[NET]: Make NAPI polling independent of struct net_device objects.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / mv643xx_eth.c
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
40
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
45
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
52
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr);
55 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67 static void eth_port_init_mac_tables(unsigned int eth_port_num);
68 #ifdef MV643XX_NAPI
69 static int mv643xx_poll(struct napi_struct *napi, int budget);
70 #endif
71 static int ethernet_phy_get(unsigned int eth_port_num);
72 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73 static int ethernet_phy_detect(unsigned int eth_port_num);
74 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77 static const struct ethtool_ops mv643xx_ethtool_ops;
78
79 static char mv643xx_driver_name[] = "mv643xx_eth";
80 static char mv643xx_driver_version[] = "1.0";
81
82 static void __iomem *mv643xx_eth_shared_base;
83
84 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
86
87 static inline u32 mv_read(int offset)
88 {
89 void __iomem *reg_base;
90
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
92
93 return readl(reg_base + offset);
94 }
95
96 static inline void mv_write(int offset, u32 data)
97 {
98 void __iomem *reg_base;
99
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
102 }
103
104 /*
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
106 *
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
110 */
111 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
112 {
113 if ((new_mtu > 9500) || (new_mtu < 64))
114 return -EINVAL;
115
116 dev->mtu = new_mtu;
117 /*
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
122 */
123 if (netif_running(dev)) {
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
129 }
130
131 return 0;
132 }
133
134 /*
135 * mv643xx_eth_rx_refill_descs
136 *
137 * Fills / refills RX queue on a certain gigabit ethernet port
138 *
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
141 */
142 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
143 {
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
147 int unaligned;
148
149 while (mp->rx_desc_count < mp->rx_ring_size) {
150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
151 if (!skb)
152 break;
153 mp->rx_desc_count++;
154 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
155 if (unaligned)
156 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
166 }
167 skb_reserve(skb, ETH_HW_IP_ALIGN);
168 }
169 /*
170 * If RX ring is empty of SKB, set a timer to try allocating
171 * again at a later time.
172 */
173 if (mp->rx_desc_count == 0) {
174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
176 add_timer(&mp->timeout);
177 }
178 }
179
180 /*
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
182 *
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
186 *
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
189 */
190 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
191 {
192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
193 }
194
195 /*
196 * mv643xx_eth_update_mac_address
197 *
198 * Update the MAC address of the port in the address table
199 *
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
202 */
203 static void mv643xx_eth_update_mac_address(struct net_device *dev)
204 {
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
207
208 eth_port_init_mac_tables(port_num);
209 eth_port_uc_addr_set(port_num, dev->dev_addr);
210 }
211
212 /*
213 * mv643xx_eth_set_rx_mode
214 *
215 * Change from promiscuos to regular rx mode
216 *
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
219 */
220 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
221 {
222 struct mv643xx_private *mp = netdev_priv(dev);
223 u32 config_reg;
224
225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226 if (dev->flags & IFF_PROMISC)
227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228 else
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
231
232 eth_port_set_multicast_list(dev);
233 }
234
235 /*
236 * mv643xx_eth_set_mac_address
237 *
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
241 *
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
245 */
246 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
247 {
248 int i;
249
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
255 }
256
257 /*
258 * mv643xx_eth_tx_timeout
259 *
260 * Called upon a timeout on transmitting a packet
261 *
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
264 */
265 static void mv643xx_eth_tx_timeout(struct net_device *dev)
266 {
267 struct mv643xx_private *mp = netdev_priv(dev);
268
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
270
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
273 }
274
275 /*
276 * mv643xx_eth_tx_timeout_task
277 *
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
279 */
280 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
281 {
282 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
283 tx_timeout_task);
284 struct net_device *dev = mp->mii.dev; /* yuck */
285
286 if (!netif_running(dev))
287 return;
288
289 netif_stop_queue(dev);
290
291 eth_port_reset(mp->port_num);
292 eth_port_start(dev);
293
294 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
295 netif_wake_queue(dev);
296 }
297
298 /**
299 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
300 *
301 * If force is non-zero, frees uncompleted descriptors as well
302 */
303 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
304 {
305 struct mv643xx_private *mp = netdev_priv(dev);
306 struct eth_tx_desc *desc;
307 u32 cmd_sts;
308 struct sk_buff *skb;
309 unsigned long flags;
310 int tx_index;
311 dma_addr_t addr;
312 int count;
313 int released = 0;
314
315 while (mp->tx_desc_count > 0) {
316 spin_lock_irqsave(&mp->lock, flags);
317
318 /* tx_desc_count might have changed before acquiring the lock */
319 if (mp->tx_desc_count <= 0) {
320 spin_unlock_irqrestore(&mp->lock, flags);
321 return released;
322 }
323
324 tx_index = mp->tx_used_desc_q;
325 desc = &mp->p_tx_desc_area[tx_index];
326 cmd_sts = desc->cmd_sts;
327
328 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
329 spin_unlock_irqrestore(&mp->lock, flags);
330 return released;
331 }
332
333 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
334 mp->tx_desc_count--;
335
336 addr = desc->buf_ptr;
337 count = desc->byte_cnt;
338 skb = mp->tx_skb[tx_index];
339 if (skb)
340 mp->tx_skb[tx_index] = NULL;
341
342 if (cmd_sts & ETH_ERROR_SUMMARY) {
343 printk("%s: Error in TX\n", dev->name);
344 mp->stats.tx_errors++;
345 }
346
347 spin_unlock_irqrestore(&mp->lock, flags);
348
349 if (cmd_sts & ETH_TX_FIRST_DESC)
350 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
351 else
352 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
353
354 if (skb)
355 dev_kfree_skb_irq(skb);
356
357 released = 1;
358 }
359
360 return released;
361 }
362
363 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
364 {
365 struct mv643xx_private *mp = netdev_priv(dev);
366
367 if (mv643xx_eth_free_tx_descs(dev, 0) &&
368 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
369 netif_wake_queue(dev);
370 }
371
372 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
373 {
374 mv643xx_eth_free_tx_descs(dev, 1);
375 }
376
377 /*
378 * mv643xx_eth_receive
379 *
380 * This function is forward packets that are received from the port's
381 * queues toward kernel core or FastRoute them to another interface.
382 *
383 * Input : dev - a pointer to the required interface
384 * max - maximum number to receive (0 means unlimted)
385 *
386 * Output : number of served packets
387 */
388 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
389 {
390 struct mv643xx_private *mp = netdev_priv(dev);
391 struct net_device_stats *stats = &mp->stats;
392 unsigned int received_packets = 0;
393 struct sk_buff *skb;
394 struct pkt_info pkt_info;
395
396 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
397 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
398 DMA_FROM_DEVICE);
399 mp->rx_desc_count--;
400 received_packets++;
401
402 /*
403 * Update statistics.
404 * Note byte count includes 4 byte CRC count
405 */
406 stats->rx_packets++;
407 stats->rx_bytes += pkt_info.byte_cnt;
408 skb = pkt_info.return_info;
409 /*
410 * In case received a packet without first / last bits on OR
411 * the error summary bit is on, the packets needs to be dropeed.
