Staging: et131x: config is already zeroed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pm_qos_params.h>
44
45 #include "igbvf.h"
46
47 #define DRV_VERSION "1.0.0-k0"
48 char igbvf_driver_name[] = "igbvf";
49 const char igbvf_driver_version[] = DRV_VERSION;
50 static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54 static int igbvf_poll(struct napi_struct *napi, int budget);
55 static void igbvf_reset(struct igbvf_adapter *);
56 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
58
59 static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
61 .flags = 0,
62 .pba = 10,
63 .init_ops = e1000_init_function_pointers_vf,
64 };
65
66 static const struct igbvf_info *igbvf_info_tbl[] = {
67 [board_vf] = &igbvf_vf_info,
68 };
69
70 /**
71 * igbvf_desc_unused - calculate if we have unused descriptors
72 **/
73 static int igbvf_desc_unused(struct igbvf_ring *ring)
74 {
75 if (ring->next_to_clean > ring->next_to_use)
76 return ring->next_to_clean - ring->next_to_use - 1;
77
78 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
79 }
80
81 /**
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
87 **/
88 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
89 struct net_device *netdev,
90 struct sk_buff *skb,
91 u32 status, u16 vlan)
92 {
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
95 le16_to_cpu(vlan) &
96 E1000_RXD_SPC_VLAN_MASK);
97 else
98 netif_receive_skb(skb);
99 }
100
101 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102 u32 status_err, struct sk_buff *skb)
103 {
104 skb->ip_summed = CHECKSUM_NONE;
105
106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
107 if ((status_err & E1000_RXD_STAT_IXSM) ||
108 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
109 return;
110
111 /* TCP/UDP checksum error bit is set */
112 if (status_err &
113 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
114 /* let the stack verify checksum errors */
115 adapter->hw_csum_err++;
116 return;
117 }
118
119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 skb->ip_summed = CHECKSUM_UNNECESSARY;
122
123 adapter->hw_csum_good++;
124 }
125
126 /**
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
130 **/
131 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132 int cleaned_count)
133 {
134 struct igbvf_adapter *adapter = rx_ring->adapter;
135 struct net_device *netdev = adapter->netdev;
136 struct pci_dev *pdev = adapter->pdev;
137 union e1000_adv_rx_desc *rx_desc;
138 struct igbvf_buffer *buffer_info;
139 struct sk_buff *skb;
140 unsigned int i;
141 int bufsz;
142
143 i = rx_ring->next_to_use;
144 buffer_info = &rx_ring->buffer_info[i];
145
146 if (adapter->rx_ps_hdr_size)
147 bufsz = adapter->rx_ps_hdr_size;
148 else
149 bufsz = adapter->rx_buffer_len;
150
151 while (cleaned_count--) {
152 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
153
154 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
155 if (!buffer_info->page) {
156 buffer_info->page = alloc_page(GFP_ATOMIC);
157 if (!buffer_info->page) {
158 adapter->alloc_rx_buff_failed++;
159 goto no_buffers;
160 }
161 buffer_info->page_offset = 0;
162 } else {
163 buffer_info->page_offset ^= PAGE_SIZE / 2;
164 }
165 buffer_info->page_dma =
166 pci_map_page(pdev, buffer_info->page,
167 buffer_info->page_offset,
168 PAGE_SIZE / 2,
169 PCI_DMA_FROMDEVICE);
170 }
171
172 if (!buffer_info->skb) {
173 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
174 if (!skb) {
175 adapter->alloc_rx_buff_failed++;
176 goto no_buffers;
177 }
178
179 /* Make buffer alignment 2 beyond a 16 byte boundary
180 * this will result in a 16 byte aligned IP header after
181 * the 14 byte MAC header is removed
182 */
183 skb_reserve(skb, NET_IP_ALIGN);
184
185 buffer_info->skb = skb;
186 buffer_info->dma = pci_map_single(pdev, skb->data,
187 bufsz,
188 PCI_DMA_FROMDEVICE);
189 }
190 /* Refresh the desc even if buffer_addrs didn't change because
191 * each write-back erases this info. */
192 if (adapter->rx_ps_hdr_size) {
193 rx_desc->read.pkt_addr =
194 cpu_to_le64(buffer_info->page_dma);
195 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
196 } else {
197 rx_desc->read.pkt_addr =
198 cpu_to_le64(buffer_info->dma);
199 rx_desc->read.hdr_addr = 0;
200 }
201
202 i++;
203 if (i == rx_ring->count)
204 i = 0;
205 buffer_info = &rx_ring->buffer_info[i];
206 }
207
208 no_buffers:
209 if (rx_ring->next_to_use != i) {
210 rx_ring->next_to_use = i;
211 if (i == 0)
212 i = (rx_ring->count - 1);
213 else
214 i--;
215
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
219 * such as IA-64). */
220 wmb();
221 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222 }
223 }
224
225 /**
226 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
227 * @adapter: board private structure
228 *
229 * the return value indicates whether actual cleaning was done, there
230 * is no guarantee that everything was cleaned
231 **/
232 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
233 int *work_done, int work_to_do)
234 {
235 struct igbvf_ring *rx_ring = adapter->rx_ring;
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_adv_rx_desc *rx_desc, *next_rxd;
239 struct igbvf_buffer *buffer_info, *next_buffer;
240 struct sk_buff *skb;
241 bool cleaned = false;
242 int cleaned_count = 0;
243 unsigned int total_bytes = 0, total_packets = 0;
244 unsigned int i;
245 u32 length, hlen, staterr;
246
247 i = rx_ring->next_to_clean;
248 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
249 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
250
251 while (staterr & E1000_RXD_STAT_DD) {
252 if (*work_done >= work_to_do)
253 break;
254 (*work_done)++;
255
256 buffer_info = &rx_ring->buffer_info[i];
257
258 /* HW will not DMA in data larger than the given buffer, even
259 * if it parses the (NFS, of course) header to be larger. In
260 * that case, it fills the header buffer and spills the rest
261 * into the page.
262 */
263 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
264 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
265 if (hlen > adapter->rx_ps_hdr_size)
266 hlen = adapter->rx_ps_hdr_size;
267
268 length = le16_to_cpu(rx_desc->wb.upper.length);
269 cleaned = true;
270 cleaned_count++;
271
272 skb = buffer_info->skb;
273 prefetch(skb->data - NET_IP_ALIGN);
274 buffer_info->skb = NULL;
275 if (!adapter->rx_ps_hdr_size) {
276 pci_unmap_single(pdev, buffer_info->dma,
277 adapter->rx_buffer_len,
278 PCI_DMA_FROMDEVICE);
279 buffer_info->dma = 0;
280 skb_put(skb, length);
281 goto send_up;
282 }
283
284 if (!skb_shinfo(skb)->nr_frags) {
285 pci_unmap_single(pdev, buffer_info->dma,
286 adapter->rx_ps_hdr_size,
287 PCI_DMA_FROMDEVICE);
288 skb_put(skb, hlen);
289 }
290
291 if (length) {
292 pci_unmap_page(pdev, buffer_info->page_dma,
293 PAGE_SIZE / 2,
294 PCI_DMA_FROMDEVICE);
295 buffer_info->page_dma = 0;
296
297 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
298 buffer_info->page,
299 buffer_info->page_offset,
300 length);
301
302 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
303 (page_count(buffer_info->page) != 1))
304 buffer_info->page = NULL;
305 else
306 get_page(buffer_info->page);
307
308 skb->len += length;
309 skb->data_len += length;
310 skb->truesize += length;
311 }
312 send_up:
313 i++;
314 if (i == rx_ring->count)
315 i = 0;
316 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
317 prefetch(next_rxd);
318 next_buffer = &rx_ring->buffer_info[i];
319
320 if (!(staterr & E1000_RXD_STAT_EOP)) {
321 buffer_info->skb = next_buffer->skb;
322 buffer_info->dma = next_buffer->dma;
323 next_buffer->skb = skb;
324 next_buffer->dma = 0;
325 goto next_desc;
326 }
327
328 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
329 dev_kfree_skb_irq(skb);
330 goto next_desc;
331 }
332
333 total_bytes += skb->len;
334 total_packets++;
335
336 igbvf_rx_checksum_adv(adapter, staterr, skb);
337
338 skb->protocol = eth_type_trans(skb, netdev);
339
340 igbvf_receive_skb(adapter, netdev, skb, staterr,
341 rx_desc->wb.upper.vlan);
342
343 next_desc:
344 rx_desc->wb.upper.status_error = 0;
345
346 /* return some buffers to hardware, one at a time is too slow */
347 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
348 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
349 cleaned_count = 0;
350 }
351
352 /* use prefetched values */
353 rx_desc = next_rxd;
354 buffer_info = next_buffer;
355
356 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
357 }
358
359 rx_ring->next_to_clean = i;
360 cleaned_count = igbvf_desc_unused(rx_ring);
361
362 if (cleaned_count)
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364
365 adapter->total_rx_packets += total_packets;
366 adapter->total_rx_bytes += total_bytes;
367 adapter->net_stats.rx_bytes += total_bytes;
368 adapter->net_stats.rx_packets += total_packets;
369 return cleaned;
370 }
371
372 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
373 struct igbvf_buffer *buffer_info)
374 {
375 buffer_info->dma = 0;
376 if (buffer_info->skb) {
377 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
378 DMA_TO_DEVICE);
379 dev_kfree_skb_any(buffer_info->skb);
380 buffer_info->skb = NULL;
381 }
382 buffer_info->time_stamp = 0;
383 }
384
385 static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
386 {
387 struct igbvf_ring *tx_ring = adapter->tx_ring;
388 unsigned int i = tx_ring->next_to_clean;
389 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
390 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
391
392 /* detected Tx unit hang */
393 dev_err(&adapter->pdev->dev,
394 "Detected Tx Unit Hang:\n"
395 " TDH <%x>\n"
396 " TDT <%x>\n"
397 " next_to_use <%x>\n"
