igb: cleanup receive address register initialization
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / net / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
35
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
38
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static void igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
64 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
65
66 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67 {
68 struct e1000_phy_info *phy = &hw->phy;
69 struct e1000_nvm_info *nvm = &hw->nvm;
70 struct e1000_mac_info *mac = &hw->mac;
71 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
72 u32 eecd;
73 s32 ret_val;
74 u16 size;
75 u32 ctrl_ext = 0;
76
77 switch (hw->device_id) {
78 case E1000_DEV_ID_82575EB_COPPER:
79 case E1000_DEV_ID_82575EB_FIBER_SERDES:
80 case E1000_DEV_ID_82575GB_QUAD_COPPER:
81 mac->type = e1000_82575;
82 break;
83 case E1000_DEV_ID_82576:
84 case E1000_DEV_ID_82576_NS:
85 case E1000_DEV_ID_82576_FIBER:
86 case E1000_DEV_ID_82576_SERDES:
87 case E1000_DEV_ID_82576_QUAD_COPPER:
88 mac->type = e1000_82576;
89 break;
90 default:
91 return -E1000_ERR_MAC_INIT;
92 break;
93 }
94
95 /* Set media type */
96 /*
97 * The 82575 uses bits 22:23 for link mode. The mode can be changed
98 * based on the EEPROM. We cannot rely upon device ID. There
99 * is no distinguishable difference between fiber and internal
100 * SerDes mode on the 82575. There can be an external PHY attached
101 * on the SGMII interface. For this, we'll set sgmii_active to true.
102 */
103 phy->media_type = e1000_media_type_copper;
104 dev_spec->sgmii_active = false;
105
106 ctrl_ext = rd32(E1000_CTRL_EXT);
107 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
108 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
109 hw->phy.media_type = e1000_media_type_internal_serdes;
110 ctrl_ext |= E1000_CTRL_I2C_ENA;
111 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
112 dev_spec->sgmii_active = true;
113 ctrl_ext |= E1000_CTRL_I2C_ENA;
114 } else {
115 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
116 }
117 wr32(E1000_CTRL_EXT, ctrl_ext);
118
119 /* Set mta register count */
120 mac->mta_reg_count = 128;
121 /* Set rar entry count */
122 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
123 if (mac->type == e1000_82576)
124 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
125 /* Set if part includes ASF firmware */
126 mac->asf_firmware_present = true;
127 /* Set if manageability features are enabled. */
128 mac->arc_subsystem_valid =
129 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
130 ? true : false;
131
132 /* physical interface link setup */
133 mac->ops.setup_physical_interface =
134 (hw->phy.media_type == e1000_media_type_copper)
135 ? igb_setup_copper_link_82575
136 : igb_setup_fiber_serdes_link_82575;
137
138 /* NVM initialization */
139 eecd = rd32(E1000_EECD);
140
141 nvm->opcode_bits = 8;
142 nvm->delay_usec = 1;
143 switch (nvm->override) {
144 case e1000_nvm_override_spi_large:
145 nvm->page_size = 32;
146 nvm->address_bits = 16;
147 break;
148 case e1000_nvm_override_spi_small:
149 nvm->page_size = 8;
150 nvm->address_bits = 8;
151 break;
152 default:
153 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
154 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
155 break;
156 }
157
158 nvm->type = e1000_nvm_eeprom_spi;
159
160 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
161 E1000_EECD_SIZE_EX_SHIFT);
162
163 /*
164 * Added to a constant, "size" becomes the left-shift value
165 * for setting word_size.
166 */
167 size += NVM_WORD_SIZE_BASE_SHIFT;
168
169 /* EEPROM access above 16k is unsupported */
170 if (size > 14)
171 size = 14;
172 nvm->word_size = 1 << size;
173
174 /* setup PHY parameters */
175 if (phy->media_type != e1000_media_type_copper) {
176 phy->type = e1000_phy_none;
177 return 0;
178 }
179
180 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
181 phy->reset_delay_us = 100;
182
183 /* PHY function pointers */
184 if (igb_sgmii_active_82575(hw)) {
185 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
186 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
187 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
188 } else {
189 phy->ops.reset = igb_phy_hw_reset;
190 phy->ops.read_reg = igb_read_phy_reg_igp;
191 phy->ops.write_reg = igb_write_phy_reg_igp;
192 }
193
194 /* set lan id */
195 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
196 E1000_STATUS_FUNC_SHIFT;
197
198 /* Set phy->phy_addr and phy->id. */
199 ret_val = igb_get_phy_id_82575(hw);
200 if (ret_val)
201 return ret_val;
202
203 /* Verify phy id and set remaining function pointers */
204 switch (phy->id) {
205 case M88E1111_I_PHY_ID:
206 phy->type = e1000_phy_m88;
207 phy->ops.get_phy_info = igb_get_phy_info_m88;
208 phy->ops.get_cable_length = igb_get_cable_length_m88;
209 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
210 break;
211 case IGP03E1000_E_PHY_ID:
212 phy->type = e1000_phy_igp_3;
213 phy->ops.get_phy_info = igb_get_phy_info_igp;
214 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
215 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
216 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
217 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
218 break;
219 default:
220 return -E1000_ERR_PHY;
221 }
222
223 /* if 82576 then initialize mailbox parameters */
224 if (mac->type == e1000_82576)
225 igb_init_mbx_params_pf(hw);
226
227 return 0;
228 }
229
230 /**
231 * igb_acquire_phy_82575 - Acquire rights to access PHY
232 * @hw: pointer to the HW structure
233 *
234 * Acquire access rights to the correct PHY. This is a
235 * function pointer entry point called by the api module.
