Merge remote-tracking branch 'regulator/fix/dbx500' into regulator-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / irda / vlsi_ir.h
1
2 /*********************************************************************
3 *
4 * vlsi_ir.h: VLSI82C147 PCI IrDA controller driver for Linux
5 *
6 * Version: 0.5
7 *
8 * Copyright (c) 2001-2003 Martin Diehl
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of
13 * the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23 * MA 02111-1307 USA
24 *
25 ********************************************************************/
26
27 #ifndef IRDA_VLSI_FIR_H
28 #define IRDA_VLSI_FIR_H
29
30 /* ================================================================
31 * compatibility stuff
32 */
33
34 /* definitions not present in pci_ids.h */
35
36 #ifndef PCI_CLASS_WIRELESS_IRDA
37 #define PCI_CLASS_WIRELESS_IRDA 0x0d00
38 #endif
39
40 #ifndef PCI_CLASS_SUBCLASS_MASK
41 #define PCI_CLASS_SUBCLASS_MASK 0xffff
42 #endif
43
44 /* ================================================================ */
45
46 /* non-standard PCI registers */
47
48 enum vlsi_pci_regs {
49 VLSI_PCI_CLKCTL = 0x40, /* chip clock input control */
50 VLSI_PCI_MSTRPAGE = 0x41, /* addr [31:24] for all busmaster cycles */
51 VLSI_PCI_IRMISC = 0x42 /* mainly legacy UART related */
52 };
53
54 /* ------------------------------------------ */
55
56 /* VLSI_PCI_CLKCTL: Clock Control Register (u8, rw) */
57
58 /* Three possible clock sources: either on-chip 48MHz PLL or
59 * external clock applied to EXTCLK pin. External clock may
60 * be either 48MHz or 40MHz, which is indicated by XCKSEL.
61 * CLKSTP controls whether the selected clock source gets
62 * connected to the IrDA block.
63 *
64 * On my HP OB-800 the BIOS sets external 40MHz clock as source
65 * when IrDA enabled and I've never detected any PLL lock success.
66 * Apparently the 14.3...MHz OSC input required for the PLL to work
67 * is not connected and the 40MHz EXTCLK is provided externally.
68 * At least this is what makes the driver working for me.
69 */
70
71 enum vlsi_pci_clkctl {
72
73 /* PLL control */
74
75 CLKCTL_PD_INV = 0x04, /* PD#: inverted power down signal,
76 * i.e. PLL is powered, if PD_INV set */
77 CLKCTL_LOCK = 0x40, /* (ro) set, if PLL is locked */
78
79 /* clock source selection */
80
81 CLKCTL_EXTCLK = 0x20, /* set to select external clock input, not PLL */
82 CLKCTL_XCKSEL = 0x10, /* set to indicate EXTCLK is 40MHz, not 48MHz */
83
84 /* IrDA block control */
85
86 CLKCTL_CLKSTP = 0x80, /* set to disconnect from selected clock source */
87 CLKCTL_WAKE = 0x08 /* set to enable wakeup feature: whenever IR activity
88 * is detected, PD_INV gets set(?) and CLKSTP cleared */
89 };
90
91 /* ------------------------------------------ */
92
93 /* VLSI_PCI_MSTRPAGE: Master Page Register (u8, rw) and busmastering stuff */
94
95 #define DMA_MASK_USED_BY_HW 0xffffffff
96 #define DMA_MASK_MSTRPAGE 0x00ffffff
97 #define MSTRPAGE_VALUE (DMA_MASK_MSTRPAGE >> 24)
98
99 /* PCI busmastering is somewhat special for this guy - in short:
100 *
101 * We select to operate using fixed MSTRPAGE=0, use ISA DMA
102 * address restrictions to make the PCI BM api aware of this,
103 * but ensure the hardware is dealing with real 32bit access.
104 *
105 * In detail:
106 * The chip executes normal 32bit busmaster cycles, i.e.
107 * drives all 32 address lines. These addresses however are
108 * composed of [0:23] taken from various busaddr-pointers
109 * and [24:31] taken from the MSTRPAGE register in the VLSI82C147
110 * config space. Therefore _all_ busmastering must be
111 * targeted to/from one single 16MB (busaddr-) superpage!