398 " next_to_clean <%x>\n"
399 "buffer_info[next_to_clean]:\n"
400 " time_stamp <%lx>\n"
401 " next_to_watch <%x>\n"
402 " jiffies <%lx>\n"
403 " next_to_watch.status <%x>\n",
404 readl(adapter->hw.hw_addr + tx_ring->head),
405 readl(adapter->hw.hw_addr + tx_ring->tail),
406 tx_ring->next_to_use,
407 tx_ring->next_to_clean,
408 tx_ring->buffer_info[eop].time_stamp,
409 eop,
410 jiffies,
411 eop_desc->wb.status);
412 }
413
414 /**
415 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
416 * @adapter: board private structure
417 *
418 * Return 0 on success, negative on failure
419 **/
420 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
421 struct igbvf_ring *tx_ring)
422 {
423 struct pci_dev *pdev = adapter->pdev;
424 int size;
425
426 size = sizeof(struct igbvf_buffer) * tx_ring->count;
427 tx_ring->buffer_info = vmalloc(size);
428 if (!tx_ring->buffer_info)
429 goto err;
430 memset(tx_ring->buffer_info, 0, size);
431
432 /* round up to nearest 4K */
433 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
434 tx_ring->size = ALIGN(tx_ring->size, 4096);
435
436 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
437 &tx_ring->dma);
438
439 if (!tx_ring->desc)
440 goto err;
441
442 tx_ring->adapter = adapter;
443 tx_ring->next_to_use = 0;
444 tx_ring->next_to_clean = 0;
445
446 return 0;
447 err:
448 vfree(tx_ring->buffer_info);
449 dev_err(&adapter->pdev->dev,
450 "Unable to allocate memory for the transmit descriptor ring\n");
451 return -ENOMEM;
452 }
453
454 /**
455 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
456 * @adapter: board private structure
457 *
458 * Returns 0 on success, negative on failure
459 **/
460 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
461 struct igbvf_ring *rx_ring)
462 {
463 struct pci_dev *pdev = adapter->pdev;
464 int size, desc_len;
465
466 size = sizeof(struct igbvf_buffer) * rx_ring->count;
467 rx_ring->buffer_info = vmalloc(size);
468 if (!rx_ring->buffer_info)
469 goto err;
470 memset(rx_ring->buffer_info, 0, size);
471
472 desc_len = sizeof(union e1000_adv_rx_desc);
473
474 /* Round up to nearest 4K */
475 rx_ring->size = rx_ring->count * desc_len;
476 rx_ring->size = ALIGN(rx_ring->size, 4096);
477
478 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
479 &rx_ring->dma);
480
481 if (!rx_ring->desc)
482 goto err;
483
484 rx_ring->next_to_clean = 0;
485 rx_ring->next_to_use = 0;
486
487 rx_ring->adapter = adapter;
488
489 return 0;
490
491 err:
492 vfree(rx_ring->buffer_info);
493 rx_ring->buffer_info = NULL;
494 dev_err(&adapter->pdev->dev,
495 "Unable to allocate memory for the receive descriptor ring\n");
496 return -ENOMEM;
497 }
498
499 /**
500 * igbvf_clean_tx_ring - Free Tx Buffers
501 * @tx_ring: ring to be cleaned
502 **/
503 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
504 {
505 struct igbvf_adapter *adapter = tx_ring->adapter;
506 struct igbvf_buffer *buffer_info;
507 unsigned long size;
508 unsigned int i;
509
510 if (!tx_ring->buffer_info)
511 return;
512
513 /* Free all the Tx ring sk_buffs */
514 for (i = 0; i < tx_ring->count; i++) {
515 buffer_info = &tx_ring->buffer_info[i];
516 igbvf_put_txbuf(adapter, buffer_info);
517 }
518
519 size = sizeof(struct igbvf_buffer) * tx_ring->count;
520 memset(tx_ring->buffer_info, 0, size);
521
522 /* Zero out the descriptor ring */
523 memset(tx_ring->desc, 0, tx_ring->size);
524
525 tx_ring->next_to_use = 0;
526 tx_ring->next_to_clean = 0;
527
528 writel(0, adapter->hw.hw_addr + tx_ring->head);
529 writel(0, adapter->hw.hw_addr + tx_ring->tail);
530 }
531
532 /**
533 * igbvf_free_tx_resources - Free Tx Resources per Queue
534 * @tx_ring: ring to free resources from
535 *
536 * Free all transmit software resources
537 **/
538 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
539 {
540 struct pci_dev *pdev = tx_ring->adapter->pdev;
541
542 igbvf_clean_tx_ring(tx_ring);
543
544 vfree(tx_ring->buffer_info);
545 tx_ring->buffer_info = NULL;
546
547 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
548
549 tx_ring->desc = NULL;
550 }
551
552 /**
553 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
554 * @adapter: board private structure
555 **/
556 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
557 {
558 struct igbvf_adapter *adapter = rx_ring->adapter;
559 struct igbvf_buffer *buffer_info;
560 struct pci_dev *pdev = adapter->pdev;
561 unsigned long size;
562 unsigned int i;
563
564 if (!rx_ring->buffer_info)
565 return;
566
567 /* Free all the Rx ring sk_buffs */
568 for (i = 0; i < rx_ring->count; i++) {
569 buffer_info = &rx_ring->buffer_info[i];
570 if (buffer_info->dma) {
571 if (adapter->rx_ps_hdr_size){
572 pci_unmap_single(pdev, buffer_info->dma,
573 adapter->rx_ps_hdr_size,
574 PCI_DMA_FROMDEVICE);
575 } else {
576 pci_unmap_single(pdev, buffer_info->dma,
577 adapter->rx_buffer_len,
578 PCI_DMA_FROMDEVICE);
579 }
580 buffer_info->dma = 0;
581 }
582
583 if (buffer_info->skb) {
584 dev_kfree_skb(buffer_info->skb);
585 buffer_info->skb = NULL;
586 }
587
588 if (buffer_info->page) {
589 if (buffer_info->page_dma)
590 pci_unmap_page(pdev, buffer_info->page_dma,
591 PAGE_SIZE / 2,
592 PCI_DMA_FROMDEVICE);
593 put_page(buffer_info->page);
594 buffer_info->page = NULL;
595 buffer_info->page_dma = 0;
596 buffer_info->page_offset = 0;
597 }
598 }
599
600 size = sizeof(struct igbvf_buffer) * rx_ring->count;
601 memset(rx_ring->buffer_info, 0, size);
602
603 /* Zero out the descriptor ring */
604 memset(rx_ring->desc, 0, rx_ring->size);
605
606 rx_ring->next_to_clean = 0;
607 rx_ring->next_to_use = 0;
608
609 writel(0, adapter->hw.hw_addr + rx_ring->head);
610 writel(0, adapter->hw.hw_addr + rx_ring->tail);
611 }
612
613 /**
614 * igbvf_free_rx_resources - Free Rx Resources
615 * @rx_ring: ring to clean the resources from
616 *
617 * Free all receive software resources
618 **/
619
620 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
621 {
622 struct pci_dev *pdev = rx_ring->adapter->pdev;
623
624 igbvf_clean_rx_ring(rx_ring);
625
626 vfree(rx_ring->buffer_info);
627 rx_ring->buffer_info = NULL;
628
629 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
630 rx_ring->dma);
631 rx_ring->desc = NULL;
632 }
633
634 /**
635 * igbvf_update_itr - update the dynamic ITR value based on statistics
636 * @adapter: pointer to adapter
637 * @itr_setting: current adapter->itr
638 * @packets: the number of packets during this measurement interval
639 * @bytes: the number of bytes during this measurement interval
640 *
641 * Stores a new ITR value based on packets and byte
642 * counts during the last interrupt. The advantage of per interrupt
643 * computation is faster updates and more accurate ITR for the current
644 * traffic pattern. Constants in this function were computed
645 * based on theoretical maximum wire speed and thresholds were set based
646 * on testing data as well as attempting to minimize response time
647 * while increasing bulk throughput. This functionality is controlled
648 * by the InterruptThrottleRate module parameter.
649 **/
650 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
651 u16 itr_setting, int packets,
652 int bytes)
653 {
654 unsigned int retval = itr_setting;
655
656 if (packets == 0)
657 goto update_itr_done;
658
659 switch (itr_setting) {
660 case lowest_latency:
661 /* handle TSO and jumbo frames */
662 if (bytes/packets > 8000)
663 retval = bulk_latency;
664 else if ((packets < 5) && (bytes > 512))
665 retval = low_latency;
666 break;
667 case low_latency: /* 50 usec aka 20000 ints/s */
668 if (bytes > 10000) {
669 /* this if handles the TSO accounting */
670 if (bytes/packets > 8000)
671 retval = bulk_latency;
672 else if ((packets < 10) || ((bytes/packets) > 1200))
673 retval = bulk_latency;
674 else if ((packets > 35))
675 retval = lowest_latency;
676 } else if (bytes/packets > 2000) {
677 retval = bulk_latency;
678 } else if (packets <= 2 && bytes < 512) {
679 retval = lowest_latency;
680 }
681 break;
682 case bulk_latency: /* 250 usec aka 4000 ints/s */
683 if (bytes > 25000) {
684 if (packets > 35)
685 retval = low_latency;
686 } else if (bytes < 6000) {
687 retval = low_latency;
688 }
689 break;
690 }
691
692 update_itr_done:
693 return retval;
694 }
695
696 static void igbvf_set_itr(struct igbvf_adapter *adapter)
697 {
698 struct e1000_hw *hw = &adapter->hw;
699 u16 current_itr;
700 u32 new_itr = adapter->itr;
701
702 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
703 adapter->total_tx_packets,
704 adapter->total_tx_bytes);
705 /* conservative mode (itr 3) eliminates the lowest_latency setting */
706 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
707 adapter->tx_itr = low_latency;
708
709 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
710 adapter->total_rx_packets,
711 adapter->total_rx_bytes);
712 /* conservative mode (itr 3) eliminates the lowest_latency setting */
713 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
714 adapter->rx_itr = low_latency;
715
716 current_itr = max(adapter->rx_itr, adapter->tx_itr);
717
718 switch (current_itr) {
719 /* counts and packets in update_itr are dependent on these numbers */
720 case lowest_latency:
721 new_itr = 70000;
722 break;
723 case low_latency:
724 new_itr = 20000; /* aka hwitr = ~200 */
725 break;
726 case bulk_latency:
727 new_itr = 4000;
728 break;
729 default:
730 break;
731 }
732
733 if (new_itr != adapter->itr) {
734 /*
735 * this attempts to bias the interrupt rate towards Bulk
736 * by adding intermediate steps when interrupt rate is
737 * increasing
738 */
739 new_itr = new_itr > adapter->itr ?
