Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / phy / dp83640.c
1 /*
2 * Driver for the National Semiconductor DP83640 PHYTER
3 *
4 * Copyright (C) 2010 OMICRON electronics GmbH
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/phy.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/ptp_clock_kernel.h>
35
36 #include "dp83640_reg.h"
37
38 #define DP83640_PHY_ID 0x20005ce1
39 #define PAGESEL 0x13
40 #define MAX_RXTS 64
41 #define N_EXT_TS 6
42 #define N_PER_OUT 7
43 #define PSF_PTPVER 2
44 #define PSF_EVNT 0x4000
45 #define PSF_RX 0x2000
46 #define PSF_TX 0x1000
47 #define EXT_EVENT 1
48 #define CAL_EVENT 7
49 #define CAL_TRIGGER 1
50 #define DP83640_N_PINS 12
51
52 #define MII_DP83640_MICR 0x11
53 #define MII_DP83640_MISR 0x12
54
55 #define MII_DP83640_MICR_OE 0x1
56 #define MII_DP83640_MICR_IE 0x2
57
58 #define MII_DP83640_MISR_RHF_INT_EN 0x01
59 #define MII_DP83640_MISR_FHF_INT_EN 0x02
60 #define MII_DP83640_MISR_ANC_INT_EN 0x04
61 #define MII_DP83640_MISR_DUP_INT_EN 0x08
62 #define MII_DP83640_MISR_SPD_INT_EN 0x10
63 #define MII_DP83640_MISR_LINK_INT_EN 0x20
64 #define MII_DP83640_MISR_ED_INT_EN 0x40
65 #define MII_DP83640_MISR_LQ_INT_EN 0x80
66
67 /* phyter seems to miss the mark by 16 ns */
68 #define ADJTIME_FIX 16
69
70 #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */
71
72 #if defined(__BIG_ENDIAN)
73 #define ENDIAN_FLAG 0
74 #elif defined(__LITTLE_ENDIAN)
75 #define ENDIAN_FLAG PSF_ENDIAN
76 #endif
77
78 struct dp83640_skb_info {
79 int ptp_type;
80 unsigned long tmo;
81 };
82
83 struct phy_rxts {
84 u16 ns_lo; /* ns[15:0] */
85 u16 ns_hi; /* overflow[1:0], ns[29:16] */
86 u16 sec_lo; /* sec[15:0] */
87 u16 sec_hi; /* sec[31:16] */
88 u16 seqid; /* sequenceId[15:0] */
89 u16 msgtype; /* messageType[3:0], hash[11:0] */
90 };
91
92 struct phy_txts {
93 u16 ns_lo; /* ns[15:0] */
94 u16 ns_hi; /* overflow[1:0], ns[29:16] */
95 u16 sec_lo; /* sec[15:0] */
96 u16 sec_hi; /* sec[31:16] */
97 };
98
99 struct rxts {
100 struct list_head list;
101 unsigned long tmo;
102 u64 ns;
103 u16 seqid;
104 u8 msgtype;
105 u16 hash;
106 };
107
108 struct dp83640_clock;
109
110 struct dp83640_private {
111 struct list_head list;
112 struct dp83640_clock *clock;
113 struct phy_device *phydev;
114 struct delayed_work ts_work;
115 int hwts_tx_en;
116 int hwts_rx_en;
117 int layer;
118 int version;
119 /* remember state of cfg0 during calibration */
120 int cfg0;
121 /* remember the last event time stamp */
122 struct phy_txts edata;
123 /* list of rx timestamps */
124 struct list_head rxts;
125 struct list_head rxpool;
126 struct rxts rx_pool_data[MAX_RXTS];
127 /* protects above three fields from concurrent access */
128 spinlock_t rx_lock;
129 /* queues of incoming and outgoing packets */
130 struct sk_buff_head rx_queue;
131 struct sk_buff_head tx_queue;
132 };
133
134 struct dp83640_clock {
135 /* keeps the instance in the 'phyter_clocks' list */
136 struct list_head list;
137 /* we create one clock instance per MII bus */
138 struct mii_bus *bus;
139 /* protects extended registers from concurrent access */
140 struct mutex extreg_lock;
141 /* remembers which page was last selected */
142 int page;
143 /* our advertised capabilities */
144 struct ptp_clock_info caps;
145 /* protects the three fields below from concurrent access */
146 struct mutex clock_lock;
147 /* the one phyter from which we shall read */
148 struct dp83640_private *chosen;
149 /* list of the other attached phyters, not chosen */
150 struct list_head phylist;
151 /* reference to our PTP hardware clock */
152 struct ptp_clock *ptp_clock;
153 };
154
155 /* globals */
156
157 enum {
158 CALIBRATE_GPIO,
159 PEROUT_GPIO,
160 EXTTS0_GPIO,
161 EXTTS1_GPIO,
162 EXTTS2_GPIO,
163 EXTTS3_GPIO,
164 EXTTS4_GPIO,
165 EXTTS5_GPIO,
166 GPIO_TABLE_SIZE
167 };
168
169 static int chosen_phy = -1;
170 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
171 1, 2, 3, 4, 8, 9, 10, 11
172 };
173
174 module_param(chosen_phy, int, 0444);
175 module_param_array(gpio_tab, ushort, NULL, 0444);
176
177 MODULE_PARM_DESC(chosen_phy, \
178 "The address of the PHY to use for the ancillary clock features");
179 MODULE_PARM_DESC(gpio_tab, \
180 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
181
182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
183 {
184 int i, index;
185
186 for (i = 0; i < DP83640_N_PINS; i++) {
187 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
188 pd[i].index = i;
189 }
190
191 for (i = 0; i < GPIO_TABLE_SIZE; i++) {
192 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
193 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
194 return;
195 }
196 }
197
198 index = gpio_tab[CALIBRATE_GPIO] - 1;
199 pd[index].func = PTP_PF_PHYSYNC;
200 pd[index].chan = 0;
201
202 index = gpio_tab[PEROUT_GPIO] - 1;
203 pd[index].func = PTP_PF_PEROUT;
204 pd[index].chan = 0;
205
206 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
207 index = gpio_tab[i] - 1;
208 pd[index].func = PTP_PF_EXTTS;
209 pd[index].chan = i - EXTTS0_GPIO;
210 }
211 }
212
213 /* a list of clocks and a mutex to protect it */
214 static LIST_HEAD(phyter_clocks);
215 static DEFINE_MUTEX(phyter_clocks_lock);
216
217 static void rx_timestamp_work(struct work_struct *work);
218
219 /* extended register access functions */
220
221 #define BROADCAST_ADDR 31
222
223 static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
224 u16 val)
225 {
226 return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
227 }
228
229 /* Caller must hold extreg_lock. */
230 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
231 {
