Merge branch 'gma500-fixes' of git://github.com/patjak/drm-gma500 into drm-fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / irda / au1k_ir.c
1 /*
2 * Alchemy Semi Au1000 IrDA driver
3 *
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
7 *
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
20 */
21
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/time.h>
29 #include <linux/types.h>
30 #include <linux/ioport.h>
31
32 #include <net/irda/irda.h>
33 #include <net/irda/irmod.h>
34 #include <net/irda/wrapper.h>
35 #include <net/irda/irda_device.h>
36 #include <asm/mach-au1x00/au1000.h>
37
38 /* registers */
39 #define IR_RING_PTR_STATUS 0x00
40 #define IR_RING_BASE_ADDR_H 0x04
41 #define IR_RING_BASE_ADDR_L 0x08
42 #define IR_RING_SIZE 0x0C
43 #define IR_RING_PROMPT 0x10
44 #define IR_RING_ADDR_CMPR 0x14
45 #define IR_INT_CLEAR 0x18
46 #define IR_CONFIG_1 0x20
47 #define IR_SIR_FLAGS 0x24
48 #define IR_STATUS 0x28
49 #define IR_READ_PHY_CONFIG 0x2C
50 #define IR_WRITE_PHY_CONFIG 0x30
51 #define IR_MAX_PKT_LEN 0x34
52 #define IR_RX_BYTE_CNT 0x38
53 #define IR_CONFIG_2 0x3C
54 #define IR_ENABLE 0x40
55
56 /* Config1 */
57 #define IR_RX_INVERT_LED (1 << 0)
58 #define IR_TX_INVERT_LED (1 << 1)
59 #define IR_ST (1 << 2)
60 #define IR_SF (1 << 3)
61 #define IR_SIR (1 << 4)
62 #define IR_MIR (1 << 5)
63 #define IR_FIR (1 << 6)
64 #define IR_16CRC (1 << 7)
65 #define IR_TD (1 << 8)
66 #define IR_RX_ALL (1 << 9)
67 #define IR_DMA_ENABLE (1 << 10)
68 #define IR_RX_ENABLE (1 << 11)
69 #define IR_TX_ENABLE (1 << 12)
70 #define IR_LOOPBACK (1 << 14)
71 #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
72 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
73 IR_16CRC)
74
75 /* ir_status */
76 #define IR_RX_STATUS (1 << 9)
77 #define IR_TX_STATUS (1 << 10)
78 #define IR_PHYEN (1 << 15)
79
80 /* ir_write_phy_config */
81 #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
82 #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
83 #define IR_P(x) ((x) & 0x1f) /* preamble bits */
84
85 /* Config2 */
86 #define IR_MODE_INV (1 << 0)
87 #define IR_ONE_PIN (1 << 1)
88 #define IR_PHYCLK_40MHZ (0 << 2)
89 #define IR_PHYCLK_48MHZ (1 << 2)
90 #define IR_PHYCLK_56MHZ (2 << 2)
91 #define IR_PHYCLK_64MHZ (3 << 2)
92 #define IR_DP (1 << 4)
93 #define IR_DA (1 << 5)
94 #define IR_FLT_HIGH (0 << 6)
95 #define IR_FLT_MEDHI (1 << 6)
96 #define IR_FLT_MEDLO (2 << 6)
97 #define IR_FLT_LO (3 << 6)
98 #define IR_IEN (1 << 8)
99
100 /* ir_enable */
101 #define IR_HC (1 << 3) /* divide SBUS clock by 2 */
102 #define IR_CE (1 << 2) /* clock enable */
103 #define IR_C (1 << 1) /* coherency bit */
104 #define IR_BE (1 << 0) /* set in big endian mode */
105
106 #define NUM_IR_DESC 64
107 #define RING_SIZE_4 0x0
108 #define RING_SIZE_16 0x3
109 #define RING_SIZE_64 0xF
110 #define MAX_NUM_IR_DESC 64
111 #define MAX_BUF_SIZE 2048
112
113 /* Ring descriptor flags */
114 #define AU_OWN (1 << 7) /* tx,rx */
115 #define IR_DIS_CRC (1 << 6) /* tx */