740 min(adapter->itr + (new_itr >> 2), new_itr) :
741 new_itr;
742 adapter->itr = new_itr;
743 adapter->rx_ring->itr_val = 1952;
744
745 if (adapter->msix_entries)
746 adapter->rx_ring->set_itr = 1;
747 else
748 ew32(ITR, 1952);
749 }
750 }
751
752 /**
753 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
754 * @adapter: board private structure
755 * returns true if ring is completely cleaned
756 **/
757 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
758 {
759 struct igbvf_adapter *adapter = tx_ring->adapter;
760 struct e1000_hw *hw = &adapter->hw;
761 struct net_device *netdev = adapter->netdev;
762 struct igbvf_buffer *buffer_info;
763 struct sk_buff *skb;
764 union e1000_adv_tx_desc *tx_desc, *eop_desc;
765 unsigned int total_bytes = 0, total_packets = 0;
766 unsigned int i, eop, count = 0;
767 bool cleaned = false;
768
769 i = tx_ring->next_to_clean;
770 eop = tx_ring->buffer_info[i].next_to_watch;
771 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
772
773 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
774 (count < tx_ring->count)) {
775 for (cleaned = false; !cleaned; count++) {
776 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
777 buffer_info = &tx_ring->buffer_info[i];
778 cleaned = (i == eop);
779 skb = buffer_info->skb;
780
781 if (skb) {
782 unsigned int segs, bytecount;
783
784 /* gso_segs is currently only valid for tcp */
785 segs = skb_shinfo(skb)->gso_segs ?: 1;
786 /* multiply data chunks by size of headers */
787 bytecount = ((segs - 1) * skb_headlen(skb)) +
788 skb->len;
789 total_packets += segs;
790 total_bytes += bytecount;
791 }
792
793 igbvf_put_txbuf(adapter, buffer_info);
794 tx_desc->wb.status = 0;
795
796 i++;
797 if (i == tx_ring->count)
798 i = 0;
799 }
800 eop = tx_ring->buffer_info[i].next_to_watch;
801 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
802 }
803
804 tx_ring->next_to_clean = i;
805
806 if (unlikely(count &&
807 netif_carrier_ok(netdev) &&
808 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
809 /* Make sure that anybody stopping the queue after this
810 * sees the new next_to_clean.
811 */
812 smp_mb();
813 if (netif_queue_stopped(netdev) &&
814 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
815 netif_wake_queue(netdev);
816 ++adapter->restart_queue;
817 }
818 }
819
820 if (adapter->detect_tx_hung) {
821 /* Detect a transmit hang in hardware, this serializes the
822 * check with the clearing of time_stamp and movement of i */
823 adapter->detect_tx_hung = false;
824 if (tx_ring->buffer_info[i].time_stamp &&
825 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
826 (adapter->tx_timeout_factor * HZ))
827 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
828
829 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
830 /* detected Tx unit hang */
831 igbvf_print_tx_hang(adapter);
832
833 netif_stop_queue(netdev);
834 }
835 }
836 adapter->net_stats.tx_bytes += total_bytes;
837 adapter->net_stats.tx_packets += total_packets;
838 return (count < tx_ring->count);
839 }
840
841 static irqreturn_t igbvf_msix_other(int irq, void *data)
842 {
843 struct net_device *netdev = data;
844 struct igbvf_adapter *adapter = netdev_priv(netdev);
845 struct e1000_hw *hw = &adapter->hw;
846
847 adapter->int_counter1++;
848
849 netif_carrier_off(netdev);
850 hw->mac.get_link_status = 1;
851 if (!test_bit(__IGBVF_DOWN, &adapter->state))
852 mod_timer(&adapter->watchdog_timer, jiffies + 1);
853
854 ew32(EIMS, adapter->eims_other);
855
856 return IRQ_HANDLED;
857 }
858
859 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
860 {
861 struct net_device *netdev = data;
862 struct igbvf_adapter *adapter = netdev_priv(netdev);
863 struct e1000_hw *hw = &adapter->hw;
864 struct igbvf_ring *tx_ring = adapter->tx_ring;
865
866
867 adapter->total_tx_bytes = 0;
868 adapter->total_tx_packets = 0;
869
870 /* auto mask will automatically reenable the interrupt when we write
871 * EICS */
872 if (!igbvf_clean_tx_irq(tx_ring))
873 /* Ring was not completely cleaned, so fire another interrupt */
874 ew32(EICS, tx_ring->eims_value);
875 else
876 ew32(EIMS, tx_ring->eims_value);
877
878 return IRQ_HANDLED;
879 }
880
881 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
882 {
883 struct net_device *netdev = data;
884 struct igbvf_adapter *adapter = netdev_priv(netdev);
885
886 adapter->int_counter0++;
887
888 /* Write the ITR value calculated at the end of the
889 * previous interrupt.
890 */
891 if (adapter->rx_ring->set_itr) {
892 writel(adapter->rx_ring->itr_val,
893 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
894 adapter->rx_ring->set_itr = 0;
895 }
896
897 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
898 adapter->total_rx_bytes = 0;
899 adapter->total_rx_packets = 0;
900 __napi_schedule(&adapter->rx_ring->napi);
901 }
902
903 return IRQ_HANDLED;
904 }
905
906 #define IGBVF_NO_QUEUE -1
907
908 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
909 int tx_queue, int msix_vector)
910 {
911 struct e1000_hw *hw = &adapter->hw;
912 u32 ivar, index;
913
914 /* 82576 uses a table-based method for assigning vectors.
915 Each queue has a single entry in the table to which we write
916 a vector number along with a "valid" bit. Sadly, the layout
917 of the table is somewhat counterintuitive. */
918 if (rx_queue > IGBVF_NO_QUEUE) {
919 index = (rx_queue >> 1);
920 ivar = array_er32(IVAR0, index);
921 if (rx_queue & 0x1) {
922 /* vector goes into third byte of register */
923 ivar = ivar & 0xFF00FFFF;
924 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
925 } else {
926 /* vector goes into low byte of register */
927 ivar = ivar & 0xFFFFFF00;
928 ivar |= msix_vector | E1000_IVAR_VALID;
929 }
930 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
931 array_ew32(IVAR0, index, ivar);
932 }
933 if (tx_queue > IGBVF_NO_QUEUE) {
934 index = (tx_queue >> 1);
935 ivar = array_er32(IVAR0, index);
936 if (tx_queue & 0x1) {
937 /* vector goes into high byte of register */
938 ivar = ivar & 0x00FFFFFF;
939 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
940 } else {
941 /* vector goes into second byte of register */
942 ivar = ivar & 0xFFFF00FF;
943 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
944 }
945 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
946 array_ew32(IVAR0, index, ivar);
947 }
948 }
949
950 /**
951 * igbvf_configure_msix - Configure MSI-X hardware
952 *
953 * igbvf_configure_msix sets up the hardware to properly
954 * generate MSI-X interrupts.
955 **/
956 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
957 {
958 u32 tmp;
959 struct e1000_hw *hw = &adapter->hw;
960 struct igbvf_ring *tx_ring = adapter->tx_ring;
961 struct igbvf_ring *rx_ring = adapter->rx_ring;
962 int vector = 0;
963
964 adapter->eims_enable_mask = 0;
965
966 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
967 adapter->eims_enable_mask |= tx_ring->eims_value;
968 if (tx_ring->itr_val)
969 writel(tx_ring->itr_val,
970 hw->hw_addr + tx_ring->itr_register);
971 else
972 writel(1952, hw->hw_addr + tx_ring->itr_register);
973
974 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
975 adapter->eims_enable_mask |= rx_ring->eims_value;
976 if (rx_ring->itr_val)
977 writel(rx_ring->itr_val,
978 hw->hw_addr + rx_ring->itr_register);
979 else
980 writel(1952, hw->hw_addr + rx_ring->itr_register);
981
982 /* set vector for other causes, i.e. link changes */
983
984 tmp = (vector++ | E1000_IVAR_VALID);
985
986 ew32(IVAR_MISC, tmp);
987
988 adapter->eims_enable_mask = (1 << (vector)) - 1;
989 adapter->eims_other = 1 << (vector - 1);
990 e1e_flush();
991 }
992
993 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
994 {
995 if (adapter->msix_entries) {
996 pci_disable_msix(adapter->pdev);
997 kfree(adapter->msix_entries);
998 adapter->msix_entries = NULL;
999 }
1000 }
1001
1002 /**
1003 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1004 *
1005 * Attempt to configure interrupts using the best available
1006 * capabilities of the hardware and kernel.
1007 **/
1008 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1009 {
1010 int err = -ENOMEM;
1011 int i;
1012
1013 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1014 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1015 GFP_KERNEL);
1016 if (adapter->msix_entries) {
1017 for (i = 0; i < 3; i++)
1018 adapter->msix_entries[i].entry = i;
1019
1020 err = pci_enable_msix(adapter->pdev,
1021 adapter->msix_entries, 3);
1022 }
1023
1024 if (err) {
1025 /* MSI-X failed */
1026 dev_err(&adapter->pdev->dev,
1027 "Failed to initialize MSI-X interrupts.\n");
1028 igbvf_reset_interrupt_capability(adapter);
1029 }
1030 }
1031
1032 /**
1033 * igbvf_request_msix - Initialize MSI-X interrupts
1034 *
1035 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1036 * kernel.
1037 **/
1038 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1039 {
1040 struct net_device *netdev = adapter->netdev;
1041 int err = 0, vector = 0;
1042
1043 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1044 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1045 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1046 } else {
1047 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1048 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1049 }
1050
1051 err = request_irq(adapter->msix_entries[vector].vector,
1052 &igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1053 netdev);
1054 if (err)
1055 goto out;
1056
1057 adapter->tx_ring->itr_register = E1000_EITR(vector);
1058 adapter->tx_ring->itr_val = 1952;
1059 vector++;
1060
1061 err = request_irq(adapter->msix_entries[vector].vector,
1062 &igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1063 netdev);
1064 if (err)
1065 goto out;
1066
1067 adapter->rx_ring->itr_register = E1000_EITR(vector);
1068 adapter->rx_ring->itr_val = 1952;
1069 vector++;
1070
1071 err = request_irq(adapter->msix_entries[vector].vector,
1072 &igbvf_msix_other, 0, netdev->name, netdev);
1073 if (err)
1074 goto out;
1075
1076 igbvf_configure_msix(adapter);
1077 return 0;
1078 out:
1079 return err;
1080 }
1081
1082 /**
1083 * igbvf_alloc_queues - Allocate memory for all rings
1084 * @adapter: board private structure to initialize
1085 **/
1086 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1087 {
1088 struct net_device *netdev = adapter->netdev;
1089
1090 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1091 if (!adapter->tx_ring)
1092 return -ENOMEM;
1093
1094 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1095 if (!adapter->rx_ring) {
1096 kfree(adapter->tx_ring);
1097 return -ENOMEM;
1098 }
1099
1100 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * igbvf_request_irq - initialize interrupts
1107 *
1108 * Attempts to configure interrupts using the best available
1109 * capabilities of the hardware and kernel.