232 struct dp83640_private *dp83640 = phydev->priv;
233 int val;
234
235 if (dp83640->clock->page != page) {
236 broadcast_write(phydev, PAGESEL, page);
237 dp83640->clock->page = page;
238 }
239 val = phy_read(phydev, regnum);
240
241 return val;
242 }
243
244 /* Caller must hold extreg_lock. */
245 static void ext_write(int broadcast, struct phy_device *phydev,
246 int page, u32 regnum, u16 val)
247 {
248 struct dp83640_private *dp83640 = phydev->priv;
249
250 if (dp83640->clock->page != page) {
251 broadcast_write(phydev, PAGESEL, page);
252 dp83640->clock->page = page;
253 }
254 if (broadcast)
255 broadcast_write(phydev, regnum, val);
256 else
257 phy_write(phydev, regnum, val);
258 }
259
260 /* Caller must hold extreg_lock. */
261 static int tdr_write(int bc, struct phy_device *dev,
262 const struct timespec64 *ts, u16 cmd)
263 {
264 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
265 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
266 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
267 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
268
269 ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
270
271 return 0;
272 }
273
274 /* convert phy timestamps into driver timestamps */
275
276 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
277 {
278 u32 sec;
279
280 sec = p->sec_lo;
281 sec |= p->sec_hi << 16;
282
283 rxts->ns = p->ns_lo;
284 rxts->ns |= (p->ns_hi & 0x3fff) << 16;
285 rxts->ns += ((u64)sec) * 1000000000ULL;
286 rxts->seqid = p->seqid;
287 rxts->msgtype = (p->msgtype >> 12) & 0xf;
288 rxts->hash = p->msgtype & 0x0fff;
289 rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
290 }
291
292 static u64 phy2txts(struct phy_txts *p)
293 {
294 u64 ns;
295 u32 sec;
296
297 sec = p->sec_lo;
298 sec |= p->sec_hi << 16;
299
300 ns = p->ns_lo;
301 ns |= (p->ns_hi & 0x3fff) << 16;
302 ns += ((u64)sec) * 1000000000ULL;
303
304 return ns;
305 }
306
307 static int periodic_output(struct dp83640_clock *clock,
308 struct ptp_clock_request *clkreq, bool on,
309 int trigger)
310 {
311 struct dp83640_private *dp83640 = clock->chosen;
312 struct phy_device *phydev = dp83640->phydev;
313 u32 sec, nsec, pwidth;
314 u16 gpio, ptp_trig, val;
315
316 if (on) {
317 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
318 trigger);
319 if (gpio < 1)
320 return -EINVAL;
321 } else {
322 gpio = 0;
323 }
324
325 ptp_trig = TRIG_WR |
326 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
327 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
328 TRIG_PER |
329 TRIG_PULSE;
330
331 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
332
333 if (!on) {
334 val |= TRIG_DIS;
335 mutex_lock(&clock->extreg_lock);
336 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
337 ext_write(0, phydev, PAGE4, PTP_CTL, val);
338 mutex_unlock(&clock->extreg_lock);
339 return 0;
340 }
341
342 sec = clkreq->perout.start.sec;
343 nsec = clkreq->perout.start.nsec;
344 pwidth = clkreq->perout.period.sec * 1000000000UL;
345 pwidth += clkreq->perout.period.nsec;
346 pwidth /= 2;
347
348 mutex_lock(&clock->extreg_lock);
349
350 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
351
352 /*load trigger*/
353 val |= TRIG_LOAD;
354 ext_write(0, phydev, PAGE4, PTP_CTL, val);
355 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
356 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
357 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
358 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
359 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
360 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
361 /* Triggers 0 and 1 has programmable pulsewidth2 */
362 if (trigger < 2) {
363 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
364 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
365 }
366
367 /*enable trigger*/
368 val &= ~TRIG_LOAD;
369 val |= TRIG_EN;
370 ext_write(0, phydev, PAGE4, PTP_CTL, val);
371
372 mutex_unlock(&clock->extreg_lock);
373 return 0;
374 }
375
376 /* ptp clock methods */
377
378 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
379 {
380 struct dp83640_clock *clock =
381 container_of(ptp, struct dp83640_clock, caps);
382 struct phy_device *phydev = clock->chosen->phydev;
383 u64 rate;
384 int neg_adj = 0;
385 u16 hi, lo;
386
387 if (scaled_ppm < 0) {
388 neg_adj = 1;
389 scaled_ppm = -scaled_ppm;
390 }
391 rate = scaled_ppm;
392 rate <<= 13;
393 rate = div_u64(rate, 15625);
394
395 hi = (rate >> 16) & PTP_RATE_HI_MASK;
396 if (neg_adj)
397 hi |= PTP_RATE_DIR;
398
399 lo = rate & 0xffff;
400
401 mutex_lock(&clock->extreg_lock);
402
403 ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
404 ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
405
406 mutex_unlock(&clock->extreg_lock);
407
408 return 0;
409 }
410
411 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
412 {
413 struct dp83640_clock *clock =
414 container_of(ptp, struct dp83640_clock, caps);
415 struct phy_device *phydev = clock->chosen->phydev;
416 struct timespec64 ts;
417 int err;
418
419 delta += ADJTIME_FIX;
420
421 ts = ns_to_timespec64(delta);
422
423 mutex_lock(&clock->extreg_lock);
424
425 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
426
427 mutex_unlock(&clock->extreg_lock);
428
429 return err;
430 }
431
432 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
433 struct timespec64 *ts)
434 {
435 struct dp83640_clock *clock =
436 container_of(ptp, struct dp83640_clock, caps);
437 struct phy_device *phydev = clock->chosen->phydev;
438 unsigned int val[4];
439
440 mutex_lock(&clock->extreg_lock);
441
442 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