112 * The point is to make sure all the allocations for memory
113 * locations with busmaster access (ring descriptors, buffers)
114 * are indeed bus-mappable to the same 16MB range (for x86 this
115 * means they must reside in the same 16MB physical memory address
116 * range). The only constraint we have which supports "several objects
117 * mappable to common 16MB range" paradigma, is the old ISA DMA
118 * restriction to the first 16MB of physical address range.
119 * Hence the approach here is to enable PCI busmaster support using
120 * the correct 32bit dma-mask used by the chip. Afterwards the device's
121 * dma-mask gets restricted to 24bit, which must be honoured somehow by
122 * all allocations for memory areas to be exposed to the chip ...
123 *
124 * Note:
125 * Don't be surprised to get "Setting latency timer..." messages every
126 * time when PCI busmastering is enabled for the chip.
127 * The chip has its PCI latency timer RO fixed at 0 - which is not a
128 * problem here, because it is never requesting _burst_ transactions.
129 */
130
131 /* ------------------------------------------ */
132
133 /* VLSI_PCIIRMISC: IR Miscellaneous Register (u8, rw) */
134
135 /* legacy UART emulation - not used by this driver - would require:
136 * (see below for some register-value definitions)
137 *
138 * - IRMISC_UARTEN must be set to enable UART address decoding
139 * - IRMISC_UARTSEL configured
140 * - IRCFG_MASTER must be cleared
141 * - IRCFG_SIR must be set
142 * - IRENABLE_PHYANDCLOCK must be asserted 0->1 (and hence IRENABLE_SIR_ON)
143 */
144
145 enum vlsi_pci_irmisc {
146
147 /* IR transceiver control */
148
149 IRMISC_IRRAIL = 0x40, /* (ro?) IR rail power indication (and control?)
150 * 0=3.3V / 1=5V. Probably set during power-on?
151 * unclear - not touched by driver */
152 IRMISC_IRPD = 0x08, /* transceiver power down, if set */
153
154 /* legacy UART control */
155
156 IRMISC_UARTTST = 0x80, /* UART test mode - "always write 0" */
157 IRMISC_UARTEN = 0x04, /* enable UART address decoding */
158
159 /* bits [1:0] IRMISC_UARTSEL to select legacy UART address */
160
161 IRMISC_UARTSEL_3f8 = 0x00,
162 IRMISC_UARTSEL_2f8 = 0x01,
163 IRMISC_UARTSEL_3e8 = 0x02,
164 IRMISC_UARTSEL_2e8 = 0x03
165 };
166
167 /* ================================================================ */
168
169 /* registers mapped to 32 byte PCI IO space */
170
171 /* note: better access all registers at the indicated u8/u16 size
172 * although some of them contain only 1 byte of information.
173 * some of them (particaluarly PROMPT and IRCFG) ignore
174 * access when using the wrong addressing mode!
175 */
176
177 enum vlsi_pio_regs {
178 VLSI_PIO_IRINTR = 0x00, /* interrupt enable/request (u8, rw) */
179 VLSI_PIO_RINGPTR = 0x02, /* rx/tx ring pointer (u16, ro) */
180 VLSI_PIO_RINGBASE = 0x04, /* [23:10] of ring address (u16, rw) */
181 VLSI_PIO_RINGSIZE = 0x06, /* rx/tx ring size (u16, rw) */
182 VLSI_PIO_PROMPT = 0x08, /* triggers ring processing (u16, wo) */
183 /* 0x0a-0x0f: reserved / duplicated UART regs */
184 VLSI_PIO_IRCFG = 0x10, /* configuration select (u16, rw) */
185 VLSI_PIO_SIRFLAG = 0x12, /* BOF/EOF for filtered SIR (u16, ro) */
186 VLSI_PIO_IRENABLE = 0x14, /* enable and status register (u16, rw/ro) */
187 VLSI_PIO_PHYCTL = 0x16, /* physical layer current status (u16, ro) */
188 VLSI_PIO_NPHYCTL = 0x18, /* next physical layer select (u16, rw) */
