ixgbe: add support for 82599 FCoE SKU
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ixgbe / ixgbe_82599.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe.h"
33 #include "ixgbe_phy.h"
34 #include "ixgbe_mbx.h"
35
36 #define IXGBE_82599_MAX_TX_QUEUES 128
37 #define IXGBE_82599_MAX_RX_QUEUES 128
38 #define IXGBE_82599_RAR_ENTRIES 128
39 #define IXGBE_82599_MC_TBL_SIZE 128
40 #define IXGBE_82599_VFT_TBL_SIZE 128
41
42 static void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
43 static void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
44 static void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
45 static s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
46 ixgbe_link_speed speed,
47 bool autoneg,
48 bool autoneg_wait_to_complete);
49 static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
50 ixgbe_link_speed speed,
51 bool autoneg,
52 bool autoneg_wait_to_complete);
53 static s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
54 bool autoneg_wait_to_complete);
55 static s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
56 ixgbe_link_speed speed,
57 bool autoneg,
58 bool autoneg_wait_to_complete);
59 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
60 ixgbe_link_speed speed,
61 bool autoneg,
62 bool autoneg_wait_to_complete);
63 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
64
65 static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
66 {
67 struct ixgbe_mac_info *mac = &hw->mac;
68
69 /* enable the laser control functions for SFP+ fiber */
70 if (mac->ops.get_media_type(hw) == ixgbe_media_type_fiber) {
71 mac->ops.disable_tx_laser =
72 &ixgbe_disable_tx_laser_multispeed_fiber;
73 mac->ops.enable_tx_laser =
74 &ixgbe_enable_tx_laser_multispeed_fiber;
75 mac->ops.flap_tx_laser = &ixgbe_flap_tx_laser_multispeed_fiber;
76 } else {
77 mac->ops.disable_tx_laser = NULL;
78 mac->ops.enable_tx_laser = NULL;
79 mac->ops.flap_tx_laser = NULL;
80 }
81
82 if (hw->phy.multispeed_fiber) {
83 /* Set up dual speed SFP+ support */
84 mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber;
85 } else {
86 if ((mac->ops.get_media_type(hw) ==
87 ixgbe_media_type_backplane) &&
88 (hw->phy.smart_speed == ixgbe_smart_speed_auto ||
89 hw->phy.smart_speed == ixgbe_smart_speed_on))
90 mac->ops.setup_link = &ixgbe_setup_mac_link_smartspeed;
91 else
92 mac->ops.setup_link = &ixgbe_setup_mac_link_82599;
93 }
94 }
95
96 static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
97 {
98 s32 ret_val = 0;
99 u16 list_offset, data_offset, data_value;
100
101 if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
102 ixgbe_init_mac_link_ops_82599(hw);
103
104 hw->phy.ops.reset = NULL;
105
106 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
107 &data_offset);
108
109 if (ret_val != 0)
110 goto setup_sfp_out;
111
112 /* PHY config will finish before releasing the semaphore */
113 ret_val = ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
114 if (ret_val != 0) {
115 ret_val = IXGBE_ERR_SWFW_SYNC;
116 goto setup_sfp_out;
117 }
118
119 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
120 while (data_value != 0xffff) {
121 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
122 IXGBE_WRITE_FLUSH(hw);
123 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
124 }
125 /* Now restart DSP by setting Restart_AN */
126 IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
127 (IXGBE_READ_REG(hw, IXGBE_AUTOC) | IXGBE_AUTOC_AN_RESTART));
128
129 /* Release the semaphore */
130 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
131 /* Delay obtaining semaphore again to allow FW access */
132 msleep(hw->eeprom.semaphore_delay);
133 }
134
135 setup_sfp_out:
136 return ret_val;
137 }
138
139 static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
140 {
141 struct ixgbe_mac_info *mac = &hw->mac;
142
143 ixgbe_init_mac_link_ops_82599(hw);
144
145 mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
146 mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
147 mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
148 mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
149 mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
150 mac->max_msix_vectors = ixgbe_get_pcie_msix_count_generic(hw);
151
152 return 0;
153 }
154
155 /**
156 * ixgbe_init_phy_ops_82599 - PHY/SFP specific init
157 * @hw: pointer to hardware structure
158 *
159 * Initialize any function pointers that were not able to be
160 * set during get_invariants because the PHY/SFP type was
161 * not known. Perform the SFP init if necessary.
162 *
163 **/
164 static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
165 {
166 struct ixgbe_mac_info *mac = &hw->mac;
167 struct ixgbe_phy_info *phy = &hw->phy;
168 s32 ret_val = 0;
169
170 /* Identify the PHY or SFP module */
171 ret_val = phy->ops.identify(hw);
172
173 /* Setup function pointers based on detected SFP module and speeds */
174 ixgbe_init_mac_link_ops_82599(hw);
175
176 /* If copper media, overwrite with copper function pointers */
177 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
178 mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
179 mac->ops.get_link_capabilities =
180 &ixgbe_get_copper_link_capabilities_generic;
181 }
182
183 /* Set necessary function pointers based on phy type */
184 switch (hw->phy.type) {
185 case ixgbe_phy_tn:
186 phy->ops.check_link = &ixgbe_check_phy_link_tnx;
187 phy->ops.get_firmware_version =
188 &ixgbe_get_phy_firmware_version_tnx;
189 break;
190 case ixgbe_phy_aq:
191 phy->ops.get_firmware_version =
192 &ixgbe_get_phy_firmware_version_generic;
193 break;
194 default:
195 break;
196 }
197
198 return ret_val;
199 }
200
201 /**
202 * ixgbe_get_link_capabilities_82599 - Determines link capabilities
203 * @hw: pointer to hardware structure
204 * @speed: pointer to link speed
205 * @negotiation: true when autoneg or autotry is enabled
206 *
207 * Determines the link capabilities by reading the AUTOC register.
208 **/
209 static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
210 ixgbe_link_speed *speed,
211 bool *negotiation)
212 {
213 s32 status = 0;
214 u32 autoc = 0;
215
216 /* Determine 1G link capabilities off of SFP+ type */
217 if (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
218 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1) {
219 *speed = IXGBE_LINK_SPEED_1GB_FULL;
220 *negotiation = true;
221 goto out;
222 }
223
224 /*
225 * Determine link capabilities based on the stored value of AUTOC,
226 * which represents EEPROM defaults. If AUTOC value has not been
227 * stored, use the current register value.
