Merge tag 'omap-for-v3.10/fixes-for-merge-window-part2' of git://git.kernel.org/pub...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / irda / sh_sir.c
1 /*
2 * SuperH IrDA Driver
3 *
4 * Copyright (C) 2009 Renesas Solutions Corp.
5 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6 *
7 * Based on bfin_sir.c
8 * Copyright 2006-2009 Analog Devices Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/io.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <net/irda/wrapper.h>
21 #include <net/irda/irda_device.h>
22 #include <asm/clock.h>
23
24 #define DRIVER_NAME "sh_sir"
25
26 #define RX_PHASE (1 << 0)
27 #define TX_PHASE (1 << 1)
28 #define TX_COMP_PHASE (1 << 2) /* tx complete */
29 #define NONE_PHASE (1 << 31)
30
31 #define IRIF_RINTCLR 0x0016 /* DMA rx interrupt source clear */
32 #define IRIF_TINTCLR 0x0018 /* DMA tx interrupt source clear */
33 #define IRIF_SIR0 0x0020 /* IrDA-SIR10 control */
34 #define IRIF_SIR1 0x0022 /* IrDA-SIR10 baudrate error correction */
35 #define IRIF_SIR2 0x0024 /* IrDA-SIR10 baudrate count */
36 #define IRIF_SIR3 0x0026 /* IrDA-SIR10 status */
37 #define IRIF_SIR_FRM 0x0028 /* Hardware frame processing set */
38 #define IRIF_SIR_EOF 0x002A /* EOF value */
39 #define IRIF_SIR_FLG 0x002C /* Flag clear */
40 #define IRIF_UART_STS2 0x002E /* UART status 2 */
41 #define IRIF_UART0 0x0030 /* UART control */
42 #define IRIF_UART1 0x0032 /* UART status */
43 #define IRIF_UART2 0x0034 /* UART mode */
44 #define IRIF_UART3 0x0036 /* UART transmit data */
45 #define IRIF_UART4 0x0038 /* UART receive data */
46 #define IRIF_UART5 0x003A /* UART interrupt mask */
47 #define IRIF_UART6 0x003C /* UART baud rate error correction */
48 #define IRIF_UART7 0x003E /* UART baud rate count set */
49 #define IRIF_CRC0 0x0040 /* CRC engine control */
50 #define IRIF_CRC1 0x0042 /* CRC engine input data */
51 #define IRIF_CRC2 0x0044 /* CRC engine calculation */
52 #define IRIF_CRC3 0x0046 /* CRC engine output data 1 */
53 #define IRIF_CRC4 0x0048 /* CRC engine output data 2 */
54
55 /* IRIF_SIR0 */
56 #define IRTPW (1 << 1) /* transmit pulse width select */
57 #define IRERRC (1 << 0) /* Clear receive pulse width error */
58
59 /* IRIF_SIR3 */
60 #define IRERR (1 << 0) /* received pulse width Error */
61
62 /* IRIF_SIR_FRM */
63 #define EOFD (1 << 9) /* EOF detection flag */
64 #define FRER (1 << 8) /* Frame Error bit */
65 #define FRP (1 << 0) /* Frame processing set */
66
67 /* IRIF_UART_STS2 */
68 #define IRSME (1 << 6) /* Receive Sum Error flag */
69 #define IROVE (1 << 5) /* Receive Overrun Error flag */
70 #define IRFRE (1 << 4) /* Receive Framing Error flag */
71 #define IRPRE (1 << 3) /* Receive Parity Error flag */
72
73 /* IRIF_UART0_*/
74 #define TBEC (1 << 2) /* Transmit Data Clear */
75 #define RIE (1 << 1) /* Receive Enable */
76 #define TIE (1 << 0) /* Transmit Enable */
77
78 /* IRIF_UART1 */
79 #define URSME (1 << 6) /* Receive Sum Error Flag */
80 #define UROVE (1 << 5) /* Receive Overrun Error Flag */
81 #define URFRE (1 << 4) /* Receive Framing Error Flag */
82 #define URPRE (1 << 3) /* Receive Parity Error Flag */
83 #define RBF (1 << 2) /* Receive Buffer Full Flag */
84 #define TSBE (1 << 1) /* Transmit Shift Buffer Empty Flag */
85 #define TBE (1 << 0) /* Transmit Buffer Empty flag */
86 #define TBCOMP (TSBE | TBE)
87
88 /* IRIF_UART5 */
89 #define RSEIM (1 << 6) /* Receive Sum Error Flag IRQ Mask */