443
444 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
445 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
446 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
447 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
448
449 mutex_unlock(&clock->extreg_lock);
450
451 ts->tv_nsec = val[0] | (val[1] << 16);
452 ts->tv_sec = val[2] | (val[3] << 16);
453
454 return 0;
455 }
456
457 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
458 const struct timespec64 *ts)
459 {
460 struct dp83640_clock *clock =
461 container_of(ptp, struct dp83640_clock, caps);
462 struct phy_device *phydev = clock->chosen->phydev;
463 int err;
464
465 mutex_lock(&clock->extreg_lock);
466
467 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
468
469 mutex_unlock(&clock->extreg_lock);
470
471 return err;
472 }
473
474 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
475 struct ptp_clock_request *rq, int on)
476 {
477 struct dp83640_clock *clock =
478 container_of(ptp, struct dp83640_clock, caps);
479 struct phy_device *phydev = clock->chosen->phydev;
480 unsigned int index;
481 u16 evnt, event_num, gpio_num;
482
483 switch (rq->type) {
484 case PTP_CLK_REQ_EXTTS:
485 index = rq->extts.index;
486 if (index >= N_EXT_TS)
487 return -EINVAL;
488 event_num = EXT_EVENT + index;
489 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
490 if (on) {
491 gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
492 PTP_PF_EXTTS, index);
493 if (gpio_num < 1)
494 return -EINVAL;
495 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
496 if (rq->extts.flags & PTP_FALLING_EDGE)
497 evnt |= EVNT_FALL;
498 else
499 evnt |= EVNT_RISE;
500 }
501 mutex_lock(&clock->extreg_lock);
502 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
503 mutex_unlock(&clock->extreg_lock);
504 return 0;
505
506 case PTP_CLK_REQ_PEROUT:
507 if (rq->perout.index >= N_PER_OUT)
508 return -EINVAL;
509 return periodic_output(clock, rq, on, rq->perout.index);
510
511 default:
512 break;
513 }
514
515 return -EOPNOTSUPP;
516 }
517
518 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
519 enum ptp_pin_function func, unsigned int chan)
520 {
521 struct dp83640_clock *clock =
522 container_of(ptp, struct dp83640_clock, caps);
523
524 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
525 !list_empty(&clock->phylist))
526 return 1;
527
528 if (func == PTP_PF_PHYSYNC)
529 return 1;
530
531 return 0;
532 }
533
534 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
535 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
536
537 static void enable_status_frames(struct phy_device *phydev, bool on)
538 {
539 struct dp83640_private *dp83640 = phydev->priv;
540 struct dp83640_clock *clock = dp83640->clock;
541 u16 cfg0 = 0, ver;
542
543 if (on)
544 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
545
546 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
547
548 mutex_lock(&clock->extreg_lock);
549
550 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
551 ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
552
553 mutex_unlock(&clock->extreg_lock);
554
555 if (!phydev->attached_dev) {
556 pr_warn("expected to find an attached netdevice\n");
557 return;
558 }
559
560 if (on) {
561 if (dev_mc_add(phydev->attached_dev, status_frame_dst))
562 pr_warn("failed to add mc address\n");
563 } else {
564 if (dev_mc_del(phydev->attached_dev, status_frame_dst))
565 pr_warn("failed to delete mc address\n");
566 }
567 }
568
569 static bool is_status_frame(struct sk_buff *skb, int type)
570 {
571 struct ethhdr *h = eth_hdr(skb);
572
573 if (PTP_CLASS_V2_L2 == type &&
574 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
575 return true;
576 else
577 return false;
578 }
579
580 static int expired(struct rxts *rxts)
581 {
582 return time_after(jiffies, rxts->tmo);
583 }
584
585 /* Caller must hold rx_lock. */
586 static void prune_rx_ts(struct dp83640_private *dp83640)
587 {
588 struct list_head *this, *next;
589 struct rxts *rxts;
590
591 list_for_each_safe(this, next, &dp83640->rxts) {
592 rxts = list_entry(this, struct rxts, list);
593 if (expired(rxts)) {
594 list_del_init(&rxts->list);
595 list_add(&rxts->list, &dp83640->rxpool);
596 }
597 }
598 }
599
600 /* synchronize the phyters so they act as one clock */
601
602 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
603 {
604 int val;
605 phy_write(phydev, PAGESEL, 0);
606 val = phy_read(phydev, PHYCR2);
607 if (on)
608 val |= BC_WRITE;
609 else
610 val &= ~BC_WRITE;
611 phy_write(phydev, PHYCR2, val);
612 phy_write(phydev, PAGESEL, init_page);
613 }
614
615 static void recalibrate(struct dp83640_clock *clock)
616 {
617 s64 now, diff;
618 struct phy_txts event_ts;
619 struct timespec64 ts;
620 struct list_head *this;
621 struct dp83640_private *tmp;
622 struct phy_device *master = clock->chosen->phydev;
623 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
624
625 trigger = CAL_TRIGGER;
626 cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
627 if (cal_gpio < 1) {
628 pr_err("PHY calibration pin not available - PHY is not calibrated.");
629 return;
630 }
631
632 mutex_lock(&clock->extreg_lock);
633
634 /*
635 * enable broadcast, disable status frames, enable ptp clock
636 */
637 list_for_each(this, &clock->phylist) {
638 tmp = list_entry(this, struct dp83640_private, list);
639 enable_broadcast(tmp->phydev, clock->page, 1);
640 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
641 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
642 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
643 }
644 enable_broadcast(master, clock->page, 1);