228 */
229 if (hw->mac.orig_link_settings_stored)
230 autoc = hw->mac.orig_autoc;
231 else
232 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
233
234 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
235 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
236 *speed = IXGBE_LINK_SPEED_1GB_FULL;
237 *negotiation = false;
238 break;
239
240 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
241 *speed = IXGBE_LINK_SPEED_10GB_FULL;
242 *negotiation = false;
243 break;
244
245 case IXGBE_AUTOC_LMS_1G_AN:
246 *speed = IXGBE_LINK_SPEED_1GB_FULL;
247 *negotiation = true;
248 break;
249
250 case IXGBE_AUTOC_LMS_10G_SERIAL:
251 *speed = IXGBE_LINK_SPEED_10GB_FULL;
252 *negotiation = false;
253 break;
254
255 case IXGBE_AUTOC_LMS_KX4_KX_KR:
256 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
257 *speed = IXGBE_LINK_SPEED_UNKNOWN;
258 if (autoc & IXGBE_AUTOC_KR_SUPP)
259 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
260 if (autoc & IXGBE_AUTOC_KX4_SUPP)
261 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
262 if (autoc & IXGBE_AUTOC_KX_SUPP)
263 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
264 *negotiation = true;
265 break;
266
267 case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
268 *speed = IXGBE_LINK_SPEED_100_FULL;
269 if (autoc & IXGBE_AUTOC_KR_SUPP)
270 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
271 if (autoc & IXGBE_AUTOC_KX4_SUPP)
272 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
273 if (autoc & IXGBE_AUTOC_KX_SUPP)
274 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
275 *negotiation = true;
276 break;
277
278 case IXGBE_AUTOC_LMS_SGMII_1G_100M:
279 *speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
280 *negotiation = false;
281 break;
282
283 default:
284 status = IXGBE_ERR_LINK_SETUP;
285 goto out;
286 break;
287 }
288
289 if (hw->phy.multispeed_fiber) {
290 *speed |= IXGBE_LINK_SPEED_10GB_FULL |
291 IXGBE_LINK_SPEED_1GB_FULL;
292 *negotiation = true;
293 }
294
295 out:
296 return status;
297 }
298
299 /**
300 * ixgbe_get_media_type_82599 - Get media type
301 * @hw: pointer to hardware structure
302 *
303 * Returns the media type (fiber, copper, backplane)
304 **/
305 static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
306 {
307 enum ixgbe_media_type media_type;
308
309 /* Detect if there is a copper PHY attached. */
310 if (hw->phy.type == ixgbe_phy_cu_unknown ||
311 hw->phy.type == ixgbe_phy_tn ||
312 hw->phy.type == ixgbe_phy_aq) {
313 media_type = ixgbe_media_type_copper;
314 goto out;
315 }
316
317 switch (hw->device_id) {
318 case IXGBE_DEV_ID_82599_KX4:
319 case IXGBE_DEV_ID_82599_KX4_MEZZ:
320 case IXGBE_DEV_ID_82599_COMBO_BACKPLANE:
321 case IXGBE_DEV_ID_82599_KR:
322 case IXGBE_DEV_ID_82599_BACKPLANE_FCOE:
323 case IXGBE_DEV_ID_82599_XAUI_LOM:
324 /* Default device ID is mezzanine card KX/KX4 */
325 media_type = ixgbe_media_type_backplane;
326 break;
327 case IXGBE_DEV_ID_82599_SFP:
328 case IXGBE_DEV_ID_82599_SFP_FCOE:
329 case IXGBE_DEV_ID_82599_SFP_EM:
330 media_type = ixgbe_media_type_fiber;
331 break;
332 case IXGBE_DEV_ID_82599_CX4:
333 media_type = ixgbe_media_type_cx4;
334 break;
335 default:
336 media_type = ixgbe_media_type_unknown;
337 break;
338 }
339 out:
340 return media_type;
341 }
342
343 /**
344 * ixgbe_start_mac_link_82599 - Setup MAC link settings
345 * @hw: pointer to hardware structure
346 * @autoneg_wait_to_complete: true when waiting for completion is needed
347 *
348 * Configures link settings based on values in the ixgbe_hw struct.
349 * Restarts the link. Performs autonegotiation if needed.
350 **/
351 static s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
352 bool autoneg_wait_to_complete)
353 {
354 u32 autoc_reg;
355 u32 links_reg;
356 u32 i;
357 s32 status = 0;
358
359 /* Restart link */
360 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
361 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
362 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
363
364 /* Only poll for autoneg to complete if specified to do so */
365 if (autoneg_wait_to_complete) {
366 if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
367 IXGBE_AUTOC_LMS_KX4_KX_KR ||
368 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
369 IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
370 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
371 IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
372 links_reg = 0; /* Just in case Autoneg time = 0 */
373 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
374 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
375 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
376 break;
377 msleep(100);
378 }
379 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
380 status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
381 hw_dbg(hw, "Autoneg did not complete.\n");
382 }
383 }
384 }
385
386 /* Add delay to filter out noises during initial link setup */
387 msleep(50);
388
389 return status;
390 }
391
392 /**
393 * ixgbe_disable_tx_laser_multispeed_fiber - Disable Tx laser
394 * @hw: pointer to hardware structure
395 *
396 * The base drivers may require better control over SFP+ module
397 * PHY states. This includes selectively shutting down the Tx
398 * laser on the PHY, effectively halting physical link.
399 **/
400 static void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
401 {
402 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
403
404 /* Disable tx laser; allow 100us to go dark per spec */
405 esdp_reg |= IXGBE_ESDP_SDP3;
406 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
407 IXGBE_WRITE_FLUSH(hw);
408 udelay(100);
409 }
410
411 /**
412 * ixgbe_enable_tx_laser_multispeed_fiber - Enable Tx laser
413 * @hw: pointer to hardware structure
414 *
415 * The base drivers may require better control over SFP+ module
416 * PHY states. This includes selectively turning on the Tx
417 * laser on the PHY, effectively starting physical link.
418 **/
419 static void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
420 {
421 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
422
423 /* Enable tx laser; allow 100ms to light up */
424 esdp_reg &= ~IXGBE_ESDP_SDP3;
425 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
426 IXGBE_WRITE_FLUSH(hw);
427 msleep(100);
428 }
429
430 /**
431 * ixgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser
432 * @hw: pointer to hardware structure
433 *
434 * When the driver changes the link speeds that it can support,
435 * it sets autotry_restart to true to indicate that we need to
436 * initiate a new autotry session with the link partner. To do
437 * so, we set the speed then disable and re-enable the tx laser, to
438 * alert the link partner that it also needs to restart autotry on its
439 * end. This is consistent with true clause 37 autoneg, which also
440 * involves a loss of signal.
441 **/
442 static void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
443 {
444 hw_dbg(hw, "ixgbe_flap_tx_laser_multispeed_fiber\n");
445
446 if (hw->mac.autotry_restart) {
447 ixgbe_disable_tx_laser_multispeed_fiber(hw);
448 ixgbe_enable_tx_laser_multispeed_fiber(hw);
449 hw->mac.autotry_restart = false;
450 }
451 }
452
453 /**
454 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
455 * @hw: pointer to hardware structure
456 * @speed: new link speed
457 * @autoneg: true if autonegotiation enabled
458 * @autoneg_wait_to_complete: true when waiting for completion is needed
459 *
460 * Set the link speed in the AUTOC register and restarts link.
461 **/
462 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
463 ixgbe_link_speed speed,
464 bool autoneg,
465 bool autoneg_wait_to_complete)
466 {
467 s32 status = 0;
468 ixgbe_link_speed phy_link_speed;
469 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
470 u32 speedcnt = 0;
471 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
472 bool link_up = false;
473 bool negotiation;
474 int i;
475
476 /* Mask off requested but non-supported speeds */
477 hw->mac.ops.get_link_capabilities(hw, &phy_link_speed, &negotiation);
478 speed &= phy_link_speed;
479
480 /*
481 * Try each speed one by one, highest priority first. We do this in
482 * software because 10gb fiber doesn't support speed autonegotiation.
483 */
484 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
485 speedcnt++;
486 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
487
488 /* If we already have link at this speed, just jump out */
489 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
490
491 if ((phy_link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
492 goto out;
493
494 /* Set the module link speed */
495 esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
496 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
497 IXGBE_WRITE_FLUSH(hw);
498
499 /* Allow module to change analog characteristics (1G->10G) */
500 msleep(40);
501
502 status = ixgbe_setup_mac_link_82599(hw,
503 IXGBE_LINK_SPEED_10GB_FULL,
504 autoneg,
505 autoneg_wait_to_complete);
506 if (status != 0)
507 return status;
508
509 /* Flap the tx laser if it has not already been done */
510 hw->mac.ops.flap_tx_laser(hw);
511
512 /*
513 * Wait for the controller to acquire link. Per IEEE 802.3ap,
514 * Section 73.10.2, we may have to wait up to 500ms if KR is
515 * attempted. 82599 uses the same timing for 10g SFI.
516 */
517
518 for (i = 0; i < 5; i++) {
519 /* Wait for the link partner to also set speed */
520 msleep(100);
521
522 /* If we have link, just jump out */
523 hw->mac.ops.check_link(hw, &phy_link_speed,
524 &link_up, false);
525 if (link_up)
526 goto out;
527 }
528 }
529
530 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
531 speedcnt++;
532 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
533 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
534
535 /* If we already have link at this speed, just jump out */
536 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
537
538 if ((phy_link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
539 goto out;
540
541 /* Set the module link speed */
542 esdp_reg &= ~IXGBE_ESDP_SDP5;
543 esdp_reg |= IXGBE_ESDP_SDP5_DIR;
544 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
545 IXGBE_WRITE_FLUSH(hw);
546
547 /* Allow module to change analog characteristics (10G->1G) */
548 msleep(40);
549
550 status = ixgbe_setup_mac_link_82599(hw,
551 IXGBE_LINK_SPEED_1GB_FULL,
552 autoneg,
553 autoneg_wait_to_complete);
554 if (status != 0)
555 return status;
556
557 /* Flap the tx laser if it has not already been done */
558 hw->mac.ops.flap_tx_laser(hw);
559
560 /* Wait for the link partner to also set speed */
561 msleep(100);
562
563 /* If we have link, just jump out */
564 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
565 if (link_up)
566 goto out;
567 }
568
569 /*
570 * We didn't get link. Configure back to the highest speed we tried,
571 * (if there was more than one). We call ourselves back with just the
572 * single highest speed that the user requested.
