Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / irda / sh_sir.c
1 /*
2 * SuperH IrDA Driver
3 *
4 * Copyright (C) 2009 Renesas Solutions Corp.
5 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6 *
7 * Based on bfin_sir.c
8 * Copyright 2006-2009 Analog Devices Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <net/irda/wrapper.h>
18 #include <net/irda/irda_device.h>
19 #include <asm/clock.h>
20
21 #define DRIVER_NAME "sh_sir"
22
23 #define RX_PHASE (1 << 0)
24 #define TX_PHASE (1 << 1)
25 #define TX_COMP_PHASE (1 << 2) /* tx complete */
26 #define NONE_PHASE (1 << 31)
27
28 #define IRIF_RINTCLR 0x0016 /* DMA rx interrupt source clear */
29 #define IRIF_TINTCLR 0x0018 /* DMA tx interrupt source clear */
30 #define IRIF_SIR0 0x0020 /* IrDA-SIR10 control */
31 #define IRIF_SIR1 0x0022 /* IrDA-SIR10 baudrate error correction */
32 #define IRIF_SIR2 0x0024 /* IrDA-SIR10 baudrate count */
33 #define IRIF_SIR3 0x0026 /* IrDA-SIR10 status */
34 #define IRIF_SIR_FRM 0x0028 /* Hardware frame processing set */
35 #define IRIF_SIR_EOF 0x002A /* EOF value */
36 #define IRIF_SIR_FLG 0x002C /* Flag clear */
37 #define IRIF_UART_STS2 0x002E /* UART status 2 */
38 #define IRIF_UART0 0x0030 /* UART control */
39 #define IRIF_UART1 0x0032 /* UART status */
40 #define IRIF_UART2 0x0034 /* UART mode */
41 #define IRIF_UART3 0x0036 /* UART transmit data */
42 #define IRIF_UART4 0x0038 /* UART receive data */
43 #define IRIF_UART5 0x003A /* UART interrupt mask */
44 #define IRIF_UART6 0x003C /* UART baud rate error correction */
45 #define IRIF_UART7 0x003E /* UART baud rate count set */
46 #define IRIF_CRC0 0x0040 /* CRC engine control */
47 #define IRIF_CRC1 0x0042 /* CRC engine input data */
48 #define IRIF_CRC2 0x0044 /* CRC engine calculation */
49 #define IRIF_CRC3 0x0046 /* CRC engine output data 1 */
50 #define IRIF_CRC4 0x0048 /* CRC engine output data 2 */
51
52 /* IRIF_SIR0 */
53 #define IRTPW (1 << 1) /* transmit pulse width select */
54 #define IRERRC (1 << 0) /* Clear receive pulse width error */
55
56 /* IRIF_SIR3 */
57 #define IRERR (1 << 0) /* received pulse width Error */
58
59 /* IRIF_SIR_FRM */
60 #define EOFD (1 << 9) /* EOF detection flag */
61 #define FRER (1 << 8) /* Frame Error bit */
62 #define FRP (1 << 0) /* Frame processing set */
63
64 /* IRIF_UART_STS2 */
65 #define IRSME (1 << 6) /* Receive Sum Error flag */
66 #define IROVE (1 << 5) /* Receive Overrun Error flag */
67 #define IRFRE (1 << 4) /* Receive Framing Error flag */
68 #define IRPRE (1 << 3) /* Receive Parity Error flag */
69
70 /* IRIF_UART0_*/
71 #define TBEC (1 << 2) /* Transmit Data Clear */
72 #define RIE (1 << 1) /* Receive Enable */
73 #define TIE (1 << 0) /* Transmit Enable */
74
75 /* IRIF_UART1 */
76 #define URSME (1 << 6) /* Receive Sum Error Flag */
77 #define UROVE (1 << 5) /* Receive Overrun Error Flag */
78 #define URFRE (1 << 4) /* Receive Framing Error Flag */
79 #define URPRE (1 << 3) /* Receive Parity Error Flag */
80 #define RBF (1 << 2) /* Receive Buffer Full Flag */
81 #define TSBE (1 << 1) /* Transmit Shift Buffer Empty Flag */
82 #define TBE (1 << 0) /* Transmit Buffer Empty flag */
83 #define TBCOMP (TSBE | TBE)
84
85 /* IRIF_UART5 */
86 #define RSEIM (1 << 6) /* Receive Sum Error Flag IRQ Mask */
87 #define RBFIM (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
88 #define TSBEIM (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