645 cfg0 = ext_read(master, PAGE5, PSF_CFG0);
646 ext_write(0, master, PAGE5, PSF_CFG0, 0);
647 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
648
649 /*
650 * enable an event timestamp
651 */
652 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
653 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
654 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
655
656 list_for_each(this, &clock->phylist) {
657 tmp = list_entry(this, struct dp83640_private, list);
658 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
659 }
660 ext_write(0, master, PAGE5, PTP_EVNT, evnt);
661
662 /*
663 * configure a trigger
664 */
665 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
666 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
667 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
668 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
669
670 /* load trigger */
671 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
672 val |= TRIG_LOAD;
673 ext_write(0, master, PAGE4, PTP_CTL, val);
674
675 /* enable trigger */
676 val &= ~TRIG_LOAD;
677 val |= TRIG_EN;
678 ext_write(0, master, PAGE4, PTP_CTL, val);
679
680 /* disable trigger */
681 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
682 val |= TRIG_DIS;
683 ext_write(0, master, PAGE4, PTP_CTL, val);
684
685 /*
686 * read out and correct offsets
687 */
688 val = ext_read(master, PAGE4, PTP_STS);
689 pr_info("master PTP_STS 0x%04hx\n", val);
690 val = ext_read(master, PAGE4, PTP_ESTS);
691 pr_info("master PTP_ESTS 0x%04hx\n", val);
692 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
693 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
694 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
695 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
696 now = phy2txts(&event_ts);
697
698 list_for_each(this, &clock->phylist) {
699 tmp = list_entry(this, struct dp83640_private, list);
700 val = ext_read(tmp->phydev, PAGE4, PTP_STS);
701 pr_info("slave PTP_STS 0x%04hx\n", val);
702 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
703 pr_info("slave PTP_ESTS 0x%04hx\n", val);
704 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
705 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
707 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
708 diff = now - (s64) phy2txts(&event_ts);
709 pr_info("slave offset %lld nanoseconds\n", diff);
710 diff += ADJTIME_FIX;
711 ts = ns_to_timespec64(diff);
712 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
713 }
714
715 /*
716 * restore status frames
717 */
718 list_for_each(this, &clock->phylist) {
719 tmp = list_entry(this, struct dp83640_private, list);
720 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
721 }
722 ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
723
724 mutex_unlock(&clock->extreg_lock);
725 }
726
727 /* time stamping methods */
728
729 static inline u16 exts_chan_to_edata(int ch)
730 {
731 return 1 << ((ch + EXT_EVENT) * 2);
732 }
733
734 static int decode_evnt(struct dp83640_private *dp83640,
735 void *data, int len, u16 ests)
736 {
737 struct phy_txts *phy_txts;
738 struct ptp_clock_event event;
739 int i, parsed;
740 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
741 u16 ext_status = 0;
742
743 /* calculate length of the event timestamp status message */
744 if (ests & MULT_EVNT)
745 parsed = (words + 2) * sizeof(u16);
746 else
747 parsed = (words + 1) * sizeof(u16);
748
749 /* check if enough data is available */
750 if (len < parsed)
751 return len;
752
753 if (ests & MULT_EVNT) {
754 ext_status = *(u16 *) data;
755 data += sizeof(ext_status);
756 }
757
758 phy_txts = data;
759
760 switch (words) { /* fall through in every case */
761 case 3:
762 dp83640->edata.sec_hi = phy_txts->sec_hi;
763 case 2:
764 dp83640->edata.sec_lo = phy_txts->sec_lo;
765 case 1:
766 dp83640->edata.ns_hi = phy_txts->ns_hi;
767 case 0:
768 dp83640->edata.ns_lo = phy_txts->ns_lo;
769 }
770
771 if (!ext_status) {
772 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
773 ext_status = exts_chan_to_edata(i);
774 }
775
776 event.type = PTP_CLOCK_EXTTS;
777 event.timestamp = phy2txts(&dp83640->edata);
778
779 /* Compensate for input path and synchronization delays */
780 event.timestamp -= 35;
781
782 for (i = 0; i < N_EXT_TS; i++) {
783 if (ext_status & exts_chan_to_edata(i)) {
784 event.index = i;
785 ptp_clock_event(dp83640->clock->ptp_clock, &event);
786 }
787 }
788
789 return parsed;
790 }
791
792 #define DP83640_PACKET_HASH_OFFSET 20
793 #define DP83640_PACKET_HASH_LEN 10
794
795 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
796 {
797 u16 *seqid, hash;
798 unsigned int offset = 0;
799 u8 *msgtype, *data = skb_mac_header(skb);
800
801 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
802
803 if (type & PTP_CLASS_VLAN)
804 offset += VLAN_HLEN;
805
806 switch (type & PTP_CLASS_PMASK) {
807 case PTP_CLASS_IPV4:
808 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
809 break;
810 case PTP_CLASS_IPV6:
811 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
812 break;
813 case PTP_CLASS_L2:
814 offset += ETH_HLEN;
815 break;
816 default:
817 return 0;
818 }
819
820 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
821 return 0;
822
823 if (unlikely(type & PTP_CLASS_V1))
824 msgtype = data + offset + OFF_PTP_CONTROL;
825 else
826 msgtype = data + offset;
827 if (rxts->msgtype != (*msgtype & 0xf))
828 return 0;
829
830 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
831 if (rxts->seqid != ntohs(*seqid))
832 return 0;
833
834 hash = ether_crc(DP83640_PACKET_HASH_LEN,
