net: simplify flags for tx timestamping
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98
99 #include "gianfar.h"
100 #include "fsl_pq_mdio.h"
101
102 #define TX_TIMEOUT (1*HZ)
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 const char gfar_driver_name[] = "Gianfar Ethernet";
107 const char gfar_driver_version[] = "1.3";
108
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116 struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev,
126 const struct of_device_id *match);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139 int amount_pull);
140 static void gfar_vlan_rx_register(struct net_device *netdev,
141 struct vlan_group *grp);
142 void gfar_halt(struct net_device *dev);
143 static void gfar_halt_nodisable(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 dma_addr_t buf)
155 {
156 u32 lstatus;
157
158 bdp->bufPtr = buf;
159
160 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 lstatus |= BD_LFLAG(RXBD_WRAP);
163
164 eieio();
165
166 bdp->lstatus = lstatus;
167 }
168
169 static int gfar_init_bds(struct net_device *ndev)
170 {
171 struct gfar_private *priv = netdev_priv(ndev);
172 struct gfar_priv_tx_q *tx_queue = NULL;
173 struct gfar_priv_rx_q *rx_queue = NULL;
174 struct txbd8 *txbdp;
175 struct rxbd8 *rxbdp;
176 int i, j;
177
178 for (i = 0; i < priv->num_tx_queues; i++) {
179 tx_queue = priv->tx_queue[i];
180 /* Initialize some variables in our dev structure */
181 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182 tx_queue->dirty_tx = tx_queue->tx_bd_base;
183 tx_queue->cur_tx = tx_queue->tx_bd_base;
184 tx_queue->skb_curtx = 0;
185 tx_queue->skb_dirtytx = 0;
186
187 /* Initialize Transmit Descriptor Ring */
188 txbdp = tx_queue->tx_bd_base;
189 for (j = 0; j < tx_queue->tx_ring_size; j++) {
190 txbdp->lstatus = 0;
191 txbdp->bufPtr = 0;
192 txbdp++;
193 }
194
195 /* Set the last descriptor in the ring to indicate wrap */
196 txbdp--;
197 txbdp->status |= TXBD_WRAP;
198 }
199
200 for (i = 0; i < priv->num_rx_queues; i++) {
201 rx_queue = priv->rx_queue[i];
202 rx_queue->cur_rx = rx_queue->rx_bd_base;
203 rx_queue->skb_currx = 0;
204 rxbdp = rx_queue->rx_bd_base;
205
206 for (j = 0; j < rx_queue->rx_ring_size; j++) {
207 struct sk_buff *skb = rx_queue->rx_skbuff[j];
208
209 if (skb) {
210 gfar_init_rxbdp(rx_queue, rxbdp,
211 rxbdp->bufPtr);
212 } else {
213 skb = gfar_new_skb(ndev);
214 if (!skb) {
215 pr_err("%s: Can't allocate RX buffers\n",
216 ndev->name);
217 goto err_rxalloc_fail;
218 }
219 rx_queue->rx_skbuff[j] = skb;
220
221 gfar_new_rxbdp(rx_queue, rxbdp, skb);
222 }
223
224 rxbdp++;
225 }
226
227 }
228
229 return 0;
230
231 err_rxalloc_fail:
232 free_skb_resources(priv);
233 return -ENOMEM;
234 }
235
236 static int gfar_alloc_skb_resources(struct net_device *ndev)
237 {
238 void *vaddr;
239 dma_addr_t addr;
240 int i, j, k;
241 struct gfar_private *priv = netdev_priv(ndev);
242 struct device *dev = &priv->ofdev->dev;
243 struct gfar_priv_tx_q *tx_queue = NULL;
244 struct gfar_priv_rx_q *rx_queue = NULL;
245
246 priv->total_tx_ring_size = 0;
247 for (i = 0; i < priv->num_tx_queues; i++)
248 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
249
250 priv->total_rx_ring_size = 0;
251 for (i = 0; i < priv->num_rx_queues; i++)
252 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
253
254 /* Allocate memory for the buffer descriptors */
255 vaddr = dma_alloc_coherent(dev,
256 sizeof(struct txbd8) * priv->total_tx_ring_size +
257 sizeof(struct rxbd8) * priv->total_rx_ring_size,
258 &addr, GFP_KERNEL);
259 if (!vaddr) {
260 if (netif_msg_ifup(priv))
261 pr_err("%s: Could not allocate buffer descriptors!\n",
262 ndev->name);
263 return -ENOMEM;
264 }
265
266 for (i = 0; i < priv->num_tx_queues; i++) {
267 tx_queue = priv->tx_queue[i];
268 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
269 tx_queue->tx_bd_dma_base = addr;
270 tx_queue->dev = ndev;
271 /* enet DMA only understands physical addresses */
272 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274 }
275
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i = 0; i < priv->num_rx_queues; i++) {
278 rx_queue = priv->rx_queue[i];
279 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
280 rx_queue->rx_bd_dma_base = addr;
281 rx_queue->dev = ndev;
282 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284 }
285
286 /* Setup the skbuff rings */
287 for (i = 0; i < priv->num_tx_queues; i++) {
288 tx_queue = priv->tx_queue[i];
289 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290 tx_queue->tx_ring_size, GFP_KERNEL);
291 if (!tx_queue->tx_skbuff) {
292 if (netif_msg_ifup(priv))
293 pr_err("%s: Could not allocate tx_skbuff\n",
294 ndev->name);
295 goto cleanup;
296 }
297
298 for (k = 0; k < tx_queue->tx_ring_size; k++)
299 tx_queue->tx_skbuff[k] = NULL;
300 }
301
302 for (i = 0; i < priv->num_rx_queues; i++) {
303 rx_queue = priv->rx_queue[i];
304 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
305 rx_queue->rx_ring_size, GFP_KERNEL);
306
307 if (!rx_queue->rx_skbuff) {
308 if (netif_msg_ifup(priv))
309 pr_err("%s: Could not allocate rx_skbuff\n",
310 ndev->name);
311 goto cleanup;
