include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52 "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
57
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59 [board_82599_vf] = &ixgbevf_vf_info,
60 };
61
62 /* ixgbevf_pci_tbl - PCI Device ID Table
63 *
64 * Wildcard entries (PCI_ANY_ID) should come last
65 * Last entry must be all 0s
66 *
67 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68 * Class, Class Mask, private data (not used) }
69 */
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72 board_82599_vf},
73
74 /* required last entry */
75 {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
83
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
85
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89 u32 itr_reg);
90
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92 struct ixgbevf_ring *rx_ring,
93 u32 val)
94 {
95 /*
96 * Force memory writes to complete before letting h/w
97 * know there are new descriptors to fetch. (Only
98 * applicable for weak-ordered memory model archs,
99 * such as IA-64).
100 */
101 wmb();
102 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
103 }
104
105 /*
106 * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107 * @adapter: pointer to adapter struct
108 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109 * @queue: queue to map the corresponding interrupt to
110 * @msix_vector: the vector to map to the corresponding queue
111 *
112 */
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114 u8 queue, u8 msix_vector)
115 {
116 u32 ivar, index;
117 struct ixgbe_hw *hw = &adapter->hw;
118 if (direction == -1) {
119 /* other causes */
120 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122 ivar &= ~0xFF;
123 ivar |= msix_vector;
124 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125 } else {
126 /* tx or rx causes */
127 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128 index = ((16 * (queue & 1)) + (8 * direction));
129 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130 ivar &= ~(0xFF << index);
131 ivar |= (msix_vector << index);
132 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
133 }
134 }
135
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137 struct ixgbevf_tx_buffer
138 *tx_buffer_info)
139 {
140 if (tx_buffer_info->dma) {
141 if (tx_buffer_info->mapped_as_page)
142 pci_unmap_page(adapter->pdev,
143 tx_buffer_info->dma,
144 tx_buffer_info->length,
145 PCI_DMA_TODEVICE);
146 else
147 pci_unmap_single(adapter->pdev,
148 tx_buffer_info->dma,
149 tx_buffer_info->length,
150 PCI_DMA_TODEVICE);
151 tx_buffer_info->dma = 0;
152 }
153 if (tx_buffer_info->skb) {
154 dev_kfree_skb_any(tx_buffer_info->skb);
155 tx_buffer_info->skb = NULL;
156 }
157 tx_buffer_info->time_stamp = 0;
158 /* tx_buffer_info must be completely set up in the transmit path */
159 }
160
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162 struct ixgbevf_ring *tx_ring,
163 unsigned int eop)
164 {
165 struct ixgbe_hw *hw = &adapter->hw;
166 u32 head, tail;
167
168 /* Detect a transmit hang in hardware, this serializes the
169 * check with the clearing of time_stamp and movement of eop */
170 head = readl(hw->hw_addr + tx_ring->head);
171 tail = readl(hw->hw_addr + tx_ring->tail);
172 adapter->detect_tx_hung = false;
173 if ((head != tail) &&
174 tx_ring->tx_buffer_info[eop].time_stamp &&
175 time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176 /* detected Tx unit hang */
177 union ixgbe_adv_tx_desc *tx_desc;
178 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179 printk(KERN_ERR "Detected Tx Unit Hang\n"
180 " Tx Queue <%d>\n"
181 " TDH, TDT <%x>, <%x>\n"
182 " next_to_use <%x>\n"
183 " next_to_clean <%x>\n"
184 "tx_buffer_info[next_to_clean]\n"
185 " time_stamp <%lx>\n"
186 " jiffies <%lx>\n",
187 tx_ring->queue_index,
188 head, tail,
189 tx_ring->next_to_use, eop,
190 tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191 return true;
192 }
193
194 return false;
195 }
196
197 #define IXGBE_MAX_TXD_PWR 14
198 #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
199
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205 MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
209
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
211
212 /**
213 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214 * @adapter: board private structure
215 * @tx_ring: tx ring to clean
216 **/
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218 struct ixgbevf_ring *tx_ring)
219 {
220 struct net_device *netdev = adapter->netdev;
221 struct ixgbe_hw *hw = &adapter->hw;
222 union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223 struct ixgbevf_tx_buffer *tx_buffer_info;
224 unsigned int i, eop, count = 0;
225 unsigned int total_bytes = 0, total_packets = 0;
226
227 i = tx_ring->next_to_clean;
228 eop = tx_ring->tx_buffer_info[i].next_to_watch;
229 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
230
231 while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232 (count < tx_ring->work_limit)) {
233 bool cleaned = false;
234 for ( ; !cleaned; count++) {
235 struct sk_buff *skb;
236 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
237 tx_buffer_info = &tx_ring->tx_buffer_info[i];
238 cleaned = (i == eop);
239 skb = tx_buffer_info->skb;
240
241 if (cleaned && skb) {
242 unsigned int segs, bytecount;
243
244 /* gso_segs is currently only valid for tcp */
245 segs = skb_shinfo(skb)->gso_segs ?: 1;
246 /* multiply data chunks by size of headers */
247 bytecount = ((segs - 1) * skb_headlen(skb)) +
248 skb->len;
249 total_packets += segs;
250 total_bytes += bytecount;
251 }
252
253 ixgbevf_unmap_and_free_tx_resource(adapter,
254 tx_buffer_info);
255
256 tx_desc->wb.status = 0;
257
258 i++;
259 if (i == tx_ring->count)
260 i = 0;
261 }
262
263 eop = tx_ring->tx_buffer_info[i].next_to_watch;
264 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
265 }
266
267 tx_ring->next_to_clean = i;
268
269 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
270 if (unlikely(count && netif_carrier_ok(netdev) &&
271 (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
272 /* Make sure that anybody stopping the queue after this
273 * sees the new next_to_clean.
274 */
275 smp_mb();
276 #ifdef HAVE_TX_MQ
277 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
278 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279 netif_wake_subqueue(netdev, tx_ring->queue_index);
280 ++adapter->restart_queue;
281 }
282 #else
283 if (netif_queue_stopped(netdev) &&
284 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
285 netif_wake_queue(netdev);
286 ++adapter->restart_queue;
287 }
288 #endif
289 }
290
291 if (adapter->detect_tx_hung) {
292 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
293 /* schedule immediate reset if we believe we hung */
294 printk(KERN_INFO
295 "tx hang %d detected, resetting adapter\n",
296 adapter->tx_timeout_count + 1);
297 ixgbevf_tx_timeout(adapter->netdev);
298 }
299 }
300
301 /* re-arm the interrupt */
302 if ((count >= tx_ring->work_limit) &&
303 (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
304 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
305 }
306
307 tx_ring->total_bytes += total_bytes;
308 tx_ring->total_packets += total_packets;
309
310 adapter->net_stats.tx_bytes += total_bytes;
311 adapter->net_stats.tx_packets += total_packets;
312
313 return (count < tx_ring->work_limit);
314 }
315
316 /**
317 * ixgbevf_receive_skb - Send a completed packet up the stack
318 * @q_vector: structure containing interrupt and ring information
319 * @skb: packet to send up
320 * @status: hardware indication of status of receive
321 * @rx_ring: rx descriptor ring (for a specific queue) to setup
322 * @rx_desc: rx descriptor
323 **/
324 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
325 struct sk_buff *skb, u8 status,
326 struct ixgbevf_ring *ring,
327 union ixgbe_adv_rx_desc *rx_desc)
328 {
329 struct ixgbevf_adapter *adapter = q_vector->adapter;
330 bool is_vlan = (status & IXGBE_RXD_STAT_VP);
331 u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
332 int ret;
333
334 if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
335 if (adapter->vlgrp && is_vlan)
336 vlan_gro_receive(&q_vector->napi,
337 adapter->vlgrp,
338 tag, skb);
339 else
340 napi_gro_receive(&q_vector->napi, skb);
341 } else {
342 if (adapter->vlgrp && is_vlan)
343 ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
344 else
345 ret = netif_rx(skb);
346 }
347 }
348
349 /**
350 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
351 * @adapter: address of board private structure
352 * @status_err: hardware indication of status of receive
353 * @skb: skb currently being received and modified
354 **/
355 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
356 u32 status_err, struct sk_buff *skb)
357 {
358 skb->ip_summed = CHECKSUM_NONE;
359
360 /* Rx csum disabled */
361 if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
362 return;
363
364 /* if IP and error */
365 if ((status_err & IXGBE_RXD_STAT_IPCS) &&
366 (status_err & IXGBE_RXDADV_ERR_IPE)) {
367 adapter->hw_csum_rx_error++;
368 return;
369 }
370
371 if (!(status_err & IXGBE_RXD_STAT_L4CS))
372 return;
373
374 if (status_err & IXGBE_RXDADV_ERR_TCPE) {
375 adapter->hw_csum_rx_error++;
376 return;
377 }
378
379 /* It must be a TCP or UDP packet with a valid checksum */
380 skb->ip_summed = CHECKSUM_UNNECESSARY;
381 adapter->hw_csum_rx_good++;
382 }
383
384 /**
385 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
386 * @adapter: address of board private structure
387 **/
388 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
389 struct ixgbevf_ring *rx_ring,
390 int cleaned_count)
391 {
392 struct pci_dev *pdev = adapter->pdev;
393 union ixgbe_adv_rx_desc *rx_desc;
394 struct ixgbevf_rx_buffer *bi;
395 struct sk_buff *skb;
396 unsigned int i;
397 unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
398
399 i = rx_ring->next_to_use;
400 bi = &rx_ring->rx_buffer_info[i];
401
402 while (cleaned_count--) {
403 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
404
405 if (!bi->page_dma &&
406 (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
407 if (!bi->page) {
408 bi->page = netdev_alloc_page(adapter->netdev);
409 if (!bi->page) {
410 adapter->alloc_rx_page_failed++;
411 goto no_buffers;
412 }
413 bi->page_offset = 0;
414 } else {
415 /* use a half page if we're re-using */
416 bi->page_offset ^= (PAGE_SIZE / 2);
417 }
418
419 bi->page_dma = pci_map_page(pdev, bi->page,
420 bi->page_offset,
421 (PAGE_SIZE / 2),
422 PCI_DMA_FROMDEVICE);
423 }
424
425 skb = bi->skb;
426 if (!skb) {
427 skb = netdev_alloc_skb(adapter->netdev,
428 bufsz);
429
430 if (!skb) {
431 adapter->alloc_rx_buff_failed++;
432 goto no_buffers;
433 }
434
435 /*
436 * Make buffer alignment 2 beyond a 16 byte boundary
437 * this will result in a 16 byte aligned IP header after
438 * the 14 byte MAC header is removed
439 */
440 skb_reserve(skb, NET_IP_ALIGN);
441
442 bi->skb = skb;
443 }
444 if (!bi->dma) {
445 bi->dma = pci_map_single(pdev, skb->data,
446 rx_ring->rx_buf_len,
447 PCI_DMA_FROMDEVICE);
448 }
449 /* Refresh the desc even if buffer_addrs didn't change because
450 * each write-back erases this info. */
451 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
452 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
453 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
454 } else {
455 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
456 }
457
458 i++;
459 if (i == rx_ring->count)
460 i = 0;
461 bi = &rx_ring->rx_buffer_info[i];
462 }
463
464 no_buffers:
465 if (rx_ring->next_to_use != i) {
466 rx_ring->next_to_use = i;
467 if (i-- == 0)
468 i = (rx_ring->count - 1);
469
470 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
471 }
472 }
473
474 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
475 u64 qmask)
476 {
477 u32 mask;
478 struct ixgbe_hw *hw = &adapter->hw;
479
480 mask = (qmask & 0xFFFFFFFF);
481 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
482 }
483
484 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
485 {
486 return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
487 }
488
489 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491 return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
492 }
493
494 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
495 struct ixgbevf_ring *rx_ring,
496 int *work_done, int work_to_do)
497 {
498 struct ixgbevf_adapter *adapter = q_vector->adapter;
499 struct pci_dev *pdev = adapter->pdev;
500 union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
501 struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
502 struct sk_buff *skb;
503 unsigned int i;
504 u32 len, staterr;
505 u16 hdr_info;
506 bool cleaned = false;
507 int cleaned_count = 0;
508 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
509
510 i = rx_ring->next_to_clean;
511 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
512 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513 rx_buffer_info = &rx_ring->rx_buffer_info[i];
514
515 while (staterr & IXGBE_RXD_STAT_DD) {
516 u32 upper_len = 0;
517 if (*work_done >= work_to_do)
518 break;
519 (*work_done)++;
520
521 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
522 hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
523 len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
524 IXGBE_RXDADV_HDRBUFLEN_SHIFT;
525 if (hdr_info & IXGBE_RXDADV_SPH)
526 adapter->rx_hdr_split++;
527 if (len > IXGBEVF_RX_HDR_SIZE)
528 len = IXGBEVF_RX_HDR_SIZE;
529 upper_len = le16_to_cpu(rx_desc->wb.upper.length);
530 } else {
531 len = le16_to_cpu(rx_desc->wb.upper.length);
532 }
533 cleaned = true;
534 skb = rx_buffer_info->skb;
535 prefetch(skb->data - NET_IP_ALIGN);
536 rx_buffer_info->skb = NULL;
537
538 if (rx_buffer_info->dma) {
539 pci_unmap_single(pdev, rx_buffer_info->dma,
540 rx_ring->rx_buf_len,
541 PCI_DMA_FROMDEVICE);
542 rx_buffer_info->dma = 0;
543 skb_put(skb, len);
544 }
545
546 if (upper_len) {
547 pci_unmap_page(pdev, rx_buffer_info->page_dma,
548 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
549 rx_buffer_info->page_dma = 0;
550 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
551 rx_buffer_info->page,
552 rx_buffer_info->page_offset,
553 upper_len);
554
555 if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
556 (page_count(rx_buffer_info->page) != 1))
557 rx_buffer_info->page = NULL;
558 else
559 get_page(rx_buffer_info->page);
560
561 skb->len += upper_len;
562 skb->data_len += upper_len;
563 skb->truesize += upper_len;
564 }
565
566 i++;
567 if (i == rx_ring->count)
568 i = 0;
569
570 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
571 prefetch(next_rxd);
572 cleaned_count++;
573
574 next_buffer = &rx_ring->rx_buffer_info[i];
575
576 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
577 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
578 rx_buffer_info->skb = next_buffer->skb;
579 rx_buffer_info->dma = next_buffer->dma;
580 next_buffer->skb = skb;
581 next_buffer->dma = 0;
582 } else {
583 skb->next = next_buffer->skb;
584 skb->next->prev = skb;
585 }
586 adapter->non_eop_descs++;
587 goto next_desc;
588 }
589
590 /* ERR_MASK will only have valid bits if EOP set */
591 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
592 dev_kfree_skb_irq(skb);
593 goto next_desc;
594 }
595
596 ixgbevf_rx_checksum(adapter, staterr, skb);
597
598 /* probably a little skewed due to removing CRC */
599 total_rx_bytes += skb->len;
600 total_rx_packets++;
601
602 /*
603 * Work around issue of some types of VM to VM loop back
604 * packets not getting split correctly
605 */
606 if (staterr & IXGBE_RXD_STAT_LB) {
607 u32 header_fixup_len = skb->len - skb->data_len;
608 if (header_fixup_len < 14)
609 skb_push(skb, header_fixup_len);
610 }
611 skb->protocol = eth_type_trans(skb, adapter->netdev);
612
613 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
614 adapter->netdev->last_rx = jiffies;
615
616 next_desc:
617 rx_desc->wb.upper.status_error = 0;
618
619 /* return some buffers to hardware, one at a time is too slow */
620 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
621 ixgbevf_alloc_rx_buffers(adapter, rx_ring,
622 cleaned_count);
623 cleaned_count = 0;
624 }
625
626 /* use prefetched values */
627 rx_desc = next_rxd;
628 rx_buffer_info = &rx_ring->rx_buffer_info[i];
629
630 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
631 }
632
633 rx_ring->next_to_clean = i;
634 cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
635
636 if (cleaned_count)
637 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
638
639 rx_ring->total_packets += total_rx_packets;
640 rx_ring->total_bytes += total_rx_bytes;
641 adapter->net_stats.rx_bytes += total_rx_bytes;
642 adapter->net_stats.rx_packets += total_rx_packets;
643
644 return cleaned;
645 }
646
647 /**
648 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
649 * @napi: napi struct with our devices info in it
650 * @budget: amount of work driver is allowed to do this pass, in packets
651 *
652 * This function is optimized for cleaning one queue only on a single
653 * q_vector!!!
