[NET]: Nuke SET_MODULE_OWNER macro.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ioc3-eth.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-4"
32
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/errno.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/crc32.h>
41 #include <linux/mii.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/dma-mapping.h>
47
48 #ifdef CONFIG_SERIAL_8250
49 #include <linux/serial_core.h>
50 #include <linux/serial_8250.h>
51 #include <linux/serial_reg.h>
52 #endif
53
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/ethtool.h>
57 #include <linux/skbuff.h>
58 #include <net/ip.h>
59
60 #include <asm/byteorder.h>
61 #include <asm/io.h>
62 #include <asm/pgtable.h>
63 #include <asm/uaccess.h>
64 #include <asm/sn/types.h>
65 #include <asm/sn/ioc3.h>
66 #include <asm/pci/bridge.h>
67
68 /*
69 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
70 * value must be a power of two.
71 */
72 #define RX_BUFFS 64
73
74 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76
77 /* Private per NIC data of the driver. */
78 struct ioc3_private {
79 struct ioc3 *regs;
80 unsigned long *rxr; /* pointer to receiver ring */
81 struct ioc3_etxd *txr;
82 struct sk_buff *rx_skbs[512];
83 struct sk_buff *tx_skbs[128];
84 struct net_device_stats stats;
85 int rx_ci; /* RX consumer index */
86 int rx_pi; /* RX producer index */
87 int tx_ci; /* TX consumer index */
88 int tx_pi; /* TX producer index */
89 int txqlen;
90 u32 emcr, ehar_h, ehar_l;
91 spinlock_t ioc3_lock;
92 struct mii_if_info mii;
93 unsigned long flags;
94 #define IOC3_FLAG_RX_CHECKSUMS 1
95
96 struct pci_dev *pdev;
97
98 /* Members used by autonegotiation */
99 struct timer_list ioc3_timer;
100 };
101
102 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
103 {
104 return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
105 }
106
107 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
108 static void ioc3_set_multicast_list(struct net_device *dev);
109 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void ioc3_timeout(struct net_device *dev);
111 static inline unsigned int ioc3_hash(const unsigned char *addr);
112 static inline void ioc3_stop(struct ioc3_private *ip);
113 static void ioc3_init(struct net_device *dev);
114
115 static const char ioc3_str[] = "IOC3 Ethernet";
116 static const struct ethtool_ops ioc3_ethtool_ops;
117
118 /* We use this to acquire receive skb's that we can DMA directly into. */
119
120 #define IOC3_CACHELINE 128UL
121
122 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
123 {
124 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
125 }
126
127 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
128 unsigned int gfp_mask)
129 {
130 struct sk_buff *skb;
131
132 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
133 if (likely(skb)) {
134 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
135 if (offset)
136 skb_reserve(skb, offset);
137 }
138
139 return skb;
140 }
141
142 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
143 {
144 #ifdef CONFIG_SGI_IP27
145 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
146
147 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
148 ((unsigned long)ptr & TO_PHYS_MASK);
149 #else
150 return virt_to_bus(ptr);
151 #endif
152 }
153
154 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
155 1644 while it's actually 1664. This one was nasty to track down ... */
156 #define RX_OFFSET 10
157 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
158
159 /* DMA barrier to separate cached and uncached accesses. */
160 #define BARRIER() \
161 __asm__("sync" ::: "memory")
162
163
164 #define IOC3_SIZE 0x100000
165
166 /*
167 * IOC3 is a big endian device
168 *
169 * Unorthodox but makes the users of these macros more readable - the pointer
170 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
171 * in the environment.
172 */
173 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
174 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
175 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
176 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
177 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
178 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
179 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
180 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
181 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
182 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
183 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
184 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
185 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
186 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
187 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
188 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
189 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
190 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
191 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
192 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
193 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
194 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
195 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
196 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
197 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
198 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
199 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
200 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
201 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
202 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
203 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
204 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
205 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
206 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
207 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
208 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
209 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
210 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
211 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
212 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
213 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
214 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
215 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
216 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
217 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
218 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
219 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
220 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
221 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
222 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
223 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
224 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
225 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
226
227 static inline u32 mcr_pack(u32 pulse, u32 sample)
228 {
229 return (pulse << 10) | (sample << 2);
230 }
231
232 static int nic_wait(struct ioc3 *ioc3)
233 {
234 u32 mcr;
235
236 do {
237 mcr = ioc3_r_mcr();