412 */
413 if (((pkt_info.cmd_sts
414 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
415 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
416 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
417 stats->rx_dropped++;
418 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
419 ETH_RX_LAST_DESC)) !=
420 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
421 if (net_ratelimit())
422 printk(KERN_ERR
423 "%s: Received packet spread "
424 "on multiple descriptors\n",
425 dev->name);
426 }
427 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
428 stats->rx_errors++;
429
430 dev_kfree_skb_irq(skb);
431 } else {
432 /*
433 * The -4 is for the CRC in the trailer of the
434 * received packet
435 */
436 skb_put(skb, pkt_info.byte_cnt - 4);
437
438 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
439 skb->ip_summed = CHECKSUM_UNNECESSARY;
440 skb->csum = htons(
441 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
442 }
443 skb->protocol = eth_type_trans(skb, dev);
444 #ifdef MV643XX_NAPI
445 netif_receive_skb(skb);
446 #else
447 netif_rx(skb);
448 #endif
449 }
450 dev->last_rx = jiffies;
451 }
452 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
453
454 return received_packets;
455 }
456
457 /* Set the mv643xx port configuration register for the speed/duplex mode. */
458 static void mv643xx_eth_update_pscr(struct net_device *dev,
459 struct ethtool_cmd *ecmd)
460 {
461 struct mv643xx_private *mp = netdev_priv(dev);
462 int port_num = mp->port_num;
463 u32 o_pscr, n_pscr;
464 unsigned int queues;
465
466 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
467 n_pscr = o_pscr;
468
469 /* clear speed, duplex and rx buffer size fields */
470 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
471 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
472 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
473 MV643XX_ETH_MAX_RX_PACKET_MASK);
474
475 if (ecmd->duplex == DUPLEX_FULL)
476 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
477
478 if (ecmd->speed == SPEED_1000)
479 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
480 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
481 else {
482 if (ecmd->speed == SPEED_100)
483 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
484 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
485 }
486
487 if (n_pscr != o_pscr) {
488 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
489 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
490 n_pscr);
491 else {
492 queues = mv643xx_eth_port_disable_tx(port_num);
493
494 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
495 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
496 o_pscr);
497 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
498 n_pscr);
499 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
500 n_pscr);
501 if (queues)
502 mv643xx_eth_port_enable_tx(port_num, queues);
503 }
504 }
505 }
506
507 /*
508 * mv643xx_eth_int_handler
509 *
510 * Main interrupt handler for the gigbit ethernet ports
511 *
512 * Input : irq - irq number (not used)
513 * dev_id - a pointer to the required interface's data structure
514 * regs - not used
515 * Output : N/A
516 */
517
518 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
519 {
520 struct net_device *dev = (struct net_device *)dev_id;
521 struct mv643xx_private *mp = netdev_priv(dev);
522 u32 eth_int_cause, eth_int_cause_ext = 0;
523 unsigned int port_num = mp->port_num;
524
525 /* Read interrupt cause registers */
526 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
527 ETH_INT_UNMASK_ALL;
528 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
529 eth_int_cause_ext = mv_read(
530 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
531 ETH_INT_UNMASK_ALL_EXT;
532 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
533 ~eth_int_cause_ext);
534 }
535
536 /* PHY status changed */
537 if (eth_int_cause_ext & (ETH_INT_CAUSE_PHY | ETH_INT_CAUSE_STATE)) {
538 struct ethtool_cmd cmd;
539
540 if (mii_link_ok(&mp->mii)) {
541 mii_ethtool_gset(&mp->mii, &cmd);
542 mv643xx_eth_update_pscr(dev, &cmd);
543 mv643xx_eth_port_enable_tx(port_num,
544 ETH_TX_QUEUES_ENABLED);
545 if (!netif_carrier_ok(dev)) {
546 netif_carrier_on(dev);
547 if (mp->tx_ring_size - mp->tx_desc_count >=
548 MAX_DESCS_PER_SKB)
549 netif_wake_queue(dev);
550 }
551 } else if (netif_carrier_ok(dev)) {
552 netif_stop_queue(dev);
553 netif_carrier_off(dev);
554 }
555 }
556
557 #ifdef MV643XX_NAPI
558 if (eth_int_cause & ETH_INT_CAUSE_RX) {
559 /* schedule the NAPI poll routine to maintain port */
560 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
561 ETH_INT_MASK_ALL);
562 /* wait for previous write to complete */
563 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
564
565 netif_rx_schedule(dev, &mp->napi);
566 }
567 #else
568 if (eth_int_cause & ETH_INT_CAUSE_RX)
569 mv643xx_eth_receive_queue(dev, INT_MAX);
570 #endif
571 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
572 mv643xx_eth_free_completed_tx_descs(dev);
573
574 /*
575 * If no real interrupt occured, exit.
576 * This can happen when using gigE interrupt coalescing mechanism.
577 */
578 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
579 return IRQ_NONE;
580
581 return IRQ_HANDLED;
582 }
583
584 #ifdef MV643XX_COAL
585
586 /*
587 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
588 *
589 * DESCRIPTION:
590 * This routine sets the RX coalescing interrupt mechanism parameter.
591 * This parameter is a timeout counter, that counts in 64 t_clk
592 * chunks ; that when timeout event occurs a maskable interrupt
593 * occurs.
594 * The parameter is calculated using the tClk of the MV-643xx chip
595 * , and the required delay of the interrupt in usec.
596 *
597 * INPUT:
598 * unsigned int eth_port_num Ethernet port number
599 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
600 * unsigned int delay Delay in usec
601 *
602 * OUTPUT:
603 * Interrupt coalescing mechanism value is set in MV-643xx chip.
604 *
605 * RETURN:
606 * The interrupt coalescing value set in the gigE port.
607 *
608 */
609 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
610 unsigned int t_clk, unsigned int delay)
611 {
612 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
613
614 /* Set RX Coalescing mechanism */
615 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
616 ((coal & 0x3fff) << 8) |
617 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
618 & 0xffc000ff));
619
620 return coal;
621 }
622 #endif
623
624 /*
625 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
626 *
627 * DESCRIPTION:
628 * This routine sets the TX coalescing interrupt mechanism parameter.
629 * This parameter is a timeout counter, that counts in 64 t_clk
630 * chunks ; that when timeout event occurs a maskable interrupt
631 * occurs.
632 * The parameter is calculated using the t_cLK frequency of the
633 * MV-643xx chip and the required delay in the interrupt in uSec
634 *
635 * INPUT:
636 * unsigned int eth_port_num Ethernet port number
637 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
638 * unsigned int delay Delay in uSeconds
639 *
640 * OUTPUT:
641 * Interrupt coalescing mechanism value is set in MV-643xx chip.
642 *
643 * RETURN:
644 * The interrupt coalescing value set in the gigE port.
645 *
646 */
647 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
648 unsigned int t_clk, unsigned int delay)
649 {
650 unsigned int coal;
651 coal = ((t_clk / 1000000) * delay) / 64;
652 /* Set TX Coalescing mechanism */
653 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
654 coal << 4);
655 return coal;
656 }
657
658 /*
659 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
660 *
661 * DESCRIPTION:
662 * This function prepares a Rx chained list of descriptors and packet
663 * buffers in a form of a ring. The routine must be called after port
664 * initialization routine and before port start routine.
665 * The Ethernet SDMA engine uses CPU bus addresses to access the various
666 * devices in the system (i.e. DRAM). This function uses the ethernet
667 * struct 'virtual to physical' routine (set by the user) to set the ring
668 * with physical addresses.
669 *
670 * INPUT:
671 * struct mv643xx_private *mp Ethernet Port Control srtuct.
672 *
673 * OUTPUT:
674 * The routine updates the Ethernet port control struct with information
675 * regarding the Rx descriptors and buffers.
676 *
677 * RETURN:
678 * None.
679 */
680 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
681 {
682 volatile struct eth_rx_desc *p_rx_desc;
683 int rx_desc_num = mp->rx_ring_size;
684 int i;
685
686 /* initialize the next_desc_ptr links in the Rx descriptors ring */
687 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
688 for (i = 0; i < rx_desc_num; i++) {
689 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
690 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
691 }
692
693 /* Save Rx desc pointer to driver struct. */
694 mp->rx_curr_desc_q = 0;
695 mp->rx_used_desc_q = 0;
696
697 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
698 }
699
700 /*
701 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
702 *
703 * DESCRIPTION:
704 * This function prepares a Tx chained list of descriptors and packet
705 * buffers in a form of a ring. The routine must be called after port
706 * initialization routine and before port start routine.
707 * The Ethernet SDMA engine uses CPU bus addresses to access the various
708 * devices in the system (i.e. DRAM). This function uses the ethernet
709 * struct 'virtual to physical' routine (set by the user) to set the ring
710 * with physical addresses.
711 *
712 * INPUT:
713 * struct mv643xx_private *mp Ethernet Port Control srtuct.
714 *
715 * OUTPUT:
716 * The routine updates the Ethernet port control struct with information
717 * regarding the Tx descriptors and buffers.
718 *
719 * RETURN:
720 * None.
721 */
722 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
723 {
724 int tx_desc_num = mp->tx_ring_size;
725 struct eth_tx_desc *p_tx_desc;
726 int i;
727
728 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
729 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
730 for (i = 0; i < tx_desc_num; i++) {
731 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
732 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
733 }
734
735 mp->tx_curr_desc_q = 0;
736 mp->tx_used_desc_q = 0;
737
738 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
739 }
740
741 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
742 {
743 struct mv643xx_private *mp = netdev_priv(dev);
744 int err;
745
746 spin_lock_irq(&mp->lock);
747 err = mii_ethtool_sset(&mp->mii, cmd);
748 spin_unlock_irq(&mp->lock);
749
750 return err;
751 }
752
753 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
754 {
755 struct mv643xx_private *mp = netdev_priv(dev);
756 int err;
757
758 spin_lock_irq(&mp->lock);
759 err = mii_ethtool_gset(&mp->mii, cmd);
760 spin_unlock_irq(&mp->lock);
761
762 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
763 cmd->supported &= ~SUPPORTED_1000baseT_Half;
764 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
765
766 return err;
767 }
768
769 /*
770 * mv643xx_eth_open
771 *
772 * This function is called when openning the network device. The function
773 * should initialize all the hardware, initialize cyclic Rx/Tx
774 * descriptors chain and buffers and allocate an IRQ to the network
775 * device.
776 *
777 * Input : a pointer to the network device structure
778 *
779 * Output : zero of success , nonzero if fails.