189 VLSI_PIO_MAXPKT = 0x1a, /* [11:0] max len for packet receive (u16, rw) */
190 VLSI_PIO_RCVBCNT = 0x1c /* current receive-FIFO byte count (u16, ro) */
191 /* 0x1e-0x1f: reserved / duplicated UART regs */
192 };
193
194 /* ------------------------------------------ */
195
196 /* VLSI_PIO_IRINTR: Interrupt Register (u8, rw) */
197
198 /* enable-bits:
199 * 1 = enable / 0 = disable
200 * interrupt condition bits:
201 * set according to corresponding interrupt source
202 * (regardless of the state of the enable bits)
203 * enable bit status indicates whether interrupt gets raised
204 * write-to-clear
205 * note: RPKTINT and TPKTINT behave different in legacy UART mode (which we don't use :-)
206 */
207
208 enum vlsi_pio_irintr {
209 IRINTR_ACTEN = 0x80, /* activity interrupt enable */
210 IRINTR_ACTIVITY = 0x40, /* activity monitor (traffic detected) */
211 IRINTR_RPKTEN = 0x20, /* receive packet interrupt enable*/
212 IRINTR_RPKTINT = 0x10, /* rx-packet transferred from fifo to memory finished */
213 IRINTR_TPKTEN = 0x08, /* transmit packet interrupt enable */
214 IRINTR_TPKTINT = 0x04, /* last bit of tx-packet+crc shifted to ir-pulser */
215 IRINTR_OE_EN = 0x02, /* UART rx fifo overrun error interrupt enable */
216 IRINTR_OE_INT = 0x01 /* UART rx fifo overrun error (read LSR to clear) */
217 };
218
219 /* we use this mask to check whether the (shared PCI) interrupt is ours */
220
221 #define IRINTR_INT_MASK (IRINTR_ACTIVITY|IRINTR_RPKTINT|IRINTR_TPKTINT)
222
223 /* ------------------------------------------ */
224
225 /* VLSI_PIO_RINGPTR: Ring Pointer Read-Back Register (u16, ro) */
226
227 /* _both_ ring pointers are indices relative to the _entire_ rx,tx-ring!
228 * i.e. the referenced descriptor is located
229 * at RINGBASE + PTR * sizeof(descr) for rx and tx
230 * therefore, the tx-pointer has offset MAX_RING_DESCR
231 */
232
233 #define MAX_RING_DESCR 64 /* tx, rx rings may contain up to 64 descr each */
234
235 #define RINGPTR_RX_MASK (MAX_RING_DESCR-1)
236 #define RINGPTR_TX_MASK ((MAX_RING_DESCR-1)<<8)
237
238 #define RINGPTR_GET_RX(p) ((p)&RINGPTR_RX_MASK)
239 #define RINGPTR_GET_TX(p) (((p)&RINGPTR_TX_MASK)>>8)
240
241 /* ------------------------------------------ */
242
243 /* VLSI_PIO_RINGBASE: Ring Pointer Base Address Register (u16, ro) */
244
245 /* Contains [23:10] part of the ring base (bus-) address
246 * which must be 1k-alinged. [31:24] is taken from
247 * VLSI_PCI_MSTRPAGE above.
248 * The controller initiates non-burst PCI BM cycles to
249 * fetch and update the descriptors in the ring.
250 * Once fetched, the descriptor remains cached onchip
251 * until it gets closed and updated due to the ring
252 * processing state machine.
253 * The entire ring area is split in rx and tx areas with each
254 * area consisting of 64 descriptors of 8 bytes each.
255 * The rx(tx) ring is located at ringbase+0 (ringbase+64*8).
256 */
257
258 #define BUS_TO_RINGBASE(p) (((p)>>10)&0x3fff)
259
260 /* ------------------------------------------ */
261
262 /* VLSI_PIO_RINGSIZE: Ring Size Register (u16, rw) */
263
264 /* bit mask to indicate the ring size to be used for rx and tx.
265 * possible values encoded bits
266 * 4 0000
267 * 8 0001
268 * 16 0011
269 * 32 0111
270 * 64 1111
271 * located at [15:12] for tx and [11:8] for rx ([7:0] unused)
272 *
273 * note: probably a good idea to have IRCFG_MSTR cleared when writing
274 * this so the state machines are stopped and the RINGPTR is reset!