835 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
836 if (rxts->hash != hash)
837 return 0;
838
839 return 1;
840 }
841
842 static void decode_rxts(struct dp83640_private *dp83640,
843 struct phy_rxts *phy_rxts)
844 {
845 struct rxts *rxts;
846 struct skb_shared_hwtstamps *shhwtstamps = NULL;
847 struct sk_buff *skb;
848 unsigned long flags;
849 u8 overflow;
850
851 overflow = (phy_rxts->ns_hi >> 14) & 0x3;
852 if (overflow)
853 pr_debug("rx timestamp queue overflow, count %d\n", overflow);
854
855 spin_lock_irqsave(&dp83640->rx_lock, flags);
856
857 prune_rx_ts(dp83640);
858
859 if (list_empty(&dp83640->rxpool)) {
860 pr_debug("rx timestamp pool is empty\n");
861 goto out;
862 }
863 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
864 list_del_init(&rxts->list);
865 phy2rxts(phy_rxts, rxts);
866
867 spin_lock(&dp83640->rx_queue.lock);
868 skb_queue_walk(&dp83640->rx_queue, skb) {
869 struct dp83640_skb_info *skb_info;
870
871 skb_info = (struct dp83640_skb_info *)skb->cb;
872 if (match(skb, skb_info->ptp_type, rxts)) {
873 __skb_unlink(skb, &dp83640->rx_queue);
874 shhwtstamps = skb_hwtstamps(skb);
875 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
876 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
877 netif_rx_ni(skb);
878 list_add(&rxts->list, &dp83640->rxpool);
879 break;
880 }
881 }
882 spin_unlock(&dp83640->rx_queue.lock);
883
884 if (!shhwtstamps)
885 list_add_tail(&rxts->list, &dp83640->rxts);
886 out:
887 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
888 }
889
890 static void decode_txts(struct dp83640_private *dp83640,
891 struct phy_txts *phy_txts)
892 {
893 struct skb_shared_hwtstamps shhwtstamps;
894 struct sk_buff *skb;
895 u64 ns;
896 u8 overflow;
897
898 /* We must already have the skb that triggered this. */
899
900 skb = skb_dequeue(&dp83640->tx_queue);
901
902 if (!skb) {
903 pr_debug("have timestamp but tx_queue empty\n");
904 return;
905 }
906
907 overflow = (phy_txts->ns_hi >> 14) & 0x3;
908 if (overflow) {
909 pr_debug("tx timestamp queue overflow, count %d\n", overflow);
910 while (skb) {
911 skb_complete_tx_timestamp(skb, NULL);
912 skb = skb_dequeue(&dp83640->tx_queue);
913 }
914 return;
915 }
916
917 ns = phy2txts(phy_txts);
918 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
919 shhwtstamps.hwtstamp = ns_to_ktime(ns);
920 skb_complete_tx_timestamp(skb, &shhwtstamps);
921 }
922
923 static void decode_status_frame(struct dp83640_private *dp83640,
924 struct sk_buff *skb)
925 {
926 struct phy_rxts *phy_rxts;
927 struct phy_txts *phy_txts;
928 u8 *ptr;
929 int len, size;
930 u16 ests, type;
931
932 ptr = skb->data + 2;
933
934 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
935
936 type = *(u16 *)ptr;
937 ests = type & 0x0fff;
938 type = type & 0xf000;
939 len -= sizeof(type);
940 ptr += sizeof(type);
941
942 if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
943
944 phy_rxts = (struct phy_rxts *) ptr;
945 decode_rxts(dp83640, phy_rxts);
946 size = sizeof(*phy_rxts);
947
948 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
949
950 phy_txts = (struct phy_txts *) ptr;
951 decode_txts(dp83640, phy_txts);
952 size = sizeof(*phy_txts);
953
954 } else if (PSF_EVNT == type) {
955
956 size = decode_evnt(dp83640, ptr, len, ests);
957
958 } else {
959 size = 0;
960 break;
961 }
962 ptr += size;
963 }
964 }
965
966 static int is_sync(struct sk_buff *skb, int type)
967 {
968 u8 *data = skb->data, *msgtype;
969 unsigned int offset = 0;
970
971 if (type & PTP_CLASS_VLAN)
972 offset += VLAN_HLEN;
973
974 switch (type & PTP_CLASS_PMASK) {
975 case PTP_CLASS_IPV4:
976 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
977 break;
978 case PTP_CLASS_IPV6:
979 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
980 break;
981 case PTP_CLASS_L2:
982 offset += ETH_HLEN;
983 break;
984 default:
985 return 0;
986 }
987
988 if (type & PTP_CLASS_V1)
989 offset += OFF_PTP_CONTROL;
990
991 if (skb->len < offset + 1)
992 return 0;
993
994 msgtype = data + offset;
995
996 return (*msgtype & 0xf) == 0;
997 }
998
999 static void dp83640_free_clocks(void)
1000 {
1001 struct dp83640_clock *clock;
1002 struct list_head *this, *next;
1003
1004 mutex_lock(&phyter_clocks_lock);
1005
1006 list_for_each_safe(this, next, &phyter_clocks) {
1007 clock = list_entry(this, struct dp83640_clock, list);
1008 if (!list_empty(&clock->phylist)) {
1009 pr_warn("phy list non-empty while unloading\n");
1010 BUG();
1011 }
1012 list_del(&clock->list);
1013 mutex_destroy(&clock->extreg_lock);
1014 mutex_destroy(&clock->clock_lock);
1015 put_device(&clock->bus->dev);
1016 kfree(clock->caps.pin_config);
1017 kfree(clock);
1018 }
1019
1020 mutex_unlock(&phyter_clocks_lock);
1021 }
1022
1023 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1024 {
1025 INIT_LIST_HEAD(&clock->list);
1026 clock->bus = bus;
1027 mutex_init(&clock->extreg_lock);
1028 mutex_init(&clock->clock_lock);
1029 INIT_LIST_HEAD(&clock->phylist);
1030 clock->caps.owner = THIS_MODULE;
1031 sprintf(clock->caps.name, "dp83640 timer");
1032 clock->caps.max_adj = 1953124;
1033 clock->caps.n_alarm = 0;
1034 clock->caps.n_ext_ts = N_EXT_TS;
1035 clock->caps.n_per_out = N_PER_OUT;
1036 clock->caps.n_pins = DP83640_N_PINS;
1037 clock->caps.pps = 0;
1038 clock->caps.adjfine = ptp_dp83640_adjfine;
1039 clock->caps.adjtime = ptp_dp83640_adjtime;
1040 clock->caps.gettime64 = ptp_dp83640_gettime;
1041 clock->caps.settime64 = ptp_dp83640_settime;
1042 clock->caps.enable = ptp_dp83640_enable;
1043 clock->caps.verify = ptp_dp83640_verify;
1044 /*
1045 * Convert the module param defaults into a dynamic pin configuration.