116 #define IR_BAD_CRC (1 << 5) /* tx */
117 #define IR_NEED_PULSE (1 << 4) /* tx */
118 #define IR_FORCE_UNDER (1 << 3) /* tx */
119 #define IR_DISABLE_TX (1 << 2) /* tx */
120 #define IR_HW_UNDER (1 << 0) /* tx */
121 #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
122
123 #define IR_PHY_ERROR (1 << 6) /* rx */
124 #define IR_CRC_ERROR (1 << 5) /* rx */
125 #define IR_MAX_LEN (1 << 4) /* rx */
126 #define IR_FIFO_OVER (1 << 3) /* rx */
127 #define IR_SIR_ERROR (1 << 2) /* rx */
128 #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
129 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
130
131 struct db_dest {
132 struct db_dest *pnext;
133 volatile u32 *vaddr;
134 dma_addr_t dma_addr;
135 };
136
137 struct ring_dest {
138 u8 count_0; /* 7:0 */
139 u8 count_1; /* 12:8 */
140 u8 reserved;
141 u8 flags;
142 u8 addr_0; /* 7:0 */
143 u8 addr_1; /* 15:8 */
144 u8 addr_2; /* 23:16 */
145 u8 addr_3; /* 31:24 */
146 };
147
148 /* Private data for each instance */
149 struct au1k_private {
150 void __iomem *iobase;
151 int irq_rx, irq_tx;
152
153 struct db_dest *pDBfree;
154 struct db_dest db[2 * NUM_IR_DESC];
155 volatile struct ring_dest *rx_ring[NUM_IR_DESC];
156 volatile struct ring_dest *tx_ring[NUM_IR_DESC];
157 struct db_dest *rx_db_inuse[NUM_IR_DESC];
158 struct db_dest *tx_db_inuse[NUM_IR_DESC];
159 u32 rx_head;
160 u32 tx_head;
161 u32 tx_tail;
162 u32 tx_full;
163
164 iobuff_t rx_buff;
165
166 struct net_device *netdev;
167 struct timeval stamp;
168 struct timeval now;
169 struct qos_info qos;
170 struct irlap_cb *irlap;
171
172 u8 open;
173 u32 speed;
174 u32 newspeed;
175
176 struct timer_list timer;
177
178 struct resource *ioarea;
179 struct au1k_irda_platform_data *platdata;
180 };
181
182 static int qos_mtt_bits = 0x07; /* 1 ms or more */
183
184 #define RUN_AT(x) (jiffies + (x))
185
186 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
187 {
188 if (p->platdata && p->platdata->set_phy_mode)
189 p->platdata->set_phy_mode(mode);
190 }
191
192 static inline unsigned long irda_read(struct au1k_private *p,
193 unsigned long ofs)
194 {
195 /*
196 * IrDA peripheral bug. You have to read the register
197 * twice to get the right value.
198 */
199 (void)__raw_readl(p->iobase + ofs);
200 return __raw_readl(p->iobase + ofs);
201 }
202
203 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
204 unsigned long val)
205 {
206 __raw_writel(val, p->iobase + ofs);
207 wmb();
208 }
209
210 /*
211 * Buffer allocation/deallocation routines. The buffer descriptor returned
212 * has the virtual and dma address of a buffer suitable for
213 * both, receive and transmit operations.
214 */
215 static struct db_dest *GetFreeDB(struct au1k_private *aup)
216 {
217 struct db_dest *db;
218 db = aup->pDBfree;
219
220 if (db)
221 aup->pDBfree = db->pnext;
222 return db;
223 }
224
225 /*
226 DMA memory allocation, derived from pci_alloc_consistent.
227 However, the Au1000 data cache is coherent (when programmed
228 so), therefore we return KSEG0 address, not KSEG1.