654 **/
655 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
656 {
657 struct ixgbevf_q_vector *q_vector =
658 container_of(napi, struct ixgbevf_q_vector, napi);
659 struct ixgbevf_adapter *adapter = q_vector->adapter;
660 struct ixgbevf_ring *rx_ring = NULL;
661 int work_done = 0;
662 long r_idx;
663
664 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
665 rx_ring = &(adapter->rx_ring[r_idx]);
666
667 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
668
669 /* If all Rx work done, exit the polling mode */
670 if (work_done < budget) {
671 napi_complete(napi);
672 if (adapter->itr_setting & 1)
673 ixgbevf_set_itr_msix(q_vector);
674 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
675 ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
676 }
677
678 return work_done;
679 }
680
681 /**
682 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
683 * @napi: napi struct with our devices info in it
684 * @budget: amount of work driver is allowed to do this pass, in packets
685 *
686 * This function will clean more than one rx queue associated with a
687 * q_vector.
688 **/
689 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
690 {
691 struct ixgbevf_q_vector *q_vector =
692 container_of(napi, struct ixgbevf_q_vector, napi);
693 struct ixgbevf_adapter *adapter = q_vector->adapter;
694 struct ixgbevf_ring *rx_ring = NULL;
695 int work_done = 0, i;
696 long r_idx;
697 u64 enable_mask = 0;
698
699 /* attempt to distribute budget to each queue fairly, but don't allow
700 * the budget to go below 1 because we'll exit polling */
701 budget /= (q_vector->rxr_count ?: 1);
702 budget = max(budget, 1);
703 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
704 for (i = 0; i < q_vector->rxr_count; i++) {
705 rx_ring = &(adapter->rx_ring[r_idx]);
706 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
707 enable_mask |= rx_ring->v_idx;
708 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
709 r_idx + 1);
710 }
711
712 #ifndef HAVE_NETDEV_NAPI_LIST
713 if (!netif_running(adapter->netdev))
714 work_done = 0;
715
716 #endif
717 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
718 rx_ring = &(adapter->rx_ring[r_idx]);
719
720 /* If all Rx work done, exit the polling mode */
721 if (work_done < budget) {
722 napi_complete(napi);
723 if (adapter->itr_setting & 1)
724 ixgbevf_set_itr_msix(q_vector);
725 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
726 ixgbevf_irq_enable_queues(adapter, enable_mask);
727 }
728
729 return work_done;
730 }
731
732
733 /**
734 * ixgbevf_configure_msix - Configure MSI-X hardware
735 * @adapter: board private structure
736 *
737 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
738 * interrupts.
739 **/
740 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
741 {
742 struct ixgbevf_q_vector *q_vector;
743 struct ixgbe_hw *hw = &adapter->hw;
744 int i, j, q_vectors, v_idx, r_idx;
745 u32 mask;
746
747 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
748
749 /*
750 * Populate the IVAR table and set the ITR values to the
751 * corresponding register.
752 */
753 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
754 q_vector = adapter->q_vector[v_idx];
755 /* XXX for_each_set_bit(...) */
756 r_idx = find_first_bit(q_vector->rxr_idx,
757 adapter->num_rx_queues);
758
759 for (i = 0; i < q_vector->rxr_count; i++) {
760 j = adapter->rx_ring[r_idx].reg_idx;
761 ixgbevf_set_ivar(adapter, 0, j, v_idx);
762 r_idx = find_next_bit(q_vector->rxr_idx,
763 adapter->num_rx_queues,
764 r_idx + 1);
765 }
766 r_idx = find_first_bit(q_vector->txr_idx,
767 adapter->num_tx_queues);
768
769 for (i = 0; i < q_vector->txr_count; i++) {
770 j = adapter->tx_ring[r_idx].reg_idx;
771 ixgbevf_set_ivar(adapter, 1, j, v_idx);
772 r_idx = find_next_bit(q_vector->txr_idx,
773 adapter->num_tx_queues,
774 r_idx + 1);
775 }
776
777 /* if this is a tx only vector halve the interrupt rate */
778 if (q_vector->txr_count && !q_vector->rxr_count)
779 q_vector->eitr = (adapter->eitr_param >> 1);
780 else if (q_vector->rxr_count)
781 /* rx only */
782 q_vector->eitr = adapter->eitr_param;
783
784 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
785 }
786
787 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
788
789 /* set up to autoclear timer, and the vectors */
790 mask = IXGBE_EIMS_ENABLE_MASK;
791 mask &= ~IXGBE_EIMS_OTHER;
792 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
793 }
794
795 enum latency_range {
796 lowest_latency = 0,
797 low_latency = 1,
798 bulk_latency = 2,
799 latency_invalid = 255
800 };
801
802 /**
803 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
804 * @adapter: pointer to adapter
805 * @eitr: eitr setting (ints per sec) to give last timeslice
806 * @itr_setting: current throttle rate in ints/second
807 * @packets: the number of packets during this measurement interval
808 * @bytes: the number of bytes during this measurement interval
809 *
810 * Stores a new ITR value based on packets and byte
811 * counts during the last interrupt. The advantage of per interrupt
812 * computation is faster updates and more accurate ITR for the current
813 * traffic pattern. Constants in this function were computed
814 * based on theoretical maximum wire speed and thresholds were set based
815 * on testing data as well as attempting to minimize response time
816 * while increasing bulk throughput.
817 **/
818 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
819 u32 eitr, u8 itr_setting,
820 int packets, int bytes)
821 {
822 unsigned int retval = itr_setting;
823 u32 timepassed_us;
824 u64 bytes_perint;
825
826 if (packets == 0)
827 goto update_itr_done;
828
829
830 /* simple throttlerate management
831 * 0-20MB/s lowest (100000 ints/s)
832 * 20-100MB/s low (20000 ints/s)
833 * 100-1249MB/s bulk (8000 ints/s)
834 */
835 /* what was last interrupt timeslice? */
836 timepassed_us = 1000000/eitr;
837 bytes_perint = bytes / timepassed_us; /* bytes/usec */
838
839 switch (itr_setting) {
840 case lowest_latency:
841 if (bytes_perint > adapter->eitr_low)
842 retval = low_latency;
843 break;
844 case low_latency:
845 if (bytes_perint > adapter->eitr_high)
846 retval = bulk_latency;
847 else if (bytes_perint <= adapter->eitr_low)
848 retval = lowest_latency;
849 break;
850 case bulk_latency:
851 if (bytes_perint <= adapter->eitr_high)
852 retval = low_latency;
853 break;
854 }
855
856 update_itr_done:
857 return retval;
858 }
859
860 /**
861 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
862 * @adapter: pointer to adapter struct
863 * @v_idx: vector index into q_vector array
864 * @itr_reg: new value to be written in *register* format, not ints/s
865 *
866 * This function is made to be called by ethtool and by the driver
867 * when it needs to update VTEITR registers at runtime. Hardware
868 * specific quirks/differences are taken care of here.