89 #define TBEIM (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
90 #define RX_MASK (RSEIM | RBFIM)
91
92 /* IRIF_CRC0 */
93 #define CRC_RST (1 << 15) /* CRC Engine Reset */
94 #define CRC_CT_MASK 0x0FFF
95
96 /************************************************************************
97
98
99 structure
100
101
102 ************************************************************************/
103 struct sh_sir_self {
104 void __iomem *membase;
105 unsigned int irq;
106 struct clk *clk;
107
108 struct net_device *ndev;
109
110 struct irlap_cb *irlap;
111 struct qos_info qos;
112
113 iobuff_t tx_buff;
114 iobuff_t rx_buff;
115 };
116
117 /************************************************************************
118
119
120 common function
121
122
123 ************************************************************************/
124 static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
125 {
126 iowrite16(data, self->membase + offset);
127 }
128
129 static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
130 {
131 return ioread16(self->membase + offset);
132 }
133
134 static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
135 u16 mask, u16 data)
136 {
137 u16 old, new;
138
139 old = sh_sir_read(self, offset);
140 new = (old & ~mask) | data;
141 if (old != new)
142 sh_sir_write(self, offset, new);
143 }
144
145 /************************************************************************
146
147
148 CRC function
149
150
151 ************************************************************************/
152 static void sh_sir_crc_reset(struct sh_sir_self *self)
153 {
154 sh_sir_write(self, IRIF_CRC0, CRC_RST);
155 }
156
157 static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
158 {
159 sh_sir_write(self, IRIF_CRC1, (u16)data);
160 }
161
162 static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
163 {
164 return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
165 }
166
167 static u16 sh_sir_crc_out(struct sh_sir_self *self)
168 {
169 return sh_sir_read(self, IRIF_CRC4);
170 }
171
172 static int sh_sir_crc_init(struct sh_sir_self *self)
173 {
174 struct device *dev = &self->ndev->dev;
175 int ret = -EIO;
176 u16 val;
177
178 sh_sir_crc_reset(self);
179
180 sh_sir_crc_add(self, 0xCC);
181 sh_sir_crc_add(self, 0xF5);
182 sh_sir_crc_add(self, 0xF1);
183 sh_sir_crc_add(self, 0xA7);
184
185 val = sh_sir_crc_cnt(self);
186 if (4 != val) {
187 dev_err(dev, "CRC count error %x\n", val);
188 goto crc_init_out;
189 }
190
191 val = sh_sir_crc_out(self);
192 if (0x51DF != val) {
193 dev_err(dev, "CRC result error%x\n", val);
194 goto crc_init_out;
195 }
196
197 ret = 0;
198
199 crc_init_out:
200
201 sh_sir_crc_reset(self);
202 return ret;
203 }
204
205 /************************************************************************
206
207
208 baud rate functions
209
210
211 ************************************************************************/
212 #define SCLK_BASE 1843200 /* 1.8432MHz */
213
214 static u32 sh_sir_find_sclk(struct clk *irda_clk)
215 {
216 struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
217 struct clk *pclk = clk_get(NULL, "peripheral_clk");
218 u32 limit, min = 0xffffffff, tmp;
219 int i, index = 0;
220
221 limit = clk_get_rate(pclk);
222 clk_put(pclk);
223
224 /* IrDA can not set over peripheral_clk */
225 for (i = 0;
226 freq_table[i].frequency != CPUFREQ_TABLE_END;
227 i++) {