573 */
574 if (speedcnt > 1)
575 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
576 highest_link_speed,
577 autoneg,
578 autoneg_wait_to_complete);
579
580 out:
581 /* Set autoneg_advertised value based on input link speed */
582 hw->phy.autoneg_advertised = 0;
583
584 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
585 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
586
587 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
588 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
589
590 return status;
591 }
592
593 /**
594 * ixgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
595 * @hw: pointer to hardware structure
596 * @speed: new link speed
597 * @autoneg: true if autonegotiation enabled
598 * @autoneg_wait_to_complete: true when waiting for completion is needed
599 *
600 * Implements the Intel SmartSpeed algorithm.
601 **/
602 static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
603 ixgbe_link_speed speed, bool autoneg,
604 bool autoneg_wait_to_complete)
605 {
606 s32 status = 0;
607 ixgbe_link_speed link_speed;
608 s32 i, j;
609 bool link_up = false;
610 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
611 struct ixgbe_adapter *adapter = hw->back;
612
613 hw_dbg(hw, "ixgbe_setup_mac_link_smartspeed.\n");
614
615 /* Set autoneg_advertised value based on input link speed */
616 hw->phy.autoneg_advertised = 0;
617
618 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
619 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
620
621 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
622 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
623
624 if (speed & IXGBE_LINK_SPEED_100_FULL)
625 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
626
627 /*
628 * Implement Intel SmartSpeed algorithm. SmartSpeed will reduce the
629 * autoneg advertisement if link is unable to be established at the
630 * highest negotiated rate. This can sometimes happen due to integrity
631 * issues with the physical media connection.
632 */
633
634 /* First, try to get link with full advertisement */
635 hw->phy.smart_speed_active = false;
636 for (j = 0; j < IXGBE_SMARTSPEED_MAX_RETRIES; j++) {
637 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
638 autoneg_wait_to_complete);
639 if (status)
640 goto out;
641
642 /*
643 * Wait for the controller to acquire link. Per IEEE 802.3ap,
644 * Section 73.10.2, we may have to wait up to 500ms if KR is
645 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
646 * Table 9 in the AN MAS.
647 */
648 for (i = 0; i < 5; i++) {
649 mdelay(100);
650
651 /* If we have link, just jump out */
652 hw->mac.ops.check_link(hw, &link_speed,
653 &link_up, false);
654 if (link_up)
655 goto out;
656 }
657 }
658
659 /*
660 * We didn't get link. If we advertised KR plus one of KX4/KX
661 * (or BX4/BX), then disable KR and try again.
662 */
663 if (((autoc_reg & IXGBE_AUTOC_KR_SUPP) == 0) ||
664 ((autoc_reg & IXGBE_AUTOC_KX4_KX_SUPP_MASK) == 0))
665 goto out;
666
667 /* Turn SmartSpeed on to disable KR support */
668 hw->phy.smart_speed_active = true;
669 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
670 autoneg_wait_to_complete);
671 if (status)
672 goto out;
673
674 /*
675 * Wait for the controller to acquire link. 600ms will allow for
676 * the AN link_fail_inhibit_timer as well for multiple cycles of
677 * parallel detect, both 10g and 1g. This allows for the maximum
678 * connect attempts as defined in the AN MAS table 73-7.
679 */
680 for (i = 0; i < 6; i++) {
681 mdelay(100);
682
683 /* If we have link, just jump out */
684 hw->mac.ops.check_link(hw, &link_speed,
685 &link_up, false);
686 if (link_up)
687 goto out;
688 }
689
690 /* We didn't get link. Turn SmartSpeed back off. */
691 hw->phy.smart_speed_active = false;
692 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
693 autoneg_wait_to_complete);
694
695 out:
696 if (link_up && (link_speed == IXGBE_LINK_SPEED_1GB_FULL))
697 e_info(hw, "Smartspeed has downgraded the link speed from "
698 "the maximum advertised\n");
699 return status;
700 }
701
702 /**
703 * ixgbe_setup_mac_link_82599 - Set MAC link speed
704 * @hw: pointer to hardware structure
705 * @speed: new link speed
706 * @autoneg: true if autonegotiation enabled
707 * @autoneg_wait_to_complete: true when waiting for completion is needed
708 *
709 * Set the link speed in the AUTOC register and restarts link.
710 **/
711 static s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
712 ixgbe_link_speed speed, bool autoneg,
713 bool autoneg_wait_to_complete)
714 {
715 s32 status = 0;
716 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
717 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
718 u32 start_autoc = autoc;
719 u32 orig_autoc = 0;
720 u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
721 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
722 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
723 u32 links_reg;
724 u32 i;
725 ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;
726
727 /* Check to see if speed passed in is supported. */
728 hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg);
729 speed &= link_capabilities;
730
731 if (speed == IXGBE_LINK_SPEED_UNKNOWN) {
732 status = IXGBE_ERR_LINK_SETUP;
733 goto out;
734 }
735
736 /* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
737 if (hw->mac.orig_link_settings_stored)
738 orig_autoc = hw->mac.orig_autoc;
739 else
740 orig_autoc = autoc;
741
742
743 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
744 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
745 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
746 /* Set KX4/KX/KR support according to speed requested */
747 autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
748 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
749 if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
750 autoc |= IXGBE_AUTOC_KX4_SUPP;
751 if ((orig_autoc & IXGBE_AUTOC_KR_SUPP) &&
752 (hw->phy.smart_speed_active == false))
753 autoc |= IXGBE_AUTOC_KR_SUPP;
754 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
755 autoc |= IXGBE_AUTOC_KX_SUPP;
756 } else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
757 (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
758 link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
759 /* Switch from 1G SFI to 10G SFI if requested */
760 if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
761 (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
762 autoc &= ~IXGBE_AUTOC_LMS_MASK;
763 autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
764 }
765 } else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
766 (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
767 /* Switch from 10G SFI to 1G SFI if requested */
768 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
769 (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
770 autoc &= ~IXGBE_AUTOC_LMS_MASK;
771 if (autoneg)
772 autoc |= IXGBE_AUTOC_LMS_1G_AN;
773 else
774 autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
775 }
776 }
777
778 if (autoc != start_autoc) {
779 /* Restart link */
780 autoc |= IXGBE_AUTOC_AN_RESTART;
781 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);
782
783 /* Only poll for autoneg to complete if specified to do so */
784 if (autoneg_wait_to_complete) {
785 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
786 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
787 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
788 links_reg = 0; /*Just in case Autoneg time=0*/
789 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
790 links_reg =
791 IXGBE_READ_REG(hw, IXGBE_LINKS);
792 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
793 break;
794 msleep(100);
795 }
796 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
797 status =
798 IXGBE_ERR_AUTONEG_NOT_COMPLETE;
799 hw_dbg(hw, "Autoneg did not "
800 "complete.\n");
801 }
802 }
803 }
804
805 /* Add delay to filter out noises during initial link setup */
806 msleep(50);
807 }
808
809 out:
810 return status;
811 }
812
813 /**
814 * ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field
815 * @hw: pointer to hardware structure
816 * @speed: new link speed
817 * @autoneg: true if autonegotiation enabled
818 * @autoneg_wait_to_complete: true if waiting is needed to complete
819 *
820 * Restarts link on PHY and MAC based on settings passed in.
821 **/
822 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
823 ixgbe_link_speed speed,
824 bool autoneg,
825 bool autoneg_wait_to_complete)
826 {
827 s32 status;
828
829 /* Setup the PHY according to input speed */
830 status = hw->phy.ops.setup_link_speed(hw, speed, autoneg,
831 autoneg_wait_to_complete);
832 /* Set up MAC */
833 ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete);
834
835 return status;
836 }
837
838 /**
839 * ixgbe_reset_hw_82599 - Perform hardware reset
840 * @hw: pointer to hardware structure
841 *
842 * Resets the hardware by resetting the transmit and receive units, masks
843 * and clears all interrupts, perform a PHY reset, and perform a link (MAC)
844 * reset.
