igbvf: update version number
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/prefetch.h>
45
46 #include "igbvf.h"
47
48 #define DRV_VERSION "2.0.0-k"
49 char igbvf_driver_name[] = "igbvf";
50 const char igbvf_driver_version[] = DRV_VERSION;
51 static const char igbvf_driver_string[] =
52 "Intel(R) Virtual Function Network Driver";
53 static const char igbvf_copyright[] =
54 "Copyright (c) 2009 - 2010 Intel Corporation.";
55
56 static int igbvf_poll(struct napi_struct *napi, int budget);
57 static void igbvf_reset(struct igbvf_adapter *);
58 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60
61 static struct igbvf_info igbvf_vf_info = {
62 .mac = e1000_vfadapt,
63 .flags = 0,
64 .pba = 10,
65 .init_ops = e1000_init_function_pointers_vf,
66 };
67
68 static struct igbvf_info igbvf_i350_vf_info = {
69 .mac = e1000_vfadapt_i350,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73 };
74
75 static const struct igbvf_info *igbvf_info_tbl[] = {
76 [board_vf] = &igbvf_vf_info,
77 [board_i350_vf] = &igbvf_i350_vf_info,
78 };
79
80 /**
81 * igbvf_desc_unused - calculate if we have unused descriptors
82 **/
83 static int igbvf_desc_unused(struct igbvf_ring *ring)
84 {
85 if (ring->next_to_clean > ring->next_to_use)
86 return ring->next_to_clean - ring->next_to_use - 1;
87
88 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
89 }
90
91 /**
92 * igbvf_receive_skb - helper function to handle Rx indications
93 * @adapter: board private structure
94 * @status: descriptor status field as written by hardware
95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
96 * @skb: pointer to sk_buff to be indicated to stack
97 **/
98 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
99 struct net_device *netdev,
100 struct sk_buff *skb,
101 u32 status, u16 vlan)
102 {
103 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
104 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
105 le16_to_cpu(vlan) &
106 E1000_RXD_SPC_VLAN_MASK);
107 else
108 netif_receive_skb(skb);
109 }
110
111 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
112 u32 status_err, struct sk_buff *skb)
113 {
114 skb_checksum_none_assert(skb);
115
116 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
117 if ((status_err & E1000_RXD_STAT_IXSM) ||
118 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
119 return;
120
121 /* TCP/UDP checksum error bit is set */
122 if (status_err &
123 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
124 /* let the stack verify checksum errors */
125 adapter->hw_csum_err++;
126 return;
127 }
128
129 /* It must be a TCP or UDP packet with a valid checksum */
130 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
131 skb->ip_summed = CHECKSUM_UNNECESSARY;
132
133 adapter->hw_csum_good++;
134 }
135
136 /**
137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
138 * @rx_ring: address of ring structure to repopulate
139 * @cleaned_count: number of buffers to repopulate
140 **/
141 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
142 int cleaned_count)
143 {
144 struct igbvf_adapter *adapter = rx_ring->adapter;
145 struct net_device *netdev = adapter->netdev;
146 struct pci_dev *pdev = adapter->pdev;
147 union e1000_adv_rx_desc *rx_desc;
148 struct igbvf_buffer *buffer_info;
149 struct sk_buff *skb;
150 unsigned int i;
151 int bufsz;
152
153 i = rx_ring->next_to_use;
154 buffer_info = &rx_ring->buffer_info[i];
155
156 if (adapter->rx_ps_hdr_size)
157 bufsz = adapter->rx_ps_hdr_size;
158 else
159 bufsz = adapter->rx_buffer_len;
160
161 while (cleaned_count--) {
162 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
163
164 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
165 if (!buffer_info->page) {
166 buffer_info->page = alloc_page(GFP_ATOMIC);
167 if (!buffer_info->page) {
168 adapter->alloc_rx_buff_failed++;
169 goto no_buffers;
170 }
171 buffer_info->page_offset = 0;
172 } else {
173 buffer_info->page_offset ^= PAGE_SIZE / 2;
174 }
175 buffer_info->page_dma =
176 dma_map_page(&pdev->dev, buffer_info->page,
177 buffer_info->page_offset,
178 PAGE_SIZE / 2,
179 DMA_FROM_DEVICE);
180 }
181
182 if (!buffer_info->skb) {
183 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
184 if (!skb) {
185 adapter->alloc_rx_buff_failed++;
186 goto no_buffers;
187 }
188
189 buffer_info->skb = skb;
190 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
191 bufsz,
192 DMA_FROM_DEVICE);
193 }
194 /* Refresh the desc even if buffer_addrs didn't change because
195 * each write-back erases this info. */
196 if (adapter->rx_ps_hdr_size) {
197 rx_desc->read.pkt_addr =
198 cpu_to_le64(buffer_info->page_dma);
199 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
200 } else {
201 rx_desc->read.pkt_addr =
202 cpu_to_le64(buffer_info->dma);
203 rx_desc->read.hdr_addr = 0;
204 }
205
206 i++;
207 if (i == rx_ring->count)
208 i = 0;
209 buffer_info = &rx_ring->buffer_info[i];
210 }
211
212 no_buffers:
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i == 0)
216 i = (rx_ring->count - 1);
217 else
218 i--;
219
220 /* Force memory writes to complete before letting h/w
221 * know there are new descriptors to fetch. (Only
222 * applicable for weak-ordered memory model archs,
223 * such as IA-64). */
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226 }
227 }
228
229 /**
230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
231 * @adapter: board private structure
232 *
233 * the return value indicates whether actual cleaning was done, there
234 * is no guarantee that everything was cleaned
235 **/
236 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
237 int *work_done, int work_to_do)
238 {
239 struct igbvf_ring *rx_ring = adapter->rx_ring;
240 struct net_device *netdev = adapter->netdev;
241 struct pci_dev *pdev = adapter->pdev;
242 union e1000_adv_rx_desc *rx_desc, *next_rxd;
243 struct igbvf_buffer *buffer_info, *next_buffer;
244 struct sk_buff *skb;
245 bool cleaned = false;
246 int cleaned_count = 0;
247 unsigned int total_bytes = 0, total_packets = 0;
248 unsigned int i;
249 u32 length, hlen, staterr;
250
251 i = rx_ring->next_to_clean;
252 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
253 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
254
255 while (staterr & E1000_RXD_STAT_DD) {
256 if (*work_done >= work_to_do)
257 break;
258 (*work_done)++;
259 rmb(); /* read descriptor and rx_buffer_info after status DD */
260
261 buffer_info = &rx_ring->buffer_info[i];
262
263 /* HW will not DMA in data larger than the given buffer, even
264 * if it parses the (NFS, of course) header to be larger. In
265 * that case, it fills the header buffer and spills the rest
266 * into the page.
267 */
268 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
269 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
270 if (hlen > adapter->rx_ps_hdr_size)
271 hlen = adapter->rx_ps_hdr_size;
272
273 length = le16_to_cpu(rx_desc->wb.upper.length);
274 cleaned = true;
275 cleaned_count++;
276
277 skb = buffer_info->skb;
278 prefetch(skb->data - NET_IP_ALIGN);
279 buffer_info->skb = NULL;
280 if (!adapter->rx_ps_hdr_size) {
281 dma_unmap_single(&pdev->dev, buffer_info->dma,
282 adapter->rx_buffer_len,
283 DMA_FROM_DEVICE);
284 buffer_info->dma = 0;
285 skb_put(skb, length);
286 goto send_up;
287 }
288
289 if (!skb_shinfo(skb)->nr_frags) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_ps_hdr_size,
292 DMA_FROM_DEVICE);
293 skb_put(skb, hlen);
294 }
295
296 if (length) {
297 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
298 PAGE_SIZE / 2,
299 DMA_FROM_DEVICE);
300 buffer_info->page_dma = 0;
301
302 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
303 buffer_info->page,
304 buffer_info->page_offset,
305 length);
306
307 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
308 (page_count(buffer_info->page) != 1))
309 buffer_info->page = NULL;
310 else
311 get_page(buffer_info->page);
312
313 skb->len += length;
314 skb->data_len += length;
315 skb->truesize += length;
316 }
317 send_up:
318 i++;
319 if (i == rx_ring->count)
320 i = 0;
321 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
322 prefetch(next_rxd);
323 next_buffer = &rx_ring->buffer_info[i];
324
325 if (!(staterr & E1000_RXD_STAT_EOP)) {
326 buffer_info->skb = next_buffer->skb;
327 buffer_info->dma = next_buffer->dma;
328 next_buffer->skb = skb;
329 next_buffer->dma = 0;
330 goto next_desc;
331 }
332
333 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
334 dev_kfree_skb_irq(skb);
335 goto next_desc;
336 }
337
338 total_bytes += skb->len;
339 total_packets++;
340
341 igbvf_rx_checksum_adv(adapter, staterr, skb);
342
343 skb->protocol = eth_type_trans(skb, netdev);
344
345 igbvf_receive_skb(adapter, netdev, skb, staterr,
346 rx_desc->wb.upper.vlan);
347
348 next_desc:
349 rx_desc->wb.upper.status_error = 0;
350
351 /* return some buffers to hardware, one at a time is too slow */
352 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
353 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
354 cleaned_count = 0;
355 }
356
357 /* use prefetched values */
358 rx_desc = next_rxd;
359 buffer_info = next_buffer;
360
361 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
362 }
363
364 rx_ring->next_to_clean = i;
365 cleaned_count = igbvf_desc_unused(rx_ring);
366
367 if (cleaned_count)
368 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
369
370 adapter->total_rx_packets += total_packets;
371 adapter->total_rx_bytes += total_bytes;
372 adapter->net_stats.rx_bytes += total_bytes;
373 adapter->net_stats.rx_packets += total_packets;
374 return cleaned;
375 }
376
377 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
