drivers/net: return operator cleanup
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/pm_qos_params.h>
45
46 #include "igbvf.h"
47
48 #define DRV_VERSION "1.0.0-k0"
49 char igbvf_driver_name[] = "igbvf";
50 const char igbvf_driver_version[] = DRV_VERSION;
51 static struct pm_qos_request_list igbvf_driver_pm_qos_req;
52 static const char igbvf_driver_string[] =
53 "Intel(R) Virtual Function Network Driver";
54 static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
55
56 static int igbvf_poll(struct napi_struct *napi, int budget);
57 static void igbvf_reset(struct igbvf_adapter *);
58 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60
61 static struct igbvf_info igbvf_vf_info = {
62 .mac = e1000_vfadapt,
63 .flags = 0,
64 .pba = 10,
65 .init_ops = e1000_init_function_pointers_vf,
66 };
67
68 static const struct igbvf_info *igbvf_info_tbl[] = {
69 [board_vf] = &igbvf_vf_info,
70 };
71
72 /**
73 * igbvf_desc_unused - calculate if we have unused descriptors
74 **/
75 static int igbvf_desc_unused(struct igbvf_ring *ring)
76 {
77 if (ring->next_to_clean > ring->next_to_use)
78 return ring->next_to_clean - ring->next_to_use - 1;
79
80 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
81 }
82
83 /**
84 * igbvf_receive_skb - helper function to handle Rx indications
85 * @adapter: board private structure
86 * @status: descriptor status field as written by hardware
87 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
88 * @skb: pointer to sk_buff to be indicated to stack
89 **/
90 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
91 struct net_device *netdev,
92 struct sk_buff *skb,
93 u32 status, u16 vlan)
94 {
95 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
96 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
97 le16_to_cpu(vlan) &
98 E1000_RXD_SPC_VLAN_MASK);
99 else
100 netif_receive_skb(skb);
101 }
102
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 }
173
174 if (!buffer_info->skb) {
175 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
176 if (!skb) {
177 adapter->alloc_rx_buff_failed++;
178 goto no_buffers;
179 }
180
181 buffer_info->skb = skb;
182 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
183 bufsz,
184 DMA_FROM_DEVICE);
185 }
186 /* Refresh the desc even if buffer_addrs didn't change because
187 * each write-back erases this info. */
188 if (adapter->rx_ps_hdr_size) {
189 rx_desc->read.pkt_addr =
190 cpu_to_le64(buffer_info->page_dma);
191 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
192 } else {
193 rx_desc->read.pkt_addr =
194 cpu_to_le64(buffer_info->dma);
195 rx_desc->read.hdr_addr = 0;
196 }
197
198 i++;
199 if (i == rx_ring->count)
200 i = 0;
201 buffer_info = &rx_ring->buffer_info[i];
202 }
203
204 no_buffers:
205 if (rx_ring->next_to_use != i) {
206 rx_ring->next_to_use = i;
207 if (i == 0)
208 i = (rx_ring->count - 1);
209 else
210 i--;
211
212 /* Force memory writes to complete before letting h/w
213 * know there are new descriptors to fetch. (Only
214 * applicable for weak-ordered memory model archs,
215 * such as IA-64). */
216 wmb();
217 writel(i, adapter->hw.hw_addr + rx_ring->tail);
218 }
219 }
220
221 /**
222 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
223 * @adapter: board private structure
224 *
225 * the return value indicates whether actual cleaning was done, there
226 * is no guarantee that everything was cleaned
227 **/
228 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
229 int *work_done, int work_to_do)
230 {
231 struct igbvf_ring *rx_ring = adapter->rx_ring;
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 union e1000_adv_rx_desc *rx_desc, *next_rxd;
235 struct igbvf_buffer *buffer_info, *next_buffer;
236 struct sk_buff *skb;
237 bool cleaned = false;
238 int cleaned_count = 0;
239 unsigned int total_bytes = 0, total_packets = 0;
240 unsigned int i;
241 u32 length, hlen, staterr;
242
243 i = rx_ring->next_to_clean;
244 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
245 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
246
247 while (staterr & E1000_RXD_STAT_DD) {
248 if (*work_done >= work_to_do)
249 break;
250 (*work_done)++;
251 rmb(); /* read descriptor and rx_buffer_info after status DD */
252
253 buffer_info = &rx_ring->buffer_info[i];
254
255 /* HW will not DMA in data larger than the given buffer, even
256 * if it parses the (NFS, of course) header to be larger. In
257 * that case, it fills the header buffer and spills the rest
258 * into the page.
259 */
260 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
261 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
262 if (hlen > adapter->rx_ps_hdr_size)
263 hlen = adapter->rx_ps_hdr_size;
264
265 length = le16_to_cpu(rx_desc->wb.upper.length);
266 cleaned = true;
267 cleaned_count++;
268
269 skb = buffer_info->skb;
270 prefetch(skb->data - NET_IP_ALIGN);
271 buffer_info->skb = NULL;
272 if (!adapter->rx_ps_hdr_size) {
273 dma_unmap_single(&pdev->dev, buffer_info->dma,
274 adapter->rx_buffer_len,
275 DMA_FROM_DEVICE);
276 buffer_info->dma = 0;
277 skb_put(skb, length);
278 goto send_up;
279 }
280
281 if (!skb_shinfo(skb)->nr_frags) {
282 dma_unmap_single(&pdev->dev, buffer_info->dma,
283 adapter->rx_ps_hdr_size,
284 DMA_FROM_DEVICE);
285 skb_put(skb, hlen);
286 }
287
288 if (length) {
289 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
290 PAGE_SIZE / 2,
291 DMA_FROM_DEVICE);
292 buffer_info->page_dma = 0;
293
294 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
295 buffer_info->page,
296 buffer_info->page_offset,
297 length);
298
299 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
300 (page_count(buffer_info->page) != 1))
301 buffer_info->page = NULL;
302 else
303 get_page(buffer_info->page);
304
305 skb->len += length;
306 skb->data_len += length;
307 skb->truesize += length;
308 }
309 send_up:
310 i++;
311 if (i == rx_ring->count)
312 i = 0;
313 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
314 prefetch(next_rxd);
315 next_buffer = &rx_ring->buffer_info[i];
316
317 if (!(staterr & E1000_RXD_STAT_EOP)) {
318 buffer_info->skb = next_buffer->skb;
319 buffer_info->dma = next_buffer->dma;
320 next_buffer->skb = skb;
321 next_buffer->dma = 0;
322 goto next_desc;
323 }
324
325 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
326 dev_kfree_skb_irq(skb);
327 goto next_desc;
328 }
329
330 total_bytes += skb->len;
331 total_packets++;
332
333 igbvf_rx_checksum_adv(adapter, staterr, skb);
334
335 skb->protocol = eth_type_trans(skb, netdev);
336
337 igbvf_receive_skb(adapter, netdev, skb, staterr,
338 rx_desc->wb.upper.vlan);
339
340 next_desc:
341 rx_desc->wb.upper.status_error = 0;
342
343 /* return some buffers to hardware, one at a time is too slow */
344 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
345 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
346 cleaned_count = 0;
347 }
348
349 /* use prefetched values */
350 rx_desc = next_rxd;
351 buffer_info = next_buffer;
352
353 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
354 }
355
356 rx_ring->next_to_clean = i;
357 cleaned_count = igbvf_desc_unused(rx_ring);
358
359 if (cleaned_count)
360 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
361
362 adapter->total_rx_packets += total_packets;
363 adapter->total_rx_bytes += total_bytes;
364 adapter->net_stats.rx_bytes += total_bytes;
365 adapter->net_stats.rx_packets += total_packets;
366 return cleaned;
367 }
368
369 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
370 struct igbvf_buffer *buffer_info)
371 {
372 if (buffer_info->dma) {
373 if (buffer_info->mapped_as_page)
374 dma_unmap_page(&adapter->pdev->dev,
375 buffer_info->dma,
376 buffer_info->length,
377 DMA_TO_DEVICE);
378 else
379 dma_unmap_single(&adapter->pdev->dev,
380 buffer_info->dma,
381 buffer_info->length,
382 DMA_TO_DEVICE);
383 buffer_info->dma = 0;
384 }
385 if (buffer_info->skb) {
386 dev_kfree_skb_any(buffer_info->skb);
387 buffer_info->skb = NULL;
388 }
389 buffer_info->time_stamp = 0;
390 }
391
392 static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
393 {
394 struct igbvf_ring *tx_ring = adapter->tx_ring;
395 unsigned int i = tx_ring->next_to_clean;
396 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
397 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
398
399 /* detected Tx unit hang */
400 dev_err(&adapter->pdev->dev,
401 "Detected Tx Unit Hang:\n"
402 " TDH <%x>\n"
403 " TDT <%x>\n"
404 " next_to_use <%x>\n"
405 " next_to_clean <%x>\n"
406 "buffer_info[next_to_clean]:\n"
407 " time_stamp <%lx>\n"
408 " next_to_watch <%x>\n"
409 " jiffies <%lx>\n"
410 " next_to_watch.status <%x>\n",
411 readl(adapter->hw.hw_addr + tx_ring->head),
412 readl(adapter->hw.hw_addr + tx_ring->tail),
413 tx_ring->next_to_use,
414 tx_ring->next_to_clean,
415 tx_ring->buffer_info[eop].time_stamp,
416 eop,
417 jiffies,
418 eop_desc->wb.status);
419 }
420
421 /**
422 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
423 * @adapter: board private structure
424 *
425 * Return 0 on success, negative on failure
426 **/
427 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
428 struct igbvf_ring *tx_ring)
429 {
430 struct pci_dev *pdev = adapter->pdev;
431 int size;
432
433 size = sizeof(struct igbvf_buffer) * tx_ring->count;
434 tx_ring->buffer_info = vmalloc(size);
435 if (!tx_ring->buffer_info)
436 goto err;
437 memset(tx_ring->buffer_info, 0, size);
438
439 /* round up to nearest 4K */
440 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
441 tx_ring->size = ALIGN(tx_ring->size, 4096);
442
443 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
444 &tx_ring->dma, GFP_KERNEL);
445
446 if (!tx_ring->desc)
447 goto err;
448
449 tx_ring->adapter = adapter;
450 tx_ring->next_to_use = 0;
451 tx_ring->next_to_clean = 0;
452
453 return 0;
454 err:
455 vfree(tx_ring->buffer_info);
456 dev_err(&adapter->pdev->dev,
457 "Unable to allocate memory for the transmit descriptor ring\n");
458 return -ENOMEM;
459 }
460
461 /**
462 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
463 * @adapter: board private structure
464 *
465 * Returns 0 on success, negative on failure
466 **/