90 #define RBFIM (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
91 #define TSBEIM (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
92 #define TBEIM (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
93 #define RX_MASK (RSEIM | RBFIM)
94
95 /* IRIF_CRC0 */
96 #define CRC_RST (1 << 15) /* CRC Engine Reset */
97 #define CRC_CT_MASK 0x0FFF
98
99 /************************************************************************
100
101
102 structure
103
104
105 ************************************************************************/
106 struct sh_sir_self {
107 void __iomem *membase;
108 unsigned int irq;
109 struct clk *clk;
110
111 struct net_device *ndev;
112
113 struct irlap_cb *irlap;
114 struct qos_info qos;
115
116 iobuff_t tx_buff;
117 iobuff_t rx_buff;
118 };
119
120 /************************************************************************
121
122
123 common function
124
125
126 ************************************************************************/
127 static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
128 {
129 iowrite16(data, self->membase + offset);
130 }
131
132 static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
133 {
134 return ioread16(self->membase + offset);
135 }
136
137 static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
138 u16 mask, u16 data)
139 {
140 u16 old, new;
141
142 old = sh_sir_read(self, offset);
143 new = (old & ~mask) | data;
144 if (old != new)
145 sh_sir_write(self, offset, new);
146 }
147
148 /************************************************************************
149
150
151 CRC function
152
153
154 ************************************************************************/
155 static void sh_sir_crc_reset(struct sh_sir_self *self)
156 {
157 sh_sir_write(self, IRIF_CRC0, CRC_RST);
158 }
159
160 static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
161 {
162 sh_sir_write(self, IRIF_CRC1, (u16)data);
163 }
164
165 static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
166 {
167 return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
168 }
169
170 static u16 sh_sir_crc_out(struct sh_sir_self *self)
171 {
172 return sh_sir_read(self, IRIF_CRC4);
173 }
174
175 static int sh_sir_crc_init(struct sh_sir_self *self)
176 {
177 struct device *dev = &self->ndev->dev;
178 int ret = -EIO;
179 u16 val;
180
181 sh_sir_crc_reset(self);
182
183 sh_sir_crc_add(self, 0xCC);
184 sh_sir_crc_add(self, 0xF5);
185 sh_sir_crc_add(self, 0xF1);
186 sh_sir_crc_add(self, 0xA7);
187
188 val = sh_sir_crc_cnt(self);
189 if (4 != val) {
190 dev_err(dev, "CRC count error %x\n", val);
191 goto crc_init_out;
192 }
193
194 val = sh_sir_crc_out(self);
195 if (0x51DF != val) {
196 dev_err(dev, "CRC result error%x\n", val);
197 goto crc_init_out;
198 }
199
200 ret = 0;
201
202 crc_init_out:
203
204 sh_sir_crc_reset(self);
205 return ret;
206 }
207
208 /************************************************************************
209
210
211 baud rate functions
212
213
214 ************************************************************************/
215 #define SCLK_BASE 1843200 /* 1.8432MHz */
216
217 static u32 sh_sir_find_sclk(struct clk *irda_clk)
218 {
219 struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
220 struct clk *pclk = clk_get(NULL, "peripheral_clk");
221 u32 limit, min = 0xffffffff, tmp;
222 int i, index = 0;
223