869 */
870 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
871 u32 itr_reg)
872 {
873 struct ixgbe_hw *hw = &adapter->hw;
874
875 itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
876
877 /*
878 * set the WDIS bit to not clear the timer bits and cause an
879 * immediate assertion of the interrupt
880 */
881 itr_reg |= IXGBE_EITR_CNT_WDIS;
882
883 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
884 }
885
886 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
887 {
888 struct ixgbevf_adapter *adapter = q_vector->adapter;
889 u32 new_itr;
890 u8 current_itr, ret_itr;
891 int i, r_idx, v_idx = q_vector->v_idx;
892 struct ixgbevf_ring *rx_ring, *tx_ring;
893
894 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
895 for (i = 0; i < q_vector->txr_count; i++) {
896 tx_ring = &(adapter->tx_ring[r_idx]);
897 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
898 q_vector->tx_itr,
899 tx_ring->total_packets,
900 tx_ring->total_bytes);
901 /* if the result for this queue would decrease interrupt
902 * rate for this vector then use that result */
903 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
904 q_vector->tx_itr - 1 : ret_itr);
905 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
906 r_idx + 1);
907 }
908
909 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
910 for (i = 0; i < q_vector->rxr_count; i++) {
911 rx_ring = &(adapter->rx_ring[r_idx]);
912 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
913 q_vector->rx_itr,
914 rx_ring->total_packets,
915 rx_ring->total_bytes);
916 /* if the result for this queue would decrease interrupt
917 * rate for this vector then use that result */
918 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
919 q_vector->rx_itr - 1 : ret_itr);
920 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
921 r_idx + 1);
922 }
923
924 current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
925
926 switch (current_itr) {
927 /* counts and packets in update_itr are dependent on these numbers */
928 case lowest_latency:
929 new_itr = 100000;
930 break;
931 case low_latency:
932 new_itr = 20000; /* aka hwitr = ~200 */
933 break;
934 case bulk_latency:
935 default:
936 new_itr = 8000;
937 break;
938 }
939
940 if (new_itr != q_vector->eitr) {
941 u32 itr_reg;
942
943 /* save the algorithm value here, not the smoothed one */
944 q_vector->eitr = new_itr;
945 /* do an exponential smoothing */
946 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
947 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
948 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
949 }
950
951 return;
952 }
953
954 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
955 {
956 struct net_device *netdev = data;
957 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
958 struct ixgbe_hw *hw = &adapter->hw;
959 u32 eicr;
960 u32 msg;
961
962 eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
963 IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
964
965 hw->mbx.ops.read(hw, &msg, 1);
966
967 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
968 mod_timer(&adapter->watchdog_timer,
969 round_jiffies(jiffies + 1));
970
971 return IRQ_HANDLED;
972 }
973
974 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
975 {
976 struct ixgbevf_q_vector *q_vector = data;
977 struct ixgbevf_adapter *adapter = q_vector->adapter;
978 struct ixgbevf_ring *tx_ring;
979 int i, r_idx;
980
981 if (!q_vector->txr_count)
982 return IRQ_HANDLED;
983
984 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
985 for (i = 0; i < q_vector->txr_count; i++) {
986 tx_ring = &(adapter->tx_ring[r_idx]);
987 tx_ring->total_bytes = 0;
988 tx_ring->total_packets = 0;
989 ixgbevf_clean_tx_irq(adapter, tx_ring);
990 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
991 r_idx + 1);
992 }
993
994 if (adapter->itr_setting & 1)
995 ixgbevf_set_itr_msix(q_vector);
996
997 return IRQ_HANDLED;
998 }
999
1000 /**
1001 * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1002 * @irq: unused
1003 * @data: pointer to our q_vector struct for this interrupt vector
1004 **/
1005 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1006 {
1007 struct ixgbevf_q_vector *q_vector = data;
1008 struct ixgbevf_adapter *adapter = q_vector->adapter;
1009 struct ixgbe_hw *hw = &adapter->hw;
1010 struct ixgbevf_ring *rx_ring;
1011 int r_idx;
1012 int i;
1013
1014 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1015 for (i = 0; i < q_vector->rxr_count; i++) {
1016 rx_ring = &(adapter->rx_ring[r_idx]);
1017 rx_ring->total_bytes = 0;
1018 rx_ring->total_packets = 0;
1019 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1020 r_idx + 1);
1021 }
1022
1023 if (!q_vector->rxr_count)
1024 return IRQ_HANDLED;
1025
1026 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1027 rx_ring = &(adapter->rx_ring[r_idx]);
1028 /* disable interrupts on this vector only */
1029 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1030 napi_schedule(&q_vector->napi);
1031
1032
1033 return IRQ_HANDLED;
1034 }
1035
1036 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1037 {
1038 ixgbevf_msix_clean_rx(irq, data);
1039 ixgbevf_msix_clean_tx(irq, data);
1040
1041 return IRQ_HANDLED;
1042 }
1043
1044 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1045 int r_idx)
1046 {
1047 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1048
1049 set_bit(r_idx, q_vector->rxr_idx);
1050 q_vector->rxr_count++;
1051 a->rx_ring[r_idx].v_idx = 1 << v_idx;
1052 }
1053
1054 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1055 int t_idx)
1056 {
1057 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1058
1059 set_bit(t_idx, q_vector->txr_idx);
1060 q_vector->txr_count++;
1061 a->tx_ring[t_idx].v_idx = 1 << v_idx;
1062 }
1063
1064 /**
1065 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1066 * @adapter: board private structure to initialize
1067 *
1068 * This function maps descriptor rings to the queue-specific vectors
1069 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1070 * one vector per ring/queue, but on a constrained vector budget, we
1071 * group the rings as "efficiently" as possible. You would add new
1072 * mapping configurations in here.
1073 **/
1074 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1075 {
1076 int q_vectors;
1077 int v_start = 0;
1078 int rxr_idx = 0, txr_idx = 0;
1079 int rxr_remaining = adapter->num_rx_queues;
1080 int txr_remaining = adapter->num_tx_queues;
1081 int i, j;
1082 int rqpv, tqpv;
1083 int err = 0;
1084
1085 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1086
1087 /*
1088 * The ideal configuration...
1089 * We have enough vectors to map one per queue.
1090 */
1091 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1092 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1093 map_vector_to_rxq(adapter, v_start, rxr_idx);
1094
1095 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1096 map_vector_to_txq(adapter, v_start, txr_idx);
1097 goto out;
1098 }
1099
1100 /*
1101 * If we don't have enough vectors for a 1-to-1
1102 * mapping, we'll have to group them so there are
1103 * multiple queues per vector.
1104 */
1105 /* Re-adjusting *qpv takes care of the remainder. */
1106 for (i = v_start; i < q_vectors; i++) {
1107 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1108 for (j = 0; j < rqpv; j++) {
1109 map_vector_to_rxq(adapter, i, rxr_idx);
1110 rxr_idx++;
1111 rxr_remaining--;
1112 }
1113 }
1114 for (i = v_start; i < q_vectors; i++) {
1115 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1116 for (j = 0; j < tqpv; j++) {
1117 map_vector_to_txq(adapter, i, txr_idx);
1118 txr_idx++;
1119 txr_remaining--;
1120 }
1121 }
1122
1123 out:
1124 return err;
1125 }
1126
1127 /**
1128 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1129 * @adapter: board private structure
1130 *
1131 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1132 * interrupts from the kernel.
1133 **/
1134 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1135 {
1136 struct net_device *netdev = adapter->netdev;
1137 irqreturn_t (*handler)(int, void *);
1138 int i, vector, q_vectors, err;
1139 int ri = 0, ti = 0;
1140
1141 /* Decrement for Other and TCP Timer vectors */
1142 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1143
1144 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
1145 ? &ixgbevf_msix_clean_many : \
1146 (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
1147 (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
1148 NULL)
1149 for (vector = 0; vector < q_vectors; vector++) {
1150 handler = SET_HANDLER(adapter->q_vector[vector]);
1151
1152 if (handler == &ixgbevf_msix_clean_rx) {
1153 sprintf(adapter->name[vector], "%s-%s-%d",
1154 netdev->name, "rx", ri++);
1155 } else if (handler == &ixgbevf_msix_clean_tx) {
1156 sprintf(adapter->name[vector], "%s-%s-%d",
1157 netdev->name, "tx", ti++);
1158 } else if (handler == &ixgbevf_msix_clean_many) {
1159 sprintf(adapter->name[vector], "%s-%s-%d",
1160 netdev->name, "TxRx", vector);
1161 } else {
1162 /* skip this unused q_vector */
1163 continue;
1164 }
1165 err = request_irq(adapter->msix_entries[vector].vector,
1166 handler, 0, adapter->name[vector],
1167 adapter->q_vector[vector]);
1168 if (err) {
1169 hw_dbg(&adapter->hw,
1170 "request_irq failed for MSIX interrupt "
1171 "Error: %d\n", err);
1172 goto free_queue_irqs;
1173 }
1174 }
1175
1176 sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1177 err = request_irq(adapter->msix_entries[vector].vector,
1178 &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1179 if (err) {
1180 hw_dbg(&adapter->hw,
1181 "request_irq for msix_mbx failed: %d\n", err);
1182 goto free_queue_irqs;
1183 }
1184
1185 return 0;
1186
1187 free_queue_irqs:
1188 for (i = vector - 1; i >= 0; i--)
1189 free_irq(adapter->msix_entries[--vector].vector,
1190 &(adapter->q_vector[i]));
1191 pci_disable_msix(adapter->pdev);
1192 kfree(adapter->msix_entries);
1193 adapter->msix_entries = NULL;
1194 return err;
1195 }
1196
1197 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1198 {
1199 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1200
1201 for (i = 0; i < q_vectors; i++) {
1202 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1203 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1204 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1205 q_vector->rxr_count = 0;
1206 q_vector->txr_count = 0;
1207 q_vector->eitr = adapter->eitr_param;
1208 }
1209 }
1210
1211 /**
1212 * ixgbevf_request_irq - initialize interrupts
1213 * @adapter: board private structure
1214 *
1215 * Attempts to configure interrupts using the best available
1216 * capabilities of the hardware and kernel.
1217 **/
1218 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1219 {
1220 int err = 0;
1221
1222 err = ixgbevf_request_msix_irqs(adapter);
1223
1224 if (err)
1225 hw_dbg(&adapter->hw,
1226 "request_irq failed, Error %d\n", err);
1227
1228 return err;
1229 }
1230
1231 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1232 {
1233 struct net_device *netdev = adapter->netdev;
1234 int i, q_vectors;
1235
1236 q_vectors = adapter->num_msix_vectors;
1237
1238 i = q_vectors - 1;
1239
1240 free_irq(adapter->msix_entries[i].vector, netdev);
1241 i--;
1242
1243 for (; i >= 0; i--) {
1244 free_irq(adapter->msix_entries[i].vector,
1245 adapter->q_vector[i]);
1246 }
1247
1248 ixgbevf_reset_q_vectors(adapter);
1249 }
1250
1251 /**
1252 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1253 * @adapter: board private structure
1254 **/
1255 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1256 {
1257 int i;
1258 struct ixgbe_hw *hw = &adapter->hw;
1259
1260 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1261
1262 IXGBE_WRITE_FLUSH(hw);
1263
1264 for (i = 0; i < adapter->num_msix_vectors; i++)
1265 synchronize_irq(adapter->msix_entries[i].vector);
1266 }
1267
1268 /**
1269 * ixgbevf_irq_enable - Enable default interrupt generation settings
1270 * @adapter: board private structure
1271 **/
1272 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1273 bool queues, bool flush)
1274 {
1275 struct ixgbe_hw *hw = &adapter->hw;
1276 u32 mask;
1277 u64 qmask;
1278
1279 mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1280 qmask = ~0;
1281
1282 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1283
1284 if (queues)
1285 ixgbevf_irq_enable_queues(adapter, qmask);
1286
1287 if (flush)
1288 IXGBE_WRITE_FLUSH(hw);
1289 }
1290
1291 /**
1292 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1293 * @adapter: board private structure
1294 *
1295 * Configure the Tx unit of the MAC after a reset.
1296 **/
1297 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1298 {
1299 u64 tdba;
1300 struct ixgbe_hw *hw = &adapter->hw;
1301 u32 i, j, tdlen, txctrl;
1302
1303 /* Setup the HW Tx Head and Tail descriptor pointers */
1304 for (i = 0; i < adapter->num_tx_queues; i++) {
1305 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1306 j = ring->reg_idx;
1307 tdba = ring->dma;
1308 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1309 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1310 (tdba & DMA_BIT_MASK(32)));
1311 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1312 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1313 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1314 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1315 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1316 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1317 /* Disable Tx Head Writeback RO bit, since this hoses
1318 * bookkeeping if things aren't delivered in order.
1319 */
1320 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1321 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1322 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1323 }
1324 }
1325
1326 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1327
1328 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1329 {
1330 struct ixgbevf_ring *rx_ring;
1331 struct ixgbe_hw *hw = &adapter->hw;
1332 u32 srrctl;
1333
1334 rx_ring = &adapter->rx_ring[index];
1335
1336 srrctl = IXGBE_SRRCTL_DROP_EN;
1337
1338 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1339 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1340 /* grow the amount we can receive on large page machines */
1341 if (bufsz < (PAGE_SIZE / 2))
1342 bufsz = (PAGE_SIZE / 2);
1343 /* cap the bufsz at our largest descriptor size */
1344 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1345
1346 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1347 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1348 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1349 IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1350 IXGBE_SRRCTL_BSIZEHDR_MASK);
1351 } else {
1352 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1353
1354 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1355 srrctl |= IXGBEVF_RXBUFFER_2048 >>
1356 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1357 else
1358 srrctl |= rx_ring->rx_buf_len >>
1359 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1360 }
1361 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1362 }
1363
1364 /**
1365 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1366 * @adapter: board private structure
1367 *
1368 * Configure the Rx unit of the MAC after a reset.
1369 **/
1370 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1371 {
1372 u64 rdba;
1373 struct ixgbe_hw *hw = &adapter->hw;
1374 struct net_device *netdev = adapter->netdev;
1375 int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1376 int i, j;
1377 u32 rdlen;
1378 int rx_buf_len;
1379
1380 /* Decide whether to use packet split mode or not */
1381 if (netdev->mtu > ETH_DATA_LEN) {
1382 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1383 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1384 else
1385 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1386 } else {
1387 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1388 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1389 else
1390 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1391 }
1392
1393 /* Set the RX buffer length according to the mode */
1394 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1395 /* PSRTYPE must be initialized in 82599 */
1396 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1397 IXGBE_PSRTYPE_UDPHDR |
1398 IXGBE_PSRTYPE_IPV4HDR |
1399 IXGBE_PSRTYPE_IPV6HDR |
1400 IXGBE_PSRTYPE_L2HDR;
1401 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1402 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1403 } else {
1404 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1405 if (netdev->mtu <= ETH_DATA_LEN)
1406 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1407 else
1408 rx_buf_len = ALIGN(max_frame, 1024);
1409 }
1410
1411 rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1412 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1413 * the Base and Length of the Rx Descriptor Ring */
1414 for (i = 0; i < adapter->num_rx_queues; i++) {
1415 rdba = adapter->rx_ring[i].dma;
1416 j = adapter->rx_ring[i].reg_idx;
1417 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1418 (rdba & DMA_BIT_MASK(32)));
1419 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1420 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1421 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1422 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1423 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1424 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1425 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1426
1427 ixgbevf_configure_srrctl(adapter, j);
1428 }
1429 }
1430
1431 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1432 struct vlan_group *grp)
1433 {
1434 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1435 struct ixgbe_hw *hw = &adapter->hw;
1436 int i, j;
1437 u32 ctrl;
1438
1439 adapter->vlgrp = grp;
1440
1441 for (i = 0; i < adapter->num_rx_queues; i++) {
1442 j = adapter->rx_ring[i].reg_idx;
1443 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1444 ctrl |= IXGBE_RXDCTL_VME;
1445 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1446 }
1447 }
1448
1449 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1450 {
1451 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1452 struct ixgbe_hw *hw = &adapter->hw;
1453 struct net_device *v_netdev;
1454
1455 /* add VID to filter table */
1456 if (hw->mac.ops.set_vfta)
1457 hw->mac.ops.set_vfta(hw, vid, 0, true);
1458 /*
1459 * Copy feature flags from netdev to the vlan netdev for this vid.