467 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
468 struct igbvf_ring *rx_ring)
469 {
470 struct pci_dev *pdev = adapter->pdev;
471 int size, desc_len;
472
473 size = sizeof(struct igbvf_buffer) * rx_ring->count;
474 rx_ring->buffer_info = vmalloc(size);
475 if (!rx_ring->buffer_info)
476 goto err;
477 memset(rx_ring->buffer_info, 0, size);
478
479 desc_len = sizeof(union e1000_adv_rx_desc);
480
481 /* Round up to nearest 4K */
482 rx_ring->size = rx_ring->count * desc_len;
483 rx_ring->size = ALIGN(rx_ring->size, 4096);
484
485 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
486 &rx_ring->dma, GFP_KERNEL);
487
488 if (!rx_ring->desc)
489 goto err;
490
491 rx_ring->next_to_clean = 0;
492 rx_ring->next_to_use = 0;
493
494 rx_ring->adapter = adapter;
495
496 return 0;
497
498 err:
499 vfree(rx_ring->buffer_info);
500 rx_ring->buffer_info = NULL;
501 dev_err(&adapter->pdev->dev,
502 "Unable to allocate memory for the receive descriptor ring\n");
503 return -ENOMEM;
504 }
505
506 /**
507 * igbvf_clean_tx_ring - Free Tx Buffers
508 * @tx_ring: ring to be cleaned
509 **/
510 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
511 {
512 struct igbvf_adapter *adapter = tx_ring->adapter;
513 struct igbvf_buffer *buffer_info;
514 unsigned long size;
515 unsigned int i;
516
517 if (!tx_ring->buffer_info)
518 return;
519
520 /* Free all the Tx ring sk_buffs */
521 for (i = 0; i < tx_ring->count; i++) {
522 buffer_info = &tx_ring->buffer_info[i];
523 igbvf_put_txbuf(adapter, buffer_info);
524 }
525
526 size = sizeof(struct igbvf_buffer) * tx_ring->count;
527 memset(tx_ring->buffer_info, 0, size);
528
529 /* Zero out the descriptor ring */
530 memset(tx_ring->desc, 0, tx_ring->size);
531
532 tx_ring->next_to_use = 0;
533 tx_ring->next_to_clean = 0;
534
535 writel(0, adapter->hw.hw_addr + tx_ring->head);
536 writel(0, adapter->hw.hw_addr + tx_ring->tail);
537 }
538
539 /**
540 * igbvf_free_tx_resources - Free Tx Resources per Queue
541 * @tx_ring: ring to free resources from
542 *
543 * Free all transmit software resources
544 **/
545 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
546 {
547 struct pci_dev *pdev = tx_ring->adapter->pdev;
548
549 igbvf_clean_tx_ring(tx_ring);
550
551 vfree(tx_ring->buffer_info);
552 tx_ring->buffer_info = NULL;
553
554 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
555 tx_ring->dma);
556
557 tx_ring->desc = NULL;
558 }
559
560 /**
561 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
562 * @adapter: board private structure
563 **/
564 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
565 {
566 struct igbvf_adapter *adapter = rx_ring->adapter;
567 struct igbvf_buffer *buffer_info;
568 struct pci_dev *pdev = adapter->pdev;
569 unsigned long size;
570 unsigned int i;
571
572 if (!rx_ring->buffer_info)
573 return;
574
575 /* Free all the Rx ring sk_buffs */
576 for (i = 0; i < rx_ring->count; i++) {
577 buffer_info = &rx_ring->buffer_info[i];
578 if (buffer_info->dma) {
579 if (adapter->rx_ps_hdr_size){
580 dma_unmap_single(&pdev->dev, buffer_info->dma,
581 adapter->rx_ps_hdr_size,
582 DMA_FROM_DEVICE);
583 } else {
584 dma_unmap_single(&pdev->dev, buffer_info->dma,
585 adapter->rx_buffer_len,
586 DMA_FROM_DEVICE);
587 }
588 buffer_info->dma = 0;
589 }
590
591 if (buffer_info->skb) {
592 dev_kfree_skb(buffer_info->skb);
593 buffer_info->skb = NULL;
594 }
595
596 if (buffer_info->page) {
597 if (buffer_info->page_dma)
598 dma_unmap_page(&pdev->dev,
599 buffer_info->page_dma,
600 PAGE_SIZE / 2,
601 DMA_FROM_DEVICE);
602 put_page(buffer_info->page);
603 buffer_info->page = NULL;
604 buffer_info->page_dma = 0;
605 buffer_info->page_offset = 0;
606 }
607 }
608
609 size = sizeof(struct igbvf_buffer) * rx_ring->count;
610 memset(rx_ring->buffer_info, 0, size);
611
612 /* Zero out the descriptor ring */
613 memset(rx_ring->desc, 0, rx_ring->size);
614
615 rx_ring->next_to_clean = 0;
616 rx_ring->next_to_use = 0;
617
618 writel(0, adapter->hw.hw_addr + rx_ring->head);
619 writel(0, adapter->hw.hw_addr + rx_ring->tail);
620 }
621
622 /**
623 * igbvf_free_rx_resources - Free Rx Resources
624 * @rx_ring: ring to clean the resources from
625 *
626 * Free all receive software resources
627 **/
628
629 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
630 {
631 struct pci_dev *pdev = rx_ring->adapter->pdev;
632
633 igbvf_clean_rx_ring(rx_ring);
634
635 vfree(rx_ring->buffer_info);
636 rx_ring->buffer_info = NULL;
637
638 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
639 rx_ring->dma);
640 rx_ring->desc = NULL;
641 }
642
643 /**
644 * igbvf_update_itr - update the dynamic ITR value based on statistics
645 * @adapter: pointer to adapter
646 * @itr_setting: current adapter->itr
647 * @packets: the number of packets during this measurement interval
648 * @bytes: the number of bytes during this measurement interval
649 *
650 * Stores a new ITR value based on packets and byte
651 * counts during the last interrupt. The advantage of per interrupt
652 * computation is faster updates and more accurate ITR for the current
653 * traffic pattern. Constants in this function were computed
654 * based on theoretical maximum wire speed and thresholds were set based
655 * on testing data as well as attempting to minimize response time
656 * while increasing bulk throughput. This functionality is controlled
657 * by the InterruptThrottleRate module parameter.
658 **/
659 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
660 u16 itr_setting, int packets,
661 int bytes)
662 {
663 unsigned int retval = itr_setting;
664
665 if (packets == 0)
666 goto update_itr_done;
667
668 switch (itr_setting) {
669 case lowest_latency:
670 /* handle TSO and jumbo frames */
671 if (bytes/packets > 8000)
672 retval = bulk_latency;
673 else if ((packets < 5) && (bytes > 512))
674 retval = low_latency;
675 break;
676 case low_latency: /* 50 usec aka 20000 ints/s */
677 if (bytes > 10000) {
678 /* this if handles the TSO accounting */
679 if (bytes/packets > 8000)
680 retval = bulk_latency;
681 else if ((packets < 10) || ((bytes/packets) > 1200))
682 retval = bulk_latency;
683 else if ((packets > 35))
684 retval = lowest_latency;
685 } else if (bytes/packets > 2000) {
686 retval = bulk_latency;
687 } else if (packets <= 2 && bytes < 512) {
688 retval = lowest_latency;
689 }
690 break;
691 case bulk_latency: /* 250 usec aka 4000 ints/s */
692 if (bytes > 25000) {
693 if (packets > 35)
694 retval = low_latency;
695 } else if (bytes < 6000) {
696 retval = low_latency;
697 }
698 break;
699 }
700
701 update_itr_done:
702 return retval;
703 }
704
705 static void igbvf_set_itr(struct igbvf_adapter *adapter)
706 {
707 struct e1000_hw *hw = &adapter->hw;
708 u16 current_itr;
709 u32 new_itr = adapter->itr;
710
711 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
712 adapter->total_tx_packets,
713 adapter->total_tx_bytes);
714 /* conservative mode (itr 3) eliminates the lowest_latency setting */
715 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
716 adapter->tx_itr = low_latency;
717
718 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
719 adapter->total_rx_packets,
720 adapter->total_rx_bytes);
721 /* conservative mode (itr 3) eliminates the lowest_latency setting */
722 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
723 adapter->rx_itr = low_latency;
724
725 current_itr = max(adapter->rx_itr, adapter->tx_itr);
726
727 switch (current_itr) {
728 /* counts and packets in update_itr are dependent on these numbers */
729 case lowest_latency:
730 new_itr = 70000;
731 break;
732 case low_latency:
733 new_itr = 20000; /* aka hwitr = ~200 */
734 break;
735 case bulk_latency:
736 new_itr = 4000;
737 break;
738 default:
739 break;
740 }
741
742 if (new_itr != adapter->itr) {
743 /*
744 * this attempts to bias the interrupt rate towards Bulk
745 * by adding intermediate steps when interrupt rate is
746 * increasing
747 */
748 new_itr = new_itr > adapter->itr ?
749 min(adapter->itr + (new_itr >> 2), new_itr) :
750 new_itr;
751 adapter->itr = new_itr;
752 adapter->rx_ring->itr_val = 1952;
753
754 if (adapter->msix_entries)
755 adapter->rx_ring->set_itr = 1;
756 else
757 ew32(ITR, 1952);
758 }
759 }
760
761 /**
762 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
763 * @adapter: board private structure
764 * returns true if ring is completely cleaned
765 **/
766 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
767 {
768 struct igbvf_adapter *adapter = tx_ring->adapter;
769 struct e1000_hw *hw = &adapter->hw;
770 struct net_device *netdev = adapter->netdev;
771 struct igbvf_buffer *buffer_info;
772 struct sk_buff *skb;
773 union e1000_adv_tx_desc *tx_desc, *eop_desc;
774 unsigned int total_bytes = 0, total_packets = 0;
775 unsigned int i, eop, count = 0;
776 bool cleaned = false;
777
778 i = tx_ring->next_to_clean;
779 eop = tx_ring->buffer_info[i].next_to_watch;
780 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
781
782 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
783 (count < tx_ring->count)) {
784 rmb(); /* read buffer_info after eop_desc status */
785 for (cleaned = false; !cleaned; count++) {
786 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
787 buffer_info = &tx_ring->buffer_info[i];
788 cleaned = (i == eop);
789 skb = buffer_info->skb;
790
791 if (skb) {
792 unsigned int segs, bytecount;
793
794 /* gso_segs is currently only valid for tcp */
795 segs = skb_shinfo(skb)->gso_segs ?: 1;
796 /* multiply data chunks by size of headers */
797 bytecount = ((segs - 1) * skb_headlen(skb)) +
798 skb->len;
799 total_packets += segs;
800 total_bytes += bytecount;
801 }
802
803 igbvf_put_txbuf(adapter, buffer_info);
804 tx_desc->wb.status = 0;
805
806 i++;
807 if (i == tx_ring->count)
808 i = 0;
809 }
810 eop = tx_ring->buffer_info[i].next_to_watch;
811 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
812 }
813
814 tx_ring->next_to_clean = i;
815
816 if (unlikely(count &&
817 netif_carrier_ok(netdev) &&
818 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
819 /* Make sure that anybody stopping the queue after this
820 * sees the new next_to_clean.