228 u32 freq = freq_table[i].frequency;
229
230 if (freq == CPUFREQ_ENTRY_INVALID)
231 continue;
232
233 /* IrDA should not over peripheral_clk */
234 if (freq > limit)
235 continue;
236
237 tmp = freq % SCLK_BASE;
238 if (tmp < min) {
239 min = tmp;
240 index = i;
241 }
242 }
243
244 return freq_table[index].frequency;
245 }
246
247 #define ERR_ROUNDING(a) ((a + 5000) / 10000)
248 static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
249 {
250 struct clk *clk;
251 struct device *dev = &self->ndev->dev;
252 u32 rate;
253 u16 uabca, uabc;
254 u16 irbca, irbc;
255 u32 min, rerr, tmp;
256 int i;
257
258 /* Baud Rate Error Correction x 10000 */
259 u32 rate_err_array[] = {
260 0000, 0625, 1250, 1875,
261 2500, 3125, 3750, 4375,
262 5000, 5625, 6250, 6875,
263 7500, 8125, 8750, 9375,
264 };
265
266 /*
267 * FIXME
268 *
269 * it support 9600 only now
270 */
271 switch (baudrate) {
272 case 9600:
273 break;
274 default:
275 dev_err(dev, "un-supported baudrate %d\n", baudrate);
276 return -EIO;
277 }
278
279 clk = clk_get(NULL, "irda_clk");
280 if (!clk) {
281 dev_err(dev, "can not get irda_clk\n");
282 return -EIO;
283 }
284
285 clk_set_rate(clk, sh_sir_find_sclk(clk));
286 rate = clk_get_rate(clk);
287 clk_put(clk);
288
289 dev_dbg(dev, "selected sclk = %d\n", rate);
290
291 /*
292 * CALCULATION
293 *
294 * 1843200 = system rate / (irbca + (irbc + 1))
295 */
296
297 irbc = rate / SCLK_BASE;
298
299 tmp = rate - (SCLK_BASE * irbc);
300 tmp *= 10000;
301
302 rerr = tmp / SCLK_BASE;
303
304 min = 0xffffffff;
305 irbca = 0;
306 for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
307 tmp = abs(rate_err_array[i] - rerr);
308 if (min > tmp) {
309 min = tmp;
310 irbca = i;
311 }
312 }
313
314 tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
315 if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
316 dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
317
318 dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
319 SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
320
321 irbca = (irbca & 0xF) << 4;
322 irbc = (irbc - 1) & 0xF;
323
324 if (!irbc) {
325 dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
326 return -EIO;
327 }
328
329 sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
330 sh_sir_write(self, IRIF_SIR1, irbca);
331 sh_sir_write(self, IRIF_SIR2, irbc);
332
333 /*
334 * CALCULATION
335 *
336 * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
337 */
338
339 uabc = rate / baudrate;
340 uabc = (uabc / 16) - 1;
341 uabc = (uabc + 1) * 16;
342
343 tmp = rate - (uabc * baudrate);
344 tmp *= 10000;
345
346 rerr = tmp / baudrate;
347
348 min = 0xffffffff;
349 uabca = 0;
350 for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
351 tmp = abs(rate_err_array[i] - rerr);
352 if (min > tmp) {
353 min = tmp;
354 uabca = i;
355 }
356 }
357
358 tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
359 if ((baudrate / 100) < abs(tmp - baudrate))
360 dev_warn(dev, "UART freq error margin over %d\n", tmp);
361
362 dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
363 baudrate, tmp,
364 uabc, rate_err_array[uabca]);
365
366 uabca = (uabca & 0xF) << 4;
367 uabc = (uabc / 16) - 1;
368
369 sh_sir_write(self, IRIF_UART6, uabca);
370 sh_sir_write(self, IRIF_UART7, uabc);
371
372 return 0;
373 }
374
375 /************************************************************************
376
377
378 iobuf function
379
380