229 */
230 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
231 {
232 void *ret;
233 int gfp = GFP_ATOMIC | GFP_DMA;
234
235 ret = (void *)__get_free_pages(gfp, get_order(size));
236
237 if (ret != NULL) {
238 memset(ret, 0, size);
239 *dma_handle = virt_to_bus(ret);
240 ret = (void *)KSEG0ADDR(ret);
241 }
242 return ret;
243 }
244
245 static void dma_free(void *vaddr, size_t size)
246 {
247 vaddr = (void *)KSEG0ADDR(vaddr);
248 free_pages((unsigned long) vaddr, get_order(size));
249 }
250
251
252 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
253 {
254 int i;
255 for (i = 0; i < NUM_IR_DESC; i++) {
256 aup->rx_ring[i] = (volatile struct ring_dest *)
257 (rx_base + sizeof(struct ring_dest) * i);
258 }
259 for (i = 0; i < NUM_IR_DESC; i++) {
260 aup->tx_ring[i] = (volatile struct ring_dest *)
261 (tx_base + sizeof(struct ring_dest) * i);
262 }
263 }
264
265 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
266 {
267 io->head = kmalloc(size, GFP_KERNEL);
268 if (io->head != NULL) {
269 io->truesize = size;
270 io->in_frame = FALSE;
271 io->state = OUTSIDE_FRAME;
272 io->data = io->head;
273 }
274 return io->head ? 0 : -ENOMEM;
275 }
276
277 /*
278 * Set the IrDA communications speed.
279 */
280 static int au1k_irda_set_speed(struct net_device *dev, int speed)
281 {
282 struct au1k_private *aup = netdev_priv(dev);
283 volatile struct ring_dest *ptxd;
284 unsigned long control;
285 int ret = 0, timeout = 10, i;
286
287 if (speed == aup->speed)
288 return ret;
289
290 /* disable PHY first */
291 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
292 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
293
294 /* disable RX/TX */
295 irda_write(aup, IR_CONFIG_1,
296 irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
297 msleep(20);
298 while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
299 msleep(20);
300 if (!timeout--) {
301 printk(KERN_ERR "%s: rx/tx disable timeout\n",
302 dev->name);
303 break;
304 }
305 }
306
307 /* disable DMA */
308 irda_write(aup, IR_CONFIG_1,
309 irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
310 msleep(20);
311
312 /* After we disable tx/rx. the index pointers go back to zero. */
313 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
314 for (i = 0; i < NUM_IR_DESC; i++) {
315 ptxd = aup->tx_ring[i];
316 ptxd->flags = 0;
317 ptxd->count_0 = 0;
318 ptxd->count_1 = 0;
319 }
320
321 for (i = 0; i < NUM_IR_DESC; i++) {
322 ptxd = aup->rx_ring[i];
323 ptxd->count_0 = 0;
324 ptxd->count_1 = 0;
325 ptxd->flags = AU_OWN;
326 }
327
328 if (speed == 4000000)
329 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
330 else
331 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
332
333 switch (speed) {
334 case 9600:
335 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
336 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
337 break;
338 case 19200:
339 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
340 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
341 break;
342 case 38400:
343 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
344 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
345 break;
346 case 57600:
347 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
348 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
349 break;
350 case 115200:
351 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
352 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
353 break;
354 case 4000000:
355 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
356 irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
357 IR_RX_ENABLE);
358 break;
359 default:
360 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
361 ret = -EINVAL;
362 break;
363 }
364
365 aup->speed = speed;
366 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
367
368 control = irda_read(aup, IR_STATUS);
369 irda_write(aup, IR_RING_PROMPT, 0);
370
371 if (control & (1 << 14)) {
372 printk(KERN_ERR "%s: configuration error\n", dev->name);
373 } else {
374 if (control & (1 << 11))
375 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
376 if (control & (1 << 12))
377 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
378 if (control & (1 << 13))