1110 **/
1111 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1112 {
1113 int err = -1;
1114
1115 /* igbvf supports msi-x only */
1116 if (adapter->msix_entries)
1117 err = igbvf_request_msix(adapter);
1118
1119 if (!err)
1120 return err;
1121
1122 dev_err(&adapter->pdev->dev,
1123 "Unable to allocate interrupt, Error: %d\n", err);
1124
1125 return err;
1126 }
1127
1128 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1129 {
1130 struct net_device *netdev = adapter->netdev;
1131 int vector;
1132
1133 if (adapter->msix_entries) {
1134 for (vector = 0; vector < 3; vector++)
1135 free_irq(adapter->msix_entries[vector].vector, netdev);
1136 }
1137 }
1138
1139 /**
1140 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1141 **/
1142 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1143 {
1144 struct e1000_hw *hw = &adapter->hw;
1145
1146 ew32(EIMC, ~0);
1147
1148 if (adapter->msix_entries)
1149 ew32(EIAC, 0);
1150 }
1151
1152 /**
1153 * igbvf_irq_enable - Enable default interrupt generation settings
1154 **/
1155 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1156 {
1157 struct e1000_hw *hw = &adapter->hw;
1158
1159 ew32(EIAC, adapter->eims_enable_mask);
1160 ew32(EIAM, adapter->eims_enable_mask);
1161 ew32(EIMS, adapter->eims_enable_mask);
1162 }
1163
1164 /**
1165 * igbvf_poll - NAPI Rx polling callback
1166 * @napi: struct associated with this polling callback
1167 * @budget: amount of packets driver is allowed to process this poll
1168 **/
1169 static int igbvf_poll(struct napi_struct *napi, int budget)
1170 {
1171 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1172 struct igbvf_adapter *adapter = rx_ring->adapter;
1173 struct e1000_hw *hw = &adapter->hw;
1174 int work_done = 0;
1175
1176 igbvf_clean_rx_irq(adapter, &work_done, budget);
1177
1178 /* If not enough Rx work done, exit the polling mode */
1179 if (work_done < budget) {
1180 napi_complete(napi);
1181
1182 if (adapter->itr_setting & 3)
1183 igbvf_set_itr(adapter);
1184
1185 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1186 ew32(EIMS, adapter->rx_ring->eims_value);
1187 }
1188
1189 return work_done;
1190 }
1191
1192 /**
1193 * igbvf_set_rlpml - set receive large packet maximum length
1194 * @adapter: board private structure
1195 *
1196 * Configure the maximum size of packets that will be received
1197 */
1198 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1199 {
1200 int max_frame_size = adapter->max_frame_size;
1201 struct e1000_hw *hw = &adapter->hw;
1202
1203 if (adapter->vlgrp)
1204 max_frame_size += VLAN_TAG_SIZE;
1205
1206 e1000_rlpml_set_vf(hw, max_frame_size);
1207 }
1208
1209 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1210 {
1211 struct igbvf_adapter *adapter = netdev_priv(netdev);
1212 struct e1000_hw *hw = &adapter->hw;
1213
1214 if (hw->mac.ops.set_vfta(hw, vid, true))
1215 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1216 }
1217
1218 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1219 {
1220 struct igbvf_adapter *adapter = netdev_priv(netdev);
1221 struct e1000_hw *hw = &adapter->hw;
1222
1223 igbvf_irq_disable(adapter);
1224 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1225
1226 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1227 igbvf_irq_enable(adapter);
1228
1229 if (hw->mac.ops.set_vfta(hw, vid, false))
1230 dev_err(&adapter->pdev->dev,
1231 "Failed to remove vlan id %d\n", vid);
1232 }
1233
1234 static void igbvf_vlan_rx_register(struct net_device *netdev,
1235 struct vlan_group *grp)
1236 {
1237 struct igbvf_adapter *adapter = netdev_priv(netdev);
1238
1239 adapter->vlgrp = grp;
1240 }
1241
1242 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1243 {
1244 u16 vid;
1245
1246 if (!adapter->vlgrp)
1247 return;
1248
1249 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1250 if (!vlan_group_get_device(adapter->vlgrp, vid))
1251 continue;
1252 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1253 }
1254
1255 igbvf_set_rlpml(adapter);
1256 }
1257
1258 /**
1259 * igbvf_configure_tx - Configure Transmit Unit after Reset
1260 * @adapter: board private structure
1261 *
1262 * Configure the Tx unit of the MAC after a reset.
1263 **/
1264 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1265 {
1266 struct e1000_hw *hw = &adapter->hw;
1267 struct igbvf_ring *tx_ring = adapter->tx_ring;
1268 u64 tdba;
1269 u32 txdctl, dca_txctrl;
1270
1271 /* disable transmits */
1272 txdctl = er32(TXDCTL(0));
1273 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1274 msleep(10);
1275
1276 /* Setup the HW Tx Head and Tail descriptor pointers */
1277 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1278 tdba = tx_ring->dma;
1279 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1280 ew32(TDBAH(0), (tdba >> 32));
1281 ew32(TDH(0), 0);
1282 ew32(TDT(0), 0);
1283 tx_ring->head = E1000_TDH(0);
1284 tx_ring->tail = E1000_TDT(0);
1285
1286 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1287 * MUST be delivered in order or it will completely screw up
1288 * our bookeeping.
1289 */
1290 dca_txctrl = er32(DCA_TXCTRL(0));
1291 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1292 ew32(DCA_TXCTRL(0), dca_txctrl);
1293
1294 /* enable transmits */
1295 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1296 ew32(TXDCTL(0), txdctl);
1297
1298 /* Setup Transmit Descriptor Settings for eop descriptor */
1299 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1300
1301 /* enable Report Status bit */
1302 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1303
1304 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1305 }
1306
1307 /**
1308 * igbvf_setup_srrctl - configure the receive control registers
1309 * @adapter: Board private structure
1310 **/
1311 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1312 {
1313 struct e1000_hw *hw = &adapter->hw;
1314 u32 srrctl = 0;
1315
1316 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1317 E1000_SRRCTL_BSIZEHDR_MASK |
1318 E1000_SRRCTL_BSIZEPKT_MASK);
1319
1320 /* Enable queue drop to avoid head of line blocking */
1321 srrctl |= E1000_SRRCTL_DROP_EN;
1322
1323 /* Setup buffer sizes */
1324 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1325 E1000_SRRCTL_BSIZEPKT_SHIFT;
1326
1327 if (adapter->rx_buffer_len < 2048) {
1328 adapter->rx_ps_hdr_size = 0;
1329 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1330 } else {
1331 adapter->rx_ps_hdr_size = 128;
1332 srrctl |= adapter->rx_ps_hdr_size <<
1333 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1334 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1335 }
1336
1337 ew32(SRRCTL(0), srrctl);
1338 }
1339
1340 /**
1341 * igbvf_configure_rx - Configure Receive Unit after Reset
1342 * @adapter: board private structure
1343 *
1344 * Configure the Rx unit of the MAC after a reset.
1345 **/
1346 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1347 {
1348 struct e1000_hw *hw = &adapter->hw;
1349 struct igbvf_ring *rx_ring = adapter->rx_ring;
1350 u64 rdba;
1351 u32 rdlen, rxdctl;
1352
1353 /* disable receives */
1354 rxdctl = er32(RXDCTL(0));
1355 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1356 msleep(10);
1357
1358 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1359
1360 /*
1361 * Setup the HW Rx Head and Tail Descriptor Pointers and
1362 * the Base and Length of the Rx Descriptor Ring
1363 */
1364 rdba = rx_ring->dma;
1365 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1366 ew32(RDBAH(0), (rdba >> 32));
1367 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1368 rx_ring->head = E1000_RDH(0);
1369 rx_ring->tail = E1000_RDT(0);
1370 ew32(RDH(0), 0);
1371 ew32(RDT(0), 0);
1372
1373 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1374 rxdctl &= 0xFFF00000;
1375 rxdctl |= IGBVF_RX_PTHRESH;
1376 rxdctl |= IGBVF_RX_HTHRESH << 8;
1377 rxdctl |= IGBVF_RX_WTHRESH << 16;
1378
1379 igbvf_set_rlpml(adapter);
1380
1381 /* enable receives */
1382 ew32(RXDCTL(0), rxdctl);
1383 }
1384
1385 /**
1386 * igbvf_set_multi - Multicast and Promiscuous mode set
1387 * @netdev: network interface device structure
1388 *
1389 * The set_multi entry point is called whenever the multicast address
1390 * list or the network interface flags are updated. This routine is
1391 * responsible for configuring the hardware for proper multicast,
1392 * promiscuous mode, and all-multi behavior.
1393 **/
1394 static void igbvf_set_multi(struct net_device *netdev)
1395 {
1396 struct igbvf_adapter *adapter = netdev_priv(netdev);
1397 struct e1000_hw *hw = &adapter->hw;
1398 struct dev_mc_list *mc_ptr;
1399 u8 *mta_list = NULL;
1400 int i;
1401
1402 if (netdev->mc_count) {
1403 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1404 if (!mta_list) {
1405 dev_err(&adapter->pdev->dev,
1406 "failed to allocate multicast filter list\n");
1407 return;
1408 }
1409 }
1410
1411 /* prepare a packed array of only addresses. */
1412 mc_ptr = netdev->mc_list;
1413
1414 for (i = 0; i < netdev->mc_count; i++) {
1415 if (!mc_ptr)
1416 break;
1417 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1418 ETH_ALEN);
1419 mc_ptr = mc_ptr->next;
1420 }
1421
1422 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1423 kfree(mta_list);
1424 }
1425
1426 /**
1427 * igbvf_configure - configure the hardware for Rx and Tx
1428 * @adapter: private board structure
1429 **/
1430 static void igbvf_configure(struct igbvf_adapter *adapter)
1431 {
1432 igbvf_set_multi(adapter->netdev);
1433
1434 igbvf_restore_vlan(adapter);
1435
1436 igbvf_configure_tx(adapter);
1437 igbvf_setup_srrctl(adapter);
1438 igbvf_configure_rx(adapter);
1439 igbvf_alloc_rx_buffers(adapter->rx_ring,
1440 igbvf_desc_unused(adapter->rx_ring));
1441 }
1442
1443 /* igbvf_reset - bring the hardware into a known good state
1444 *
1445 * This function boots the hardware and enables some settings that
1446 * require a configuration cycle of the hardware - those cannot be
1447 * set/changed during runtime. After reset the device needs to be
1448 * properly configured for Rx, Tx etc.