821 */
822 smp_mb();
823 if (netif_queue_stopped(netdev) &&
824 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
825 netif_wake_queue(netdev);
826 ++adapter->restart_queue;
827 }
828 }
829
830 if (adapter->detect_tx_hung) {
831 /* Detect a transmit hang in hardware, this serializes the
832 * check with the clearing of time_stamp and movement of i */
833 adapter->detect_tx_hung = false;
834 if (tx_ring->buffer_info[i].time_stamp &&
835 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
836 (adapter->tx_timeout_factor * HZ)) &&
837 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
838
839 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
840 /* detected Tx unit hang */
841 igbvf_print_tx_hang(adapter);
842
843 netif_stop_queue(netdev);
844 }
845 }
846 adapter->net_stats.tx_bytes += total_bytes;
847 adapter->net_stats.tx_packets += total_packets;
848 return count < tx_ring->count;
849 }
850
851 static irqreturn_t igbvf_msix_other(int irq, void *data)
852 {
853 struct net_device *netdev = data;
854 struct igbvf_adapter *adapter = netdev_priv(netdev);
855 struct e1000_hw *hw = &adapter->hw;
856
857 adapter->int_counter1++;
858
859 netif_carrier_off(netdev);
860 hw->mac.get_link_status = 1;
861 if (!test_bit(__IGBVF_DOWN, &adapter->state))
862 mod_timer(&adapter->watchdog_timer, jiffies + 1);
863
864 ew32(EIMS, adapter->eims_other);
865
866 return IRQ_HANDLED;
867 }
868
869 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
870 {
871 struct net_device *netdev = data;
872 struct igbvf_adapter *adapter = netdev_priv(netdev);
873 struct e1000_hw *hw = &adapter->hw;
874 struct igbvf_ring *tx_ring = adapter->tx_ring;
875
876
877 adapter->total_tx_bytes = 0;
878 adapter->total_tx_packets = 0;
879
880 /* auto mask will automatically reenable the interrupt when we write
881 * EICS */
882 if (!igbvf_clean_tx_irq(tx_ring))
883 /* Ring was not completely cleaned, so fire another interrupt */
884 ew32(EICS, tx_ring->eims_value);
885 else
886 ew32(EIMS, tx_ring->eims_value);
887
888 return IRQ_HANDLED;
889 }
890
891 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
892 {
893 struct net_device *netdev = data;
894 struct igbvf_adapter *adapter = netdev_priv(netdev);
895
896 adapter->int_counter0++;
897
898 /* Write the ITR value calculated at the end of the
899 * previous interrupt.
900 */
901 if (adapter->rx_ring->set_itr) {
902 writel(adapter->rx_ring->itr_val,
903 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
904 adapter->rx_ring->set_itr = 0;
905 }
906
907 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
908 adapter->total_rx_bytes = 0;
909 adapter->total_rx_packets = 0;
910 __napi_schedule(&adapter->rx_ring->napi);
911 }
912
913 return IRQ_HANDLED;
914 }
915
916 #define IGBVF_NO_QUEUE -1
917
918 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
919 int tx_queue, int msix_vector)
920 {
921 struct e1000_hw *hw = &adapter->hw;
922 u32 ivar, index;
923
924 /* 82576 uses a table-based method for assigning vectors.
925 Each queue has a single entry in the table to which we write
926 a vector number along with a "valid" bit. Sadly, the layout
927 of the table is somewhat counterintuitive. */
928 if (rx_queue > IGBVF_NO_QUEUE) {
929 index = (rx_queue >> 1);
930 ivar = array_er32(IVAR0, index);
931 if (rx_queue & 0x1) {
932 /* vector goes into third byte of register */
933 ivar = ivar & 0xFF00FFFF;
934 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
935 } else {
936 /* vector goes into low byte of register */
937 ivar = ivar & 0xFFFFFF00;
938 ivar |= msix_vector | E1000_IVAR_VALID;
939 }
940 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
941 array_ew32(IVAR0, index, ivar);
942 }
943 if (tx_queue > IGBVF_NO_QUEUE) {
944 index = (tx_queue >> 1);
945 ivar = array_er32(IVAR0, index);
946 if (tx_queue & 0x1) {
947 /* vector goes into high byte of register */
948 ivar = ivar & 0x00FFFFFF;
949 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
950 } else {
951 /* vector goes into second byte of register */
952 ivar = ivar & 0xFFFF00FF;
953 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
954 }
955 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
956 array_ew32(IVAR0, index, ivar);
957 }
958 }
959
960 /**
961 * igbvf_configure_msix - Configure MSI-X hardware
962 *
963 * igbvf_configure_msix sets up the hardware to properly
964 * generate MSI-X interrupts.
965 **/
966 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
967 {
968 u32 tmp;
969 struct e1000_hw *hw = &adapter->hw;
970 struct igbvf_ring *tx_ring = adapter->tx_ring;
971 struct igbvf_ring *rx_ring = adapter->rx_ring;
972 int vector = 0;
973
974 adapter->eims_enable_mask = 0;
975
976 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
977 adapter->eims_enable_mask |= tx_ring->eims_value;
978 if (tx_ring->itr_val)
979 writel(tx_ring->itr_val,
980 hw->hw_addr + tx_ring->itr_register);
981 else
982 writel(1952, hw->hw_addr + tx_ring->itr_register);
983
984 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
985 adapter->eims_enable_mask |= rx_ring->eims_value;
986 if (rx_ring->itr_val)
987 writel(rx_ring->itr_val,
988 hw->hw_addr + rx_ring->itr_register);
989 else
990 writel(1952, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = (1 << (vector)) - 1;
999 adapter->eims_other = 1 << (vector - 1);
1000 e1e_flush();
1001 }
1002
1003 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010 }
1011
1012 /**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 *
1015 * Attempt to configure interrupts using the best available
1016 * capabilities of the hardware and kernel.
1017 **/
1018 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1019 {
1020 int err = -ENOMEM;
1021 int i;
1022
1023 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1024 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1025 GFP_KERNEL);
1026 if (adapter->msix_entries) {
1027 for (i = 0; i < 3; i++)
1028 adapter->msix_entries[i].entry = i;
1029
1030 err = pci_enable_msix(adapter->pdev,
1031 adapter->msix_entries, 3);
1032 }
1033
1034 if (err) {
1035 /* MSI-X failed */
1036 dev_err(&adapter->pdev->dev,
1037 "Failed to initialize MSI-X interrupts.\n");
1038 igbvf_reset_interrupt_capability(adapter);
1039 }
1040 }
1041
1042 /**
1043 * igbvf_request_msix - Initialize MSI-X interrupts
1044 *
1045 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1046 * kernel.
1047 **/
1048 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1049 {
1050 struct net_device *netdev = adapter->netdev;
1051 int err = 0, vector = 0;
1052
1053 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1054 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1055 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1056 } else {
1057 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1058 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1059 }
1060
1061 err = request_irq(adapter->msix_entries[vector].vector,
1062 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1063 netdev);
1064 if (err)
1065 goto out;
1066
1067 adapter->tx_ring->itr_register = E1000_EITR(vector);
1068 adapter->tx_ring->itr_val = 1952;
1069 vector++;
1070
1071 err = request_irq(adapter->msix_entries[vector].vector,
1072 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1073 netdev);
1074 if (err)
1075 goto out;
1076
1077 adapter->rx_ring->itr_register = E1000_EITR(vector);
1078 adapter->rx_ring->itr_val = 1952;
1079 vector++;
1080
1081 err = request_irq(adapter->msix_entries[vector].vector,
1082 igbvf_msix_other, 0, netdev->name, netdev);
1083 if (err)
1084 goto out;
1085
1086 igbvf_configure_msix(adapter);
1087 return 0;
1088 out:
1089 return err;
1090 }
1091
1092 /**
1093 * igbvf_alloc_queues - Allocate memory for all rings
1094 * @adapter: board private structure to initialize
1095 **/
1096 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1097 {
1098 struct net_device *netdev = adapter->netdev;
1099
1100 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1101 if (!adapter->tx_ring)
1102 return -ENOMEM;
1103
1104 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1105 if (!adapter->rx_ring) {
1106 kfree(adapter->tx_ring);
1107 return -ENOMEM;
1108 }
1109
1110 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1111
1112 return 0;
1113 }
1114
1115 /**
1116 * igbvf_request_irq - initialize interrupts
1117 *
1118 * Attempts to configure interrupts using the best available
1119 * capabilities of the hardware and kernel.