379 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
380 if (control & (1 << 10))
381 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
382 if (control & (1 << 9))
383 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
384 }
385
386 return ret;
387 }
388
389 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
390 {
391 struct net_device_stats *ps = &dev->stats;
392
393 ps->rx_packets++;
394
395 if (status & IR_RX_ERROR) {
396 ps->rx_errors++;
397 if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
398 ps->rx_missed_errors++;
399 if (status & IR_MAX_LEN)
400 ps->rx_length_errors++;
401 if (status & IR_CRC_ERROR)
402 ps->rx_crc_errors++;
403 } else
404 ps->rx_bytes += count;
405 }
406
407 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
408 {
409 struct net_device_stats *ps = &dev->stats;
410
411 ps->tx_packets++;
412 ps->tx_bytes += pkt_len;
413
414 if (status & IR_TX_ERROR) {
415 ps->tx_errors++;
416 ps->tx_aborted_errors++;
417 }
418 }
419
420 static void au1k_tx_ack(struct net_device *dev)
421 {
422 struct au1k_private *aup = netdev_priv(dev);
423 volatile struct ring_dest *ptxd;
424
425 ptxd = aup->tx_ring[aup->tx_tail];
426 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
427 update_tx_stats(dev, ptxd->flags,
428 (ptxd->count_1 << 8) | ptxd->count_0);
429 ptxd->count_0 = 0;
430 ptxd->count_1 = 0;
431 wmb();
432 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
433 ptxd = aup->tx_ring[aup->tx_tail];
434
435 if (aup->tx_full) {
436 aup->tx_full = 0;
437 netif_wake_queue(dev);
438 }
439 }
440
441 if (aup->tx_tail == aup->tx_head) {
442 if (aup->newspeed) {
443 au1k_irda_set_speed(dev, aup->newspeed);
444 aup->newspeed = 0;
445 } else {
446 irda_write(aup, IR_CONFIG_1,
447 irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
448 irda_write(aup, IR_CONFIG_1,
449 irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
450 irda_write(aup, IR_RING_PROMPT, 0);
451 }
452 }
453 }
454
455 static int au1k_irda_rx(struct net_device *dev)
456 {
457 struct au1k_private *aup = netdev_priv(dev);
458 volatile struct ring_dest *prxd;
459 struct sk_buff *skb;
460 struct db_dest *pDB;
461 u32 flags, count;
462
463 prxd = aup->rx_ring[aup->rx_head];
464 flags = prxd->flags;
465
466 while (!(flags & AU_OWN)) {
467 pDB = aup->rx_db_inuse[aup->rx_head];
468 count = (prxd->count_1 << 8) | prxd->count_0;
469 if (!(flags & IR_RX_ERROR)) {
470 /* good frame */
471 update_rx_stats(dev, flags, count);
472 skb = alloc_skb(count + 1, GFP_ATOMIC);
473 if (skb == NULL) {
474 dev->stats.rx_dropped++;
475 continue;
476 }
477 skb_reserve(skb, 1);
478 if (aup->speed == 4000000)
479 skb_put(skb, count);
480 else
481 skb_put(skb, count - 2);
482 skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
483 count - 2);
484 skb->dev = dev;
485 skb_reset_mac_header(skb);
486 skb->protocol = htons(ETH_P_IRDA);
487 netif_rx(skb);
488 prxd->count_0 = 0;
489 prxd->count_1 = 0;
490 }
491 prxd->flags |= AU_OWN;
492 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
493 irda_write(aup, IR_RING_PROMPT, 0);
494
495 /* next descriptor */
496 prxd = aup->rx_ring[aup->rx_head];
497 flags = prxd->flags;
498
499 }
500 return 0;
501 }
502
503 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
504 {
505 struct net_device *dev = dev_id;
506 struct au1k_private *aup = netdev_priv(dev);
507
508 irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
509
510 au1k_irda_rx(dev);
511 au1k_tx_ack(dev);
512
513 return IRQ_HANDLED;
514 }
515
516 static int au1k_init(struct net_device *dev)
517 {
518 struct au1k_private *aup = netdev_priv(dev);
519 u32 enable, ring_address;
520 int i;
521
522 enable = IR_HC | IR_CE | IR_C;
523 #ifndef CONFIG_CPU_LITTLE_ENDIAN
524 enable |= IR_BE;
525 #endif
526 aup->tx_head = 0;
527 aup->tx_tail = 0;
528 aup->rx_head = 0;
529
530 for (i = 0; i < NUM_IR_DESC; i++)
531 aup->rx_ring[i]->flags = AU_OWN;
532
533 irda_write(aup, IR_ENABLE, enable);
534 msleep(20);
535
536 /* disable PHY */
537 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
538 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
539 msleep(20);
540
541 irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
542
543 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