780 */
781
782 static int mv643xx_eth_open(struct net_device *dev)
783 {
784 struct mv643xx_private *mp = netdev_priv(dev);
785 unsigned int port_num = mp->port_num;
786 unsigned int size;
787 int err;
788
789 /* Clear any pending ethernet port interrupts */
790 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
791 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
792 /* wait for previous write to complete */
793 mv_read (MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num));
794
795 err = request_irq(dev->irq, mv643xx_eth_int_handler,
796 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
797 if (err) {
798 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
799 port_num);
800 return -EAGAIN;
801 }
802
803 eth_port_init(mp);
804
805 memset(&mp->timeout, 0, sizeof(struct timer_list));
806 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
807 mp->timeout.data = (unsigned long)dev;
808
809 /* Allocate RX and TX skb rings */
810 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
811 GFP_KERNEL);
812 if (!mp->rx_skb) {
813 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
814 err = -ENOMEM;
815 goto out_free_irq;
816 }
817 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
818 GFP_KERNEL);
819 if (!mp->tx_skb) {
820 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
821 err = -ENOMEM;
822 goto out_free_rx_skb;
823 }
824
825 /* Allocate TX ring */
826 mp->tx_desc_count = 0;
827 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
828 mp->tx_desc_area_size = size;
829
830 if (mp->tx_sram_size) {
831 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
832 mp->tx_sram_size);
833 mp->tx_desc_dma = mp->tx_sram_addr;
834 } else
835 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
836 &mp->tx_desc_dma,
837 GFP_KERNEL);
838
839 if (!mp->p_tx_desc_area) {
840 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
841 dev->name, size);
842 err = -ENOMEM;
843 goto out_free_tx_skb;
844 }
845 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
846 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
847
848 ether_init_tx_desc_ring(mp);
849
850 /* Allocate RX ring */
851 mp->rx_desc_count = 0;
852 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
853 mp->rx_desc_area_size = size;
854
855 if (mp->rx_sram_size) {
856 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
857 mp->rx_sram_size);
858 mp->rx_desc_dma = mp->rx_sram_addr;
859 } else
860 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
861 &mp->rx_desc_dma,
862 GFP_KERNEL);
863
864 if (!mp->p_rx_desc_area) {
865 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
866 dev->name, size);
867 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
868 dev->name);
869 if (mp->rx_sram_size)
870 iounmap(mp->p_tx_desc_area);
871 else
872 dma_free_coherent(NULL, mp->tx_desc_area_size,
873 mp->p_tx_desc_area, mp->tx_desc_dma);
874 err = -ENOMEM;
875 goto out_free_tx_skb;
876 }
877 memset((void *)mp->p_rx_desc_area, 0, size);
878
879 ether_init_rx_desc_ring(mp);
880
881 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
882
883 #ifdef MV643XX_NAPI
884 napi_enable(&mp->napi);
885 #endif
886
887 eth_port_start(dev);
888
889 /* Interrupt Coalescing */
890
891 #ifdef MV643XX_COAL
892 mp->rx_int_coal =
893 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
894 #endif
895
896 mp->tx_int_coal =
897 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
898
899 /* Unmask phy and link status changes interrupts */
900 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
901 ETH_INT_UNMASK_ALL_EXT);
902
903 /* Unmask RX buffer and TX end interrupt */
904 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
905
906 return 0;
907
908 out_free_tx_skb:
909 kfree(mp->tx_skb);
910 out_free_rx_skb:
911 kfree(mp->rx_skb);
912 out_free_irq:
913 free_irq(dev->irq, dev);
914
915 return err;
916 }
917
918 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
919 {
920 struct mv643xx_private *mp = netdev_priv(dev);
921
922 /* Stop Tx Queues */
923 mv643xx_eth_port_disable_tx(mp->port_num);
924
925 /* Free outstanding skb's on TX ring */
926 mv643xx_eth_free_all_tx_descs(dev);
927
928 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
929
930 /* Free TX ring */
931 if (mp->tx_sram_size)
932 iounmap(mp->p_tx_desc_area);
933 else
934 dma_free_coherent(NULL, mp->tx_desc_area_size,
935 mp->p_tx_desc_area, mp->tx_desc_dma);
936 }
937
938 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
939 {
940 struct mv643xx_private *mp = netdev_priv(dev);
941 unsigned int port_num = mp->port_num;
942 int curr;
943
944 /* Stop RX Queues */
945 mv643xx_eth_port_disable_rx(port_num);
946
947 /* Free preallocated skb's on RX rings */
948 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
949 if (mp->rx_skb[curr]) {
950 dev_kfree_skb(mp->rx_skb[curr]);
951 mp->rx_desc_count--;
952 }
953 }
954
955 if (mp->rx_desc_count)
956 printk(KERN_ERR
957 "%s: Error in freeing Rx Ring. %d skb's still"
958 " stuck in RX Ring - ignoring them\n", dev->name,
959 mp->rx_desc_count);
960 /* Free RX ring */
961 if (mp->rx_sram_size)
962 iounmap(mp->p_rx_desc_area);
963 else
964 dma_free_coherent(NULL, mp->rx_desc_area_size,
965 mp->p_rx_desc_area, mp->rx_desc_dma);
966 }
967
968 /*
969 * mv643xx_eth_stop
970 *
971 * This function is used when closing the network device.
972 * It updates the hardware,
973 * release all memory that holds buffers and descriptors and release the IRQ.
974 * Input : a pointer to the device structure
975 * Output : zero if success , nonzero if fails
976 */
977
978 static int mv643xx_eth_stop(struct net_device *dev)
979 {
980 struct mv643xx_private *mp = netdev_priv(dev);
981 unsigned int port_num = mp->port_num;
982
983 /* Mask all interrupts on ethernet port */
984 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
985 /* wait for previous write to complete */
986 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
987
988 #ifdef MV643XX_NAPI
989 napi_disable(&mp->napi);
990 #endif
991 netif_carrier_off(dev);
992 netif_stop_queue(dev);
993
994 eth_port_reset(mp->port_num);
995
996 mv643xx_eth_free_tx_rings(dev);
997 mv643xx_eth_free_rx_rings(dev);
998
999 free_irq(dev->irq, dev);
1000
1001 return 0;
1002 }
1003
1004 #ifdef MV643XX_NAPI
1005 /*
1006 * mv643xx_poll
1007 *
1008 * This function is used in case of NAPI
1009 */
1010 static int mv643xx_poll(struct napi_struct *napi, int budget)
1011 {
1012 struct mv643xx_private *mp = container_of(napi, struct mv643xx_private, napi);
1013 struct net_device *dev = mp->dev;
1014 unsigned int port_num = mp->port_num;
1015 int work_done;
1016
1017 #ifdef MV643XX_TX_FAST_REFILL
1018 if (++mp->tx_clean_threshold > 5) {
1019 mv643xx_eth_free_completed_tx_descs(dev);
1020 mp->tx_clean_threshold = 0;
1021 }
1022 #endif
1023
1024 work_done = 0;
1025 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1026 != (u32) mp->rx_used_desc_q)
1027 work_done = mv643xx_eth_receive_queue(dev, budget);
1028
1029 if (work_done < budget) {
1030 netif_rx_complete(dev, napi);
1031 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1032 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1033 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1034 ETH_INT_UNMASK_ALL);
1035 }
1036
1037 return work_done;
1038 }
1039 #endif
1040
1041 /**
1042 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1043 *
1044 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1045 * This helper function detects that case.
1046 */
1047
1048 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1049 {
1050 unsigned int frag;
1051 skb_frag_t *fragp;
1052
1053 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1054 fragp = &skb_shinfo(skb)->frags[frag];
1055 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1056 return 1;
1057 }
1058 return 0;
1059 }
1060
1061 /**
1062 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1063 */
1064 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1065 {
1066 int tx_desc_curr;
1067
1068 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1069
1070 tx_desc_curr = mp->tx_curr_desc_q;
1071 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1072
1073 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1074
1075 return tx_desc_curr;
1076 }
1077
1078 /**
1079 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1080 *
1081 * Ensure the data for each fragment to be transmitted is mapped properly,
1082 * then fill in descriptors in the tx hw queue.
1083 */
1084 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1085 struct sk_buff *skb)
1086 {
1087 int frag;
1088 int tx_index;
1089 struct eth_tx_desc *desc;
1090
1091 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1092 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1093
1094 tx_index = eth_alloc_tx_desc_index(mp);
1095 desc = &mp->p_tx_desc_area[tx_index];
1096
1097 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1098 /* Last Frag enables interrupt and frees the skb */
1099 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1100 desc->cmd_sts |= ETH_ZERO_PADDING |
1101 ETH_TX_LAST_DESC |
1102 ETH_TX_ENABLE_INTERRUPT;
1103 mp->tx_skb[tx_index] = skb;
1104 } else
1105 mp->tx_skb[tx_index] = NULL;
1106
1107 desc = &mp->p_tx_desc_area[tx_index];
1108 desc->l4i_chk = 0;
1109 desc->byte_cnt = this_frag->size;
1110 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1111 this_frag->page_offset,
1112 this_frag->size,
1113 DMA_TO_DEVICE);
1114 }
1115 }
1116
1117 /**
1118 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1119 *
1120 * Ensure the data for an skb to be transmitted is mapped properly,
1121 * then fill in descriptors in the tx hw queue and start the hardware.