275 */
276
277 #define SIZE_TO_BITS(num) ((((num)-1)>>2)&0x0f)
278 #define TX_RX_TO_RINGSIZE(tx,rx) ((SIZE_TO_BITS(tx)<<12)|(SIZE_TO_BITS(rx)<<8))
279 #define RINGSIZE_TO_RXSIZE(rs) ((((rs)&0x0f00)>>6)+4)
280 #define RINGSIZE_TO_TXSIZE(rs) ((((rs)&0xf000)>>10)+4)
281
282
283 /* ------------------------------------------ */
284
285 /* VLSI_PIO_PROMPT: Ring Prompting Register (u16, write-to-start) */
286
287 /* writing any value kicks the ring processing state machines
288 * for both tx, rx rings as follows:
289 * - active rings (currently owning an active descriptor)
290 * ignore the prompt and continue
291 * - idle rings fetch the next descr from the ring and start
292 * their processing
293 */
294
295 /* ------------------------------------------ */
296
297 /* VLSI_PIO_IRCFG: IR Config Register (u16, rw) */
298
299 /* notes:
300 * - not more than one SIR/MIR/FIR bit must be set at any time
301 * - SIR, MIR, FIR and CRC16 select the configuration which will
302 * be applied on next 0->1 transition of IRENABLE_PHYANDCLOCK (see below).
303 * - besides allowing the PCI interface to execute busmaster cycles
304 * and therefore the ring SM to operate, the MSTR bit has side-effects:
305 * when MSTR is cleared, the RINGPTR's get reset and the legacy UART mode
306 * (in contrast to busmaster access mode) gets enabled.
307 * - clearing ENRX or setting ENTX while data is received may stall the
308 * receive fifo until ENRX reenabled _and_ another packet arrives
309 * - SIRFILT means the chip performs the required unwrapping of hardware
310 * headers (XBOF's, BOF/EOF) and un-escaping in the _receive_ direction.
311 * Only the resulting IrLAP payload is copied to the receive buffers -
312 * but with the 16bit FCS still encluded. Question remains, whether it
313 * was already checked or we should do it before passing the packet to IrLAP?
314 */
315
316 enum vlsi_pio_ircfg {
317 IRCFG_LOOP = 0x4000, /* enable loopback test mode */
318 IRCFG_ENTX = 0x1000, /* transmit enable */
319 IRCFG_ENRX = 0x0800, /* receive enable */
320 IRCFG_MSTR = 0x0400, /* master enable */
321 IRCFG_RXANY = 0x0200, /* receive any packet */
322 IRCFG_CRC16 = 0x0080, /* 16bit (not 32bit) CRC select for MIR/FIR */
323 IRCFG_FIR = 0x0040, /* FIR 4PPM encoding mode enable */
324 IRCFG_MIR = 0x0020, /* MIR HDLC encoding mode enable */
325 IRCFG_SIR = 0x0010, /* SIR encoding mode enable */
326 IRCFG_SIRFILT = 0x0008, /* enable SIR decode filter (receiver unwrapping) */
327 IRCFG_SIRTEST = 0x0004, /* allow SIR decode filter when not in SIR mode */
328 IRCFG_TXPOL = 0x0002, /* invert tx polarity when set */
329 IRCFG_RXPOL = 0x0001 /* invert rx polarity when set */
330 };
331
332 /* ------------------------------------------ */
333
334 /* VLSI_PIO_SIRFLAG: SIR Flag Register (u16, ro) */
335
336 /* register contains hardcoded BOF=0xc0 at [7:0] and EOF=0xc1 at [15:8]
337 * which is used for unwrapping received frames in SIR decode-filter mode
338 */
339
340 /* ------------------------------------------ */
341
342 /* VLSI_PIO_IRENABLE: IR Enable Register (u16, rw/ro) */
343
344 /* notes:
345 * - IREN acts as gate for latching the configured IR mode information
346 * from IRCFG and IRPHYCTL when IREN=reset and applying them when
347 * IREN gets set afterwards.