238 } while (!(mcr & 2));
239
240 return mcr & 1;
241 }
242
243 static int nic_reset(struct ioc3 *ioc3)
244 {
245 int presence;
246
247 ioc3_w_mcr(mcr_pack(500, 65));
248 presence = nic_wait(ioc3);
249
250 ioc3_w_mcr(mcr_pack(0, 500));
251 nic_wait(ioc3);
252
253 return presence;
254 }
255
256 static inline int nic_read_bit(struct ioc3 *ioc3)
257 {
258 int result;
259
260 ioc3_w_mcr(mcr_pack(6, 13));
261 result = nic_wait(ioc3);
262 ioc3_w_mcr(mcr_pack(0, 100));
263 nic_wait(ioc3);
264
265 return result;
266 }
267
268 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
269 {
270 if (bit)
271 ioc3_w_mcr(mcr_pack(6, 110));
272 else
273 ioc3_w_mcr(mcr_pack(80, 30));
274
275 nic_wait(ioc3);
276 }
277
278 /*
279 * Read a byte from an iButton device
280 */
281 static u32 nic_read_byte(struct ioc3 *ioc3)
282 {
283 u32 result = 0;
284 int i;
285
286 for (i = 0; i < 8; i++)
287 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
288
289 return result;
290 }
291
292 /*
293 * Write a byte to an iButton device
294 */
295 static void nic_write_byte(struct ioc3 *ioc3, int byte)
296 {
297 int i, bit;
298
299 for (i = 8; i; i--) {
300 bit = byte & 1;
301 byte >>= 1;
302
303 nic_write_bit(ioc3, bit);
304 }
305 }
306
307 static u64 nic_find(struct ioc3 *ioc3, int *last)
308 {
309 int a, b, index, disc;
310 u64 address = 0;
311
312 nic_reset(ioc3);
313 /* Search ROM. */
314 nic_write_byte(ioc3, 0xf0);
315
316 /* Algorithm from ``Book of iButton Standards''. */
317 for (index = 0, disc = 0; index < 64; index++) {
318 a = nic_read_bit(ioc3);
319 b = nic_read_bit(ioc3);
320
321 if (a && b) {
322 printk("NIC search failed (not fatal).\n");
323 *last = 0;
324 return 0;
325 }
326
327 if (!a && !b) {
328 if (index == *last) {
329 address |= 1UL << index;
330 } else if (index > *last) {
331 address &= ~(1UL << index);
332 disc = index;
333 } else if ((address & (1UL << index)) == 0)
334 disc = index;
335 nic_write_bit(ioc3, address & (1UL << index));
336 continue;
337 } else {
338 if (a)
339 address |= 1UL << index;
340 else
341 address &= ~(1UL << index);
342 nic_write_bit(ioc3, a);
343 continue;
344 }
345 }
346
347 *last = disc;
348
349 return address;
350 }
351
352 static int nic_init(struct ioc3 *ioc3)
353 {
354 const char *unknown = "unknown";
355 const char *type = unknown;
356 u8 crc;
357 u8 serial[6];
358 int save = 0, i;
359
360 while (1) {
361 u64 reg;
362 reg = nic_find(ioc3, &save);
363
364 switch (reg & 0xff) {
365 case 0x91:
366 type = "DS1981U";
367 break;
368 default:
369 if (save == 0) {
370 /* Let the caller try again. */
371 return -1;
372 }
373 continue;
374 }
375
376 nic_reset(ioc3);
377
378 /* Match ROM. */
379 nic_write_byte(ioc3, 0x55);
380 for (i = 0; i < 8; i++)
381 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
382
383 reg >>= 8; /* Shift out type. */
384 for (i = 0; i < 6; i++) {
385 serial[i] = reg & 0xff;
386 reg >>= 8;
387 }
388 crc = reg & 0xff;
389 break;
390 }
391
392 printk("Found %s NIC", type);
393 if (type != unknown) {
394 printk (" registration number %02x:%02x:%02x:%02x:%02x:%02x,"
395 " CRC %02x", serial[0], serial[1], serial[2],
396 serial[3], serial[4], serial[5], crc);
397 }
398 printk(".\n");
399
400 return 0;
401 }
402
403 /*
404 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
405 * SN0 / SN00 nodeboards and PCI cards.
406 */
407 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
408 {
409 struct ioc3 *ioc3 = ip->regs;
410 u8 nic[14];
411 int tries = 2; /* There may be some problem with the battery? */
412 int i;
413
414 ioc3_w_gpcr_s(1 << 21);
415
416 while (tries--) {
417 if (!nic_init(ioc3))
418 break;
419 udelay(500);
420 }
421
422 if (tries < 0) {
423 printk("Failed to read MAC address\n");
424 return;
425 }
426
427 /* Read Memory. */
428 nic_write_byte(ioc3, 0xf0);
429 nic_write_byte(ioc3, 0x00);
430 nic_write_byte(ioc3, 0x00);
431
432 for (i = 13; i >= 0; i--)
433 nic[i] = nic_read_byte(ioc3);
434
435 for (i = 2; i < 8; i++)
436 priv_netdev(ip)->dev_addr[i - 2] = nic[i];
437 }
438
439 /*
440 * Ok, this is hosed by design. It's necessary to know what machine the
441 * NIC is in in order to know how to read the NIC address. We also have
442 * to know if it's a PCI card or a NIC in on the node board ...
443 */
444 static void ioc3_get_eaddr(struct ioc3_private *ip)
445 {
446 int i;
447
448
449 ioc3_get_eaddr_nic(ip);
450
451 printk("Ethernet address is ");
452 for (i = 0; i < 6; i++) {
453 printk("%02x", priv_netdev(ip)->dev_addr[i]);
454 if (i < 5)
455 printk(":");
456 }
457 printk(".\n");
458 }
459
460 static void __ioc3_set_mac_address(struct net_device *dev)
461 {
462 struct ioc3_private *ip = netdev_priv(dev);
463 struct ioc3 *ioc3 = ip->regs;
464
465 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
466 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
467 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
468 }
469
470 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
471 {
472 struct ioc3_private *ip = netdev_priv(dev);
473 struct sockaddr *sa = addr;
474
475 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
476
477 spin_lock_irq(&ip->ioc3_lock);
478 __ioc3_set_mac_address(dev);
479 spin_unlock_irq(&ip->ioc3_lock);
480
481 return 0;
482 }
483
484 /*
485 * Caller must hold the ioc3_lock ever for MII readers. This is also
486 * used to protect the transmitter side but it's low contention.
487 */
488 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
489 {
490 struct ioc3_private *ip = netdev_priv(dev);
491 struct ioc3 *ioc3 = ip->regs;
492
493 while (ioc3_r_micr() & MICR_BUSY);
494 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
495 while (ioc3_r_micr() & MICR_BUSY);
496
497 return ioc3_r_midr_r() & MIDR_DATA_MASK;
498 }
499
500 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
501 {
502 struct ioc3_private *ip = netdev_priv(dev);
503 struct ioc3 *ioc3 = ip->regs;
504
505 while (ioc3_r_micr() & MICR_BUSY);
506 ioc3_w_midr_w(data);
507 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
508 while (ioc3_r_micr() & MICR_BUSY);
509 }
510
511 static int ioc3_mii_init(struct ioc3_private *ip);
512
513 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
514 {
515 struct ioc3_private *ip = netdev_priv(dev);
516 struct ioc3 *ioc3 = ip->regs;
517
518 ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
519 return &ip->stats;
520 }
521
522 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
523 {
524 struct ethhdr *eh = eth_hdr(skb);
525 uint32_t csum, ehsum;
526 unsigned int proto;
527 struct iphdr *ih;
528 uint16_t *ew;
529 unsigned char *cp;
530
531 /*
532 * Did hardware handle the checksum at all? The cases we can handle
533 * are:
534 *
535 * - TCP and UDP checksums of IPv4 only.
536 * - IPv6 would be doable but we keep that for later ...
537 * - Only unfragmented packets. Did somebody already tell you
538 * fragmentation is evil?
539 * - don't care about packet size. Worst case when processing a
540 * malformed packet we'll try to access the packet at ip header +
541 * 64 bytes which is still inside the skb. Even in the unlikely
542 * case where the checksum is right the higher layers will still
543 * drop the packet as appropriate.