378 struct igbvf_buffer *buffer_info)
379 {
380 if (buffer_info->dma) {
381 if (buffer_info->mapped_as_page)
382 dma_unmap_page(&adapter->pdev->dev,
383 buffer_info->dma,
384 buffer_info->length,
385 DMA_TO_DEVICE);
386 else
387 dma_unmap_single(&adapter->pdev->dev,
388 buffer_info->dma,
389 buffer_info->length,
390 DMA_TO_DEVICE);
391 buffer_info->dma = 0;
392 }
393 if (buffer_info->skb) {
394 dev_kfree_skb_any(buffer_info->skb);
395 buffer_info->skb = NULL;
396 }
397 buffer_info->time_stamp = 0;
398 }
399
400 /**
401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
402 * @adapter: board private structure
403 *
404 * Return 0 on success, negative on failure
405 **/
406 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
407 struct igbvf_ring *tx_ring)
408 {
409 struct pci_dev *pdev = adapter->pdev;
410 int size;
411
412 size = sizeof(struct igbvf_buffer) * tx_ring->count;
413 tx_ring->buffer_info = vzalloc(size);
414 if (!tx_ring->buffer_info)
415 goto err;
416
417 /* round up to nearest 4K */
418 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
419 tx_ring->size = ALIGN(tx_ring->size, 4096);
420
421 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
422 &tx_ring->dma, GFP_KERNEL);
423
424 if (!tx_ring->desc)
425 goto err;
426
427 tx_ring->adapter = adapter;
428 tx_ring->next_to_use = 0;
429 tx_ring->next_to_clean = 0;
430
431 return 0;
432 err:
433 vfree(tx_ring->buffer_info);
434 dev_err(&adapter->pdev->dev,
435 "Unable to allocate memory for the transmit descriptor ring\n");
436 return -ENOMEM;
437 }
438
439 /**
440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
441 * @adapter: board private structure
442 *
443 * Returns 0 on success, negative on failure
444 **/
445 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
446 struct igbvf_ring *rx_ring)
447 {
448 struct pci_dev *pdev = adapter->pdev;
449 int size, desc_len;
450
451 size = sizeof(struct igbvf_buffer) * rx_ring->count;
452 rx_ring->buffer_info = vzalloc(size);
453 if (!rx_ring->buffer_info)
454 goto err;
455
456 desc_len = sizeof(union e1000_adv_rx_desc);
457
458 /* Round up to nearest 4K */
459 rx_ring->size = rx_ring->count * desc_len;
460 rx_ring->size = ALIGN(rx_ring->size, 4096);
461
462 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
463 &rx_ring->dma, GFP_KERNEL);
464
465 if (!rx_ring->desc)
466 goto err;
467
468 rx_ring->next_to_clean = 0;
469 rx_ring->next_to_use = 0;
470
471 rx_ring->adapter = adapter;
472
473 return 0;
474
475 err:
476 vfree(rx_ring->buffer_info);
477 rx_ring->buffer_info = NULL;
478 dev_err(&adapter->pdev->dev,
479 "Unable to allocate memory for the receive descriptor ring\n");
480 return -ENOMEM;
481 }
482
483 /**
484 * igbvf_clean_tx_ring - Free Tx Buffers
485 * @tx_ring: ring to be cleaned
486 **/
487 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
488 {
489 struct igbvf_adapter *adapter = tx_ring->adapter;
490 struct igbvf_buffer *buffer_info;
491 unsigned long size;
492 unsigned int i;
493
494 if (!tx_ring->buffer_info)
495 return;
496
497 /* Free all the Tx ring sk_buffs */
498 for (i = 0; i < tx_ring->count; i++) {
499 buffer_info = &tx_ring->buffer_info[i];
500 igbvf_put_txbuf(adapter, buffer_info);
501 }
502
503 size = sizeof(struct igbvf_buffer) * tx_ring->count;
504 memset(tx_ring->buffer_info, 0, size);
505
506 /* Zero out the descriptor ring */
507 memset(tx_ring->desc, 0, tx_ring->size);
508
509 tx_ring->next_to_use = 0;
510 tx_ring->next_to_clean = 0;
511
512 writel(0, adapter->hw.hw_addr + tx_ring->head);
513 writel(0, adapter->hw.hw_addr + tx_ring->tail);
514 }
515
516 /**
517 * igbvf_free_tx_resources - Free Tx Resources per Queue
518 * @tx_ring: ring to free resources from
519 *
520 * Free all transmit software resources
521 **/
522 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
523 {
524 struct pci_dev *pdev = tx_ring->adapter->pdev;
525
526 igbvf_clean_tx_ring(tx_ring);
527
528 vfree(tx_ring->buffer_info);
529 tx_ring->buffer_info = NULL;
530
531 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
532 tx_ring->dma);
533
534 tx_ring->desc = NULL;
535 }
536
537 /**
538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
539 * @adapter: board private structure
540 **/
541 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
542 {
543 struct igbvf_adapter *adapter = rx_ring->adapter;
544 struct igbvf_buffer *buffer_info;
545 struct pci_dev *pdev = adapter->pdev;
546 unsigned long size;
547 unsigned int i;
548
549 if (!rx_ring->buffer_info)
550 return;
551
552 /* Free all the Rx ring sk_buffs */
553 for (i = 0; i < rx_ring->count; i++) {
554 buffer_info = &rx_ring->buffer_info[i];
555 if (buffer_info->dma) {
556 if (adapter->rx_ps_hdr_size){
557 dma_unmap_single(&pdev->dev, buffer_info->dma,
558 adapter->rx_ps_hdr_size,
559 DMA_FROM_DEVICE);
560 } else {
561 dma_unmap_single(&pdev->dev, buffer_info->dma,
562 adapter->rx_buffer_len,
563 DMA_FROM_DEVICE);
564 }
565 buffer_info->dma = 0;
566 }
567
568 if (buffer_info->skb) {
569 dev_kfree_skb(buffer_info->skb);
570 buffer_info->skb = NULL;
571 }
572
573 if (buffer_info->page) {
574 if (buffer_info->page_dma)
575 dma_unmap_page(&pdev->dev,
576 buffer_info->page_dma,
577 PAGE_SIZE / 2,
578 DMA_FROM_DEVICE);
579 put_page(buffer_info->page);
580 buffer_info->page = NULL;
581 buffer_info->page_dma = 0;
582 buffer_info->page_offset = 0;
583 }
584 }
585
586 size = sizeof(struct igbvf_buffer) * rx_ring->count;
587 memset(rx_ring->buffer_info, 0, size);
588
589 /* Zero out the descriptor ring */
590 memset(rx_ring->desc, 0, rx_ring->size);
591
592 rx_ring->next_to_clean = 0;
593 rx_ring->next_to_use = 0;
594
595 writel(0, adapter->hw.hw_addr + rx_ring->head);
596 writel(0, adapter->hw.hw_addr + rx_ring->tail);
597 }
598
599 /**
600 * igbvf_free_rx_resources - Free Rx Resources
601 * @rx_ring: ring to clean the resources from
602 *
603 * Free all receive software resources
604 **/
605
606 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
607 {
608 struct pci_dev *pdev = rx_ring->adapter->pdev;
609
610 igbvf_clean_rx_ring(rx_ring);
611
612 vfree(rx_ring->buffer_info);
613 rx_ring->buffer_info = NULL;
614
615 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
616 rx_ring->dma);
617 rx_ring->desc = NULL;
618 }
619
620 /**
621 * igbvf_update_itr - update the dynamic ITR value based on statistics
622 * @adapter: pointer to adapter
623 * @itr_setting: current adapter->itr
624 * @packets: the number of packets during this measurement interval
625 * @bytes: the number of bytes during this measurement interval
626 *
627 * Stores a new ITR value based on packets and byte
628 * counts during the last interrupt. The advantage of per interrupt
629 * computation is faster updates and more accurate ITR for the current
630 * traffic pattern. Constants in this function were computed
631 * based on theoretical maximum wire speed and thresholds were set based
632 * on testing data as well as attempting to minimize response time
633 * while increasing bulk throughput. This functionality is controlled
634 * by the InterruptThrottleRate module parameter.
635 **/
636 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
637 u16 itr_setting, int packets,
638 int bytes)
639 {
640 unsigned int retval = itr_setting;
641
642 if (packets == 0)
643 goto update_itr_done;
644
645 switch (itr_setting) {
646 case lowest_latency:
647 /* handle TSO and jumbo frames */
648 if (bytes/packets > 8000)
649 retval = bulk_latency;
650 else if ((packets < 5) && (bytes > 512))
651 retval = low_latency;
652 break;
653 case low_latency: /* 50 usec aka 20000 ints/s */
654 if (bytes > 10000) {
655 /* this if handles the TSO accounting */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 10) || ((bytes/packets) > 1200))
659 retval = bulk_latency;
660 else if ((packets > 35))
661 retval = lowest_latency;
662 } else if (bytes/packets > 2000) {
663 retval = bulk_latency;
664 } else if (packets <= 2 && bytes < 512) {
665 retval = lowest_latency;
666 }
667 break;
668 case bulk_latency: /* 250 usec aka 4000 ints/s */
669 if (bytes > 25000) {
670 if (packets > 35)
671 retval = low_latency;
672 } else if (bytes < 6000) {
673 retval = low_latency;
674 }
675 break;
676 }
677
678 update_itr_done:
679 return retval;
680 }
681
682 static void igbvf_set_itr(struct igbvf_adapter *adapter)
683 {
684 struct e1000_hw *hw = &adapter->hw;
685 u16 current_itr;
686 u32 new_itr = adapter->itr;
687
688 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
689 adapter->total_tx_packets,
690 adapter->total_tx_bytes);
691 /* conservative mode (itr 3) eliminates the lowest_latency setting */
692 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
693 adapter->tx_itr = low_latency;
694
695 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
696 adapter->total_rx_packets,
697 adapter->total_rx_bytes);
698 /* conservative mode (itr 3) eliminates the lowest_latency setting */
699 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
700 adapter->rx_itr = low_latency;
701
702 current_itr = max(adapter->rx_itr, adapter->tx_itr);
703
704 switch (current_itr) {
705 /* counts and packets in update_itr are dependent on these numbers */
706 case lowest_latency:
707 new_itr = 70000;
708 break;
709 case low_latency:
710 new_itr = 20000; /* aka hwitr = ~200 */
711 break;
712 case bulk_latency:
713 new_itr = 4000;
714 break;
715 default:
716 break;
717 }
718
719 if (new_itr != adapter->itr) {
720 /*
721 * this attempts to bias the interrupt rate towards Bulk
722 * by adding intermediate steps when interrupt rate is
723 * increasing
724 */
725 new_itr = new_itr > adapter->itr ?