312 }
313
314 for (j = 0; j < rx_queue->rx_ring_size; j++)
315 rx_queue->rx_skbuff[j] = NULL;
316 }
317
318 if (gfar_init_bds(ndev))
319 goto cleanup;
320
321 return 0;
322
323 cleanup:
324 free_skb_resources(priv);
325 return -ENOMEM;
326 }
327
328 static void gfar_init_tx_rx_base(struct gfar_private *priv)
329 {
330 struct gfar __iomem *regs = priv->gfargrp[0].regs;
331 u32 __iomem *baddr;
332 int i;
333
334 baddr = &regs->tbase0;
335 for(i = 0; i < priv->num_tx_queues; i++) {
336 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
337 baddr += 2;
338 }
339
340 baddr = &regs->rbase0;
341 for(i = 0; i < priv->num_rx_queues; i++) {
342 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
343 baddr += 2;
344 }
345 }
346
347 static void gfar_init_mac(struct net_device *ndev)
348 {
349 struct gfar_private *priv = netdev_priv(ndev);
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352 u32 tctrl = 0;
353 u32 attrs = 0;
354
355 /* write the tx/rx base registers */
356 gfar_init_tx_rx_base(priv);
357
358 /* Configure the coalescing support */
359 gfar_configure_coalescing(priv, 0xFF, 0xFF);
360
361 if (priv->rx_filer_enable) {
362 rctrl |= RCTRL_FILREN;
363 /* Program the RIR0 reg with the required distribution */
364 gfar_write(&regs->rir0, DEFAULT_RIR0);
365 }
366
367 if (priv->rx_csum_enable)
368 rctrl |= RCTRL_CHECKSUMMING;
369
370 if (priv->extended_hash) {
371 rctrl |= RCTRL_EXTHASH;
372
373 gfar_clear_exact_match(ndev);
374 rctrl |= RCTRL_EMEN;
375 }
376
377 if (priv->padding) {
378 rctrl &= ~RCTRL_PAL_MASK;
379 rctrl |= RCTRL_PADDING(priv->padding);
380 }
381
382 /* Insert receive time stamps into padding alignment bytes */
383 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
384 rctrl &= ~RCTRL_PAL_MASK;
385 rctrl |= RCTRL_PADDING(8);
386 priv->padding = 8;
387 }
388
389 /* Enable HW time stamping if requested from user space */
390 if (priv->hwts_rx_en)
391 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
392
393 /* keep vlan related bits if it's enabled */
394 if (priv->vlgrp) {
395 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
396 tctrl |= TCTRL_VLINS;
397 }
398
399 /* Init rctrl based on our settings */
400 gfar_write(&regs->rctrl, rctrl);
401
402 if (ndev->features & NETIF_F_IP_CSUM)
403 tctrl |= TCTRL_INIT_CSUM;
404
405 tctrl |= TCTRL_TXSCHED_PRIO;
406
407 gfar_write(&regs->tctrl, tctrl);
408
409 /* Set the extraction length and index */
410 attrs = ATTRELI_EL(priv->rx_stash_size) |
411 ATTRELI_EI(priv->rx_stash_index);
412
413 gfar_write(&regs->attreli, attrs);
414
415 /* Start with defaults, and add stashing or locking
416 * depending on the approprate variables */
417 attrs = ATTR_INIT_SETTINGS;
418
419 if (priv->bd_stash_en)
420 attrs |= ATTR_BDSTASH;
421
422 if (priv->rx_stash_size != 0)
423 attrs |= ATTR_BUFSTASH;
424
425 gfar_write(&regs->attr, attrs);
426
427 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
428 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
429 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
430 }
431
432 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
433 {
434 struct gfar_private *priv = netdev_priv(dev);
435 struct netdev_queue *txq;
436 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
437 unsigned long tx_packets = 0, tx_bytes = 0;
438 int i = 0;
439
440 for (i = 0; i < priv->num_rx_queues; i++) {
441 rx_packets += priv->rx_queue[i]->stats.rx_packets;
442 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
443 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
444 }
445
446 dev->stats.rx_packets = rx_packets;
447 dev->stats.rx_bytes = rx_bytes;
448 dev->stats.rx_dropped = rx_dropped;
449
450 for (i = 0; i < priv->num_tx_queues; i++) {
451 txq = netdev_get_tx_queue(dev, i);
452 tx_bytes += txq->tx_bytes;
453 tx_packets += txq->tx_packets;
454 }
455
456 dev->stats.tx_bytes = tx_bytes;
457 dev->stats.tx_packets = tx_packets;
458
459 return &dev->stats;
460 }
461
462 static const struct net_device_ops gfar_netdev_ops = {
463 .ndo_open = gfar_enet_open,
464 .ndo_start_xmit = gfar_start_xmit,
465 .ndo_stop = gfar_close,
466 .ndo_change_mtu = gfar_change_mtu,
467 .ndo_set_multicast_list = gfar_set_multi,
468 .ndo_tx_timeout = gfar_timeout,
469 .ndo_do_ioctl = gfar_ioctl,
470 .ndo_get_stats = gfar_get_stats,
471 .ndo_vlan_rx_register = gfar_vlan_rx_register,
472 .ndo_set_mac_address = eth_mac_addr,
473 .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
480 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
481
482 void lock_rx_qs(struct gfar_private *priv)
483 {
484 int i = 0x0;
485
486 for (i = 0; i < priv->num_rx_queues; i++)
487 spin_lock(&priv->rx_queue[i]->rxlock);
488 }
489
490 void lock_tx_qs(struct gfar_private *priv)
491 {
492 int i = 0x0;
493
494 for (i = 0; i < priv->num_tx_queues; i++)
495 spin_lock(&priv->tx_queue[i]->txlock);
496 }
497
498 void unlock_rx_qs(struct gfar_private *priv)
499 {
500 int i = 0x0;
501
502 for (i = 0; i < priv->num_rx_queues; i++)
503 spin_unlock(&priv->rx_queue[i]->rxlock);
504 }
505
506 void unlock_tx_qs(struct gfar_private *priv)
507 {
508 int i = 0x0;
509