1122 */
1123 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1124 struct sk_buff *skb)
1125 {
1126 int tx_index;
1127 struct eth_tx_desc *desc;
1128 u32 cmd_sts;
1129 int length;
1130 int nr_frags = skb_shinfo(skb)->nr_frags;
1131
1132 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1133
1134 tx_index = eth_alloc_tx_desc_index(mp);
1135 desc = &mp->p_tx_desc_area[tx_index];
1136
1137 if (nr_frags) {
1138 eth_tx_fill_frag_descs(mp, skb);
1139
1140 length = skb_headlen(skb);
1141 mp->tx_skb[tx_index] = NULL;
1142 } else {
1143 cmd_sts |= ETH_ZERO_PADDING |
1144 ETH_TX_LAST_DESC |
1145 ETH_TX_ENABLE_INTERRUPT;
1146 length = skb->len;
1147 mp->tx_skb[tx_index] = skb;
1148 }
1149
1150 desc->byte_cnt = length;
1151 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1152
1153 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1154 BUG_ON(skb->protocol != ETH_P_IP);
1155
1156 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1157 ETH_GEN_IP_V_4_CHECKSUM |
1158 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1159
1160 switch (ip_hdr(skb)->protocol) {
1161 case IPPROTO_UDP:
1162 cmd_sts |= ETH_UDP_FRAME;
1163 desc->l4i_chk = udp_hdr(skb)->check;
1164 break;
1165 case IPPROTO_TCP:
1166 desc->l4i_chk = tcp_hdr(skb)->check;
1167 break;
1168 default:
1169 BUG();
1170 }
1171 } else {
1172 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1173 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1174 desc->l4i_chk = 0;
1175 }
1176
1177 /* ensure all other descriptors are written before first cmd_sts */
1178 wmb();
1179 desc->cmd_sts = cmd_sts;
1180
1181 /* ensure all descriptors are written before poking hardware */
1182 wmb();
1183 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1184
1185 mp->tx_desc_count += nr_frags + 1;
1186 }
1187
1188 /**
1189 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1190 *
1191 */
1192 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1193 {
1194 struct mv643xx_private *mp = netdev_priv(dev);
1195 struct net_device_stats *stats = &mp->stats;
1196 unsigned long flags;
1197
1198 BUG_ON(netif_queue_stopped(dev));
1199 BUG_ON(skb == NULL);
1200
1201 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1202 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1203 netif_stop_queue(dev);
1204 return 1;
1205 }
1206
1207 if (has_tiny_unaligned_frags(skb)) {
1208 if (__skb_linearize(skb)) {
1209 stats->tx_dropped++;
1210 printk(KERN_DEBUG "%s: failed to linearize tiny "
1211 "unaligned fragment\n", dev->name);
1212 return 1;
1213 }
1214 }
1215
1216 spin_lock_irqsave(&mp->lock, flags);
1217
1218 eth_tx_submit_descs_for_skb(mp, skb);
1219 stats->tx_bytes += skb->len;
1220 stats->tx_packets++;
1221 dev->trans_start = jiffies;
1222
1223 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1224 netif_stop_queue(dev);
1225
1226 spin_unlock_irqrestore(&mp->lock, flags);
1227
1228 return 0; /* success */
1229 }
1230
1231 /*
1232 * mv643xx_eth_get_stats
1233 *
1234 * Returns a pointer to the interface statistics.
1235 *
1236 * Input : dev - a pointer to the required interface
1237 *
1238 * Output : a pointer to the interface's statistics
1239 */
1240
1241 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1242 {
1243 struct mv643xx_private *mp = netdev_priv(dev);
1244
1245 return &mp->stats;
1246 }
1247
1248 #ifdef CONFIG_NET_POLL_CONTROLLER
1249 static void mv643xx_netpoll(struct net_device *netdev)
1250 {
1251 struct mv643xx_private *mp = netdev_priv(netdev);
1252 int port_num = mp->port_num;
1253
1254 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1255 /* wait for previous write to complete */
1256 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1257
1258 mv643xx_eth_int_handler(netdev->irq, netdev);
1259
1260 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1261 }
1262 #endif
1263
1264 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1265 int speed, int duplex,
1266 struct ethtool_cmd *cmd)
1267 {
1268 struct mv643xx_private *mp = netdev_priv(dev);
1269
1270 memset(cmd, 0, sizeof(*cmd));
1271
1272 cmd->port = PORT_MII;
1273 cmd->transceiver = XCVR_INTERNAL;
1274 cmd->phy_address = phy_address;
1275
1276 if (speed == 0) {
1277 cmd->autoneg = AUTONEG_ENABLE;
1278 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1279 cmd->speed = SPEED_100;
1280 cmd->advertising = ADVERTISED_10baseT_Half |
1281 ADVERTISED_10baseT_Full |
1282 ADVERTISED_100baseT_Half |
1283 ADVERTISED_100baseT_Full;
1284 if (mp->mii.supports_gmii)
1285 cmd->advertising |= ADVERTISED_1000baseT_Full;
1286 } else {
1287 cmd->autoneg = AUTONEG_DISABLE;
1288 cmd->speed = speed;
1289 cmd->duplex = duplex;
1290 }
1291 }
1292
1293 /*/
1294 * mv643xx_eth_probe
1295 *
1296 * First function called after registering the network device.
1297 * It's purpose is to initialize the device as an ethernet device,
1298 * fill the ethernet device structure with pointers * to functions,
1299 * and set the MAC address of the interface
1300 *
1301 * Input : struct device *
1302 * Output : -ENOMEM if failed , 0 if success
1303 */
1304 static int mv643xx_eth_probe(struct platform_device *pdev)
1305 {
1306 struct mv643xx_eth_platform_data *pd;
1307 int port_num;
1308 struct mv643xx_private *mp;
1309 struct net_device *dev;
1310 u8 *p;
1311 struct resource *res;
1312 int err;
1313 struct ethtool_cmd cmd;
1314 int duplex = DUPLEX_HALF;
1315 int speed = 0; /* default to auto-negotiation */
1316
1317 pd = pdev->dev.platform_data;
1318 if (pd == NULL) {
1319 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1320 return -ENODEV;
1321 }
1322
1323 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1324 if (!dev)
1325 return -ENOMEM;
1326
1327 platform_set_drvdata(pdev, dev);
1328
1329 mp = netdev_priv(dev);
1330 mp->dev = dev;
1331 #ifdef MV643XX_NAPI
1332 netif_napi_add(dev, &mp->napi, mv643xx_poll, 64);
1333 #endif
1334
1335 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1336 BUG_ON(!res);
1337 dev->irq = res->start;
1338
1339 dev->open = mv643xx_eth_open;
1340 dev->stop = mv643xx_eth_stop;
1341 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1342 dev->get_stats = mv643xx_eth_get_stats;
1343 dev->set_mac_address = mv643xx_eth_set_mac_address;
1344 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1345
1346 /* No need to Tx Timeout */
1347 dev->tx_timeout = mv643xx_eth_tx_timeout;
1348
1349 #ifdef CONFIG_NET_POLL_CONTROLLER
1350 dev->poll_controller = mv643xx_netpoll;
1351 #endif
1352
1353 dev->watchdog_timeo = 2 * HZ;
1354 dev->base_addr = 0;
1355 dev->change_mtu = mv643xx_eth_change_mtu;
1356 dev->do_ioctl = mv643xx_eth_do_ioctl;
1357 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1358
1359 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1360 #ifdef MAX_SKB_FRAGS
1361 /*
1362 * Zero copy can only work if we use Discovery II memory. Else, we will
1363 * have to map the buffers to ISA memory which is only 16 MB
1364 */
1365 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1366 #endif
1367 #endif
1368
1369 /* Configure the timeout task */
1370 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1371
1372 spin_lock_init(&mp->lock);
1373
1374 port_num = mp->port_num = pd->port_number;
1375
1376 /* set default config values */
1377 eth_port_uc_addr_get(port_num, dev->dev_addr);
1378 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1379 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1380
1381 if (is_valid_ether_addr(pd->mac_addr))
1382 memcpy(dev->dev_addr, pd->mac_addr, 6);
1383
1384 if (pd->phy_addr || pd->force_phy_addr)
1385 ethernet_phy_set(port_num, pd->phy_addr);
1386
1387 if (pd->rx_queue_size)
1388 mp->rx_ring_size = pd->rx_queue_size;
1389
1390 if (pd->tx_queue_size)
1391 mp->tx_ring_size = pd->tx_queue_size;
1392
1393 if (pd->tx_sram_size) {
1394 mp->tx_sram_size = pd->tx_sram_size;
1395 mp->tx_sram_addr = pd->tx_sram_addr;
1396 }
1397
1398 if (pd->rx_sram_size) {
1399 mp->rx_sram_size = pd->rx_sram_size;
1400 mp->rx_sram_addr = pd->rx_sram_addr;
1401 }
1402
1403 duplex = pd->duplex;
1404 speed = pd->speed;
1405
1406 /* Hook up MII support for ethtool */
1407 mp->mii.dev = dev;
1408 mp->mii.mdio_read = mv643xx_mdio_read;
1409 mp->mii.mdio_write = mv643xx_mdio_write;
1410 mp->mii.phy_id = ethernet_phy_get(port_num);
1411 mp->mii.phy_id_mask = 0x3f;
1412 mp->mii.reg_num_mask = 0x1f;
1413
1414 err = ethernet_phy_detect(port_num);
1415 if (err) {
1416 pr_debug("MV643xx ethernet port %d: "
1417 "No PHY detected at addr %d\n",
1418 port_num, ethernet_phy_get(port_num));
1419 goto out;
1420 }
1421
1422 ethernet_phy_reset(port_num);
1423 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1424 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1425 mv643xx_eth_update_pscr(dev, &cmd);
1426 mv643xx_set_settings(dev, &cmd);
1427
1428 SET_MODULE_OWNER(dev);
1429 SET_NETDEV_DEV(dev, &pdev->dev);
1430 err = register_netdev(dev);
1431 if (err)
1432 goto out;
1433
1434 p = dev->dev_addr;
1435 printk(KERN_NOTICE
1436 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1437 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1438
1439 if (dev->features & NETIF_F_SG)
1440 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1441
1442 if (dev->features & NETIF_F_IP_CSUM)
1443 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1444 dev->name);
1445
1446 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1447 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1448 #endif
1449
1450 #ifdef MV643XX_COAL
1451 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1452 dev->name);
1453 #endif
1454
1455 #ifdef MV643XX_NAPI