544 irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
545 irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
546
547 irda_write(aup, IR_RING_SIZE,
548 (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
549
550 irda_write(aup, IR_CONFIG_2, IR_PHYCLK_48MHZ | IR_ONE_PIN);
551 irda_write(aup, IR_RING_ADDR_CMPR, 0);
552
553 au1k_irda_set_speed(dev, 9600);
554 return 0;
555 }
556
557 static int au1k_irda_start(struct net_device *dev)
558 {
559 struct au1k_private *aup = netdev_priv(dev);
560 char hwname[32];
561 int retval;
562
563 retval = au1k_init(dev);
564 if (retval) {
565 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
566 return retval;
567 }
568
569 retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
570 dev->name, dev);
571 if (retval) {
572 printk(KERN_ERR "%s: unable to get IRQ %d\n",
573 dev->name, dev->irq);
574 return retval;
575 }
576 retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
577 dev->name, dev);
578 if (retval) {
579 free_irq(aup->irq_tx, dev);
580 printk(KERN_ERR "%s: unable to get IRQ %d\n",
581 dev->name, dev->irq);
582 return retval;
583 }
584
585 /* Give self a hardware name */
586 sprintf(hwname, "Au1000 SIR/FIR");
587 aup->irlap = irlap_open(dev, &aup->qos, hwname);
588 netif_start_queue(dev);
589
590 /* int enable */
591 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
592
593 /* power up */
594 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
595
596 aup->timer.expires = RUN_AT((3 * HZ));
597 aup->timer.data = (unsigned long)dev;
598 return 0;
599 }
600
601 static int au1k_irda_stop(struct net_device *dev)
602 {
603 struct au1k_private *aup = netdev_priv(dev);
604
605 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
606
607 /* disable interrupts */
608 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
609 irda_write(aup, IR_CONFIG_1, 0);
610 irda_write(aup, IR_ENABLE, 0); /* disable clock */
611
612 if (aup->irlap) {
613 irlap_close(aup->irlap);
614 aup->irlap = NULL;
615 }
616
617 netif_stop_queue(dev);
618 del_timer(&aup->timer);
619
620 /* disable the interrupt */
621 free_irq(aup->irq_tx, dev);
622 free_irq(aup->irq_rx, dev);
623
624 return 0;
625 }
626
627 /*
628 * Au1000 transmit routine.
629 */
630 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
631 {
632 struct au1k_private *aup = netdev_priv(dev);
633 int speed = irda_get_next_speed(skb);
634 volatile struct ring_dest *ptxd;
635 struct db_dest *pDB;
636 u32 len, flags;
637
638 if (speed != aup->speed && speed != -1)
639 aup->newspeed = speed;
640
641 if ((skb->len == 0) && (aup->newspeed)) {
642 if (aup->tx_tail == aup->tx_head) {
643 au1k_irda_set_speed(dev, speed);
644 aup->newspeed = 0;
645 }
646 dev_kfree_skb(skb);
647 return NETDEV_TX_OK;
648 }
649
650 ptxd = aup->tx_ring[aup->tx_head];
651 flags = ptxd->flags;
652
653 if (flags & AU_OWN) {
654 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
655 netif_stop_queue(dev);
656 aup->tx_full = 1;
657 return 1;
658 } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
659 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
660 netif_stop_queue(dev);
661 aup->tx_full = 1;
662 return 1;
663 }
664
665 pDB = aup->tx_db_inuse[aup->tx_head];
666
667 #if 0
668 if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
669 printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
670 irda_read(aup, IR_RX_BYTE_CNT));
671 }
672 #endif
673
674 if (aup->speed == 4000000) {
675 /* FIR */
676 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
677 ptxd->count_0 = skb->len & 0xff;
678 ptxd->count_1 = (skb->len >> 8) & 0xff;
679 } else {
680 /* SIR */
681 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
682 ptxd->count_0 = len & 0xff;
683 ptxd->count_1 = (len >> 8) & 0xff;
684 ptxd->flags |= IR_DIS_CRC;
685 }
686 ptxd->flags |= AU_OWN;
687 wmb();
688
689 irda_write(aup, IR_CONFIG_1,
690 irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
691 irda_write(aup, IR_RING_PROMPT, 0);
692
693 dev_kfree_skb(skb);
694 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
695 return NETDEV_TX_OK;
696 }
697
698 /*
699 * The Tx ring has been full longer than the watchdog timeout
700 * value. The transmitter must be hung?
