time;
6873 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6874 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6875
6876
6877 /* Initialize Ring buffer parameters. */
6878 for (i = 0; i < config->rx_ring_num; i++)
6879 atomic_set(&sp->rx_bufs_left[i], 0);
6880
6881 /* Initialize the number of ISRs currently running */
6882 atomic_set(&sp->isr_cnt, 0);
6883
6884 /* initialize the shared memory used by the NIC and the host */
6885 if (init_shared_mem(sp)) {
6886 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6887 dev->name);
6888 ret = -ENOMEM;
6889 goto mem_alloc_failed;
6890 }
6891
6892 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6893 pci_resource_len(pdev, 0));
6894 if (!sp->bar0) {
6895 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6896 dev->name);
6897 ret = -ENOMEM;
6898 goto bar0_remap_failed;
6899 }
6900
6901 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6902 pci_resource_len(pdev, 2));
6903 if (!sp->bar1) {
6904 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6905 dev->name);
6906 ret = -ENOMEM;
6907 goto bar1_remap_failed;
6908 }
6909
6910 dev->irq = pdev->irq;
6911 dev->base_addr = (unsigned long) sp->bar0;
6912
6913 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6914 for (j = 0; j < MAX_TX_FIFOS; j++) {
6915 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
6916 (sp->bar1 + (j * 0x00020000));
6917 }
6918
6919 /* Driver entry points */
6920 dev->open = &s2io_open;
6921 dev->stop = &s2io_close;
6922 dev->hard_start_xmit = &s2io_xmit;
6923 dev->get_stats = &s2io_get_stats;
6924 dev->set_multicast_list = &s2io_set_multicast;
6925 dev->do_ioctl = &s2io_ioctl;
6926 dev->change_mtu = &s2io_change_mtu;
6927 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6928 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6929 dev->vlan_rx_register = s2io_vlan_rx_register;
6930 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6931
6932 /*
6933 * will use eth_mac_addr() for dev->set_mac_address
6934 * mac address will be set every time dev->open() is called
6935 */
6936 dev->poll = s2io_poll;
6937 dev->weight = 32;
6938
6939 #ifdef CONFIG_NET_POLL_CONTROLLER
6940 dev->poll_controller = s2io_netpoll;
6941 #endif
6942
6943 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6944 if (sp->high_dma_flag == TRUE)
6945 dev->features |= NETIF_F_HIGHDMA;
6946 dev->features |= NETIF_F_TSO;
6947 dev->features |= NETIF_F_TSO6;
6948 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
6949 dev->features |= NETIF_F_UFO;
6950 dev->features |= NETIF_F_HW_CSUM;
6951 }
6952
6953 dev->tx_timeout = &s2io_tx_watchdog;
6954 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6955 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6956 INIT_WORK(&sp->set_link_task, s2io_set_link);
6957
6958 pci_save_state(sp->pdev);
6959
6960 /* Setting swapper control on the NIC, for proper reset operation */
6961 if (s2io_set_swapper(sp)) {
6962 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6963 dev->name);
6964 ret = -EAGAIN;
6965 goto set_swap_failed;
6966 }
6967
6968 /* Verify if the Herc works on the slot its placed into */
6969 if (sp->device_type & XFRAME_II_DEVICE) {
6970 mode = s2io_verify_pci_mode(sp);
6971 if (mode < 0) {
6972 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6973 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6974 ret = -EBADSLT;
6975 goto set_swap_failed;
6976 }
6977 }
6978
6979 /* Not needed for Herc */
6980 if (sp->device_type & XFRAME_I_DEVICE) {
6981 /*
6982 * Fix for all "FFs" MAC address problems observed on
6983 * Alpha platforms
6984 */
6985 fix_mac_address(sp);
6986 s2io_reset(sp);
6987 }
6988
6989 /*
6990 * MAC address initialization.
6991 * For now only one mac address will be read and used.