224 limit = clk_get_rate(pclk);
225 clk_put(pclk);
226
227 /* IrDA can not set over peripheral_clk */
228 for (i = 0;
229 freq_table[i].frequency != CPUFREQ_TABLE_END;
230 i++) {
231 u32 freq = freq_table[i].frequency;
232
233 if (freq == CPUFREQ_ENTRY_INVALID)
234 continue;
235
236 /* IrDA should not over peripheral_clk */
237 if (freq > limit)
238 continue;
239
240 tmp = freq % SCLK_BASE;
241 if (tmp < min) {
242 min = tmp;
243 index = i;
244 }
245 }
246
247 return freq_table[index].frequency;
248 }
249
250 #define ERR_ROUNDING(a) ((a + 5000) / 10000)
251 static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
252 {
253 struct clk *clk;
254 struct device *dev = &self->ndev->dev;
255 u32 rate;
256 u16 uabca, uabc;
257 u16 irbca, irbc;
258 u32 min, rerr, tmp;
259 int i;
260
261 /* Baud Rate Error Correction x 10000 */
262 u32 rate_err_array[] = {
263 0, 625, 1250, 1875,
264 2500, 3125, 3750, 4375,
265 5000, 5625, 6250, 6875,
266 7500, 8125, 8750, 9375,
267 };
268
269 /*
270 * FIXME
271 *
272 * it support 9600 only now
273 */
274 switch (baudrate) {
275 case 9600:
276 break;
277 default:
278 dev_err(dev, "un-supported baudrate %d\n", baudrate);
279 return -EIO;
280 }
281
282 clk = clk_get(NULL, "irda_clk");
283 if (IS_ERR(clk)) {
284 dev_err(dev, "can not get irda_clk\n");
285 return -EIO;
286 }
287
288 clk_set_rate(clk, sh_sir_find_sclk(clk));
289 rate = clk_get_rate(clk);
290 clk_put(clk);
291
292 dev_dbg(dev, "selected sclk = %d\n", rate);
293
294 /*
295 * CALCULATION
296 *
297 * 1843200 = system rate / (irbca + (irbc + 1))
298 */
299
300 irbc = rate / SCLK_BASE;
301
302 tmp = rate - (SCLK_BASE * irbc);
303 tmp *= 10000;
304
305 rerr = tmp / SCLK_BASE;
306
307 min = 0xffffffff;
308 irbca = 0;
309 for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
310 tmp = abs(rate_err_array[i] - rerr);
311 if (min > tmp) {
312 min = tmp;
313 irbca = i;
314 }
315 }
316
317 tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
318 if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
319 dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
320
321 dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
322 SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
323
324 irbca = (irbca & 0xF) << 4;
325 irbc = (irbc - 1) & 0xF;
326
327 if (!irbc) {
328 dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
329 return -EIO;
330 }
331
332 sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
333 sh_sir_write(self, IRIF_SIR1, irbca);
334 sh_sir_write(self, IRIF_SIR2, irbc);
335
336 /*
337 * CALCULATION
338 *
339 * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
340 */
341
342 uabc = rate / baudrate;
343 uabc = (uabc / 16) - 1;
344 uabc = (uabc + 1) * 16;
345
346 tmp = rate - (uabc * baudrate);
347 tmp *= 10000;
348
349 rerr = tmp / baudrate;
350
351 min = 0xffffffff;
352 uabca = 0;
353 for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
354 tmp = abs(rate_err_array[i] - rerr);
355 if (min > tmp) {
356 min = tmp;
357 uabca = i;
358 }
359 }
360
361 tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
362 if ((baudrate / 100) < abs(tmp - baudrate))
363 dev_warn(dev, "UART freq error margin over %d\n", tmp);
364
365 dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
366 baudrate, tmp,
367 uabc, rate_err_array[uabca]);
368
369 uabca = (uabca & 0xF) << 4;
370 uabc = (uabc / 16) - 1;
371
372 sh_sir_write(self, IRIF_UART6, uabca);