1460 * This allows things like TSO to bubble down to our vlan device.
1461 */
1462 v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
1463 v_netdev->features |= adapter->netdev->features;
1464 vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
1465 }
1466
1467 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1468 {
1469 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1470 struct ixgbe_hw *hw = &adapter->hw;
1471
1472 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1473 ixgbevf_irq_disable(adapter);
1474
1475 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1476
1477 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1478 ixgbevf_irq_enable(adapter, true, true);
1479
1480 /* remove VID from filter table */
1481 if (hw->mac.ops.set_vfta)
1482 hw->mac.ops.set_vfta(hw, vid, 0, false);
1483 }
1484
1485 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1486 {
1487 ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1488
1489 if (adapter->vlgrp) {
1490 u16 vid;
1491 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1492 if (!vlan_group_get_device(adapter->vlgrp, vid))
1493 continue;
1494 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1495 }
1496 }
1497 }
1498
1499 static u8 *ixgbevf_addr_list_itr(struct ixgbe_hw *hw, u8 **mc_addr_ptr,
1500 u32 *vmdq)
1501 {
1502 struct dev_mc_list *mc_ptr;
1503 u8 *addr = *mc_addr_ptr;
1504 *vmdq = 0;
1505
1506 mc_ptr = container_of(addr, struct dev_mc_list, dmi_addr[0]);
1507 if (mc_ptr->next)
1508 *mc_addr_ptr = mc_ptr->next->dmi_addr;
1509 else
1510 *mc_addr_ptr = NULL;
1511
1512 return addr;
1513 }
1514
1515 /**
1516 * ixgbevf_set_rx_mode - Multicast set
1517 * @netdev: network interface device structure
1518 *
1519 * The set_rx_method entry point is called whenever the multicast address
1520 * list or the network interface flags are updated. This routine is
1521 * responsible for configuring the hardware for proper multicast mode.
1522 **/
1523 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1524 {
1525 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1526 struct ixgbe_hw *hw = &adapter->hw;
1527 u8 *addr_list = NULL;
1528 int addr_count = 0;
1529
1530 /* reprogram multicast list */
1531 addr_count = netdev_mc_count(netdev);
1532 if (addr_count)
1533 addr_list = netdev->mc_list->dmi_addr;
1534 if (hw->mac.ops.update_mc_addr_list)
1535 hw->mac.ops.update_mc_addr_list(hw, addr_list, addr_count,
1536 ixgbevf_addr_list_itr);
1537 }
1538
1539 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1540 {
1541 int q_idx;
1542 struct ixgbevf_q_vector *q_vector;
1543 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1544
1545 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1546 struct napi_struct *napi;
1547 q_vector = adapter->q_vector[q_idx];
1548 if (!q_vector->rxr_count)
1549 continue;
1550 napi = &q_vector->napi;
1551 if (q_vector->rxr_count > 1)
1552 napi->poll = &ixgbevf_clean_rxonly_many;
1553
1554 napi_enable(napi);
1555 }
1556 }
1557
1558 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1559 {
1560 int q_idx;
1561 struct ixgbevf_q_vector *q_vector;
1562 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1563
1564 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1565 q_vector = adapter->q_vector[q_idx];
1566 if (!q_vector->rxr_count)
1567 continue;
1568 napi_disable(&q_vector->napi);
1569 }
1570 }
1571
1572 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1573 {
1574 struct net_device *netdev = adapter->netdev;
1575 int i;
1576
1577 ixgbevf_set_rx_mode(netdev);
1578
1579 ixgbevf_restore_vlan(adapter);
1580
1581 ixgbevf_configure_tx(adapter);
1582 ixgbevf_configure_rx(adapter);
1583 for (i = 0; i < adapter->num_rx_queues; i++) {
1584 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1585 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1586 ring->next_to_use = ring->count - 1;
1587 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1588 }
1589 }
1590
1591 #define IXGBE_MAX_RX_DESC_POLL 10
1592 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1593 int rxr)
1594 {
1595 struct ixgbe_hw *hw = &adapter->hw;
1596 int j = adapter->rx_ring[rxr].reg_idx;
1597 int k;
1598
1599 for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1600 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1601 break;
1602 else
1603 msleep(1);
1604 }
1605 if (k >= IXGBE_MAX_RX_DESC_POLL) {
1606 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1607 "not set within the polling period\n", rxr);
1608 }
1609
1610 ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1611 (adapter->rx_ring[rxr].count - 1));
1612 }
1613
1614 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1615 {
1616 /* Only save pre-reset stats if there are some */
1617 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1618 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1619 adapter->stats.base_vfgprc;
1620 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1621 adapter->stats.base_vfgptc;
1622 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1623 adapter->stats.base_vfgorc;
1624 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1625 adapter->stats.base_vfgotc;
1626 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1627 adapter->stats.base_vfmprc;
1628 }
1629 }
1630
1631 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1632 {
1633 struct ixgbe_hw *hw = &adapter->hw;
1634
1635 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1636 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1637 adapter->stats.last_vfgorc |=
1638 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1639 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1640 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1641 adapter->stats.last_vfgotc |=
1642 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1643 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1644
1645 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1646 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1647 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1648 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1649 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1650 }
1651
1652 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1653 {
1654 struct net_device *netdev = adapter->netdev;
1655 struct ixgbe_hw *hw = &adapter->hw;
1656 int i, j = 0;
1657 int num_rx_rings = adapter->num_rx_queues;
1658 u32 txdctl, rxdctl;
1659
1660 for (i = 0; i < adapter->num_tx_queues; i++) {
1661 j = adapter->tx_ring[i].reg_idx;
1662 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1663 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1664 txdctl |= (8 << 16);
1665 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1666 }
1667
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 j = adapter->tx_ring[i].reg_idx;
1670 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1671 txdctl |= IXGBE_TXDCTL_ENABLE;
1672 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1673 }
1674
1675 for (i = 0; i < num_rx_rings; i++) {
1676 j = adapter->rx_ring[i].reg_idx;
1677 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1678 rxdctl |= IXGBE_RXDCTL_ENABLE;
1679 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1680 ixgbevf_rx_desc_queue_enable(adapter, i);
1681 }
1682
1683 ixgbevf_configure_msix(adapter);
1684
1685 if (hw->mac.ops.set_rar) {
1686 if (is_valid_ether_addr(hw->mac.addr))
1687 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1688 else
1689 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1690 }
1691
1692 clear_bit(__IXGBEVF_DOWN, &adapter->state);
1693 ixgbevf_napi_enable_all(adapter);
1694
1695 /* enable transmits */
1696 netif_tx_start_all_queues(netdev);
1697
1698 ixgbevf_save_reset_stats(adapter);
1699 ixgbevf_init_last_counter_stats(adapter);
1700
1701 /* bring the link up in the watchdog, this could race with our first
1702 * link up interrupt but shouldn't be a problem */
1703 adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1704 adapter->link_check_timeout = jiffies;
1705 mod_timer(&adapter->watchdog_timer, jiffies);
1706 return 0;
1707 }
1708
1709 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1710 {
1711 int err;
1712 struct ixgbe_hw *hw = &adapter->hw;
1713
1714 ixgbevf_configure(adapter);
1715
1716 err = ixgbevf_up_complete(adapter);
1717
1718 /* clear any pending interrupts, may auto mask */
1719 IXGBE_READ_REG(hw, IXGBE_VTEICR);
1720
1721 ixgbevf_irq_enable(adapter, true, true);
1722
1723 return err;
1724 }
1725
1726 /**
1727 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1728 * @adapter: board private structure
1729 * @rx_ring: ring to free buffers from
1730 **/
1731 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1732 struct ixgbevf_ring *rx_ring)
1733 {
1734 struct pci_dev *pdev = adapter->pdev;
1735 unsigned long size;
1736 unsigned int i;
1737
1738 if (!rx_ring->rx_buffer_info)
1739 return;
1740
1741 /* Free all the Rx ring sk_buffs */
1742 for (i = 0; i < rx_ring->count; i++) {
1743 struct ixgbevf_rx_buffer *rx_buffer_info;
1744
1745 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1746 if (rx_buffer_info->dma) {
1747 pci_unmap_single(pdev, rx_buffer_info->dma,
1748 rx_ring->rx_buf_len,
1749 PCI_DMA_FROMDEVICE);
1750 rx_buffer_info->dma = 0;
1751 }
1752 if (rx_buffer_info->skb) {
1753 struct sk_buff *skb = rx_buffer_info->skb;
1754 rx_buffer_info->skb = NULL;
1755 do {
1756 struct sk_buff *this = skb;
1757 skb = skb->prev;
1758 dev_kfree_skb(this);
1759 } while (skb);
1760 }
1761 if (!rx_buffer_info->page)
1762 continue;
1763 pci_unmap_page(pdev, rx_buffer_info->page_dma, PAGE_SIZE / 2,
1764 PCI_DMA_FROMDEVICE);
1765 rx_buffer_info->page_dma = 0;
1766 put_page(rx_buffer_info->page);
1767 rx_buffer_info->page = NULL;
1768 rx_buffer_info->page_offset = 0;
1769 }
1770
1771 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1772 memset(rx_ring->rx_buffer_info, 0, size);
1773
1774 /* Zero out the descriptor ring */
1775 memset(rx_ring->desc, 0, rx_ring->size);
1776
1777 rx_ring->next_to_clean = 0;
1778 rx_ring->next_to_use = 0;
1779
1780 if (rx_ring->head)
1781 writel(0, adapter->hw.hw_addr + rx_ring->head);
1782 if (rx_ring->tail)
1783 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1784 }
1785
1786 /**
1787 * ixgbevf_clean_tx_ring - Free Tx Buffers
1788 * @adapter: board private structure
1789 * @tx_ring: ring to be cleaned
1790 **/
1791 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1792 struct ixgbevf_ring *tx_ring)
1793 {
1794 struct ixgbevf_tx_buffer *tx_buffer_info;
1795 unsigned long size;
1796 unsigned int i;
1797
1798 if (!tx_ring->tx_buffer_info)
1799 return;
1800
1801 /* Free all the Tx ring sk_buffs */
1802
1803 for (i = 0; i < tx_ring->count; i++) {
1804 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1805 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1806 }
1807
1808 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1809 memset(tx_ring->tx_buffer_info, 0, size);
1810
1811 memset(tx_ring->desc, 0, tx_ring->size);
1812
1813 tx_ring->next_to_use = 0;
1814 tx_ring->next_to_clean = 0;
1815
1816 if (tx_ring->head)
1817 writel(0, adapter->hw.hw_addr + tx_ring->head);
1818 if (tx_ring->tail)
1819 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1820 }
1821
1822 /**
1823 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1824 * @adapter: board private structure
1825 **/
1826 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1827 {
1828 int i;
1829
1830 for (i = 0; i < adapter->num_rx_queues; i++)
1831 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1832 }
1833
1834 /**
1835 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1836 * @adapter: board private structure
1837 **/
1838 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1839 {
1840 int i;
1841
1842 for (i = 0; i < adapter->num_tx_queues; i++)
1843 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1844 }
1845
1846 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1847 {
1848 struct net_device *netdev = adapter->netdev;
1849 struct ixgbe_hw *hw = &adapter->hw;
1850 u32 txdctl;
1851 int i, j;
1852
1853 /* signal that we are down to the interrupt handler */
1854 set_bit(__IXGBEVF_DOWN, &adapter->state);
1855 /* disable receives */
1856
1857 netif_tx_disable(netdev);
1858
1859 msleep(10);
1860
1861 netif_tx_stop_all_queues(netdev);
1862
1863 ixgbevf_irq_disable(adapter);
1864
1865 ixgbevf_napi_disable_all(adapter);
1866
1867 del_timer_sync(&adapter->watchdog_timer);
1868 /* can't call flush scheduled work here because it can deadlock
1869 * if linkwatch_event tries to acquire the rtnl_lock which we are
1870 * holding */
1871 while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1872 msleep(1);
1873
1874 /* disable transmits in the hardware now that interrupts are off */
1875 for (i = 0; i < adapter->num_tx_queues; i++) {
1876 j = adapter->tx_ring[i].reg_idx;
1877 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1878 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1879 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1880 }
1881
1882 netif_carrier_off(netdev);
1883
1884 if (!pci_channel_offline(adapter->pdev))
1885 ixgbevf_reset(adapter);
1886
1887 ixgbevf_clean_all_tx_rings(adapter);
1888 ixgbevf_clean_all_rx_rings(adapter);
1889 }
1890
1891 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1892 {
1893 struct ixgbe_hw *hw = &adapter->hw;
1894
1895 WARN_ON(in_interrupt());
1896
1897 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1898 msleep(1);
1899
1900 /*
1901 * Check if PF is up before re-init. If not then skip until
1902 * later when the PF is up and ready to service requests from
1903 * the VF via mailbox. If the VF is up and running then the
1904 * watchdog task will continue to schedule reset tasks until
1905 * the PF is up and running.