1449 */
1450 static void igbvf_reset(struct igbvf_adapter *adapter)
1451 {
1452 struct e1000_mac_info *mac = &adapter->hw.mac;
1453 struct net_device *netdev = adapter->netdev;
1454 struct e1000_hw *hw = &adapter->hw;
1455
1456 /* Allow time for pending master requests to run */
1457 if (mac->ops.reset_hw(hw))
1458 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1459
1460 mac->ops.init_hw(hw);
1461
1462 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1463 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1464 netdev->addr_len);
1465 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1466 netdev->addr_len);
1467 }
1468 }
1469
1470 int igbvf_up(struct igbvf_adapter *adapter)
1471 {
1472 struct e1000_hw *hw = &adapter->hw;
1473
1474 /* hardware has been reset, we need to reload some things */
1475 igbvf_configure(adapter);
1476
1477 clear_bit(__IGBVF_DOWN, &adapter->state);
1478
1479 napi_enable(&adapter->rx_ring->napi);
1480 if (adapter->msix_entries)
1481 igbvf_configure_msix(adapter);
1482
1483 /* Clear any pending interrupts. */
1484 er32(EICR);
1485 igbvf_irq_enable(adapter);
1486
1487 /* start the watchdog */
1488 hw->mac.get_link_status = 1;
1489 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1490
1491
1492 return 0;
1493 }
1494
1495 void igbvf_down(struct igbvf_adapter *adapter)
1496 {
1497 struct net_device *netdev = adapter->netdev;
1498 struct e1000_hw *hw = &adapter->hw;
1499 u32 rxdctl, txdctl;
1500
1501 /*
1502 * signal that we're down so the interrupt handler does not
1503 * reschedule our watchdog timer
1504 */
1505 set_bit(__IGBVF_DOWN, &adapter->state);
1506
1507 /* disable receives in the hardware */
1508 rxdctl = er32(RXDCTL(0));
1509 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1510
1511 netif_stop_queue(netdev);
1512
1513 /* disable transmits in the hardware */
1514 txdctl = er32(TXDCTL(0));
1515 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1516
1517 /* flush both disables and wait for them to finish */
1518 e1e_flush();
1519 msleep(10);
1520
1521 napi_disable(&adapter->rx_ring->napi);
1522
1523 igbvf_irq_disable(adapter);
1524
1525 del_timer_sync(&adapter->watchdog_timer);
1526
1527 netdev->tx_queue_len = adapter->tx_queue_len;
1528 netif_carrier_off(netdev);
1529
1530 /* record the stats before reset*/
1531 igbvf_update_stats(adapter);
1532
1533 adapter->link_speed = 0;
1534 adapter->link_duplex = 0;
1535
1536 igbvf_reset(adapter);
1537 igbvf_clean_tx_ring(adapter->tx_ring);
1538 igbvf_clean_rx_ring(adapter->rx_ring);
1539 }
1540
1541 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1542 {
1543 might_sleep();
1544 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1545 msleep(1);
1546 igbvf_down(adapter);
1547 igbvf_up(adapter);
1548 clear_bit(__IGBVF_RESETTING, &adapter->state);
1549 }
1550
1551 /**
1552 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1553 * @adapter: board private structure to initialize
1554 *
1555 * igbvf_sw_init initializes the Adapter private data structure.
1556 * Fields are initialized based on PCI device information and
1557 * OS network device settings (MTU size).
1558 **/
1559 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1560 {
1561 struct net_device *netdev = adapter->netdev;
1562 s32 rc;
1563
1564 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1565 adapter->rx_ps_hdr_size = 0;
1566 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1567 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1568
1569 adapter->tx_int_delay = 8;
1570 adapter->tx_abs_int_delay = 32;
1571 adapter->rx_int_delay = 0;
1572 adapter->rx_abs_int_delay = 8;
1573 adapter->itr_setting = 3;
1574 adapter->itr = 20000;
1575
1576 /* Set various function pointers */
1577 adapter->ei->init_ops(&adapter->hw);
1578
1579 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1580 if (rc)
1581 return rc;
1582
1583 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1584 if (rc)
1585 return rc;
1586
1587 igbvf_set_interrupt_capability(adapter);
1588
1589 if (igbvf_alloc_queues(adapter))
1590 return -ENOMEM;
1591
1592 spin_lock_init(&adapter->tx_queue_lock);
1593
1594 /* Explicitly disable IRQ since the NIC can be in any state. */
1595 igbvf_irq_disable(adapter);
1596
1597 spin_lock_init(&adapter->stats_lock);
1598
1599 set_bit(__IGBVF_DOWN, &adapter->state);
1600 return 0;
1601 }
1602
1603 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1604 {
1605 struct e1000_hw *hw = &adapter->hw;
1606
1607 adapter->stats.last_gprc = er32(VFGPRC);
1608 adapter->stats.last_gorc = er32(VFGORC);
1609 adapter->stats.last_gptc = er32(VFGPTC);
1610 adapter->stats.last_gotc = er32(VFGOTC);
1611 adapter->stats.last_mprc = er32(VFMPRC);
1612 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1613 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1614 adapter->stats.last_gorlbc = er32(VFGORLBC);
1615 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1616
1617 adapter->stats.base_gprc = er32(VFGPRC);
1618 adapter->stats.base_gorc = er32(VFGORC);
1619 adapter->stats.base_gptc = er32(VFGPTC);
1620 adapter->stats.base_gotc = er32(VFGOTC);
1621 adapter->stats.base_mprc = er32(VFMPRC);
1622 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1623 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1624 adapter->stats.base_gorlbc = er32(VFGORLBC);
1625 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1626 }
1627
1628 /**
1629 * igbvf_open - Called when a network interface is made active
1630 * @netdev: network interface device structure
1631 *
1632 * Returns 0 on success, negative value on failure
1633 *
1634 * The open entry point is called when a network interface is made
1635 * active by the system (IFF_UP). At this point all resources needed
1636 * for transmit and receive operations are allocated, the interrupt
1637 * handler is registered with the OS, the watchdog timer is started,
1638 * and the stack is notified that the interface is ready.
1639 **/
1640 static int igbvf_open(struct net_device *netdev)
1641 {
1642 struct igbvf_adapter *adapter = netdev_priv(netdev);
1643 struct e1000_hw *hw = &adapter->hw;
1644 int err;
1645
1646 /* disallow open during test */
1647 if (test_bit(__IGBVF_TESTING, &adapter->state))
1648 return -EBUSY;
1649
1650 /* allocate transmit descriptors */
1651 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1652 if (err)
1653 goto err_setup_tx;
1654
1655 /* allocate receive descriptors */
1656 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1657 if (err)
1658 goto err_setup_rx;
1659
1660 /*
1661 * before we allocate an interrupt, we must be ready to handle it.
1662 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1663 * as soon as we call pci_request_irq, so we have to setup our
1664 * clean_rx handler before we do so.
1665 */
1666 igbvf_configure(adapter);
1667
1668 err = igbvf_request_irq(adapter);
1669 if (err)
1670 goto err_req_irq;
1671
1672 /* From here on the code is the same as igbvf_up() */
1673 clear_bit(__IGBVF_DOWN, &adapter->state);
1674
1675 napi_enable(&adapter->rx_ring->napi);
1676
1677 /* clear any pending interrupts */
1678 er32(EICR);
1679
1680 igbvf_irq_enable(adapter);
1681
1682 /* start the watchdog */
1683 hw->mac.get_link_status = 1;
1684 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1685
1686 return 0;
1687
1688 err_req_irq:
1689 igbvf_free_rx_resources(adapter->rx_ring);
1690 err_setup_rx:
1691 igbvf_free_tx_resources(adapter->tx_ring);
1692 err_setup_tx:
1693 igbvf_reset(adapter);
1694
1695 return err;
1696 }
1697
1698 /**
1699 * igbvf_close - Disables a network interface
1700 * @netdev: network interface device structure
1701 *
1702 * Returns 0, this is not allowed to fail
1703 *
1704 * The close entry point is called when an interface is de-activated
1705 * by the OS. The hardware is still under the drivers control, but
1706 * needs to be disabled. A global MAC reset is issued to stop the
1707 * hardware, and all transmit and receive resources are freed.
1708 **/
1709 static int igbvf_close(struct net_device *netdev)
1710 {
1711 struct igbvf_adapter *adapter = netdev_priv(netdev);
1712
1713 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1714 igbvf_down(adapter);
1715
1716 igbvf_free_irq(adapter);
1717
1718 igbvf_free_tx_resources(adapter->tx_ring);
1719 igbvf_free_rx_resources(adapter->rx_ring);
1720
1721 return 0;
1722 }
1723 /**
1724 * igbvf_set_mac - Change the Ethernet Address of the NIC
1725 * @netdev: network interface device structure
1726 * @p: pointer to an address structure
1727 *
1728 * Returns 0 on success, negative on failure
1729 **/
1730 static int igbvf_set_mac(struct net_device *netdev, void *p)
1731 {
1732 struct igbvf_adapter *adapter = netdev_priv(netdev);
1733 struct e1000_hw *hw = &adapter->hw;
1734 struct sockaddr *addr = p;
1735
1736 if (!is_valid_ether_addr(addr->sa_data))
1737 return -EADDRNOTAVAIL;
1738
1739 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1740
1741 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1742
1743 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1744 return -EADDRNOTAVAIL;
1745
1746 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1747
1748 return 0;
1749 }
1750
1751 #define UPDATE_VF_COUNTER(reg, name) \
1752 { \
1753 u32 current_counter = er32(reg); \
1754 if (current_counter < adapter->stats.last_##name) \
1755 adapter->stats.name += 0x100000000LL; \
1756 adapter->stats.last_##name = current_counter; \
1757 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1758 adapter->stats.name |= current_counter; \
1759 }
1760
1761 /**
1762 * igbvf_update_stats - Update the board statistics counters
1763 * @adapter: board private structure
1764 **/
1765 void igbvf_update_stats(struct igbvf_adapter *adapter)
1766 {
1767 struct e1000_hw *hw = &adapter->hw;
1768 struct pci_dev *pdev = adapter->pdev;
1769
1770 /*
1771 * Prevent stats update while adapter is being reset, link is down
1772 * or if the pci connection is down.
1773 */
1774 if (adapter->link_speed == 0)
1775 return;
1776
1777 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1778 return;
1779
1780 if (pci_channel_offline(pdev))
1781 return;
1782
1783 UPDATE_VF_COUNTER(VFGPRC, gprc);
1784 UPDATE_VF_COUNTER(VFGORC, gorc);
1785 UPDATE_VF_COUNTER(VFGPTC, gptc);
1786 UPDATE_VF_COUNTER(VFGOTC, gotc);
1787 UPDATE_VF_COUNTER(VFMPRC, mprc);
1788 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1789 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1790 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1791 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1792
1793 /* Fill out the OS statistics structure */
1794 adapter->net_stats.multicast = adapter->stats.mprc;
1795 }
1796
1797 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1798 {
1799 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1800 adapter->link_speed,
1801 ((adapter->link_duplex == FULL_DUPLEX) ?