510 for (i = 0; i < priv->num_tx_queues; i++)
511 spin_unlock(&priv->tx_queue[i]->txlock);
512 }
513
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
516 {
517 return priv->vlgrp || priv->rx_csum_enable ||
518 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
519 }
520
521 static void free_tx_pointers(struct gfar_private *priv)
522 {
523 int i = 0;
524
525 for (i = 0; i < priv->num_tx_queues; i++)
526 kfree(priv->tx_queue[i]);
527 }
528
529 static void free_rx_pointers(struct gfar_private *priv)
530 {
531 int i = 0;
532
533 for (i = 0; i < priv->num_rx_queues; i++)
534 kfree(priv->rx_queue[i]);
535 }
536
537 static void unmap_group_regs(struct gfar_private *priv)
538 {
539 int i = 0;
540
541 for (i = 0; i < MAXGROUPS; i++)
542 if (priv->gfargrp[i].regs)
543 iounmap(priv->gfargrp[i].regs);
544 }
545
546 static void disable_napi(struct gfar_private *priv)
547 {
548 int i = 0;
549
550 for (i = 0; i < priv->num_grps; i++)
551 napi_disable(&priv->gfargrp[i].napi);
552 }
553
554 static void enable_napi(struct gfar_private *priv)
555 {
556 int i = 0;
557
558 for (i = 0; i < priv->num_grps; i++)
559 napi_enable(&priv->gfargrp[i].napi);
560 }
561
562 static int gfar_parse_group(struct device_node *np,
563 struct gfar_private *priv, const char *model)
564 {
565 u32 *queue_mask;
566
567 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
568 if (!priv->gfargrp[priv->num_grps].regs)
569 return -ENOMEM;
570
571 priv->gfargrp[priv->num_grps].interruptTransmit =
572 irq_of_parse_and_map(np, 0);
573
574 /* If we aren't the FEC we have multiple interrupts */
575 if (model && strcasecmp(model, "FEC")) {
576 priv->gfargrp[priv->num_grps].interruptReceive =
577 irq_of_parse_and_map(np, 1);
578 priv->gfargrp[priv->num_grps].interruptError =
579 irq_of_parse_and_map(np,2);
580 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
581 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
582 priv->gfargrp[priv->num_grps].interruptError < 0) {
583 return -EINVAL;
584 }
585 }
586
587 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
588 priv->gfargrp[priv->num_grps].priv = priv;
589 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
590 if(priv->mode == MQ_MG_MODE) {
591 queue_mask = (u32 *)of_get_property(np,
592 "fsl,rx-bit-map", NULL);
593 priv->gfargrp[priv->num_grps].rx_bit_map =
594 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
595 queue_mask = (u32 *)of_get_property(np,
596 "fsl,tx-bit-map", NULL);
597 priv->gfargrp[priv->num_grps].tx_bit_map =
598 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
599 } else {
600 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
601 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
602 }
603 priv->num_grps++;
604
605 return 0;
606 }
607
608 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
609 {
610 const char *model;
611 const char *ctype;
612 const void *mac_addr;
613 int err = 0, i;
614 struct net_device *dev = NULL;
615 struct gfar_private *priv = NULL;
616 struct device_node *np = ofdev->dev.of_node;
617 struct device_node *child = NULL;
618 const u32 *stash;
619 const u32 *stash_len;
620 const u32 *stash_idx;
621 unsigned int num_tx_qs, num_rx_qs;
622 u32 *tx_queues, *rx_queues;
623
624 if (!np || !of_device_is_available(np))
625 return -ENODEV;
626
627 /* parse the num of tx and rx queues */
628 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
629 num_tx_qs = tx_queues ? *tx_queues : 1;
630
631 if (num_tx_qs > MAX_TX_QS) {
632 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
633 num_tx_qs, MAX_TX_QS);
634 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
635 return -EINVAL;
636 }
637
638 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
639 num_rx_qs = rx_queues ? *rx_queues : 1;
640
641 if (num_rx_qs > MAX_RX_QS) {
642 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
643 num_tx_qs, MAX_TX_QS);
644 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
645 return -EINVAL;
646 }
647
648 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
649 dev = *pdev;
650 if (NULL == dev)
651 return -ENOMEM;
652
653 priv = netdev_priv(dev);
654 priv->node = ofdev->dev.of_node;
655 priv->ndev = dev;
656
657 dev->num_tx_queues = num_tx_qs;
658 dev->real_num_tx_queues = num_tx_qs;
659 priv->num_tx_queues = num_tx_qs;
660 priv->num_rx_queues = num_rx_qs;
661 priv->num_grps = 0x0;
662
663 model = of_get_property(np, "model", NULL);
664
665 for (i = 0; i < MAXGROUPS; i++)
666 priv->gfargrp[i].regs = NULL;
667
668 /* Parse and initialize group specific information */
669 if (of_device_is_compatible(np, "fsl,etsec2")) {
670 priv->mode = MQ_MG_MODE;
671 for_each_child_of_node(np, child) {
672 err = gfar_parse_group(child, priv, model);
673 if (err)
674 goto err_grp_init;
675 }
676 } else {
677 priv->mode = SQ_SG_MODE;
678 err = gfar_parse_group(np, priv, model);
679 if(err)
680 goto err_grp_init;
681 }
682
683 for (i = 0; i < priv->num_tx_queues; i++)
684 priv->tx_queue[i] = NULL;
685 for (i = 0; i < priv->num_rx_queues; i++)
686 priv->rx_queue[i] = NULL;
687
688 for (i = 0; i < priv->num_tx_queues; i++) {
689 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