236 **/
237 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
238 {
239 u16 mask;
240
241 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
242
243 return igb_acquire_swfw_sync_82575(hw, mask);
244 }
245
246 /**
247 * igb_release_phy_82575 - Release rights to access PHY
248 * @hw: pointer to the HW structure
249 *
250 * A wrapper to release access rights to the correct PHY. This is a
251 * function pointer entry point called by the api module.
252 **/
253 static void igb_release_phy_82575(struct e1000_hw *hw)
254 {
255 u16 mask;
256
257 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
258 igb_release_swfw_sync_82575(hw, mask);
259 }
260
261 /**
262 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
263 * @hw: pointer to the HW structure
264 * @offset: register offset to be read
265 * @data: pointer to the read data
266 *
267 * Reads the PHY register at offset using the serial gigabit media independent
268 * interface and stores the retrieved information in data.
269 **/
270 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
271 u16 *data)
272 {
273 struct e1000_phy_info *phy = &hw->phy;
274 u32 i, i2ccmd = 0;
275
276 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
277 hw_dbg("PHY Address %u is out of range\n", offset);
278 return -E1000_ERR_PARAM;
279 }
280
281 /*
282 * Set up Op-code, Phy Address, and register address in the I2CCMD
283 * register. The MAC will take care of interfacing with the
284 * PHY to retrieve the desired data.
285 */
286 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
287 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
288 (E1000_I2CCMD_OPCODE_READ));
289
290 wr32(E1000_I2CCMD, i2ccmd);
291
292 /* Poll the ready bit to see if the I2C read completed */
293 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
294 udelay(50);
295 i2ccmd = rd32(E1000_I2CCMD);
296 if (i2ccmd & E1000_I2CCMD_READY)
297 break;
298 }
299 if (!(i2ccmd & E1000_I2CCMD_READY)) {
300 hw_dbg("I2CCMD Read did not complete\n");
301 return -E1000_ERR_PHY;
302 }
303 if (i2ccmd & E1000_I2CCMD_ERROR) {
304 hw_dbg("I2CCMD Error bit set\n");
305 return -E1000_ERR_PHY;
306 }
307
308 /* Need to byte-swap the 16-bit value. */
309 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
310
311 return 0;
312 }
313
314 /**
315 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
316 * @hw: pointer to the HW structure
317 * @offset: register offset to write to
318 * @data: data to write at register offset
319 *
320 * Writes the data to PHY register at the offset using the serial gigabit
321 * media independent interface.
322 **/
323 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
324 u16 data)
325 {
326 struct e1000_phy_info *phy = &hw->phy;
327 u32 i, i2ccmd = 0;
328 u16 phy_data_swapped;
329
330 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
331 hw_dbg("PHY Address %d is out of range\n", offset);
332 return -E1000_ERR_PARAM;
333 }
334
335 /* Swap the data bytes for the I2C interface */
336 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
337
338 /*
339 * Set up Op-code, Phy Address, and register address in the I2CCMD
340 * register. The MAC will take care of interfacing with the
341 * PHY to retrieve the desired data.
342 */
343 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
344 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
345 E1000_I2CCMD_OPCODE_WRITE |
346 phy_data_swapped);
347
348 wr32(E1000_I2CCMD, i2ccmd);
349
350 /* Poll the ready bit to see if the I2C read completed */
351 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352 udelay(50);
353 i2ccmd = rd32(E1000_I2CCMD);
354 if (i2ccmd & E1000_I2CCMD_READY)
355 break;
356 }
357 if (!(i2ccmd & E1000_I2CCMD_READY)) {
358 hw_dbg("I2CCMD Write did not complete\n");
359 return -E1000_ERR_PHY;
360 }
361 if (i2ccmd & E1000_I2CCMD_ERROR) {
362 hw_dbg("I2CCMD Error bit set\n");
363 return -E1000_ERR_PHY;
364 }
365
366 return 0;
367 }
368
369 /**
370 * igb_get_phy_id_82575 - Retrieve PHY addr and id
371 * @hw: pointer to the HW structure
372 *
373 * Retrieves the PHY address and ID for both PHY's which do and do not use
374 * sgmi interface.
375 **/
376 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
377 {
378 struct e1000_phy_info *phy = &hw->phy;
379 s32 ret_val = 0;
380 u16 phy_id;
381
382 /*
383 * For SGMII PHYs, we try the list of possible addresses until
384 * we find one that works. For non-SGMII PHYs
385 * (e.g. integrated copper PHYs), an address of 1 should
386 * work. The result of this function should mean phy->phy_addr
387 * and phy->id are set correctly.