1120 **/
1121 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1122 {
1123 int err = -1;
1124
1125 /* igbvf supports msi-x only */
1126 if (adapter->msix_entries)
1127 err = igbvf_request_msix(adapter);
1128
1129 if (!err)
1130 return err;
1131
1132 dev_err(&adapter->pdev->dev,
1133 "Unable to allocate interrupt, Error: %d\n", err);
1134
1135 return err;
1136 }
1137
1138 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1139 {
1140 struct net_device *netdev = adapter->netdev;
1141 int vector;
1142
1143 if (adapter->msix_entries) {
1144 for (vector = 0; vector < 3; vector++)
1145 free_irq(adapter->msix_entries[vector].vector, netdev);
1146 }
1147 }
1148
1149 /**
1150 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1151 **/
1152 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153 {
1154 struct e1000_hw *hw = &adapter->hw;
1155
1156 ew32(EIMC, ~0);
1157
1158 if (adapter->msix_entries)
1159 ew32(EIAC, 0);
1160 }
1161
1162 /**
1163 * igbvf_irq_enable - Enable default interrupt generation settings
1164 **/
1165 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1166 {
1167 struct e1000_hw *hw = &adapter->hw;
1168
1169 ew32(EIAC, adapter->eims_enable_mask);
1170 ew32(EIAM, adapter->eims_enable_mask);
1171 ew32(EIMS, adapter->eims_enable_mask);
1172 }
1173
1174 /**
1175 * igbvf_poll - NAPI Rx polling callback
1176 * @napi: struct associated with this polling callback
1177 * @budget: amount of packets driver is allowed to process this poll
1178 **/
1179 static int igbvf_poll(struct napi_struct *napi, int budget)
1180 {
1181 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1182 struct igbvf_adapter *adapter = rx_ring->adapter;
1183 struct e1000_hw *hw = &adapter->hw;
1184 int work_done = 0;
1185
1186 igbvf_clean_rx_irq(adapter, &work_done, budget);
1187
1188 /* If not enough Rx work done, exit the polling mode */
1189 if (work_done < budget) {
1190 napi_complete(napi);
1191
1192 if (adapter->itr_setting & 3)
1193 igbvf_set_itr(adapter);
1194
1195 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1196 ew32(EIMS, adapter->rx_ring->eims_value);
1197 }
1198
1199 return work_done;
1200 }
1201
1202 /**
1203 * igbvf_set_rlpml - set receive large packet maximum length
1204 * @adapter: board private structure
1205 *
1206 * Configure the maximum size of packets that will be received
1207 */
1208 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1209 {
1210 int max_frame_size = adapter->max_frame_size;
1211 struct e1000_hw *hw = &adapter->hw;
1212
1213 if (adapter->vlgrp)
1214 max_frame_size += VLAN_TAG_SIZE;
1215
1216 e1000_rlpml_set_vf(hw, max_frame_size);
1217 }
1218
1219 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1220 {
1221 struct igbvf_adapter *adapter = netdev_priv(netdev);
1222 struct e1000_hw *hw = &adapter->hw;
1223
1224 if (hw->mac.ops.set_vfta(hw, vid, true))
1225 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1226 }
1227
1228 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1229 {
1230 struct igbvf_adapter *adapter = netdev_priv(netdev);
1231 struct e1000_hw *hw = &adapter->hw;
1232
1233 igbvf_irq_disable(adapter);
1234 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1235
1236 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1237 igbvf_irq_enable(adapter);
1238
1239 if (hw->mac.ops.set_vfta(hw, vid, false))
1240 dev_err(&adapter->pdev->dev,
1241 "Failed to remove vlan id %d\n", vid);
1242 }
1243
1244 static void igbvf_vlan_rx_register(struct net_device *netdev,
1245 struct vlan_group *grp)
1246 {
1247 struct igbvf_adapter *adapter = netdev_priv(netdev);
1248
1249 adapter->vlgrp = grp;
1250 }
1251
1252 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1253 {
1254 u16 vid;
1255
1256 if (!adapter->vlgrp)
1257 return;
1258
1259 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1260 if (!vlan_group_get_device(adapter->vlgrp, vid))
1261 continue;
1262 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1263 }
1264
1265 igbvf_set_rlpml(adapter);
1266 }
1267
1268 /**
1269 * igbvf_configure_tx - Configure Transmit Unit after Reset
1270 * @adapter: board private structure
1271 *
1272 * Configure the Tx unit of the MAC after a reset.
1273 **/
1274 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1275 {
1276 struct e1000_hw *hw = &adapter->hw;
1277 struct igbvf_ring *tx_ring = adapter->tx_ring;
1278 u64 tdba;
1279 u32 txdctl, dca_txctrl;
1280
1281 /* disable transmits */
1282 txdctl = er32(TXDCTL(0));
1283 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1284 msleep(10);
1285
1286 /* Setup the HW Tx Head and Tail descriptor pointers */
1287 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1288 tdba = tx_ring->dma;
1289 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1290 ew32(TDBAH(0), (tdba >> 32));
1291 ew32(TDH(0), 0);
1292 ew32(TDT(0), 0);
1293 tx_ring->head = E1000_TDH(0);
1294 tx_ring->tail = E1000_TDT(0);
1295
1296 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1297 * MUST be delivered in order or it will completely screw up
1298 * our bookeeping.
1299 */
1300 dca_txctrl = er32(DCA_TXCTRL(0));
1301 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1302 ew32(DCA_TXCTRL(0), dca_txctrl);
1303
1304 /* enable transmits */
1305 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1306 ew32(TXDCTL(0), txdctl);
1307
1308 /* Setup Transmit Descriptor Settings for eop descriptor */
1309 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1310
1311 /* enable Report Status bit */
1312 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1313 }
1314
1315 /**
1316 * igbvf_setup_srrctl - configure the receive control registers
1317 * @adapter: Board private structure
1318 **/
1319 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1320 {
1321 struct e1000_hw *hw = &adapter->hw;
1322 u32 srrctl = 0;
1323
1324 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1325 E1000_SRRCTL_BSIZEHDR_MASK |
1326 E1000_SRRCTL_BSIZEPKT_MASK);
1327
1328 /* Enable queue drop to avoid head of line blocking */
1329 srrctl |= E1000_SRRCTL_DROP_EN;
1330
1331 /* Setup buffer sizes */
1332 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1333 E1000_SRRCTL_BSIZEPKT_SHIFT;
1334
1335 if (adapter->rx_buffer_len < 2048) {
1336 adapter->rx_ps_hdr_size = 0;
1337 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1338 } else {
1339 adapter->rx_ps_hdr_size = 128;
1340 srrctl |= adapter->rx_ps_hdr_size <<
1341 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1342 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1343 }
1344
1345 ew32(SRRCTL(0), srrctl);
1346 }
1347
1348 /**
1349 * igbvf_configure_rx - Configure Receive Unit after Reset
1350 * @adapter: board private structure
1351 *
1352 * Configure the Rx unit of the MAC after a reset.
1353 **/
1354 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1355 {
1356 struct e1000_hw *hw = &adapter->hw;
1357 struct igbvf_ring *rx_ring = adapter->rx_ring;
1358 u64 rdba;
1359 u32 rdlen, rxdctl;
1360
1361 /* disable receives */
1362 rxdctl = er32(RXDCTL(0));
1363 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1364 msleep(10);
1365
1366 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1367
1368 /*
1369 * Setup the HW Rx Head and Tail Descriptor Pointers and
1370 * the Base and Length of the Rx Descriptor Ring
1371 */
1372 rdba = rx_ring->dma;
1373 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1374 ew32(RDBAH(0), (rdba >> 32));
1375 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1376 rx_ring->head = E1000_RDH(0);
1377 rx_ring->tail = E1000_RDT(0);
1378 ew32(RDH(0), 0);
1379 ew32(RDT(0), 0);
1380
1381 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1382 rxdctl &= 0xFFF00000;
1383 rxdctl |= IGBVF_RX_PTHRESH;
1384 rxdctl |= IGBVF_RX_HTHRESH << 8;
1385 rxdctl |= IGBVF_RX_WTHRESH << 16;
1386
1387 igbvf_set_rlpml(adapter);
1388
1389 /* enable receives */
1390 ew32(RXDCTL(0), rxdctl);
1391 }
1392
1393 /**
1394 * igbvf_set_multi - Multicast and Promiscuous mode set
1395 * @netdev: network interface device structure
1396 *
1397 * The set_multi entry point is called whenever the multicast address
1398 * list or the network interface flags are updated. This routine is
1399 * responsible for configuring the hardware for proper multicast,
1400 * promiscuous mode, and all-multi behavior.
1401 **/
1402 static void igbvf_set_multi(struct net_device *netdev)
1403 {
1404 struct igbvf_adapter *adapter = netdev_priv(netdev);
1405 struct e1000_hw *hw = &adapter->hw;
1406 struct netdev_hw_addr *ha;
1407 u8 *mta_list = NULL;
1408 int i;
1409
1410 if (!netdev_mc_empty(netdev)) {
1411 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1412 if (!mta_list) {
1413 dev_err(&adapter->pdev->dev,
1414 "failed to allocate multicast filter list\n");
1415 return;
1416 }
1417 }
1418
1419 /* prepare a packed array of only addresses. */
1420 i = 0;
1421 netdev_for_each_mc_addr(ha, netdev)
1422 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1423
1424 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1425 kfree(mta_list);
1426 }
1427
1428 /**
1429 * igbvf_configure - configure the hardware for Rx and Tx
1430 * @adapter: private board structure
1431 **/
1432 static void igbvf_configure(struct igbvf_adapter *adapter)
1433 {
1434 igbvf_set_multi(adapter->netdev);
1435
1436 igbvf_restore_vlan(adapter);
1437
1438 igbvf_configure_tx(adapter);
1439 igbvf_setup_srrctl(adapter);
1440 igbvf_configure_rx(adapter);
1441 igbvf_alloc_rx_buffers(adapter->rx_ring,
1442 igbvf_desc_unused(adapter->rx_ring));
1443 }
1444
1445 /* igbvf_reset - bring the hardware into a known good state
1446 *
1447 * This function boots the hardware and enables some settings that
1448 * require a configuration cycle of the hardware - those cannot be
1449 * set/changed during runtime. After reset the device needs to be
1450 * properly configured for Rx, Tx etc.
1451 */
1452 static void igbvf_reset(struct igbvf_adapter *adapter)
1453 {
1454 struct e1000_mac_info *mac = &adapter->hw.mac;
1455 struct net_device *netdev = adapter->netdev;
1456 struct e1000_hw *hw = &adapter->hw;
1457
1458 /* Allow time for pending master requests to run */
1459 if (mac->ops.reset_hw(hw))
1460 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1461
1462 mac->ops.init_hw(hw);
1463
1464 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1465 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1466 netdev->addr_len);
1467 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 }
1470
1471 adapter->last_reset = jiffies;
1472 }
1473
1474 int igbvf_up(struct igbvf_adapter *adapter)
1475 {
1476 struct e1000_hw *hw = &adapter->hw;
1477
1478 /* hardware has been reset, we need to reload some things */
1479 igbvf_configure(adapter);
1480
1481 clear_bit(__IGBVF_DOWN, &adapter->state);
1482
1483 napi_enable(&adapter->rx_ring->napi);
1484 if (adapter->msix_entries)
1485 igbvf_configure_msix(adapter);
1486
1487 /* Clear any pending interrupts. */
1488 er32(EICR);
1489 igbvf_irq_enable(adapter);
1490
1491 /* start the watchdog */
1492 hw->mac.get_link_status = 1;
1493 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1494
1495
1496 return 0;
1497 }
1498
1499 void igbvf_down(struct igbvf_adapter *adapter)
1500 {
1501 struct net_device *netdev = adapter->netdev;
1502 struct e1000_hw *hw = &adapter->hw;
1503 u32 rxdctl, txdctl;
1504
1505 /*
1506 * signal that we're down so the interrupt handler does not
1507 * reschedule our watchdog timer
1508 */
1509 set_bit(__IGBVF_DOWN, &adapter->state);
1510
1511 /* disable receives in the hardware */
1512 rxdctl = er32(RXDCTL(0));
1513 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1514
1515 netif_stop_queue(netdev);
1516
1517 /* disable transmits in the hardware */
1518 txdctl = er32(TXDCTL(0));
1519 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1520
1521 /* flush both disables and wait for them to finish */
1522 e1e_flush();
1523 msleep(10);
1524
1525 napi_disable(&adapter->rx_ring->napi);
1526
1527 igbvf_irq_disable(adapter);
1528
1529 del_timer_sync(&adapter->watchdog_timer);
1530
1531 netif_carrier_off(netdev);
1532
1533 /* record the stats before reset*/
1534 igbvf_update_stats(adapter);
1535
1536 adapter->link_speed = 0;
1537 adapter->link_duplex = 0;
1538
1539 igbvf_reset(adapter);
1540 igbvf_clean_tx_ring(adapter->tx_ring);
1541 igbvf_clean_rx_ring(adapter->rx_ring);
1542 }
1543
1544 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1545 {
1546 might_sleep();
1547 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1548 msleep(1);
1549 igbvf_down(adapter);
1550 igbvf_up(adapter);
1551 clear_bit(__IGBVF_RESETTING, &adapter->state);
1552 }
1553
1554 /**
1555 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1556 * @adapter: board private structure to initialize
1557 *
1558 * igbvf_sw_init initializes the Adapter private data structure.