373 sh_sir_write(self, IRIF_UART7, uabc);
374
375 return 0;
376 }
377
378 /************************************************************************
379
380
381 iobuf function
382
383
384 ************************************************************************/
385 static int __sh_sir_init_iobuf(iobuff_t *io, int size)
386 {
387 io->head = kmalloc(size, GFP_KERNEL);
388 if (!io->head)
389 return -ENOMEM;
390
391 io->truesize = size;
392 io->in_frame = FALSE;
393 io->state = OUTSIDE_FRAME;
394 io->data = io->head;
395
396 return 0;
397 }
398
399 static void sh_sir_remove_iobuf(struct sh_sir_self *self)
400 {
401 kfree(self->rx_buff.head);
402 kfree(self->tx_buff.head);
403
404 self->rx_buff.head = NULL;
405 self->tx_buff.head = NULL;
406 }
407
408 static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
409 {
410 int err = -ENOMEM;
411
412 if (self->rx_buff.head ||
413 self->tx_buff.head) {
414 dev_err(&self->ndev->dev, "iobuff has already existed.");
415 return err;
416 }
417
418 err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
419 if (err)
420 goto iobuf_err;
421
422 err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
423
424 iobuf_err:
425 if (err)
426 sh_sir_remove_iobuf(self);
427
428 return err;
429 }
430
431 /************************************************************************
432
433
434 status function
435
436
437 ************************************************************************/
438 static void sh_sir_clear_all_err(struct sh_sir_self *self)
439 {
440 /* Clear error flag for receive pulse width */
441 sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
442
443 /* Clear frame / EOF error flag */
444 sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
445
446 /* Clear all status error */
447 sh_sir_write(self, IRIF_UART_STS2, 0);
448 }
449
450 static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
451 {
452 u16 uart5 = 0;
453 u16 uart0 = 0;
454
455 switch (phase) {
456 case TX_PHASE:
457 uart5 = TBEIM;
458 uart0 = TBEC | TIE;
459 break;
460 case TX_COMP_PHASE:
461 uart5 = TSBEIM;
462 uart0 = TIE;
463 break;
464 case RX_PHASE:
465 uart5 = RX_MASK;
466 uart0 = RIE;
467 break;
468 default:
469 break;
470 }
471
472 sh_sir_write(self, IRIF_UART5, uart5);
473 sh_sir_write(self, IRIF_UART0, uart0);
474 }
475
476 static int sh_sir_is_which_phase(struct sh_sir_self *self)
477 {
478 u16 val = sh_sir_read(self, IRIF_UART5);
479
480 if (val & TBEIM)
481 return TX_PHASE;
482
483 if (val & TSBEIM)
484 return TX_COMP_PHASE;
485
486 if (val & RX_MASK)
487 return RX_PHASE;
488
489 return NONE_PHASE;
490 }
491
492 static void sh_sir_tx(struct sh_sir_self *self, int phase)
493 {
494 switch (phase) {
495 case TX_PHASE:
496 if (0 >= self->tx_buff.len) {
497 sh_sir_set_phase(self, TX_COMP_PHASE);
498 } else {
499 sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
500 self->tx_buff.len--;
501 self->tx_buff.data++;
502 }
503 break;
504 case TX_COMP_PHASE:
505 sh_sir_set_phase(self, RX_PHASE);
506 netif_wake_queue(self->ndev);
507 break;
508 default:
509 dev_err(&self->ndev->dev, "should not happen\n");
510 break;
511 }
512 }
513
514 static int sh_sir_read_data(struct sh_sir_self *self)
515 {
516 u16 val = 0;
517 int timeout = 1024;
518
519 while (timeout--) {
520 val = sh_sir_read(self, IRIF_UART1);
521
522 /* data get */
523 if (val & RBF) {
524 if (val & (URSME | UROVE | URFRE | URPRE))