1906 */
1907 if (!hw->mac.ops.reset_hw(hw)) {
1908 ixgbevf_down(adapter);
1909 ixgbevf_up(adapter);
1910 }
1911
1912 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1913 }
1914
1915 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1916 {
1917 struct ixgbe_hw *hw = &adapter->hw;
1918 struct net_device *netdev = adapter->netdev;
1919
1920 if (hw->mac.ops.reset_hw(hw))
1921 hw_dbg(hw, "PF still resetting\n");
1922 else
1923 hw->mac.ops.init_hw(hw);
1924
1925 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1926 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1927 netdev->addr_len);
1928 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1929 netdev->addr_len);
1930 }
1931 }
1932
1933 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1934 int vectors)
1935 {
1936 int err, vector_threshold;
1937
1938 /* We'll want at least 3 (vector_threshold):
1939 * 1) TxQ[0] Cleanup
1940 * 2) RxQ[0] Cleanup
1941 * 3) Other (Link Status Change, etc.)
1942 */
1943 vector_threshold = MIN_MSIX_COUNT;
1944
1945 /* The more we get, the more we will assign to Tx/Rx Cleanup
1946 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1947 * Right now, we simply care about how many we'll get; we'll
1948 * set them up later while requesting irq's.
1949 */
1950 while (vectors >= vector_threshold) {
1951 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1952 vectors);
1953 if (!err) /* Success in acquiring all requested vectors. */
1954 break;
1955 else if (err < 0)
1956 vectors = 0; /* Nasty failure, quit now */
1957 else /* err == number of vectors we should try again with */
1958 vectors = err;
1959 }
1960
1961 if (vectors < vector_threshold) {
1962 /* Can't allocate enough MSI-X interrupts? Oh well.
1963 * This just means we'll go with either a single MSI
1964 * vector or fall back to legacy interrupts.
1965 */
1966 hw_dbg(&adapter->hw,
1967 "Unable to allocate MSI-X interrupts\n");
1968 kfree(adapter->msix_entries);
1969 adapter->msix_entries = NULL;
1970 } else {
1971 /*
1972 * Adjust for only the vectors we'll use, which is minimum
1973 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1974 * vectors we were allocated.
1975 */
1976 adapter->num_msix_vectors = vectors;
1977 }
1978 }
1979
1980 /*
1981 * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1982 * @adapter: board private structure to initialize
1983 *
1984 * This is the top level queue allocation routine. The order here is very
1985 * important, starting with the "most" number of features turned on at once,
1986 * and ending with the smallest set of features. This way large combinations
1987 * can be allocated if they're turned on, and smaller combinations are the
1988 * fallthrough conditions.
1989 *
1990 **/
1991 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1992 {
1993 /* Start with base case */
1994 adapter->num_rx_queues = 1;
1995 adapter->num_tx_queues = 1;
1996 adapter->num_rx_pools = adapter->num_rx_queues;
1997 adapter->num_rx_queues_per_pool = 1;
1998 }
1999
2000 /**
2001 * ixgbevf_alloc_queues - Allocate memory for all rings
2002 * @adapter: board private structure to initialize
2003 *
2004 * We allocate one ring per queue at run-time since we don't know the
2005 * number of queues at compile-time. The polling_netdev array is
2006 * intended for Multiqueue, but should work fine with a single queue.
2007 **/
2008 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2009 {
2010 int i;
2011
2012 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
2013 sizeof(struct ixgbevf_ring), GFP_KERNEL);
2014 if (!adapter->tx_ring)
2015 goto err_tx_ring_allocation;
2016
2017 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2018 sizeof(struct ixgbevf_ring), GFP_KERNEL);
2019 if (!adapter->rx_ring)
2020 goto err_rx_ring_allocation;
2021
2022 for (i = 0; i < adapter->num_tx_queues; i++) {
2023 adapter->tx_ring[i].count = adapter->tx_ring_count;
2024 adapter->tx_ring[i].queue_index = i;
2025 adapter->tx_ring[i].reg_idx = i;
2026 }
2027
2028 for (i = 0; i < adapter->num_rx_queues; i++) {
2029 adapter->rx_ring[i].count = adapter->rx_ring_count;
2030 adapter->rx_ring[i].queue_index = i;
2031 adapter->rx_ring[i].reg_idx = i;
2032 }
2033
2034 return 0;
2035
2036 err_rx_ring_allocation:
2037 kfree(adapter->tx_ring);
2038 err_tx_ring_allocation:
2039 return -ENOMEM;
2040 }
2041
2042 /**
2043 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2044 * @adapter: board private structure to initialize
2045 *
2046 * Attempt to configure the interrupts using the best available
2047 * capabilities of the hardware and the kernel.
2048 **/
2049 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2050 {
2051 int err = 0;
2052 int vector, v_budget;
2053
2054 /*
2055 * It's easy to be greedy for MSI-X vectors, but it really
2056 * doesn't do us much good if we have a lot more vectors
2057 * than CPU's. So let's be conservative and only ask for
2058 * (roughly) twice the number of vectors as there are CPU's.
2059 */
2060 v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2061 (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2062
2063 /* A failure in MSI-X entry allocation isn't fatal, but it does
2064 * mean we disable MSI-X capabilities of the adapter. */
2065 adapter->msix_entries = kcalloc(v_budget,
2066 sizeof(struct msix_entry), GFP_KERNEL);
2067 if (!adapter->msix_entries) {
2068 err = -ENOMEM;
2069 goto out;
2070 }
2071
2072 for (vector = 0; vector < v_budget; vector++)
2073 adapter->msix_entries[vector].entry = vector;
2074
2075 ixgbevf_acquire_msix_vectors(adapter, v_budget);
2076
2077 out:
2078 return err;
2079 }
2080
2081 /**
2082 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2083 * @adapter: board private structure to initialize
2084 *
2085 * We allocate one q_vector per queue interrupt. If allocation fails we
2086 * return -ENOMEM.
2087 **/
2088 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2089 {
2090 int q_idx, num_q_vectors;
2091 struct ixgbevf_q_vector *q_vector;
2092 int napi_vectors;
2093 int (*poll)(struct napi_struct *, int);
2094
2095 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2096 napi_vectors = adapter->num_rx_queues;
2097 poll = &ixgbevf_clean_rxonly;
2098
2099 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2100 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2101 if (!q_vector)
2102 goto err_out;
2103 q_vector->adapter = adapter;
2104 q_vector->v_idx = q_idx;
2105 q_vector->eitr = adapter->eitr_param;
2106 if (q_idx < napi_vectors)
2107 netif_napi_add(adapter->netdev, &q_vector->napi,
2108 (*poll), 64);
2109 adapter->q_vector[q_idx] = q_vector;
2110 }
2111
2112 return 0;
2113
2114 err_out:
2115 while (q_idx) {
2116 q_idx--;
2117 q_vector = adapter->q_vector[q_idx];
2118 netif_napi_del(&q_vector->napi);
2119 kfree(q_vector);
2120 adapter->q_vector[q_idx] = NULL;
2121 }
2122 return -ENOMEM;
2123 }
2124
2125 /**
2126 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2127 * @adapter: board private structure to initialize
2128 *
2129 * This function frees the memory allocated to the q_vectors. In addition if
2130 * NAPI is enabled it will delete any references to the NAPI struct prior
2131 * to freeing the q_vector.
2132 **/
2133 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2134 {
2135 int q_idx, num_q_vectors;
2136 int napi_vectors;
2137
2138 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2139 napi_vectors = adapter->num_rx_queues;
2140
2141 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2142 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2143
2144 adapter->q_vector[q_idx] = NULL;
2145 if (q_idx < napi_vectors)
2146 netif_napi_del(&q_vector->napi);
2147 kfree(q_vector);
2148 }
2149 }
2150
2151 /**
2152 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2153 * @adapter: board private structure
2154 *
2155 **/
2156 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2157 {
2158 pci_disable_msix(adapter->pdev);
2159 kfree(adapter->msix_entries);
2160 adapter->msix_entries = NULL;
2161
2162 return;
2163 }
2164
2165 /**
2166 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2167 * @adapter: board private structure to initialize
2168 *
2169 **/
2170 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2171 {
2172 int err;
2173
2174 /* Number of supported queues */
2175 ixgbevf_set_num_queues(adapter);
2176
2177 err = ixgbevf_set_interrupt_capability(adapter);
2178 if (err) {
2179 hw_dbg(&adapter->hw,
2180 "Unable to setup interrupt capabilities\n");
2181 goto err_set_interrupt;
2182 }
2183
2184 err = ixgbevf_alloc_q_vectors(adapter);
2185 if (err) {
2186 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2187 "vectors\n");
2188 goto err_alloc_q_vectors;
2189 }
2190
2191 err = ixgbevf_alloc_queues(adapter);
2192 if (err) {
2193 printk(KERN_ERR "Unable to allocate memory for queues\n");
2194 goto err_alloc_queues;
2195 }
2196
2197 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2198 "Tx Queue count = %u\n",
2199 (adapter->num_rx_queues > 1) ? "Enabled" :
2200 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2201
2202 set_bit(__IXGBEVF_DOWN, &adapter->state);
2203
2204 return 0;
2205 err_alloc_queues:
2206 ixgbevf_free_q_vectors(adapter);
2207 err_alloc_q_vectors:
2208 ixgbevf_reset_interrupt_capability(adapter);
2209 err_set_interrupt:
2210 return err;
2211 }
2212
2213 /**
2214 * ixgbevf_sw_init - Initialize general software structures
2215 * (struct ixgbevf_adapter)
2216 * @adapter: board private structure to initialize
2217 *
2218 * ixgbevf_sw_init initializes the Adapter private data structure.
2219 * Fields are initialized based on PCI device information and
2220 * OS network device settings (MTU size).
2221 **/
2222 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2223 {
2224 struct ixgbe_hw *hw = &adapter->hw;
2225 struct pci_dev *pdev = adapter->pdev;
2226 int err;
2227
2228 /* PCI config space info */
2229
2230 hw->vendor_id = pdev->vendor;
2231 hw->device_id = pdev->device;
2232 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2233 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2234 hw->subsystem_device_id = pdev->subsystem_device;
2235
2236 hw->mbx.ops.init_params(hw);
2237 hw->mac.max_tx_queues = MAX_TX_QUEUES;
2238 hw->mac.max_rx_queues = MAX_RX_QUEUES;
2239 err = hw->mac.ops.reset_hw(hw);
2240 if (err) {
2241 dev_info(&pdev->dev,
2242 "PF still in reset state, assigning new address\n");
2243 random_ether_addr(hw->mac.addr);
2244 } else {
2245 err = hw->mac.ops.init_hw(hw);
2246 if (err) {
2247 printk(KERN_ERR "init_shared_code failed: %d\n", err);
2248 goto out;
2249 }
2250 }
2251
2252 /* Enable dynamic interrupt throttling rates */
2253 adapter->eitr_param = 20000;
2254 adapter->itr_setting = 1;
2255
2256 /* set defaults for eitr in MegaBytes */
2257 adapter->eitr_low = 10;
2258 adapter->eitr_high = 20;
2259
2260 /* set default ring sizes */
2261 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2262 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2263
2264 /* enable rx csum by default */
2265 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2266
2267 set_bit(__IXGBEVF_DOWN, &adapter->state);
2268
2269 out:
2270 return err;
2271 }
2272
2273 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2274 { \
2275 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2276 if (current_counter < last_counter) \
2277 counter += 0x100000000LL; \
2278 last_counter = current_counter; \
2279 counter &= 0xFFFFFFFF00000000LL; \
2280 counter |= current_counter; \
2281 }
2282
2283 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2284 { \
2285 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2286 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2287 u64 current_counter = (current_counter_msb << 32) | \
2288 current_counter_lsb; \
2289 if (current_counter < last_counter) \
2290 counter += 0x1000000000LL; \
2291 last_counter = current_counter; \
2292 counter &= 0xFFFFFFF000000000LL; \
2293 counter |= current_counter; \
2294 }
2295 /**
2296 * ixgbevf_update_stats - Update the board statistics counters.