1559 * Fields are initialized based on PCI device information and
1560 * OS network device settings (MTU size).
1561 **/
1562 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1563 {
1564 struct net_device *netdev = adapter->netdev;
1565 s32 rc;
1566
1567 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1568 adapter->rx_ps_hdr_size = 0;
1569 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1570 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1571
1572 adapter->tx_int_delay = 8;
1573 adapter->tx_abs_int_delay = 32;
1574 adapter->rx_int_delay = 0;
1575 adapter->rx_abs_int_delay = 8;
1576 adapter->itr_setting = 3;
1577 adapter->itr = 20000;
1578
1579 /* Set various function pointers */
1580 adapter->ei->init_ops(&adapter->hw);
1581
1582 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1583 if (rc)
1584 return rc;
1585
1586 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1587 if (rc)
1588 return rc;
1589
1590 igbvf_set_interrupt_capability(adapter);
1591
1592 if (igbvf_alloc_queues(adapter))
1593 return -ENOMEM;
1594
1595 spin_lock_init(&adapter->tx_queue_lock);
1596
1597 /* Explicitly disable IRQ since the NIC can be in any state. */
1598 igbvf_irq_disable(adapter);
1599
1600 spin_lock_init(&adapter->stats_lock);
1601
1602 set_bit(__IGBVF_DOWN, &adapter->state);
1603 return 0;
1604 }
1605
1606 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1607 {
1608 struct e1000_hw *hw = &adapter->hw;
1609
1610 adapter->stats.last_gprc = er32(VFGPRC);
1611 adapter->stats.last_gorc = er32(VFGORC);
1612 adapter->stats.last_gptc = er32(VFGPTC);
1613 adapter->stats.last_gotc = er32(VFGOTC);
1614 adapter->stats.last_mprc = er32(VFMPRC);
1615 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1616 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1617 adapter->stats.last_gorlbc = er32(VFGORLBC);
1618 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1619
1620 adapter->stats.base_gprc = er32(VFGPRC);
1621 adapter->stats.base_gorc = er32(VFGORC);
1622 adapter->stats.base_gptc = er32(VFGPTC);
1623 adapter->stats.base_gotc = er32(VFGOTC);
1624 adapter->stats.base_mprc = er32(VFMPRC);
1625 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1626 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1627 adapter->stats.base_gorlbc = er32(VFGORLBC);
1628 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1629 }
1630
1631 /**
1632 * igbvf_open - Called when a network interface is made active
1633 * @netdev: network interface device structure
1634 *
1635 * Returns 0 on success, negative value on failure
1636 *
1637 * The open entry point is called when a network interface is made
1638 * active by the system (IFF_UP). At this point all resources needed
1639 * for transmit and receive operations are allocated, the interrupt
1640 * handler is registered with the OS, the watchdog timer is started,
1641 * and the stack is notified that the interface is ready.
1642 **/
1643 static int igbvf_open(struct net_device *netdev)
1644 {
1645 struct igbvf_adapter *adapter = netdev_priv(netdev);
1646 struct e1000_hw *hw = &adapter->hw;
1647 int err;
1648
1649 /* disallow open during test */
1650 if (test_bit(__IGBVF_TESTING, &adapter->state))
1651 return -EBUSY;
1652
1653 /* allocate transmit descriptors */
1654 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1655 if (err)
1656 goto err_setup_tx;
1657
1658 /* allocate receive descriptors */
1659 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1660 if (err)
1661 goto err_setup_rx;
1662
1663 /*
1664 * before we allocate an interrupt, we must be ready to handle it.
1665 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1666 * as soon as we call pci_request_irq, so we have to setup our
1667 * clean_rx handler before we do so.
1668 */
1669 igbvf_configure(adapter);
1670
1671 err = igbvf_request_irq(adapter);
1672 if (err)
1673 goto err_req_irq;
1674
1675 /* From here on the code is the same as igbvf_up() */
1676 clear_bit(__IGBVF_DOWN, &adapter->state);
1677
1678 napi_enable(&adapter->rx_ring->napi);
1679
1680 /* clear any pending interrupts */
1681 er32(EICR);
1682
1683 igbvf_irq_enable(adapter);
1684
1685 /* start the watchdog */
1686 hw->mac.get_link_status = 1;
1687 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1688
1689 return 0;
1690
1691 err_req_irq:
1692 igbvf_free_rx_resources(adapter->rx_ring);
1693 err_setup_rx:
1694 igbvf_free_tx_resources(adapter->tx_ring);
1695 err_setup_tx:
1696 igbvf_reset(adapter);
1697
1698 return err;
1699 }
1700
1701 /**
1702 * igbvf_close - Disables a network interface
1703 * @netdev: network interface device structure
1704 *
1705 * Returns 0, this is not allowed to fail
1706 *
1707 * The close entry point is called when an interface is de-activated
1708 * by the OS. The hardware is still under the drivers control, but
1709 * needs to be disabled. A global MAC reset is issued to stop the
1710 * hardware, and all transmit and receive resources are freed.
1711 **/
1712 static int igbvf_close(struct net_device *netdev)
1713 {
1714 struct igbvf_adapter *adapter = netdev_priv(netdev);
1715
1716 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1717 igbvf_down(adapter);
1718
1719 igbvf_free_irq(adapter);
1720
1721 igbvf_free_tx_resources(adapter->tx_ring);
1722 igbvf_free_rx_resources(adapter->rx_ring);
1723
1724 return 0;
1725 }
1726 /**
1727 * igbvf_set_mac - Change the Ethernet Address of the NIC
1728 * @netdev: network interface device structure
1729 * @p: pointer to an address structure
1730 *
1731 * Returns 0 on success, negative on failure
1732 **/
1733 static int igbvf_set_mac(struct net_device *netdev, void *p)
1734 {
1735 struct igbvf_adapter *adapter = netdev_priv(netdev);
1736 struct e1000_hw *hw = &adapter->hw;
1737 struct sockaddr *addr = p;
1738
1739 if (!is_valid_ether_addr(addr->sa_data))
1740 return -EADDRNOTAVAIL;
1741
1742 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1743
1744 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1745
1746 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1747 return -EADDRNOTAVAIL;
1748
1749 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1750
1751 return 0;
1752 }
1753
1754 #define UPDATE_VF_COUNTER(reg, name) \
1755 { \
1756 u32 current_counter = er32(reg); \
1757 if (current_counter < adapter->stats.last_##name) \
1758 adapter->stats.name += 0x100000000LL; \
1759 adapter->stats.last_##name = current_counter; \
1760 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1761 adapter->stats.name |= current_counter; \
1762 }
1763
1764 /**
1765 * igbvf_update_stats - Update the board statistics counters
1766 * @adapter: board private structure
1767 **/
1768 void igbvf_update_stats(struct igbvf_adapter *adapter)
1769 {
1770 struct e1000_hw *hw = &adapter->hw;
1771 struct pci_dev *pdev = adapter->pdev;
1772
1773 /*
1774 * Prevent stats update while adapter is being reset, link is down
1775 * or if the pci connection is down.
1776 */
1777 if (adapter->link_speed == 0)
1778 return;
1779
1780 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1781 return;
1782
1783 if (pci_channel_offline(pdev))
1784 return;
1785
1786 UPDATE_VF_COUNTER(VFGPRC, gprc);
1787 UPDATE_VF_COUNTER(VFGORC, gorc);
1788 UPDATE_VF_COUNTER(VFGPTC, gptc);
1789 UPDATE_VF_COUNTER(VFGOTC, gotc);
1790 UPDATE_VF_COUNTER(VFMPRC, mprc);
1791 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1792 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1793 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1794 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1795
1796 /* Fill out the OS statistics structure */
1797 adapter->net_stats.multicast = adapter->stats.mprc;
1798 }
1799
1800 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1801 {
1802 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1803 adapter->link_speed,
1804 ((adapter->link_duplex == FULL_DUPLEX) ?
1805 "Full Duplex" : "Half Duplex"));
1806 }
1807
1808 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1809 {
1810 struct e1000_hw *hw = &adapter->hw;
1811 s32 ret_val = E1000_SUCCESS;
1812 bool link_active;
1813
1814 /* If interface is down, stay link down */
1815 if (test_bit(__IGBVF_DOWN, &adapter->state))
1816 return false;
1817
1818 ret_val = hw->mac.ops.check_for_link(hw);
1819 link_active = !hw->mac.get_link_status;
1820
1821 /* if check for link returns error we will need to reset */
1822 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1823 schedule_work(&adapter->reset_task);
1824
1825 return link_active;
1826 }
1827
1828 /**
1829 * igbvf_watchdog - Timer Call-back
1830 * @data: pointer to adapter cast into an unsigned long
1831 **/
1832 static void igbvf_watchdog(unsigned long data)
1833 {
1834 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1835
1836 /* Do the rest outside of interrupt context */
1837 schedule_work(&adapter->watchdog_task);
1838 }
1839
1840 static void igbvf_watchdog_task(struct work_struct *work)
1841 {
1842 struct igbvf_adapter *adapter = container_of(work,
1843 struct igbvf_adapter,
1844 watchdog_task);
1845 struct net_device *netdev = adapter->netdev;
1846 struct e1000_mac_info *mac = &adapter->hw.mac;
1847 struct igbvf_ring *tx_ring = adapter->tx_ring;
1848 struct e1000_hw *hw = &adapter->hw;
1849 u32 link;
1850 int tx_pending = 0;
1851
1852 link = igbvf_has_link(adapter);
1853
1854 if (link) {
1855 if (!netif_carrier_ok(netdev)) {
1856 bool txb2b = 1;
1857
1858 mac->ops.get_link_up_info(&adapter->hw,
1859 &adapter->link_speed,
1860 &adapter->link_duplex);
1861 igbvf_print_link_info(adapter);
1862
1863 /* adjust timeout factor according to speed/duplex */
1864 adapter->tx_timeout_factor = 1;
1865 switch (adapter->link_speed) {
1866 case SPEED_10:
1867 txb2b = 0;
1868 adapter->tx_timeout_factor = 16;
1869 break;
1870 case SPEED_100:
1871 txb2b = 0;
1872 /* maybe add some timeout factor ? */
1873 break;
1874 }
1875
1876 netif_carrier_on(netdev);
1877 netif_wake_queue(netdev);
1878 }
1879 } else {
1880 if (netif_carrier_ok(netdev)) {
1881 adapter->link_speed = 0;
1882 adapter->link_duplex = 0;
1883 dev_info(&adapter->pdev->dev, "Link is Down\n");
1884 netif_carrier_off(netdev);
1885 netif_stop_queue(netdev);
1886 }
1887 }
1888
1889 if (netif_carrier_ok(netdev)) {
1890 igbvf_update_stats(adapter);
1891 } else {
1892 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1893 tx_ring->count);
1894 if (tx_pending) {
1895 /*
1896 * We've lost link, so the controller stops DMA,
1897 * but we've got queued Tx work that's never going
1898 * to get done, so reset controller to flush Tx.