6992 */
6993 bar0 = sp->bar0;
6994 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6995 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6996 writeq(val64, &bar0->rmac_addr_cmd_mem);
6997 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6998 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
6999 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7000 mac_down = (u32) tmp64;
7001 mac_up = (u32) (tmp64 >> 32);
7002
7003 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7004
7005 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7006 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7007 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7008 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7009 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7010 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7011
7012 /* Set the factory defined MAC address initially */
7013 dev->addr_len = ETH_ALEN;
7014 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7015
7016 /* reset Nic and bring it to known state */
7017 s2io_reset(sp);
7018
7019 /*
7020 * Initialize the tasklet status and link state flags
7021 * and the card state parameter
7022 */
7023 atomic_set(&(sp->card_state), 0);
7024 sp->tasklet_status = 0;
7025 sp->link_state = 0;
7026
7027 /* Initialize spinlocks */
7028 spin_lock_init(&sp->tx_lock);
7029
7030 if (!napi)
7031 spin_lock_init(&sp->put_lock);
7032 spin_lock_init(&sp->rx_lock);
7033
7034 /*
7035 * SXE-002: Configure link and activity LED to init state
7036 * on driver load.
7037 */
7038 subid = sp->pdev->subsystem_device;
7039 if ((subid & 0xFF) >= 0x07) {
7040 val64 = readq(&bar0->gpio_control);
7041 val64 |= 0x0000800000000000ULL;
7042 writeq(val64, &bar0->gpio_control);
7043 val64 = 0x0411040400000000ULL;
7044 writeq(val64, (void __iomem *) bar0 + 0x2700);
7045 val64 = readq(&bar0->gpio_control);
7046 }
7047
7048 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7049
7050 if (register_netdev(dev)) {
7051 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7052 ret = -ENODEV;
7053 goto register_failed;
7054 }
7055 s2io_vpd_read(sp);
7056 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7057 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7058 sp->product_name, get_xena_rev_id(sp->pdev));
7059 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7060 s2io_driver_version);
7061 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7062 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7063 sp->def_mac_addr[0].mac_addr[0],
7064 sp->def_mac_addr[0].mac_addr[1],
7065 sp->def_mac_addr[0].mac_addr[2],
7066 sp->def_mac_addr[0].mac_addr[3],
7067 sp->def_mac_addr[0].mac_addr[4],
7068 sp->def_mac_addr[0].mac_addr[5]);
7069 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7070 if (sp->device_type & XFRAME_II_DEVICE) {
7071 mode = s2io_print_pci_mode(sp);
7072 if (mode < 0) {
7073 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7074 ret = -EBADSLT;
7075 unregister_netdev(dev);
7076 goto set_swap_failed;
7077 }
7078 }
7079 switch(sp->rxd_mode) {
7080 case RXD_MODE_1:
7081 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7082 dev->name);
7083 break;
7084 case RXD_MODE_3B:
7085 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7086 dev->name);
7087 break;
7088 case RXD_MODE_3A:
7089 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7090 dev->name);
7091 break;
7092 }
7093
7094 if (napi)
7095 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7096 switch(sp->intr_type) {
7097 case INTA:
7098 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7099 break;
7100 case MSI:
7101 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7102 break;
7103 case MSI_X:
7104 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7105 break;
7106 }
7107 if (sp->lro)
7108 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7109 dev->name);
7110 if (ufo)
7111 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7112 " enabled\n", dev->name);
7113 /* Initialize device name */
7114 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7115
7116 /* Initialize bimodal Interrupts */
7117 sp->config.bimodal = bimodal;
7118 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7119 sp->config.bimodal = 0;
7120 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7121 dev->name);
7122 }
7123
7124 /*
7125 * Make Link state as off at this point, when the Link change
7126 * interrupt comes the state will be automatically changed to
7127 * the right state.