525 break;
526
527 return (int)sh_sir_read(self, IRIF_UART4);
528 }
529
530 udelay(1);
531 }
532
533 dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
534 val, sh_sir_read(self, IRIF_UART_STS2));
535
536 /* read data register for clear error */
537 sh_sir_read(self, IRIF_UART4);
538
539 return -1;
540 }
541
542 static void sh_sir_rx(struct sh_sir_self *self)
543 {
544 int timeout = 1024;
545 int data;
546
547 while (timeout--) {
548 data = sh_sir_read_data(self);
549 if (data < 0)
550 break;
551
552 async_unwrap_char(self->ndev, &self->ndev->stats,
553 &self->rx_buff, (u8)data);
554 self->ndev->last_rx = jiffies;
555
556 if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
557 continue;
558
559 break;
560 }
561 }
562
563 static irqreturn_t sh_sir_irq(int irq, void *dev_id)
564 {
565 struct sh_sir_self *self = dev_id;
566 struct device *dev = &self->ndev->dev;
567 int phase = sh_sir_is_which_phase(self);
568
569 switch (phase) {
570 case TX_COMP_PHASE:
571 case TX_PHASE:
572 sh_sir_tx(self, phase);
573 break;
574 case RX_PHASE:
575 if (sh_sir_read(self, IRIF_SIR3))
576 dev_err(dev, "rcv pulse width error occurred\n");
577
578 sh_sir_rx(self);
579 sh_sir_clear_all_err(self);
580 break;
581 default:
582 dev_err(dev, "unknown interrupt\n");
583 }
584
585 return IRQ_HANDLED;
586 }
587
588 /************************************************************************
589
590
591 net_device_ops function
592
593
594 ************************************************************************/
595 static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
596 {
597 struct sh_sir_self *self = netdev_priv(ndev);
598 int speed = irda_get_next_speed(skb);
599
600 if ((0 < speed) &&
601 (9600 != speed)) {
602 dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
603 return -EIO;
604 }
605
606 netif_stop_queue(ndev);
607
608 self->tx_buff.data = self->tx_buff.head;
609 self->tx_buff.len = 0;
610 if (skb->len)
611 self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
612 self->tx_buff.truesize);
613
614 sh_sir_set_phase(self, TX_PHASE);
615 dev_kfree_skb(skb);
616
617 return 0;
618 }
619
620 static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
621 {
622 /*
623 * FIXME
624 *
625 * This function is needed for irda framework.
626 * But nothing to do now
627 */
628 return 0;
629 }
630
631 static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
632 {
633 struct sh_sir_self *self = netdev_priv(ndev);
634
635 return &self->ndev->stats;
636 }
637
638 static int sh_sir_open(struct net_device *ndev)
639 {
640 struct sh_sir_self *self = netdev_priv(ndev);
641 int err;
642
643 clk_enable(self->clk);
644 err = sh_sir_crc_init(self);
645 if (err)
646 goto open_err;
647
648 sh_sir_set_baudrate(self, 9600);
649
650 self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
651 if (!self->irlap) {
652 err = -ENODEV;
653 goto open_err;
654 }
655
656 /*
657 * Now enable the interrupt then start the queue
658 */
659 sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
660 sh_sir_read(self, IRIF_UART1); /* flag clear */
661 sh_sir_read(self, IRIF_UART4); /* flag clear */
662 sh_sir_set_phase(self, RX_PHASE);
663
664 netif_start_queue(ndev);
665
666 dev_info(&self->ndev->dev, "opened\n");
667
668 return 0;
669
670 open_err:
671 clk_disable(self->clk);
672
673 return err;
674 }
675
676 static int sh_sir_stop(struct net_device *ndev)