1899 * (Do the reset outside of interrupt context).
1900 */
1901 adapter->tx_timeout_count++;
1902 schedule_work(&adapter->reset_task);
1903 }
1904 }
1905
1906 /* Cause software interrupt to ensure Rx ring is cleaned */
1907 ew32(EICS, adapter->rx_ring->eims_value);
1908
1909 /* Force detection of hung controller every watchdog period */
1910 adapter->detect_tx_hung = 1;
1911
1912 /* Reset the timer */
1913 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1914 mod_timer(&adapter->watchdog_timer,
1915 round_jiffies(jiffies + (2 * HZ)));
1916 }
1917
1918 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1919 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1920 #define IGBVF_TX_FLAGS_TSO 0x00000004
1921 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1922 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1923 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1924
1925 static int igbvf_tso(struct igbvf_adapter *adapter,
1926 struct igbvf_ring *tx_ring,
1927 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1928 {
1929 struct e1000_adv_tx_context_desc *context_desc;
1930 unsigned int i;
1931 int err;
1932 struct igbvf_buffer *buffer_info;
1933 u32 info = 0, tu_cmd = 0;
1934 u32 mss_l4len_idx, l4len;
1935 *hdr_len = 0;
1936
1937 if (skb_header_cloned(skb)) {
1938 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1939 if (err) {
1940 dev_err(&adapter->pdev->dev,
1941 "igbvf_tso returning an error\n");
1942 return err;
1943 }
1944 }
1945
1946 l4len = tcp_hdrlen(skb);
1947 *hdr_len += l4len;
1948
1949 if (skb->protocol == htons(ETH_P_IP)) {
1950 struct iphdr *iph = ip_hdr(skb);
1951 iph->tot_len = 0;
1952 iph->check = 0;
1953 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1954 iph->daddr, 0,
1955 IPPROTO_TCP,
1956 0);
1957 } else if (skb_is_gso_v6(skb)) {
1958 ipv6_hdr(skb)->payload_len = 0;
1959 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1960 &ipv6_hdr(skb)->daddr,
1961 0, IPPROTO_TCP, 0);
1962 }
1963
1964 i = tx_ring->next_to_use;
1965
1966 buffer_info = &tx_ring->buffer_info[i];
1967 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1968 /* VLAN MACLEN IPLEN */
1969 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1970 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1971 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1972 *hdr_len += skb_network_offset(skb);
1973 info |= (skb_transport_header(skb) - skb_network_header(skb));
1974 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1975 context_desc->vlan_macip_lens = cpu_to_le32(info);
1976
1977 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1978 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1979
1980 if (skb->protocol == htons(ETH_P_IP))
1981 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1982 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1983
1984 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1985
1986 /* MSS L4LEN IDX */
1987 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1988 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1989
1990 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1991 context_desc->seqnum_seed = 0;
1992
1993 buffer_info->time_stamp = jiffies;
1994 buffer_info->next_to_watch = i;
1995 buffer_info->dma = 0;
1996 i++;
1997 if (i == tx_ring->count)
1998 i = 0;
1999
2000 tx_ring->next_to_use = i;
2001
2002 return true;
2003 }
2004
2005 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2006 struct igbvf_ring *tx_ring,
2007 struct sk_buff *skb, u32 tx_flags)
2008 {
2009 struct e1000_adv_tx_context_desc *context_desc;
2010 unsigned int i;
2011 struct igbvf_buffer *buffer_info;
2012 u32 info = 0, tu_cmd = 0;
2013
2014 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2015 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2016 i = tx_ring->next_to_use;
2017 buffer_info = &tx_ring->buffer_info[i];
2018 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2019
2020 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2021 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2022
2023 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2024 if (skb->ip_summed == CHECKSUM_PARTIAL)
2025 info |= (skb_transport_header(skb) -
2026 skb_network_header(skb));
2027
2028
2029 context_desc->vlan_macip_lens = cpu_to_le32(info);
2030
2031 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2032
2033 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2034 switch (skb->protocol) {
2035 case __constant_htons(ETH_P_IP):
2036 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2037 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2038 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2039 break;
2040 case __constant_htons(ETH_P_IPV6):
2041 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2042 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2043 break;
2044 default:
2045 break;
2046 }
2047 }
2048
2049 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2050 context_desc->seqnum_seed = 0;
2051 context_desc->mss_l4len_idx = 0;
2052
2053 buffer_info->time_stamp = jiffies;
2054 buffer_info->next_to_watch = i;
2055 buffer_info->dma = 0;
2056 i++;
2057 if (i == tx_ring->count)
2058 i = 0;
2059 tx_ring->next_to_use = i;
2060
2061 return true;
2062 }
2063
2064 return false;
2065 }
2066
2067 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2068 {
2069 struct igbvf_adapter *adapter = netdev_priv(netdev);
2070
2071 /* there is enough descriptors then we don't need to worry */
2072 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2073 return 0;
2074
2075 netif_stop_queue(netdev);
2076
2077 smp_mb();
2078
2079 /* We need to check again just in case room has been made available */
2080 if (igbvf_desc_unused(adapter->tx_ring) < size)
2081 return -EBUSY;
2082
2083 netif_wake_queue(netdev);
2084
2085 ++adapter->restart_queue;
2086 return 0;
2087 }
2088
2089 #define IGBVF_MAX_TXD_PWR 16
2090 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2091
2092 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2093 struct igbvf_ring *tx_ring,
2094 struct sk_buff *skb,
2095 unsigned int first)
2096 {
2097 struct igbvf_buffer *buffer_info;
2098 struct pci_dev *pdev = adapter->pdev;
2099 unsigned int len = skb_headlen(skb);
2100 unsigned int count = 0, i;
2101 unsigned int f;
2102
2103 i = tx_ring->next_to_use;
2104
2105 buffer_info = &tx_ring->buffer_info[i];
2106 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2107 buffer_info->length = len;
2108 /* set time_stamp *before* dma to help avoid a possible race */
2109 buffer_info->time_stamp = jiffies;
2110 buffer_info->next_to_watch = i;
2111 buffer_info->mapped_as_page = false;
2112 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2113 DMA_TO_DEVICE);
2114 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2115 goto dma_error;
2116
2117
2118 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2119 struct skb_frag_struct *frag;
2120
2121 count++;
2122 i++;
2123 if (i == tx_ring->count)
2124 i = 0;
2125
2126 frag = &skb_shinfo(skb)->frags[f];
2127 len = frag->size;
2128
2129 buffer_info = &tx_ring->buffer_info[i];
2130 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2131 buffer_info->length = len;
2132 buffer_info->time_stamp = jiffies;
2133 buffer_info->next_to_watch = i;
2134 buffer_info->mapped_as_page = true;
2135 buffer_info->dma = dma_map_page(&pdev->dev,
2136 frag->page,
2137 frag->page_offset,
2138 len,
2139 DMA_TO_DEVICE);
2140 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2141 goto dma_error;
2142 }
2143
2144 tx_ring->buffer_info[i].skb = skb;
2145 tx_ring->buffer_info[first].next_to_watch = i;
2146
2147 return ++count;
2148
2149 dma_error:
2150 dev_err(&pdev->dev, "TX DMA map failed\n");
2151
2152 /* clear timestamp and dma mappings for failed buffer_info mapping */
2153 buffer_info->dma = 0;
2154 buffer_info->time_stamp = 0;
2155 buffer_info->length = 0;
2156 buffer_info->next_to_watch = 0;
2157 buffer_info->mapped_as_page = false;
2158 if (count)
2159 count--;
2160
2161 /* clear timestamp and dma mappings for remaining portion of packet */
2162 while (count--) {
2163 if (i==0)
2164 i += tx_ring->count;
2165 i--;
2166 buffer_info = &tx_ring->buffer_info[i];
2167 igbvf_put_txbuf(adapter, buffer_info);
2168 }
2169
2170 return 0;
2171 }
2172
2173 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2174 struct igbvf_ring *tx_ring,
2175 int tx_flags, int count, u32 paylen,
2176 u8 hdr_len)
2177 {
2178 union e1000_adv_tx_desc *tx_desc = NULL;
2179 struct igbvf_buffer *buffer_info;
2180 u32 olinfo_status = 0, cmd_type_len;
2181 unsigned int i;
2182
2183 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2184 E1000_ADVTXD_DCMD_DEXT);
2185
2186 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2187 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2188
2189 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2190 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2191
2192 /* insert tcp checksum */
2193 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2194
2195 /* insert ip checksum */
2196 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2197 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2198
2199 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2200 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2201 }
2202
2203 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2204
2205 i = tx_ring->next_to_use;
2206 while (count--) {
2207 buffer_info = &tx_ring->buffer_info[i];
2208 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2209 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2210 tx_desc->read.cmd_type_len =
2211 cpu_to_le32(cmd_type_len | buffer_info->length);
2212 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2213 i++;
2214 if (i == tx_ring->count)
2215 i = 0;
2216 }
2217
2218 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2219 /* Force memory writes to complete before letting h/w
2220 * know there are new descriptors to fetch. (Only
2221 * applicable for weak-ordered memory model archs,
2222 * such as IA-64). */
2223 wmb();
2224
2225 tx_ring->next_to_use = i;
2226 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2227 /* we need this if more than one processor can write to our tail
2228 * at a time, it syncronizes IO on IA64/Altix systems */
2229 mmiowb();
2230 }
2231
2232 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2233 struct net_device *netdev,
2234 struct igbvf_ring *tx_ring)
2235 {
2236 struct igbvf_adapter *adapter = netdev_priv(netdev);
2237 unsigned int first, tx_flags = 0;
2238 u8 hdr_len = 0;
2239 int count = 0;
2240 int tso = 0;
2241
2242 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2243 dev_kfree_skb_any(skb);
2244 return NETDEV_TX_OK;
2245 }
2246
2247 if (skb->len <= 0) {
2248 dev_kfree_skb_any(skb);
2249 return NETDEV_TX_OK;
2250 }
2251
2252 /*
2253 * need: count + 4 desc gap to keep tail from touching
2254 * + 2 desc gap to keep tail from touching head,
2255 * + 1 desc for skb->data,
2256 * + 1 desc for context descriptor,
2257 * head, otherwise try next time
2258 */
2259 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2260 /* this is a hard error */
2261 return NETDEV_TX_BUSY;
2262 }
2263
2264 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2265 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2266 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2267 }
2268
2269 if (skb->protocol == htons(ETH_P_IP))
2270 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2271
2272 first = tx_ring->next_to_use;
2273
2274 tso = skb_is_gso(skb) ?