7128 */
7129 netif_carrier_off(dev);
7130
7131 return 0;
7132
7133 register_failed:
7134 set_swap_failed:
7135 iounmap(sp->bar1);
7136 bar1_remap_failed:
7137 iounmap(sp->bar0);
7138 bar0_remap_failed:
7139 mem_alloc_failed:
7140 free_shared_mem(sp);
7141 pci_disable_device(pdev);
7142 if (dev_intr_type != MSI_X)
7143 pci_release_regions(pdev);
7144 else {
7145 release_mem_region(pci_resource_start(pdev, 0),
7146 pci_resource_len(pdev, 0));
7147 release_mem_region(pci_resource_start(pdev, 2),
7148 pci_resource_len(pdev, 2));
7149 }
7150 pci_set_drvdata(pdev, NULL);
7151 free_netdev(dev);
7152
7153 return ret;
7154 }
7155
7156 /**
7157 * s2io_rem_nic - Free the PCI device
7158 * @pdev: structure containing the PCI related information of the device.
7159 * Description: This function is called by the Pci subsystem to release a
7160 * PCI device and free up all resource held up by the device. This could
7161 * be in response to a Hot plug event or when the driver is to be removed
7162 * from memory.
7163 */
7164
7165 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7166 {
7167 struct net_device *dev =
7168 (struct net_device *) pci_get_drvdata(pdev);
7169 struct s2io_nic *sp;
7170
7171 if (dev == NULL) {
7172 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7173 return;
7174 }
7175
7176 sp = dev->priv;
7177 unregister_netdev(dev);
7178
7179 free_shared_mem(sp);
7180 iounmap(sp->bar0);
7181 iounmap(sp->bar1);
7182 if (sp->intr_type != MSI_X)
7183 pci_release_regions(pdev);
7184 else {
7185 release_mem_region(pci_resource_start(pdev, 0),
7186 pci_resource_len(pdev, 0));
7187 release_mem_region(pci_resource_start(pdev, 2),
7188 pci_resource_len(pdev, 2));
7189 }
7190 pci_set_drvdata(pdev, NULL);
7191 free_netdev(dev);
7192 pci_disable_device(pdev);
7193 }
7194
7195 /**
7196 * s2io_starter - Entry point for the driver
7197 * Description: This function is the entry point for the driver. It verifies
7198 * the module loadable parameters and initializes PCI configuration space.
7199 */
7200
7201 int __init s2io_starter(void)
7202 {
7203 return pci_register_driver(&s2io_driver);
7204 }
7205
7206 /**
7207 * s2io_closer - Cleanup routine for the driver
7208 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7209 */
7210
7211 static __exit void s2io_closer(void)
7212 {
7213 pci_unregister_driver(&s2io_driver);
7214 DBG_PRINT(INIT_DBG, "cleanup done\n");
7215 }
7216
7217 module_init(s2io_starter);
7218 module_exit(s2io_closer);
7219
7220 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7221 struct tcphdr **tcp, struct RxD_t *rxdp)
7222 {
7223 int ip_off;
7224 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7225
7226 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7227 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7228 __FUNCTION__);
7229 return -1;
7230 }
7231
7232 /* TODO:
7233 * By default the VLAN field in the MAC is stripped by the card, if this
7234 * feature is turned off in rx_pa_cfg register, then the ip_off field
7235 * has to be shifted by a further 2 bytes
7236 */
7237 switch (l2_type) {
7238 case 0: /* DIX type */
7239 case 4: /* DIX type with VLAN */
7240 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7241 break;
7242 /* LLC, SNAP etc are considered non-mergeable */
7243 default:
7244 return -1;
7245 }
7246
7247 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7248 ip_len = (u8)((*ip)->ihl);
7249 ip_len <<= 2;
7250 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7251
7252 return 0;
7253 }
7254
7255 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7256 struct tcphdr *tcp)
7257 {
7258 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7259 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7260 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7261 return -1;
7262 return 0;
7263 }
7264
7265 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7266 {
7267 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7268 }
7269
7270 static void initiate_new_session(struct lro *lro, u8 *l2h,
7271 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7272 {
7273 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7274 lro->l2h = l2h;
7275 lro->iph = ip;
7276 lro->tcph = tcp;
7277 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7278 lro->tcp_ack = ntohl(tcp->ack_seq);
7279 lro->sg_num = 1;
7280 lro->total_len = ntohs(ip->tot_len);
7281 lro->frags_len = 0;
7282 /*
7283 * check if we saw TCP timestamp. Other consistency checks have
7284 * already been done.