690 GFP_KERNEL);
691 if (!priv->tx_queue[i]) {
692 err = -ENOMEM;
693 goto tx_alloc_failed;
694 }
695 priv->tx_queue[i]->tx_skbuff = NULL;
696 priv->tx_queue[i]->qindex = i;
697 priv->tx_queue[i]->dev = dev;
698 spin_lock_init(&(priv->tx_queue[i]->txlock));
699 }
700
701 for (i = 0; i < priv->num_rx_queues; i++) {
702 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
703 GFP_KERNEL);
704 if (!priv->rx_queue[i]) {
705 err = -ENOMEM;
706 goto rx_alloc_failed;
707 }
708 priv->rx_queue[i]->rx_skbuff = NULL;
709 priv->rx_queue[i]->qindex = i;
710 priv->rx_queue[i]->dev = dev;
711 spin_lock_init(&(priv->rx_queue[i]->rxlock));
712 }
713
714
715 stash = of_get_property(np, "bd-stash", NULL);
716
717 if (stash) {
718 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
719 priv->bd_stash_en = 1;
720 }
721
722 stash_len = of_get_property(np, "rx-stash-len", NULL);
723
724 if (stash_len)
725 priv->rx_stash_size = *stash_len;
726
727 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
728
729 if (stash_idx)
730 priv->rx_stash_index = *stash_idx;
731
732 if (stash_len || stash_idx)
733 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
734
735 mac_addr = of_get_mac_address(np);
736 if (mac_addr)
737 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
738
739 if (model && !strcasecmp(model, "TSEC"))
740 priv->device_flags =
741 FSL_GIANFAR_DEV_HAS_GIGABIT |
742 FSL_GIANFAR_DEV_HAS_COALESCE |
743 FSL_GIANFAR_DEV_HAS_RMON |
744 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
745 if (model && !strcasecmp(model, "eTSEC"))
746 priv->device_flags =
747 FSL_GIANFAR_DEV_HAS_GIGABIT |
748 FSL_GIANFAR_DEV_HAS_COALESCE |
749 FSL_GIANFAR_DEV_HAS_RMON |
750 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
751 FSL_GIANFAR_DEV_HAS_PADDING |
752 FSL_GIANFAR_DEV_HAS_CSUM |
753 FSL_GIANFAR_DEV_HAS_VLAN |
754 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
755 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
756 FSL_GIANFAR_DEV_HAS_TIMER;
757
758 ctype = of_get_property(np, "phy-connection-type", NULL);
759
760 /* We only care about rgmii-id. The rest are autodetected */
761 if (ctype && !strcmp(ctype, "rgmii-id"))
762 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
763 else
764 priv->interface = PHY_INTERFACE_MODE_MII;
765
766 if (of_get_property(np, "fsl,magic-packet", NULL))
767 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
768
769 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
770
771 /* Find the TBI PHY. If it's not there, we don't support SGMII */
772 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
773
774 return 0;
775
776 rx_alloc_failed:
777 free_rx_pointers(priv);
778 tx_alloc_failed:
779 free_tx_pointers(priv);
780 err_grp_init:
781 unmap_group_regs(priv);
782 free_netdev(dev);
783 return err;
784 }
785
786 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
787 struct ifreq *ifr, int cmd)
788 {
789 struct hwtstamp_config config;
790 struct gfar_private *priv = netdev_priv(netdev);
791
792 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
793 return -EFAULT;
794
795 /* reserved for future extensions */
796 if (config.flags)
797 return -EINVAL;
798
799 switch (config.tx_type) {
800 case HWTSTAMP_TX_OFF:
801 priv->hwts_tx_en = 0;
802 break;
803 case HWTSTAMP_TX_ON:
804 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
805 return -ERANGE;
806 priv->hwts_tx_en = 1;
807 break;
808 default:
809 return -ERANGE;
810 }
811
812 switch (config.rx_filter) {
813 case HWTSTAMP_FILTER_NONE:
814 if (priv->hwts_rx_en) {
815 stop_gfar(netdev);
816 priv->hwts_rx_en = 0;
817 startup_gfar(netdev);
818 }
819 break;
820 default:
821 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
822 return -ERANGE;
823 if (!priv->hwts_rx_en) {
824 stop_gfar(netdev);
825 priv->hwts_rx_en = 1;
826 startup_gfar(netdev);
827 }
828 config.rx_filter = HWTSTAMP_FILTER_ALL;
829 break;
830 }
831
832 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
833 -EFAULT : 0;
834 }
835
836 /* Ioctl MII Interface */
837 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
838 {
839 struct gfar_private *priv = netdev_priv(dev);
840
841 if (!netif_running(dev))
842 return -EINVAL;
843
844 if (cmd == SIOCSHWTSTAMP)
845 return gfar_hwtstamp_ioctl(dev, rq, cmd);
846
847 if (!priv->phydev)
848 return -ENODEV;
849
850 return phy_mii_ioctl(priv->phydev, rq, cmd);
851 }
852
853 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
854 {
855 unsigned int new_bit_map = 0x0;
856 int mask = 0x1 << (max_qs - 1), i;
857 for (i = 0; i < max_qs; i++) {
858 if (bit_map & mask)
859 new_bit_map = new_bit_map + (1 << i);
860 mask = mask >> 0x1;
861 }
862 return new_bit_map;
863 }
864
865 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
866 u32 class)
867 {
868 u32 rqfpr = FPR_FILER_MASK;
869 u32 rqfcr = 0x0;
870
871 rqfar--;
872 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
873 ftp_rqfpr[rqfar] = rqfpr;
874 ftp_rqfcr[rqfar] = rqfcr;
875 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877 rqfar--;
878 rqfcr = RQFCR_CMP_NOMATCH;
879 ftp_rqfpr[rqfar] = rqfpr;
880 ftp_rqfcr[rqfar] = rqfcr;
881 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882