2275 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2276 if (unlikely(tso < 0)) {
2277 dev_kfree_skb_any(skb);
2278 return NETDEV_TX_OK;
2279 }
2280
2281 if (tso)
2282 tx_flags |= IGBVF_TX_FLAGS_TSO;
2283 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2284 (skb->ip_summed == CHECKSUM_PARTIAL))
2285 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2286
2287 /*
2288 * count reflects descriptors mapped, if 0 then mapping error
2289 * has occured and we need to rewind the descriptor queue
2290 */
2291 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2292
2293 if (count) {
2294 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2295 skb->len, hdr_len);
2296 /* Make sure there is space in the ring for the next send. */
2297 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2298 } else {
2299 dev_kfree_skb_any(skb);
2300 tx_ring->buffer_info[first].time_stamp = 0;
2301 tx_ring->next_to_use = first;
2302 }
2303
2304 return NETDEV_TX_OK;
2305 }
2306
2307 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2308 struct net_device *netdev)
2309 {
2310 struct igbvf_adapter *adapter = netdev_priv(netdev);
2311 struct igbvf_ring *tx_ring;
2312
2313 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2314 dev_kfree_skb_any(skb);
2315 return NETDEV_TX_OK;
2316 }
2317
2318 tx_ring = &adapter->tx_ring[0];
2319
2320 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2321 }
2322
2323 /**
2324 * igbvf_tx_timeout - Respond to a Tx Hang
2325 * @netdev: network interface device structure
2326 **/
2327 static void igbvf_tx_timeout(struct net_device *netdev)
2328 {
2329 struct igbvf_adapter *adapter = netdev_priv(netdev);
2330
2331 /* Do the reset outside of interrupt context */
2332 adapter->tx_timeout_count++;
2333 schedule_work(&adapter->reset_task);
2334 }
2335
2336 static void igbvf_reset_task(struct work_struct *work)
2337 {
2338 struct igbvf_adapter *adapter;
2339 adapter = container_of(work, struct igbvf_adapter, reset_task);
2340
2341 igbvf_reinit_locked(adapter);
2342 }
2343
2344 /**
2345 * igbvf_get_stats - Get System Network Statistics
2346 * @netdev: network interface device structure
2347 *
2348 * Returns the address of the device statistics structure.
2349 * The statistics are actually updated from the timer callback.
2350 **/
2351 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2352 {
2353 struct igbvf_adapter *adapter = netdev_priv(netdev);
2354
2355 /* only return the current stats */
2356 return &adapter->net_stats;
2357 }
2358
2359 /**
2360 * igbvf_change_mtu - Change the Maximum Transfer Unit
2361 * @netdev: network interface device structure
2362 * @new_mtu: new value for maximum frame size
2363 *
2364 * Returns 0 on success, negative on failure
2365 **/
2366 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2367 {
2368 struct igbvf_adapter *adapter = netdev_priv(netdev);
2369 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2370
2371 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2372 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2373 return -EINVAL;
2374 }
2375
2376 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2377 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2378 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2379 return -EINVAL;
2380 }
2381
2382 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2383 msleep(1);
2384 /* igbvf_down has a dependency on max_frame_size */
2385 adapter->max_frame_size = max_frame;
2386 if (netif_running(netdev))
2387 igbvf_down(adapter);
2388
2389 /*
2390 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2391 * means we reserve 2 more, this pushes us to allocate from the next
2392 * larger slab size.
2393 * i.e. RXBUFFER_2048 --> size-4096 slab
2394 * However with the new *_jumbo_rx* routines, jumbo receives will use
2395 * fragmented skbs
2396 */
2397
2398 if (max_frame <= 1024)
2399 adapter->rx_buffer_len = 1024;
2400 else if (max_frame <= 2048)
2401 adapter->rx_buffer_len = 2048;
2402 else
2403 #if (PAGE_SIZE / 2) > 16384
2404 adapter->rx_buffer_len = 16384;
2405 #else
2406 adapter->rx_buffer_len = PAGE_SIZE / 2;
2407 #endif
2408
2409
2410 /* adjust allocation if LPE protects us, and we aren't using SBP */
2411 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2412 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2413 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2414 ETH_FCS_LEN;
2415
2416 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2417 netdev->mtu, new_mtu);
2418 netdev->mtu = new_mtu;
2419
2420 if (netif_running(netdev))
2421 igbvf_up(adapter);
2422 else
2423 igbvf_reset(adapter);
2424
2425 clear_bit(__IGBVF_RESETTING, &adapter->state);
2426
2427 return 0;
2428 }
2429
2430 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2431 {
2432 switch (cmd) {
2433 default:
2434 return -EOPNOTSUPP;
2435 }
2436 }
2437
2438 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2439 {
2440 struct net_device *netdev = pci_get_drvdata(pdev);
2441 struct igbvf_adapter *adapter = netdev_priv(netdev);
2442 #ifdef CONFIG_PM
2443 int retval = 0;
2444 #endif
2445
2446 netif_device_detach(netdev);
2447
2448 if (netif_running(netdev)) {
2449 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2450 igbvf_down(adapter);
2451 igbvf_free_irq(adapter);
2452 }
2453
2454 #ifdef CONFIG_PM
2455 retval = pci_save_state(pdev);
2456 if (retval)
2457 return retval;
2458 #endif
2459
2460 pci_disable_device(pdev);
2461
2462 return 0;
2463 }
2464
2465 #ifdef CONFIG_PM
2466 static int igbvf_resume(struct pci_dev *pdev)
2467 {
2468 struct net_device *netdev = pci_get_drvdata(pdev);
2469 struct igbvf_adapter *adapter = netdev_priv(netdev);
2470 u32 err;
2471
2472 pci_restore_state(pdev);
2473 err = pci_enable_device_mem(pdev);
2474 if (err) {
2475 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2476 return err;
2477 }
2478
2479 pci_set_master(pdev);
2480
2481 if (netif_running(netdev)) {
2482 err = igbvf_request_irq(adapter);
2483 if (err)
2484 return err;
2485 }
2486
2487 igbvf_reset(adapter);
2488
2489 if (netif_running(netdev))
2490 igbvf_up(adapter);
2491
2492 netif_device_attach(netdev);
2493
2494 return 0;
2495 }
2496 #endif
2497
2498 static void igbvf_shutdown(struct pci_dev *pdev)
2499 {
2500 igbvf_suspend(pdev, PMSG_SUSPEND);
2501 }
2502
2503 #ifdef CONFIG_NET_POLL_CONTROLLER
2504 /*
2505 * Polling 'interrupt' - used by things like netconsole to send skbs
2506 * without having to re-enable interrupts. It's not called while
2507 * the interrupt routine is executing.
2508 */
2509 static void igbvf_netpoll(struct net_device *netdev)
2510 {
2511 struct igbvf_adapter *adapter = netdev_priv(netdev);
2512
2513 disable_irq(adapter->pdev->irq);
2514
2515 igbvf_clean_tx_irq(adapter->tx_ring);
2516
2517 enable_irq(adapter->pdev->irq);
2518 }
2519 #endif
2520
2521 /**
2522 * igbvf_io_error_detected - called when PCI error is detected
2523 * @pdev: Pointer to PCI device
2524 * @state: The current pci connection state
2525 *
2526 * This function is called after a PCI bus error affecting
2527 * this device has been detected.
2528 */
2529 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2530 pci_channel_state_t state)
2531 {
2532 struct net_device *netdev = pci_get_drvdata(pdev);
2533 struct igbvf_adapter *adapter = netdev_priv(netdev);
2534
2535 netif_device_detach(netdev);
2536
2537 if (state == pci_channel_io_perm_failure)
2538 return PCI_ERS_RESULT_DISCONNECT;
2539
2540 if (netif_running(netdev))
2541 igbvf_down(adapter);
2542 pci_disable_device(pdev);
2543
2544 /* Request a slot slot reset. */
2545 return PCI_ERS_RESULT_NEED_RESET;
2546 }
2547
2548 /**
2549 * igbvf_io_slot_reset - called after the pci bus has been reset.
2550 * @pdev: Pointer to PCI device
2551 *
2552 * Restart the card from scratch, as if from a cold-boot. Implementation
2553 * resembles the first-half of the igbvf_resume routine.
2554 */
2555 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2556 {
2557 struct net_device *netdev = pci_get_drvdata(pdev);
2558 struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560 if (pci_enable_device_mem(pdev)) {
2561 dev_err(&pdev->dev,
2562 "Cannot re-enable PCI device after reset.\n");
2563 return PCI_ERS_RESULT_DISCONNECT;
2564 }
2565 pci_set_master(pdev);
2566
2567 igbvf_reset(adapter);
2568
2569 return PCI_ERS_RESULT_RECOVERED;
2570 }
2571
2572 /**
2573 * igbvf_io_resume - called when traffic can start flowing again.
2574 * @pdev: Pointer to PCI device
2575 *
2576 * This callback is called when the error recovery driver tells us that
2577 * its OK to resume normal operation. Implementation resembles the
2578 * second-half of the igbvf_resume routine.