544 */
545 if (eh->h_proto != ntohs(ETH_P_IP))
546 return;
547
548 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
549 if (ih->frag_off & htons(IP_MF | IP_OFFSET))
550 return;
551
552 proto = ih->protocol;
553 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
554 return;
555
556 /* Same as tx - compute csum of pseudo header */
557 csum = hwsum +
558 (ih->tot_len - (ih->ihl << 2)) +
559 htons((uint16_t)ih->protocol) +
560 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
561 (ih->daddr >> 16) + (ih->daddr & 0xffff);
562
563 /* Sum up ethernet dest addr, src addr and protocol */
564 ew = (uint16_t *) eh;
565 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
566
567 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
568 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
569
570 csum += 0xffff ^ ehsum;
571
572 /* In the next step we also subtract the 1's complement
573 checksum of the trailing ethernet CRC. */
574 cp = (char *)eh + len; /* points at trailing CRC */
575 if (len & 1) {
576 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
577 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
578 } else {
579 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
580 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
581 }
582
583 csum = (csum & 0xffff) + (csum >> 16);
584 csum = (csum & 0xffff) + (csum >> 16);
585
586 if (csum == 0xffff)
587 skb->ip_summed = CHECKSUM_UNNECESSARY;
588 }
589
590 static inline void ioc3_rx(struct ioc3_private *ip)
591 {
592 struct sk_buff *skb, *new_skb;
593 struct ioc3 *ioc3 = ip->regs;
594 int rx_entry, n_entry, len;
595 struct ioc3_erxbuf *rxb;
596 unsigned long *rxr;
597 u32 w0, err;
598
599 rxr = (unsigned long *) ip->rxr; /* Ring base */
600 rx_entry = ip->rx_ci; /* RX consume index */
601 n_entry = ip->rx_pi;
602
603 skb = ip->rx_skbs[rx_entry];
604 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
605 w0 = be32_to_cpu(rxb->w0);
606
607 while (w0 & ERXBUF_V) {
608 err = be32_to_cpu(rxb->err); /* It's valid ... */
609 if (err & ERXBUF_GOODPKT) {
610 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
611 skb_trim(skb, len);
612 skb->protocol = eth_type_trans(skb, priv_netdev(ip));
613
614 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
615 if (!new_skb) {
616 /* Ouch, drop packet and just recycle packet
617 to keep the ring filled. */
618 ip->stats.rx_dropped++;
619 new_skb = skb;
620 goto next;
621 }
622
623 if (likely(ip->flags & IOC3_FLAG_RX_CHECKSUMS))
624 ioc3_tcpudp_checksum(skb,
625 w0 & ERXBUF_IPCKSUM_MASK, len);
626
627 netif_rx(skb);
628
629 ip->rx_skbs[rx_entry] = NULL; /* Poison */
630
631 /* Because we reserve afterwards. */
632 skb_put(new_skb, (1664 + RX_OFFSET));
633 rxb = (struct ioc3_erxbuf *) new_skb->data;
634 skb_reserve(new_skb, RX_OFFSET);
635
636 priv_netdev(ip)->last_rx = jiffies;
637 ip->stats.rx_packets++; /* Statistics */
638 ip->stats.rx_bytes += len;
639 } else {
640 /* The frame is invalid and the skb never
641 reached the network layer so we can just
642 recycle it. */
643 new_skb = skb;
644 ip->stats.rx_errors++;
645 }
646 if (err & ERXBUF_CRCERR) /* Statistics */
647 ip->stats.rx_crc_errors++;
648 if (err & ERXBUF_FRAMERR)
649 ip->stats.rx_frame_errors++;
650 next:
651 ip->rx_skbs[n_entry] = new_skb;
652 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
653 rxb->w0 = 0; /* Clear valid flag */
654 n_entry = (n_entry + 1) & 511; /* Update erpir */
655
656 /* Now go on to the next ring entry. */
657 rx_entry = (rx_entry + 1) & 511;
658 skb = ip->rx_skbs[rx_entry];
659 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
660 w0 = be32_to_cpu(rxb->w0);
661 }
662 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
663 ip->rx_pi = n_entry;
664 ip->rx_ci = rx_entry;
665 }
666
667 static inline void ioc3_tx(struct ioc3_private *ip)
668 {
669 unsigned long packets, bytes;
670 struct ioc3 *ioc3 = ip->regs;
671 int tx_entry, o_entry;
672 struct sk_buff *skb;
673 u32 etcir;
674
675 spin_lock(&ip->ioc3_lock);
676 etcir = ioc3_r_etcir();
677
678 tx_entry = (etcir >> 7) & 127;
679 o_entry = ip->tx_ci;
680 packets = 0;
681 bytes = 0;
682
683 while (o_entry != tx_entry) {
684 packets++;
685 skb = ip->tx_skbs[o_entry];
686 bytes += skb->len;
687 dev_kfree_skb_irq(skb);
688 ip->tx_skbs[o_entry] = NULL;
689
690 o_entry = (o_entry + 1) & 127; /* Next */
691
692 etcir = ioc3_r_etcir(); /* More pkts sent? */
693 tx_entry = (etcir >> 7) & 127;
694 }
695
696 ip->stats.tx_packets += packets;
697 ip->stats.tx_bytes += bytes;
698 ip->txqlen -= packets;
699
700 if (ip->txqlen < 128)
701 netif_wake_queue(priv_netdev(ip));
702
703 ip->tx_ci = o_entry;
704 spin_unlock(&ip->ioc3_lock);
705 }
706
707 /*
708 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
709 * software problems, so we should try to recover
710 * more gracefully if this ever happens. In theory we might be flooded
711 * with such error interrupts if something really goes wrong, so we might
712 * also consider to take the interface down.