677 {
678 struct sh_sir_self *self = netdev_priv(ndev);
679
680 /* Stop IrLAP */
681 if (self->irlap) {
682 irlap_close(self->irlap);
683 self->irlap = NULL;
684 }
685
686 netif_stop_queue(ndev);
687
688 dev_info(&ndev->dev, "stopped\n");
689
690 return 0;
691 }
692
693 static const struct net_device_ops sh_sir_ndo = {
694 .ndo_open = sh_sir_open,
695 .ndo_stop = sh_sir_stop,
696 .ndo_start_xmit = sh_sir_hard_xmit,
697 .ndo_do_ioctl = sh_sir_ioctl,
698 .ndo_get_stats = sh_sir_stats,
699 };
700
701 /************************************************************************
702
703
704 platform_driver function
705
706
707 ************************************************************************/
708 static int sh_sir_probe(struct platform_device *pdev)
709 {
710 struct net_device *ndev;
711 struct sh_sir_self *self;
712 struct resource *res;
713 char clk_name[8];
714 int irq;
715 int err = -ENOMEM;
716
717 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
718 irq = platform_get_irq(pdev, 0);
719 if (!res || irq < 0) {
720 dev_err(&pdev->dev, "Not enough platform resources.\n");
721 goto exit;
722 }
723
724 ndev = alloc_irdadev(sizeof(*self));
725 if (!ndev)
726 goto exit;
727
728 self = netdev_priv(ndev);
729 self->membase = ioremap_nocache(res->start, resource_size(res));
730 if (!self->membase) {
731 err = -ENXIO;
732 dev_err(&pdev->dev, "Unable to ioremap.\n");
733 goto err_mem_1;
734 }
735
736 err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
737 if (err)
738 goto err_mem_2;
739
740 snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
741 self->clk = clk_get(&pdev->dev, clk_name);
742 if (IS_ERR(self->clk)) {
743 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
744 err = -ENODEV;
745 goto err_mem_3;
746 }
747
748 irda_init_max_qos_capabilies(&self->qos);
749
750 ndev->netdev_ops = &sh_sir_ndo;
751 ndev->irq = irq;
752
753 self->ndev = ndev;
754 self->qos.baud_rate.bits &= IR_9600; /* FIXME */
755 self->qos.min_turn_time.bits = 1; /* 10 ms or more */
756
757 irda_qos_bits_to_value(&self->qos);
758
759 err = register_netdev(ndev);
760 if (err)
761 goto err_mem_4;
762
763 platform_set_drvdata(pdev, ndev);
764 err = request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self);
765 if (err) {
766 dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
767 goto err_mem_4;
768 }
769
770 dev_info(&pdev->dev, "SuperH IrDA probed\n");
771
772 goto exit;
773
774 err_mem_4:
775 clk_put(self->clk);
776 err_mem_3:
777 sh_sir_remove_iobuf(self);
778 err_mem_2:
779 iounmap(self->membase);
780 err_mem_1:
781 free_netdev(ndev);
782 exit:
783 return err;
784 }
785
786 static int sh_sir_remove(struct platform_device *pdev)
787 {
788 struct net_device *ndev = platform_get_drvdata(pdev);
789 struct sh_sir_self *self = netdev_priv(ndev);
790
791 if (!self)
792 return 0;
793
794 unregister_netdev(ndev);
795 clk_put(self->clk);
796 sh_sir_remove_iobuf(self);
797 iounmap(self->membase);
798 free_netdev(ndev);
799 platform_set_drvdata(pdev, NULL);
800
801 return 0;
802 }
803
804 static struct platform_driver sh_sir_driver = {
805 .probe = sh_sir_probe,
806 .remove = sh_sir_remove,
807 .driver = {
808 .name = DRIVER_NAME,
809 },
810 };
811
812 module_platform_driver(sh_sir_driver);
813
814 MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
815 MODULE_DESCRIPTION("SuperH IrDA driver");
816 MODULE_LICENSE("GPL");