381 ************************************************************************/
382 static int __sh_sir_init_iobuf(iobuff_t *io, int size)
383 {
384 io->head = kmalloc(size, GFP_KERNEL);
385 if (!io->head)
386 return -ENOMEM;
387
388 io->truesize = size;
389 io->in_frame = FALSE;
390 io->state = OUTSIDE_FRAME;
391 io->data = io->head;
392
393 return 0;
394 }
395
396 static void sh_sir_remove_iobuf(struct sh_sir_self *self)
397 {
398 kfree(self->rx_buff.head);
399 kfree(self->tx_buff.head);
400
401 self->rx_buff.head = NULL;
402 self->tx_buff.head = NULL;
403 }
404
405 static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
406 {
407 int err = -ENOMEM;
408
409 if (self->rx_buff.head ||
410 self->tx_buff.head) {
411 dev_err(&self->ndev->dev, "iobuff has already existed.");
412 return err;
413 }
414
415 err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
416 if (err)
417 goto iobuf_err;
418
419 err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
420
421 iobuf_err:
422 if (err)
423 sh_sir_remove_iobuf(self);
424
425 return err;
426 }
427
428 /************************************************************************
429
430
431 status function
432
433
434 ************************************************************************/
435 static void sh_sir_clear_all_err(struct sh_sir_self *self)
436 {
437 /* Clear error flag for receive pulse width */
438 sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
439
440 /* Clear frame / EOF error flag */
441 sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
442
443 /* Clear all status error */
444 sh_sir_write(self, IRIF_UART_STS2, 0);
445 }
446
447 static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
448 {
449 u16 uart5 = 0;
450 u16 uart0 = 0;
451
452 switch (phase) {
453 case TX_PHASE:
454 uart5 = TBEIM;
455 uart0 = TBEC | TIE;
456 break;
457 case TX_COMP_PHASE:
458 uart5 = TSBEIM;
459 uart0 = TIE;
460 break;
461 case RX_PHASE:
462 uart5 = RX_MASK;
463 uart0 = RIE;
464 break;
465 default:
466 break;
467 }
468
469 sh_sir_write(self, IRIF_UART5, uart5);
470 sh_sir_write(self, IRIF_UART0, uart0);
471 }
472
473 static int sh_sir_is_which_phase(struct sh_sir_self *self)
474 {
475 u16 val = sh_sir_read(self, IRIF_UART5);
476
477 if (val & TBEIM)
478 return TX_PHASE;
479
480 if (val & TSBEIM)
481 return TX_COMP_PHASE;
482
483 if (val & RX_MASK)
484 return RX_PHASE;
485
486 return NONE_PHASE;
487 }
488
489 static void sh_sir_tx(struct sh_sir_self *self, int phase)
490 {
491 switch (phase) {
492 case TX_PHASE:
493 if (0 >= self->tx_buff.len) {
494 sh_sir_set_phase(self, TX_COMP_PHASE);
495 } else {
496 sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
497 self->tx_buff.len--;
498 self->tx_buff.data++;
499 }
500 break;
501 case TX_COMP_PHASE:
502 sh_sir_set_phase(self, RX_PHASE);
503 netif_wake_queue(self->ndev);
504 break;
505 default:
506 dev_err(&self->ndev->dev, "should not happen\n");
507 break;
508 }
509 }
510
511 static int sh_sir_read_data(struct sh_sir_self *self)
512 {
513 u16 val;
514 int timeout = 1024;
515
516 while (timeout--) {
517 val = sh_sir_read(self, IRIF_UART1);
518
519 /* data get */
520 if (val & RBF) {
521 if (val & (URSME | UROVE | URFRE | URPRE))
522 break;
523
524 return (int)sh_sir_read(self, IRIF_UART4);
525 }
526
527 udelay(1);
528 }
529
530 dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
531 val, sh_sir_read(self, IRIF_UART_STS2));
532