883 rqfar--;
884 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
885 rqfpr = class;
886 ftp_rqfcr[rqfar] = rqfcr;
887 ftp_rqfpr[rqfar] = rqfpr;
888 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
889
890 rqfar--;
891 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
892 rqfpr = class;
893 ftp_rqfcr[rqfar] = rqfcr;
894 ftp_rqfpr[rqfar] = rqfpr;
895 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
896
897 return rqfar;
898 }
899
900 static void gfar_init_filer_table(struct gfar_private *priv)
901 {
902 int i = 0x0;
903 u32 rqfar = MAX_FILER_IDX;
904 u32 rqfcr = 0x0;
905 u32 rqfpr = FPR_FILER_MASK;
906
907 /* Default rule */
908 rqfcr = RQFCR_CMP_MATCH;
909 ftp_rqfcr[rqfar] = rqfcr;
910 ftp_rqfpr[rqfar] = rqfpr;
911 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
917 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
918 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
919
920 /* cur_filer_idx indicated the first non-masked rule */
921 priv->cur_filer_idx = rqfar;
922
923 /* Rest are masked rules */
924 rqfcr = RQFCR_CMP_NOMATCH;
925 for (i = 0; i < rqfar; i++) {
926 ftp_rqfcr[i] = rqfcr;
927 ftp_rqfpr[i] = rqfpr;
928 gfar_write_filer(priv, i, rqfcr, rqfpr);
929 }
930 }
931
932 static void gfar_detect_errata(struct gfar_private *priv)
933 {
934 struct device *dev = &priv->ofdev->dev;
935 unsigned int pvr = mfspr(SPRN_PVR);
936 unsigned int svr = mfspr(SPRN_SVR);
937 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
938 unsigned int rev = svr & 0xffff;
939
940 /* MPC8313 Rev 2.0 and higher; All MPC837x */
941 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
942 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943 priv->errata |= GFAR_ERRATA_74;
944
945 /* MPC8313 and MPC837x all rev */
946 if ((pvr == 0x80850010 && mod == 0x80b0) ||
947 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948 priv->errata |= GFAR_ERRATA_76;
949
950 /* MPC8313 and MPC837x all rev */
951 if ((pvr == 0x80850010 && mod == 0x80b0) ||
952 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 priv->errata |= GFAR_ERRATA_A002;
954
955 if (priv->errata)
956 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
957 priv->errata);
958 }
959
960 /* Set up the ethernet device structure, private data,
961 * and anything else we need before we start */
962 static int gfar_probe(struct platform_device *ofdev,
963 const struct of_device_id *match)
964 {
965 u32 tempval;
966 struct net_device *dev = NULL;
967 struct gfar_private *priv = NULL;
968 struct gfar __iomem *regs = NULL;
969 int err = 0, i, grp_idx = 0;
970 int len_devname;
971 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
972 u32 isrg = 0;
973 u32 __iomem *baddr;
974
975 err = gfar_of_init(ofdev, &dev);
976
977 if (err)
978 return err;
979
980 priv = netdev_priv(dev);
981 priv->ndev = dev;
982 priv->ofdev = ofdev;
983 priv->node = ofdev->dev.of_node;
984 SET_NETDEV_DEV(dev, &ofdev->dev);
985
986 spin_lock_init(&priv->bflock);
987 INIT_WORK(&priv->reset_task, gfar_reset_task);
988
989 dev_set_drvdata(&ofdev->dev, priv);
990 regs = priv->gfargrp[0].regs;
991
992 gfar_detect_errata(priv);
993
994 /* Stop the DMA engine now, in case it was running before */
995 /* (The firmware could have used it, and left it running). */
996 gfar_halt(dev);
997
998 /* Reset MAC layer */
999 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001 /* We need to delay at least 3 TX clocks */
1002 udelay(2);
1003
1004 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005 gfar_write(&regs->maccfg1, tempval);
1006
1007 /* Initialize MACCFG2. */
1008 tempval = MACCFG2_INIT_SETTINGS;
1009 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011 gfar_write(&regs->maccfg2, tempval);
1012
1013 /* Initialize ECNTRL */
1014 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016 /* Set the dev->base_addr to the gfar reg region */
1017 dev->base_addr = (unsigned long) regs;
1018
1019 SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021 /* Fill in the dev structure */
1022 dev->watchdog_timeo = TX_TIMEOUT;
1023 dev->mtu = 1500;
1024 dev->netdev_ops = &gfar_netdev_ops;
1025 dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027 /* Register for napi ...We are registering NAPI for each grp */
1028 for (i = 0; i < priv->num_grps; i++)
1029 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032 priv->rx_csum_enable = 1;
1033 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1034 } else
1035 priv->rx_csum_enable = 0;
1036
1037 priv->vlgrp = NULL;
1038
1039 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1040 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041
1042 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1043 priv->extended_hash = 1;
1044 priv->hash_width = 9;
1045
1046 priv->hash_regs[0] = &regs->igaddr0;
1047 priv->hash_regs[1] = &regs->igaddr1;
1048 priv->hash_regs[2] = &regs->igaddr2;
1049 priv->hash_regs[3] = &regs->igaddr3;
1050 priv->hash_regs[4] = &regs->igaddr4;
1051 priv->hash_regs[5] = &regs->igaddr5;
1052 priv->hash_regs[6] = &regs->igaddr6;
1053 priv->hash_regs[7] = &regs->igaddr7;