726 min(adapter->itr + (new_itr >> 2), new_itr) :
727 new_itr;
728 adapter->itr = new_itr;
729 adapter->rx_ring->itr_val = 1952;
730
731 if (adapter->msix_entries)
732 adapter->rx_ring->set_itr = 1;
733 else
734 ew32(ITR, 1952);
735 }
736 }
737
738 /**
739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
740 * @adapter: board private structure
741 * returns true if ring is completely cleaned
742 **/
743 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
744 {
745 struct igbvf_adapter *adapter = tx_ring->adapter;
746 struct net_device *netdev = adapter->netdev;
747 struct igbvf_buffer *buffer_info;
748 struct sk_buff *skb;
749 union e1000_adv_tx_desc *tx_desc, *eop_desc;
750 unsigned int total_bytes = 0, total_packets = 0;
751 unsigned int i, eop, count = 0;
752 bool cleaned = false;
753
754 i = tx_ring->next_to_clean;
755 eop = tx_ring->buffer_info[i].next_to_watch;
756 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
757
758 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
759 (count < tx_ring->count)) {
760 rmb(); /* read buffer_info after eop_desc status */
761 for (cleaned = false; !cleaned; count++) {
762 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
763 buffer_info = &tx_ring->buffer_info[i];
764 cleaned = (i == eop);
765 skb = buffer_info->skb;
766
767 if (skb) {
768 unsigned int segs, bytecount;
769
770 /* gso_segs is currently only valid for tcp */
771 segs = skb_shinfo(skb)->gso_segs ?: 1;
772 /* multiply data chunks by size of headers */
773 bytecount = ((segs - 1) * skb_headlen(skb)) +
774 skb->len;
775 total_packets += segs;
776 total_bytes += bytecount;
777 }
778
779 igbvf_put_txbuf(adapter, buffer_info);
780 tx_desc->wb.status = 0;
781
782 i++;
783 if (i == tx_ring->count)
784 i = 0;
785 }
786 eop = tx_ring->buffer_info[i].next_to_watch;
787 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
788 }
789
790 tx_ring->next_to_clean = i;
791
792 if (unlikely(count &&
793 netif_carrier_ok(netdev) &&
794 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
795 /* Make sure that anybody stopping the queue after this
796 * sees the new next_to_clean.
797 */
798 smp_mb();
799 if (netif_queue_stopped(netdev) &&
800 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
801 netif_wake_queue(netdev);
802 ++adapter->restart_queue;
803 }
804 }
805
806 adapter->net_stats.tx_bytes += total_bytes;
807 adapter->net_stats.tx_packets += total_packets;
808 return count < tx_ring->count;
809 }
810
811 static irqreturn_t igbvf_msix_other(int irq, void *data)
812 {
813 struct net_device *netdev = data;
814 struct igbvf_adapter *adapter = netdev_priv(netdev);
815 struct e1000_hw *hw = &adapter->hw;
816
817 adapter->int_counter1++;
818
819 netif_carrier_off(netdev);
820 hw->mac.get_link_status = 1;
821 if (!test_bit(__IGBVF_DOWN, &adapter->state))
822 mod_timer(&adapter->watchdog_timer, jiffies + 1);
823
824 ew32(EIMS, adapter->eims_other);
825
826 return IRQ_HANDLED;
827 }
828
829 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
830 {
831 struct net_device *netdev = data;
832 struct igbvf_adapter *adapter = netdev_priv(netdev);
833 struct e1000_hw *hw = &adapter->hw;
834 struct igbvf_ring *tx_ring = adapter->tx_ring;
835
836
837 adapter->total_tx_bytes = 0;
838 adapter->total_tx_packets = 0;
839
840 /* auto mask will automatically reenable the interrupt when we write
841 * EICS */
842 if (!igbvf_clean_tx_irq(tx_ring))
843 /* Ring was not completely cleaned, so fire another interrupt */
844 ew32(EICS, tx_ring->eims_value);
845 else
846 ew32(EIMS, tx_ring->eims_value);
847
848 return IRQ_HANDLED;
849 }
850
851 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
852 {
853 struct net_device *netdev = data;
854 struct igbvf_adapter *adapter = netdev_priv(netdev);
855
856 adapter->int_counter0++;
857
858 /* Write the ITR value calculated at the end of the
859 * previous interrupt.
860 */
861 if (adapter->rx_ring->set_itr) {
862 writel(adapter->rx_ring->itr_val,
863 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
864 adapter->rx_ring->set_itr = 0;
865 }
866
867 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
868 adapter->total_rx_bytes = 0;
869 adapter->total_rx_packets = 0;
870 __napi_schedule(&adapter->rx_ring->napi);
871 }
872
873 return IRQ_HANDLED;
874 }
875
876 #define IGBVF_NO_QUEUE -1
877
878 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
879 int tx_queue, int msix_vector)
880 {
881 struct e1000_hw *hw = &adapter->hw;
882 u32 ivar, index;
883
884 /* 82576 uses a table-based method for assigning vectors.
885 Each queue has a single entry in the table to which we write
886 a vector number along with a "valid" bit. Sadly, the layout
887 of the table is somewhat counterintuitive. */
888 if (rx_queue > IGBVF_NO_QUEUE) {
889 index = (rx_queue >> 1);
890 ivar = array_er32(IVAR0, index);
891 if (rx_queue & 0x1) {
892 /* vector goes into third byte of register */
893 ivar = ivar & 0xFF00FFFF;
894 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
895 } else {
896 /* vector goes into low byte of register */
897 ivar = ivar & 0xFFFFFF00;
898 ivar |= msix_vector | E1000_IVAR_VALID;
899 }
900 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
901 array_ew32(IVAR0, index, ivar);
902 }
903 if (tx_queue > IGBVF_NO_QUEUE) {
904 index = (tx_queue >> 1);
905 ivar = array_er32(IVAR0, index);
906 if (tx_queue & 0x1) {
907 /* vector goes into high byte of register */
908 ivar = ivar & 0x00FFFFFF;
909 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
910 } else {
911 /* vector goes into second byte of register */
912 ivar = ivar & 0xFFFF00FF;
913 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
914 }
915 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
916 array_ew32(IVAR0, index, ivar);
917 }
918 }
919
920 /**
921 * igbvf_configure_msix - Configure MSI-X hardware
922 *
923 * igbvf_configure_msix sets up the hardware to properly
924 * generate MSI-X interrupts.
925 **/
926 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
927 {
928 u32 tmp;
929 struct e1000_hw *hw = &adapter->hw;
930 struct igbvf_ring *tx_ring = adapter->tx_ring;
931 struct igbvf_ring *rx_ring = adapter->rx_ring;
932 int vector = 0;
933
934 adapter->eims_enable_mask = 0;
935
936 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
937 adapter->eims_enable_mask |= tx_ring->eims_value;
938 if (tx_ring->itr_val)
939 writel(tx_ring->itr_val,
940 hw->hw_addr + tx_ring->itr_register);
941 else
942 writel(1952, hw->hw_addr + tx_ring->itr_register);
943
944 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
945 adapter->eims_enable_mask |= rx_ring->eims_value;
946 if (rx_ring->itr_val)
947 writel(rx_ring->itr_val,
948 hw->hw_addr + rx_ring->itr_register);
949 else
950 writel(1952, hw->hw_addr + rx_ring->itr_register);
951
952 /* set vector for other causes, i.e. link changes */
953
954 tmp = (vector++ | E1000_IVAR_VALID);
955
956 ew32(IVAR_MISC, tmp);
957
958 adapter->eims_enable_mask = (1 << (vector)) - 1;
959 adapter->eims_other = 1 << (vector - 1);
960 e1e_flush();
961 }
962
963 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
964 {
965 if (adapter->msix_entries) {
966 pci_disable_msix(adapter->pdev);
967 kfree(adapter->msix_entries);
968 adapter->msix_entries = NULL;
969 }
970 }
971
972 /**
973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
974 *
975 * Attempt to configure interrupts using the best available
976 * capabilities of the hardware and kernel.
977 **/
978 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
979 {
980 int err = -ENOMEM;
981 int i;
982
983 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
984 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
985 GFP_KERNEL);
986 if (adapter->msix_entries) {
987 for (i = 0; i < 3; i++)
988 adapter->msix_entries[i].entry = i;
989
990 err = pci_enable_msix(adapter->pdev,
991 adapter->msix_entries, 3);
992 }
993
994 if (err) {
995 /* MSI-X failed */
996 dev_err(&adapter->pdev->dev,
997 "Failed to initialize MSI-X interrupts.\n");
998 igbvf_reset_interrupt_capability(adapter);
999 }
1000 }
1001
1002 /**
1003 * igbvf_request_msix - Initialize MSI-X interrupts
1004 *
1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006 * kernel.
1007 **/
1008 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009 {
1010 struct net_device *netdev = adapter->netdev;
1011 int err = 0, vector = 0;
1012
1013 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016 } else {
1017 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019 }
1020
1021 err = request_irq(adapter->msix_entries[vector].vector,
1022 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023 netdev);
1024 if (err)
1025 goto out;
1026
1027 adapter->tx_ring->itr_register = E1000_EITR(vector);
1028 adapter->tx_ring->itr_val = 1952;
1029 vector++;
1030
1031 err = request_irq(adapter->msix_entries[vector].vector,
1032 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033 netdev);
1034 if (err)
1035 goto out;
1036
1037 adapter->rx_ring->itr_register = E1000_EITR(vector);
1038 adapter->rx_ring->itr_val = 1952;
1039 vector++;
1040
1041 err = request_irq(adapter->msix_entries[vector].vector,
1042 igbvf_msix_other, 0, netdev->name, netdev);
1043 if (err)
1044 goto out;
1045
1046 igbvf_configure_msix(adapter);
1047 return 0;
1048 out:
1049 return err;
1050 }
1051
1052 /**
1053 * igbvf_alloc_queues - Allocate memory for all rings
1054 * @adapter: board private structure to initialize
1055 **/
1056 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057 {
1058 struct net_device *netdev = adapter->netdev;
1059
1060 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061 if (!adapter->tx_ring)
1062 return -ENOMEM;
1063
1064 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065 if (!adapter->rx_ring) {
1066 kfree(adapter->tx_ring);
1067 return -ENOMEM;
1068 }
1069
1070 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * igbvf_request_irq - initialize interrupts
1077 *
1078 * Attempts to configure interrupts using the best available
1079 * capabilities of the hardware and kernel.