2297 * @adapter: board private structure
2298 **/
2299 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2300 {
2301 struct ixgbe_hw *hw = &adapter->hw;
2302
2303 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2304 adapter->stats.vfgprc);
2305 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2306 adapter->stats.vfgptc);
2307 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2308 adapter->stats.last_vfgorc,
2309 adapter->stats.vfgorc);
2310 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2311 adapter->stats.last_vfgotc,
2312 adapter->stats.vfgotc);
2313 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2314 adapter->stats.vfmprc);
2315
2316 /* Fill out the OS statistics structure */
2317 adapter->net_stats.multicast = adapter->stats.vfmprc -
2318 adapter->stats.base_vfmprc;
2319 }
2320
2321 /**
2322 * ixgbevf_watchdog - Timer Call-back
2323 * @data: pointer to adapter cast into an unsigned long
2324 **/
2325 static void ixgbevf_watchdog(unsigned long data)
2326 {
2327 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2328 struct ixgbe_hw *hw = &adapter->hw;
2329 u64 eics = 0;
2330 int i;
2331
2332 /*
2333 * Do the watchdog outside of interrupt context due to the lovely
2334 * delays that some of the newer hardware requires
2335 */
2336
2337 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2338 goto watchdog_short_circuit;
2339
2340 /* get one bit for every active tx/rx interrupt vector */
2341 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2342 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2343 if (qv->rxr_count || qv->txr_count)
2344 eics |= (1 << i);
2345 }
2346
2347 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2348
2349 watchdog_short_circuit:
2350 schedule_work(&adapter->watchdog_task);
2351 }
2352
2353 /**
2354 * ixgbevf_tx_timeout - Respond to a Tx Hang
2355 * @netdev: network interface device structure
2356 **/
2357 static void ixgbevf_tx_timeout(struct net_device *netdev)
2358 {
2359 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2360
2361 /* Do the reset outside of interrupt context */
2362 schedule_work(&adapter->reset_task);
2363 }
2364
2365 static void ixgbevf_reset_task(struct work_struct *work)
2366 {
2367 struct ixgbevf_adapter *adapter;
2368 adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2369
2370 /* If we're already down or resetting, just bail */
2371 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2372 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2373 return;
2374
2375 adapter->tx_timeout_count++;
2376
2377 ixgbevf_reinit_locked(adapter);
2378 }
2379
2380 /**
2381 * ixgbevf_watchdog_task - worker thread to bring link up
2382 * @work: pointer to work_struct containing our data
2383 **/
2384 static void ixgbevf_watchdog_task(struct work_struct *work)
2385 {
2386 struct ixgbevf_adapter *adapter = container_of(work,
2387 struct ixgbevf_adapter,
2388 watchdog_task);
2389 struct net_device *netdev = adapter->netdev;
2390 struct ixgbe_hw *hw = &adapter->hw;
2391 u32 link_speed = adapter->link_speed;
2392 bool link_up = adapter->link_up;
2393
2394 adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2395
2396 /*
2397 * Always check the link on the watchdog because we have
2398 * no LSC interrupt
2399 */
2400 if (hw->mac.ops.check_link) {
2401 if ((hw->mac.ops.check_link(hw, &link_speed,
2402 &link_up, false)) != 0) {
2403 adapter->link_up = link_up;
2404 adapter->link_speed = link_speed;
2405 netif_carrier_off(netdev);
2406 netif_tx_stop_all_queues(netdev);
2407 schedule_work(&adapter->reset_task);
2408 goto pf_has_reset;
2409 }
2410 } else {
2411 /* always assume link is up, if no check link
2412 * function */
2413 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2414 link_up = true;
2415 }
2416 adapter->link_up = link_up;
2417 adapter->link_speed = link_speed;
2418
2419 if (link_up) {
2420 if (!netif_carrier_ok(netdev)) {
2421 hw_dbg(&adapter->hw, "NIC Link is Up %s, ",
2422 ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2423 "10 Gbps\n" : "1 Gbps\n"));
2424 netif_carrier_on(netdev);
2425 netif_tx_wake_all_queues(netdev);
2426 } else {
2427 /* Force detection of hung controller */
2428 adapter->detect_tx_hung = true;
2429 }
2430 } else {
2431 adapter->link_up = false;
2432 adapter->link_speed = 0;
2433 if (netif_carrier_ok(netdev)) {
2434 hw_dbg(&adapter->hw, "NIC Link is Down\n");
2435 netif_carrier_off(netdev);
2436 netif_tx_stop_all_queues(netdev);
2437 }
2438 }
2439
2440 ixgbevf_update_stats(adapter);
2441
2442 pf_has_reset:
2443 /* Force detection of hung controller every watchdog period */
2444 adapter->detect_tx_hung = true;
2445
2446 /* Reset the timer */
2447 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2448 mod_timer(&adapter->watchdog_timer,
2449 round_jiffies(jiffies + (2 * HZ)));
2450
2451 adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2452 }
2453
2454 /**
2455 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2456 * @adapter: board private structure
2457 * @tx_ring: Tx descriptor ring for a specific queue
2458 *
2459 * Free all transmit software resources
2460 **/
2461 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2462 struct ixgbevf_ring *tx_ring)
2463 {
2464 struct pci_dev *pdev = adapter->pdev;
2465
2466 ixgbevf_clean_tx_ring(adapter, tx_ring);
2467
2468 vfree(tx_ring->tx_buffer_info);
2469 tx_ring->tx_buffer_info = NULL;
2470
2471 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2472
2473 tx_ring->desc = NULL;
2474 }
2475
2476 /**
2477 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2478 * @adapter: board private structure
2479 *
2480 * Free all transmit software resources
2481 **/
2482 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2483 {
2484 int i;
2485
2486 for (i = 0; i < adapter->num_tx_queues; i++)
2487 if (adapter->tx_ring[i].desc)
2488 ixgbevf_free_tx_resources(adapter,
2489 &adapter->tx_ring[i]);
2490
2491 }
2492
2493 /**
2494 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2495 * @adapter: board private structure
2496 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2497 *
2498 * Return 0 on success, negative on failure
2499 **/
2500 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2501 struct ixgbevf_ring *tx_ring)
2502 {
2503 struct pci_dev *pdev = adapter->pdev;
2504 int size;
2505
2506 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2507 tx_ring->tx_buffer_info = vmalloc(size);
2508 if (!tx_ring->tx_buffer_info)
2509 goto err;
2510 memset(tx_ring->tx_buffer_info, 0, size);
2511
2512 /* round up to nearest 4K */
2513 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2514 tx_ring->size = ALIGN(tx_ring->size, 4096);
2515
2516 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
2517 &tx_ring->dma);
2518 if (!tx_ring->desc)
2519 goto err;
2520
2521 tx_ring->next_to_use = 0;
2522 tx_ring->next_to_clean = 0;
2523 tx_ring->work_limit = tx_ring->count;
2524 return 0;
2525
2526 err:
2527 vfree(tx_ring->tx_buffer_info);
2528 tx_ring->tx_buffer_info = NULL;
2529 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2530 "descriptor ring\n");
2531 return -ENOMEM;
2532 }
2533
2534 /**
2535 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2536 * @adapter: board private structure
2537 *
2538 * If this function returns with an error, then it's possible one or
2539 * more of the rings is populated (while the rest are not). It is the
2540 * callers duty to clean those orphaned rings.
2541 *
2542 * Return 0 on success, negative on failure
2543 **/
2544 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2545 {
2546 int i, err = 0;
2547
2548 for (i = 0; i < adapter->num_tx_queues; i++) {
2549 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2550 if (!err)
2551 continue;
2552 hw_dbg(&adapter->hw,
2553 "Allocation for Tx Queue %u failed\n", i);
2554 break;
2555 }
2556
2557 return err;
2558 }
2559
2560 /**
2561 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2562 * @adapter: board private structure
2563 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2564 *
2565 * Returns 0 on success, negative on failure
2566 **/
2567 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2568 struct ixgbevf_ring *rx_ring)
2569 {
2570 struct pci_dev *pdev = adapter->pdev;
2571 int size;
2572
2573 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2574 rx_ring->rx_buffer_info = vmalloc(size);
2575 if (!rx_ring->rx_buffer_info) {
2576 hw_dbg(&adapter->hw,
2577 "Unable to vmalloc buffer memory for "
2578 "the receive descriptor ring\n");
2579 goto alloc_failed;
2580 }
2581 memset(rx_ring->rx_buffer_info, 0, size);
2582
2583 /* Round up to nearest 4K */
2584 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2585 rx_ring->size = ALIGN(rx_ring->size, 4096);
2586
2587 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2588 &rx_ring->dma);
2589
2590 if (!rx_ring->desc) {
2591 hw_dbg(&adapter->hw,
2592 "Unable to allocate memory for "
2593 "the receive descriptor ring\n");
2594 vfree(rx_ring->rx_buffer_info);
2595 rx_ring->rx_buffer_info = NULL;
2596 goto alloc_failed;
2597 }
2598
2599 rx_ring->next_to_clean = 0;
2600 rx_ring->next_to_use = 0;
2601
2602 return 0;
2603 alloc_failed:
2604 return -ENOMEM;
2605 }
2606
2607 /**
2608 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2609 * @adapter: board private structure
2610 *
2611 * If this function returns with an error, then it's possible one or
2612 * more of the rings is populated (while the rest are not). It is the
2613 * callers duty to clean those orphaned rings.
2614 *
2615 * Return 0 on success, negative on failure
2616 **/
2617 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2618 {
2619 int i, err = 0;
2620
2621 for (i = 0; i < adapter->num_rx_queues; i++) {
2622 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2623 if (!err)
2624 continue;
2625 hw_dbg(&adapter->hw,
2626 "Allocation for Rx Queue %u failed\n", i);
2627 break;
2628 }
2629 return err;
2630 }
2631
2632 /**
2633 * ixgbevf_free_rx_resources - Free Rx Resources
2634 * @adapter: board private structure
2635 * @rx_ring: ring to clean the resources from
2636 *
2637 * Free all receive software resources
2638 **/
2639 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2640 struct ixgbevf_ring *rx_ring)
2641 {
2642 struct pci_dev *pdev = adapter->pdev;
2643
2644 ixgbevf_clean_rx_ring(adapter, rx_ring);
2645
2646 vfree(rx_ring->rx_buffer_info);
2647 rx_ring->rx_buffer_info = NULL;
2648
2649 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2650
2651 rx_ring->desc = NULL;
2652 }
2653
2654 /**
2655 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2656 * @adapter: board private structure
2657 *
2658 * Free all receive software resources
2659 **/
2660 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2661 {
2662 int i;
2663
2664 for (i = 0; i < adapter->num_rx_queues; i++)
2665 if (adapter->rx_ring[i].desc)
2666 ixgbevf_free_rx_resources(adapter,
2667 &adapter->rx_ring[i]);
2668 }
2669
2670 /**
2671 * ixgbevf_open - Called when a network interface is made active
2672 * @netdev: network interface device structure
2673 *
2674 * Returns 0 on success, negative value on failure
2675 *
2676 * The open entry point is called when a network interface is made
2677 * active by the system (IFF_UP). At this point all resources needed
2678 * for transmit and receive operations are allocated, the interrupt
2679 * handler is registered with the OS, the watchdog timer is started,
2680 * and the stack is notified that the interface is ready.
2681 **/
2682 static int ixgbevf_open(struct net_device *netdev)
2683 {
2684 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2685 struct ixgbe_hw *hw = &adapter->hw;
2686 int err;
2687
2688 /* disallow open during test */
2689 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2690 return -EBUSY;
2691
2692 if (hw->adapter_stopped) {
2693 ixgbevf_reset(adapter);
2694 /* if adapter is still stopped then PF isn't up and
2695 * the vf can't start. */
2696 if (hw->adapter_stopped) {
2697 err = IXGBE_ERR_MBX;
2698 printk(KERN_ERR "Unable to start - perhaps the PF"
2699 " Driver isn't up yet\n");
2700 goto err_setup_reset;
2701 }
2702 }
2703
2704 /* allocate transmit descriptors */
2705 err = ixgbevf_setup_all_tx_resources(adapter);
2706 if (err)
2707 goto err_setup_tx;
2708
2709 /* allocate receive descriptors */
2710 err = ixgbevf_setup_all_rx_resources(adapter);
2711 if (err)
2712 goto err_setup_rx;
2713
2714 ixgbevf_configure(adapter);
2715
2716 /*
2717 * Map the Tx/Rx rings to the vectors we were allotted.