1802 "Full Duplex" : "Half Duplex"));
1803 }
1804
1805 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1806 {
1807 struct e1000_hw *hw = &adapter->hw;
1808 s32 ret_val = E1000_SUCCESS;
1809 bool link_active;
1810
1811 ret_val = hw->mac.ops.check_for_link(hw);
1812 link_active = !hw->mac.get_link_status;
1813
1814 /* if check for link returns error we will need to reset */
1815 if (ret_val)
1816 schedule_work(&adapter->reset_task);
1817
1818 return link_active;
1819 }
1820
1821 /**
1822 * igbvf_watchdog - Timer Call-back
1823 * @data: pointer to adapter cast into an unsigned long
1824 **/
1825 static void igbvf_watchdog(unsigned long data)
1826 {
1827 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1828
1829 /* Do the rest outside of interrupt context */
1830 schedule_work(&adapter->watchdog_task);
1831 }
1832
1833 static void igbvf_watchdog_task(struct work_struct *work)
1834 {
1835 struct igbvf_adapter *adapter = container_of(work,
1836 struct igbvf_adapter,
1837 watchdog_task);
1838 struct net_device *netdev = adapter->netdev;
1839 struct e1000_mac_info *mac = &adapter->hw.mac;
1840 struct igbvf_ring *tx_ring = adapter->tx_ring;
1841 struct e1000_hw *hw = &adapter->hw;
1842 u32 link;
1843 int tx_pending = 0;
1844
1845 link = igbvf_has_link(adapter);
1846
1847 if (link) {
1848 if (!netif_carrier_ok(netdev)) {
1849 bool txb2b = 1;
1850
1851 mac->ops.get_link_up_info(&adapter->hw,
1852 &adapter->link_speed,
1853 &adapter->link_duplex);
1854 igbvf_print_link_info(adapter);
1855
1856 /*
1857 * tweak tx_queue_len according to speed/duplex
1858 * and adjust the timeout factor
1859 */
1860 netdev->tx_queue_len = adapter->tx_queue_len;
1861 adapter->tx_timeout_factor = 1;
1862 switch (adapter->link_speed) {
1863 case SPEED_10:
1864 txb2b = 0;
1865 netdev->tx_queue_len = 10;
1866 adapter->tx_timeout_factor = 16;
1867 break;
1868 case SPEED_100:
1869 txb2b = 0;
1870 netdev->tx_queue_len = 100;
1871 /* maybe add some timeout factor ? */
1872 break;
1873 }
1874
1875 netif_carrier_on(netdev);
1876 netif_wake_queue(netdev);
1877 }
1878 } else {
1879 if (netif_carrier_ok(netdev)) {
1880 adapter->link_speed = 0;
1881 adapter->link_duplex = 0;
1882 dev_info(&adapter->pdev->dev, "Link is Down\n");
1883 netif_carrier_off(netdev);
1884 netif_stop_queue(netdev);
1885 }
1886 }
1887
1888 if (netif_carrier_ok(netdev)) {
1889 igbvf_update_stats(adapter);
1890 } else {
1891 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1892 tx_ring->count);
1893 if (tx_pending) {
1894 /*
1895 * We've lost link, so the controller stops DMA,
1896 * but we've got queued Tx work that's never going
1897 * to get done, so reset controller to flush Tx.
1898 * (Do the reset outside of interrupt context).
1899 */
1900 adapter->tx_timeout_count++;
1901 schedule_work(&adapter->reset_task);
1902 }
1903 }
1904
1905 /* Cause software interrupt to ensure Rx ring is cleaned */
1906 ew32(EICS, adapter->rx_ring->eims_value);
1907
1908 /* Force detection of hung controller every watchdog period */
1909 adapter->detect_tx_hung = 1;
1910
1911 /* Reset the timer */
1912 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1913 mod_timer(&adapter->watchdog_timer,
1914 round_jiffies(jiffies + (2 * HZ)));
1915 }
1916
1917 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1918 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1919 #define IGBVF_TX_FLAGS_TSO 0x00000004
1920 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1921 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1922 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1923
1924 static int igbvf_tso(struct igbvf_adapter *adapter,
1925 struct igbvf_ring *tx_ring,
1926 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1927 {
1928 struct e1000_adv_tx_context_desc *context_desc;
1929 unsigned int i;
1930 int err;
1931 struct igbvf_buffer *buffer_info;
1932 u32 info = 0, tu_cmd = 0;
1933 u32 mss_l4len_idx, l4len;
1934 *hdr_len = 0;
1935
1936 if (skb_header_cloned(skb)) {
1937 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1938 if (err) {
1939 dev_err(&adapter->pdev->dev,
1940 "igbvf_tso returning an error\n");
1941 return err;
1942 }
1943 }
1944
1945 l4len = tcp_hdrlen(skb);
1946 *hdr_len += l4len;
1947
1948 if (skb->protocol == htons(ETH_P_IP)) {
1949 struct iphdr *iph = ip_hdr(skb);
1950 iph->tot_len = 0;
1951 iph->check = 0;
1952 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1953 iph->daddr, 0,
1954 IPPROTO_TCP,
1955 0);
1956 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1957 ipv6_hdr(skb)->payload_len = 0;
1958 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1959 &ipv6_hdr(skb)->daddr,
1960 0, IPPROTO_TCP, 0);
1961 }
1962
1963 i = tx_ring->next_to_use;
1964
1965 buffer_info = &tx_ring->buffer_info[i];
1966 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1967 /* VLAN MACLEN IPLEN */
1968 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1969 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1970 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1971 *hdr_len += skb_network_offset(skb);
1972 info |= (skb_transport_header(skb) - skb_network_header(skb));
1973 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1974 context_desc->vlan_macip_lens = cpu_to_le32(info);
1975
1976 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1977 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1978
1979 if (skb->protocol == htons(ETH_P_IP))
1980 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1981 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1982
1983 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1984
1985 /* MSS L4LEN IDX */
1986 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1987 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1988
1989 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1990 context_desc->seqnum_seed = 0;
1991
1992 buffer_info->time_stamp = jiffies;
1993 buffer_info->next_to_watch = i;
1994 buffer_info->dma = 0;
1995 i++;
1996 if (i == tx_ring->count)
1997 i = 0;
1998
1999 tx_ring->next_to_use = i;
2000
2001 return true;
2002 }
2003
2004 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2005 struct igbvf_ring *tx_ring,
2006 struct sk_buff *skb, u32 tx_flags)
2007 {
2008 struct e1000_adv_tx_context_desc *context_desc;
2009 unsigned int i;
2010 struct igbvf_buffer *buffer_info;
2011 u32 info = 0, tu_cmd = 0;
2012
2013 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2014 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2015 i = tx_ring->next_to_use;
2016 buffer_info = &tx_ring->buffer_info[i];
2017 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2018
2019 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2020 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2021
2022 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2023 if (skb->ip_summed == CHECKSUM_PARTIAL)
2024 info |= (skb_transport_header(skb) -
2025 skb_network_header(skb));
2026
2027
2028 context_desc->vlan_macip_lens = cpu_to_le32(info);
2029
2030 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2031
2032 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2033 switch (skb->protocol) {
2034 case __constant_htons(ETH_P_IP):
2035 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2036 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2037 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2038 break;
2039 case __constant_htons(ETH_P_IPV6):
2040 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2041 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2042 break;
2043 default:
2044 break;
2045 }
2046 }
2047
2048 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2049 context_desc->seqnum_seed = 0;
2050 context_desc->mss_l4len_idx = 0;
2051
2052 buffer_info->time_stamp = jiffies;
2053 buffer_info->next_to_watch = i;
2054 buffer_info->dma = 0;
2055 i++;
2056 if (i == tx_ring->count)
2057 i = 0;
2058 tx_ring->next_to_use = i;
2059
2060 return true;
2061 }
2062
2063 return false;
2064 }
2065
2066 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2067 {
2068 struct igbvf_adapter *adapter = netdev_priv(netdev);
2069
2070 /* there is enough descriptors then we don't need to worry */
2071 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2072 return 0;
2073
2074 netif_stop_queue(netdev);
2075
2076 smp_mb();
2077
2078 /* We need to check again just in case room has been made available */
2079 if (igbvf_desc_unused(adapter->tx_ring) < size)
2080 return -EBUSY;
2081
2082 netif_wake_queue(netdev);
2083
2084 ++adapter->restart_queue;
2085 return 0;
2086 }
2087
2088 #define IGBVF_MAX_TXD_PWR 16
2089 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2090
2091 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2092 struct igbvf_ring *tx_ring,
2093 struct sk_buff *skb,
2094 unsigned int first)
2095 {
2096 struct igbvf_buffer *buffer_info;
2097 unsigned int len = skb_headlen(skb);
2098 unsigned int count = 0, i;
2099 unsigned int f;
2100 dma_addr_t *map;
2101
2102 i = tx_ring->next_to_use;
2103
2104 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2105 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2106 return 0;
2107 }
2108
2109 map = skb_shinfo(skb)->dma_maps;
2110
2111 buffer_info = &tx_ring->buffer_info[i];
2112 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2113 buffer_info->length = len;
2114 /* set time_stamp *before* dma to help avoid a possible race */
2115 buffer_info->time_stamp = jiffies;
2116 buffer_info->next_to_watch = i;
2117 buffer_info->dma = skb_shinfo(skb)->dma_head;
2118
2119 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2120 struct skb_frag_struct *frag;
2121
2122 i++;
2123 if (i == tx_ring->count)
2124 i = 0;
2125
2126 frag = &skb_shinfo(skb)->frags[f];
2127 len = frag->size;
2128
2129 buffer_info = &tx_ring->buffer_info[i];
2130 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2131 buffer_info->length = len;
2132 buffer_info->time_stamp = jiffies;
2133 buffer_info->next_to_watch = i;
2134 buffer_info->dma = map[count];
2135 count++;
2136 }
2137
2138 tx_ring->buffer_info[i].skb = skb;
2139 tx_ring->buffer_info[first].next_to_watch = i;
2140
2141 return count + 1;
2142 }
2143
2144 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 int tx_flags, int count, u32 paylen,
2147 u8 hdr_len)
2148 {
2149 union e1000_adv_tx_desc *tx_desc = NULL;
2150 struct igbvf_buffer *buffer_info;
2151 u32 olinfo_status = 0, cmd_type_len;
2152 unsigned int i;
2153
2154 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2155 E1000_ADVTXD_DCMD_DEXT);
2156
2157 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2158 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2159
2160 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2161 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2162
2163 /* insert tcp checksum */
2164 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2165
2166 /* insert ip checksum */
2167 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2168 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2169
2170 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2171 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2172 }
2173
2174 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2175
2176 i = tx_ring->next_to_use;
2177 while (count--) {
2178 buffer_info = &tx_ring->buffer_info[i];
2179 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2180 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2181 tx_desc->read.cmd_type_len =
2182 cpu_to_le32(cmd_type_len | buffer_info->length);
2183 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2184 i++;
2185 if (i == tx_ring->count)
2186 i = 0;
2187 }
2188
2189 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2190 /* Force memory writes to complete before letting h/w
2191 * know there are new descriptors to fetch. (Only
2192 * applicable for weak-ordered memory model archs,
2193 * such as IA-64). */
2194 wmb();
2195
2196 tx_ring->next_to_use = i;
2197 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2198 /* we need this if more than one processor can write to our tail
2199 * at a time, it syncronizes IO on IA64/Altix systems */
2200 mmiowb();
2201 }
2202
2203 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2204 struct net_device *netdev,
2205 struct igbvf_ring *tx_ring)
2206 {
2207 struct igbvf_adapter *adapter = netdev_priv(netdev);
2208 unsigned int first, tx_flags = 0;
2209 u8 hdr_len = 0;
2210 int count = 0;
2211 int tso = 0;
2212
2213 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2214 dev_kfree_skb_any(skb);
2215 return NETDEV_TX_OK;
2216 }
2217
2218 if (skb->len <= 0) {
2219 dev_kfree_skb_any(skb);
2220 return NETDEV_TX_OK;
2221 }
2222
2223 /*
2224 * need: count + 4 desc gap to keep tail from touching
2225 * + 2 desc gap to keep tail from touching head,
2226 * + 1 desc for skb->data,
2227 * + 1 desc for context descriptor,
2228 * head, otherwise try next time
2229 */
2230 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2231 /* this is a hard error */
2232 return NETDEV_TX_BUSY;
2233 }
2234
2235 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2236 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2237 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2238 }
2239
2240 if (skb->protocol == htons(ETH_P_IP))
2241 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2242
2243 first = tx_ring->next_to_use;
2244
2245 tso = skb_is_gso(skb) ?