713 */
714 static void ioc3_error(struct ioc3_private *ip, u32 eisr)
715 {
716 struct net_device *dev = priv_netdev(ip);
717 unsigned char *iface = dev->name;
718
719 spin_lock(&ip->ioc3_lock);
720
721 if (eisr & EISR_RXOFLO)
722 printk(KERN_ERR "%s: RX overflow.\n", iface);
723 if (eisr & EISR_RXBUFOFLO)
724 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
725 if (eisr & EISR_RXMEMERR)
726 printk(KERN_ERR "%s: RX PCI error.\n", iface);
727 if (eisr & EISR_RXPARERR)
728 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
729 if (eisr & EISR_TXBUFUFLO)
730 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
731 if (eisr & EISR_TXMEMERR)
732 printk(KERN_ERR "%s: TX PCI error.\n", iface);
733
734 ioc3_stop(ip);
735 ioc3_init(dev);
736 ioc3_mii_init(ip);
737
738 netif_wake_queue(dev);
739
740 spin_unlock(&ip->ioc3_lock);
741 }
742
743 /* The interrupt handler does all of the Rx thread work and cleans up
744 after the Tx thread. */
745 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
746 {
747 struct net_device *dev = (struct net_device *)_dev;
748 struct ioc3_private *ip = netdev_priv(dev);
749 struct ioc3 *ioc3 = ip->regs;
750 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
751 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
752 EISR_TXEXPLICIT | EISR_TXMEMERR;
753 u32 eisr;
754
755 eisr = ioc3_r_eisr() & enabled;
756
757 ioc3_w_eisr(eisr);
758 (void) ioc3_r_eisr(); /* Flush */
759
760 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
761 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
762 ioc3_error(ip, eisr);
763 if (eisr & EISR_RXTIMERINT)
764 ioc3_rx(ip);
765 if (eisr & EISR_TXEXPLICIT)
766 ioc3_tx(ip);
767
768 return IRQ_HANDLED;
769 }
770
771 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
772 {
773 struct ioc3 *ioc3 = ip->regs;
774
775 if (ip->mii.full_duplex) {
776 ioc3_w_etcsr(ETCSR_FD);
777 ip->emcr |= EMCR_DUPLEX;
778 } else {
779 ioc3_w_etcsr(ETCSR_HD);
780 ip->emcr &= ~EMCR_DUPLEX;
781 }
782 ioc3_w_emcr(ip->emcr);
783 }
784
785 static void ioc3_timer(unsigned long data)
786 {
787 struct ioc3_private *ip = (struct ioc3_private *) data;
788
789 /* Print the link status if it has changed */
790 mii_check_media(&ip->mii, 1, 0);
791 ioc3_setup_duplex(ip);
792
793 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
794 add_timer(&ip->ioc3_timer);
795 }
796
797 /*
798 * Try to find a PHY. There is no apparent relation between the MII addresses
799 * in the SGI documentation and what we find in reality, so we simply probe
800 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
801 * onboard IOC3s has the special oddity that probing doesn't seem to find it
802 * yet the interface seems to work fine, so if probing fails we for now will
803 * simply default to PHY 31 instead of bailing out.
804 */
805 static int ioc3_mii_init(struct ioc3_private *ip)
806 {
807 struct net_device *dev = priv_netdev(ip);
808 int i, found = 0, res = 0;
809 int ioc3_phy_workaround = 1;
810 u16 word;
811
812 for (i = 0; i < 32; i++) {
813 word = ioc3_mdio_read(dev, i, MII_PHYSID1);
814
815 if (word != 0xffff && word != 0x0000) {
816 found = 1;
817 break; /* Found a PHY */
818 }
819 }
820
821 if (!found) {
822 if (ioc3_phy_workaround)
823 i = 31;
824 else {
825 ip->mii.phy_id = -1;
826 res = -ENODEV;
827 goto out;
828 }
829 }
830
831 ip->mii.phy_id = i;
832
833 out:
834 return res;
835 }
836
837 static void ioc3_mii_start(struct ioc3_private *ip)
838 {
839 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
840 ip->ioc3_timer.data = (unsigned long) ip;
841 ip->ioc3_timer.function = &ioc3_timer;
842 add_timer(&ip->ioc3_timer);
843 }
844
845 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
846 {
847 struct sk_buff *skb;
848 int i;
849
850 for (i = ip->rx_ci; i & 15; i++) {
851 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
852 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
853 }
854 ip->rx_pi &= 511;
855 ip->rx_ci &= 511;
856
857 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
858 struct ioc3_erxbuf *rxb;
859 skb = ip->rx_skbs[i];
860 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
861 rxb->w0 = 0;
862 }
863 }
864
865 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
866 {
867 struct sk_buff *skb;
868 int i;
869
870 for (i=0; i < 128; i++) {
871 skb = ip->tx_skbs[i];
872 if (skb) {
873 ip->tx_skbs[i] = NULL;
874 dev_kfree_skb_any(skb);
875 }
876 ip->txr[i].cmd = 0;
877 }
878 ip->tx_pi = 0;
879 ip->tx_ci = 0;
880 }
881
882 static void ioc3_free_rings(struct ioc3_private *ip)
883 {
884 struct sk_buff *skb;
885 int rx_entry, n_entry;
886
887 if (ip->txr) {
888 ioc3_clean_tx_ring(ip);
889 free_pages((unsigned long)ip->txr, 2);
890 ip->txr = NULL;
891 }
892
893 if (ip->rxr) {
894 n_entry = ip->rx_ci;
895 rx_entry = ip->rx_pi;
896
897 while (n_entry != rx_entry) {
898 skb = ip->rx_skbs[n_entry];
899 if (skb)
900 dev_kfree_skb_any(skb);
901
902 n_entry = (n_entry + 1) & 511;
903 }
904 free_page((unsigned long)ip->rxr);
905 ip->rxr = NULL;
906 }
907 }
908
909 static void ioc3_alloc_rings(struct net_device *dev)
910 {
911 struct ioc3_private *ip = netdev_priv(dev);
912 struct ioc3_erxbuf *rxb;
913 unsigned long *rxr;
914 int i;
915
916 if (ip->rxr == NULL) {
917 /* Allocate and initialize rx ring. 4kb = 512 entries */
918 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
919 rxr = (unsigned long *) ip->rxr;
920 if (!rxr)
921 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
922
923 /* Now the rx buffers. The RX ring may be larger but
924 we only allocate 16 buffers for now. Need to tune
925 this for performance and memory later. */
926 for (i = 0; i < RX_BUFFS; i++) {
927 struct sk_buff *skb;
928
929 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
930 if (!skb) {