2718 * if request_irq will be called in this function map_rings
2719 * must be called *before* up_complete
2720 */
2721 ixgbevf_map_rings_to_vectors(adapter);
2722
2723 err = ixgbevf_up_complete(adapter);
2724 if (err)
2725 goto err_up;
2726
2727 /* clear any pending interrupts, may auto mask */
2728 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2729 err = ixgbevf_request_irq(adapter);
2730 if (err)
2731 goto err_req_irq;
2732
2733 ixgbevf_irq_enable(adapter, true, true);
2734
2735 return 0;
2736
2737 err_req_irq:
2738 ixgbevf_down(adapter);
2739 err_up:
2740 ixgbevf_free_irq(adapter);
2741 err_setup_rx:
2742 ixgbevf_free_all_rx_resources(adapter);
2743 err_setup_tx:
2744 ixgbevf_free_all_tx_resources(adapter);
2745 ixgbevf_reset(adapter);
2746
2747 err_setup_reset:
2748
2749 return err;
2750 }
2751
2752 /**
2753 * ixgbevf_close - Disables a network interface
2754 * @netdev: network interface device structure
2755 *
2756 * Returns 0, this is not allowed to fail
2757 *
2758 * The close entry point is called when an interface is de-activated
2759 * by the OS. The hardware is still under the drivers control, but
2760 * needs to be disabled. A global MAC reset is issued to stop the
2761 * hardware, and all transmit and receive resources are freed.
2762 **/
2763 static int ixgbevf_close(struct net_device *netdev)
2764 {
2765 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2766
2767 ixgbevf_down(adapter);
2768 ixgbevf_free_irq(adapter);
2769
2770 ixgbevf_free_all_tx_resources(adapter);
2771 ixgbevf_free_all_rx_resources(adapter);
2772
2773 return 0;
2774 }
2775
2776 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2777 struct ixgbevf_ring *tx_ring,
2778 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2779 {
2780 struct ixgbe_adv_tx_context_desc *context_desc;
2781 unsigned int i;
2782 int err;
2783 struct ixgbevf_tx_buffer *tx_buffer_info;
2784 u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2785 u32 mss_l4len_idx, l4len;
2786
2787 if (skb_is_gso(skb)) {
2788 if (skb_header_cloned(skb)) {
2789 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2790 if (err)
2791 return err;
2792 }
2793 l4len = tcp_hdrlen(skb);
2794 *hdr_len += l4len;
2795
2796 if (skb->protocol == htons(ETH_P_IP)) {
2797 struct iphdr *iph = ip_hdr(skb);
2798 iph->tot_len = 0;
2799 iph->check = 0;
2800 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2801 iph->daddr, 0,
2802 IPPROTO_TCP,
2803 0);
2804 adapter->hw_tso_ctxt++;
2805 } else if (skb_is_gso_v6(skb)) {
2806 ipv6_hdr(skb)->payload_len = 0;
2807 tcp_hdr(skb)->check =
2808 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2809 &ipv6_hdr(skb)->daddr,
2810 0, IPPROTO_TCP, 0);
2811 adapter->hw_tso6_ctxt++;
2812 }
2813
2814 i = tx_ring->next_to_use;
2815
2816 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2817 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2818
2819 /* VLAN MACLEN IPLEN */
2820 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2821 vlan_macip_lens |=
2822 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2823 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2824 IXGBE_ADVTXD_MACLEN_SHIFT);
2825 *hdr_len += skb_network_offset(skb);
2826 vlan_macip_lens |=
2827 (skb_transport_header(skb) - skb_network_header(skb));
2828 *hdr_len +=
2829 (skb_transport_header(skb) - skb_network_header(skb));
2830 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2831 context_desc->seqnum_seed = 0;
2832
2833 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2834 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2835 IXGBE_ADVTXD_DTYP_CTXT);
2836
2837 if (skb->protocol == htons(ETH_P_IP))
2838 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2839 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2840 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2841
2842 /* MSS L4LEN IDX */
2843 mss_l4len_idx =
2844 (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2845 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2846 /* use index 1 for TSO */
2847 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2848 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2849
2850 tx_buffer_info->time_stamp = jiffies;
2851 tx_buffer_info->next_to_watch = i;
2852
2853 i++;
2854 if (i == tx_ring->count)
2855 i = 0;
2856 tx_ring->next_to_use = i;
2857
2858 return true;
2859 }
2860
2861 return false;
2862 }
2863
2864 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2865 struct ixgbevf_ring *tx_ring,
2866 struct sk_buff *skb, u32 tx_flags)
2867 {
2868 struct ixgbe_adv_tx_context_desc *context_desc;
2869 unsigned int i;
2870 struct ixgbevf_tx_buffer *tx_buffer_info;
2871 u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2872
2873 if (skb->ip_summed == CHECKSUM_PARTIAL ||
2874 (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2875 i = tx_ring->next_to_use;
2876 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2877 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2878
2879 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2880 vlan_macip_lens |= (tx_flags &
2881 IXGBE_TX_FLAGS_VLAN_MASK);
2882 vlan_macip_lens |= (skb_network_offset(skb) <<
2883 IXGBE_ADVTXD_MACLEN_SHIFT);
2884 if (skb->ip_summed == CHECKSUM_PARTIAL)
2885 vlan_macip_lens |= (skb_transport_header(skb) -
2886 skb_network_header(skb));
2887
2888 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2889 context_desc->seqnum_seed = 0;
2890
2891 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2892 IXGBE_ADVTXD_DTYP_CTXT);
2893
2894 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2895 switch (skb->protocol) {
2896 case __constant_htons(ETH_P_IP):
2897 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2898 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2899 type_tucmd_mlhl |=
2900 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2901 break;
2902 case __constant_htons(ETH_P_IPV6):
2903 /* XXX what about other V6 headers?? */
2904 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2905 type_tucmd_mlhl |=
2906 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2907 break;
2908 default:
2909 if (unlikely(net_ratelimit())) {
2910 printk(KERN_WARNING
2911 "partial checksum but "
2912 "proto=%x!\n",
2913 skb->protocol);
2914 }
2915 break;
2916 }
2917 }
2918
2919 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2920 /* use index zero for tx checksum offload */
2921 context_desc->mss_l4len_idx = 0;
2922
2923 tx_buffer_info->time_stamp = jiffies;
2924 tx_buffer_info->next_to_watch = i;
2925
2926 adapter->hw_csum_tx_good++;
2927 i++;
2928 if (i == tx_ring->count)
2929 i = 0;
2930 tx_ring->next_to_use = i;
2931
2932 return true;
2933 }
2934
2935 return false;
2936 }
2937
2938 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2939 struct ixgbevf_ring *tx_ring,
2940 struct sk_buff *skb, u32 tx_flags,
2941 unsigned int first)
2942 {
2943 struct pci_dev *pdev = adapter->pdev;
2944 struct ixgbevf_tx_buffer *tx_buffer_info;
2945 unsigned int len;
2946 unsigned int total = skb->len;
2947 unsigned int offset = 0, size, count = 0;
2948 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2949 unsigned int f;
2950 int i;
2951
2952 i = tx_ring->next_to_use;
2953
2954 len = min(skb_headlen(skb), total);
2955 while (len) {
2956 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2957 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2958
2959 tx_buffer_info->length = size;
2960 tx_buffer_info->mapped_as_page = false;
2961 tx_buffer_info->dma = pci_map_single(adapter->pdev,
2962 skb->data + offset,
2963 size, PCI_DMA_TODEVICE);
2964 if (pci_dma_mapping_error(pdev, tx_buffer_info->dma))
2965 goto dma_error;
2966 tx_buffer_info->time_stamp = jiffies;
2967 tx_buffer_info->next_to_watch = i;
2968
2969 len -= size;
2970 total -= size;
2971 offset += size;
2972 count++;
2973 i++;
2974 if (i == tx_ring->count)
2975 i = 0;
2976 }
2977
2978 for (f = 0; f < nr_frags; f++) {
2979 struct skb_frag_struct *frag;
2980
2981 frag = &skb_shinfo(skb)->frags[f];
2982 len = min((unsigned int)frag->size, total);
2983 offset = frag->page_offset;
2984
2985 while (len) {
2986 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2987 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2988
2989 tx_buffer_info->length = size;
2990 tx_buffer_info->dma = pci_map_page(adapter->pdev,
2991 frag->page,
2992 offset,
2993 size,
2994 PCI_DMA_TODEVICE);
2995 tx_buffer_info->mapped_as_page = true;
2996 if (pci_dma_mapping_error(pdev, tx_buffer_info->dma))
2997 goto dma_error;
2998 tx_buffer_info->time_stamp = jiffies;
2999 tx_buffer_info->next_to_watch = i;
3000
3001 len -= size;
3002 total -= size;
3003 offset += size;
3004 count++;
3005 i++;
3006 if (i == tx_ring->count)
3007 i = 0;
3008 }
3009 if (total == 0)
3010 break;
3011 }
3012
3013 if (i == 0)
3014 i = tx_ring->count - 1;
3015 else
3016 i = i - 1;
3017 tx_ring->tx_buffer_info[i].skb = skb;
3018 tx_ring->tx_buffer_info[first].next_to_watch = i;
3019
3020 return count;
3021
3022 dma_error:
3023 dev_err(&pdev->dev, "TX DMA map failed\n");
3024
3025 /* clear timestamp and dma mappings for failed tx_buffer_info map */
3026 tx_buffer_info->dma = 0;
3027 tx_buffer_info->time_stamp = 0;
3028 tx_buffer_info->next_to_watch = 0;
3029 count--;
3030
3031 /* clear timestamp and dma mappings for remaining portion of packet */
3032 while (count >= 0) {
3033 count--;
3034 i--;
3035 if (i < 0)
3036 i += tx_ring->count;
3037 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3038 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3039 }
3040
3041 return count;
3042 }
3043
3044 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3045 struct ixgbevf_ring *tx_ring, int tx_flags,
3046 int count, u32 paylen, u8 hdr_len)
3047 {
3048 union ixgbe_adv_tx_desc *tx_desc = NULL;
3049 struct ixgbevf_tx_buffer *tx_buffer_info;
3050 u32 olinfo_status = 0, cmd_type_len = 0;
3051 unsigned int i;
3052
3053 u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3054
3055 cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3056
3057 cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3058
3059 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3060 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3061
3062 if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3063 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3064
3065 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3066 IXGBE_ADVTXD_POPTS_SHIFT;
3067
3068 /* use index 1 context for tso */
3069 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3070 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3071 olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3072 IXGBE_ADVTXD_POPTS_SHIFT;
3073
3074 } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3075 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3076 IXGBE_ADVTXD_POPTS_SHIFT;
3077
3078 olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3079
3080 i = tx_ring->next_to_use;
3081 while (count--) {
3082 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3083 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3084 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3085 tx_desc->read.cmd_type_len =
3086 cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3087 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3088 i++;
3089 if (i == tx_ring->count)
3090 i = 0;
3091 }
3092
3093 tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3094
3095 /*
3096 * Force memory writes to complete before letting h/w
3097 * know there are new descriptors to fetch. (Only
3098 * applicable for weak-ordered memory model archs,
3099 * such as IA-64).
3100 */
3101 wmb();
3102
3103 tx_ring->next_to_use = i;
3104 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3105 }
3106
3107 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3108 struct ixgbevf_ring *tx_ring, int size)
3109 {
3110 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3111
3112 netif_stop_subqueue(netdev, tx_ring->queue_index);
3113 /* Herbert's original patch had:
3114 * smp_mb__after_netif_stop_queue();
3115 * but since that doesn't exist yet, just open code it. */
3116 smp_mb();
3117
3118 /* We need to check again in a case another CPU has just
3119 * made room available. */
3120 if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3121 return -EBUSY;
3122
3123 /* A reprieve! - use start_queue because it doesn't call schedule */
3124 netif_start_subqueue(netdev, tx_ring->queue_index);
3125 ++adapter->restart_queue;
3126 return 0;
3127 }
3128
3129 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3130 struct ixgbevf_ring *tx_ring, int size)
3131 {
3132 if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3133 return 0;
3134 return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3135 }
3136
3137 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3138 {
3139 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3140 struct ixgbevf_ring *tx_ring;
3141 unsigned int first;
3142 unsigned int tx_flags = 0;
3143 u8 hdr_len = 0;
3144 int r_idx = 0, tso;
3145 int count = 0;
3146
3147 unsigned int f;
3148
3149 tx_ring = &adapter->tx_ring[r_idx];
3150
3151 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3152 tx_flags |= vlan_tx_tag_get(skb);
3153 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3154 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3155 }
3156
3157 /* four things can cause us to need a context descriptor */
3158 if (skb_is_gso(skb) ||
3159 (skb->ip_summed == CHECKSUM_PARTIAL) ||
3160 (tx_flags & IXGBE_TX_FLAGS_VLAN))
3161 count++;
3162
3163 count += TXD_USE_COUNT(skb_headlen(skb));
3164 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3165 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3166
3167 if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3168 adapter->tx_busy++;
3169 return NETDEV_TX_BUSY;
3170 }
3171
3172 first = tx_ring->next_to_use;
3173
3174 if (skb->protocol == htons(ETH_P_IP))
3175 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3176 tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3177 if (tso < 0) {
3178 dev_kfree_skb_any(skb);
3179 return NETDEV_TX_OK;
3180 }
3181
3182 if (tso)
3183 tx_flags |= IXGBE_TX_FLAGS_TSO;
3184 else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3185 (skb->ip_summed == CHECKSUM_PARTIAL))
3186 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3187
3188 ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3189 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3190 skb->len, hdr_len);
3191
3192 netdev->trans_start = jiffies;
3193
3194 ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3195
3196 return NETDEV_TX_OK;
3197 }
3198
3199 /**
3200 * ixgbevf_get_stats - Get System Network Statistics
3201 * @netdev: network interface device structure
3202 *
3203 * Returns the address of the device statistics structure.