388 */
389 if (!(igb_sgmii_active_82575(hw))) {
390 phy->addr = 1;
391 ret_val = igb_get_phy_id(hw);
392 goto out;
393 }
394
395 /*
396 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
397 * Therefore, we need to test 1-7
398 */
399 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
400 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
401 if (ret_val == 0) {
402 hw_dbg("Vendor ID 0x%08X read at address %u\n",
403 phy_id, phy->addr);
404 /*
405 * At the time of this writing, The M88 part is
406 * the only supported SGMII PHY product.
407 */
408 if (phy_id == M88_VENDOR)
409 break;
410 } else {
411 hw_dbg("PHY address %u was unreadable\n", phy->addr);
412 }
413 }
414
415 /* A valid PHY type couldn't be found. */
416 if (phy->addr == 8) {
417 phy->addr = 0;
418 ret_val = -E1000_ERR_PHY;
419 goto out;
420 }
421
422 ret_val = igb_get_phy_id(hw);
423
424 out:
425 return ret_val;
426 }
427
428 /**
429 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
430 * @hw: pointer to the HW structure
431 *
432 * Resets the PHY using the serial gigabit media independent interface.
433 **/
434 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
435 {
436 s32 ret_val;
437
438 /*
439 * This isn't a true "hard" reset, but is the only reset
440 * available to us at this time.
441 */
442
443 hw_dbg("Soft resetting SGMII attached PHY...\n");
444
445 /*
446 * SFP documentation requires the following to configure the SPF module
447 * to work on SGMII. No further documentation is given.
448 */
449 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
450 if (ret_val)
451 goto out;
452
453 ret_val = igb_phy_sw_reset(hw);
454
455 out:
456 return ret_val;
457 }
458
459 /**
460 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
461 * @hw: pointer to the HW structure
462 * @active: true to enable LPLU, false to disable
463 *
464 * Sets the LPLU D0 state according to the active flag. When
465 * activating LPLU this function also disables smart speed
466 * and vice versa. LPLU will not be activated unless the
467 * device autonegotiation advertisement meets standards of
468 * either 10 or 10/100 or 10/100/1000 at all duplexes.
469 * This is a function pointer entry point only called by
470 * PHY setup routines.
471 **/
472 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
473 {
474 struct e1000_phy_info *phy = &hw->phy;
475 s32 ret_val;
476 u16 data;
477
478 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
479 if (ret_val)
480 goto out;
481
482 if (active) {
483 data |= IGP02E1000_PM_D0_LPLU;
484 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
485 data);
486 if (ret_val)
487 goto out;
488
489 /* When LPLU is enabled, we should disable SmartSpeed */
490 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
491 &data);
492 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
493 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
494 data);
495 if (ret_val)
496 goto out;
497 } else {
498 data &= ~IGP02E1000_PM_D0_LPLU;
499 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
500 data);
501 /*
502 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
503 * during Dx states where the power conservation is most
504 * important. During driver activity we should enable
505 * SmartSpeed, so performance is maintained.
506 */
507 if (phy->smart_speed == e1000_smart_speed_on) {
508 ret_val = phy->ops.read_reg(hw,
509 IGP01E1000_PHY_PORT_CONFIG, &data);
510 if (ret_val)
511 goto out;
512
513 data |= IGP01E1000_PSCFR_SMART_SPEED;
514 ret_val = phy->ops.write_reg(hw,
515 IGP01E1000_PHY_PORT_CONFIG, data);
516 if (ret_val)
517 goto out;
518 } else if (phy->smart_speed == e1000_smart_speed_off) {
519 ret_val = phy->ops.read_reg(hw,
520 IGP01E1000_PHY_PORT_CONFIG, &data);
521 if (ret_val)
522 goto out;
523
524 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
525 ret_val = phy->ops.write_reg(hw,
526 IGP01E1000_PHY_PORT_CONFIG, data);
527 if (ret_val)
528 goto out;
529 }
530 }
531
532 out:
533 return ret_val;
534 }
535
536 /**
537 * igb_acquire_nvm_82575 - Request for access to EEPROM
538 * @hw: pointer to the HW structure
539 *
540 * Acquire the necessary semaphores for exclusive access to the EEPROM.
541 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
542 * Return successful if access grant bit set, else clear the request for
543 * EEPROM access and return -E1000_ERR_NVM (-1).
544 **/
545 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
546 {
547 s32 ret_val;
548
549 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
550 if (ret_val)
551 goto out;
552
553 ret_val = igb_acquire_nvm(hw);
554
555 if (ret_val)
556 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
557
558 out:
559 return ret_val;
560 }
561
562 /**
563 * igb_release_nvm_82575 - Release exclusive access to EEPROM
564 * @hw: pointer to the HW structure
565 *
566 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
567 * then release the semaphores acquired.
568 **/
569 static void igb_release_nvm_82575(struct e1000_hw *hw)
570 {
571 igb_release_nvm(hw);
572 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
573 }
574
575 /**
576 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
577 * @hw: pointer to the HW structure
578 * @mask: specifies which semaphore to acquire
579 *
580 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
581 * will also specify which port we're acquiring the lock for.