533 /* read data register for clear error */
534 sh_sir_read(self, IRIF_UART4);
535
536 return -1;
537 }
538
539 static void sh_sir_rx(struct sh_sir_self *self)
540 {
541 int timeout = 1024;
542 int data;
543
544 while (timeout--) {
545 data = sh_sir_read_data(self);
546 if (data < 0)
547 break;
548
549 async_unwrap_char(self->ndev, &self->ndev->stats,
550 &self->rx_buff, (u8)data);
551 self->ndev->last_rx = jiffies;
552
553 if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
554 continue;
555
556 break;
557 }
558 }
559
560 static irqreturn_t sh_sir_irq(int irq, void *dev_id)
561 {
562 struct sh_sir_self *self = dev_id;
563 struct device *dev = &self->ndev->dev;
564 int phase = sh_sir_is_which_phase(self);
565
566 switch (phase) {
567 case TX_COMP_PHASE:
568 case TX_PHASE:
569 sh_sir_tx(self, phase);
570 break;
571 case RX_PHASE:
572 if (sh_sir_read(self, IRIF_SIR3))
573 dev_err(dev, "rcv pulse width error occurred\n");
574
575 sh_sir_rx(self);
576 sh_sir_clear_all_err(self);
577 break;
578 default:
579 dev_err(dev, "unknown interrupt\n");
580 }
581
582 return IRQ_HANDLED;
583 }
584
585 /************************************************************************
586
587
588 net_device_ops function
589
590
591 ************************************************************************/
592 static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
593 {
594 struct sh_sir_self *self = netdev_priv(ndev);
595 int speed = irda_get_next_speed(skb);
596
597 if ((0 < speed) &&
598 (9600 != speed)) {
599 dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
600 return -EIO;
601 }
602
603 netif_stop_queue(ndev);
604
605 self->tx_buff.data = self->tx_buff.head;
606 self->tx_buff.len = 0;
607 if (skb->len)
608 self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
609 self->tx_buff.truesize);
610
611 sh_sir_set_phase(self, TX_PHASE);
612 dev_kfree_skb(skb);
613
614 return 0;
615 }
616
617 static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
618 {
619 /*
620 * FIXME
621 *
622 * This function is needed for irda framework.
623 * But nothing to do now
624 */
625 return 0;
626 }
627
628 static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
629 {
630 struct sh_sir_self *self = netdev_priv(ndev);
631
632 return &self->ndev->stats;
633 }
634
635 static int sh_sir_open(struct net_device *ndev)
636 {
637 struct sh_sir_self *self = netdev_priv(ndev);
638 int err;
639
640 clk_enable(self->clk);
641 err = sh_sir_crc_init(self);
642 if (err)
643 goto open_err;
644
645 sh_sir_set_baudrate(self, 9600);
646
647 self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
648 if (!self->irlap)
649 goto open_err;
650
651 /*
652 * Now enable the interrupt then start the queue
653 */
654 sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
655 sh_sir_read(self, IRIF_UART1); /* flag clear */
656 sh_sir_read(self, IRIF_UART4); /* flag clear */
657 sh_sir_set_phase(self, RX_PHASE);
658
659 netif_start_queue(ndev);
660
661 dev_info(&self->ndev->dev, "opened\n");
662
663 return 0;
664
665 open_err:
666 clk_disable(self->clk);
667
668 return err;
669 }
670
671 static int sh_sir_stop(struct net_device *ndev)
672 {
673 struct sh_sir_self *self = netdev_priv(ndev);
674
675 /* Stop IrLAP */
676 if (self->irlap) {
677 irlap_close(self->irlap);
678 self->irlap = NULL;
679 }
680
681 netif_stop_queue(ndev);
682
683 dev_info(&ndev->dev, "stoped\n");
684
685 return 0;