1456 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1457 #endif
1458
1459 if (mp->tx_sram_size > 0)
1460 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1461
1462 return 0;
1463
1464 out:
1465 free_netdev(dev);
1466
1467 return err;
1468 }
1469
1470 static int mv643xx_eth_remove(struct platform_device *pdev)
1471 {
1472 struct net_device *dev = platform_get_drvdata(pdev);
1473
1474 unregister_netdev(dev);
1475 flush_scheduled_work();
1476
1477 free_netdev(dev);
1478 platform_set_drvdata(pdev, NULL);
1479 return 0;
1480 }
1481
1482 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1483 {
1484 struct resource *res;
1485
1486 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1487
1488 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1489 if (res == NULL)
1490 return -ENODEV;
1491
1492 mv643xx_eth_shared_base = ioremap(res->start,
1493 MV643XX_ETH_SHARED_REGS_SIZE);
1494 if (mv643xx_eth_shared_base == NULL)
1495 return -ENOMEM;
1496
1497 return 0;
1498
1499 }
1500
1501 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1502 {
1503 iounmap(mv643xx_eth_shared_base);
1504 mv643xx_eth_shared_base = NULL;
1505
1506 return 0;
1507 }
1508
1509 static void mv643xx_eth_shutdown(struct platform_device *pdev)
1510 {
1511 struct net_device *dev = platform_get_drvdata(pdev);
1512 struct mv643xx_private *mp = netdev_priv(dev);
1513 unsigned int port_num = mp->port_num;
1514
1515 /* Mask all interrupts on ethernet port */
1516 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1517 mv_read (MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1518
1519 eth_port_reset(port_num);
1520 }
1521
1522 static struct platform_driver mv643xx_eth_driver = {
1523 .probe = mv643xx_eth_probe,
1524 .remove = mv643xx_eth_remove,
1525 .shutdown = mv643xx_eth_shutdown,
1526 .driver = {
1527 .name = MV643XX_ETH_NAME,
1528 },
1529 };
1530
1531 static struct platform_driver mv643xx_eth_shared_driver = {
1532 .probe = mv643xx_eth_shared_probe,
1533 .remove = mv643xx_eth_shared_remove,
1534 .driver = {
1535 .name = MV643XX_ETH_SHARED_NAME,
1536 },
1537 };
1538
1539 /*
1540 * mv643xx_init_module
1541 *
1542 * Registers the network drivers into the Linux kernel
1543 *
1544 * Input : N/A
1545 *
1546 * Output : N/A
1547 */
1548 static int __init mv643xx_init_module(void)
1549 {
1550 int rc;
1551
1552 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1553 if (!rc) {
1554 rc = platform_driver_register(&mv643xx_eth_driver);
1555 if (rc)
1556 platform_driver_unregister(&mv643xx_eth_shared_driver);
1557 }
1558 return rc;
1559 }
1560
1561 /*
1562 * mv643xx_cleanup_module
1563 *
1564 * Registers the network drivers into the Linux kernel
1565 *
1566 * Input : N/A
1567 *
1568 * Output : N/A
1569 */
1570 static void __exit mv643xx_cleanup_module(void)
1571 {
1572 platform_driver_unregister(&mv643xx_eth_driver);
1573 platform_driver_unregister(&mv643xx_eth_shared_driver);
1574 }
1575
1576 module_init(mv643xx_init_module);
1577 module_exit(mv643xx_cleanup_module);
1578
1579 MODULE_LICENSE("GPL");
1580 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1581 " and Dale Farnsworth");
1582 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1583
1584 /*
1585 * The second part is the low level driver of the gigE ethernet ports.
1586 */
1587
1588 /*
1589 * Marvell's Gigabit Ethernet controller low level driver
1590 *
1591 * DESCRIPTION:
1592 * This file introduce low level API to Marvell's Gigabit Ethernet
1593 * controller. This Gigabit Ethernet Controller driver API controls
1594 * 1) Operations (i.e. port init, start, reset etc').
1595 * 2) Data flow (i.e. port send, receive etc').
1596 * Each Gigabit Ethernet port is controlled via
1597 * struct mv643xx_private.
1598 * This struct includes user configuration information as well as
1599 * driver internal data needed for its operations.
1600 *
1601 * Supported Features:
1602 * - This low level driver is OS independent. Allocating memory for
1603 * the descriptor rings and buffers are not within the scope of
1604 * this driver.
1605 * - The user is free from Rx/Tx queue managing.
1606 * - This low level driver introduce functionality API that enable
1607 * the to operate Marvell's Gigabit Ethernet Controller in a
1608 * convenient way.
1609 * - Simple Gigabit Ethernet port operation API.
1610 * - Simple Gigabit Ethernet port data flow API.
1611 * - Data flow and operation API support per queue functionality.
1612 * - Support cached descriptors for better performance.
1613 * - Enable access to all four DRAM banks and internal SRAM memory
1614 * spaces.
1615 * - PHY access and control API.
1616 * - Port control register configuration API.
1617 * - Full control over Unicast and Multicast MAC configurations.
1618 *
1619 * Operation flow:
1620 *
1621 * Initialization phase
1622 * This phase complete the initialization of the the
1623 * mv643xx_private struct.
1624 * User information regarding port configuration has to be set
1625 * prior to calling the port initialization routine.
1626 *
1627 * In this phase any port Tx/Rx activity is halted, MIB counters
1628 * are cleared, PHY address is set according to user parameter and
1629 * access to DRAM and internal SRAM memory spaces.
1630 *
1631 * Driver ring initialization
1632 * Allocating memory for the descriptor rings and buffers is not
1633 * within the scope of this driver. Thus, the user is required to
1634 * allocate memory for the descriptors ring and buffers. Those
1635 * memory parameters are used by the Rx and Tx ring initialization
1636 * routines in order to curve the descriptor linked list in a form
1637 * of a ring.
1638 * Note: Pay special attention to alignment issues when using
1639 * cached descriptors/buffers. In this phase the driver store
1640 * information in the mv643xx_private struct regarding each queue
1641 * ring.
1642 *
1643 * Driver start
1644 * This phase prepares the Ethernet port for Rx and Tx activity.
1645 * It uses the information stored in the mv643xx_private struct to
1646 * initialize the various port registers.
1647 *
1648 * Data flow:
1649 * All packet references to/from the driver are done using
1650 * struct pkt_info.
1651 * This struct is a unified struct used with Rx and Tx operations.
1652 * This way the user is not required to be familiar with neither
1653 * Tx nor Rx descriptors structures.
1654 * The driver's descriptors rings are management by indexes.
1655 * Those indexes controls the ring resources and used to indicate
1656 * a SW resource error:
1657 * 'current'
1658 * This index points to the current available resource for use. For
1659 * example in Rx process this index will point to the descriptor
1660 * that will be passed to the user upon calling the receive
1661 * routine. In Tx process, this index will point to the descriptor
1662 * that will be assigned with the user packet info and transmitted.
1663 * 'used'
1664 * This index points to the descriptor that need to restore its
1665 * resources. For example in Rx process, using the Rx buffer return
1666 * API will attach the buffer returned in packet info to the
1667 * descriptor pointed by 'used'. In Tx process, using the Tx
1668 * descriptor return will merely return the user packet info with
1669 * the command status of the transmitted buffer pointed by the
1670 * 'used' index. Nevertheless, it is essential to use this routine
1671 * to update the 'used' index.
1672 * 'first'
1673 * This index supports Tx Scatter-Gather. It points to the first
1674 * descriptor of a packet assembled of multiple buffers. For
1675 * example when in middle of Such packet we have a Tx resource
1676 * error the 'curr' index get the value of 'first' to indicate
1677 * that the ring returned to its state before trying to transmit
1678 * this packet.
1679 *
1680 * Receive operation:
1681 * The eth_port_receive API set the packet information struct,
1682 * passed by the caller, with received information from the
1683 * 'current' SDMA descriptor.
1684 * It is the user responsibility to return this resource back
1685 * to the Rx descriptor ring to enable the reuse of this source.
1686 * Return Rx resource is done using the eth_rx_return_buff API.
1687 *
1688 * Prior to calling the initialization routine eth_port_init() the user
1689 * must set the following fields under mv643xx_private struct:
1690 * port_num User Ethernet port number.
1691 * port_config User port configuration value.
1692 * port_config_extend User port config extend value.
1693 * port_sdma_config User port SDMA config value.
1694 * port_serial_control User port serial control value.
1695 *
1696 * This driver data flow is done using the struct pkt_info which
1697 * is a unified struct for Rx and Tx operations:
1698 *
1699 * byte_cnt Tx/Rx descriptor buffer byte count.
1700 * l4i_chk CPU provided TCP Checksum. For Tx operation
1701 * only.
1702 * cmd_sts Tx/Rx descriptor command status.
1703 * buf_ptr Tx/Rx descriptor buffer pointer.
1704 * return_info Tx/Rx user resource return information.
1705 */
1706
1707 /* PHY routines */
1708 static int ethernet_phy_get(unsigned int eth_port_num);
1709 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1710
1711 /* Ethernet Port routines */
1712 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1713
1714 /*
1715 * eth_port_init - Initialize the Ethernet port driver
1716 *
1717 * DESCRIPTION:
1718 * This function prepares the ethernet port to start its activity:
1719 * 1) Completes the ethernet port driver struct initialization toward port
1720 * start routine.
1721 * 2) Resets the device to a quiescent state in case of warm reboot.