1054 priv->hash_regs[8] = &regs->gaddr0;
1055 priv->hash_regs[9] = &regs->gaddr1;
1056 priv->hash_regs[10] = &regs->gaddr2;
1057 priv->hash_regs[11] = &regs->gaddr3;
1058 priv->hash_regs[12] = &regs->gaddr4;
1059 priv->hash_regs[13] = &regs->gaddr5;
1060 priv->hash_regs[14] = &regs->gaddr6;
1061 priv->hash_regs[15] = &regs->gaddr7;
1062
1063 } else {
1064 priv->extended_hash = 0;
1065 priv->hash_width = 8;
1066
1067 priv->hash_regs[0] = &regs->gaddr0;
1068 priv->hash_regs[1] = &regs->gaddr1;
1069 priv->hash_regs[2] = &regs->gaddr2;
1070 priv->hash_regs[3] = &regs->gaddr3;
1071 priv->hash_regs[4] = &regs->gaddr4;
1072 priv->hash_regs[5] = &regs->gaddr5;
1073 priv->hash_regs[6] = &regs->gaddr6;
1074 priv->hash_regs[7] = &regs->gaddr7;
1075 }
1076
1077 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1078 priv->padding = DEFAULT_PADDING;
1079 else
1080 priv->padding = 0;
1081
1082 if (dev->features & NETIF_F_IP_CSUM ||
1083 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1084 dev->hard_header_len += GMAC_FCB_LEN;
1085
1086 /* Program the isrg regs only if number of grps > 1 */
1087 if (priv->num_grps > 1) {
1088 baddr = &regs->isrg0;
1089 for (i = 0; i < priv->num_grps; i++) {
1090 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1091 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1092 gfar_write(baddr, isrg);
1093 baddr++;
1094 isrg = 0x0;
1095 }
1096 }
1097
1098 /* Need to reverse the bit maps as bit_map's MSB is q0
1099 * but, for_each_set_bit parses from right to left, which
1100 * basically reverses the queue numbers */
1101 for (i = 0; i< priv->num_grps; i++) {
1102 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1103 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1104 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1105 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1106 }
1107
1108 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1109 * also assign queues to groups */
1110 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1111 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1112 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1113 priv->num_rx_queues) {
1114 priv->gfargrp[grp_idx].num_rx_queues++;
1115 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1116 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1117 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1118 }
1119 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1120 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1121 priv->num_tx_queues) {
1122 priv->gfargrp[grp_idx].num_tx_queues++;
1123 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1125 tqueue = tqueue | (TQUEUE_EN0 >> i);
1126 }
1127 priv->gfargrp[grp_idx].rstat = rstat;
1128 priv->gfargrp[grp_idx].tstat = tstat;
1129 rstat = tstat =0;
1130 }
1131
1132 gfar_write(&regs->rqueue, rqueue);
1133 gfar_write(&regs->tqueue, tqueue);
1134
1135 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1136
1137 /* Initializing some of the rx/tx queue level parameters */
1138 for (i = 0; i < priv->num_tx_queues; i++) {
1139 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1140 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1141 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1142 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1143 }
1144
1145 for (i = 0; i < priv->num_rx_queues; i++) {
1146 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1147 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1148 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1149 }
1150
1151 /* enable filer if using multiple RX queues*/
1152 if(priv->num_rx_queues > 1)
1153 priv->rx_filer_enable = 1;
1154 /* Enable most messages by default */
1155 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157 /* Carrier starts down, phylib will bring it up */
1158 netif_carrier_off(dev);
1159
1160 err = register_netdev(dev);
1161
1162 if (err) {
1163 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1164 dev->name);
1165 goto register_fail;
1166 }
1167
1168 device_init_wakeup(&dev->dev,
1169 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1170
1171 /* fill out IRQ number and name fields */
1172 len_devname = strlen(dev->name);
1173 for (i = 0; i < priv->num_grps; i++) {
1174 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1175 len_devname);
1176 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1177 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1178 "_g", sizeof("_g"));
1179 priv->gfargrp[i].int_name_tx[
1180 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1181 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1182 priv->gfargrp[i].int_name_tx)],
1183 "_tx", sizeof("_tx") + 1);
1184
1185 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1186 len_devname);
1187 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1188 "_g", sizeof("_g"));
1189 priv->gfargrp[i].int_name_rx[
1190 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1191 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1192 priv->gfargrp[i].int_name_rx)],
1193 "_rx", sizeof("_rx") + 1);
1194
1195 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1196 len_devname);