845 **/
846 static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
847 {
848 s32 status = 0;
849 u32 ctrl;
850 u32 i;
851 u32 autoc;
852 u32 autoc2;
853
854 /* Call adapter stop to disable tx/rx and clear interrupts */
855 hw->mac.ops.stop_adapter(hw);
856
857 /* PHY ops must be identified and initialized prior to reset */
858
859 /* Init PHY and function pointers, perform SFP setup */
860 status = hw->phy.ops.init(hw);
861
862 if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
863 goto reset_hw_out;
864
865 /* Setup SFP module if there is one present. */
866 if (hw->phy.sfp_setup_needed) {
867 status = hw->mac.ops.setup_sfp(hw);
868 hw->phy.sfp_setup_needed = false;
869 }
870
871 /* Reset PHY */
872 if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
873 hw->phy.ops.reset(hw);
874
875 /*
876 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
877 * access and verify no pending requests before reset
878 */
879 status = ixgbe_disable_pcie_master(hw);
880 if (status != 0) {
881 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
882 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
883 }
884
885 /*
886 * Issue global reset to the MAC. This needs to be a SW reset.
887 * If link reset is used, it might reset the MAC when mng is using it
888 */
889 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
890 IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST));
891 IXGBE_WRITE_FLUSH(hw);
892
893 /* Poll for reset bit to self-clear indicating reset is complete */
894 for (i = 0; i < 10; i++) {
895 udelay(1);
896 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
897 if (!(ctrl & IXGBE_CTRL_RST))
898 break;
899 }
900 if (ctrl & IXGBE_CTRL_RST) {
901 status = IXGBE_ERR_RESET_FAILED;
902 hw_dbg(hw, "Reset polling failed to complete.\n");
903 }
904
905 msleep(50);
906
907 /*
908 * Store the original AUTOC/AUTOC2 values if they have not been
909 * stored off yet. Otherwise restore the stored original
910 * values since the reset operation sets back to defaults.
911 */
912 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
913 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
914 if (hw->mac.orig_link_settings_stored == false) {
915 hw->mac.orig_autoc = autoc;
916 hw->mac.orig_autoc2 = autoc2;
917 hw->mac.orig_link_settings_stored = true;
918 } else {
919 if (autoc != hw->mac.orig_autoc)
920 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc |
921 IXGBE_AUTOC_AN_RESTART));
922
923 if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
924 (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
925 autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
926 autoc2 |= (hw->mac.orig_autoc2 &
927 IXGBE_AUTOC2_UPPER_MASK);
928 IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
929 }
930 }
931
932 /*
933 * Store MAC address from RAR0, clear receive address registers, and
934 * clear the multicast table. Also reset num_rar_entries to 128,
935 * since we modify this value when programming the SAN MAC address.
936 */
937 hw->mac.num_rar_entries = 128;
938 hw->mac.ops.init_rx_addrs(hw);
939
940 /* Store the permanent mac address */
941 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
942
943 /* Store the permanent SAN mac address */
944 hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);
945
946 /* Add the SAN MAC address to the RAR only if it's a valid address */
947 if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
948 hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
949 hw->mac.san_addr, 0, IXGBE_RAH_AV);
950
951 /* Reserve the last RAR for the SAN MAC address */
952 hw->mac.num_rar_entries--;
953 }
954
955 /* Store the alternative WWNN/WWPN prefix */
956 hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
957 &hw->mac.wwpn_prefix);
958
959 reset_hw_out:
960 return status;
961 }
962
963 /**
964 * ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
965 * @hw: pointer to hardware structure
966 **/
967 s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
968 {
969 int i;
970 u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
971 fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;
972
973 /*
974 * Before starting reinitialization process,
975 * FDIRCMD.CMD must be zero.
976 */
977 for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
978 if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
979 IXGBE_FDIRCMD_CMD_MASK))
980 break;
981 udelay(10);
982 }
983 if (i >= IXGBE_FDIRCMD_CMD_POLL) {
984 hw_dbg(hw ,"Flow Director previous command isn't complete, "
985 "aborting table re-initialization.\n");
986 return IXGBE_ERR_FDIR_REINIT_FAILED;
987 }
988
989 IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
990 IXGBE_WRITE_FLUSH(hw);
991 /*
992 * 82599 adapters flow director init flow cannot be restarted,
993 * Workaround 82599 silicon errata by performing the following steps
994 * before re-writing the FDIRCTRL control register with the same value.
995 * - write 1 to bit 8 of FDIRCMD register &
996 * - write 0 to bit 8 of FDIRCMD register
997 */
998 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
999 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
1000 IXGBE_FDIRCMD_CLEARHT));
1001 IXGBE_WRITE_FLUSH(hw);
1002 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1003 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1004 ~IXGBE_FDIRCMD_CLEARHT));
1005 IXGBE_WRITE_FLUSH(hw);
1006 /*
1007 * Clear FDIR Hash register to clear any leftover hashes
1008 * waiting to be programmed.
1009 */
1010 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
1011 IXGBE_WRITE_FLUSH(hw);
1012
1013 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1014 IXGBE_WRITE_FLUSH(hw);
1015
1016 /* Poll init-done after we write FDIRCTRL register */
1017 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1018 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1019 IXGBE_FDIRCTRL_INIT_DONE)
1020 break;
1021 udelay(10);
1022 }
1023 if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
1024 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1025 return IXGBE_ERR_FDIR_REINIT_FAILED;
1026 }
1027
1028 /* Clear FDIR statistics registers (read to clear) */
1029 IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
1030 IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
1031 IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
1032 IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
1033 IXGBE_READ_REG(hw, IXGBE_FDIRLEN);
1034
1035 return 0;
1036 }
1037
1038 /**
1039 * ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
1040 * @hw: pointer to hardware structure
1041 * @pballoc: which mode to allocate filters with
1042 **/
1043 s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc)
1044 {
1045 u32 fdirctrl = 0;
1046 u32 pbsize;
1047 int i;
1048
1049 /*
1050 * Before enabling Flow Director, the Rx Packet Buffer size
1051 * must be reduced. The new value is the current size minus
1052 * flow director memory usage size.
1053 */
1054 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1055 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1056 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1057
1058 /*
1059 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1060 * intialized to zero for non DCB mode otherwise actual total RX PB
1061 * would be bigger than programmed and filter space would run into
1062 * the PB 0 region.
1063 */
1064 for (i = 1; i < 8; i++)
1065 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1066
1067 /* Send interrupt when 64 filters are left */
1068 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1069
1070 /* Set the maximum length per hash bucket to 0xA filters */
1071 fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT;
1072
1073 switch (pballoc) {
1074 case IXGBE_FDIR_PBALLOC_64K:
1075 /* 8k - 1 signature filters */
1076 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1077 break;
1078 case IXGBE_FDIR_PBALLOC_128K:
1079 /* 16k - 1 signature filters */
1080 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1081 break;
1082 case IXGBE_FDIR_PBALLOC_256K:
1083 /* 32k - 1 signature filters */
1084 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1085 break;
1086 default:
1087 /* bad value */
1088 return IXGBE_ERR_CONFIG;
1089 };
1090
1091 /* Move the flexible bytes to use the ethertype - shift 6 words */
1092 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1093
1094 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1095
1096 /* Prime the keys for hashing */
1097 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1098 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1099 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1100 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1101
1102 /*
1103 * Poll init-done after we write the register. Estimated times:
1104 * 10G: PBALLOC = 11b, timing is 60us
1105 * 1G: PBALLOC = 11b, timing is 600us
1106 * 100M: PBALLOC = 11b, timing is 6ms
1107 *
1108 * Multiple these timings by 4 if under full Rx load
1109 *
1110 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1111 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1112 * this might not finish in our poll time, but we can live with that
1113 * for now.
