net: convert multicast list to list_head
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / macmace.c
1 /*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
13 *
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15 *
16 * Copyright (C) 2007 Finn Thain
17 *
18 * Converted to DMA API, converted to unified driver model,
19 * sync'd some routines with mace.c and fixed various bugs.
20 */
21
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/macintosh.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
40
41 static char mac_mace_string[] = "macmace";
42
43 #define N_TX_BUFF_ORDER 0
44 #define N_TX_RING (1 << N_TX_BUFF_ORDER)
45 #define N_RX_BUFF_ORDER 3
46 #define N_RX_RING (1 << N_RX_BUFF_ORDER)
47
48 #define TX_TIMEOUT HZ
49
50 #define MACE_BUFF_SIZE 0x800
51
52 /* Chip rev needs workaround on HW & multicast addr change */
53 #define BROKEN_ADDRCHG_REV 0x0941
54
55 /* The MACE is simply wired down on a Mac68K box */
56
57 #define MACE_BASE (void *)(0x50F1C000)
58 #define MACE_PROM (void *)(0x50F08001)
59
60 struct mace_data {
61 volatile struct mace *mace;
62 unsigned char *tx_ring;
63 dma_addr_t tx_ring_phys;
64 unsigned char *rx_ring;
65 dma_addr_t rx_ring_phys;
66 int dma_intr;
67 int rx_slot, rx_tail;
68 int tx_slot, tx_sloti, tx_count;
69 int chipid;
70 struct device *device;
71 };
72
73 struct mace_frame {
74 u8 rcvcnt;
75 u8 pad1;
76 u8 rcvsts;
77 u8 pad2;
78 u8 rntpc;
79 u8 pad3;
80 u8 rcvcc;
81 u8 pad4;
82 u32 pad5;
83 u32 pad6;
84 u8 data[1];
85 /* And frame continues.. */
86 };
87
88 #define PRIV_BYTES sizeof(struct mace_data)
89
90 static int mace_open(struct net_device *dev);
91 static int mace_close(struct net_device *dev);
92 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93 static void mace_set_multicast(struct net_device *dev);
94 static int mace_set_address(struct net_device *dev, void *addr);
95 static void mace_reset(struct net_device *dev);
96 static irqreturn_t mace_interrupt(int irq, void *dev_id);
97 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98 static void mace_tx_timeout(struct net_device *dev);
99 static void __mace_set_address(struct net_device *dev, void *addr);
100
101 /*
102 * Load a receive DMA channel with a base address and ring length
103 */
104
105 static void mace_load_rxdma_base(struct net_device *dev, int set)
106 {
107 struct mace_data *mp = netdev_priv(dev);
108
109 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113 mp->rx_tail = 0;
114 }
115
116 /*
117 * Reset the receive DMA subsystem
118 */
119
120 static void mace_rxdma_reset(struct net_device *dev)
121 {
122 struct mace_data *mp = netdev_priv(dev);
123 volatile struct mace *mace = mp->mace;
124 u8 maccc = mace->maccc;
125
126 mace->maccc = maccc & ~ENRCV;
127
128 psc_write_word(PSC_ENETRD_CTL, 0x8800);
129 mace_load_rxdma_base(dev, 0x00);
130 psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132 psc_write_word(PSC_ENETRD_CTL, 0x8800);
133 mace_load_rxdma_base(dev, 0x10);
134 psc_write_word(PSC_ENETRD_CTL, 0x0400);
135
136 mace->maccc = maccc;
137 mp->rx_slot = 0;
138
139 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
141 }
142
143 /*
144 * Reset the transmit DMA subsystem
145 */
146
147 static void mace_txdma_reset(struct net_device *dev)
148 {
149 struct mace_data *mp = netdev_priv(dev);
150 volatile struct mace *mace = mp->mace;
151 u8 maccc;
152
153 psc_write_word(PSC_ENETWR_CTL, 0x8800);
154
155 maccc = mace->maccc;
156 mace->maccc = maccc & ~ENXMT;
157
158 mp->tx_slot = mp->tx_sloti = 0;
159 mp->tx_count = N_TX_RING;
160
161 psc_write_word(PSC_ENETWR_CTL, 0x0400);
162 mace->maccc = maccc;
163 }
164
165 /*
166 * Disable DMA
167 */
168
169 static void mace_dma_off(struct net_device *dev)
170 {