1197 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1198 "_g", sizeof("_g"));
1199 priv->gfargrp[i].int_name_er[strlen(
1200 priv->gfargrp[i].int_name_er)] = i+48;
1201 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1202 priv->gfargrp[i].int_name_er)],
1203 "_er", sizeof("_er") + 1);
1204 } else
1205 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1206 }
1207
1208 /* Initialize the filer table */
1209 gfar_init_filer_table(priv);
1210
1211 /* Create all the sysfs files */
1212 gfar_init_sysfs(dev);
1213
1214 /* Print out the device info */
1215 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1216
1217 /* Even more device info helps when determining which kernel */
1218 /* provided which set of benchmarks. */
1219 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1220 for (i = 0; i < priv->num_rx_queues; i++)
1221 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1222 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1223 for(i = 0; i < priv->num_tx_queues; i++)
1224 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1225 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1226
1227 return 0;
1228
1229 register_fail:
1230 unmap_group_regs(priv);
1231 free_tx_pointers(priv);
1232 free_rx_pointers(priv);
1233 if (priv->phy_node)
1234 of_node_put(priv->phy_node);
1235 if (priv->tbi_node)
1236 of_node_put(priv->tbi_node);
1237 free_netdev(dev);
1238 return err;
1239 }
1240
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244
1245 if (priv->phy_node)
1246 of_node_put(priv->phy_node);
1247 if (priv->tbi_node)
1248 of_node_put(priv->tbi_node);
1249
1250 dev_set_drvdata(&ofdev->dev, NULL);
1251
1252 unregister_netdev(priv->ndev);
1253 unmap_group_regs(priv);
1254 free_netdev(priv->ndev);
1255
1256 return 0;
1257 }
1258
1259 #ifdef CONFIG_PM
1260
1261 static int gfar_suspend(struct device *dev)
1262 {
1263 struct gfar_private *priv = dev_get_drvdata(dev);
1264 struct net_device *ndev = priv->ndev;
1265 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266 unsigned long flags;
1267 u32 tempval;
1268
1269 int magic_packet = priv->wol_en &&
1270 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271
1272 netif_device_detach(ndev);
1273
1274 if (netif_running(ndev)) {
1275
1276 local_irq_save(flags);
1277 lock_tx_qs(priv);
1278 lock_rx_qs(priv);
1279
1280 gfar_halt_nodisable(ndev);
1281
1282 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283 tempval = gfar_read(&regs->maccfg1);
1284
1285 tempval &= ~MACCFG1_TX_EN;
1286
1287 if (!magic_packet)
1288 tempval &= ~MACCFG1_RX_EN;
1289
1290 gfar_write(&regs->maccfg1, tempval);
1291
1292 unlock_rx_qs(priv);
1293 unlock_tx_qs(priv);
1294 local_irq_restore(flags);
1295
1296 disable_napi(priv);
1297
1298 if (magic_packet) {
1299 /* Enable interrupt on Magic Packet */
1300 gfar_write(&regs->imask, IMASK_MAG);
1301
1302 /* Enable Magic Packet mode */
1303 tempval = gfar_read(&regs->maccfg2);
1304 tempval |= MACCFG2_MPEN;
1305 gfar_write(&regs->maccfg2, tempval);
1306 } else {
1307 phy_stop(priv->phydev);
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
1314 static int gfar_resume(struct device *dev)
1315 {
1316 struct gfar_private *priv = dev_get_drvdata(dev);
1317 struct net_device *ndev = priv->ndev;
1318 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319 unsigned long flags;
1320 u32 tempval;
1321 int magic_packet = priv->wol_en &&
1322 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1323
1324 if (!netif_running(ndev)) {
1325 netif_device_attach(ndev);
1326 return 0;
1327 }
1328
1329 if (!magic_packet && priv->phydev)
1330 phy_start(priv->phydev);
1331
1332 /* Disable Magic Packet mode, in case something
1333 * else woke us up.
1334 */
1335 local_irq_save(flags);
1336 lock_tx_qs(priv);
1337 lock_rx_qs(priv);
1338
1339 tempval = gfar_read(&regs->maccfg2);
1340 tempval &= ~MACCFG2_MPEN;
1341 gfar_write(&regs->maccfg2, tempval);
1342
1343 gfar_start(ndev);
1344
1345 unlock_rx_qs(priv);
1346 unlock_tx_qs(priv);
1347 local_irq_restore(flags);
1348
1349 netif_device_attach(ndev);
1350
1351 enable_napi(priv);
1352
1353 return 0;
1354 }
1355
1356 static int gfar_restore(struct device *dev)
1357 {
1358 struct gfar_private *priv = dev_get_drvdata(dev);
1359 struct net_device *ndev = priv->ndev;
1360
1361 if (!netif_running(ndev))
1362 return 0;
1363
1364 gfar_init_bds(ndev);
1365 init_registers(ndev);
1366 gfar_set_mac_address(ndev);
1367 gfar_init_mac(ndev);
1368 gfar_start(ndev);
1369
1370 priv->oldlink = 0;
1371 priv->oldspeed = 0;
1372 priv->oldduplex = -1;
1373
1374 if (priv->phydev)
1375 phy_start(priv->phydev);
1376
1377 netif_device_attach(ndev);
1378 enable_napi(priv);
1379
1380 return 0;
1381 }
1382
1383 static struct dev_pm_ops gfar_pm_ops = {
1384 .suspend = gfar_suspend,
1385 .resume = gfar_resume,
1386 .freeze = gfar_suspend,
1387 .thaw = gfar_resume,
1388 .restore = gfar_restore,
1389 };
1390
1391 #define GFAR_PM_OPS (&gfar_pm_ops)
1392
1393 #else
1394
1395 #define GFAR_PM_OPS NULL
1396
1397 #endif
1398
1399 /* Reads the controller's registers to determine what interface
1400 * connects it to the PHY.