3204 * The statistics are actually updated from the timer callback.
3205 **/
3206 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3207 {
3208 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3209
3210 /* only return the current stats */
3211 return &adapter->net_stats;
3212 }
3213
3214 /**
3215 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3216 * @netdev: network interface device structure
3217 * @p: pointer to an address structure
3218 *
3219 * Returns 0 on success, negative on failure
3220 **/
3221 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3222 {
3223 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3224 struct ixgbe_hw *hw = &adapter->hw;
3225 struct sockaddr *addr = p;
3226
3227 if (!is_valid_ether_addr(addr->sa_data))
3228 return -EADDRNOTAVAIL;
3229
3230 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3231 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3232
3233 if (hw->mac.ops.set_rar)
3234 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3235
3236 return 0;
3237 }
3238
3239 /**
3240 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3241 * @netdev: network interface device structure
3242 * @new_mtu: new value for maximum frame size
3243 *
3244 * Returns 0 on success, negative on failure
3245 **/
3246 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3247 {
3248 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3249 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3250
3251 /* MTU < 68 is an error and causes problems on some kernels */
3252 if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3253 return -EINVAL;
3254
3255 hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3256 netdev->mtu, new_mtu);
3257 /* must set new MTU before calling down or up */
3258 netdev->mtu = new_mtu;
3259
3260 if (netif_running(netdev))
3261 ixgbevf_reinit_locked(adapter);
3262
3263 return 0;
3264 }
3265
3266 static void ixgbevf_shutdown(struct pci_dev *pdev)
3267 {
3268 struct net_device *netdev = pci_get_drvdata(pdev);
3269 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3270
3271 netif_device_detach(netdev);
3272
3273 if (netif_running(netdev)) {
3274 ixgbevf_down(adapter);
3275 ixgbevf_free_irq(adapter);
3276 ixgbevf_free_all_tx_resources(adapter);
3277 ixgbevf_free_all_rx_resources(adapter);
3278 }
3279
3280 #ifdef CONFIG_PM
3281 pci_save_state(pdev);
3282 #endif
3283
3284 pci_disable_device(pdev);
3285 }
3286
3287 static const struct net_device_ops ixgbe_netdev_ops = {
3288 .ndo_open = &ixgbevf_open,
3289 .ndo_stop = &ixgbevf_close,
3290 .ndo_start_xmit = &ixgbevf_xmit_frame,
3291 .ndo_get_stats = &ixgbevf_get_stats,
3292 .ndo_set_rx_mode = &ixgbevf_set_rx_mode,
3293 .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3294 .ndo_validate_addr = eth_validate_addr,
3295 .ndo_set_mac_address = &ixgbevf_set_mac,
3296 .ndo_change_mtu = &ixgbevf_change_mtu,
3297 .ndo_tx_timeout = &ixgbevf_tx_timeout,
3298 .ndo_vlan_rx_register = &ixgbevf_vlan_rx_register,
3299 .ndo_vlan_rx_add_vid = &ixgbevf_vlan_rx_add_vid,
3300 .ndo_vlan_rx_kill_vid = &ixgbevf_vlan_rx_kill_vid,
3301 };
3302
3303 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3304 {
3305 struct ixgbevf_adapter *adapter;
3306 adapter = netdev_priv(dev);
3307 dev->netdev_ops = &ixgbe_netdev_ops;
3308 ixgbevf_set_ethtool_ops(dev);
3309 dev->watchdog_timeo = 5 * HZ;
3310 }
3311
3312 /**
3313 * ixgbevf_probe - Device Initialization Routine
3314 * @pdev: PCI device information struct
3315 * @ent: entry in ixgbevf_pci_tbl
3316 *
3317 * Returns 0 on success, negative on failure
3318 *
3319 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3320 * The OS initialization, configuring of the adapter private structure,
3321 * and a hardware reset occur.
3322 **/
3323 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3324 const struct pci_device_id *ent)
3325 {
3326 struct net_device *netdev;
3327 struct ixgbevf_adapter *adapter = NULL;
3328 struct ixgbe_hw *hw = NULL;
3329 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3330 static int cards_found;
3331 int err, pci_using_dac;
3332
3333 err = pci_enable_device(pdev);
3334 if (err)
3335 return err;
3336
3337 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
3338 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3339 pci_using_dac = 1;
3340 } else {
3341 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3342 if (err) {
3343 err = pci_set_consistent_dma_mask(pdev,
3344 DMA_BIT_MASK(32));
3345 if (err) {
3346 dev_err(&pdev->dev, "No usable DMA "
3347 "configuration, aborting\n");
3348 goto err_dma;
3349 }
3350 }
3351 pci_using_dac = 0;
3352 }
3353
3354 err = pci_request_regions(pdev, ixgbevf_driver_name);
3355 if (err) {
3356 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3357 goto err_pci_reg;
3358 }
3359
3360 pci_set_master(pdev);
3361
3362 #ifdef HAVE_TX_MQ
3363 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3364 MAX_TX_QUEUES);
3365 #else
3366 netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3367 #endif
3368 if (!netdev) {
3369 err = -ENOMEM;
3370 goto err_alloc_etherdev;
3371 }
3372
3373 SET_NETDEV_DEV(netdev, &pdev->dev);
3374
3375 pci_set_drvdata(pdev, netdev);
3376 adapter = netdev_priv(netdev);
3377
3378 adapter->netdev = netdev;
3379 adapter->pdev = pdev;
3380 hw = &adapter->hw;
3381 hw->back = adapter;
3382 adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3383
3384 /*
3385 * call save state here in standalone driver because it relies on
3386 * adapter struct to exist, and needs to call netdev_priv
3387 */
3388 pci_save_state(pdev);
3389
3390 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3391 pci_resource_len(pdev, 0));
3392 if (!hw->hw_addr) {
3393 err = -EIO;
3394 goto err_ioremap;
3395 }
3396
3397 ixgbevf_assign_netdev_ops(netdev);
3398
3399 adapter->bd_number = cards_found;
3400
3401 /* Setup hw api */
3402 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3403 hw->mac.type = ii->mac;
3404
3405 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3406 sizeof(struct ixgbe_mac_operations));
3407
3408 adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3409 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3410 adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3411
3412 /* setup the private structure */
3413 err = ixgbevf_sw_init(adapter);
3414
3415 #ifdef MAX_SKB_FRAGS
3416 netdev->features = NETIF_F_SG |
3417 NETIF_F_IP_CSUM |
3418 NETIF_F_HW_VLAN_TX |
3419 NETIF_F_HW_VLAN_RX |
3420 NETIF_F_HW_VLAN_FILTER;
3421
3422 netdev->features |= NETIF_F_IPV6_CSUM;
3423 netdev->features |= NETIF_F_TSO;
3424 netdev->features |= NETIF_F_TSO6;
3425 netdev->vlan_features |= NETIF_F_TSO;
3426 netdev->vlan_features |= NETIF_F_TSO6;
3427 netdev->vlan_features |= NETIF_F_IP_CSUM;
3428 netdev->vlan_features |= NETIF_F_SG;
3429
3430 if (pci_using_dac)
3431 netdev->features |= NETIF_F_HIGHDMA;
3432
3433 #endif /* MAX_SKB_FRAGS */
3434
3435 /* The HW MAC address was set and/or determined in sw_init */
3436 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3437 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3438
3439 if (!is_valid_ether_addr(netdev->dev_addr)) {
3440 printk(KERN_ERR "invalid MAC address\n");
3441 err = -EIO;
3442 goto err_sw_init;
3443 }
3444
3445 init_timer(&adapter->watchdog_timer);
3446 adapter->watchdog_timer.function = &ixgbevf_watchdog;
3447 adapter->watchdog_timer.data = (unsigned long)adapter;
3448
3449 INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3450 INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3451
3452 err = ixgbevf_init_interrupt_scheme(adapter);
3453 if (err)
3454 goto err_sw_init;
3455
3456 /* pick up the PCI bus settings for reporting later */
3457 if (hw->mac.ops.get_bus_info)
3458 hw->mac.ops.get_bus_info(hw);
3459
3460
3461 netif_carrier_off(netdev);
3462 netif_tx_stop_all_queues(netdev);
3463
3464 strcpy(netdev->name, "eth%d");
3465
3466 err = register_netdev(netdev);
3467 if (err)
3468 goto err_register;
3469
3470 adapter->netdev_registered = true;
3471
3472 ixgbevf_init_last_counter_stats(adapter);
3473
3474 /* print the MAC address */
3475 hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3476 netdev->dev_addr[0],
3477 netdev->dev_addr[1],
3478 netdev->dev_addr[2],
3479 netdev->dev_addr[3],
3480 netdev->dev_addr[4],
3481 netdev->dev_addr[5]);
3482
3483 hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3484
3485 hw_dbg(hw, "LRO is disabled \n");
3486
3487 hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3488 cards_found++;
3489 return 0;
3490
3491 err_register:
3492 err_sw_init:
3493 ixgbevf_reset_interrupt_capability(adapter);
3494 iounmap(hw->hw_addr);
3495 err_ioremap:
3496 free_netdev(netdev);
3497 err_alloc_etherdev:
3498 pci_release_regions(pdev);
3499 err_pci_reg:
3500 err_dma:
3501 pci_disable_device(pdev);
3502 return err;
3503 }
3504
3505 /**
3506 * ixgbevf_remove - Device Removal Routine
3507 * @pdev: PCI device information struct
3508 *
3509 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3510 * that it should release a PCI device. The could be caused by a
3511 * Hot-Plug event, or because the driver is going to be removed from
3512 * memory.
3513 **/
3514 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3515 {
3516 struct net_device *netdev = pci_get_drvdata(pdev);
3517 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3518
3519 set_bit(__IXGBEVF_DOWN, &adapter->state);
3520
3521 del_timer_sync(&adapter->watchdog_timer);
3522
3523 cancel_work_sync(&adapter->watchdog_task);
3524
3525 flush_scheduled_work();
3526
3527 if (adapter->netdev_registered) {
3528 unregister_netdev(netdev);
3529 adapter->netdev_registered = false;
3530 }
3531
3532 ixgbevf_reset_interrupt_capability(adapter);
3533
3534 iounmap(adapter->hw.hw_addr);
3535 pci_release_regions(pdev);
3536
3537 hw_dbg(&adapter->hw, "Remove complete\n");
3538
3539 kfree(adapter->tx_ring);
3540 kfree(adapter->rx_ring);
3541
3542 free_netdev(netdev);
3543
3544 pci_disable_device(pdev);
3545 }
3546
3547 static struct pci_driver ixgbevf_driver = {
3548 .name = ixgbevf_driver_name,
3549 .id_table = ixgbevf_pci_tbl,
3550 .probe = ixgbevf_probe,
3551 .remove = __devexit_p(ixgbevf_remove),
3552 .shutdown = ixgbevf_shutdown,
3553 };
3554
3555 /**
3556 * ixgbe_init_module - Driver Registration Routine
3557 *
3558 * ixgbe_init_module is the first routine called when the driver is
3559 * loaded. All it does is register with the PCI subsystem.
3560 **/
3561 static int __init ixgbevf_init_module(void)
3562 {
3563 int ret;
3564 printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3565 ixgbevf_driver_version);
3566
3567 printk(KERN_INFO "%s\n", ixgbevf_copyright);
3568
3569 ret = pci_register_driver(&ixgbevf_driver);
3570 return ret;
3571 }
3572
3573 module_init(ixgbevf_init_module);
3574
3575 /**
3576 * ixgbe_exit_module - Driver Exit Cleanup Routine
3577 *
3578 * ixgbe_exit_module is called just before the driver is removed
3579 * from memory.
3580 **/
3581 static void __exit ixgbevf_exit_module(void)
3582 {
3583 pci_unregister_driver(&ixgbevf_driver);
3584 }
3585
3586 #ifdef DEBUG
3587 /**
3588 * ixgbe_get_hw_dev_name - return device name string
3589 * used by hardware layer to print debugging information
3590 **/
3591 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3592 {
3593 struct ixgbevf_adapter *adapter = hw->back;
3594 return adapter->netdev->name;
3595 }
3596
3597 #endif
3598 module_exit(ixgbevf_exit_module);
3599
3600 /* ixgbevf_main.c */