348 * - ENTXST reflects IRCFG_ENTX
349 * - ENRXST = IRCFG_ENRX && (!IRCFG_ENTX || IRCFG_LOOP)
350 */
351
352 enum vlsi_pio_irenable {
353 IRENABLE_PHYANDCLOCK = 0x8000, /* enable IR phy and gate the mode config (rw) */
354 IRENABLE_CFGER = 0x4000, /* mode configuration error (ro) */
355 IRENABLE_FIR_ON = 0x2000, /* FIR on status (ro) */
356 IRENABLE_MIR_ON = 0x1000, /* MIR on status (ro) */
357 IRENABLE_SIR_ON = 0x0800, /* SIR on status (ro) */
358 IRENABLE_ENTXST = 0x0400, /* transmit enable status (ro) */
359 IRENABLE_ENRXST = 0x0200, /* Receive enable status (ro) */
360 IRENABLE_CRC16_ON = 0x0100 /* 16bit (not 32bit) CRC enabled status (ro) */
361 };
362
363 #define IRENABLE_MASK 0xff00 /* Read mask */
364
365 /* ------------------------------------------ */
366
367 /* VLSI_PIO_PHYCTL: IR Physical Layer Current Control Register (u16, ro) */
368
369 /* read-back of the currently applied physical layer status.
370 * applied from VLSI_PIO_NPHYCTL at rising edge of IRENABLE_PHYANDCLOCK
371 * contents identical to VLSI_PIO_NPHYCTL (see below)
372 */
373
374 /* ------------------------------------------ */
375
376 /* VLSI_PIO_NPHYCTL: IR Physical Layer Next Control Register (u16, rw) */
377
378 /* latched during IRENABLE_PHYANDCLOCK=0 and applied at 0-1 transition
379 *
380 * consists of BAUD[15:10], PLSWID[9:5] and PREAMB[4:0] bits defined as follows:
381 *
382 * SIR-mode: BAUD = (115.2kHz / baudrate) - 1
383 * PLSWID = (pulsetime * freq / (BAUD+1)) - 1
384 * where pulsetime is the requested IrPHY pulse width
385 * and freq is 8(16)MHz for 40(48)MHz primary input clock
386 * PREAMB: don't care for SIR
387 *
388 * The nominal SIR pulse width is 3/16 bit time so we have PLSWID=12
389 * fixed for all SIR speeds at 40MHz input clock (PLSWID=24 at 48MHz).
390 * IrPHY also allows shorter pulses down to the nominal pulse duration
391 * at 115.2kbaud (minus some tolerance) which is 1.41 usec.
392 * Using the expression PLSWID = 12/(BAUD+1)-1 (multiplied by two for 48MHz)
393 * we get the minimum acceptable PLSWID values according to the VLSI
394 * specification, which provides 1.5 usec pulse width for all speeds (except
395 * for 2.4kbaud getting 6usec). This is fine with IrPHY v1.3 specs and
396 * reduces the transceiver power which drains the battery. At 9.6kbaud for
397 * example this amounts to more than 90% battery power saving!
398 *
399 * MIR-mode: BAUD = 0
400 * PLSWID = 9(10) for 40(48) MHz input clock
401 * to get nominal MIR pulse width
402 * PREAMB = 1
403 *
404 * FIR-mode: BAUD = 0
405 * PLSWID: don't care
406 * PREAMB = 15
407 */
408
409 #define PHYCTL_BAUD_SHIFT 10
410 #define PHYCTL_BAUD_MASK 0xfc00
411 #define PHYCTL_PLSWID_SHIFT 5
412 #define PHYCTL_PLSWID_MASK 0x03e0
413 #define PHYCTL_PREAMB_SHIFT 0
414 #define PHYCTL_PREAMB_MASK 0x001f
415
416 #define PHYCTL_TO_BAUD(bwp) (((bwp)&PHYCTL_BAUD_MASK)>>PHYCTL_BAUD_SHIFT)
417 #define PHYCTL_TO_PLSWID(bwp) (((bwp)&PHYCTL_PLSWID_MASK)>>PHYCTL_PLSWID_SHIFT)
418 #define PHYCTL_TO_PREAMB(bwp) (((bwp)&PHYCTL_PREAMB_MASK)>>PHYCTL_PREAMB_SHIFT)
419
420 #define BWP_TO_PHYCTL(b,w,p) ((((b)<<PHYCTL_BAUD_SHIFT)&PHYCTL_BAUD_MASK) \
421 | (((w)<<PHYCTL_PLSWID_SHIFT)&PHYCTL_PLSWID_MASK) \
422 | (((p)<<PHYCTL_PREAMB_SHIFT)&PHYCTL_PREAMB_MASK))
423
424 #define BAUD_BITS(br) ((115200/(br))-1)
425
426 static inline unsigned
427 calc_width_bits(unsigned baudrate, unsigned widthselect, unsigned clockselect)
428 {
429 unsigned tmp;
430
431 if (widthselect) /* nominal 3/16 puls width */
432 return (clockselect) ? 12 : 24;
433
434 tmp = ((clockselect) ? 12 : 24) / (BAUD_BITS(baudrate)+1);
435
436 /* intermediate result of integer division needed here */
437
438 return (tmp>0) ? (tmp-1) : 0;
439 }
440
441 #define PHYCTL_SIR(br,ws,cs) BWP_TO_PHYCTL(BAUD_BITS(br),calc_width_bits((br),(ws),(cs)),0)
442 #define PHYCTL_MIR(cs) BWP_TO_PHYCTL(0,((cs)?9:10),1)
443 #define PHYCTL_FIR BWP_TO_PHYCTL(0,0,15)
444
445 /* quite ugly, I know. But implementing these calculations here avoids
446 * having magic numbers in the code and allows some playing with pulsewidths
447 * without risk to violate the standards.