701 */
702 static void au1k_tx_timeout(struct net_device *dev)
703 {
704 u32 speed;
705 struct au1k_private *aup = netdev_priv(dev);
706
707 printk(KERN_ERR "%s: tx timeout\n", dev->name);
708 speed = aup->speed;
709 aup->speed = 0;
710 au1k_irda_set_speed(dev, speed);
711 aup->tx_full = 0;
712 netif_wake_queue(dev);
713 }
714
715 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
716 {
717 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
718 struct au1k_private *aup = netdev_priv(dev);
719 int ret = -EOPNOTSUPP;
720
721 switch (cmd) {
722 case SIOCSBANDWIDTH:
723 if (capable(CAP_NET_ADMIN)) {
724 /*
725 * We are unable to set the speed if the
726 * device is not running.
727 */
728 if (aup->open)
729 ret = au1k_irda_set_speed(dev,
730 rq->ifr_baudrate);
731 else {
732 printk(KERN_ERR "%s ioctl: !netif_running\n",
733 dev->name);
734 ret = 0;
735 }
736 }
737 break;
738
739 case SIOCSMEDIABUSY:
740 ret = -EPERM;
741 if (capable(CAP_NET_ADMIN)) {
742 irda_device_set_media_busy(dev, TRUE);
743 ret = 0;
744 }
745 break;
746
747 case SIOCGRECEIVING:
748 rq->ifr_receiving = 0;
749 break;
750 default:
751 break;
752 }
753 return ret;
754 }
755
756 static const struct net_device_ops au1k_irda_netdev_ops = {
757 .ndo_open = au1k_irda_start,
758 .ndo_stop = au1k_irda_stop,
759 .ndo_start_xmit = au1k_irda_hard_xmit,
760 .ndo_tx_timeout = au1k_tx_timeout,
761 .ndo_do_ioctl = au1k_irda_ioctl,
762 };
763
764 static int au1k_irda_net_init(struct net_device *dev)
765 {
766 struct au1k_private *aup = netdev_priv(dev);
767 struct db_dest *pDB, *pDBfree;
768 int i, err, retval = 0;
769 dma_addr_t temp;
770
771 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
772 if (err)
773 goto out1;
774
775 dev->netdev_ops = &au1k_irda_netdev_ops;
776
777 irda_init_max_qos_capabilies(&aup->qos);
778
779 /* The only value we must override it the baudrate */
780 aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
781 IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
782
783 aup->qos.min_turn_time.bits = qos_mtt_bits;
784 irda_qos_bits_to_value(&aup->qos);
785
786 retval = -ENOMEM;
787
788 /* Tx ring follows rx ring + 512 bytes */
789 /* we need a 1k aligned buffer */
790 aup->rx_ring[0] = (struct ring_dest *)
791 dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
792 &temp);
793 if (!aup->rx_ring[0])
794 goto out2;
795
796 /* allocate the data buffers */
797 aup->db[0].vaddr =
798 dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
799 if (!aup->db[0].vaddr)
800 goto out3;
801
802 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
803
804 pDBfree = NULL;
805 pDB = aup->db;
806 for (i = 0; i < (2 * NUM_IR_DESC); i++) {
807 pDB->pnext = pDBfree;
808 pDBfree = pDB;
809 pDB->vaddr =
810 (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
811 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
812 pDB++;
813 }
814 aup->pDBfree = pDBfree;
815
816 /* attach a data buffer to each descriptor */
817 for (i = 0; i < NUM_IR_DESC; i++) {
818 pDB = GetFreeDB(aup);
819 if (!pDB)
820 goto out3;
821 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
822 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
823 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
824 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
825 aup->rx_db_inuse[i] = pDB;