171 psc_write_word(PSC_ENETRD_CTL, 0x8800);
172 psc_write_word(PSC_ENETRD_CTL, 0x1000);
173 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
175
176 psc_write_word(PSC_ENETWR_CTL, 0x8800);
177 psc_write_word(PSC_ENETWR_CTL, 0x1000);
178 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
180 }
181
182 static const struct net_device_ops mace_netdev_ops = {
183 .ndo_open = mace_open,
184 .ndo_stop = mace_close,
185 .ndo_start_xmit = mace_xmit_start,
186 .ndo_tx_timeout = mace_tx_timeout,
187 .ndo_set_multicast_list = mace_set_multicast,
188 .ndo_set_mac_address = mace_set_address,
189 .ndo_change_mtu = eth_change_mtu,
190 .ndo_validate_addr = eth_validate_addr,
191 };
192
193 /*
194 * Not really much of a probe. The hardware table tells us if this
195 * model of Macintrash has a MACE (AV macintoshes)
196 */
197
198 static int __devinit mace_probe(struct platform_device *pdev)
199 {
200 int j;
201 struct mace_data *mp;
202 unsigned char *addr;
203 struct net_device *dev;
204 unsigned char checksum = 0;
205 static int found = 0;
206 int err;
207
208 if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
209 return -ENODEV;
210
211 found = 1; /* prevent 'finding' one on every device probe */
212
213 dev = alloc_etherdev(PRIV_BYTES);
214 if (!dev)
215 return -ENOMEM;
216
217 mp = netdev_priv(dev);
218
219 mp->device = &pdev->dev;
220 SET_NETDEV_DEV(dev, &pdev->dev);
221
222 dev->base_addr = (u32)MACE_BASE;
223 mp->mace = (volatile struct mace *) MACE_BASE;
224
225 dev->irq = IRQ_MAC_MACE;
226 mp->dma_intr = IRQ_MAC_MACE_DMA;
227
228 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
229
230 /*
231 * The PROM contains 8 bytes which total 0xFF when XOR'd
232 * together. Due to the usual peculiar apple brain damage
233 * the bytes are spaced out in a strange boundary and the
234 * bits are reversed.
235 */
236
237 addr = (void *)MACE_PROM;
238
239 for (j = 0; j < 6; ++j) {
240 u8 v = bitrev8(addr[j<<4]);
241 checksum ^= v;
242 dev->dev_addr[j] = v;
243 }
244 for (; j < 8; ++j) {
245 checksum ^= bitrev8(addr[j<<4]);
246 }
247
248 if (checksum != 0xFF) {
249 free_netdev(dev);
250 return -ENODEV;
251 }
252
253 dev->netdev_ops = &mace_netdev_ops;
254 dev->watchdog_timeo = TX_TIMEOUT;
255
256 printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
257 dev->name, dev->dev_addr);
258
259 err = register_netdev(dev);
260 if (!err)
261 return 0;
262
263 free_netdev(dev);
264 return err;
265 }
266
267 /*
268 * Reset the chip.
269 */
270
271 static void mace_reset(struct net_device *dev)
272 {
273 struct mace_data *mp = netdev_priv(dev);
274 volatile struct mace *mb = mp->mace;
275 int i;
276
277 /* soft-reset the chip */
278 i = 200;
279 while (--i) {
280 mb->biucc = SWRST;
281 if (mb->biucc & SWRST) {
282 udelay(10);
283 continue;
284 }
285 break;
286 }
287 if (!i) {
288 printk(KERN_ERR "macmace: cannot reset chip!\n");
289 return;
290 }
291
292 mb->maccc = 0; /* turn off tx, rx */
293 mb->imr = 0xFF; /* disable all intrs for now */
294 i = mb->ir;
295
296 mb->biucc = XMTSP_64;
297 mb->utr = RTRD;
298 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
299
300 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
301 mb->rcvfc = 0;
302
303 /* load up the hardware address */
304 __mace_set_address(dev, dev->dev_addr);
305
306 /* clear the multicast filter */
307 if (mp->chipid == BROKEN_ADDRCHG_REV)
308 mb->iac = LOGADDR;
309 else {
310 mb->iac = ADDRCHG | LOGADDR;
311 while ((mb->iac & ADDRCHG) != 0)
312 ;
313 }
314 for (i = 0; i < 8; ++i)
315 mb->ladrf = 0;
316
317 /* done changing address */
318 if (mp->chipid != BROKEN_ADDRCHG_REV)
319 mb->iac = 0;
320
321 mb->plscc = PORTSEL_AUI;
322 }
323
324 /*
325 * Load the address on a mace controller.