7285 */
7286 if (tcp->doff == 8) {
7287 u32 *ptr;
7288 ptr = (u32 *)(tcp+1);
7289 lro->saw_ts = 1;
7290 lro->cur_tsval = *(ptr+1);
7291 lro->cur_tsecr = *(ptr+2);
7292 }
7293 lro->in_use = 1;
7294 }
7295
7296 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7297 {
7298 struct iphdr *ip = lro->iph;
7299 struct tcphdr *tcp = lro->tcph;
7300 __sum16 nchk;
7301 struct stat_block *statinfo = sp->mac_control.stats_info;
7302 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7303
7304 /* Update L3 header */
7305 ip->tot_len = htons(lro->total_len);
7306 ip->check = 0;
7307 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7308 ip->check = nchk;
7309
7310 /* Update L4 header */
7311 tcp->ack_seq = lro->tcp_ack;
7312 tcp->window = lro->window;
7313
7314 /* Update tsecr field if this session has timestamps enabled */
7315 if (lro->saw_ts) {
7316 u32 *ptr = (u32 *)(tcp + 1);
7317 *(ptr+2) = lro->cur_tsecr;
7318 }
7319
7320 /* Update counters required for calculation of
7321 * average no. of packets aggregated.
7322 */
7323 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7324 statinfo->sw_stat.num_aggregations++;
7325 }
7326
7327 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7328 struct tcphdr *tcp, u32 l4_pyld)
7329 {
7330 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7331 lro->total_len += l4_pyld;
7332 lro->frags_len += l4_pyld;
7333 lro->tcp_next_seq += l4_pyld;
7334 lro->sg_num++;
7335
7336 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7337 lro->tcp_ack = tcp->ack_seq;
7338 lro->window = tcp->window;
7339
7340 if (lro->saw_ts) {
7341 u32 *ptr;
7342 /* Update tsecr and tsval from this packet */
7343 ptr = (u32 *) (tcp + 1);
7344 lro->cur_tsval = *(ptr + 1);
7345 lro->cur_tsecr = *(ptr + 2);
7346 }
7347 }
7348
7349 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7350 struct tcphdr *tcp, u32 tcp_pyld_len)
7351 {
7352 u8 *ptr;
7353
7354 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7355
7356 if (!tcp_pyld_len) {
7357 /* Runt frame or a pure ack */
7358 return -1;
7359 }
7360
7361 if (ip->ihl != 5) /* IP has options */
7362 return -1;
7363
7364 /* If we see CE codepoint in IP header, packet is not mergeable */
7365 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7366 return -1;
7367
7368 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7369 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7370 tcp->ece || tcp->cwr || !tcp->ack) {
7371 /*
7372 * Currently recognize only the ack control word and
7373 * any other control field being set would result in
7374 * flushing the LRO session
7375 */
7376 return -1;
7377 }
7378
7379 /*
7380 * Allow only one TCP timestamp option. Don't aggregate if
7381 * any other options are detected.