1080 **/
1081 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082 {
1083 int err = -1;
1084
1085 /* igbvf supports msi-x only */
1086 if (adapter->msix_entries)
1087 err = igbvf_request_msix(adapter);
1088
1089 if (!err)
1090 return err;
1091
1092 dev_err(&adapter->pdev->dev,
1093 "Unable to allocate interrupt, Error: %d\n", err);
1094
1095 return err;
1096 }
1097
1098 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099 {
1100 struct net_device *netdev = adapter->netdev;
1101 int vector;
1102
1103 if (adapter->msix_entries) {
1104 for (vector = 0; vector < 3; vector++)
1105 free_irq(adapter->msix_entries[vector].vector, netdev);
1106 }
1107 }
1108
1109 /**
1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111 **/
1112 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113 {
1114 struct e1000_hw *hw = &adapter->hw;
1115
1116 ew32(EIMC, ~0);
1117
1118 if (adapter->msix_entries)
1119 ew32(EIAC, 0);
1120 }
1121
1122 /**
1123 * igbvf_irq_enable - Enable default interrupt generation settings
1124 **/
1125 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126 {
1127 struct e1000_hw *hw = &adapter->hw;
1128
1129 ew32(EIAC, adapter->eims_enable_mask);
1130 ew32(EIAM, adapter->eims_enable_mask);
1131 ew32(EIMS, adapter->eims_enable_mask);
1132 }
1133
1134 /**
1135 * igbvf_poll - NAPI Rx polling callback
1136 * @napi: struct associated with this polling callback
1137 * @budget: amount of packets driver is allowed to process this poll
1138 **/
1139 static int igbvf_poll(struct napi_struct *napi, int budget)
1140 {
1141 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142 struct igbvf_adapter *adapter = rx_ring->adapter;
1143 struct e1000_hw *hw = &adapter->hw;
1144 int work_done = 0;
1145
1146 igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148 /* If not enough Rx work done, exit the polling mode */
1149 if (work_done < budget) {
1150 napi_complete(napi);
1151
1152 if (adapter->itr_setting & 3)
1153 igbvf_set_itr(adapter);
1154
1155 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156 ew32(EIMS, adapter->rx_ring->eims_value);
1157 }
1158
1159 return work_done;
1160 }
1161
1162 /**
1163 * igbvf_set_rlpml - set receive large packet maximum length
1164 * @adapter: board private structure
1165 *
1166 * Configure the maximum size of packets that will be received
1167 */
1168 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169 {
1170 int max_frame_size = adapter->max_frame_size;
1171 struct e1000_hw *hw = &adapter->hw;
1172
1173 if (adapter->vlgrp)
1174 max_frame_size += VLAN_TAG_SIZE;
1175
1176 e1000_rlpml_set_vf(hw, max_frame_size);
1177 }
1178
1179 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1180 {
1181 struct igbvf_adapter *adapter = netdev_priv(netdev);
1182 struct e1000_hw *hw = &adapter->hw;
1183
1184 if (hw->mac.ops.set_vfta(hw, vid, true))
1185 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186 }
1187
1188 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189 {
1190 struct igbvf_adapter *adapter = netdev_priv(netdev);
1191 struct e1000_hw *hw = &adapter->hw;
1192
1193 igbvf_irq_disable(adapter);
1194 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1195
1196 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1197 igbvf_irq_enable(adapter);
1198
1199 if (hw->mac.ops.set_vfta(hw, vid, false))
1200 dev_err(&adapter->pdev->dev,
1201 "Failed to remove vlan id %d\n", vid);
1202 }
1203
1204 static void igbvf_vlan_rx_register(struct net_device *netdev,
1205 struct vlan_group *grp)
1206 {
1207 struct igbvf_adapter *adapter = netdev_priv(netdev);
1208
1209 adapter->vlgrp = grp;
1210 }
1211
1212 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1213 {
1214 u16 vid;
1215
1216 if (!adapter->vlgrp)
1217 return;
1218
1219 for (vid = 0; vid < VLAN_N_VID; vid++) {
1220 if (!vlan_group_get_device(adapter->vlgrp, vid))
1221 continue;
1222 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1223 }
1224
1225 igbvf_set_rlpml(adapter);
1226 }
1227
1228 /**
1229 * igbvf_configure_tx - Configure Transmit Unit after Reset
1230 * @adapter: board private structure
1231 *
1232 * Configure the Tx unit of the MAC after a reset.
1233 **/
1234 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1235 {
1236 struct e1000_hw *hw = &adapter->hw;
1237 struct igbvf_ring *tx_ring = adapter->tx_ring;
1238 u64 tdba;
1239 u32 txdctl, dca_txctrl;
1240
1241 /* disable transmits */
1242 txdctl = er32(TXDCTL(0));
1243 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1244 msleep(10);
1245
1246 /* Setup the HW Tx Head and Tail descriptor pointers */
1247 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1248 tdba = tx_ring->dma;
1249 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1250 ew32(TDBAH(0), (tdba >> 32));
1251 ew32(TDH(0), 0);
1252 ew32(TDT(0), 0);
1253 tx_ring->head = E1000_TDH(0);
1254 tx_ring->tail = E1000_TDT(0);
1255
1256 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1257 * MUST be delivered in order or it will completely screw up
1258 * our bookeeping.
1259 */
1260 dca_txctrl = er32(DCA_TXCTRL(0));
1261 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1262 ew32(DCA_TXCTRL(0), dca_txctrl);
1263
1264 /* enable transmits */
1265 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1266 ew32(TXDCTL(0), txdctl);
1267
1268 /* Setup Transmit Descriptor Settings for eop descriptor */
1269 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1270
1271 /* enable Report Status bit */
1272 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1273 }
1274
1275 /**
1276 * igbvf_setup_srrctl - configure the receive control registers
1277 * @adapter: Board private structure
1278 **/
1279 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1280 {
1281 struct e1000_hw *hw = &adapter->hw;
1282 u32 srrctl = 0;
1283
1284 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1285 E1000_SRRCTL_BSIZEHDR_MASK |
1286 E1000_SRRCTL_BSIZEPKT_MASK);
1287
1288 /* Enable queue drop to avoid head of line blocking */
1289 srrctl |= E1000_SRRCTL_DROP_EN;
1290
1291 /* Setup buffer sizes */
1292 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1293 E1000_SRRCTL_BSIZEPKT_SHIFT;
1294
1295 if (adapter->rx_buffer_len < 2048) {
1296 adapter->rx_ps_hdr_size = 0;
1297 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1298 } else {
1299 adapter->rx_ps_hdr_size = 128;
1300 srrctl |= adapter->rx_ps_hdr_size <<
1301 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1302 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1303 }
1304
1305 ew32(SRRCTL(0), srrctl);
1306 }
1307
1308 /**
1309 * igbvf_configure_rx - Configure Receive Unit after Reset
1310 * @adapter: board private structure
1311 *
1312 * Configure the Rx unit of the MAC after a reset.
1313 **/
1314 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1315 {
1316 struct e1000_hw *hw = &adapter->hw;
1317 struct igbvf_ring *rx_ring = adapter->rx_ring;
1318 u64 rdba;
1319 u32 rdlen, rxdctl;
1320
1321 /* disable receives */
1322 rxdctl = er32(RXDCTL(0));
1323 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1324 msleep(10);
1325
1326 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1327
1328 /*
1329 * Setup the HW Rx Head and Tail Descriptor Pointers and
1330 * the Base and Length of the Rx Descriptor Ring
1331 */
1332 rdba = rx_ring->dma;
1333 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1334 ew32(RDBAH(0), (rdba >> 32));
1335 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1336 rx_ring->head = E1000_RDH(0);
1337 rx_ring->tail = E1000_RDT(0);
1338 ew32(RDH(0), 0);
1339 ew32(RDT(0), 0);
1340
1341 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1342 rxdctl &= 0xFFF00000;
1343 rxdctl |= IGBVF_RX_PTHRESH;
1344 rxdctl |= IGBVF_RX_HTHRESH << 8;
1345 rxdctl |= IGBVF_RX_WTHRESH << 16;
1346
1347 igbvf_set_rlpml(adapter);
1348
1349 /* enable receives */
1350 ew32(RXDCTL(0), rxdctl);
1351 }
1352
1353 /**
1354 * igbvf_set_multi - Multicast and Promiscuous mode set
1355 * @netdev: network interface device structure
1356 *
1357 * The set_multi entry point is called whenever the multicast address
1358 * list or the network interface flags are updated. This routine is
1359 * responsible for configuring the hardware for proper multicast,
1360 * promiscuous mode, and all-multi behavior.
1361 **/
1362 static void igbvf_set_multi(struct net_device *netdev)
1363 {
1364 struct igbvf_adapter *adapter = netdev_priv(netdev);
1365 struct e1000_hw *hw = &adapter->hw;
1366 struct netdev_hw_addr *ha;
1367 u8 *mta_list = NULL;
1368 int i;
1369
1370 if (!netdev_mc_empty(netdev)) {
1371 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1372 if (!mta_list) {
1373 dev_err(&adapter->pdev->dev,
1374 "failed to allocate multicast filter list\n");
1375 return;
1376 }
1377 }
1378
1379 /* prepare a packed array of only addresses. */
1380 i = 0;
1381 netdev_for_each_mc_addr(ha, netdev)
1382 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1383
1384 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1385 kfree(mta_list);
1386 }
1387
1388 /**
1389 * igbvf_configure - configure the hardware for Rx and Tx
1390 * @adapter: private board structure
1391 **/
1392 static void igbvf_configure(struct igbvf_adapter *adapter)
1393 {
1394 igbvf_set_multi(adapter->netdev);
1395
1396 igbvf_restore_vlan(adapter);
1397
1398 igbvf_configure_tx(adapter);
1399 igbvf_setup_srrctl(adapter);
1400 igbvf_configure_rx(adapter);
1401 igbvf_alloc_rx_buffers(adapter->rx_ring,
1402 igbvf_desc_unused(adapter->rx_ring));
1403 }
1404
1405 /* igbvf_reset - bring the hardware into a known good state
1406 *
1407 * This function boots the hardware and enables some settings that
1408 * require a configuration cycle of the hardware - those cannot be
1409 * set/changed during runtime. After reset the device needs to be
1410 * properly configured for Rx, Tx etc.
1411 */
1412 static void igbvf_reset(struct igbvf_adapter *adapter)
1413 {
1414 struct e1000_mac_info *mac = &adapter->hw.mac;
1415 struct net_device *netdev = adapter->netdev;
1416 struct e1000_hw *hw = &adapter->hw;
1417
1418 /* Allow time for pending master requests to run */
1419 if (mac->ops.reset_hw(hw))
1420 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1421
1422 mac->ops.init_hw(hw);
1423
1424 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1425 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1426 netdev->addr_len);
1427 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1428 netdev->addr_len);
1429 }
1430
1431 adapter->last_reset = jiffies;
1432 }
1433
1434 int igbvf_up(struct igbvf_adapter *adapter)
1435 {
1436 struct e1000_hw *hw = &adapter->hw;
1437
1438 /* hardware has been reset, we need to reload some things */
1439 igbvf_configure(adapter);
1440
1441 clear_bit(__IGBVF_DOWN, &adapter->state);
1442
1443 napi_enable(&adapter->rx_ring->napi);
1444 if (adapter->msix_entries)
1445 igbvf_configure_msix(adapter);
1446
1447 /* Clear any pending interrupts. */
1448 er32(EICR);
1449 igbvf_irq_enable(adapter);
1450
1451 /* start the watchdog */
1452 hw->mac.get_link_status = 1;
1453 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1454
1455
1456 return 0;
1457 }
1458
1459 void igbvf_down(struct igbvf_adapter *adapter)
1460 {
1461 struct net_device *netdev = adapter->netdev;
1462 struct e1000_hw *hw = &adapter->hw;
1463 u32 rxdctl, txdctl;
1464
1465 /*
1466 * signal that we're down so the interrupt handler does not
1467 * reschedule our watchdog timer
1468 */
1469 set_bit(__IGBVF_DOWN, &adapter->state);
1470
1471 /* disable receives in the hardware */
1472 rxdctl = er32(RXDCTL(0));
1473 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1474
1475 netif_stop_queue(netdev);
1476
1477 /* disable transmits in the hardware */
1478 txdctl = er32(TXDCTL(0));
1479 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1480
1481 /* flush both disables and wait for them to finish */
1482 e1e_flush();
1483 msleep(10);
1484
1485 napi_disable(&adapter->rx_ring->napi);
1486
1487 igbvf_irq_disable(adapter);
1488
1489 del_timer_sync(&adapter->watchdog_timer);
1490
1491 netif_carrier_off(netdev);
1492
1493 /* record the stats before reset*/
1494 igbvf_update_stats(adapter);
1495
1496 adapter->link_speed = 0;
1497 adapter->link_duplex = 0;
1498
1499 igbvf_reset(adapter);
1500 igbvf_clean_tx_ring(adapter->tx_ring);
1501 igbvf_clean_rx_ring(adapter->rx_ring);
1502 }
1503
1504 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1505 {
1506 might_sleep();
1507 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1508 msleep(1);
1509 igbvf_down(adapter);
1510 igbvf_up(adapter);
1511 clear_bit(__IGBVF_RESETTING, &adapter->state);
1512 }
1513
1514 /**
1515 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1516 * @adapter: board private structure to initialize
1517 *
1518 * igbvf_sw_init initializes the Adapter private data structure.