1046 */
1047 dp83640_gpio_defaults(clock->caps.pin_config);
1048 /*
1049 * Get a reference to this bus instance.
1050 */
1051 get_device(&bus->dev);
1052 }
1053
1054 static int choose_this_phy(struct dp83640_clock *clock,
1055 struct phy_device *phydev)
1056 {
1057 if (chosen_phy == -1 && !clock->chosen)
1058 return 1;
1059
1060 if (chosen_phy == phydev->mdio.addr)
1061 return 1;
1062
1063 return 0;
1064 }
1065
1066 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1067 {
1068 if (clock)
1069 mutex_lock(&clock->clock_lock);
1070 return clock;
1071 }
1072
1073 /*
1074 * Look up and lock a clock by bus instance.
1075 * If there is no clock for this bus, then create it first.
1076 */
1077 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1078 {
1079 struct dp83640_clock *clock = NULL, *tmp;
1080 struct list_head *this;
1081
1082 mutex_lock(&phyter_clocks_lock);
1083
1084 list_for_each(this, &phyter_clocks) {
1085 tmp = list_entry(this, struct dp83640_clock, list);
1086 if (tmp->bus == bus) {
1087 clock = tmp;
1088 break;
1089 }
1090 }
1091 if (clock)
1092 goto out;
1093
1094 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1095 if (!clock)
1096 goto out;
1097
1098 clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
1099 DP83640_N_PINS, GFP_KERNEL);
1100 if (!clock->caps.pin_config) {
1101 kfree(clock);
1102 clock = NULL;
1103 goto out;
1104 }
1105 dp83640_clock_init(clock, bus);
1106 list_add_tail(&phyter_clocks, &clock->list);
1107 out:
1108 mutex_unlock(&phyter_clocks_lock);
1109
1110 return dp83640_clock_get(clock);
1111 }
1112
1113 static void dp83640_clock_put(struct dp83640_clock *clock)
1114 {
1115 mutex_unlock(&clock->clock_lock);
1116 }
1117
1118 static int dp83640_probe(struct phy_device *phydev)
1119 {
1120 struct dp83640_clock *clock;
1121 struct dp83640_private *dp83640;
1122 int err = -ENOMEM, i;
1123
1124 if (phydev->mdio.addr == BROADCAST_ADDR)
1125 return 0;
1126
1127 clock = dp83640_clock_get_bus(phydev->mdio.bus);
1128 if (!clock)
1129 goto no_clock;
1130
1131 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1132 if (!dp83640)
1133 goto no_memory;
1134
1135 dp83640->phydev = phydev;
1136 INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
1137
1138 INIT_LIST_HEAD(&dp83640->rxts);
1139 INIT_LIST_HEAD(&dp83640->rxpool);
1140 for (i = 0; i < MAX_RXTS; i++)
1141 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1142
1143 phydev->priv = dp83640;
1144
1145 spin_lock_init(&dp83640->rx_lock);
1146 skb_queue_head_init(&dp83640->rx_queue);
1147 skb_queue_head_init(&dp83640->tx_queue);
1148
1149 dp83640->clock = clock;
1150
1151 if (choose_this_phy(clock, phydev)) {
1152 clock->chosen = dp83640;
1153 clock->ptp_clock = ptp_clock_register(&clock->caps,
1154 &phydev->mdio.dev);
1155 if (IS_ERR(clock->ptp_clock)) {
1156 err = PTR_ERR(clock->ptp_clock);
1157 goto no_register;
1158 }
1159 } else
1160 list_add_tail(&dp83640->list, &clock->phylist);
1161
1162 dp83640_clock_put(clock);
1163 return 0;
1164
1165 no_register:
1166 clock->chosen = NULL;
1167 kfree(dp83640);
1168 no_memory:
1169 dp83640_clock_put(clock);
1170 no_clock:
1171 return err;
1172 }
1173
1174 static void dp83640_remove(struct phy_device *phydev)
1175 {
1176 struct dp83640_clock *clock;
1177 struct list_head *this, *next;
1178 struct dp83640_private *tmp, *dp83640 = phydev->priv;
1179
1180 if (phydev->mdio.addr == BROADCAST_ADDR)
1181 return;
1182
1183 enable_status_frames(phydev, false);
1184 cancel_delayed_work_sync(&dp83640->ts_work);
1185
1186 skb_queue_purge(&dp83640->rx_queue);
1187 skb_queue_purge(&dp83640->tx_queue);
1188
1189 clock = dp83640_clock_get(dp83640->clock);
1190
1191 if (dp83640 == clock->chosen) {
1192 ptp_clock_unregister(clock->ptp_clock);
1193 clock->chosen = NULL;
1194 } else {
1195 list_for_each_safe(this, next, &clock->phylist) {
1196 tmp = list_entry(this, struct dp83640_private, list);
1197 if (tmp == dp83640) {
1198 list_del_init(&tmp->list);
1199 break;
1200 }
1201 }
1202 }
1203
1204 dp83640_clock_put(clock);
1205 kfree(dp83640);
1206 }
1207
1208 static int dp83640_config_init(struct phy_device *phydev)
1209 {
1210 struct dp83640_private *dp83640 = phydev->priv;
1211 struct dp83640_clock *clock = dp83640->clock;
1212
1213 if (clock->chosen && !list_empty(&clock->phylist))
1214 recalibrate(clock);
1215 else {
1216 mutex_lock(&clock->extreg_lock);
1217 enable_broadcast(phydev, clock->page, 1);
1218 mutex_unlock(&clock->extreg_lock);
1219 }
1220
1221 enable_status_frames(phydev, true);
1222
1223 mutex_lock(&clock->extreg_lock);