686 }
687
688 static const struct net_device_ops sh_sir_ndo = {
689 .ndo_open = sh_sir_open,
690 .ndo_stop = sh_sir_stop,
691 .ndo_start_xmit = sh_sir_hard_xmit,
692 .ndo_do_ioctl = sh_sir_ioctl,
693 .ndo_get_stats = sh_sir_stats,
694 };
695
696 /************************************************************************
697
698
699 platform_driver function
700
701
702 ************************************************************************/
703 static int __devinit sh_sir_probe(struct platform_device *pdev)
704 {
705 struct net_device *ndev;
706 struct sh_sir_self *self;
707 struct resource *res;
708 char clk_name[8];
709 void __iomem *base;
710 unsigned int irq;
711 int err = -ENOMEM;
712
713 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
714 irq = platform_get_irq(pdev, 0);
715 if (!res || irq < 0) {
716 dev_err(&pdev->dev, "Not enough platform resources.\n");
717 goto exit;
718 }
719
720 ndev = alloc_irdadev(sizeof(*self));
721 if (!ndev)
722 goto exit;
723
724 base = ioremap_nocache(res->start, resource_size(res));
725 if (!base) {
726 err = -ENXIO;
727 dev_err(&pdev->dev, "Unable to ioremap.\n");
728 goto err_mem_1;
729 }
730
731 self = netdev_priv(ndev);
732 err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
733 if (err)
734 goto err_mem_2;
735
736 snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
737 self->clk = clk_get(&pdev->dev, clk_name);
738 if (IS_ERR(self->clk)) {
739 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
740 goto err_mem_3;
741 }
742
743 irda_init_max_qos_capabilies(&self->qos);
744
745 ndev->netdev_ops = &sh_sir_ndo;
746 ndev->irq = irq;
747
748 self->membase = base;
749 self->ndev = ndev;
750 self->qos.baud_rate.bits &= IR_9600; /* FIXME */
751 self->qos.min_turn_time.bits = 1; /* 10 ms or more */
752
753 irda_qos_bits_to_value(&self->qos);
754
755 err = register_netdev(ndev);
756 if (err)
757 goto err_mem_4;
758
759 platform_set_drvdata(pdev, ndev);
760
761 if (request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self)) {
762 dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
763 goto err_mem_4;
764 }
765
766 dev_info(&pdev->dev, "SuperH IrDA probed\n");
767
768 goto exit;
769
770 err_mem_4:
771 clk_put(self->clk);
772 err_mem_3:
773 sh_sir_remove_iobuf(self);
774 err_mem_2:
775 iounmap(self->membase);
776 err_mem_1:
777 free_netdev(ndev);
778 exit:
779 return err;
780 }
781
782 static int __devexit sh_sir_remove(struct platform_device *pdev)
783 {
784 struct net_device *ndev = platform_get_drvdata(pdev);
785 struct sh_sir_self *self = netdev_priv(ndev);
786
787 if (!self)
788 return 0;
789
790 unregister_netdev(ndev);
791 clk_put(self->clk);
792 sh_sir_remove_iobuf(self);
793 iounmap(self->membase);
794 free_netdev(ndev);
795 platform_set_drvdata(pdev, NULL);
796
797 return 0;
798 }
799
800 static struct platform_driver sh_sir_driver = {
801 .probe = sh_sir_probe,
802 .remove = __devexit_p(sh_sir_remove),
803 .driver = {
804 .name = DRIVER_NAME,
805 },
806 };
807
808 static int __init sh_sir_init(void)
809 {
810 return platform_driver_register(&sh_sir_driver);
811 }
812
813 static void __exit sh_sir_exit(void)
814 {
815 platform_driver_unregister(&sh_sir_driver);
816 }
817
818 module_init(sh_sir_init);
819 module_exit(sh_sir_exit);
820
821 MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
822 MODULE_DESCRIPTION("SuperH IrDA driver");
823 MODULE_LICENSE("GPL");