1519 * Fields are initialized based on PCI device information and
1520 * OS network device settings (MTU size).
1521 **/
1522 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1523 {
1524 struct net_device *netdev = adapter->netdev;
1525 s32 rc;
1526
1527 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1528 adapter->rx_ps_hdr_size = 0;
1529 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1530 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1531
1532 adapter->tx_int_delay = 8;
1533 adapter->tx_abs_int_delay = 32;
1534 adapter->rx_int_delay = 0;
1535 adapter->rx_abs_int_delay = 8;
1536 adapter->itr_setting = 3;
1537 adapter->itr = 20000;
1538
1539 /* Set various function pointers */
1540 adapter->ei->init_ops(&adapter->hw);
1541
1542 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1543 if (rc)
1544 return rc;
1545
1546 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1547 if (rc)
1548 return rc;
1549
1550 igbvf_set_interrupt_capability(adapter);
1551
1552 if (igbvf_alloc_queues(adapter))
1553 return -ENOMEM;
1554
1555 spin_lock_init(&adapter->tx_queue_lock);
1556
1557 /* Explicitly disable IRQ since the NIC can be in any state. */
1558 igbvf_irq_disable(adapter);
1559
1560 spin_lock_init(&adapter->stats_lock);
1561
1562 set_bit(__IGBVF_DOWN, &adapter->state);
1563 return 0;
1564 }
1565
1566 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569
1570 adapter->stats.last_gprc = er32(VFGPRC);
1571 adapter->stats.last_gorc = er32(VFGORC);
1572 adapter->stats.last_gptc = er32(VFGPTC);
1573 adapter->stats.last_gotc = er32(VFGOTC);
1574 adapter->stats.last_mprc = er32(VFMPRC);
1575 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1576 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1577 adapter->stats.last_gorlbc = er32(VFGORLBC);
1578 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1579
1580 adapter->stats.base_gprc = er32(VFGPRC);
1581 adapter->stats.base_gorc = er32(VFGORC);
1582 adapter->stats.base_gptc = er32(VFGPTC);
1583 adapter->stats.base_gotc = er32(VFGOTC);
1584 adapter->stats.base_mprc = er32(VFMPRC);
1585 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1586 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1587 adapter->stats.base_gorlbc = er32(VFGORLBC);
1588 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1589 }
1590
1591 /**
1592 * igbvf_open - Called when a network interface is made active
1593 * @netdev: network interface device structure
1594 *
1595 * Returns 0 on success, negative value on failure
1596 *
1597 * The open entry point is called when a network interface is made
1598 * active by the system (IFF_UP). At this point all resources needed
1599 * for transmit and receive operations are allocated, the interrupt
1600 * handler is registered with the OS, the watchdog timer is started,
1601 * and the stack is notified that the interface is ready.
1602 **/
1603 static int igbvf_open(struct net_device *netdev)
1604 {
1605 struct igbvf_adapter *adapter = netdev_priv(netdev);
1606 struct e1000_hw *hw = &adapter->hw;
1607 int err;
1608
1609 /* disallow open during test */
1610 if (test_bit(__IGBVF_TESTING, &adapter->state))
1611 return -EBUSY;
1612
1613 /* allocate transmit descriptors */
1614 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1615 if (err)
1616 goto err_setup_tx;
1617
1618 /* allocate receive descriptors */
1619 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1620 if (err)
1621 goto err_setup_rx;
1622
1623 /*
1624 * before we allocate an interrupt, we must be ready to handle it.
1625 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1626 * as soon as we call pci_request_irq, so we have to setup our
1627 * clean_rx handler before we do so.
1628 */
1629 igbvf_configure(adapter);
1630
1631 err = igbvf_request_irq(adapter);
1632 if (err)
1633 goto err_req_irq;
1634
1635 /* From here on the code is the same as igbvf_up() */
1636 clear_bit(__IGBVF_DOWN, &adapter->state);
1637
1638 napi_enable(&adapter->rx_ring->napi);
1639
1640 /* clear any pending interrupts */
1641 er32(EICR);
1642
1643 igbvf_irq_enable(adapter);
1644
1645 /* start the watchdog */
1646 hw->mac.get_link_status = 1;
1647 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1648
1649 return 0;
1650
1651 err_req_irq:
1652 igbvf_free_rx_resources(adapter->rx_ring);
1653 err_setup_rx:
1654 igbvf_free_tx_resources(adapter->tx_ring);
1655 err_setup_tx:
1656 igbvf_reset(adapter);
1657
1658 return err;
1659 }
1660
1661 /**
1662 * igbvf_close - Disables a network interface
1663 * @netdev: network interface device structure
1664 *
1665 * Returns 0, this is not allowed to fail
1666 *
1667 * The close entry point is called when an interface is de-activated
1668 * by the OS. The hardware is still under the drivers control, but
1669 * needs to be disabled. A global MAC reset is issued to stop the
1670 * hardware, and all transmit and receive resources are freed.
1671 **/
1672 static int igbvf_close(struct net_device *netdev)
1673 {
1674 struct igbvf_adapter *adapter = netdev_priv(netdev);
1675
1676 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1677 igbvf_down(adapter);
1678
1679 igbvf_free_irq(adapter);
1680
1681 igbvf_free_tx_resources(adapter->tx_ring);
1682 igbvf_free_rx_resources(adapter->rx_ring);
1683
1684 return 0;
1685 }
1686 /**
1687 * igbvf_set_mac - Change the Ethernet Address of the NIC
1688 * @netdev: network interface device structure
1689 * @p: pointer to an address structure
1690 *
1691 * Returns 0 on success, negative on failure
1692 **/
1693 static int igbvf_set_mac(struct net_device *netdev, void *p)
1694 {
1695 struct igbvf_adapter *adapter = netdev_priv(netdev);
1696 struct e1000_hw *hw = &adapter->hw;
1697 struct sockaddr *addr = p;
1698
1699 if (!is_valid_ether_addr(addr->sa_data))
1700 return -EADDRNOTAVAIL;
1701
1702 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1703
1704 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1705
1706 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1707 return -EADDRNOTAVAIL;
1708
1709 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1710
1711 return 0;
1712 }
1713
1714 #define UPDATE_VF_COUNTER(reg, name) \
1715 { \
1716 u32 current_counter = er32(reg); \
1717 if (current_counter < adapter->stats.last_##name) \
1718 adapter->stats.name += 0x100000000LL; \
1719 adapter->stats.last_##name = current_counter; \
1720 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1721 adapter->stats.name |= current_counter; \
1722 }
1723
1724 /**
1725 * igbvf_update_stats - Update the board statistics counters
1726 * @adapter: board private structure
1727 **/
1728 void igbvf_update_stats(struct igbvf_adapter *adapter)
1729 {
1730 struct e1000_hw *hw = &adapter->hw;
1731 struct pci_dev *pdev = adapter->pdev;
1732
1733 /*
1734 * Prevent stats update while adapter is being reset, link is down
1735 * or if the pci connection is down.
1736 */
1737 if (adapter->link_speed == 0)
1738 return;
1739
1740 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1741 return;
1742
1743 if (pci_channel_offline(pdev))
1744 return;
1745
1746 UPDATE_VF_COUNTER(VFGPRC, gprc);
1747 UPDATE_VF_COUNTER(VFGORC, gorc);
1748 UPDATE_VF_COUNTER(VFGPTC, gptc);
1749 UPDATE_VF_COUNTER(VFGOTC, gotc);
1750 UPDATE_VF_COUNTER(VFMPRC, mprc);
1751 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1752 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1753 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1754 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1755
1756 /* Fill out the OS statistics structure */
1757 adapter->net_stats.multicast = adapter->stats.mprc;
1758 }
1759
1760 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1761 {
1762 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1763 adapter->link_speed,
1764 ((adapter->link_duplex == FULL_DUPLEX) ?
1765 "Full Duplex" : "Half Duplex"));
1766 }
1767
1768 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1769 {
1770 struct e1000_hw *hw = &adapter->hw;
1771 s32 ret_val = E1000_SUCCESS;
1772 bool link_active;
1773
1774 /* If interface is down, stay link down */
1775 if (test_bit(__IGBVF_DOWN, &adapter->state))
1776 return false;
1777
1778 ret_val = hw->mac.ops.check_for_link(hw);
1779 link_active = !hw->mac.get_link_status;
1780
1781 /* if check for link returns error we will need to reset */
1782 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1783 schedule_work(&adapter->reset_task);
1784
1785 return link_active;
1786 }
1787
1788 /**
1789 * igbvf_watchdog - Timer Call-back
1790 * @data: pointer to adapter cast into an unsigned long
1791 **/
1792 static void igbvf_watchdog(unsigned long data)
1793 {
1794 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1795
1796 /* Do the rest outside of interrupt context */
1797 schedule_work(&adapter->watchdog_task);
1798 }
1799
1800 static void igbvf_watchdog_task(struct work_struct *work)
1801 {
1802 struct igbvf_adapter *adapter = container_of(work,
1803 struct igbvf_adapter,
1804 watchdog_task);
1805 struct net_device *netdev = adapter->netdev;
1806 struct e1000_mac_info *mac = &adapter->hw.mac;
1807 struct igbvf_ring *tx_ring = adapter->tx_ring;
1808 struct e1000_hw *hw = &adapter->hw;
1809 u32 link;
1810 int tx_pending = 0;
1811
1812 link = igbvf_has_link(adapter);
1813
1814 if (link) {
1815 if (!netif_carrier_ok(netdev)) {
1816 mac->ops.get_link_up_info(&adapter->hw,
1817 &adapter->link_speed,
1818 &adapter->link_duplex);
1819 igbvf_print_link_info(adapter);
1820
1821 netif_carrier_on(netdev);
1822 netif_wake_queue(netdev);
1823 }
1824 } else {
1825 if (netif_carrier_ok(netdev)) {
1826 adapter->link_speed = 0;
1827 adapter->link_duplex = 0;
1828 dev_info(&adapter->pdev->dev, "Link is Down\n");
1829 netif_carrier_off(netdev);
1830 netif_stop_queue(netdev);
1831 }
1832 }
1833
1834 if (netif_carrier_ok(netdev)) {
1835 igbvf_update_stats(adapter);
1836 } else {
1837 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1838 tx_ring->count);
1839 if (tx_pending) {
1840 /*
1841 * We've lost link, so the controller stops DMA,
1842 * but we've got queued Tx work that's never going
1843 * to get done, so reset controller to flush Tx.