326 */
327
328 static void __mace_set_address(struct net_device *dev, void *addr)
329 {
330 struct mace_data *mp = netdev_priv(dev);
331 volatile struct mace *mb = mp->mace;
332 unsigned char *p = addr;
333 int i;
334
335 /* load up the hardware address */
336 if (mp->chipid == BROKEN_ADDRCHG_REV)
337 mb->iac = PHYADDR;
338 else {
339 mb->iac = ADDRCHG | PHYADDR;
340 while ((mb->iac & ADDRCHG) != 0)
341 ;
342 }
343 for (i = 0; i < 6; ++i)
344 mb->padr = dev->dev_addr[i] = p[i];
345 if (mp->chipid != BROKEN_ADDRCHG_REV)
346 mb->iac = 0;
347 }
348
349 static int mace_set_address(struct net_device *dev, void *addr)
350 {
351 struct mace_data *mp = netdev_priv(dev);
352 volatile struct mace *mb = mp->mace;
353 unsigned long flags;
354 u8 maccc;
355
356 local_irq_save(flags);
357
358 maccc = mb->maccc;
359
360 __mace_set_address(dev, addr);
361
362 mb->maccc = maccc;
363
364 local_irq_restore(flags);
365
366 return 0;
367 }
368
369 /*
370 * Open the Macintosh MACE. Most of this is playing with the DMA
371 * engine. The ethernet chip is quite friendly.
372 */
373
374 static int mace_open(struct net_device *dev)
375 {
376 struct mace_data *mp = netdev_priv(dev);
377 volatile struct mace *mb = mp->mace;
378
379 /* reset the chip */
380 mace_reset(dev);
381
382 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
383 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
384 return -EAGAIN;
385 }
386 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
387 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
388 free_irq(dev->irq, dev);
389 return -EAGAIN;
390 }
391
392 /* Allocate the DMA ring buffers */
393
394 mp->tx_ring = dma_alloc_coherent(mp->device,
395 N_TX_RING * MACE_BUFF_SIZE,
396 &mp->tx_ring_phys, GFP_KERNEL);
397 if (mp->tx_ring == NULL) {
398 printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
399 goto out1;
400 }
401
402 mp->rx_ring = dma_alloc_coherent(mp->device,
403 N_RX_RING * MACE_BUFF_SIZE,
404 &mp->rx_ring_phys, GFP_KERNEL);
405 if (mp->rx_ring == NULL) {
406 printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
407 goto out2;
408 }
409
410 mace_dma_off(dev);
411
412 /* Not sure what these do */
413
414 psc_write_word(PSC_ENETWR_CTL, 0x9000);
415 psc_write_word(PSC_ENETRD_CTL, 0x9000);
416 psc_write_word(PSC_ENETWR_CTL, 0x0400);
417 psc_write_word(PSC_ENETRD_CTL, 0x0400);
418
419 mace_rxdma_reset(dev);
420 mace_txdma_reset(dev);
421
422 /* turn it on! */
423 mb->maccc = ENXMT | ENRCV;
424 /* enable all interrupts except receive interrupts */
425 mb->imr = RCVINT;
426 return 0;
427
428 out2:
429 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
430 mp->tx_ring, mp->tx_ring_phys);
431 out1:
432 free_irq(dev->irq, dev);
433 free_irq(mp->dma_intr, dev);
434 return -ENOMEM;
435 }
436
437 /*
438 * Shut down the mace and its interrupt channel
439 */
440
441 static int mace_close(struct net_device *dev)
442 {
443 struct mace_data *mp = netdev_priv(dev);
444 volatile struct mace *mb = mp->mace;
445
446 mb->maccc = 0; /* disable rx and tx */
447 mb->imr = 0xFF; /* disable all irqs */
448 mace_dma_off(dev); /* disable rx and tx dma */
449
450 return 0;
451 }
452
453 /*
454 * Transmit a frame
455 */
456
457 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
458 {
459 struct mace_data *mp = netdev_priv(dev);
460 unsigned long flags;
461
462 /* Stop the queue since there's only the one buffer */