582 **/
583 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
584 {
585 u32 swfw_sync;
586 u32 swmask = mask;
587 u32 fwmask = mask << 16;
588 s32 ret_val = 0;
589 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
590
591 while (i < timeout) {
592 if (igb_get_hw_semaphore(hw)) {
593 ret_val = -E1000_ERR_SWFW_SYNC;
594 goto out;
595 }
596
597 swfw_sync = rd32(E1000_SW_FW_SYNC);
598 if (!(swfw_sync & (fwmask | swmask)))
599 break;
600
601 /*
602 * Firmware currently using resource (fwmask)
603 * or other software thread using resource (swmask)
604 */
605 igb_put_hw_semaphore(hw);
606 mdelay(5);
607 i++;
608 }
609
610 if (i == timeout) {
611 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
612 ret_val = -E1000_ERR_SWFW_SYNC;
613 goto out;
614 }
615
616 swfw_sync |= swmask;
617 wr32(E1000_SW_FW_SYNC, swfw_sync);
618
619 igb_put_hw_semaphore(hw);
620
621 out:
622 return ret_val;
623 }
624
625 /**
626 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
627 * @hw: pointer to the HW structure
628 * @mask: specifies which semaphore to acquire
629 *
630 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
631 * will also specify which port we're releasing the lock for.
632 **/
633 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
634 {
635 u32 swfw_sync;
636
637 while (igb_get_hw_semaphore(hw) != 0);
638 /* Empty */
639
640 swfw_sync = rd32(E1000_SW_FW_SYNC);
641 swfw_sync &= ~mask;
642 wr32(E1000_SW_FW_SYNC, swfw_sync);
643
644 igb_put_hw_semaphore(hw);
645 }
646
647 /**
648 * igb_get_cfg_done_82575 - Read config done bit
649 * @hw: pointer to the HW structure
650 *
651 * Read the management control register for the config done bit for
652 * completion status. NOTE: silicon which is EEPROM-less will fail trying
653 * to read the config done bit, so an error is *ONLY* logged and returns
654 * 0. If we were to return with error, EEPROM-less silicon
655 * would not be able to be reset or change link.
656 **/
657 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
658 {
659 s32 timeout = PHY_CFG_TIMEOUT;
660 s32 ret_val = 0;
661 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
662
663 if (hw->bus.func == 1)
664 mask = E1000_NVM_CFG_DONE_PORT_1;
665
666 while (timeout) {
667 if (rd32(E1000_EEMNGCTL) & mask)
668 break;
669 msleep(1);
670 timeout--;
671 }
672 if (!timeout)
673 hw_dbg("MNG configuration cycle has not completed.\n");
674
675 /* If EEPROM is not marked present, init the PHY manually */
676 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
677 (hw->phy.type == e1000_phy_igp_3))
678 igb_phy_init_script_igp3(hw);
679
680 return ret_val;
681 }
682
683 /**
684 * igb_check_for_link_82575 - Check for link
685 * @hw: pointer to the HW structure
686 *
687 * If sgmii is enabled, then use the pcs register to determine link, otherwise
688 * use the generic interface for determining link.
689 **/
690 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
691 {
692 s32 ret_val;
693 u16 speed, duplex;
694
695 /* SGMII link check is done through the PCS register. */
696 if ((hw->phy.media_type != e1000_media_type_copper) ||
697 (igb_sgmii_active_82575(hw))) {
698 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
699 &duplex);
700 /*
701 * Use this flag to determine if link needs to be checked or
702 * not. If we have link clear the flag so that we do not
703 * continue to check for link.
704 */
705 hw->mac.get_link_status = !hw->mac.serdes_has_link;
706 } else {
707 ret_val = igb_check_for_copper_link(hw);
708 }
709
710 return ret_val;
711 }
712 /**
713 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
714 * @hw: pointer to the HW structure
715 * @speed: stores the current speed
716 * @duplex: stores the current duplex
717 *
718 * Using the physical coding sub-layer (PCS), retrieve the current speed and
719 * duplex, then store the values in the pointers provided.
720 **/
721 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
722 u16 *duplex)
723 {
724 struct e1000_mac_info *mac = &hw->mac;
725 u32 pcs;
726
727 /* Set up defaults for the return values of this function */
728 mac->serdes_has_link = false;
729 *speed = 0;
730 *duplex = 0;
731
732 /*
733 * Read the PCS Status register for link state. For non-copper mode,
734 * the status register is not accurate. The PCS status register is
735 * used instead.
736 */
737 pcs = rd32(E1000_PCS_LSTAT);
738
739 /*
740 * The link up bit determines when link is up on autoneg. The sync ok
741 * gets set once both sides sync up and agree upon link. Stable link
742 * can be determined by checking for both link up and link sync ok
743 */
744 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
745 mac->serdes_has_link = true;
746
747 /* Detect and store PCS speed */
748 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
749 *speed = SPEED_1000;
750 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
751 *speed = SPEED_100;
752 } else {
753 *speed = SPEED_10;
754 }
755
756 /* Detect and store PCS duplex */
757 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
758 *duplex = FULL_DUPLEX;
759 } else {
760 *duplex = HALF_DUPLEX;
761 }
762 }
763
764 return 0;
765 }
766
767 /**
768 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
769 * @hw: pointer to the HW structure
770 *
771 * In the case of fiber serdes, shut down optics and PCS on driver unload
772 * when management pass thru is not enabled.