1114 */
1115 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1116 IXGBE_WRITE_FLUSH(hw);
1117 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1118 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1119 IXGBE_FDIRCTRL_INIT_DONE)
1120 break;
1121 msleep(1);
1122 }
1123 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1124 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1125
1126 return 0;
1127 }
1128
1129 /**
1130 * ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
1131 * @hw: pointer to hardware structure
1132 * @pballoc: which mode to allocate filters with
1133 **/
1134 s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc)
1135 {
1136 u32 fdirctrl = 0;
1137 u32 pbsize;
1138 int i;
1139
1140 /*
1141 * Before enabling Flow Director, the Rx Packet Buffer size
1142 * must be reduced. The new value is the current size minus
1143 * flow director memory usage size.
1144 */
1145 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1146 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1147 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1148
1149 /*
1150 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1151 * intialized to zero for non DCB mode otherwise actual total RX PB
1152 * would be bigger than programmed and filter space would run into
1153 * the PB 0 region.
1154 */
1155 for (i = 1; i < 8; i++)
1156 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1157
1158 /* Send interrupt when 64 filters are left */
1159 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1160
1161 /* Initialize the drop queue to Rx queue 127 */
1162 fdirctrl |= (127 << IXGBE_FDIRCTRL_DROP_Q_SHIFT);
1163
1164 switch (pballoc) {
1165 case IXGBE_FDIR_PBALLOC_64K:
1166 /* 2k - 1 perfect filters */
1167 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1168 break;
1169 case IXGBE_FDIR_PBALLOC_128K:
1170 /* 4k - 1 perfect filters */
1171 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1172 break;
1173 case IXGBE_FDIR_PBALLOC_256K:
1174 /* 8k - 1 perfect filters */
1175 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1176 break;
1177 default:
1178 /* bad value */
1179 return IXGBE_ERR_CONFIG;
1180 };
1181
1182 /* Turn perfect match filtering on */
1183 fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH;
1184 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1185
1186 /* Move the flexible bytes to use the ethertype - shift 6 words */
1187 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1188
1189 /* Prime the keys for hashing */
1190 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1191 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1192 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1193 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1194
1195 /*
1196 * Poll init-done after we write the register. Estimated times:
1197 * 10G: PBALLOC = 11b, timing is 60us
1198 * 1G: PBALLOC = 11b, timing is 600us
1199 * 100M: PBALLOC = 11b, timing is 6ms
1200 *
1201 * Multiple these timings by 4 if under full Rx load
1202 *
1203 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1204 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1205 * this might not finish in our poll time, but we can live with that
1206 * for now.
1207 */
1208
1209 /* Set the maximum length per hash bucket to 0xA filters */
1210 fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT);
1211
1212 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1213 IXGBE_WRITE_FLUSH(hw);
1214 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1215 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1216 IXGBE_FDIRCTRL_INIT_DONE)
1217 break;
1218 msleep(1);
1219 }
1220 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1221 hw_dbg(hw, "Flow Director Perfect poll time exceeded!\n");
1222
1223 return 0;
1224 }
1225
1226
1227 /**
1228 * ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR
1229 * @stream: input bitstream to compute the hash on
1230 * @key: 32-bit hash key
1231 **/
1232 static u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input,
1233 u32 key)
1234 {
1235 /*
1236 * The algorithm is as follows:
1237 * Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350
1238 * where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n]
1239 * and A[n] x B[n] is bitwise AND between same length strings
1240 *
1241 * K[n] is 16 bits, defined as:
1242 * for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15]
1243 * for n modulo 32 < 15, K[n] =
1244 * K[(n % 32:0) | (31:31 - (14 - (n % 32)))]
1245 *
1246 * S[n] is 16 bits, defined as:
1247 * for n >= 15, S[n] = S[n:n - 15]
1248 * for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))]
1249 *
1250 * To simplify for programming, the algorithm is implemented
1251 * in software this way:
1252 *
1253 * Key[31:0], Stream[335:0]
1254 *
1255 * tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times
1256 * int_key[350:0] = tmp_key[351:1]
1257 * int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321]
1258 *
1259 * hash[15:0] = 0;
1260 * for (i = 0; i < 351; i++) {
1261 * if (int_key[i])
1262 * hash ^= int_stream[(i + 15):i];
1263 * }
1264 */
1265
1266 union {
1267 u64 fill[6];
1268 u32 key[11];
1269 u8 key_stream[44];
1270 } tmp_key;
1271
1272 u8 *stream = (u8 *)atr_input;
1273 u8 int_key[44]; /* upper-most bit unused */
1274 u8 hash_str[46]; /* upper-most 2 bits unused */
1275 u16 hash_result = 0;
1276 int i, j, k, h;
1277
1278 /*
1279 * Initialize the fill member to prevent warnings
1280 * on some compilers
1281 */
1282 tmp_key.fill[0] = 0;
1283
1284 /* First load the temporary key stream */
1285 for (i = 0; i < 6; i++) {
1286 u64 fillkey = ((u64)key << 32) | key;
1287 tmp_key.fill[i] = fillkey;
1288 }
1289
1290 /*
1291 * Set the interim key for the hashing. Bit 352 is unused, so we must
1292 * shift and compensate when building the key.
1293 */
1294
1295 int_key[0] = tmp_key.key_stream[0] >> 1;
1296 for (i = 1, j = 0; i < 44; i++) {
1297 unsigned int this_key = tmp_key.key_stream[j] << 7;
1298 j++;
1299 int_key[i] = (u8)(this_key | (tmp_key.key_stream[j] >> 1));
1300 }
1301
1302 /*
1303 * Set the interim bit string for the hashing. Bits 368 and 367 are
1304 * unused, so shift and compensate when building the string.
1305 */
1306 hash_str[0] = (stream[40] & 0x7f) >> 1;
1307 for (i = 1, j = 40; i < 46; i++) {
1308 unsigned int this_str = stream[j] << 7;
1309 j++;
1310 if (j > 41)
1311 j = 0;
1312 hash_str[i] = (u8)(this_str | (stream[j] >> 1));
1313 }
1314
1315 /*
1316 * Now compute the hash. i is the index into hash_str, j is into our
1317 * key stream, k is counting the number of bits, and h interates within
1318 * each byte.