448 * FWIW, here is the table for reference:
449 *
450 * baudrate BAUD min-PLSWID nom-PLSWID PREAMB
451 * 2400 47 0(0) 12(24) 0
452 * 9600 11 0(0) 12(24) 0
453 * 19200 5 1(2) 12(24) 0
454 * 38400 2 3(6) 12(24) 0
455 * 57600 1 5(10) 12(24) 0
456 * 115200 0 11(22) 12(24) 0
457 * MIR 0 - 9(10) 1
458 * FIR 0 - 0 15
459 *
460 * note: x(y) means x-value for 40MHz / y-value for 48MHz primary input clock
461 */
462
463 /* ------------------------------------------ */
464
465
466 /* VLSI_PIO_MAXPKT: Maximum Packet Length register (u16, rw) */
467
468 /* maximum acceptable length for received packets */
469
470 /* hw imposed limitation - register uses only [11:0] */
471 #define MAX_PACKET_LENGTH 0x0fff
472
473 /* IrLAP I-field (apparently not defined elsewhere) */
474 #define IRDA_MTU 2048
475
476 /* complete packet consists of A(1)+C(1)+I(<=IRDA_MTU) */
477 #define IRLAP_SKB_ALLOCSIZE (1+1+IRDA_MTU)
478
479 /* the buffers we use to exchange frames with the hardware need to be
480 * larger than IRLAP_SKB_ALLOCSIZE because we may have up to 4 bytes FCS
481 * appended and, in SIR mode, a lot of frame wrapping bytes. The worst
482 * case appears to be a SIR packet with I-size==IRDA_MTU and all bytes
483 * requiring to be escaped to provide transparency. Furthermore, the peer
484 * might ask for quite a number of additional XBOFs:
485 * up to 115+48 XBOFS 163
486 * regular BOF 1
487 * A-field 1
488 * C-field 1
489 * I-field, IRDA_MTU, all escaped 4096
490 * FCS (16 bit at SIR, escaped) 4
491 * EOF 1
492 * AFAICS nothing in IrLAP guarantees A/C field not to need escaping
493 * (f.e. 0xc0/0xc1 - i.e. BOF/EOF - are legal values there) so in the
494 * worst case we have 4269 bytes total frame size.
495 * However, the VLSI uses 12 bits only for all buffer length values,
496 * which limits the maximum useable buffer size <= 4095.
497 * Note this is not a limitation in the receive case because we use
498 * the SIR filtering mode where the hw unwraps the frame and only the
499 * bare packet+fcs is stored into the buffer - in contrast to the SIR
500 * tx case where we have to pass frame-wrapped packets to the hw.
501 * If this would ever become an issue in real life, the only workaround
502 * I see would be using the legacy UART emulation in SIR mode.
503 */
504
505 #define XFER_BUF_SIZE MAX_PACKET_LENGTH
506
507 /* ------------------------------------------ */
508
509 /* VLSI_PIO_RCVBCNT: Receive Byte Count Register (u16, ro) */
510
511 /* receive packet counter gets incremented on every non-filtered
512 * byte which was put in the receive fifo and reset for each
513 * new packet. Used to decide whether we are just in the middle
514 * of receiving
515 */
516
517 /* better apply the [11:0] mask when reading, as some docs say the
518 * reserved [15:12] would return 1 when reading - which is wrong AFAICS
519 */
520 #define RCVBCNT_MASK 0x0fff
521
522 /******************************************************************/
523
524 /* descriptors for rx/tx ring
525 *
526 * accessed by hardware - don't change!