773 **/
774 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
775 {
776 u32 reg;
777
778 if (hw->phy.media_type != e1000_media_type_internal_serdes)
779 return;
780
781 /* if the management interface is not enabled, then power down */
782 if (!igb_enable_mng_pass_thru(hw)) {
783 /* Disable PCS to turn off link */
784 reg = rd32(E1000_PCS_CFG0);
785 reg &= ~E1000_PCS_CFG_PCS_EN;
786 wr32(E1000_PCS_CFG0, reg);
787
788 /* shutdown the laser */
789 reg = rd32(E1000_CTRL_EXT);
790 reg |= E1000_CTRL_EXT_SDP7_DATA;
791 wr32(E1000_CTRL_EXT, reg);
792
793 /* flush the write to verify completion */
794 wrfl();
795 msleep(1);
796 }
797
798 return;
799 }
800
801 /**
802 * igb_reset_hw_82575 - Reset hardware
803 * @hw: pointer to the HW structure
804 *
805 * This resets the hardware into a known state. This is a
806 * function pointer entry point called by the api module.
807 **/
808 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
809 {
810 u32 ctrl, icr;
811 s32 ret_val;
812
813 /*
814 * Prevent the PCI-E bus from sticking if there is no TLP connection
815 * on the last TLP read/write transaction when MAC is reset.
816 */
817 ret_val = igb_disable_pcie_master(hw);
818 if (ret_val)
819 hw_dbg("PCI-E Master disable polling has failed.\n");
820
821 /* set the completion timeout for interface */
822 ret_val = igb_set_pcie_completion_timeout(hw);
823 if (ret_val) {
824 hw_dbg("PCI-E Set completion timeout has failed.\n");
825 }
826
827 hw_dbg("Masking off all interrupts\n");
828 wr32(E1000_IMC, 0xffffffff);
829
830 wr32(E1000_RCTL, 0);
831 wr32(E1000_TCTL, E1000_TCTL_PSP);
832 wrfl();
833
834 msleep(10);
835
836 ctrl = rd32(E1000_CTRL);
837
838 hw_dbg("Issuing a global reset to MAC\n");
839 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
840
841 ret_val = igb_get_auto_rd_done(hw);
842 if (ret_val) {
843 /*
844 * When auto config read does not complete, do not
845 * return with an error. This can happen in situations
846 * where there is no eeprom and prevents getting link.
847 */
848 hw_dbg("Auto Read Done did not complete\n");
849 }
850
851 /* If EEPROM is not present, run manual init scripts */
852 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
853 igb_reset_init_script_82575(hw);
854
855 /* Clear any pending interrupt events. */
856 wr32(E1000_IMC, 0xffffffff);
857 icr = rd32(E1000_ICR);
858
859 /* Install any alternate MAC address into RAR0 */
860 ret_val = igb_check_alt_mac_addr(hw);
861
862 return ret_val;
863 }
864
865 /**
866 * igb_init_hw_82575 - Initialize hardware
867 * @hw: pointer to the HW structure
868 *
869 * This inits the hardware readying it for operation.
870 **/
871 static s32 igb_init_hw_82575(struct e1000_hw *hw)
872 {
873 struct e1000_mac_info *mac = &hw->mac;
874 s32 ret_val;
875 u16 i, rar_count = mac->rar_entry_count;
876
877 /* Initialize identification LED */
878 ret_val = igb_id_led_init(hw);
879 if (ret_val) {
880 hw_dbg("Error initializing identification LED\n");
881 /* This is not fatal and we should not stop init due to this */
882 }
883
884 /* Disabling VLAN filtering */
885 hw_dbg("Initializing the IEEE VLAN\n");
886 igb_clear_vfta(hw);
887
888 /* Setup the receive address */
889 igb_init_rx_addrs(hw, rar_count);
890
891 /* Zero out the Multicast HASH table */
892 hw_dbg("Zeroing the MTA\n");
893 for (i = 0; i < mac->mta_reg_count; i++)
894 array_wr32(E1000_MTA, i, 0);
895
896 /* Setup link and flow control */
897 ret_val = igb_setup_link(hw);
898
899 /*
900 * Clear all of the statistics registers (clear on read). It is
901 * important that we do this after we have tried to establish link
902 * because the symbol error count will increment wildly if there
903 * is no link.
904 */
905 igb_clear_hw_cntrs_82575(hw);
906
907 return ret_val;
908 }
909
910 /**
911 * igb_setup_copper_link_82575 - Configure copper link settings
912 * @hw: pointer to the HW structure
913 *
914 * Configures the link for auto-neg or forced speed and duplex. Then we check
915 * for link, once link is established calls to configure collision distance
916 * and flow control are called.
917 **/
918 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
919 {
920 u32 ctrl;
921 s32 ret_val;
922 bool link;
923
924 ctrl = rd32(E1000_CTRL);
925 ctrl |= E1000_CTRL_SLU;
926 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
927 wr32(E1000_CTRL, ctrl);
928
929 switch (hw->phy.type) {
930 case e1000_phy_m88:
931 ret_val = igb_copper_link_setup_m88(hw);
932 break;
933 case e1000_phy_igp_3:
934 ret_val = igb_copper_link_setup_igp(hw);
935 break;
936 default:
937 ret_val = -E1000_ERR_PHY;
938 break;
939 }
940
941 if (ret_val)
942 goto out;
943
944 if (hw->mac.autoneg) {
945 /*
946 * Setup autoneg and flow control advertisement
947 * and perform autonegotiation.