1319 */
1320 for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) {
1321 for (h = 0; h < 8 && k < 351; h++, k++) {
1322 if (int_key[j] & (1 << h)) {
1323 /*
1324 * Key bit is set, XOR in the current 16-bit
1325 * string. Example of processing:
1326 * h = 0,
1327 * tmp = (hash_str[i - 2] & 0 << 16) |
1328 * (hash_str[i - 1] & 0xff << 8) |
1329 * (hash_str[i] & 0xff >> 0)
1330 * So tmp = hash_str[15 + k:k], since the
1331 * i + 2 clause rolls off the 16-bit value
1332 * h = 7,
1333 * tmp = (hash_str[i - 2] & 0x7f << 9) |
1334 * (hash_str[i - 1] & 0xff << 1) |
1335 * (hash_str[i] & 0x80 >> 7)
1336 */
1337 int tmp = (hash_str[i] >> h);
1338 tmp |= (hash_str[i - 1] << (8 - h));
1339 tmp |= (int)(hash_str[i - 2] & ((1 << h) - 1))
1340 << (16 - h);
1341 hash_result ^= (u16)tmp;
1342 }
1343 }
1344 }
1345
1346 return hash_result;
1347 }
1348
1349 /**
1350 * ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream
1351 * @input: input stream to modify
1352 * @vlan: the VLAN id to load
1353 **/
1354 s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan)
1355 {
1356 input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8;
1357 input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff;
1358
1359 return 0;
1360 }
1361
1362 /**
1363 * ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address
1364 * @input: input stream to modify
1365 * @src_addr: the IP address to load
1366 **/
1367 s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr)
1368 {
1369 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24;
1370 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] =
1371 (src_addr >> 16) & 0xff;
1372 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] =
1373 (src_addr >> 8) & 0xff;
1374 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff;
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address
1381 * @input: input stream to modify
1382 * @dst_addr: the IP address to load
1383 **/
1384 s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr)
1385 {
1386 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24;
1387 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] =
1388 (dst_addr >> 16) & 0xff;
1389 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] =
1390 (dst_addr >> 8) & 0xff;
1391 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff;
1392
1393 return 0;
1394 }
1395
1396 /**
1397 * ixgbe_atr_set_src_port_82599 - Sets the source port
1398 * @input: input stream to modify
1399 * @src_port: the source port to load
1400 **/
1401 s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port)
1402 {
1403 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8;
1404 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff;
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * ixgbe_atr_set_dst_port_82599 - Sets the destination port
1411 * @input: input stream to modify
1412 * @dst_port: the destination port to load
1413 **/
1414 s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port)
1415 {
1416 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8;
1417 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff;
1418
1419 return 0;
1420 }
1421
1422 /**
1423 * ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes
1424 * @input: input stream to modify
1425 * @flex_bytes: the flexible bytes to load
1426 **/
1427 s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte)
1428 {
1429 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8;
1430 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff;
1431
1432 return 0;
1433 }
1434
1435 /**
1436 * ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type
1437 * @input: input stream to modify
1438 * @l4type: the layer 4 type value to load
1439 **/
1440 s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type)
1441 {
1442 input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type;
1443
1444 return 0;
1445 }
1446
1447 /**
1448 * ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream
1449 * @input: input stream to search
1450 * @vlan: the VLAN id to load
1451 **/
1452 static s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input, u16 *vlan)
1453 {
1454 *vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET];
1455 *vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8;
1456
1457 return 0;
1458 }
1459
1460 /**
1461 * ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address
1462 * @input: input stream to search
1463 * @src_addr: the IP address to load
1464 **/
1465 static s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input,
1466 u32 *src_addr)
1467 {
1468 *src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET];
1469 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8;
1470 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16;
1471 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24;
1472
1473 return 0;
1474 }
1475
1476 /**
1477 * ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address
1478 * @input: input stream to search
1479 * @dst_addr: the IP address to load
1480 **/
1481 static s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input,
1482 u32 *dst_addr)
1483 {
1484 *dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET];
1485 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8;
1486 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16;
1487 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24;
1488
1489 return 0;
1490 }
1491
1492 /**
1493 * ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address
1494 * @input: input stream to search
1495 * @src_addr_1: the first 4 bytes of the IP address to load
1496 * @src_addr_2: the second 4 bytes of the IP address to load
1497 * @src_addr_3: the third 4 bytes of the IP address to load
1498 * @src_addr_4: the fourth 4 bytes of the IP address to load
1499 **/
1500 static s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input,
1501 u32 *src_addr_1, u32 *src_addr_2,
1502 u32 *src_addr_3, u32 *src_addr_4)
1503 {
1504 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12];
1505 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8;
1506 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16;
1507 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24;
1508
1509 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8];
1510 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8;
1511 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16;
1512 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24;
1513
1514 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4];
1515 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8;
1516 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16;
1517 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24;
1518
1519 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET];
1520 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8;
1521 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16;
1522 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24;
1523
1524 return 0;
1525 }
1526
1527 /**
1528 * ixgbe_atr_get_src_port_82599 - Gets the source port
1529 * @input: input stream to modify
1530 * @src_port: the source port to load
1531 *
1532 * Even though the input is given in big-endian, the FDIRPORT registers
1533 * expect the ports to be programmed in little-endian. Hence the need to swap
1534 * endianness when retrieving the data. This can be confusing since the
1535 * internal hash engine expects it to be big-endian.
1536 **/
1537 static s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input,
1538 u16 *src_port)
1539 {
1540 *src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8;
1541 *src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1];
1542
1543 return 0;
1544 }
1545
1546 /**
1547 * ixgbe_atr_get_dst_port_82599 - Gets the destination port
1548 * @input: input stream to modify
1549 * @dst_port: the destination port to load
1550 *
1551 * Even though the input is given in big-endian, the FDIRPORT registers
1552 * expect the ports to be programmed in little-endian. Hence the need to swap
1553 * endianness when retrieving the data. This can be confusing since the
1554 * internal hash engine expects it to be big-endian.
1555 **/
1556 static s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input,
1557 u16 *dst_port)
1558 {
1559 *dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8;
1560 *dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1];
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes
1567 * @input: input stream to modify
1568 * @flex_bytes: the flexible bytes to load
1569 **/
1570 static s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input,
1571 u16 *flex_byte)
1572 {
1573 *flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET];
1574 *flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8;
1575
1576 return 0;
1577 }
1578
1579 /**
1580 * ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type
1581 * @input: input stream to modify
1582 * @l4type: the layer 4 type value to load
1583 **/
1584 static s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input,
1585 u8 *l4type)
1586 {
1587 *l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET];
1588
1589 return 0;
1590 }
1591
1592 /**
1593 * ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
1594 * @hw: pointer to hardware structure
1595 * @stream: input bitstream
1596 * @queue: queue index to direct traffic to
1597 **/
1598 s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
1599 struct ixgbe_atr_input *input,
1600 u8 queue)
1601 {
1602 u64 fdirhashcmd;
1603 u64 fdircmd;
1604 u32 fdirhash;
1605 u16 bucket_hash, sig_hash;
1606 u8 l4type;
1607
1608 bucket_hash = ixgbe_atr_compute_hash_82599(input,
1609 IXGBE_ATR_BUCKET_HASH_KEY);
1610
1611 /* bucket_hash is only 15 bits */
1612 bucket_hash &= IXGBE_ATR_HASH_MASK;
1613
1614 sig_hash = ixgbe_atr_compute_hash_82599(input,
1615 IXGBE_ATR_SIGNATURE_HASH_KEY);
1616
1617 /* Get the l4type in order to program FDIRCMD properly */
1618 /* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */
1619 ixgbe_atr_get_l4type_82599(input, &l4type);
1620
1621 /*
1622 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
1623 * is for FDIRCMD. Then do a 64-bit register write from FDIRHASH.
1624 */
1625 fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
1626
1627 fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
1628 IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN);
1629
1630 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1631 case IXGBE_ATR_L4TYPE_TCP:
1632 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1633 break;
1634 case IXGBE_ATR_L4TYPE_UDP:
1635 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1636 break;
1637 case IXGBE_ATR_L4TYPE_SCTP:
1638 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1639 break;
1640 default:
1641 hw_dbg(hw, "Error on l4type input\n");
1642 return IXGBE_ERR_CONFIG;
1643 }
1644
1645 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK)
1646 fdircmd |= IXGBE_FDIRCMD_IPV6;
1647
1648 fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT);
1649 fdirhashcmd = ((fdircmd << 32) | fdirhash);
1650
1651 IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);
1652
1653 return 0;
1654 }
1655
1656 /**
1657 * ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter
1658 * @hw: pointer to hardware structure
1659 * @input: input bitstream
1660 * @input_masks: bitwise masks for relevant fields
1661 * @soft_id: software index into the silicon hash tables for filter storage
1662 * @queue: queue index to direct traffic to
1663 *
1664 * Note that the caller to this function must lock before calling, since the
1665 * hardware writes must be protected from one another.
1666 **/
1667 s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw,
1668 struct ixgbe_atr_input *input,
1669 struct ixgbe_atr_input_masks *input_masks,
1670 u16 soft_id, u8 queue)
1671 {
1672 u32 fdircmd = 0;
1673 u32 fdirhash;
1674 u32 src_ipv4 = 0, dst_ipv4 = 0;
1675 u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4;
1676 u16 src_port, dst_port, vlan_id, flex_bytes;
1677 u16 bucket_hash;
1678 u8 l4type;
1679 u8 fdirm = 0;
1680
1681 /* Get our input values */
1682 ixgbe_atr_get_l4type_82599(input, &l4type);
1683
1684 /*
1685 * Check l4type formatting, and bail out before we touch the hardware
1686 * if there's a configuration issue
1687 */
1688 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1689 case IXGBE_ATR_L4TYPE_TCP:
1690 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1691 break;
1692 case IXGBE_ATR_L4TYPE_UDP:
1693 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1694 break;
1695 case IXGBE_ATR_L4TYPE_SCTP:
1696 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1697 break;
1698 default:
1699 hw_dbg(hw, "Error on l4type input\n");
1700 return IXGBE_ERR_CONFIG;
1701 }
1702
1703 bucket_hash = ixgbe_atr_compute_hash_82599(input,
1704 IXGBE_ATR_BUCKET_HASH_KEY);
1705
1706 /* bucket_hash is only 15 bits */
1707 bucket_hash &= IXGBE_ATR_HASH_MASK;
1708
1709 ixgbe_atr_get_vlan_id_82599(input, &vlan_id);
1710 ixgbe_atr_get_src_port_82599(input, &src_port);
1711 ixgbe_atr_get_dst_port_82599(input, &dst_port);
1712 ixgbe_atr_get_flex_byte_82599(input, &flex_bytes);
1713
1714 fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
1715
1716 /* Now figure out if we're IPv4 or IPv6 */
1717 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) {
1718 /* IPv6 */
1719 ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2,
1720 &src_ipv6_3, &src_ipv6_4);
1721
1722 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1);
1723 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2);
1724 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3);
1725 /* The last 4 bytes is the same register as IPv4 */
1726 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4);
1727
1728 fdircmd |= IXGBE_FDIRCMD_IPV6;
1729 fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH;
1730 } else {
1731 /* IPv4 */
1732 ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4);
1733 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4);
1734 }
1735
1736 ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4);
1737 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4);
1738
1739 IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id |
1740 (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT)));
1741 IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port |
1742 (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT)));
1743
1744 /*
1745 * Program the relevant mask registers. L4type cannot be
1746 * masked out in this implementation.