2579 */
2580 static void igbvf_io_resume(struct pci_dev *pdev)
2581 {
2582 struct net_device *netdev = pci_get_drvdata(pdev);
2583 struct igbvf_adapter *adapter = netdev_priv(netdev);
2584
2585 if (netif_running(netdev)) {
2586 if (igbvf_up(adapter)) {
2587 dev_err(&pdev->dev,
2588 "can't bring device back up after reset\n");
2589 return;
2590 }
2591 }
2592
2593 netif_device_attach(netdev);
2594 }
2595
2596 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2597 {
2598 struct e1000_hw *hw = &adapter->hw;
2599 struct net_device *netdev = adapter->netdev;
2600 struct pci_dev *pdev = adapter->pdev;
2601
2602 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2603 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2604 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2605 }
2606
2607 static const struct net_device_ops igbvf_netdev_ops = {
2608 .ndo_open = igbvf_open,
2609 .ndo_stop = igbvf_close,
2610 .ndo_start_xmit = igbvf_xmit_frame,
2611 .ndo_get_stats = igbvf_get_stats,
2612 .ndo_set_multicast_list = igbvf_set_multi,
2613 .ndo_set_mac_address = igbvf_set_mac,
2614 .ndo_change_mtu = igbvf_change_mtu,
2615 .ndo_do_ioctl = igbvf_ioctl,
2616 .ndo_tx_timeout = igbvf_tx_timeout,
2617 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2618 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2619 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2620 #ifdef CONFIG_NET_POLL_CONTROLLER
2621 .ndo_poll_controller = igbvf_netpoll,
2622 #endif
2623 };
2624
2625 /**
2626 * igbvf_probe - Device Initialization Routine
2627 * @pdev: PCI device information struct
2628 * @ent: entry in igbvf_pci_tbl
2629 *
2630 * Returns 0 on success, negative on failure
2631 *
2632 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2633 * The OS initialization, configuring of the adapter private structure,
2634 * and a hardware reset occur.
2635 **/
2636 static int __devinit igbvf_probe(struct pci_dev *pdev,
2637 const struct pci_device_id *ent)
2638 {
2639 struct net_device *netdev;
2640 struct igbvf_adapter *adapter;
2641 struct e1000_hw *hw;
2642 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2643
2644 static int cards_found;
2645 int err, pci_using_dac;
2646
2647 err = pci_enable_device_mem(pdev);
2648 if (err)
2649 return err;
2650
2651 pci_using_dac = 0;
2652 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2653 if (!err) {
2654 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2655 if (!err)
2656 pci_using_dac = 1;
2657 } else {
2658 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2659 if (err) {
2660 err = dma_set_coherent_mask(&pdev->dev,
2661 DMA_BIT_MASK(32));
2662 if (err) {
2663 dev_err(&pdev->dev, "No usable DMA "
2664 "configuration, aborting\n");
2665 goto err_dma;
2666 }
2667 }
2668 }
2669
2670 err = pci_request_regions(pdev, igbvf_driver_name);
2671 if (err)
2672 goto err_pci_reg;
2673
2674 pci_set_master(pdev);
2675
2676 err = -ENOMEM;
2677 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2678 if (!netdev)
2679 goto err_alloc_etherdev;
2680
2681 SET_NETDEV_DEV(netdev, &pdev->dev);
2682
2683 pci_set_drvdata(pdev, netdev);
2684 adapter = netdev_priv(netdev);
2685 hw = &adapter->hw;
2686 adapter->netdev = netdev;
2687 adapter->pdev = pdev;
2688 adapter->ei = ei;
2689 adapter->pba = ei->pba;
2690 adapter->flags = ei->flags;
2691 adapter->hw.back = adapter;
2692 adapter->hw.mac.type = ei->mac;
2693 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2694
2695 /* PCI config space info */
2696
2697 hw->vendor_id = pdev->vendor;
2698 hw->device_id = pdev->device;
2699 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2700 hw->subsystem_device_id = pdev->subsystem_device;
2701
2702 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2703
2704 err = -EIO;
2705 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2706 pci_resource_len(pdev, 0));
2707
2708 if (!adapter->hw.hw_addr)
2709 goto err_ioremap;
2710
2711 if (ei->get_variants) {
2712 err = ei->get_variants(adapter);
2713 if (err)
2714 goto err_ioremap;
2715 }
2716
2717 /* setup adapter struct */
2718 err = igbvf_sw_init(adapter);
2719 if (err)
2720 goto err_sw_init;
2721
2722 /* construct the net_device struct */
2723 netdev->netdev_ops = &igbvf_netdev_ops;
2724
2725 igbvf_set_ethtool_ops(netdev);
2726 netdev->watchdog_timeo = 5 * HZ;
2727 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2728
2729 adapter->bd_number = cards_found++;
2730
2731 netdev->features = NETIF_F_SG |
2732 NETIF_F_IP_CSUM |
2733 NETIF_F_HW_VLAN_TX |
2734 NETIF_F_HW_VLAN_RX |
2735 NETIF_F_HW_VLAN_FILTER;
2736
2737 netdev->features |= NETIF_F_IPV6_CSUM;
2738 netdev->features |= NETIF_F_TSO;
2739 netdev->features |= NETIF_F_TSO6;
2740
2741 if (pci_using_dac)
2742 netdev->features |= NETIF_F_HIGHDMA;
2743
2744 netdev->vlan_features |= NETIF_F_TSO;
2745 netdev->vlan_features |= NETIF_F_TSO6;
2746 netdev->vlan_features |= NETIF_F_IP_CSUM;
2747 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2748 netdev->vlan_features |= NETIF_F_SG;
2749
2750 /*reset the controller to put the device in a known good state */
2751 err = hw->mac.ops.reset_hw(hw);
2752 if (err) {
2753 dev_info(&pdev->dev,
2754 "PF still in reset state, assigning new address."
2755 " Is the PF interface up?\n");
2756 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2757 } else {
2758 err = hw->mac.ops.read_mac_addr(hw);
2759 if (err) {
2760 dev_err(&pdev->dev, "Error reading MAC address\n");
2761 goto err_hw_init;
2762 }
2763 }
2764
2765 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2766 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2767
2768 if (!is_valid_ether_addr(netdev->perm_addr)) {
2769 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2770 netdev->dev_addr);
2771 err = -EIO;
2772 goto err_hw_init;
2773 }
2774
2775 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2776 (unsigned long) adapter);
2777
2778 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2779 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2780
2781 /* ring size defaults */
2782 adapter->rx_ring->count = 1024;
2783 adapter->tx_ring->count = 1024;
2784
2785 /* reset the hardware with the new settings */
2786 igbvf_reset(adapter);
2787
2788 /* tell the stack to leave us alone until igbvf_open() is called */
2789 netif_carrier_off(netdev);
2790 netif_stop_queue(netdev);
2791
2792 strcpy(netdev->name, "eth%d");
2793 err = register_netdev(netdev);
2794 if (err)
2795 goto err_hw_init;
2796
2797 igbvf_print_device_info(adapter);
2798
2799 igbvf_initialize_last_counter_stats(adapter);
2800
2801 return 0;
2802
2803 err_hw_init:
2804 kfree(adapter->tx_ring);
2805 kfree(adapter->rx_ring);
2806 err_sw_init:
2807 igbvf_reset_interrupt_capability(adapter);
2808 iounmap(adapter->hw.hw_addr);
2809 err_ioremap:
2810 free_netdev(netdev);
2811 err_alloc_etherdev:
2812 pci_release_regions(pdev);
2813 err_pci_reg:
2814 err_dma:
2815 pci_disable_device(pdev);
2816 return err;
2817 }
2818
2819 /**
2820 * igbvf_remove - Device Removal Routine
2821 * @pdev: PCI device information struct
2822 *
2823 * igbvf_remove is called by the PCI subsystem to alert the driver
2824 * that it should release a PCI device. The could be caused by a
2825 * Hot-Plug event, or because the driver is going to be removed from
2826 * memory.
2827 **/
2828 static void __devexit igbvf_remove(struct pci_dev *pdev)
2829 {
2830 struct net_device *netdev = pci_get_drvdata(pdev);
2831 struct igbvf_adapter *adapter = netdev_priv(netdev);
2832 struct e1000_hw *hw = &adapter->hw;
2833
2834 /*
2835 * flush_scheduled work may reschedule our watchdog task, so
2836 * explicitly disable watchdog tasks from being rescheduled
2837 */
2838 set_bit(__IGBVF_DOWN, &adapter->state);
2839 del_timer_sync(&adapter->watchdog_timer);
2840
2841 flush_scheduled_work();
2842
2843 unregister_netdev(netdev);
2844
2845 igbvf_reset_interrupt_capability(adapter);
2846
2847 /*
2848 * it is important to delete the napi struct prior to freeing the
2849 * rx ring so that you do not end up with null pointer refs
2850 */
2851 netif_napi_del(&adapter->rx_ring->napi);
2852 kfree(adapter->tx_ring);
2853 kfree(adapter->rx_ring);
2854
2855 iounmap(hw->hw_addr);
2856 if (hw->flash_address)
2857 iounmap(hw->flash_address);
2858 pci_release_regions(pdev);
2859
2860 free_netdev(netdev);
2861
2862 pci_disable_device(pdev);
2863 }
2864
2865 /* PCI Error Recovery (ERS) */
2866 static struct pci_error_handlers igbvf_err_handler = {
2867 .error_detected = igbvf_io_error_detected,
2868 .slot_reset = igbvf_io_slot_reset,
2869 .resume = igbvf_io_resume,
2870 };
2871
2872 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2874 { } /* terminate list */
2875 };
2876 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2877
2878 /* PCI Device API Driver */
2879 static struct pci_driver igbvf_driver = {
2880 .name = igbvf_driver_name,
2881 .id_table = igbvf_pci_tbl,
2882 .probe = igbvf_probe,
2883 .remove = __devexit_p(igbvf_remove),
2884 #ifdef CONFIG_PM
2885 /* Power Management Hooks */
2886 .suspend = igbvf_suspend,
2887 .resume = igbvf_resume,
2888 #endif
2889 .shutdown = igbvf_shutdown,
2890 .err_handler = &igbvf_err_handler
2891 };
2892
2893 /**
2894 * igbvf_init_module - Driver Registration Routine
2895 *
2896 * igbvf_init_module is the first routine called when the driver is
2897 * loaded. All it does is register with the PCI subsystem.
2898 **/
2899 static int __init igbvf_init_module(void)
2900 {
2901 int ret;
2902 printk(KERN_INFO "%s - version %s\n",
2903 igbvf_driver_string, igbvf_driver_version);
2904 printk(KERN_INFO "%s\n", igbvf_copyright);
2905
2906 ret = pci_register_driver(&igbvf_driver);
2907 pm_qos_add_request(&igbvf_driver_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
2908 PM_QOS_DEFAULT_VALUE);
2909
2910 return ret;
2911 }
2912 module_init(igbvf_init_module);
2913
2914 /**
2915 * igbvf_exit_module - Driver Exit Cleanup Routine
2916 *
2917 * igbvf_exit_module is called just before the driver is removed
2918 * from memory.
2919 **/
2920 static void __exit igbvf_exit_module(void)
2921 {
2922 pci_unregister_driver(&igbvf_driver);
2923 pm_qos_remove_request(&igbvf_driver_pm_qos_req);
2924 }
2925 module_exit(igbvf_exit_module);
2926
2927
2928 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2929 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2930 MODULE_LICENSE("GPL");
2931 MODULE_VERSION(DRV_VERSION);
2932
2933 /* netdev.c */