527 *
528 * the descriptor is owned by hardware, when the ACTIVE status bit
529 * is set and nothing (besides reading status to test the bit)
530 * shall be done. The bit gets cleared by hw, when the descriptor
531 * gets closed. Premature reaping of descriptors owned be the chip
532 * can be achieved by disabling IRCFG_MSTR
533 *
534 * Attention: Writing addr overwrites status!
535 *
536 * ### FIXME: depends on endianess (but there ain't no non-i586 ob800 ;-)
537 */
538
539 struct ring_descr_hw {
540 volatile __le16 rd_count; /* tx/rx count [11:0] */
541 __le16 reserved;
542 union {
543 __le32 addr; /* [23:0] of the buffer's busaddress */
544 struct {
545 u8 addr_res[3];
546 volatile u8 status; /* descriptor status */
547 } __packed rd_s;
548 } __packed rd_u;
549 } __packed;
550
551 #define rd_addr rd_u.addr
552 #define rd_status rd_u.rd_s.status
553
554 /* ring descriptor status bits */
555
556 #define RD_ACTIVE 0x80 /* descriptor owned by hw (both TX,RX) */
557
558 /* TX ring descriptor status */
559
560 #define RD_TX_DISCRC 0x40 /* do not send CRC (for SIR) */
561 #define RD_TX_BADCRC 0x20 /* force a bad CRC */
562 #define RD_TX_PULSE 0x10 /* send indication pulse after this frame (MIR/FIR) */
563 #define RD_TX_FRCEUND 0x08 /* force underrun */
564 #define RD_TX_CLRENTX 0x04 /* clear ENTX after this frame */
565 #define RD_TX_UNDRN 0x01 /* TX fifo underrun (probably PCI problem) */
566
567 /* RX ring descriptor status */
568
569 #define RD_RX_PHYERR 0x40 /* physical encoding error */
570 #define RD_RX_CRCERR 0x20 /* CRC error (MIR/FIR) */
571 #define RD_RX_LENGTH 0x10 /* frame exceeds buffer length */
572 #define RD_RX_OVER 0x08 /* RX fifo overrun (probably PCI problem) */
573 #define RD_RX_SIRBAD 0x04 /* EOF missing: BOF follows BOF (SIR, filtered) */
574
575 #define RD_RX_ERROR 0x7c /* any error in received frame */
576
577 /* the memory required to hold the 2 descriptor rings */
578 #define HW_RING_AREA_SIZE (2 * MAX_RING_DESCR * sizeof(struct ring_descr_hw))
579
580 /******************************************************************/
581
582 /* sw-ring descriptors consists of a bus-mapped transfer buffer with
583 * associated skb and a pointer to the hw entry descriptor
584 */
585
586 struct ring_descr {
587 struct ring_descr_hw *hw;
588 struct sk_buff *skb;
589 void *buf;
590 };
591
592 /* wrappers for operations on hw-exposed ring descriptors
593 * access to the hw-part of the descriptors must use these.