948 */
949 ret_val = igb_copper_link_autoneg(hw);
950 if (ret_val)
951 goto out;
952 } else {
953 /*
954 * PHY will be set to 10H, 10F, 100H or 100F
955 * depending on user settings.
956 */
957 hw_dbg("Forcing Speed and Duplex\n");
958 ret_val = hw->phy.ops.force_speed_duplex(hw);
959 if (ret_val) {
960 hw_dbg("Error Forcing Speed and Duplex\n");
961 goto out;
962 }
963 }
964
965 igb_configure_pcs_link_82575(hw);
966
967 /*
968 * Check link status. Wait up to 100 microseconds for link to become
969 * valid.
970 */
971 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
972 if (ret_val)
973 goto out;
974
975 if (link) {
976 hw_dbg("Valid link established!!!\n");
977 /* Config the MAC and PHY after link is up */
978 igb_config_collision_dist(hw);
979 ret_val = igb_config_fc_after_link_up(hw);
980 } else {
981 hw_dbg("Unable to establish link!!!\n");
982 }
983
984 out:
985 return ret_val;
986 }
987
988 /**
989 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
990 * @hw: pointer to the HW structure
991 *
992 * Configures speed and duplex for fiber and serdes links.
993 **/
994 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
995 {
996 u32 reg;
997
998 /*
999 * On the 82575, SerDes loopback mode persists until it is
1000 * explicitly turned off or a power cycle is performed. A read to
1001 * the register does not indicate its status. Therefore, we ensure
1002 * loopback mode is disabled during initialization.
1003 */
1004 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1005
1006 /* Force link up, set 1gb, set both sw defined pins */
1007 reg = rd32(E1000_CTRL);
1008 reg |= E1000_CTRL_SLU |
1009 E1000_CTRL_SPD_1000 |
1010 E1000_CTRL_FRCSPD |
1011 E1000_CTRL_SWDPIN0 |
1012 E1000_CTRL_SWDPIN1;
1013 wr32(E1000_CTRL, reg);
1014
1015 /* Power on phy for 82576 fiber adapters */
1016 if (hw->mac.type == e1000_82576) {
1017 reg = rd32(E1000_CTRL_EXT);
1018 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1019 wr32(E1000_CTRL_EXT, reg);
1020 }
1021
1022 /* Set switch control to serdes energy detect */
1023 reg = rd32(E1000_CONNSW);
1024 reg |= E1000_CONNSW_ENRGSRC;
1025 wr32(E1000_CONNSW, reg);
1026
1027 /*
1028 * New SerDes mode allows for forcing speed or autonegotiating speed
1029 * at 1gb. Autoneg should be default set by most drivers. This is the
1030 * mode that will be compatible with older link partners and switches.
1031 * However, both are supported by the hardware and some drivers/tools.
1032 */
1033 reg = rd32(E1000_PCS_LCTL);
1034
1035 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1036 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1037
1038 if (hw->mac.autoneg) {
1039 /* Set PCS register for autoneg */
1040 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1041 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1042 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1043 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1044 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1045 } else {
1046 /* Set PCS register for forced speed */
1047 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1048 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1049 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1050 E1000_PCS_LCTL_FSD | /* Force Speed */
1051 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1052 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1053 }
1054
1055 if (hw->mac.type == e1000_82576) {
1056 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1057 igb_force_mac_fc(hw);
1058 }
1059
1060 wr32(E1000_PCS_LCTL, reg);
1061
1062 return 0;
1063 }
1064
1065 /**
1066 * igb_configure_pcs_link_82575 - Configure PCS link
1067 * @hw: pointer to the HW structure
1068 *
1069 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1070 * only used on copper connections where the serialized gigabit media
1071 * independent interface (sgmii) is being used. Configures the link
1072 * for auto-negotiation or forces speed/duplex.
1073 **/
1074 static void igb_configure_pcs_link_82575(struct e1000_hw *hw)
1075 {
1076 struct e1000_mac_info *mac = &hw->mac;
1077 u32 reg = 0;
1078
1079 if (hw->phy.media_type != e1000_media_type_copper ||
1080 !(igb_sgmii_active_82575(hw)))
1081 return;
1082
1083 /* For SGMII, we need to issue a PCS autoneg restart */
1084 reg = rd32(E1000_PCS_LCTL);
1085
1086 /* AN time out should be disabled for SGMII mode */
1087 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1088
1089 if (mac->autoneg) {
1090 /* Make sure forced speed and force link are not set */
1091 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1092
1093 /*
1094 * The PHY should be setup prior to calling this function.
1095 * All we need to do is restart autoneg and enable autoneg.