463
464 local_irq_save(flags);
465 netif_stop_queue(dev);
466 if (!mp->tx_count) {
467 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
468 local_irq_restore(flags);
469 return NETDEV_TX_BUSY;
470 }
471 mp->tx_count--;
472 local_irq_restore(flags);
473
474 dev->stats.tx_packets++;
475 dev->stats.tx_bytes += skb->len;
476
477 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
478 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
479
480 /* load the Tx DMA and fire it off */
481
482 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
483 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
484 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
485
486 mp->tx_slot ^= 0x10;
487
488 dev_kfree_skb(skb);
489
490 dev->trans_start = jiffies;
491 return NETDEV_TX_OK;
492 }
493
494 static void mace_set_multicast(struct net_device *dev)
495 {
496 struct mace_data *mp = netdev_priv(dev);
497 volatile struct mace *mb = mp->mace;
498 int i;
499 u32 crc;
500 u8 maccc;
501 unsigned long flags;
502
503 local_irq_save(flags);
504 maccc = mb->maccc;
505 mb->maccc &= ~PROM;
506
507 if (dev->flags & IFF_PROMISC) {
508 mb->maccc |= PROM;
509 } else {
510 unsigned char multicast_filter[8];
511 struct netdev_hw_addr *ha;
512
513 if (dev->flags & IFF_ALLMULTI) {
514 for (i = 0; i < 8; i++) {
515 multicast_filter[i] = 0xFF;
516 }
517 } else {
518 for (i = 0; i < 8; i++)
519 multicast_filter[i] = 0;
520 netdev_for_each_mc_addr(ha, dev) {
521 crc = ether_crc_le(6, ha->addr);
522 /* bit number in multicast_filter */
523 i = crc >> 26;
524 multicast_filter[i >> 3] |= 1 << (i & 7);
525 }
526 }
527
528 if (mp->chipid == BROKEN_ADDRCHG_REV)
529 mb->iac = LOGADDR;
530 else {
531 mb->iac = ADDRCHG | LOGADDR;
532 while ((mb->iac & ADDRCHG) != 0)
533 ;
534 }
535 for (i = 0; i < 8; ++i)
536 mb->ladrf = multicast_filter[i];
537 if (mp->chipid != BROKEN_ADDRCHG_REV)
538 mb->iac = 0;
539 }
540
541 mb->maccc = maccc;
542 local_irq_restore(flags);
543 }
544
545 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
546 {
547 struct mace_data *mp = netdev_priv(dev);
548 volatile struct mace *mb = mp->mace;
549 static int mace_babbles, mace_jabbers;
550
551 if (intr & MPCO)
552 dev->stats.rx_missed_errors += 256;
553 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
554 if (intr & RNTPCO)
555 dev->stats.rx_length_errors += 256;
556 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
557 if (intr & CERR)
558 ++dev->stats.tx_heartbeat_errors;
559 if (intr & BABBLE)
560 if (mace_babbles++ < 4)
561 printk(KERN_DEBUG "macmace: babbling transmitter\n");
562 if (intr & JABBER)
563 if (mace_jabbers++ < 4)
564 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
565 }
566
567 static irqreturn_t mace_interrupt(int irq, void *dev_id)
568 {
569 struct net_device *dev = (struct net_device *) dev_id;
570 struct mace_data *mp = netdev_priv(dev);
571 volatile struct mace *mb = mp->mace;
572 int intr, fs;
573 unsigned long flags;
574
575 /* don't want the dma interrupt handler to fire */
576 local_irq_save(flags);
577
578 intr = mb->ir; /* read interrupt register */
579 mace_handle_misc_intrs(dev, intr);
580
581 if (intr & XMTINT) {
582 fs = mb->xmtfs;
583 if ((fs & XMTSV) == 0) {
584 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
585 mace_reset(dev);
586 /*
587 * XXX mace likes to hang the machine after a xmtfs error.