931 show_free_areas();
932 continue;
933 }
934
935 ip->rx_skbs[i] = skb;
936
937 /* Because we reserve afterwards. */
938 skb_put(skb, (1664 + RX_OFFSET));
939 rxb = (struct ioc3_erxbuf *) skb->data;
940 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
941 skb_reserve(skb, RX_OFFSET);
942 }
943 ip->rx_ci = 0;
944 ip->rx_pi = RX_BUFFS;
945 }
946
947 if (ip->txr == NULL) {
948 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
949 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
950 if (!ip->txr)
951 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
952 ip->tx_pi = 0;
953 ip->tx_ci = 0;
954 }
955 }
956
957 static void ioc3_init_rings(struct net_device *dev)
958 {
959 struct ioc3_private *ip = netdev_priv(dev);
960 struct ioc3 *ioc3 = ip->regs;
961 unsigned long ring;
962
963 ioc3_free_rings(ip);
964 ioc3_alloc_rings(dev);
965
966 ioc3_clean_rx_ring(ip);
967 ioc3_clean_tx_ring(ip);
968
969 /* Now the rx ring base, consume & produce registers. */
970 ring = ioc3_map(ip->rxr, 0);
971 ioc3_w_erbr_h(ring >> 32);
972 ioc3_w_erbr_l(ring & 0xffffffff);
973 ioc3_w_ercir(ip->rx_ci << 3);
974 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
975
976 ring = ioc3_map(ip->txr, 0);
977
978 ip->txqlen = 0; /* nothing queued */
979
980 /* Now the tx ring base, consume & produce registers. */
981 ioc3_w_etbr_h(ring >> 32);
982 ioc3_w_etbr_l(ring & 0xffffffff);
983 ioc3_w_etpir(ip->tx_pi << 7);
984 ioc3_w_etcir(ip->tx_ci << 7);
985 (void) ioc3_r_etcir(); /* Flush */
986 }
987
988 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
989 {
990 struct ioc3 *ioc3 = ip->regs;
991 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
992 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
993 unsigned int pattern = 0x5555;
994
995 /* Assume the larger size SSRAM and enable parity checking */
996 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
997
998 *ssram0 = pattern;
999 *ssram1 = ~pattern & IOC3_SSRAM_DM;
1000
1001 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
1002 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
1003 /* set ssram size to 64 KB */
1004 ip->emcr = EMCR_RAMPAR;
1005 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
1006 } else
1007 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
1008 }
1009
1010 static void ioc3_init(struct net_device *dev)
1011 {
1012 struct ioc3_private *ip = netdev_priv(dev);
1013 struct ioc3 *ioc3 = ip->regs;
1014
1015 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
1016
1017 ioc3_w_emcr(EMCR_RST); /* Reset */
1018 (void) ioc3_r_emcr(); /* Flush WB */
1019 udelay(4); /* Give it time ... */
1020 ioc3_w_emcr(0);
1021 (void) ioc3_r_emcr();
1022
1023 /* Misc registers */
1024 #ifdef CONFIG_SGI_IP27
1025 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1026 #else
1027 ioc3_w_erbar(0); /* Let PCI API get it right */
1028 #endif
1029 (void) ioc3_r_etcdc(); /* Clear on read */
1030 ioc3_w_ercsr(15); /* RX low watermark */
1031 ioc3_w_ertr(0); /* Interrupt immediately */
1032 __ioc3_set_mac_address(dev);
1033 ioc3_w_ehar_h(ip->ehar_h);
1034 ioc3_w_ehar_l(ip->ehar_l);
1035 ioc3_w_ersr(42); /* XXX should be random */
1036
1037 ioc3_init_rings(dev);
1038
1039 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1040 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1041 ioc3_w_emcr(ip->emcr);
1042 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1043 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1044 EISR_TXEXPLICIT | EISR_TXMEMERR);
1045 (void) ioc3_r_eier();
1046 }
1047
1048 static inline void ioc3_stop(struct ioc3_private *ip)
1049 {
1050 struct ioc3 *ioc3 = ip->regs;
1051
1052 ioc3_w_emcr(0); /* Shutup */
1053 ioc3_w_eier(0); /* Disable interrupts */
1054 (void) ioc3_r_eier(); /* Flush */
1055 }
1056
1057 static int ioc3_open(struct net_device *dev)
1058 {
1059 struct ioc3_private *ip = netdev_priv(dev);
1060
1061 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1062 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1063
1064 return -EAGAIN;
1065 }
1066
1067 ip->ehar_h = 0;
1068 ip->ehar_l = 0;
1069 ioc3_init(dev);
1070 ioc3_mii_start(ip);
1071
1072 netif_start_queue(dev);
1073 return 0;
1074 }
1075
1076 static int ioc3_close(struct net_device *dev)
1077 {
1078 struct ioc3_private *ip = netdev_priv(dev);
1079
1080 del_timer_sync(&ip->ioc3_timer);
1081
1082 netif_stop_queue(dev);
1083
1084 ioc3_stop(ip);
1085 free_irq(dev->irq, dev);
1086
1087 ioc3_free_rings(ip);
1088 return 0;
1089 }
1090
1091 /*
1092 * MENET cards have four IOC3 chips, which are attached to two sets of
1093 * PCI slot resources each: the primary connections are on slots
1094 * 0..3 and the secondaries are on 4..7
1095 *
1096 * All four ethernets are brought out to connectors; six serial ports
1097 * (a pair from each of the first three IOC3s) are brought out to
1098 * MiniDINs; all other subdevices are left swinging in the wind, leave
1099 * them disabled.
1100 */
1101
1102 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1103 {
1104 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1105 int ret = 0;
1106
1107 if (dev) {
1108 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1109 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1110 ret = 1;
1111 pci_dev_put(dev);
1112 }
1113
1114 return ret;
1115 }
1116
1117 static int ioc3_is_menet(struct pci_dev *pdev)
1118 {
1119 return pdev->bus->parent == NULL &&
1120 ioc3_adjacent_is_ioc3(pdev, 0) &&
1121 ioc3_adjacent_is_ioc3(pdev, 1) &&
1122 ioc3_adjacent_is_ioc3(pdev, 2);
1123 }
1124
1125 #ifdef CONFIG_SERIAL_8250
1126 /*
1127 * Note about serial ports and consoles:
1128 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1129 * connected to the master node (look in ip27_setup_console() and
1130 * ip27prom_console_write()).