7382 */
7383 if (tcp->doff != 5 && tcp->doff != 8)
7384 return -1;
7385
7386 if (tcp->doff == 8) {
7387 ptr = (u8 *)(tcp + 1);
7388 while (*ptr == TCPOPT_NOP)
7389 ptr++;
7390 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7391 return -1;
7392
7393 /* Ensure timestamp value increases monotonically */
7394 if (l_lro)
7395 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7396 return -1;
7397
7398 /* timestamp echo reply should be non-zero */
7399 if (*((u32 *)(ptr+6)) == 0)
7400 return -1;
7401 }
7402
7403 return 0;
7404 }
7405
7406 static int
7407 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7408 struct RxD_t *rxdp, struct s2io_nic *sp)
7409 {
7410 struct iphdr *ip;
7411 struct tcphdr *tcph;
7412 int ret = 0, i;
7413
7414 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7415 rxdp))) {
7416 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7417 ip->saddr, ip->daddr);
7418 } else {
7419 return ret;
7420 }
7421
7422 tcph = (struct tcphdr *)*tcp;
7423 *tcp_len = get_l4_pyld_length(ip, tcph);
7424 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7425 struct lro *l_lro = &sp->lro0_n[i];
7426 if (l_lro->in_use) {
7427 if (check_for_socket_match(l_lro, ip, tcph))
7428 continue;
7429 /* Sock pair matched */
7430 *lro = l_lro;
7431
7432 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7433 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7434 "0x%x, actual 0x%x\n", __FUNCTION__,
7435 (*lro)->tcp_next_seq,
7436 ntohl(tcph->seq));
7437
7438 sp->mac_control.stats_info->
7439 sw_stat.outof_sequence_pkts++;
7440 ret = 2;
7441 break;
7442 }
7443
7444 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7445 ret = 1; /* Aggregate */
7446 else
7447 ret = 2; /* Flush both */
7448 break;
7449 }
7450 }
7451
7452 if (ret == 0) {
7453 /* Before searching for available LRO objects,
7454 * check if the pkt is L3/L4 aggregatable. If not
7455 * don't create new LRO session. Just send this
7456 * packet up.
7457 */
7458 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7459 return 5;
7460 }
7461
7462 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7463 struct lro *l_lro = &sp->lro0_n[i];
7464 if (!(l_lro->in_use)) {
7465 *lro = l_lro;
7466 ret = 3; /* Begin anew */
7467 break;
7468 }
7469 }
7470 }
7471
7472 if (ret == 0) { /* sessions exceeded */
7473 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7474 __FUNCTION__);
7475 *lro = NULL;
7476 return ret;
7477 }
7478
7479 switch (ret) {
7480 case 3:
7481 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7482 break;
7483 case 2:
7484 update_L3L4_header(sp, *lro);
7485 break;
7486 case 1:
7487 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7488 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7489 update_L3L4_header(sp, *lro);
7490 ret = 4; /* Flush the LRO */
7491 }
7492 break;
7493 default:
7494 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7495 __FUNCTION__);
7496 break;
7497 }
7498
7499 return ret;
7500 }
7501
7502 static void clear_lro_session(struct lro *lro)
7503 {
7504 static u16 lro_struct_size = sizeof(struct lro);
7505
7506 memset(lro, 0, lro_struct_size);
7507 }
7508
7509 static void queue_rx_frame(struct sk_buff *skb)
7510 {
7511 struct net_device *dev = skb->dev;
7512
7513 skb->protocol = eth_type_trans(skb, dev);
7514 if (napi)
7515 netif_receive_skb(skb);
7516 else
7517 netif_rx(skb);
7518 }
7519
7520 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7521 struct sk_buff *skb,
7522 u32 tcp_len)
7523 {
7524 struct sk_buff *first = lro->parent;
7525
7526 first->len += tcp_len;
7527 first->data_len = lro->frags_len;
7528 skb_pull(skb, (skb->len - tcp_len));
7529 if (skb_shinfo(first)->frag_list)
7530 lro->last_frag->next = skb;
7531 else
7532 skb_shinfo(first)->frag_list = skb;
7533 first->truesize += skb->truesize;
7534 lro->last_frag = skb;
7535 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7536 return;
7537 }