1722 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1723 * 4) Clean MAC tables. The reset status of those tables is unknown.
1724 * 5) Set PHY address.
1725 * Note: Call this routine prior to eth_port_start routine and after
1726 * setting user values in the user fields of Ethernet port control
1727 * struct.
1728 *
1729 * INPUT:
1730 * struct mv643xx_private *mp Ethernet port control struct
1731 *
1732 * OUTPUT:
1733 * See description.
1734 *
1735 * RETURN:
1736 * None.
1737 */
1738 static void eth_port_init(struct mv643xx_private *mp)
1739 {
1740 mp->rx_resource_err = 0;
1741
1742 eth_port_reset(mp->port_num);
1743
1744 eth_port_init_mac_tables(mp->port_num);
1745 }
1746
1747 /*
1748 * eth_port_start - Start the Ethernet port activity.
1749 *
1750 * DESCRIPTION:
1751 * This routine prepares the Ethernet port for Rx and Tx activity:
1752 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1753 * has been initialized a descriptor's ring (using
1754 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1755 * 2. Initialize and enable the Ethernet configuration port by writing to
1756 * the port's configuration and command registers.
1757 * 3. Initialize and enable the SDMA by writing to the SDMA's
1758 * configuration and command registers. After completing these steps,
1759 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1760 *
1761 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1762 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1763 * and ether_init_rx_desc_ring for Rx queues).
1764 *
1765 * INPUT:
1766 * dev - a pointer to the required interface
1767 *
1768 * OUTPUT:
1769 * Ethernet port is ready to receive and transmit.
1770 *
1771 * RETURN:
1772 * None.
1773 */
1774 static void eth_port_start(struct net_device *dev)
1775 {
1776 struct mv643xx_private *mp = netdev_priv(dev);
1777 unsigned int port_num = mp->port_num;
1778 int tx_curr_desc, rx_curr_desc;
1779 u32 pscr;
1780 struct ethtool_cmd ethtool_cmd;
1781
1782 /* Assignment of Tx CTRP of given queue */
1783 tx_curr_desc = mp->tx_curr_desc_q;
1784 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1785 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1786
1787 /* Assignment of Rx CRDP of given queue */
1788 rx_curr_desc = mp->rx_curr_desc_q;
1789 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1790 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1791
1792 /* Add the assigned Ethernet address to the port's address table */
1793 eth_port_uc_addr_set(port_num, dev->dev_addr);
1794
1795 /* Assign port configuration and command. */
1796 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1797 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1798
1799 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1800 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1801
1802 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1803
1804 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1805 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1806
1807 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1808 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1809 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1810 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1811 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1812
1813 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1814
1815 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1816 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1817
1818 /* Assign port SDMA configuration */
1819 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1820 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1821
1822 /* Enable port Rx. */
1823 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1824
1825 /* Disable port bandwidth limits by clearing MTU register */
1826 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1827
1828 /* save phy settings across reset */
1829 mv643xx_get_settings(dev, &ethtool_cmd);
1830 ethernet_phy_reset(mp->port_num);
1831 mv643xx_set_settings(dev, &ethtool_cmd);
1832 }
1833
1834 /*
1835 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
1836 */
1837 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr)
1838 {
1839 unsigned int mac_h;
1840 unsigned int mac_l;
1841 int table;
1842
1843 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1844 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1845 (p_addr[3] << 0);
1846
1847 mv_write(MV643XX_ETH_MAC_ADDR_LOW(port_num), mac_l);
1848 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(port_num), mac_h);
1849
1850 /* Accept frames with this address */
1851 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(port_num);
1852 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1853 }
1854
1855 /*
1856 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
1857 */
1858 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr)
1859 {
1860 unsigned int mac_h;
1861 unsigned int mac_l;
1862
1863 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(port_num));
1864 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(port_num));
1865
1866 p_addr[0] = (mac_h >> 24) & 0xff;
1867 p_addr[1] = (mac_h >> 16) & 0xff;
1868 p_addr[2] = (mac_h >> 8) & 0xff;
1869 p_addr[3] = mac_h & 0xff;
1870 p_addr[4] = (mac_l >> 8) & 0xff;
1871 p_addr[5] = mac_l & 0xff;
1872 }
1873
1874 /*
1875 * The entries in each table are indexed by a hash of a packet's MAC
1876 * address. One bit in each entry determines whether the packet is
1877 * accepted. There are 4 entries (each 8 bits wide) in each register
1878 * of the table. The bits in each entry are defined as follows:
1879 * 0 Accept=1, Drop=0
1880 * 3-1 Queue (ETH_Q0=0)
1881 * 7-4 Reserved = 0;
1882 */
1883 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1884 {
1885 unsigned int table_reg;
1886 unsigned int tbl_offset;
1887 unsigned int reg_offset;
1888
1889 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1890 reg_offset = entry % 4; /* Entry offset within the register */
1891
1892 /* Set "accepts frame bit" at specified table entry */
1893 table_reg = mv_read(table + tbl_offset);
1894 table_reg |= 0x01 << (8 * reg_offset);
1895 mv_write(table + tbl_offset, table_reg);
1896 }
1897
1898 /*
1899 * eth_port_mc_addr - Multicast address settings.
1900 *
1901 * The MV device supports multicast using two tables:
1902 * 1) Special Multicast Table for MAC addresses of the form
1903 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1904 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1905 * Table entries in the DA-Filter table.
1906 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1907 * is used as an index to the Other Multicast Table entries in the
1908 * DA-Filter table. This function calculates the CRC-8bit value.
1909 * In either case, eth_port_set_filter_table_entry() is then called
1910 * to set to set the actual table entry.
1911 */
1912 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1913 {
1914 unsigned int mac_h;
1915 unsigned int mac_l;
1916 unsigned char crc_result = 0;
1917 int table;
1918 int mac_array[48];
1919 int crc[8];
1920 int i;
1921
1922 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1923 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1924 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1925 (eth_port_num);
1926 eth_port_set_filter_table_entry(table, p_addr[5]);
1927 return;
1928 }
1929
1930 /* Calculate CRC-8 out of the given address */
1931 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1932 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1933 (p_addr[4] << 8) | (p_addr[5] << 0);
1934
1935 for (i = 0; i < 32; i++)
1936 mac_array[i] = (mac_l >> i) & 0x1;
1937 for (i = 32; i < 48; i++)
1938 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1939
1940 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1941 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1942 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1943 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1944 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1945
1946 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1947 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1948 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1949 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1950 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1951 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1952 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1953
1954 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1955 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1956 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1957 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1958 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1959 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1960
1961 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1962 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1963 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1964 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1965 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1966 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1967
1968 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1969 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1970 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1971 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1972 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1973 mac_array[3] ^ mac_array[2];
1974
1975 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1976 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1977 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1978 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1979 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1980 mac_array[4] ^ mac_array[3];
1981
1982 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1983 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1984 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1985 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
1986 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
1987 mac_array[4];
1988
1989 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
1990 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
1991 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
1992 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
1993 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
1994
1995 for (i = 0; i < 8; i++)
1996 crc_result = crc_result | (crc[i] << i);
1997
1998 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
1999 eth_port_set_filter_table_entry(table, crc_result);
2000 }
2001
2002 /*
2003 * Set the entire multicast list based on dev->mc_list.
2004 */
2005 static void eth_port_set_multicast_list(struct net_device *dev)
2006 {
2007
2008 struct dev_mc_list *mc_list;
2009 int i;
2010 int table_index;
2011 struct mv643xx_private *mp = netdev_priv(dev);
2012 unsigned int eth_port_num = mp->port_num;
2013
2014 /* If the device is in promiscuous mode or in all multicast mode,
2015 * we will fully populate both multicast tables with accept.
2016 * This is guaranteed to yield a match on all multicast addresses...
2017 */
2018 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2019 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2020 /* Set all entries in DA filter special multicast
2021 * table (Ex_dFSMT)
2022 * Set for ETH_Q0 for now
2023 * Bits
2024 * 0 Accept=1, Drop=0
2025 * 3-1 Queue ETH_Q0=0
2026 * 7-4 Reserved = 0;
2027 */
2028 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2029
2030 /* Set all entries in DA filter other multicast
2031 * table (Ex_dFOMT)
2032 * Set for ETH_Q0 for now
2033 * Bits
2034 * 0 Accept=1, Drop=0
2035 * 3-1 Queue ETH_Q0=0
2036 * 7-4 Reserved = 0;
2037 */
2038 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2039 }
2040 return;
2041 }
2042
2043 /* We will clear out multicast tables every time we get the list.
2044 * Then add the entire new list...
2045 */
2046 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2047 /* Clear DA filter special multicast table (Ex_dFSMT) */
2048 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2049 (eth_port_num) + table_index, 0);
2050
2051 /* Clear DA filter other multicast table (Ex_dFOMT) */
2052 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2053 (eth_port_num) + table_index, 0);
2054 }
2055
2056 /* Get pointer to net_device multicast list and add each one... */
2057 for (i = 0, mc_list = dev->mc_list;
2058 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2059 i++, mc_list = mc_list->next)
2060 if (mc_list->dmi_addrlen == 6)
2061 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2062 }
2063
2064 /*
2065 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2066 *
2067 * DESCRIPTION:
2068 * Go through all the DA filter tables (Unicast, Special Multicast &
2069 * Other Multicast) and set each entry to 0.