1131 *
1132 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1133 * addresses on a partitioned machine. Since we currently use the ioc3
1134 * serial ports, we use dynamic serial port discovery that the serial.c
1135 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1136 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1137 * than UARTB's, although UARTA on o200s has traditionally been known as
1138 * port 0. So, we just use one serial port from each ioc3 (since the
1139 * serial driver adds addresses to get to higher ports).
1140 *
1141 * The first one to do a register_console becomes the preferred console
1142 * (if there is no kernel command line console= directive). /dev/console
1143 * (ie 5, 1) is then "aliased" into the device number returned by the
1144 * "device" routine referred to in this console structure
1145 * (ip27prom_console_dev).
1146 *
1147 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1148 * around ioc3 oddities in this respect.
1149 *
1150 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1151 * can be programmed in the SCR register if the DLAB bit is set.
1152 *
1153 * Register to interrupt zero because we share the interrupt with
1154 * the serial driver which we don't properly support yet.
1155 *
1156 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1157 * registered.
1158 */
1159 static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1160 {
1161 #define COSMISC_CONSTANT 6
1162
1163 struct uart_port port = {
1164 .irq = 0,
1165 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1166 .iotype = UPIO_MEM,
1167 .regshift = 0,
1168 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1169
1170 .membase = (unsigned char __iomem *) uart,
1171 .mapbase = (unsigned long) uart,
1172 };
1173 unsigned char lcr;
1174
1175 lcr = uart->iu_lcr;
1176 uart->iu_lcr = lcr | UART_LCR_DLAB;
1177 uart->iu_scr = COSMISC_CONSTANT,
1178 uart->iu_lcr = lcr;
1179 uart->iu_lcr;
1180 serial8250_register_port(&port);
1181 }
1182
1183 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1184 {
1185 /*
1186 * We need to recognice and treat the fourth MENET serial as it
1187 * does not have an SuperIO chip attached to it, therefore attempting
1188 * to access it will result in bus errors. We call something an
1189 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1190 * in it. This is paranoid but we want to avoid blowing up on a
1191 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1192 * not paranoid enough ...
1193 */
1194 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1195 return;
1196
1197 /*
1198 * Switch IOC3 to PIO mode. It probably already was but let's be
1199 * paranoid
1200 */
1201 ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1202 ioc3->gpcr_s;
1203 ioc3->gppr_6 = 0;
1204 ioc3->gppr_6;
1205 ioc3->gppr_7 = 0;
1206 ioc3->gppr_7;
1207 ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1208 ioc3->sscr_a;
1209 ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1210 ioc3->sscr_b;
1211 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1212 ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1213 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1214 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1215 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1216 ioc3->sio_iec |= SIO_IR_SA_INT;
1217 ioc3->sscr_a = 0;
1218 ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1219 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1220 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1221 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1222 ioc3->sio_iec |= SIO_IR_SB_INT;
1223 ioc3->sscr_b = 0;
1224
1225 ioc3_8250_register(&ioc3->sregs.uarta);
1226 ioc3_8250_register(&ioc3->sregs.uartb);
1227 }
1228 #endif
1229
1230 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1231 {
1232 unsigned int sw_physid1, sw_physid2;
1233 struct net_device *dev = NULL;
1234 struct ioc3_private *ip;
1235 struct ioc3 *ioc3;
1236 unsigned long ioc3_base, ioc3_size;
1237 u32 vendor, model, rev;
1238 int err, pci_using_dac;
1239
1240 /* Configure DMA attributes. */
1241 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1242 if (!err) {
1243 pci_using_dac = 1;
1244 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1245 if (err < 0) {
1246 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1247 "for consistent allocations\n", pci_name(pdev));
1248 goto out;
1249 }
1250 } else {
1251 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1252 if (err) {
1253 printk(KERN_ERR "%s: No usable DMA configuration, "
1254 "aborting.\n", pci_name(pdev));
1255 goto out;
1256 }
1257 pci_using_dac = 0;
1258 }
1259
1260 if (pci_enable_device(pdev))
1261 return -ENODEV;
1262
1263 dev = alloc_etherdev(sizeof(struct ioc3_private));
1264 if (!dev) {
1265 err = -ENOMEM;
1266 goto out_disable;
1267 }
1268
1269 if (pci_using_dac)
1270 dev->features |= NETIF_F_HIGHDMA;
1271
1272 err = pci_request_regions(pdev, "ioc3");
1273 if (err)
1274 goto out_free;
1275
1276 SET_NETDEV_DEV(dev, &pdev->dev);
1277
1278 ip = netdev_priv(dev);
1279
1280 dev->irq = pdev->irq;
1281
1282 ioc3_base = pci_resource_start(pdev, 0);
1283 ioc3_size = pci_resource_len(pdev, 0);
1284 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1285 if (!ioc3) {
1286 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1287 pci_name(pdev));
1288 err = -ENOMEM;
1289 goto out_res;
1290 }
1291 ip->regs = ioc3;
1292
1293 #ifdef CONFIG_SERIAL_8250
1294 ioc3_serial_probe(pdev, ioc3);
1295 #endif
1296
1297 spin_lock_init(&ip->ioc3_lock);
1298 init_timer(&ip->ioc3_timer);
1299
1300 ioc3_stop(ip);
1301 ioc3_init(dev);
1302
1303 ip->pdev = pdev;
1304
1305 ip->mii.phy_id_mask = 0x1f;
1306 ip->mii.reg_num_mask = 0x1f;
1307 ip->mii.dev = dev;
1308 ip->mii.mdio_read = ioc3_mdio_read;
1309 ip->mii.mdio_write = ioc3_mdio_write;
1310
1311 ioc3_mii_init(ip);
1312
1313 if (ip->mii.phy_id == -1) {
1314 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1315 pci_name(pdev));
1316 err = -ENODEV;
1317 goto out_stop;
1318 }
1319
1320 ioc3_mii_start(ip);
1321 ioc3_ssram_disc(ip);
1322 ioc3_get_eaddr(ip);
1323
1324 /* The IOC3-specific entries in the device structure. */
1325 dev->open = ioc3_open;
1326 dev->hard_start_xmit = ioc3_start_xmit;
1327 dev->tx_timeout = ioc3_timeout;
1328 dev->watchdog_timeo = 5 * HZ;
1329 dev->stop = ioc3_close;
1330 dev->get_stats = ioc3_get_stats;
1331 dev->do_ioctl = ioc3_ioctl;
1332 dev->set_multicast_list = ioc3_set_multicast_list;
1333 dev->set_mac_address = ioc3_set_mac_address;
1334 dev->ethtool_ops = &ioc3_ethtool_ops;
1335 dev->features = NETIF_F_IP_CSUM;
1336
1337 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1338 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1339
1340 err = register_netdev(dev);
1341 if (err)
1342 goto out_stop;
1343
1344 mii_check_media(&ip->mii, 1, 1);
1345 ioc3_setup_duplex(ip);
1346
1347 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1348 model = (sw_physid2 >> 4) & 0x3f;
1349 rev = sw_physid2 & 0xf;
1350 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1351 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1352 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1353 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1354
1355 return 0;
1356
1357 out_stop:
1358 ioc3_stop(ip);
1359 del_timer_sync(&ip->ioc3_timer);
1360 ioc3_free_rings(ip);
1361 out_res:
1362 pci_release_regions(pdev);
1363 out_free:
1364 free_netdev(dev);
1365 out_disable:
1366 /*
1367 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1368 * such a weird device ...