1844 * (Do the reset outside of interrupt context).
1845 */
1846 adapter->tx_timeout_count++;
1847 schedule_work(&adapter->reset_task);
1848 }
1849 }
1850
1851 /* Cause software interrupt to ensure Rx ring is cleaned */
1852 ew32(EICS, adapter->rx_ring->eims_value);
1853
1854 /* Reset the timer */
1855 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1856 mod_timer(&adapter->watchdog_timer,
1857 round_jiffies(jiffies + (2 * HZ)));
1858 }
1859
1860 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1861 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1862 #define IGBVF_TX_FLAGS_TSO 0x00000004
1863 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1864 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1865 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1866
1867 static int igbvf_tso(struct igbvf_adapter *adapter,
1868 struct igbvf_ring *tx_ring,
1869 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1870 {
1871 struct e1000_adv_tx_context_desc *context_desc;
1872 unsigned int i;
1873 int err;
1874 struct igbvf_buffer *buffer_info;
1875 u32 info = 0, tu_cmd = 0;
1876 u32 mss_l4len_idx, l4len;
1877 *hdr_len = 0;
1878
1879 if (skb_header_cloned(skb)) {
1880 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1881 if (err) {
1882 dev_err(&adapter->pdev->dev,
1883 "igbvf_tso returning an error\n");
1884 return err;
1885 }
1886 }
1887
1888 l4len = tcp_hdrlen(skb);
1889 *hdr_len += l4len;
1890
1891 if (skb->protocol == htons(ETH_P_IP)) {
1892 struct iphdr *iph = ip_hdr(skb);
1893 iph->tot_len = 0;
1894 iph->check = 0;
1895 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1896 iph->daddr, 0,
1897 IPPROTO_TCP,
1898 0);
1899 } else if (skb_is_gso_v6(skb)) {
1900 ipv6_hdr(skb)->payload_len = 0;
1901 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1902 &ipv6_hdr(skb)->daddr,
1903 0, IPPROTO_TCP, 0);
1904 }
1905
1906 i = tx_ring->next_to_use;
1907
1908 buffer_info = &tx_ring->buffer_info[i];
1909 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1910 /* VLAN MACLEN IPLEN */
1911 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1912 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1913 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1914 *hdr_len += skb_network_offset(skb);
1915 info |= (skb_transport_header(skb) - skb_network_header(skb));
1916 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1917 context_desc->vlan_macip_lens = cpu_to_le32(info);
1918
1919 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1920 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1921
1922 if (skb->protocol == htons(ETH_P_IP))
1923 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1924 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1925
1926 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1927
1928 /* MSS L4LEN IDX */
1929 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1930 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1931
1932 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1933 context_desc->seqnum_seed = 0;
1934
1935 buffer_info->time_stamp = jiffies;
1936 buffer_info->next_to_watch = i;
1937 buffer_info->dma = 0;
1938 i++;
1939 if (i == tx_ring->count)
1940 i = 0;
1941
1942 tx_ring->next_to_use = i;
1943
1944 return true;
1945 }
1946
1947 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1948 struct igbvf_ring *tx_ring,
1949 struct sk_buff *skb, u32 tx_flags)
1950 {
1951 struct e1000_adv_tx_context_desc *context_desc;
1952 unsigned int i;
1953 struct igbvf_buffer *buffer_info;
1954 u32 info = 0, tu_cmd = 0;
1955
1956 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1957 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1958 i = tx_ring->next_to_use;
1959 buffer_info = &tx_ring->buffer_info[i];
1960 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1961
1962 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1963 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1964
1965 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1966 if (skb->ip_summed == CHECKSUM_PARTIAL)
1967 info |= (skb_transport_header(skb) -
1968 skb_network_header(skb));
1969
1970
1971 context_desc->vlan_macip_lens = cpu_to_le32(info);
1972
1973 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1974
1975 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1976 switch (skb->protocol) {
1977 case __constant_htons(ETH_P_IP):
1978 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1979 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1980 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1981 break;
1982 case __constant_htons(ETH_P_IPV6):
1983 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1984 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1985 break;
1986 default:
1987 break;
1988 }
1989 }
1990
1991 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1992 context_desc->seqnum_seed = 0;
1993 context_desc->mss_l4len_idx = 0;
1994
1995 buffer_info->time_stamp = jiffies;
1996 buffer_info->next_to_watch = i;
1997 buffer_info->dma = 0;
1998 i++;
1999 if (i == tx_ring->count)
2000 i = 0;
2001 tx_ring->next_to_use = i;
2002
2003 return true;
2004 }
2005
2006 return false;
2007 }
2008
2009 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2010 {
2011 struct igbvf_adapter *adapter = netdev_priv(netdev);
2012
2013 /* there is enough descriptors then we don't need to worry */
2014 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2015 return 0;
2016
2017 netif_stop_queue(netdev);
2018
2019 smp_mb();
2020
2021 /* We need to check again just in case room has been made available */
2022 if (igbvf_desc_unused(adapter->tx_ring) < size)
2023 return -EBUSY;
2024
2025 netif_wake_queue(netdev);
2026
2027 ++adapter->restart_queue;
2028 return 0;
2029 }
2030
2031 #define IGBVF_MAX_TXD_PWR 16
2032 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2033
2034 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2035 struct igbvf_ring *tx_ring,
2036 struct sk_buff *skb,
2037 unsigned int first)
2038 {
2039 struct igbvf_buffer *buffer_info;
2040 struct pci_dev *pdev = adapter->pdev;
2041 unsigned int len = skb_headlen(skb);
2042 unsigned int count = 0, i;
2043 unsigned int f;
2044
2045 i = tx_ring->next_to_use;
2046
2047 buffer_info = &tx_ring->buffer_info[i];
2048 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2049 buffer_info->length = len;
2050 /* set time_stamp *before* dma to help avoid a possible race */
2051 buffer_info->time_stamp = jiffies;
2052 buffer_info->next_to_watch = i;
2053 buffer_info->mapped_as_page = false;
2054 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2055 DMA_TO_DEVICE);
2056 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2057 goto dma_error;
2058
2059
2060 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2061 struct skb_frag_struct *frag;
2062
2063 count++;
2064 i++;
2065 if (i == tx_ring->count)
2066 i = 0;
2067
2068 frag = &skb_shinfo(skb)->frags[f];
2069 len = frag->size;
2070
2071 buffer_info = &tx_ring->buffer_info[i];
2072 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2073 buffer_info->length = len;
2074 buffer_info->time_stamp = jiffies;
2075 buffer_info->next_to_watch = i;
2076 buffer_info->mapped_as_page = true;
2077 buffer_info->dma = dma_map_page(&pdev->dev,
2078 frag->page,
2079 frag->page_offset,
2080 len,
2081 DMA_TO_DEVICE);
2082 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2083 goto dma_error;
2084 }
2085
2086 tx_ring->buffer_info[i].skb = skb;
2087 tx_ring->buffer_info[first].next_to_watch = i;
2088
2089 return ++count;
2090
2091 dma_error:
2092 dev_err(&pdev->dev, "TX DMA map failed\n");
2093
2094 /* clear timestamp and dma mappings for failed buffer_info mapping */
2095 buffer_info->dma = 0;
2096 buffer_info->time_stamp = 0;
2097 buffer_info->length = 0;
2098 buffer_info->next_to_watch = 0;
2099 buffer_info->mapped_as_page = false;
2100 if (count)
2101 count--;
2102
2103 /* clear timestamp and dma mappings for remaining portion of packet */
2104 while (count--) {
2105 if (i==0)
2106 i += tx_ring->count;
2107 i--;
2108 buffer_info = &tx_ring->buffer_info[i];
2109 igbvf_put_txbuf(adapter, buffer_info);
2110 }
2111
2112 return 0;
2113 }
2114
2115 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2116 struct igbvf_ring *tx_ring,
2117 int tx_flags, int count, u32 paylen,
2118 u8 hdr_len)
2119 {
2120 union e1000_adv_tx_desc *tx_desc = NULL;
2121 struct igbvf_buffer *buffer_info;
2122 u32 olinfo_status = 0, cmd_type_len;
2123 unsigned int i;
2124
2125 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2126 E1000_ADVTXD_DCMD_DEXT);
2127
2128 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2129 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2130
2131 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2132 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2133
2134 /* insert tcp checksum */
2135 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2136
2137 /* insert ip checksum */
2138 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2139 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2140
2141 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2142 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2143 }
2144
2145 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2146
2147 i = tx_ring->next_to_use;
2148 while (count--) {
2149 buffer_info = &tx_ring->buffer_info[i];
2150 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2151 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2152 tx_desc->read.cmd_type_len =
2153 cpu_to_le32(cmd_type_len | buffer_info->length);
2154 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2155 i++;
2156 if (i == tx_ring->count)
2157 i = 0;
2158 }
2159
2160 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2161 /* Force memory writes to complete before letting h/w
2162 * know there are new descriptors to fetch. (Only
2163 * applicable for weak-ordered memory model archs,
2164 * such as IA-64). */
2165 wmb();
2166
2167 tx_ring->next_to_use = i;
2168 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2169 /* we need this if more than one processor can write to our tail
2170 * at a time, it syncronizes IO on IA64/Altix systems */
2171 mmiowb();
2172 }
2173
2174 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2175 struct net_device *netdev,
2176 struct igbvf_ring *tx_ring)
2177 {
2178 struct igbvf_adapter *adapter = netdev_priv(netdev);
2179 unsigned int first, tx_flags = 0;
2180 u8 hdr_len = 0;
2181 int count = 0;
2182 int tso = 0;
2183
2184 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2185 dev_kfree_skb_any(skb);
2186 return NETDEV_TX_OK;
2187 }
2188
2189 if (skb->len <= 0) {
2190 dev_kfree_skb_any(skb);
2191 return NETDEV_TX_OK;
2192 }
2193
2194 /*
2195 * need: count + 4 desc gap to keep tail from touching
2196 * + 2 desc gap to keep tail from touching head,
2197 * + 1 desc for skb->data,
2198 * + 1 desc for context descriptor,
2199 * head, otherwise try next time
2200 */
2201 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2202 /* this is a hard error */
2203 return NETDEV_TX_BUSY;
2204 }
2205
2206 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2207 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2208 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2209 }
2210
2211 if (skb->protocol == htons(ETH_P_IP))
2212 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2213
2214 first = tx_ring->next_to_use;
2215
2216 tso = skb_is_gso(skb) ?