2070 *
2071 * INPUT:
2072 * unsigned int eth_port_num Ethernet Port number.
2073 *
2074 * OUTPUT:
2075 * Multicast and Unicast packets are rejected.
2076 *
2077 * RETURN:
2078 * None.
2079 */
2080 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2081 {
2082 int table_index;
2083
2084 /* Clear DA filter unicast table (Ex_dFUT) */
2085 for (table_index = 0; table_index <= 0xC; table_index += 4)
2086 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2087 (eth_port_num) + table_index, 0);
2088
2089 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2090 /* Clear DA filter special multicast table (Ex_dFSMT) */
2091 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2092 (eth_port_num) + table_index, 0);
2093 /* Clear DA filter other multicast table (Ex_dFOMT) */
2094 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2095 (eth_port_num) + table_index, 0);
2096 }
2097 }
2098
2099 /*
2100 * eth_clear_mib_counters - Clear all MIB counters
2101 *
2102 * DESCRIPTION:
2103 * This function clears all MIB counters of a specific ethernet port.
2104 * A read from the MIB counter will reset the counter.
2105 *
2106 * INPUT:
2107 * unsigned int eth_port_num Ethernet Port number.
2108 *
2109 * OUTPUT:
2110 * After reading all MIB counters, the counters resets.
2111 *
2112 * RETURN:
2113 * MIB counter value.
2114 *
2115 */
2116 static void eth_clear_mib_counters(unsigned int eth_port_num)
2117 {
2118 int i;
2119
2120 /* Perform dummy reads from MIB counters */
2121 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2122 i += 4)
2123 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2124 }
2125
2126 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2127 {
2128 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2129 }
2130
2131 static void eth_update_mib_counters(struct mv643xx_private *mp)
2132 {
2133 struct mv643xx_mib_counters *p = &mp->mib_counters;
2134 int offset;
2135
2136 p->good_octets_received +=
2137 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2138 p->good_octets_received +=
2139 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2140
2141 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2142 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2143 offset += 4)
2144 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2145
2146 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2147 p->good_octets_sent +=
2148 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2149
2150 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2151 offset <= ETH_MIB_LATE_COLLISION;
2152 offset += 4)
2153 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2154 }
2155
2156 /*
2157 * ethernet_phy_detect - Detect whether a phy is present
2158 *
2159 * DESCRIPTION:
2160 * This function tests whether there is a PHY present on
2161 * the specified port.
2162 *
2163 * INPUT:
2164 * unsigned int eth_port_num Ethernet Port number.
2165 *
2166 * OUTPUT:
2167 * None
2168 *
2169 * RETURN:
2170 * 0 on success
2171 * -ENODEV on failure
2172 *
2173 */
2174 static int ethernet_phy_detect(unsigned int port_num)
2175 {
2176 unsigned int phy_reg_data0;
2177 int auto_neg;
2178
2179 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2180 auto_neg = phy_reg_data0 & 0x1000;
2181 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2182 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2183
2184 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2185 if ((phy_reg_data0 & 0x1000) == auto_neg)
2186 return -ENODEV; /* change didn't take */
2187
2188 phy_reg_data0 ^= 0x1000;
2189 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2190 return 0;
2191 }
2192
2193 /*
2194 * ethernet_phy_get - Get the ethernet port PHY address.
2195 *
2196 * DESCRIPTION:
2197 * This routine returns the given ethernet port PHY address.
2198 *
2199 * INPUT:
2200 * unsigned int eth_port_num Ethernet Port number.
2201 *
2202 * OUTPUT:
2203 * None.
2204 *
2205 * RETURN:
2206 * PHY address.
2207 *
2208 */
2209 static int ethernet_phy_get(unsigned int eth_port_num)
2210 {
2211 unsigned int reg_data;
2212
2213 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2214
2215 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2216 }
2217
2218 /*
2219 * ethernet_phy_set - Set the ethernet port PHY address.
2220 *
2221 * DESCRIPTION:
2222 * This routine sets the given ethernet port PHY address.
2223 *
2224 * INPUT:
2225 * unsigned int eth_port_num Ethernet Port number.
2226 * int phy_addr PHY address.
2227 *
2228 * OUTPUT:
2229 * None.
2230 *
2231 * RETURN:
2232 * None.
2233 *
2234 */
2235 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2236 {
2237 u32 reg_data;
2238 int addr_shift = 5 * eth_port_num;
2239
2240 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2241 reg_data &= ~(0x1f << addr_shift);
2242 reg_data |= (phy_addr & 0x1f) << addr_shift;
2243 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2244 }
2245
2246 /*
2247 * ethernet_phy_reset - Reset Ethernet port PHY.
2248 *
2249 * DESCRIPTION:
2250 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2251 *
2252 * INPUT:
2253 * unsigned int eth_port_num Ethernet Port number.
2254 *
2255 * OUTPUT:
2256 * The PHY is reset.
2257 *
2258 * RETURN:
2259 * None.
2260 *
2261 */
2262 static void ethernet_phy_reset(unsigned int eth_port_num)
2263 {
2264 unsigned int phy_reg_data;
2265
2266 /* Reset the PHY */
2267 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2268 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2269 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2270
2271 /* wait for PHY to come out of reset */
2272 do {
2273 udelay(1);
2274 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2275 } while (phy_reg_data & 0x8000);
2276 }
2277
2278 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2279 unsigned int queues)
2280 {
2281 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2282 }
2283
2284 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2285 unsigned int queues)
2286 {
2287 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2288 }
2289
2290 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2291 {
2292 u32 queues;
2293
2294 /* Stop Tx port activity. Check port Tx activity. */
2295 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2296 & 0xFF;
2297 if (queues) {
2298 /* Issue stop command for active queues only */
2299 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2300 (queues << 8));
2301
2302 /* Wait for all Tx activity to terminate. */
2303 /* Check port cause register that all Tx queues are stopped */
2304 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2305 & 0xFF)
2306 udelay(PHY_WAIT_MICRO_SECONDS);
2307
2308 /* Wait for Tx FIFO to empty */
2309 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2310 ETH_PORT_TX_FIFO_EMPTY)
2311 udelay(PHY_WAIT_MICRO_SECONDS);
2312 }
2313
2314 return queues;
2315 }
2316
2317 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2318 {
2319 u32 queues;
2320
2321 /* Stop Rx port activity. Check port Rx activity. */
2322 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2323 & 0xFF;
2324 if (queues) {
2325 /* Issue stop command for active queues only */
2326 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2327 (queues << 8));
2328
2329 /* Wait for all Rx activity to terminate. */
2330 /* Check port cause register that all Rx queues are stopped */
2331 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2332 & 0xFF)
2333 udelay(PHY_WAIT_MICRO_SECONDS);
2334 }
2335
2336 return queues;
2337 }
2338
2339 /*
2340 * eth_port_reset - Reset Ethernet port
2341 *
2342 * DESCRIPTION:
2343 * This routine resets the chip by aborting any SDMA engine activity and
2344 * clearing the MIB counters. The Receiver and the Transmit unit are in
2345 * idle state after this command is performed and the port is disabled.
2346 *
2347 * INPUT:
2348 * unsigned int eth_port_num Ethernet Port number.
2349 *
2350 * OUTPUT:
2351 * Channel activity is halted.
2352 *
2353 * RETURN:
2354 * None.
2355 *
2356 */
2357 static void eth_port_reset(unsigned int port_num)
2358 {
2359 unsigned int reg_data;
2360
2361 mv643xx_eth_port_disable_tx(port_num);
2362 mv643xx_eth_port_disable_rx(port_num);
2363
2364 /* Clear all MIB counters */
2365 eth_clear_mib_counters(port_num);
2366
2367 /* Reset the Enable bit in the Configuration Register */
2368 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2369 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2370 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2371 MV643XX_ETH_FORCE_LINK_PASS);
2372 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2373 }
2374
2375
2376 /*
2377 * eth_port_read_smi_reg - Read PHY registers
2378 *
2379 * DESCRIPTION:
2380 * This routine utilize the SMI interface to interact with the PHY in
2381 * order to perform PHY register read.
2382 *
2383 * INPUT:
2384 * unsigned int port_num Ethernet Port number.
2385 * unsigned int phy_reg PHY register address offset.
2386 * unsigned int *value Register value buffer.
2387 *
2388 * OUTPUT:
2389 * Write the value of a specified PHY register into given buffer.
2390 *
2391 * RETURN:
2392 * false if the PHY is busy or read data is not in valid state.
2393 * true otherwise.
2394 *
2395 */
2396 static void eth_port_read_smi_reg(unsigned int port_num,
2397 unsigned int phy_reg, unsigned int *value)
2398 {
2399 int phy_addr = ethernet_phy_get(port_num);
2400 unsigned long flags;
2401 int i;
2402
2403 /* the SMI register is a shared resource */
2404 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2405
2406 /* wait for the SMI register to become available */
2407 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2408 if (i == PHY_WAIT_ITERATIONS) {
2409 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2410 goto out;
2411 }
2412 udelay(PHY_WAIT_MICRO_SECONDS);
2413 }
2414
2415 mv_write(MV643XX_ETH_SMI_REG,
2416 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2417
2418 /* now wait for the data to be valid */
2419 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2420 if (i == PHY_WAIT_ITERATIONS) {
2421 printk("mv643xx PHY read timeout, port %d\n", port_num);
2422 goto out;
2423 }
2424 udelay(PHY_WAIT_MICRO_SECONDS);
2425 }
2426
2427 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2428 out:
2429 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2430 }
2431
2432 /*
2433 * eth_port_write_smi_reg - Write to PHY registers
2434 *
2435 * DESCRIPTION:
2436 * This routine utilize the SMI interface to interact with the PHY in
2437 * order to perform writes to PHY registers.