1369 */
1370 out:
1371 return err;
1372 }
1373
1374 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1375 {
1376 struct net_device *dev = pci_get_drvdata(pdev);
1377 struct ioc3_private *ip = netdev_priv(dev);
1378 struct ioc3 *ioc3 = ip->regs;
1379
1380 unregister_netdev(dev);
1381 del_timer_sync(&ip->ioc3_timer);
1382
1383 iounmap(ioc3);
1384 pci_release_regions(pdev);
1385 free_netdev(dev);
1386 /*
1387 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1388 * such a weird device ...
1389 */
1390 }
1391
1392 static struct pci_device_id ioc3_pci_tbl[] = {
1393 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1394 { 0 }
1395 };
1396 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1397
1398 static struct pci_driver ioc3_driver = {
1399 .name = "ioc3-eth",
1400 .id_table = ioc3_pci_tbl,
1401 .probe = ioc3_probe,
1402 .remove = __devexit_p(ioc3_remove_one),
1403 };
1404
1405 static int __init ioc3_init_module(void)
1406 {
1407 return pci_register_driver(&ioc3_driver);
1408 }
1409
1410 static void __exit ioc3_cleanup_module(void)
1411 {
1412 pci_unregister_driver(&ioc3_driver);
1413 }
1414
1415 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1416 {
1417 unsigned long data;
1418 struct ioc3_private *ip = netdev_priv(dev);
1419 struct ioc3 *ioc3 = ip->regs;
1420 unsigned int len;
1421 struct ioc3_etxd *desc;
1422 uint32_t w0 = 0;
1423 int produce;
1424
1425 /*
1426 * IOC3 has a fairly simple minded checksumming hardware which simply
1427 * adds up the 1's complement checksum for the entire packet and
1428 * inserts it at an offset which can be specified in the descriptor
1429 * into the transmit packet. This means we have to compensate for the
1430 * MAC header which should not be summed and the TCP/UDP pseudo headers
1431 * manually.
1432 */
1433 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1434 const struct iphdr *ih = ip_hdr(skb);
1435 const int proto = ntohs(ih->protocol);
1436 unsigned int csoff;
1437 uint32_t csum, ehsum;
1438 uint16_t *eh;
1439
1440 /* The MAC header. skb->mac seem the logic approach
1441 to find the MAC header - except it's a NULL pointer ... */
1442 eh = (uint16_t *) skb->data;
1443
1444 /* Sum up dest addr, src addr and protocol */
1445 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1446
1447 /* Fold ehsum. can't use csum_fold which negates also ... */
1448 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1449 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1450
1451 /* Skip IP header; it's sum is always zero and was
1452 already filled in by ip_output.c */
1453 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1454 ih->tot_len - (ih->ihl << 2),
1455 proto, 0xffff ^ ehsum);
1456
1457 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1458 csum = (csum & 0xffff) + (csum >> 16);
1459
1460 csoff = ETH_HLEN + (ih->ihl << 2);
1461 if (proto == IPPROTO_UDP) {
1462 csoff += offsetof(struct udphdr, check);
1463 udp_hdr(skb)->check = csum;
1464 }
1465 if (proto == IPPROTO_TCP) {
1466 csoff += offsetof(struct tcphdr, check);
1467 tcp_hdr(skb)->check = csum;
1468 }
1469
1470 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1471 }
1472
1473 spin_lock_irq(&ip->ioc3_lock);
1474
1475 data = (unsigned long) skb->data;
1476 len = skb->len;
1477
1478 produce = ip->tx_pi;
1479 desc = &ip->txr[produce];
1480
1481 if (len <= 104) {
1482 /* Short packet, let's copy it directly into the ring. */
1483 skb_copy_from_linear_data(skb, desc->data, skb->len);
1484 if (len < ETH_ZLEN) {
1485 /* Very short packet, pad with zeros at the end. */
1486 memset(desc->data + len, 0, ETH_ZLEN - len);
1487 len = ETH_ZLEN;
1488 }
1489 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1490 desc->bufcnt = cpu_to_be32(len);
1491 } else if ((data ^ (data + len - 1)) & 0x4000) {
1492 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1493 unsigned long s1 = b2 - data;
1494 unsigned long s2 = data + len - b2;
1495
1496 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1497 ETXD_B1V | ETXD_B2V | w0);
1498 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1499 (s2 << ETXD_B2CNT_SHIFT));
1500 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1501 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1502 } else {
1503 /* Normal sized packet that doesn't cross a page boundary. */
1504 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1505 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1506 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1507 }
1508
1509 BARRIER();
1510
1511 dev->trans_start = jiffies;
1512 ip->tx_skbs[produce] = skb; /* Remember skb */
1513 produce = (produce + 1) & 127;
1514 ip->tx_pi = produce;
1515 ioc3_w_etpir(produce << 7); /* Fire ... */
1516
1517 ip->txqlen++;
1518
1519 if (ip->txqlen >= 127)
1520 netif_stop_queue(dev);
1521
1522 spin_unlock_irq(&ip->ioc3_lock);
1523
1524 return 0;
1525 }
1526
1527 static void ioc3_timeout(struct net_device *dev)
1528 {
1529 struct ioc3_private *ip = netdev_priv(dev);