2246 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2247 if (unlikely(tso < 0)) {
2248 dev_kfree_skb_any(skb);
2249 return NETDEV_TX_OK;
2250 }
2251
2252 if (tso)
2253 tx_flags |= IGBVF_TX_FLAGS_TSO;
2254 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2255 (skb->ip_summed == CHECKSUM_PARTIAL))
2256 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2257
2258 /*
2259 * count reflects descriptors mapped, if 0 then mapping error
2260 * has occured and we need to rewind the descriptor queue
2261 */
2262 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2263
2264 if (count) {
2265 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2266 skb->len, hdr_len);
2267 /* Make sure there is space in the ring for the next send. */
2268 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2269 } else {
2270 dev_kfree_skb_any(skb);
2271 tx_ring->buffer_info[first].time_stamp = 0;
2272 tx_ring->next_to_use = first;
2273 }
2274
2275 return NETDEV_TX_OK;
2276 }
2277
2278 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2279 struct net_device *netdev)
2280 {
2281 struct igbvf_adapter *adapter = netdev_priv(netdev);
2282 struct igbvf_ring *tx_ring;
2283
2284 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2285 dev_kfree_skb_any(skb);
2286 return NETDEV_TX_OK;
2287 }
2288
2289 tx_ring = &adapter->tx_ring[0];
2290
2291 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2292 }
2293
2294 /**
2295 * igbvf_tx_timeout - Respond to a Tx Hang
2296 * @netdev: network interface device structure
2297 **/
2298 static void igbvf_tx_timeout(struct net_device *netdev)
2299 {
2300 struct igbvf_adapter *adapter = netdev_priv(netdev);
2301
2302 /* Do the reset outside of interrupt context */
2303 adapter->tx_timeout_count++;
2304 schedule_work(&adapter->reset_task);
2305 }
2306
2307 static void igbvf_reset_task(struct work_struct *work)
2308 {
2309 struct igbvf_adapter *adapter;
2310 adapter = container_of(work, struct igbvf_adapter, reset_task);
2311
2312 igbvf_reinit_locked(adapter);
2313 }
2314
2315 /**
2316 * igbvf_get_stats - Get System Network Statistics
2317 * @netdev: network interface device structure
2318 *
2319 * Returns the address of the device statistics structure.
2320 * The statistics are actually updated from the timer callback.
2321 **/
2322 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2323 {
2324 struct igbvf_adapter *adapter = netdev_priv(netdev);
2325
2326 /* only return the current stats */
2327 return &adapter->net_stats;
2328 }
2329
2330 /**
2331 * igbvf_change_mtu - Change the Maximum Transfer Unit
2332 * @netdev: network interface device structure
2333 * @new_mtu: new value for maximum frame size
2334 *
2335 * Returns 0 on success, negative on failure
2336 **/
2337 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2338 {
2339 struct igbvf_adapter *adapter = netdev_priv(netdev);
2340 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2341
2342 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2343 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2344 return -EINVAL;
2345 }
2346
2347 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2348 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2349 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2350 return -EINVAL;
2351 }
2352
2353 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2354 msleep(1);
2355 /* igbvf_down has a dependency on max_frame_size */
2356 adapter->max_frame_size = max_frame;
2357 if (netif_running(netdev))
2358 igbvf_down(adapter);
2359
2360 /*
2361 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2362 * means we reserve 2 more, this pushes us to allocate from the next
2363 * larger slab size.
2364 * i.e. RXBUFFER_2048 --> size-4096 slab
2365 * However with the new *_jumbo_rx* routines, jumbo receives will use
2366 * fragmented skbs
2367 */
2368
2369 if (max_frame <= 1024)
2370 adapter->rx_buffer_len = 1024;
2371 else if (max_frame <= 2048)
2372 adapter->rx_buffer_len = 2048;
2373 else
2374 #if (PAGE_SIZE / 2) > 16384
2375 adapter->rx_buffer_len = 16384;
2376 #else
2377 adapter->rx_buffer_len = PAGE_SIZE / 2;
2378 #endif
2379
2380
2381 /* adjust allocation if LPE protects us, and we aren't using SBP */
2382 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2383 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2384 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2385 ETH_FCS_LEN;
2386
2387 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2388 netdev->mtu, new_mtu);
2389 netdev->mtu = new_mtu;
2390
2391 if (netif_running(netdev))
2392 igbvf_up(adapter);
2393 else
2394 igbvf_reset(adapter);
2395
2396 clear_bit(__IGBVF_RESETTING, &adapter->state);
2397
2398 return 0;
2399 }
2400
2401 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2402 {
2403 switch (cmd) {
2404 default:
2405 return -EOPNOTSUPP;
2406 }
2407 }
2408
2409 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2410 {
2411 struct net_device *netdev = pci_get_drvdata(pdev);
2412 struct igbvf_adapter *adapter = netdev_priv(netdev);
2413 #ifdef CONFIG_PM
2414 int retval = 0;
2415 #endif
2416
2417 netif_device_detach(netdev);
2418
2419 if (netif_running(netdev)) {
2420 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2421 igbvf_down(adapter);
2422 igbvf_free_irq(adapter);
2423 }
2424
2425 #ifdef CONFIG_PM
2426 retval = pci_save_state(pdev);
2427 if (retval)
2428 return retval;
2429 #endif
2430
2431 pci_disable_device(pdev);
2432
2433 return 0;
2434 }
2435
2436 #ifdef CONFIG_PM
2437 static int igbvf_resume(struct pci_dev *pdev)
2438 {
2439 struct net_device *netdev = pci_get_drvdata(pdev);
2440 struct igbvf_adapter *adapter = netdev_priv(netdev);
2441 u32 err;
2442
2443 pci_restore_state(pdev);
2444 err = pci_enable_device_mem(pdev);
2445 if (err) {
2446 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2447 return err;
2448 }
2449
2450 pci_set_master(pdev);
2451
2452 if (netif_running(netdev)) {
2453 err = igbvf_request_irq(adapter);
2454 if (err)
2455 return err;
2456 }
2457
2458 igbvf_reset(adapter);
2459
2460 if (netif_running(netdev))
2461 igbvf_up(adapter);
2462
2463 netif_device_attach(netdev);
2464
2465 return 0;
2466 }
2467 #endif
2468
2469 static void igbvf_shutdown(struct pci_dev *pdev)
2470 {
2471 igbvf_suspend(pdev, PMSG_SUSPEND);
2472 }
2473
2474 #ifdef CONFIG_NET_POLL_CONTROLLER
2475 /*
2476 * Polling 'interrupt' - used by things like netconsole to send skbs
2477 * without having to re-enable interrupts. It's not called while
2478 * the interrupt routine is executing.
2479 */
2480 static void igbvf_netpoll(struct net_device *netdev)
2481 {
2482 struct igbvf_adapter *adapter = netdev_priv(netdev);
2483
2484 disable_irq(adapter->pdev->irq);
2485
2486 igbvf_clean_tx_irq(adapter->tx_ring);
2487
2488 enable_irq(adapter->pdev->irq);
2489 }
2490 #endif
2491
2492 /**
2493 * igbvf_io_error_detected - called when PCI error is detected
2494 * @pdev: Pointer to PCI device
2495 * @state: The current pci connection state
2496 *
2497 * This function is called after a PCI bus error affecting
2498 * this device has been detected.
2499 */
2500 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2501 pci_channel_state_t state)
2502 {
2503 struct net_device *netdev = pci_get_drvdata(pdev);
2504 struct igbvf_adapter *adapter = netdev_priv(netdev);
2505
2506 netif_device_detach(netdev);
2507
2508 if (state == pci_channel_io_perm_failure)
2509 return PCI_ERS_RESULT_DISCONNECT;
2510
2511 if (netif_running(netdev))
2512 igbvf_down(adapter);
2513 pci_disable_device(pdev);
2514
2515 /* Request a slot slot reset. */
2516 return PCI_ERS_RESULT_NEED_RESET;
2517 }
2518
2519 /**
2520 * igbvf_io_slot_reset - called after the pci bus has been reset.
2521 * @pdev: Pointer to PCI device
2522 *
2523 * Restart the card from scratch, as if from a cold-boot. Implementation
2524 * resembles the first-half of the igbvf_resume routine.
2525 */
2526 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2527 {
2528 struct net_device *netdev = pci_get_drvdata(pdev);
2529 struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531 if (pci_enable_device_mem(pdev)) {
2532 dev_err(&pdev->dev,
2533 "Cannot re-enable PCI device after reset.\n");
2534 return PCI_ERS_RESULT_DISCONNECT;
2535 }
2536 pci_set_master(pdev);
2537
2538 igbvf_reset(adapter);
2539
2540 return PCI_ERS_RESULT_RECOVERED;
2541 }
2542
2543 /**
2544 * igbvf_io_resume - called when traffic can start flowing again.
2545 * @pdev: Pointer to PCI device
2546 *
2547 * This callback is called when the error recovery driver tells us that
2548 * its OK to resume normal operation. Implementation resembles the
2549 * second-half of the igbvf_resume routine.
2550 */
2551 static void igbvf_io_resume(struct pci_dev *pdev)
2552 {
2553 struct net_device *netdev = pci_get_drvdata(pdev);
2554 struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556 if (netif_running(netdev)) {
2557 if (igbvf_up(adapter)) {
2558 dev_err(&pdev->dev,
2559 "can't bring device back up after reset\n");
2560 return;
2561 }
2562 }
2563
2564 netif_device_attach(netdev);
2565 }
2566
2567 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2568 {
2569 struct e1000_hw *hw = &adapter->hw;
2570 struct net_device *netdev = adapter->netdev;
2571 struct pci_dev *pdev = adapter->pdev;
2572
2573 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2574 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2575 /* MAC address */
2576 netdev->dev_addr[0], netdev->dev_addr[1],
2577 netdev->dev_addr[2], netdev->dev_addr[3],
2578 netdev->dev_addr[4], netdev->dev_addr[5]);
2579 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2580 }
2581
2582 static const struct net_device_ops igbvf_netdev_ops = {
2583 .ndo_open = igbvf_open,
2584 .ndo_stop = igbvf_close,
2585 .ndo_start_xmit = igbvf_xmit_frame,
2586 .ndo_get_stats = igbvf_get_stats,
2587 .ndo_set_multicast_list = igbvf_set_multi,
2588 .ndo_set_mac_address = igbvf_set_mac,
2589 .ndo_change_mtu = igbvf_change_mtu,
2590 .ndo_do_ioctl = igbvf_ioctl,
2591 .ndo_tx_timeout = igbvf_tx_timeout,
2592 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2593 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2594 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2595 #ifdef CONFIG_NET_POLL_CONTROLLER
2596 .ndo_poll_controller = igbvf_netpoll,
2597 #endif
2598 };
2599
2600 /**
2601 * igbvf_probe - Device Initialization Routine
2602 * @pdev: PCI device information struct
2603 * @ent: entry in igbvf_pci_tbl
2604 *
2605 * Returns 0 on success, negative on failure
2606 *
2607 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2608 * The OS initialization, configuring of the adapter private structure,
2609 * and a hardware reset occur.