1224 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1225 mutex_unlock(&clock->extreg_lock);
1226
1227 return 0;
1228 }
1229
1230 static int dp83640_ack_interrupt(struct phy_device *phydev)
1231 {
1232 int err = phy_read(phydev, MII_DP83640_MISR);
1233
1234 if (err < 0)
1235 return err;
1236
1237 return 0;
1238 }
1239
1240 static int dp83640_config_intr(struct phy_device *phydev)
1241 {
1242 int micr;
1243 int misr;
1244 int err;
1245
1246 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1247 misr = phy_read(phydev, MII_DP83640_MISR);
1248 if (misr < 0)
1249 return misr;
1250 misr |=
1251 (MII_DP83640_MISR_ANC_INT_EN |
1252 MII_DP83640_MISR_DUP_INT_EN |
1253 MII_DP83640_MISR_SPD_INT_EN |
1254 MII_DP83640_MISR_LINK_INT_EN);
1255 err = phy_write(phydev, MII_DP83640_MISR, misr);
1256 if (err < 0)
1257 return err;
1258
1259 micr = phy_read(phydev, MII_DP83640_MICR);
1260 if (micr < 0)
1261 return micr;
1262 micr |=
1263 (MII_DP83640_MICR_OE |
1264 MII_DP83640_MICR_IE);
1265 return phy_write(phydev, MII_DP83640_MICR, micr);
1266 } else {
1267 micr = phy_read(phydev, MII_DP83640_MICR);
1268 if (micr < 0)
1269 return micr;
1270 micr &=
1271 ~(MII_DP83640_MICR_OE |
1272 MII_DP83640_MICR_IE);
1273 err = phy_write(phydev, MII_DP83640_MICR, micr);
1274 if (err < 0)
1275 return err;
1276
1277 misr = phy_read(phydev, MII_DP83640_MISR);
1278 if (misr < 0)
1279 return misr;
1280 misr &=
1281 ~(MII_DP83640_MISR_ANC_INT_EN |
1282 MII_DP83640_MISR_DUP_INT_EN |
1283 MII_DP83640_MISR_SPD_INT_EN |
1284 MII_DP83640_MISR_LINK_INT_EN);
1285 return phy_write(phydev, MII_DP83640_MISR, misr);
1286 }
1287 }
1288
1289 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1290 {
1291 struct dp83640_private *dp83640 = phydev->priv;
1292 struct hwtstamp_config cfg;
1293 u16 txcfg0, rxcfg0;
1294
1295 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1296 return -EFAULT;
1297
1298 if (cfg.flags) /* reserved for future extensions */
1299 return -EINVAL;
1300
1301 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1302 return -ERANGE;
1303
1304 dp83640->hwts_tx_en = cfg.tx_type;
1305
1306 switch (cfg.rx_filter) {
1307 case HWTSTAMP_FILTER_NONE:
1308 dp83640->hwts_rx_en = 0;
1309 dp83640->layer = 0;
1310 dp83640->version = 0;
1311 break;
1312 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1313 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1314 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1315 dp83640->hwts_rx_en = 1;
1316 dp83640->layer = PTP_CLASS_L4;
1317 dp83640->version = PTP_CLASS_V1;
1318 break;
1319 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1320 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1321 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1322 dp83640->hwts_rx_en = 1;
1323 dp83640->layer = PTP_CLASS_L4;
1324 dp83640->version = PTP_CLASS_V2;
1325 break;
1326 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1327 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1328 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1329 dp83640->hwts_rx_en = 1;
1330 dp83640->layer = PTP_CLASS_L2;
1331 dp83640->version = PTP_CLASS_V2;
1332 break;
1333 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1334 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1335 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1336 dp83640->hwts_rx_en = 1;
1337 dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
1338 dp83640->version = PTP_CLASS_V2;
1339 break;
1340 default:
1341 return -ERANGE;
1342 }
1343
1344 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1345 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1346
1347 if (dp83640->layer & PTP_CLASS_L2) {
1348 txcfg0 |= TX_L2_EN;
1349 rxcfg0 |= RX_L2_EN;
1350 }
1351 if (dp83640->layer & PTP_CLASS_L4) {
1352 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1353 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1354 }
1355
1356 if (dp83640->hwts_tx_en)
1357 txcfg0 |= TX_TS_EN;
1358
1359 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1360 txcfg0 |= SYNC_1STEP | CHK_1STEP;
1361
1362 if (dp83640->hwts_rx_en)
1363 rxcfg0 |= RX_TS_EN;
1364
1365 mutex_lock(&dp83640->clock->extreg_lock);
1366
1367 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1368 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1369
1370 mutex_unlock(&dp83640->clock->extreg_lock);
1371
1372 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1373 }
1374
1375 static void rx_timestamp_work(struct work_struct *work)
1376 {
1377 struct dp83640_private *dp83640 =
1378 container_of(work, struct dp83640_private, ts_work.work);
1379 struct sk_buff *skb;