588 * This is hard to reproduce, reseting *may* help
589 */
590 }
591 /* dma should have finished */
592 if (!mp->tx_count) {
593 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
594 }
595 /* Update stats */
596 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
597 ++dev->stats.tx_errors;
598 if (fs & LCAR)
599 ++dev->stats.tx_carrier_errors;
600 else if (fs & (UFLO|LCOL|RTRY)) {
601 ++dev->stats.tx_aborted_errors;
602 if (mb->xmtfs & UFLO) {
603 printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
604 dev->stats.tx_fifo_errors++;
605 mace_txdma_reset(dev);
606 }
607 }
608 }
609 }
610
611 if (mp->tx_count)
612 netif_wake_queue(dev);
613
614 local_irq_restore(flags);
615
616 return IRQ_HANDLED;
617 }
618
619 static void mace_tx_timeout(struct net_device *dev)
620 {
621 struct mace_data *mp = netdev_priv(dev);
622 volatile struct mace *mb = mp->mace;
623 unsigned long flags;
624
625 local_irq_save(flags);
626
627 /* turn off both tx and rx and reset the chip */
628 mb->maccc = 0;
629 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
630 mace_txdma_reset(dev);
631 mace_reset(dev);
632
633 /* restart rx dma */
634 mace_rxdma_reset(dev);
635
636 mp->tx_count = N_TX_RING;
637 netif_wake_queue(dev);
638
639 /* turn it on! */
640 mb->maccc = ENXMT | ENRCV;
641 /* enable all interrupts except receive interrupts */
642 mb->imr = RCVINT;
643
644 local_irq_restore(flags);
645 }
646
647 /*
648 * Handle a newly arrived frame
649 */
650
651 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
652 {
653 struct sk_buff *skb;
654 unsigned int frame_status = mf->rcvsts;
655
656 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
657 dev->stats.rx_errors++;
658 if (frame_status & RS_OFLO) {
659 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
660 dev->stats.rx_fifo_errors++;
661 }
662 if (frame_status & RS_CLSN)
663 dev->stats.collisions++;
664 if (frame_status & RS_FRAMERR)
665 dev->stats.rx_frame_errors++;
666 if (frame_status & RS_FCSERR)
667 dev->stats.rx_crc_errors++;
668 } else {
669 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
670
671 skb = dev_alloc_skb(frame_length + 2);
672 if (!skb) {
673 dev->stats.rx_dropped++;
674 return;
675 }
676 skb_reserve(skb, 2);
677 memcpy(skb_put(skb, frame_length), mf->data, frame_length);
678
679 skb->protocol = eth_type_trans(skb, dev);
680 netif_rx(skb);
681 dev->stats.rx_packets++;
682 dev->stats.rx_bytes += frame_length;
683 }
684 }
685
686 /*
687 * The PSC has passed us a DMA interrupt event.
688 */
689
690 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
691 {
692 struct net_device *dev = (struct net_device *) dev_id;
693 struct mace_data *mp = netdev_priv(dev);
694 int left, head;
695 u16 status;
696 u32 baka;
697
698 /* Not sure what this does */
699
700 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
701 if (!(baka & 0x60000000)) return IRQ_NONE;
702
703 /*
704 * Process the read queue
705 */
706
707 status = psc_read_word(PSC_ENETRD_CTL);
708
709 if (status & 0x2000) {
710 mace_rxdma_reset(dev);
711 } else if (status & 0x0100) {
712 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
713
714 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
715 head = N_RX_RING - left;
716
717 /* Loop through the ring buffer and process new packages */
718
719 while (mp->rx_tail < head) {
720 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
721 + (mp->rx_tail * MACE_BUFF_SIZE)));
722 mp->rx_tail++;
723 }
724
725 /* If we're out of buffers in this ring then switch to */
726 /* the other set, otherwise just reactivate this one. */
727
728 if (!left) {
729 mace_load_rxdma_base(dev, mp->rx_slot);
730 mp->rx_slot ^= 0x10;
731 } else {
732 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
733 }
734 }
735
736 /*
737 * Process the write queue
738 */
739
740 status = psc_read_word(PSC_ENETWR_CTL);
741
742 if (status & 0x2000) {
743 mace_txdma_reset(dev);
744 } else if (status & 0x0100) {
745 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
746 mp->tx_sloti ^= 0x10;
747 mp->tx_count++;
748 }
749 return IRQ_HANDLED;
750 }
751
752 MODULE_LICENSE("GPL");
753 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
754 MODULE_ALIAS("platform:macmace");
755
756 static int __devexit mac_mace_device_remove (struct platform_device *pdev)
757 {
758 struct net_device *dev = platform_get_drvdata(pdev);
759 struct mace_data *mp = netdev_priv(dev);
760
761 unregister_netdev(dev);
762
763 free_irq(dev->irq, dev);
764 free_irq(IRQ_MAC_MACE_DMA, dev);
765
766 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
767 mp->rx_ring, mp->rx_ring_phys);
768 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
769 mp->tx_ring, mp->tx_ring_phys);
770
771 free_netdev(dev);
772
773 return 0;
774 }
775
776 static struct platform_driver mac_mace_driver = {
777 .probe = mace_probe,
778 .remove = __devexit_p(mac_mace_device_remove),
779 .driver = {
780 .name = mac_mace_string,
781 .owner = THIS_MODULE,
782 },
783 };
784
785 static int __init mac_mace_init_module(void)
786 {
787 if (!MACH_IS_MAC)
788 return -ENODEV;
789
790 return platform_driver_register(&mac_mace_driver);
791 }
792
793 static void __exit mac_mace_cleanup_module(void)
794 {
795 platform_driver_unregister(&mac_mace_driver);
796 }
797
798 module_init(mac_mace_init_module);
799 module_exit(mac_mace_cleanup_module);