2217 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2218 if (unlikely(tso < 0)) {
2219 dev_kfree_skb_any(skb);
2220 return NETDEV_TX_OK;
2221 }
2222
2223 if (tso)
2224 tx_flags |= IGBVF_TX_FLAGS_TSO;
2225 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2226 (skb->ip_summed == CHECKSUM_PARTIAL))
2227 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2228
2229 /*
2230 * count reflects descriptors mapped, if 0 then mapping error
2231 * has occurred and we need to rewind the descriptor queue
2232 */
2233 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2234
2235 if (count) {
2236 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2237 skb->len, hdr_len);
2238 /* Make sure there is space in the ring for the next send. */
2239 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2240 } else {
2241 dev_kfree_skb_any(skb);
2242 tx_ring->buffer_info[first].time_stamp = 0;
2243 tx_ring->next_to_use = first;
2244 }
2245
2246 return NETDEV_TX_OK;
2247 }
2248
2249 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2250 struct net_device *netdev)
2251 {
2252 struct igbvf_adapter *adapter = netdev_priv(netdev);
2253 struct igbvf_ring *tx_ring;
2254
2255 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2256 dev_kfree_skb_any(skb);
2257 return NETDEV_TX_OK;
2258 }
2259
2260 tx_ring = &adapter->tx_ring[0];
2261
2262 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2263 }
2264
2265 /**
2266 * igbvf_tx_timeout - Respond to a Tx Hang
2267 * @netdev: network interface device structure
2268 **/
2269 static void igbvf_tx_timeout(struct net_device *netdev)
2270 {
2271 struct igbvf_adapter *adapter = netdev_priv(netdev);
2272
2273 /* Do the reset outside of interrupt context */
2274 adapter->tx_timeout_count++;
2275 schedule_work(&adapter->reset_task);
2276 }
2277
2278 static void igbvf_reset_task(struct work_struct *work)
2279 {
2280 struct igbvf_adapter *adapter;
2281 adapter = container_of(work, struct igbvf_adapter, reset_task);
2282
2283 igbvf_reinit_locked(adapter);
2284 }
2285
2286 /**
2287 * igbvf_get_stats - Get System Network Statistics
2288 * @netdev: network interface device structure
2289 *
2290 * Returns the address of the device statistics structure.
2291 * The statistics are actually updated from the timer callback.
2292 **/
2293 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2294 {
2295 struct igbvf_adapter *adapter = netdev_priv(netdev);
2296
2297 /* only return the current stats */
2298 return &adapter->net_stats;
2299 }
2300
2301 /**
2302 * igbvf_change_mtu - Change the Maximum Transfer Unit
2303 * @netdev: network interface device structure
2304 * @new_mtu: new value for maximum frame size
2305 *
2306 * Returns 0 on success, negative on failure
2307 **/
2308 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2309 {
2310 struct igbvf_adapter *adapter = netdev_priv(netdev);
2311 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2312
2313 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2314 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2315 return -EINVAL;
2316 }
2317
2318 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2319 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2320 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2321 return -EINVAL;
2322 }
2323
2324 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2325 msleep(1);
2326 /* igbvf_down has a dependency on max_frame_size */
2327 adapter->max_frame_size = max_frame;
2328 if (netif_running(netdev))
2329 igbvf_down(adapter);
2330
2331 /*
2332 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2333 * means we reserve 2 more, this pushes us to allocate from the next
2334 * larger slab size.
2335 * i.e. RXBUFFER_2048 --> size-4096 slab
2336 * However with the new *_jumbo_rx* routines, jumbo receives will use
2337 * fragmented skbs
2338 */
2339
2340 if (max_frame <= 1024)
2341 adapter->rx_buffer_len = 1024;
2342 else if (max_frame <= 2048)
2343 adapter->rx_buffer_len = 2048;
2344 else
2345 #if (PAGE_SIZE / 2) > 16384
2346 adapter->rx_buffer_len = 16384;
2347 #else
2348 adapter->rx_buffer_len = PAGE_SIZE / 2;
2349 #endif
2350
2351
2352 /* adjust allocation if LPE protects us, and we aren't using SBP */
2353 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2354 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2355 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2356 ETH_FCS_LEN;
2357
2358 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2359 netdev->mtu, new_mtu);
2360 netdev->mtu = new_mtu;
2361
2362 if (netif_running(netdev))
2363 igbvf_up(adapter);
2364 else
2365 igbvf_reset(adapter);
2366
2367 clear_bit(__IGBVF_RESETTING, &adapter->state);
2368
2369 return 0;
2370 }
2371
2372 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2373 {
2374 switch (cmd) {
2375 default:
2376 return -EOPNOTSUPP;
2377 }
2378 }
2379
2380 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2381 {
2382 struct net_device *netdev = pci_get_drvdata(pdev);
2383 struct igbvf_adapter *adapter = netdev_priv(netdev);
2384 #ifdef CONFIG_PM
2385 int retval = 0;
2386 #endif
2387
2388 netif_device_detach(netdev);
2389
2390 if (netif_running(netdev)) {
2391 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2392 igbvf_down(adapter);
2393 igbvf_free_irq(adapter);
2394 }
2395
2396 #ifdef CONFIG_PM
2397 retval = pci_save_state(pdev);
2398 if (retval)
2399 return retval;
2400 #endif
2401
2402 pci_disable_device(pdev);
2403
2404 return 0;
2405 }
2406
2407 #ifdef CONFIG_PM
2408 static int igbvf_resume(struct pci_dev *pdev)
2409 {
2410 struct net_device *netdev = pci_get_drvdata(pdev);
2411 struct igbvf_adapter *adapter = netdev_priv(netdev);
2412 u32 err;
2413
2414 pci_restore_state(pdev);
2415 err = pci_enable_device_mem(pdev);
2416 if (err) {
2417 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2418 return err;
2419 }
2420
2421 pci_set_master(pdev);
2422
2423 if (netif_running(netdev)) {
2424 err = igbvf_request_irq(adapter);
2425 if (err)
2426 return err;
2427 }
2428
2429 igbvf_reset(adapter);
2430
2431 if (netif_running(netdev))
2432 igbvf_up(adapter);
2433
2434 netif_device_attach(netdev);
2435
2436 return 0;
2437 }
2438 #endif
2439
2440 static void igbvf_shutdown(struct pci_dev *pdev)
2441 {
2442 igbvf_suspend(pdev, PMSG_SUSPEND);
2443 }
2444
2445 #ifdef CONFIG_NET_POLL_CONTROLLER
2446 /*
2447 * Polling 'interrupt' - used by things like netconsole to send skbs
2448 * without having to re-enable interrupts. It's not called while
2449 * the interrupt routine is executing.
2450 */
2451 static void igbvf_netpoll(struct net_device *netdev)
2452 {
2453 struct igbvf_adapter *adapter = netdev_priv(netdev);
2454
2455 disable_irq(adapter->pdev->irq);
2456
2457 igbvf_clean_tx_irq(adapter->tx_ring);
2458
2459 enable_irq(adapter->pdev->irq);
2460 }
2461 #endif
2462
2463 /**
2464 * igbvf_io_error_detected - called when PCI error is detected
2465 * @pdev: Pointer to PCI device
2466 * @state: The current pci connection state
2467 *
2468 * This function is called after a PCI bus error affecting
2469 * this device has been detected.
2470 */
2471 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2472 pci_channel_state_t state)
2473 {
2474 struct net_device *netdev = pci_get_drvdata(pdev);
2475 struct igbvf_adapter *adapter = netdev_priv(netdev);
2476
2477 netif_device_detach(netdev);
2478
2479 if (state == pci_channel_io_perm_failure)
2480 return PCI_ERS_RESULT_DISCONNECT;
2481
2482 if (netif_running(netdev))
2483 igbvf_down(adapter);
2484 pci_disable_device(pdev);
2485
2486 /* Request a slot slot reset. */
2487 return PCI_ERS_RESULT_NEED_RESET;
2488 }
2489
2490 /**
2491 * igbvf_io_slot_reset - called after the pci bus has been reset.
2492 * @pdev: Pointer to PCI device
2493 *
2494 * Restart the card from scratch, as if from a cold-boot. Implementation
2495 * resembles the first-half of the igbvf_resume routine.
2496 */
2497 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2498 {
2499 struct net_device *netdev = pci_get_drvdata(pdev);
2500 struct igbvf_adapter *adapter = netdev_priv(netdev);
2501
2502 if (pci_enable_device_mem(pdev)) {
2503 dev_err(&pdev->dev,
2504 "Cannot re-enable PCI device after reset.\n");
2505 return PCI_ERS_RESULT_DISCONNECT;
2506 }
2507 pci_set_master(pdev);
2508
2509 igbvf_reset(adapter);
2510
2511 return PCI_ERS_RESULT_RECOVERED;
2512 }
2513
2514 /**
2515 * igbvf_io_resume - called when traffic can start flowing again.
2516 * @pdev: Pointer to PCI device
2517 *
2518 * This callback is called when the error recovery driver tells us that
2519 * its OK to resume normal operation. Implementation resembles the
2520 * second-half of the igbvf_resume routine.