1380
1381 /* Deliver expired packets. */
1382 while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1383 struct dp83640_skb_info *skb_info;
1384
1385 skb_info = (struct dp83640_skb_info *)skb->cb;
1386 if (!time_after(jiffies, skb_info->tmo)) {
1387 skb_queue_head(&dp83640->rx_queue, skb);
1388 break;
1389 }
1390
1391 netif_rx_ni(skb);
1392 }
1393
1394 if (!skb_queue_empty(&dp83640->rx_queue))
1395 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1396 }
1397
1398 static bool dp83640_rxtstamp(struct phy_device *phydev,
1399 struct sk_buff *skb, int type)
1400 {
1401 struct dp83640_private *dp83640 = phydev->priv;
1402 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1403 struct list_head *this, *next;
1404 struct rxts *rxts;
1405 struct skb_shared_hwtstamps *shhwtstamps = NULL;
1406 unsigned long flags;
1407
1408 if (is_status_frame(skb, type)) {
1409 decode_status_frame(dp83640, skb);
1410 kfree_skb(skb);
1411 return true;
1412 }
1413
1414 if (!dp83640->hwts_rx_en)
1415 return false;
1416
1417 if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
1418 return false;
1419
1420 spin_lock_irqsave(&dp83640->rx_lock, flags);
1421 prune_rx_ts(dp83640);
1422 list_for_each_safe(this, next, &dp83640->rxts) {
1423 rxts = list_entry(this, struct rxts, list);
1424 if (match(skb, type, rxts)) {
1425 shhwtstamps = skb_hwtstamps(skb);
1426 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1427 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1428 netif_rx_ni(skb);
1429 list_del_init(&rxts->list);
1430 list_add(&rxts->list, &dp83640->rxpool);
1431 break;
1432 }
1433 }
1434 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1435
1436 if (!shhwtstamps) {
1437 skb_info->ptp_type = type;
1438 skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1439 skb_queue_tail(&dp83640->rx_queue, skb);
1440 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1441 }
1442
1443 return true;
1444 }
1445
1446 static void dp83640_txtstamp(struct phy_device *phydev,
1447 struct sk_buff *skb, int type)
1448 {
1449 struct dp83640_private *dp83640 = phydev->priv;
1450
1451 switch (dp83640->hwts_tx_en) {
1452
1453 case HWTSTAMP_TX_ONESTEP_SYNC:
1454 if (is_sync(skb, type)) {
1455 kfree_skb(skb);
1456 return;
1457 }
1458 /* fall through */
1459 case HWTSTAMP_TX_ON:
1460 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1461 skb_queue_tail(&dp83640->tx_queue, skb);
1462 break;
1463
1464 case HWTSTAMP_TX_OFF:
1465 default:
1466 kfree_skb(skb);
1467 break;
1468 }
1469 }
1470
1471 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1472 {
1473 struct dp83640_private *dp83640 = dev->priv;
1474
1475 info->so_timestamping =
1476 SOF_TIMESTAMPING_TX_HARDWARE |
1477 SOF_TIMESTAMPING_RX_HARDWARE |
1478 SOF_TIMESTAMPING_RAW_HARDWARE;
1479 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1480 info->tx_types =
1481 (1 << HWTSTAMP_TX_OFF) |
1482 (1 << HWTSTAMP_TX_ON) |
1483 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
1484 info->rx_filters =
1485 (1 << HWTSTAMP_FILTER_NONE) |
1486 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1487 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1488 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1489 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1490 return 0;
1491 }
1492
1493 static struct phy_driver dp83640_driver = {
1494 .phy_id = DP83640_PHY_ID,
1495 .phy_id_mask = 0xfffffff0,
1496 .name = "NatSemi DP83640",
1497 .features = PHY_BASIC_FEATURES,
1498 .flags = PHY_HAS_INTERRUPT,
1499 .probe = dp83640_probe,
1500 .remove = dp83640_remove,
1501 .config_init = dp83640_config_init,
1502 .config_aneg = genphy_config_aneg,
1503 .read_status = genphy_read_status,
1504 .ack_interrupt = dp83640_ack_interrupt,
1505 .config_intr = dp83640_config_intr,
1506 .ts_info = dp83640_ts_info,
1507 .hwtstamp = dp83640_hwtstamp,
1508 .rxtstamp = dp83640_rxtstamp,
1509 .txtstamp = dp83640_txtstamp,
1510 };
1511
1512 static int __init dp83640_init(void)
1513 {
1514 return phy_driver_register(&dp83640_driver, THIS_MODULE);
1515 }
1516
1517 static void __exit dp83640_exit(void)
1518 {
1519 dp83640_free_clocks();
1520 phy_driver_unregister(&dp83640_driver);
1521 }
1522
1523 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1524 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1525 MODULE_LICENSE("GPL");
1526
1527 module_init(dp83640_init);
1528 module_exit(dp83640_exit);
1529
1530 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1531 { DP83640_PHY_ID, 0xfffffff0 },
1532 { }
1533 };
1534
1535 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);