2438 *
2439 * INPUT:
2440 * unsigned int eth_port_num Ethernet Port number.
2441 * unsigned int phy_reg PHY register address offset.
2442 * unsigned int value Register value.
2443 *
2444 * OUTPUT:
2445 * Write the given value to the specified PHY register.
2446 *
2447 * RETURN:
2448 * false if the PHY is busy.
2449 * true otherwise.
2450 *
2451 */
2452 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2453 unsigned int phy_reg, unsigned int value)
2454 {
2455 int phy_addr;
2456 int i;
2457 unsigned long flags;
2458
2459 phy_addr = ethernet_phy_get(eth_port_num);
2460
2461 /* the SMI register is a shared resource */
2462 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2463
2464 /* wait for the SMI register to become available */
2465 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2466 if (i == PHY_WAIT_ITERATIONS) {
2467 printk("mv643xx PHY busy timeout, port %d\n",
2468 eth_port_num);
2469 goto out;
2470 }
2471 udelay(PHY_WAIT_MICRO_SECONDS);
2472 }
2473
2474 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2475 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2476 out:
2477 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2478 }
2479
2480 /*
2481 * Wrappers for MII support library.
2482 */
2483 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2484 {
2485 int val;
2486 struct mv643xx_private *mp = netdev_priv(dev);
2487
2488 eth_port_read_smi_reg(mp->port_num, location, &val);
2489 return val;
2490 }
2491
2492 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2493 {
2494 struct mv643xx_private *mp = netdev_priv(dev);
2495 eth_port_write_smi_reg(mp->port_num, location, val);
2496 }
2497
2498 /*
2499 * eth_port_receive - Get received information from Rx ring.
2500 *
2501 * DESCRIPTION:
2502 * This routine returns the received data to the caller. There is no
2503 * data copying during routine operation. All information is returned
2504 * using pointer to packet information struct passed from the caller.
2505 * If the routine exhausts Rx ring resources then the resource error flag
2506 * is set.
2507 *
2508 * INPUT:
2509 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2510 * struct pkt_info *p_pkt_info User packet buffer.
2511 *
2512 * OUTPUT:
2513 * Rx ring current and used indexes are updated.
2514 *
2515 * RETURN:
2516 * ETH_ERROR in case the routine can not access Rx desc ring.
2517 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2518 * ETH_END_OF_JOB if there is no received data.
2519 * ETH_OK otherwise.
2520 */
2521 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2522 struct pkt_info *p_pkt_info)
2523 {
2524 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2525 volatile struct eth_rx_desc *p_rx_desc;
2526 unsigned int command_status;
2527 unsigned long flags;
2528
2529 /* Do not process Rx ring in case of Rx ring resource error */
2530 if (mp->rx_resource_err)
2531 return ETH_QUEUE_FULL;
2532
2533 spin_lock_irqsave(&mp->lock, flags);
2534
2535 /* Get the Rx Desc ring 'curr and 'used' indexes */
2536 rx_curr_desc = mp->rx_curr_desc_q;
2537 rx_used_desc = mp->rx_used_desc_q;
2538
2539 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2540
2541 /* The following parameters are used to save readings from memory */
2542 command_status = p_rx_desc->cmd_sts;
2543 rmb();
2544
2545 /* Nothing to receive... */
2546 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2547 spin_unlock_irqrestore(&mp->lock, flags);
2548 return ETH_END_OF_JOB;
2549 }
2550
2551 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2552 p_pkt_info->cmd_sts = command_status;
2553 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2554 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2555 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2556
2557 /*
2558 * Clean the return info field to indicate that the
2559 * packet has been moved to the upper layers
2560 */
2561 mp->rx_skb[rx_curr_desc] = NULL;
2562
2563 /* Update current index in data structure */
2564 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2565 mp->rx_curr_desc_q = rx_next_curr_desc;
2566
2567 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2568 if (rx_next_curr_desc == rx_used_desc)
2569 mp->rx_resource_err = 1;
2570
2571 spin_unlock_irqrestore(&mp->lock, flags);
2572
2573 return ETH_OK;
2574 }
2575
2576 /*
2577 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2578 *
2579 * DESCRIPTION:
2580 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2581 * next 'used' descriptor and attached the returned buffer to it.
2582 * In case the Rx ring was in "resource error" condition, where there are
2583 * no available Rx resources, the function resets the resource error flag.
2584 *
2585 * INPUT:
2586 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2587 * struct pkt_info *p_pkt_info Information on returned buffer.
2588 *
2589 * OUTPUT:
2590 * New available Rx resource in Rx descriptor ring.
2591 *
2592 * RETURN:
2593 * ETH_ERROR in case the routine can not access Rx desc ring.
2594 * ETH_OK otherwise.
2595 */
2596 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2597 struct pkt_info *p_pkt_info)
2598 {
2599 int used_rx_desc; /* Where to return Rx resource */
2600 volatile struct eth_rx_desc *p_used_rx_desc;
2601 unsigned long flags;
2602
2603 spin_lock_irqsave(&mp->lock, flags);
2604
2605 /* Get 'used' Rx descriptor */
2606 used_rx_desc = mp->rx_used_desc_q;
2607 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2608
2609 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2610 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2611 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2612
2613 /* Flush the write pipe */
2614
2615 /* Return the descriptor to DMA ownership */
2616 wmb();
2617 p_used_rx_desc->cmd_sts =
2618 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2619 wmb();
2620
2621 /* Move the used descriptor pointer to the next descriptor */
2622 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2623
2624 /* Any Rx return cancels the Rx resource error status */
2625 mp->rx_resource_err = 0;
2626
2627 spin_unlock_irqrestore(&mp->lock, flags);
2628
2629 return ETH_OK;
2630 }
2631
2632 /************* Begin ethtool support *************************/
2633
2634 struct mv643xx_stats {
2635 char stat_string[ETH_GSTRING_LEN];
2636 int sizeof_stat;
2637 int stat_offset;
2638 };
2639
2640 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2641 offsetof(struct mv643xx_private, m)
2642
2643 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2644 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2645 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2646 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2647 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2648 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2649 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2650 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2651 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2652 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2653 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2654 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2655 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2656 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2657 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2658 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2659 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2660 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2661 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2662 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2663 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2664 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2665 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2666 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2667 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2668 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2669 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2670 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2671 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2672 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2673 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2674 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2675 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2676 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2677 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2678 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2679 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2680 { "collision", MV643XX_STAT(mib_counters.collision) },
2681 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2682 };
2683
2684 #define MV643XX_STATS_LEN \
2685 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2686
2687 static void mv643xx_get_drvinfo(struct net_device *netdev,
2688 struct ethtool_drvinfo *drvinfo)
2689 {
2690 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2691 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2692 strncpy(drvinfo->fw_version, "N/A", 32);
2693 strncpy(drvinfo->bus_info, "mv643xx", 32);
2694 drvinfo->n_stats = MV643XX_STATS_LEN;
2695 }
2696
2697 static int mv643xx_get_stats_count(struct net_device *netdev)
2698 {
2699 return MV643XX_STATS_LEN;
2700 }
2701
2702 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2703 struct ethtool_stats *stats, uint64_t *data)
2704 {
2705 struct mv643xx_private *mp = netdev->priv;
2706 int i;
2707
2708 eth_update_mib_counters(mp);
2709
2710 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2711 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2712 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2713 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2714 }
2715 }
2716
2717 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2718 uint8_t *data)
2719 {
2720 int i;
2721
2722 switch(stringset) {
2723 case ETH_SS_STATS:
2724 for (i=0; i < MV643XX_STATS_LEN; i++) {
2725 memcpy(data + i * ETH_GSTRING_LEN,
2726 mv643xx_gstrings_stats[i].stat_string,
2727 ETH_GSTRING_LEN);
2728 }
2729 break;
2730 }
2731 }
2732
2733 static u32 mv643xx_eth_get_link(struct net_device *dev)
2734 {
2735 struct mv643xx_private *mp = netdev_priv(dev);
2736
2737 return mii_link_ok(&mp->mii);
2738 }
2739
2740 static int mv643xx_eth_nway_restart(struct net_device *dev)
2741 {
2742 struct mv643xx_private *mp = netdev_priv(dev);
2743
2744 return mii_nway_restart(&mp->mii);
2745 }
2746
2747 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2748 {
2749 struct mv643xx_private *mp = netdev_priv(dev);
2750
2751 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2752 }
2753
2754 static const struct ethtool_ops mv643xx_ethtool_ops = {
2755 .get_settings = mv643xx_get_settings,
2756 .set_settings = mv643xx_set_settings,
2757 .get_drvinfo = mv643xx_get_drvinfo,
2758 .get_link = mv643xx_eth_get_link,
2759 .get_sg = ethtool_op_get_sg,
2760 .set_sg = ethtool_op_set_sg,
2761 .get_stats_count = mv643xx_get_stats_count,
2762 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2763 .get_strings = mv643xx_get_strings,
2764 .nway_reset = mv643xx_eth_nway_restart,
2765 };
2766
2767 /************* End ethtool support *************************/