1096 */
1097 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1098 } else {
1099 /* Set PCS register for forced speed */
1100
1101 /* Turn off bits for full duplex, speed, and autoneg */
1102 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1103 E1000_PCS_LCTL_FSV_100 |
1104 E1000_PCS_LCTL_FDV_FULL |
1105 E1000_PCS_LCTL_AN_ENABLE);
1106
1107 /* Check for duplex first */
1108 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1109 reg |= E1000_PCS_LCTL_FDV_FULL;
1110
1111 /* Now set speed */
1112 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1113 reg |= E1000_PCS_LCTL_FSV_100;
1114
1115 /* Force speed and force link */
1116 reg |= E1000_PCS_LCTL_FSD |
1117 E1000_PCS_LCTL_FORCE_LINK |
1118 E1000_PCS_LCTL_FLV_LINK_UP;
1119
1120 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1121 reg);
1122 }
1123 wr32(E1000_PCS_LCTL, reg);
1124 }
1125
1126 /**
1127 * igb_sgmii_active_82575 - Return sgmii state
1128 * @hw: pointer to the HW structure
1129 *
1130 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1131 * which can be enabled for use in the embedded applications. Simply
1132 * return the current state of the sgmii interface.
1133 **/
1134 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1135 {
1136 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1137 return dev_spec->sgmii_active;
1138 }
1139
1140 /**
1141 * igb_reset_init_script_82575 - Inits HW defaults after reset
1142 * @hw: pointer to the HW structure
1143 *
1144 * Inits recommended HW defaults after a reset when there is no EEPROM
1145 * detected. This is only for the 82575.
1146 **/
1147 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1148 {
1149 if (hw->mac.type == e1000_82575) {
1150 hw_dbg("Running reset init script for 82575\n");
1151 /* SerDes configuration via SERDESCTRL */
1152 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1153 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1154 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1155 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1156
1157 /* CCM configuration via CCMCTL register */
1158 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1159 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1160
1161 /* PCIe lanes configuration */
1162 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1163 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1164 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1165 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1166
1167 /* PCIe PLL Configuration */
1168 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1169 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1170 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1171 }
1172
1173 return 0;
1174 }
1175
1176 /**
1177 * igb_read_mac_addr_82575 - Read device MAC address
1178 * @hw: pointer to the HW structure
1179 **/
1180 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1181 {
1182 s32 ret_val = 0;
1183
1184 if (igb_check_alt_mac_addr(hw))
1185 ret_val = igb_read_mac_addr(hw);
1186
1187 return ret_val;
1188 }
1189
1190 /**
1191 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1192 * @hw: pointer to the HW structure
1193 *
1194 * Clears the hardware counters by reading the counter registers.
1195 **/
1196 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1197 {
1198 u32 temp;
1199
1200 igb_clear_hw_cntrs_base(hw);
1201
1202 temp = rd32(E1000_PRC64);
1203 temp = rd32(E1000_PRC127);
1204 temp = rd32(E1000_PRC255);
1205 temp = rd32(E1000_PRC511);
1206 temp = rd32(E1000_PRC1023);
1207 temp = rd32(E1000_PRC1522);
1208 temp = rd32(E1000_PTC64);
1209 temp = rd32(E1000_PTC127);
1210 temp = rd32(E1000_PTC255);
1211 temp = rd32(E1000_PTC511);
1212 temp = rd32(E1000_PTC1023);
1213 temp = rd32(E1000_PTC1522);
1214
1215 temp = rd32(E1000_ALGNERRC);
1216 temp = rd32(E1000_RXERRC);
1217 temp = rd32(E1000_TNCRS);
1218 temp = rd32(E1000_CEXTERR);
1219 temp = rd32(E1000_TSCTC);
1220 temp = rd32(E1000_TSCTFC);
1221
1222 temp = rd32(E1000_MGTPRC);
1223 temp = rd32(E1000_MGTPDC);
1224 temp = rd32(E1000_MGTPTC);
1225
1226 temp = rd32(E1000_IAC);
1227 temp = rd32(E1000_ICRXOC);
1228
1229 temp = rd32(E1000_ICRXPTC);
1230 temp = rd32(E1000_ICRXATC);
1231 temp = rd32(E1000_ICTXPTC);
1232 temp = rd32(E1000_ICTXATC);
1233 temp = rd32(E1000_ICTXQEC);
1234 temp = rd32(E1000_ICTXQMTC);
1235 temp = rd32(E1000_ICRXDMTC);
1236
1237 temp = rd32(E1000_CBTMPC);
1238 temp = rd32(E1000_HTDPMC);
1239 temp = rd32(E1000_CBRMPC);
1240 temp = rd32(E1000_RPTHC);
1241 temp = rd32(E1000_HGPTC);
1242 temp = rd32(E1000_HTCBDPC);
1243 temp = rd32(E1000_HGORCL);
1244 temp = rd32(E1000_HGORCH);
1245 temp = rd32(E1000_HGOTCL);
1246 temp = rd32(E1000_HGOTCH);
1247 temp = rd32(E1000_LENERRS);
1248
1249 /* This register should not be read in copper configurations */
1250 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1251 temp = rd32(E1000_SCVPC);
1252 }
1253
1254 /**
1255 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1256 * @hw: pointer to the HW structure
1257 *
1258 * After rx enable if managability is enabled then there is likely some
1259 * bad data at the start of the fifo and possibly in the DMA fifo. This
1260 * function clears the fifos and flushes any packets that came in as rx was
1261 * being enabled.