1747 *
1748 * This also assumes IPv4 only. IPv6 masking isn't supported at this
1749 * point in time.
1750 */
1751 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, input_masks->src_ip_mask);
1752 IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, input_masks->dst_ip_mask);
1753
1754 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1755 case IXGBE_ATR_L4TYPE_TCP:
1756 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM, input_masks->src_port_mask);
1757 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
1758 (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
1759 (input_masks->dst_port_mask << 16)));
1760 break;
1761 case IXGBE_ATR_L4TYPE_UDP:
1762 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM, input_masks->src_port_mask);
1763 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
1764 (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
1765 (input_masks->src_port_mask << 16)));
1766 break;
1767 default:
1768 /* this already would have failed above */
1769 break;
1770 }
1771
1772 /* Program the last mask register, FDIRM */
1773 if (input_masks->vlan_id_mask)
1774 /* Mask both VLAN and VLANP - bits 0 and 1 */
1775 fdirm |= 0x3;
1776
1777 if (input_masks->data_mask)
1778 /* Flex bytes need masking, so mask the whole thing - bit 4 */
1779 fdirm |= 0x10;
1780
1781 /* Now mask VM pool and destination IPv6 - bits 5 and 2 */
1782 fdirm |= 0x24;
1783
1784 IXGBE_WRITE_REG(hw, IXGBE_FDIRM, fdirm);
1785
1786 fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW;
1787 fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE;
1788 fdircmd |= IXGBE_FDIRCMD_LAST;
1789 fdircmd |= IXGBE_FDIRCMD_QUEUE_EN;
1790 fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
1791
1792 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
1793 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);
1794
1795 return 0;
1796 }
1797 /**
1798 * ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
1799 * @hw: pointer to hardware structure
1800 * @reg: analog register to read
1801 * @val: read value
1802 *
1803 * Performs read operation to Omer analog register specified.
1804 **/
1805 static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
1806 {
1807 u32 core_ctl;
1808
1809 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
1810 (reg << 8));
1811 IXGBE_WRITE_FLUSH(hw);
1812 udelay(10);
1813 core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
1814 *val = (u8)core_ctl;
1815
1816 return 0;
1817 }
1818
1819 /**
1820 * ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
1821 * @hw: pointer to hardware structure
1822 * @reg: atlas register to write
1823 * @val: value to write
1824 *
1825 * Performs write operation to Omer analog register specified.
1826 **/
1827 static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
1828 {
1829 u32 core_ctl;
1830
1831 core_ctl = (reg << 8) | val;
1832 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
1833 IXGBE_WRITE_FLUSH(hw);
1834 udelay(10);
1835
1836 return 0;
1837 }
1838
1839 /**
1840 * ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
1841 * @hw: pointer to hardware structure
1842 *
1843 * Starts the hardware using the generic start_hw function.
1844 * Then performs device-specific:
1845 * Clears the rate limiter registers.
1846 **/
1847 static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
1848 {
1849 u32 q_num;
1850 s32 ret_val;
1851
1852 ret_val = ixgbe_start_hw_generic(hw);
1853
1854 /* Clear the rate limiters */
1855 for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) {
1856 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num);
1857 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
1858 }
1859 IXGBE_WRITE_FLUSH(hw);
1860
1861 /* We need to run link autotry after the driver loads */
1862 hw->mac.autotry_restart = true;
1863
1864 if (ret_val == 0)
1865 ret_val = ixgbe_verify_fw_version_82599(hw);
1866
1867 return ret_val;
1868 }
1869
1870 /**
1871 * ixgbe_identify_phy_82599 - Get physical layer module
1872 * @hw: pointer to hardware structure
1873 *
1874 * Determines the physical layer module found on the current adapter.
1875 **/
1876 static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
1877 {
1878 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
1879 status = ixgbe_identify_phy_generic(hw);
1880 if (status != 0)
1881 status = ixgbe_identify_sfp_module_generic(hw);
1882 return status;
1883 }
1884
1885 /**
1886 * ixgbe_get_supported_physical_layer_82599 - Returns physical layer type
1887 * @hw: pointer to hardware structure
1888 *
1889 * Determines physical layer capabilities of the current configuration.
1890 **/
1891 static u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw)
1892 {
1893 u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
1894 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1895 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
1896 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
1897 u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK;
1898 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
1899 u16 ext_ability = 0;
1900 u8 comp_codes_10g = 0;
1901 u8 comp_codes_1g = 0;
1902
1903 hw->phy.ops.identify(hw);
1904
1905 if (hw->phy.type == ixgbe_phy_tn ||
1906 hw->phy.type == ixgbe_phy_aq ||
1907 hw->phy.type == ixgbe_phy_cu_unknown) {
1908 hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD,
1909 &ext_ability);
1910 if (ext_ability & MDIO_PMA_EXTABLE_10GBT)
1911 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
1912 if (ext_ability & MDIO_PMA_EXTABLE_1000BT)
1913 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
1914 if (ext_ability & MDIO_PMA_EXTABLE_100BTX)
1915 physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
1916 goto out;
1917 }
1918
1919 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
1920 case IXGBE_AUTOC_LMS_1G_AN:
1921 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
1922 if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) {
1923 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX |
1924 IXGBE_PHYSICAL_LAYER_1000BASE_BX;
1925 goto out;
1926 } else
1927 /* SFI mode so read SFP module */
1928 goto sfp_check;
1929 break;
1930 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
1931 if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4)
1932 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4;
1933 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4)
1934 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
1935 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI)
1936 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI;
1937 goto out;
1938 break;
1939 case IXGBE_AUTOC_LMS_10G_SERIAL:
1940 if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) {
1941 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR;
1942 goto out;
1943 } else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)
1944 goto sfp_check;
1945 break;
1946 case IXGBE_AUTOC_LMS_KX4_KX_KR:
1947 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
1948 if (autoc & IXGBE_AUTOC_KX_SUPP)
1949 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX;
1950 if (autoc & IXGBE_AUTOC_KX4_SUPP)
1951 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
1952 if (autoc & IXGBE_AUTOC_KR_SUPP)
1953 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR;
1954 goto out;
1955 break;
1956 default:
1957 goto out;
1958 break;
1959 }
1960
1961 sfp_check:
1962 /* SFP check must be done last since DA modules are sometimes used to
1963 * test KR mode - we need to id KR mode correctly before SFP module.