2521 */
2522 static void igbvf_io_resume(struct pci_dev *pdev)
2523 {
2524 struct net_device *netdev = pci_get_drvdata(pdev);
2525 struct igbvf_adapter *adapter = netdev_priv(netdev);
2526
2527 if (netif_running(netdev)) {
2528 if (igbvf_up(adapter)) {
2529 dev_err(&pdev->dev,
2530 "can't bring device back up after reset\n");
2531 return;
2532 }
2533 }
2534
2535 netif_device_attach(netdev);
2536 }
2537
2538 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2539 {
2540 struct e1000_hw *hw = &adapter->hw;
2541 struct net_device *netdev = adapter->netdev;
2542 struct pci_dev *pdev = adapter->pdev;
2543
2544 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2545 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2546 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2547 }
2548
2549 static const struct net_device_ops igbvf_netdev_ops = {
2550 .ndo_open = igbvf_open,
2551 .ndo_stop = igbvf_close,
2552 .ndo_start_xmit = igbvf_xmit_frame,
2553 .ndo_get_stats = igbvf_get_stats,
2554 .ndo_set_multicast_list = igbvf_set_multi,
2555 .ndo_set_mac_address = igbvf_set_mac,
2556 .ndo_change_mtu = igbvf_change_mtu,
2557 .ndo_do_ioctl = igbvf_ioctl,
2558 .ndo_tx_timeout = igbvf_tx_timeout,
2559 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2560 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2561 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2562 #ifdef CONFIG_NET_POLL_CONTROLLER
2563 .ndo_poll_controller = igbvf_netpoll,
2564 #endif
2565 };
2566
2567 /**
2568 * igbvf_probe - Device Initialization Routine
2569 * @pdev: PCI device information struct
2570 * @ent: entry in igbvf_pci_tbl
2571 *
2572 * Returns 0 on success, negative on failure
2573 *
2574 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2575 * The OS initialization, configuring of the adapter private structure,
2576 * and a hardware reset occur.
2577 **/
2578 static int __devinit igbvf_probe(struct pci_dev *pdev,
2579 const struct pci_device_id *ent)
2580 {
2581 struct net_device *netdev;
2582 struct igbvf_adapter *adapter;
2583 struct e1000_hw *hw;
2584 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2585
2586 static int cards_found;
2587 int err, pci_using_dac;
2588
2589 err = pci_enable_device_mem(pdev);
2590 if (err)
2591 return err;
2592
2593 pci_using_dac = 0;
2594 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2595 if (!err) {
2596 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2597 if (!err)
2598 pci_using_dac = 1;
2599 } else {
2600 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2601 if (err) {
2602 err = dma_set_coherent_mask(&pdev->dev,
2603 DMA_BIT_MASK(32));
2604 if (err) {
2605 dev_err(&pdev->dev, "No usable DMA "
2606 "configuration, aborting\n");
2607 goto err_dma;
2608 }
2609 }
2610 }
2611
2612 err = pci_request_regions(pdev, igbvf_driver_name);
2613 if (err)
2614 goto err_pci_reg;
2615
2616 pci_set_master(pdev);
2617
2618 err = -ENOMEM;
2619 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2620 if (!netdev)
2621 goto err_alloc_etherdev;
2622
2623 SET_NETDEV_DEV(netdev, &pdev->dev);
2624
2625 pci_set_drvdata(pdev, netdev);
2626 adapter = netdev_priv(netdev);
2627 hw = &adapter->hw;
2628 adapter->netdev = netdev;
2629 adapter->pdev = pdev;
2630 adapter->ei = ei;
2631 adapter->pba = ei->pba;
2632 adapter->flags = ei->flags;
2633 adapter->hw.back = adapter;
2634 adapter->hw.mac.type = ei->mac;
2635 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2636
2637 /* PCI config space info */
2638
2639 hw->vendor_id = pdev->vendor;
2640 hw->device_id = pdev->device;
2641 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2642 hw->subsystem_device_id = pdev->subsystem_device;
2643 hw->revision_id = pdev->revision;
2644
2645 err = -EIO;
2646 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2647 pci_resource_len(pdev, 0));
2648
2649 if (!adapter->hw.hw_addr)
2650 goto err_ioremap;
2651
2652 if (ei->get_variants) {
2653 err = ei->get_variants(adapter);
2654 if (err)
2655 goto err_ioremap;
2656 }
2657
2658 /* setup adapter struct */
2659 err = igbvf_sw_init(adapter);
2660 if (err)
2661 goto err_sw_init;
2662
2663 /* construct the net_device struct */
2664 netdev->netdev_ops = &igbvf_netdev_ops;
2665
2666 igbvf_set_ethtool_ops(netdev);
2667 netdev->watchdog_timeo = 5 * HZ;
2668 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2669
2670 adapter->bd_number = cards_found++;
2671
2672 netdev->features = NETIF_F_SG |
2673 NETIF_F_IP_CSUM |
2674 NETIF_F_HW_VLAN_TX |
2675 NETIF_F_HW_VLAN_RX |
2676 NETIF_F_HW_VLAN_FILTER;
2677
2678 netdev->features |= NETIF_F_IPV6_CSUM;
2679 netdev->features |= NETIF_F_TSO;
2680 netdev->features |= NETIF_F_TSO6;
2681
2682 if (pci_using_dac)
2683 netdev->features |= NETIF_F_HIGHDMA;
2684
2685 netdev->vlan_features |= NETIF_F_TSO;
2686 netdev->vlan_features |= NETIF_F_TSO6;
2687 netdev->vlan_features |= NETIF_F_IP_CSUM;
2688 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2689 netdev->vlan_features |= NETIF_F_SG;
2690
2691 /*reset the controller to put the device in a known good state */
2692 err = hw->mac.ops.reset_hw(hw);
2693 if (err) {
2694 dev_info(&pdev->dev,
2695 "PF still in reset state, assigning new address."
2696 " Is the PF interface up?\n");
2697 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2698 } else {
2699 err = hw->mac.ops.read_mac_addr(hw);
2700 if (err) {
2701 dev_err(&pdev->dev, "Error reading MAC address\n");
2702 goto err_hw_init;
2703 }
2704 }
2705
2706 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2707 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2708
2709 if (!is_valid_ether_addr(netdev->perm_addr)) {
2710 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2711 netdev->dev_addr);
2712 err = -EIO;
2713 goto err_hw_init;
2714 }
2715
2716 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2717 (unsigned long) adapter);
2718
2719 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2720 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2721
2722 /* ring size defaults */
2723 adapter->rx_ring->count = 1024;
2724 adapter->tx_ring->count = 1024;
2725
2726 /* reset the hardware with the new settings */
2727 igbvf_reset(adapter);
2728
2729 strcpy(netdev->name, "eth%d");
2730 err = register_netdev(netdev);
2731 if (err)
2732 goto err_hw_init;
2733
2734 /* tell the stack to leave us alone until igbvf_open() is called */
2735 netif_carrier_off(netdev);
2736 netif_stop_queue(netdev);
2737
2738 igbvf_print_device_info(adapter);
2739
2740 igbvf_initialize_last_counter_stats(adapter);
2741
2742 return 0;
2743
2744 err_hw_init:
2745 kfree(adapter->tx_ring);
2746 kfree(adapter->rx_ring);
2747 err_sw_init:
2748 igbvf_reset_interrupt_capability(adapter);
2749 iounmap(adapter->hw.hw_addr);
2750 err_ioremap:
2751 free_netdev(netdev);
2752 err_alloc_etherdev:
2753 pci_release_regions(pdev);
2754 err_pci_reg:
2755 err_dma:
2756 pci_disable_device(pdev);
2757 return err;
2758 }
2759
2760 /**
2761 * igbvf_remove - Device Removal Routine
2762 * @pdev: PCI device information struct
2763 *
2764 * igbvf_remove is called by the PCI subsystem to alert the driver
2765 * that it should release a PCI device. The could be caused by a
2766 * Hot-Plug event, or because the driver is going to be removed from
2767 * memory.
2768 **/
2769 static void __devexit igbvf_remove(struct pci_dev *pdev)
2770 {
2771 struct net_device *netdev = pci_get_drvdata(pdev);
2772 struct igbvf_adapter *adapter = netdev_priv(netdev);
2773 struct e1000_hw *hw = &adapter->hw;
2774
2775 /*
2776 * The watchdog timer may be rescheduled, so explicitly
2777 * disable it from being rescheduled.
2778 */
2779 set_bit(__IGBVF_DOWN, &adapter->state);
2780 del_timer_sync(&adapter->watchdog_timer);
2781
2782 cancel_work_sync(&adapter->reset_task);
2783 cancel_work_sync(&adapter->watchdog_task);
2784
2785 unregister_netdev(netdev);
2786
2787 igbvf_reset_interrupt_capability(adapter);
2788
2789 /*
2790 * it is important to delete the napi struct prior to freeing the
2791 * rx ring so that you do not end up with null pointer refs
2792 */
2793 netif_napi_del(&adapter->rx_ring->napi);
2794 kfree(adapter->tx_ring);
2795 kfree(adapter->rx_ring);
2796
2797 iounmap(hw->hw_addr);
2798 if (hw->flash_address)
2799 iounmap(hw->flash_address);
2800 pci_release_regions(pdev);
2801
2802 free_netdev(netdev);
2803
2804 pci_disable_device(pdev);
2805 }
2806
2807 /* PCI Error Recovery (ERS) */
2808 static struct pci_error_handlers igbvf_err_handler = {
2809 .error_detected = igbvf_io_error_detected,
2810 .slot_reset = igbvf_io_slot_reset,
2811 .resume = igbvf_io_resume,
2812 };
2813
2814 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2817 { } /* terminate list */
2818 };
2819 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2820
2821 /* PCI Device API Driver */
2822 static struct pci_driver igbvf_driver = {
2823 .name = igbvf_driver_name,
2824 .id_table = igbvf_pci_tbl,
2825 .probe = igbvf_probe,
2826 .remove = __devexit_p(igbvf_remove),
2827 #ifdef CONFIG_PM
2828 /* Power Management Hooks */
2829 .suspend = igbvf_suspend,
2830 .resume = igbvf_resume,
2831 #endif
2832 .shutdown = igbvf_shutdown,
2833 .err_handler = &igbvf_err_handler
2834 };
2835
2836 /**
2837 * igbvf_init_module - Driver Registration Routine
2838 *
2839 * igbvf_init_module is the first routine called when the driver is
2840 * loaded. All it does is register with the PCI subsystem.
2841 **/
2842 static int __init igbvf_init_module(void)
2843 {
2844 int ret;
2845 printk(KERN_INFO "%s - version %s\n",
2846 igbvf_driver_string, igbvf_driver_version);
2847 printk(KERN_INFO "%s\n", igbvf_copyright);
2848
2849 ret = pci_register_driver(&igbvf_driver);
2850
2851 return ret;
2852 }
2853 module_init(igbvf_init_module);
2854
2855 /**
2856 * igbvf_exit_module - Driver Exit Cleanup Routine
2857 *
2858 * igbvf_exit_module is called just before the driver is removed
2859 * from memory.
2860 **/
2861 static void __exit igbvf_exit_module(void)
2862 {
2863 pci_unregister_driver(&igbvf_driver);
2864 }
2865 module_exit(igbvf_exit_module);
2866
2867
2868 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2870 MODULE_LICENSE("GPL");
2871 MODULE_VERSION(DRV_VERSION);
2872
2873 /* netdev.c */