1262 **/
1263 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1264 {
1265 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1266 int i, ms_wait;
1267
1268 if (hw->mac.type != e1000_82575 ||
1269 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1270 return;
1271
1272 /* Disable all RX queues */
1273 for (i = 0; i < 4; i++) {
1274 rxdctl[i] = rd32(E1000_RXDCTL(i));
1275 wr32(E1000_RXDCTL(i),
1276 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1277 }
1278 /* Poll all queues to verify they have shut down */
1279 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1280 msleep(1);
1281 rx_enabled = 0;
1282 for (i = 0; i < 4; i++)
1283 rx_enabled |= rd32(E1000_RXDCTL(i));
1284 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1285 break;
1286 }
1287
1288 if (ms_wait == 10)
1289 hw_dbg("Queue disable timed out after 10ms\n");
1290
1291 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1292 * incoming packets are rejected. Set enable and wait 2ms so that
1293 * any packet that was coming in as RCTL.EN was set is flushed
1294 */
1295 rfctl = rd32(E1000_RFCTL);
1296 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1297
1298 rlpml = rd32(E1000_RLPML);
1299 wr32(E1000_RLPML, 0);
1300
1301 rctl = rd32(E1000_RCTL);
1302 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1303 temp_rctl |= E1000_RCTL_LPE;
1304
1305 wr32(E1000_RCTL, temp_rctl);
1306 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1307 wrfl();
1308 msleep(2);
1309
1310 /* Enable RX queues that were previously enabled and restore our
1311 * previous state
1312 */
1313 for (i = 0; i < 4; i++)
1314 wr32(E1000_RXDCTL(i), rxdctl[i]);
1315 wr32(E1000_RCTL, rctl);
1316 wrfl();
1317
1318 wr32(E1000_RLPML, rlpml);
1319 wr32(E1000_RFCTL, rfctl);
1320
1321 /* Flush receive errors generated by workaround */
1322 rd32(E1000_ROC);
1323 rd32(E1000_RNBC);
1324 rd32(E1000_MPC);
1325 }
1326
1327 /**
1328 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1329 * @hw: pointer to the HW structure
1330 *
1331 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1332 * however the hardware default for these parts is 500us to 1ms which is less
1333 * than the 10ms recommended by the pci-e spec. To address this we need to
1334 * increase the value to either 10ms to 200ms for capability version 1 config,
1335 * or 16ms to 55ms for version 2.
1336 **/
1337 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1338 {
1339 u32 gcr = rd32(E1000_GCR);
1340 s32 ret_val = 0;
1341 u16 pcie_devctl2;
1342
1343 /* only take action if timeout value is defaulted to 0 */
1344 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1345 goto out;
1346
1347 /*
1348 * if capababilities version is type 1 we can write the
1349 * timeout of 10ms to 200ms through the GCR register
1350 */
1351 if (!(gcr & E1000_GCR_CAP_VER2)) {
1352 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1353 goto out;
1354 }
1355
1356 /*
1357 * for version 2 capabilities we need to write the config space
1358 * directly in order to set the completion timeout value for
1359 * 16ms to 55ms
1360 */
1361 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1362 &pcie_devctl2);
1363 if (ret_val)
1364 goto out;
1365
1366 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1367
1368 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1369 &pcie_devctl2);
1370 out:
1371 /* disable completion timeout resend */
1372 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1373
1374 wr32(E1000_GCR, gcr);
1375 return ret_val;
1376 }
1377
1378 /**
1379 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1380 * @hw: pointer to the hardware struct
1381 * @enable: state to enter, either enabled or disabled
1382 *
1383 * enables/disables L2 switch loopback functionality.
1384 **/
1385 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1386 {
1387 u32 dtxswc = rd32(E1000_DTXSWC);
1388
1389 if (enable)
1390 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1391 else
1392 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1393
1394 wr32(E1000_DTXSWC, dtxswc);
1395 }
1396
1397 /**
1398 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1399 * @hw: pointer to the hardware struct
1400 * @enable: state to enter, either enabled or disabled
1401 *
1402 * enables/disables replication of packets across multiple pools.
1403 **/
1404 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1405 {
1406 u32 vt_ctl = rd32(E1000_VT_CTL);
1407
1408 if (enable)
1409 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1410 else
1411 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1412
1413 wr32(E1000_VT_CTL, vt_ctl);
1414 }
1415
1416 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1417 .reset_hw = igb_reset_hw_82575,
1418 .init_hw = igb_init_hw_82575,
1419 .check_for_link = igb_check_for_link_82575,
1420 .rar_set = igb_rar_set,
1421 .read_mac_addr = igb_read_mac_addr_82575,
1422 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1423 };
1424
1425 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1426 .acquire = igb_acquire_phy_82575,
1427 .get_cfg_done = igb_get_cfg_done_82575,
1428 .release = igb_release_phy_82575,
1429 };
1430
1431 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1432 .acquire = igb_acquire_nvm_82575,
1433 .read = igb_read_nvm_eerd,
1434 .release = igb_release_nvm_82575,
1435 .write = igb_write_nvm_spi,
1436 };
1437
1438 const struct e1000_info e1000_82575_info = {
1439 .get_invariants = igb_get_invariants_82575,
1440 .mac_ops = &e1000_mac_ops_82575,
1441 .phy_ops = &e1000_phy_ops_82575,
1442 .nvm_ops = &e1000_nvm_ops_82575,
1443 };
1444