1964 * Call identify_sfp because the pluggable module may have changed */
1965 hw->phy.ops.identify_sfp(hw);
1966 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1967 goto out;
1968
1969 switch (hw->phy.type) {
1970 case ixgbe_phy_sfp_passive_tyco:
1971 case ixgbe_phy_sfp_passive_unknown:
1972 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU;
1973 break;
1974 case ixgbe_phy_sfp_ftl_active:
1975 case ixgbe_phy_sfp_active_unknown:
1976 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_ACTIVE_DA;
1977 break;
1978 case ixgbe_phy_sfp_avago:
1979 case ixgbe_phy_sfp_ftl:
1980 case ixgbe_phy_sfp_intel:
1981 case ixgbe_phy_sfp_unknown:
1982 hw->phy.ops.read_i2c_eeprom(hw,
1983 IXGBE_SFF_1GBE_COMP_CODES, &comp_codes_1g);
1984 hw->phy.ops.read_i2c_eeprom(hw,
1985 IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g);
1986 if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1987 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR;
1988 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1989 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR;
1990 else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE)
1991 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_T;
1992 break;
1993 default:
1994 break;
1995 }
1996
1997 out:
1998 return physical_layer;
1999 }
2000
2001 /**
2002 * ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
2003 * @hw: pointer to hardware structure
2004 * @regval: register value to write to RXCTRL
2005 *
2006 * Enables the Rx DMA unit for 82599
2007 **/
2008 static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
2009 {
2010 #define IXGBE_MAX_SECRX_POLL 30
2011 int i;
2012 int secrxreg;
2013
2014 /*
2015 * Workaround for 82599 silicon errata when enabling the Rx datapath.
2016 * If traffic is incoming before we enable the Rx unit, it could hang
2017 * the Rx DMA unit. Therefore, make sure the security engine is
2018 * completely disabled prior to enabling the Rx unit.
2019 */
2020 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2021 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2022 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2023 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2024 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2025 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2026 break;
2027 else
2028 udelay(10);
2029 }
2030
2031 /* For informational purposes only */
2032 if (i >= IXGBE_MAX_SECRX_POLL)
2033 hw_dbg(hw, "Rx unit being enabled before security "
2034 "path fully disabled. Continuing with init.\n");
2035
2036 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2037 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2038 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2039 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2040 IXGBE_WRITE_FLUSH(hw);
2041
2042 return 0;
2043 }
2044
2045 /**
2046 * ixgbe_get_device_caps_82599 - Get additional device capabilities
2047 * @hw: pointer to hardware structure
2048 * @device_caps: the EEPROM word with the extra device capabilities
2049 *
2050 * This function will read the EEPROM location for the device capabilities,
2051 * and return the word through device_caps.
2052 **/
2053 static s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps)
2054 {
2055 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
2056
2057 return 0;
2058 }
2059
2060 /**
2061 * ixgbe_verify_fw_version_82599 - verify fw version for 82599
2062 * @hw: pointer to hardware structure
2063 *
2064 * Verifies that installed the firmware version is 0.6 or higher
2065 * for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
2066 *
2067 * Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
2068 * if the FW version is not supported.
2069 **/
2070 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
2071 {
2072 s32 status = IXGBE_ERR_EEPROM_VERSION;
2073 u16 fw_offset, fw_ptp_cfg_offset;
2074 u16 fw_version = 0;
2075
2076 /* firmware check is only necessary for SFI devices */
2077 if (hw->phy.media_type != ixgbe_media_type_fiber) {
2078 status = 0;
2079 goto fw_version_out;
2080 }
2081
2082 /* get the offset to the Firmware Module block */
2083 hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);
2084
2085 if ((fw_offset == 0) || (fw_offset == 0xFFFF))
2086 goto fw_version_out;
2087
2088 /* get the offset to the Pass Through Patch Configuration block */
2089 hw->eeprom.ops.read(hw, (fw_offset +
2090 IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR),
2091 &fw_ptp_cfg_offset);
2092
2093 if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF))
2094 goto fw_version_out;
2095
2096 /* get the firmware version */
2097 hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset +
2098 IXGBE_FW_PATCH_VERSION_4),
2099 &fw_version);
2100
2101 if (fw_version > 0x5)
2102 status = 0;
2103
2104 fw_version_out:
2105 return status;
2106 }
2107
2108 static struct ixgbe_mac_operations mac_ops_82599 = {
2109 .init_hw = &ixgbe_init_hw_generic,
2110 .reset_hw = &ixgbe_reset_hw_82599,
2111 .start_hw = &ixgbe_start_hw_82599,
2112 .clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic,
2113 .get_media_type = &ixgbe_get_media_type_82599,
2114 .get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599,
2115 .enable_rx_dma = &ixgbe_enable_rx_dma_82599,
2116 .get_mac_addr = &ixgbe_get_mac_addr_generic,
2117 .get_san_mac_addr = &ixgbe_get_san_mac_addr_generic,
2118 .get_device_caps = &ixgbe_get_device_caps_82599,
2119 .get_wwn_prefix = &ixgbe_get_wwn_prefix_generic,
2120 .stop_adapter = &ixgbe_stop_adapter_generic,
2121 .get_bus_info = &ixgbe_get_bus_info_generic,
2122 .set_lan_id = &ixgbe_set_lan_id_multi_port_pcie,
2123 .read_analog_reg8 = &ixgbe_read_analog_reg8_82599,
2124 .write_analog_reg8 = &ixgbe_write_analog_reg8_82599,
2125 .setup_link = &ixgbe_setup_mac_link_82599,
2126 .check_link = &ixgbe_check_mac_link_generic,
2127 .get_link_capabilities = &ixgbe_get_link_capabilities_82599,
2128 .led_on = &ixgbe_led_on_generic,
2129 .led_off = &ixgbe_led_off_generic,
2130 .blink_led_start = &ixgbe_blink_led_start_generic,
2131 .blink_led_stop = &ixgbe_blink_led_stop_generic,
2132 .set_rar = &ixgbe_set_rar_generic,
2133 .clear_rar = &ixgbe_clear_rar_generic,
2134 .set_vmdq = &ixgbe_set_vmdq_generic,
2135 .clear_vmdq = &ixgbe_clear_vmdq_generic,
2136 .init_rx_addrs = &ixgbe_init_rx_addrs_generic,
2137 .update_uc_addr_list = &ixgbe_update_uc_addr_list_generic,
2138 .update_mc_addr_list = &ixgbe_update_mc_addr_list_generic,
2139 .enable_mc = &ixgbe_enable_mc_generic,
2140 .disable_mc = &ixgbe_disable_mc_generic,
2141 .clear_vfta = &ixgbe_clear_vfta_generic,
2142 .set_vfta = &ixgbe_set_vfta_generic,
2143 .fc_enable = &ixgbe_fc_enable_generic,
2144 .init_uta_tables = &ixgbe_init_uta_tables_generic,
2145 .setup_sfp = &ixgbe_setup_sfp_modules_82599,
2146 };
2147
2148 static struct ixgbe_eeprom_operations eeprom_ops_82599 = {
2149 .init_params = &ixgbe_init_eeprom_params_generic,
2150 .read = &ixgbe_read_eerd_generic,
2151 .write = &ixgbe_write_eeprom_generic,
2152 .calc_checksum = &ixgbe_calc_eeprom_checksum_generic,
2153 .validate_checksum = &ixgbe_validate_eeprom_checksum_generic,
2154 .update_checksum = &ixgbe_update_eeprom_checksum_generic,
2155 };
2156
2157 static struct ixgbe_phy_operations phy_ops_82599 = {
2158 .identify = &ixgbe_identify_phy_82599,
2159 .identify_sfp = &ixgbe_identify_sfp_module_generic,
2160 .init = &ixgbe_init_phy_ops_82599,
2161 .reset = &ixgbe_reset_phy_generic,
2162 .read_reg = &ixgbe_read_phy_reg_generic,
2163 .write_reg = &ixgbe_write_phy_reg_generic,
2164 .setup_link = &ixgbe_setup_phy_link_generic,
2165 .setup_link_speed = &ixgbe_setup_phy_link_speed_generic,
2166 .read_i2c_byte = &ixgbe_read_i2c_byte_generic,
2167 .write_i2c_byte = &ixgbe_write_i2c_byte_generic,
2168 .read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic,
2169 .write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic,
2170 .check_overtemp = &ixgbe_tn_check_overtemp,
2171 };
2172
2173 struct ixgbe_info ixgbe_82599_info = {
2174 .mac = ixgbe_mac_82599EB,
2175 .get_invariants = &ixgbe_get_invariants_82599,
2176 .mac_ops = &mac_ops_82599,
2177 .eeprom_ops = &eeprom_ops_82599,
2178 .phy_ops = &phy_ops_82599,
2179 .mbx_ops = &mbx_ops_generic,
2180 };