2610 **/
2611 static int __devinit igbvf_probe(struct pci_dev *pdev,
2612 const struct pci_device_id *ent)
2613 {
2614 struct net_device *netdev;
2615 struct igbvf_adapter *adapter;
2616 struct e1000_hw *hw;
2617 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2618
2619 static int cards_found;
2620 int err, pci_using_dac;
2621
2622 err = pci_enable_device_mem(pdev);
2623 if (err)
2624 return err;
2625
2626 pci_using_dac = 0;
2627 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2628 if (!err) {
2629 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2630 if (!err)
2631 pci_using_dac = 1;
2632 } else {
2633 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2634 if (err) {
2635 err = pci_set_consistent_dma_mask(pdev,
2636 DMA_BIT_MASK(32));
2637 if (err) {
2638 dev_err(&pdev->dev, "No usable DMA "
2639 "configuration, aborting\n");
2640 goto err_dma;
2641 }
2642 }
2643 }
2644
2645 err = pci_request_regions(pdev, igbvf_driver_name);
2646 if (err)
2647 goto err_pci_reg;
2648
2649 pci_set_master(pdev);
2650
2651 err = -ENOMEM;
2652 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2653 if (!netdev)
2654 goto err_alloc_etherdev;
2655
2656 SET_NETDEV_DEV(netdev, &pdev->dev);
2657
2658 pci_set_drvdata(pdev, netdev);
2659 adapter = netdev_priv(netdev);
2660 hw = &adapter->hw;
2661 adapter->netdev = netdev;
2662 adapter->pdev = pdev;
2663 adapter->ei = ei;
2664 adapter->pba = ei->pba;
2665 adapter->flags = ei->flags;
2666 adapter->hw.back = adapter;
2667 adapter->hw.mac.type = ei->mac;
2668 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2669
2670 /* PCI config space info */
2671
2672 hw->vendor_id = pdev->vendor;
2673 hw->device_id = pdev->device;
2674 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2675 hw->subsystem_device_id = pdev->subsystem_device;
2676
2677 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2678
2679 err = -EIO;
2680 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2681 pci_resource_len(pdev, 0));
2682
2683 if (!adapter->hw.hw_addr)
2684 goto err_ioremap;
2685
2686 if (ei->get_variants) {
2687 err = ei->get_variants(adapter);
2688 if (err)
2689 goto err_ioremap;
2690 }
2691
2692 /* setup adapter struct */
2693 err = igbvf_sw_init(adapter);
2694 if (err)
2695 goto err_sw_init;
2696
2697 /* construct the net_device struct */
2698 netdev->netdev_ops = &igbvf_netdev_ops;
2699
2700 igbvf_set_ethtool_ops(netdev);
2701 netdev->watchdog_timeo = 5 * HZ;
2702 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2703
2704 adapter->bd_number = cards_found++;
2705
2706 netdev->features = NETIF_F_SG |
2707 NETIF_F_IP_CSUM |
2708 NETIF_F_HW_VLAN_TX |
2709 NETIF_F_HW_VLAN_RX |
2710 NETIF_F_HW_VLAN_FILTER;
2711
2712 netdev->features |= NETIF_F_IPV6_CSUM;
2713 netdev->features |= NETIF_F_TSO;
2714 netdev->features |= NETIF_F_TSO6;
2715
2716 if (pci_using_dac)
2717 netdev->features |= NETIF_F_HIGHDMA;
2718
2719 netdev->vlan_features |= NETIF_F_TSO;
2720 netdev->vlan_features |= NETIF_F_TSO6;
2721 netdev->vlan_features |= NETIF_F_IP_CSUM;
2722 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2723 netdev->vlan_features |= NETIF_F_SG;
2724
2725 /*reset the controller to put the device in a known good state */
2726 err = hw->mac.ops.reset_hw(hw);
2727 if (err) {
2728 dev_info(&pdev->dev,
2729 "PF still in reset state, assigning new address\n");
2730 random_ether_addr(hw->mac.addr);
2731 } else {
2732 err = hw->mac.ops.read_mac_addr(hw);
2733 if (err) {
2734 dev_err(&pdev->dev, "Error reading MAC address\n");
2735 goto err_hw_init;
2736 }
2737 }
2738
2739 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2740 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2741
2742 if (!is_valid_ether_addr(netdev->perm_addr)) {
2743 dev_err(&pdev->dev, "Invalid MAC Address: "
2744 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2745 netdev->dev_addr[0], netdev->dev_addr[1],
2746 netdev->dev_addr[2], netdev->dev_addr[3],
2747 netdev->dev_addr[4], netdev->dev_addr[5]);
2748 err = -EIO;
2749 goto err_hw_init;
2750 }
2751
2752 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2753 (unsigned long) adapter);
2754
2755 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2756 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2757
2758 /* ring size defaults */
2759 adapter->rx_ring->count = 1024;
2760 adapter->tx_ring->count = 1024;
2761
2762 /* reset the hardware with the new settings */
2763 igbvf_reset(adapter);
2764
2765 /* tell the stack to leave us alone until igbvf_open() is called */
2766 netif_carrier_off(netdev);
2767 netif_stop_queue(netdev);
2768
2769 strcpy(netdev->name, "eth%d");
2770 err = register_netdev(netdev);
2771 if (err)
2772 goto err_hw_init;
2773
2774 igbvf_print_device_info(adapter);
2775
2776 igbvf_initialize_last_counter_stats(adapter);
2777
2778 return 0;
2779
2780 err_hw_init:
2781 kfree(adapter->tx_ring);
2782 kfree(adapter->rx_ring);
2783 err_sw_init:
2784 igbvf_reset_interrupt_capability(adapter);
2785 iounmap(adapter->hw.hw_addr);
2786 err_ioremap:
2787 free_netdev(netdev);
2788 err_alloc_etherdev:
2789 pci_release_regions(pdev);
2790 err_pci_reg:
2791 err_dma:
2792 pci_disable_device(pdev);
2793 return err;
2794 }
2795
2796 /**
2797 * igbvf_remove - Device Removal Routine
2798 * @pdev: PCI device information struct
2799 *
2800 * igbvf_remove is called by the PCI subsystem to alert the driver
2801 * that it should release a PCI device. The could be caused by a
2802 * Hot-Plug event, or because the driver is going to be removed from
2803 * memory.
2804 **/
2805 static void __devexit igbvf_remove(struct pci_dev *pdev)
2806 {
2807 struct net_device *netdev = pci_get_drvdata(pdev);
2808 struct igbvf_adapter *adapter = netdev_priv(netdev);
2809 struct e1000_hw *hw = &adapter->hw;
2810
2811 /*
2812 * flush_scheduled work may reschedule our watchdog task, so
2813 * explicitly disable watchdog tasks from being rescheduled
2814 */
2815 set_bit(__IGBVF_DOWN, &adapter->state);
2816 del_timer_sync(&adapter->watchdog_timer);
2817
2818 flush_scheduled_work();
2819
2820 unregister_netdev(netdev);
2821
2822 igbvf_reset_interrupt_capability(adapter);
2823
2824 /*
2825 * it is important to delete the napi struct prior to freeing the
2826 * rx ring so that you do not end up with null pointer refs
2827 */
2828 netif_napi_del(&adapter->rx_ring->napi);
2829 kfree(adapter->tx_ring);
2830 kfree(adapter->rx_ring);
2831
2832 iounmap(hw->hw_addr);
2833 if (hw->flash_address)
2834 iounmap(hw->flash_address);
2835 pci_release_regions(pdev);
2836
2837 free_netdev(netdev);
2838
2839 pci_disable_device(pdev);
2840 }
2841
2842 /* PCI Error Recovery (ERS) */
2843 static struct pci_error_handlers igbvf_err_handler = {
2844 .error_detected = igbvf_io_error_detected,
2845 .slot_reset = igbvf_io_slot_reset,
2846 .resume = igbvf_io_resume,
2847 };
2848
2849 static struct pci_device_id igbvf_pci_tbl[] = {
2850 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2851 { } /* terminate list */
2852 };
2853 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2854
2855 /* PCI Device API Driver */
2856 static struct pci_driver igbvf_driver = {
2857 .name = igbvf_driver_name,
2858 .id_table = igbvf_pci_tbl,
2859 .probe = igbvf_probe,
2860 .remove = __devexit_p(igbvf_remove),
2861 #ifdef CONFIG_PM
2862 /* Power Management Hooks */
2863 .suspend = igbvf_suspend,
2864 .resume = igbvf_resume,
2865 #endif
2866 .shutdown = igbvf_shutdown,
2867 .err_handler = &igbvf_err_handler
2868 };
2869
2870 /**
2871 * igbvf_init_module - Driver Registration Routine
2872 *
2873 * igbvf_init_module is the first routine called when the driver is
2874 * loaded. All it does is register with the PCI subsystem.
2875 **/
2876 static int __init igbvf_init_module(void)
2877 {
2878 int ret;
2879 printk(KERN_INFO "%s - version %s\n",
2880 igbvf_driver_string, igbvf_driver_version);
2881 printk(KERN_INFO "%s\n", igbvf_copyright);
2882
2883 ret = pci_register_driver(&igbvf_driver);
2884 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2885 PM_QOS_DEFAULT_VALUE);
2886
2887 return ret;
2888 }
2889 module_init(igbvf_init_module);
2890
2891 /**
2892 * igbvf_exit_module - Driver Exit Cleanup Routine
2893 *
2894 * igbvf_exit_module is called just before the driver is removed
2895 * from memory.
2896 **/
2897 static void __exit igbvf_exit_module(void)
2898 {
2899 pci_unregister_driver(&igbvf_driver);
2900 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2901 }
2902 module_exit(igbvf_exit_module);
2903
2904
2905 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2906 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2907 MODULE_LICENSE("GPL");
2908 MODULE_VERSION(DRV_VERSION);
2909
2910 /* netdev.c */