1530
1531 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1532
1533 spin_lock_irq(&ip->ioc3_lock);
1534
1535 ioc3_stop(ip);
1536 ioc3_init(dev);
1537 ioc3_mii_init(ip);
1538 ioc3_mii_start(ip);
1539
1540 spin_unlock_irq(&ip->ioc3_lock);
1541
1542 netif_wake_queue(dev);
1543 }
1544
1545 /*
1546 * Given a multicast ethernet address, this routine calculates the
1547 * address's bit index in the logical address filter mask
1548 */
1549
1550 static inline unsigned int ioc3_hash(const unsigned char *addr)
1551 {
1552 unsigned int temp = 0;
1553 u32 crc;
1554 int bits;
1555
1556 crc = ether_crc_le(ETH_ALEN, addr);
1557
1558 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1559 for (bits = 6; --bits >= 0; ) {
1560 temp <<= 1;
1561 temp |= (crc & 0x1);
1562 crc >>= 1;
1563 }
1564
1565 return temp;
1566 }
1567
1568 static void ioc3_get_drvinfo (struct net_device *dev,
1569 struct ethtool_drvinfo *info)
1570 {
1571 struct ioc3_private *ip = netdev_priv(dev);
1572
1573 strcpy (info->driver, IOC3_NAME);
1574 strcpy (info->version, IOC3_VERSION);
1575 strcpy (info->bus_info, pci_name(ip->pdev));
1576 }
1577
1578 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1579 {
1580 struct ioc3_private *ip = netdev_priv(dev);
1581 int rc;
1582
1583 spin_lock_irq(&ip->ioc3_lock);
1584 rc = mii_ethtool_gset(&ip->mii, cmd);
1585 spin_unlock_irq(&ip->ioc3_lock);
1586
1587 return rc;
1588 }
1589
1590 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1591 {
1592 struct ioc3_private *ip = netdev_priv(dev);
1593 int rc;
1594
1595 spin_lock_irq(&ip->ioc3_lock);
1596 rc = mii_ethtool_sset(&ip->mii, cmd);
1597 spin_unlock_irq(&ip->ioc3_lock);
1598
1599 return rc;
1600 }
1601
1602 static int ioc3_nway_reset(struct net_device *dev)
1603 {
1604 struct ioc3_private *ip = netdev_priv(dev);
1605 int rc;
1606
1607 spin_lock_irq(&ip->ioc3_lock);
1608 rc = mii_nway_restart(&ip->mii);
1609 spin_unlock_irq(&ip->ioc3_lock);
1610
1611 return rc;
1612 }
1613
1614 static u32 ioc3_get_link(struct net_device *dev)
1615 {
1616 struct ioc3_private *ip = netdev_priv(dev);
1617 int rc;
1618
1619 spin_lock_irq(&ip->ioc3_lock);
1620 rc = mii_link_ok(&ip->mii);
1621 spin_unlock_irq(&ip->ioc3_lock);
1622
1623 return rc;
1624 }
1625
1626 static u32 ioc3_get_rx_csum(struct net_device *dev)
1627 {
1628 struct ioc3_private *ip = netdev_priv(dev);
1629
1630 return ip->flags & IOC3_FLAG_RX_CHECKSUMS;
1631 }
1632
1633 static int ioc3_set_rx_csum(struct net_device *dev, u32 data)
1634 {
1635 struct ioc3_private *ip = netdev_priv(dev);
1636
1637 spin_lock_bh(&ip->ioc3_lock);
1638 if (data)
1639 ip->flags |= IOC3_FLAG_RX_CHECKSUMS;
1640 else
1641 ip->flags &= ~IOC3_FLAG_RX_CHECKSUMS;
1642 spin_unlock_bh(&ip->ioc3_lock);
1643
1644 return 0;
1645 }
1646
1647 static const struct ethtool_ops ioc3_ethtool_ops = {
1648 .get_drvinfo = ioc3_get_drvinfo,
1649 .get_settings = ioc3_get_settings,
1650 .set_settings = ioc3_set_settings,
1651 .nway_reset = ioc3_nway_reset,
1652 .get_link = ioc3_get_link,
1653 .get_rx_csum = ioc3_get_rx_csum,
1654 .set_rx_csum = ioc3_set_rx_csum,
1655 .get_tx_csum = ethtool_op_get_tx_csum,
1656 .set_tx_csum = ethtool_op_set_tx_csum
1657 };
1658
1659 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1660 {
1661 struct ioc3_private *ip = netdev_priv(dev);
1662 int rc;
1663
1664 spin_lock_irq(&ip->ioc3_lock);
1665 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1666 spin_unlock_irq(&ip->ioc3_lock);
1667
1668 return rc;
1669 }
1670
1671 static void ioc3_set_multicast_list(struct net_device *dev)
1672 {
1673 struct dev_mc_list *dmi = dev->mc_list;
1674 struct ioc3_private *ip = netdev_priv(dev);
1675 struct ioc3 *ioc3 = ip->regs;
1676 u64 ehar = 0;
1677 int i;
1678
1679 netif_stop_queue(dev); /* Lock out others. */
1680
1681 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1682 ip->emcr |= EMCR_PROMISC;
1683 ioc3_w_emcr(ip->emcr);
1684 (void) ioc3_r_emcr();
1685 } else {
1686 ip->emcr &= ~EMCR_PROMISC;
1687 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1688 (void) ioc3_r_emcr();
1689
1690 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1691 /* Too many for hashing to make sense or we want all
1692 multicast packets anyway, so skip computing all the
1693 hashes and just accept all packets. */
1694 ip->ehar_h = 0xffffffff;
1695 ip->ehar_l = 0xffffffff;
1696 } else {
1697 for (i = 0; i < dev->mc_count; i++) {
1698 char *addr = dmi->dmi_addr;
1699 dmi = dmi->next;
1700
1701 if (!(*addr & 1))
1702 continue;
1703
1704 ehar |= (1UL << ioc3_hash(addr));
1705 }
1706 ip->ehar_h = ehar >> 32;
1707 ip->ehar_l = ehar & 0xffffffff;
1708 }
1709 ioc3_w_ehar_h(ip->ehar_h);
1710 ioc3_w_ehar_l(ip->ehar_l);
1711 }
1712
1713 netif_wake_queue(dev); /* Let us get going again. */
1714 }
1715
1716 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1717 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1718 MODULE_LICENSE("GPL");
1719
1720 module_init(ioc3_init_module);
1721 module_exit(ioc3_cleanup_module);