594 */
595
596 static inline int rd_is_active(struct ring_descr *rd)
597 {
598 return (rd->hw->rd_status & RD_ACTIVE) != 0;
599 }
600
601 static inline void rd_activate(struct ring_descr *rd)
602 {
603 rd->hw->rd_status |= RD_ACTIVE;
604 }
605
606 static inline void rd_set_status(struct ring_descr *rd, u8 s)
607 {
608 rd->hw->rd_status = s; /* may pass ownership to the hardware */
609 }
610
611 static inline void rd_set_addr_status(struct ring_descr *rd, dma_addr_t a, u8 s)
612 {
613 /* order is important for two reasons:
614 * - overlayed: writing addr overwrites status
615 * - we want to write status last so we have valid address in
616 * case status has RD_ACTIVE set
617 */
618
619 if ((a & ~DMA_MASK_MSTRPAGE)>>24 != MSTRPAGE_VALUE) {
620 IRDA_ERROR("%s: pci busaddr inconsistency!\n", __func__);
621 dump_stack();
622 return;
623 }
624
625 a &= DMA_MASK_MSTRPAGE; /* clear highbyte to make sure we won't write
626 * to status - just in case MSTRPAGE_VALUE!=0
627 */
628 rd->hw->rd_addr = cpu_to_le32(a);
629 wmb();
630 rd_set_status(rd, s); /* may pass ownership to the hardware */
631 }
632
633 static inline void rd_set_count(struct ring_descr *rd, u16 c)
634 {
635 rd->hw->rd_count = cpu_to_le16(c);
636 }
637
638 static inline u8 rd_get_status(struct ring_descr *rd)
639 {
640 return rd->hw->rd_status;
641 }
642
643 static inline dma_addr_t rd_get_addr(struct ring_descr *rd)
644 {
645 dma_addr_t a;
646
647 a = le32_to_cpu(rd->hw->rd_addr);
648 return (a & DMA_MASK_MSTRPAGE) | (MSTRPAGE_VALUE << 24);
649 }
650
651 static inline u16 rd_get_count(struct ring_descr *rd)
652 {
653 return le16_to_cpu(rd->hw->rd_count);
654 }
655
656 /******************************************************************/
657
658 /* sw descriptor rings for rx, tx:
659 *
660 * operations follow producer-consumer paradigm, with the hw
661 * in the middle doing the processing.
662 * ring size must be power of two.
663 *
664 * producer advances r->tail after inserting for processing
665 * consumer advances r->head after removing processed rd
666 * ring is empty if head==tail / full if (tail+1)==head
667 */
668
669 struct vlsi_ring {
670 struct pci_dev *pdev;
671 int dir;
672 unsigned len;
673 unsigned size;
674 unsigned mask;
675 atomic_t head, tail;
676 struct ring_descr *rd;
677 };
678
679 /* ring processing helpers */
680
681 static inline struct ring_descr *ring_last(struct vlsi_ring *r)
682 {
683 int t;
684
685 t = atomic_read(&r->tail) & r->mask;
686 return (((t+1) & r->mask) == (atomic_read(&r->head) & r->mask)) ? NULL : &r->rd[t];
687 }
688
689 static inline struct ring_descr *ring_put(struct vlsi_ring *r)
690 {
691 atomic_inc(&r->tail);
692 return ring_last(r);
693 }
694
695 static inline struct ring_descr *ring_first(struct vlsi_ring *r)
696 {
697 int h;
698
699 h = atomic_read(&r->head) & r->mask;
700 return (h == (atomic_read(&r->tail) & r->mask)) ? NULL : &r->rd[h];
701 }
702
703 static inline struct ring_descr *ring_get(struct vlsi_ring *r)
704 {
705 atomic_inc(&r->head);
706 return ring_first(r);
707 }
708
709 /******************************************************************/
710
711 /* our private compound VLSI-PCI-IRDA device information */
712
713 typedef struct vlsi_irda_dev {
714 struct pci_dev *pdev;
715
716 struct irlap_cb *irlap;
717
718 struct qos_info qos;
719
720 unsigned mode;
721 int baud, new_baud;
722
723 dma_addr_t busaddr;
724 void *virtaddr;
725 struct vlsi_ring *tx_ring, *rx_ring;
726
727 struct timeval last_rx;
728
729 spinlock_t lock;
730 struct mutex mtx;
731
732 u8 resume_ok;
733 struct proc_dir_entry *proc_entry;
734
735 } vlsi_irda_dev_t;
736
737 /********************************************************/
738
739 /* the remapped error flags we use for returning from frame
740 * post-processing in vlsi_process_tx/rx() after it was completed
741 * by the hardware. These functions either return the >=0 number
742 * of transferred bytes in case of success or the negative (-)
743 * of the or'ed error flags.
744 */
745
746 #define VLSI_TX_DROP 0x0001
747 #define VLSI_TX_FIFO 0x0002
748
749 #define VLSI_RX_DROP 0x0100
750 #define VLSI_RX_OVER 0x0200
751 #define VLSI_RX_LENGTH 0x0400
752 #define VLSI_RX_FRAME 0x0800
753 #define VLSI_RX_CRC 0x1000
754
755 /********************************************************/
756
757 #endif /* IRDA_VLSI_FIR_H */
758