826 }
827 for (i = 0; i < NUM_IR_DESC; i++) {
828 pDB = GetFreeDB(aup);
829 if (!pDB)
830 goto out3;
831 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
832 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
833 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
834 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
835 aup->tx_ring[i]->count_0 = 0;
836 aup->tx_ring[i]->count_1 = 0;
837 aup->tx_ring[i]->flags = 0;
838 aup->tx_db_inuse[i] = pDB;
839 }
840
841 return 0;
842
843 out3:
844 dma_free((void *)aup->rx_ring[0],
845 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
846 out2:
847 kfree(aup->rx_buff.head);
848 out1:
849 printk(KERN_ERR "au1k_irda_net_init() failed. Returns %d\n", retval);
850 return retval;
851 }
852
853 static int au1k_irda_probe(struct platform_device *pdev)
854 {
855 struct au1k_private *aup;
856 struct net_device *dev;
857 struct resource *r;
858 int err;
859
860 dev = alloc_irdadev(sizeof(struct au1k_private));
861 if (!dev)
862 return -ENOMEM;
863
864 aup = netdev_priv(dev);
865
866 aup->platdata = pdev->dev.platform_data;
867
868 err = -EINVAL;
869 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
870 if (!r)
871 goto out;
872
873 aup->irq_tx = r->start;
874
875 r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
876 if (!r)
877 goto out;
878
879 aup->irq_rx = r->start;
880
881 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
882 if (!r)
883 goto out;
884
885 err = -EBUSY;
886 aup->ioarea = request_mem_region(r->start, resource_size(r),
887 pdev->name);
888 if (!aup->ioarea)
889 goto out;
890
891 aup->iobase = ioremap_nocache(r->start, resource_size(r));
892 if (!aup->iobase)
893 goto out2;
894
895 dev->irq = aup->irq_rx;
896
897 err = au1k_irda_net_init(dev);
898 if (err)
899 goto out3;
900 err = register_netdev(dev);
901 if (err)
902 goto out4;
903
904 platform_set_drvdata(pdev, dev);
905
906 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
907 return 0;
908
909 out4:
910 dma_free((void *)aup->db[0].vaddr,
911 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
912 dma_free((void *)aup->rx_ring[0],
913 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
914 kfree(aup->rx_buff.head);
915 out3:
916 iounmap(aup->iobase);
917 out2:
918 release_resource(aup->ioarea);
919 kfree(aup->ioarea);
920 out:
921 free_netdev(dev);
922 return err;
923 }
924
925 static int au1k_irda_remove(struct platform_device *pdev)
926 {
927 struct net_device *dev = platform_get_drvdata(pdev);
928 struct au1k_private *aup = netdev_priv(dev);
929
930 unregister_netdev(dev);
931
932 dma_free((void *)aup->db[0].vaddr,
933 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
934 dma_free((void *)aup->rx_ring[0],
935 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
936 kfree(aup->rx_buff.head);
937
938 iounmap(aup->iobase);
939 release_resource(aup->ioarea);
940 kfree(aup->ioarea);
941
942 free_netdev(dev);
943
944 return 0;
945 }
946
947 static struct platform_driver au1k_irda_driver = {
948 .driver = {
949 .name = "au1000-irda",
950 .owner = THIS_MODULE,
951 },
952 .probe = au1k_irda_probe,
953 .remove = au1k_irda_remove,
954 };
955
956 module_platform_driver(au1k_irda_driver);
957
958 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
959 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");