1401 */
1402 static phy_interface_t gfar_get_interface(struct net_device *dev)
1403 {
1404 struct gfar_private *priv = netdev_priv(dev);
1405 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1406 u32 ecntrl;
1407
1408 ecntrl = gfar_read(&regs->ecntrl);
1409
1410 if (ecntrl & ECNTRL_SGMII_MODE)
1411 return PHY_INTERFACE_MODE_SGMII;
1412
1413 if (ecntrl & ECNTRL_TBI_MODE) {
1414 if (ecntrl & ECNTRL_REDUCED_MODE)
1415 return PHY_INTERFACE_MODE_RTBI;
1416 else
1417 return PHY_INTERFACE_MODE_TBI;
1418 }
1419
1420 if (ecntrl & ECNTRL_REDUCED_MODE) {
1421 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1422 return PHY_INTERFACE_MODE_RMII;
1423 else {
1424 phy_interface_t interface = priv->interface;
1425
1426 /*
1427 * This isn't autodetected right now, so it must
1428 * be set by the device tree or platform code.
1429 */
1430 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1431 return PHY_INTERFACE_MODE_RGMII_ID;
1432
1433 return PHY_INTERFACE_MODE_RGMII;
1434 }
1435 }
1436
1437 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1438 return PHY_INTERFACE_MODE_GMII;
1439
1440 return PHY_INTERFACE_MODE_MII;
1441 }
1442
1443
1444 /* Initializes driver's PHY state, and attaches to the PHY.
1445 * Returns 0 on success.
1446 */
1447 static int init_phy(struct net_device *dev)
1448 {
1449 struct gfar_private *priv = netdev_priv(dev);
1450 uint gigabit_support =
1451 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1452 SUPPORTED_1000baseT_Full : 0;
1453 phy_interface_t interface;
1454
1455 priv->oldlink = 0;
1456 priv->oldspeed = 0;
1457 priv->oldduplex = -1;
1458
1459 interface = gfar_get_interface(dev);
1460
1461 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1462 interface);
1463 if (!priv->phydev)
1464 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1465 interface);
1466 if (!priv->phydev) {
1467 dev_err(&dev->dev, "could not attach to PHY\n");
1468 return -ENODEV;
1469 }
1470
1471 if (interface == PHY_INTERFACE_MODE_SGMII)
1472 gfar_configure_serdes(dev);
1473
1474 /* Remove any features not supported by the controller */
1475 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1476 priv->phydev->advertising = priv->phydev->supported;
1477
1478 return 0;
1479 }
1480
1481 /*
1482 * Initialize TBI PHY interface for communicating with the
1483 * SERDES lynx PHY on the chip. We communicate with this PHY
1484 * through the MDIO bus on each controller, treating it as a
1485 * "normal" PHY at the address found in the TBIPA register. We assume
1486 * that the TBIPA register is valid. Either the MDIO bus code will set
1487 * it to a value that doesn't conflict with other PHYs on the bus, or the
1488 * value doesn't matter, as there are no other PHYs on the bus.
1489 */
1490 static void gfar_configure_serdes(struct net_device *dev)
1491 {
1492 struct gfar_private *priv = netdev_priv(dev);
1493 struct phy_device *tbiphy;
1494
1495 if (!priv->tbi_node) {
1496 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1497 "device tree specify a tbi-handle\n");
1498 return;
1499 }
1500
1501 tbiphy = of_phy_find_device(priv->tbi_node);
1502 if (!tbiphy) {
1503 dev_err(&dev->dev, "error: Could not get TBI device\n");
1504 return;
1505 }
1506
1507 /*
1508 * If the link is already up, we must already be ok, and don't need to
1509 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1510 * everything for us? Resetting it takes the link down and requires
1511 * several seconds for it to come back.
1512 */
1513 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1514 return;
1515
1516 /* Single clk mode, mii mode off(for serdes communication) */
1517 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1518
1519 phy_write(tbiphy, MII_ADVERTISE,
1520 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1521 ADVERTISE_1000XPSE_ASYM);
1522
1523 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1524 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1525 }
1526
1527 static void init_registers(struct net_device *dev)
1528 {
1529 struct gfar_private *priv = netdev_priv(dev);
1530 struct gfar __iomem *regs = NULL;
1531 int i = 0;
1532
1533 for (i = 0; i < priv->num_grps; i++) {
1534 regs = priv->gfargrp[i].regs;
1535 /* Clear IEVENT */
1536 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1537
1538 /* Initialize IMASK */
1539 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1540 }
1541
1542 regs = priv->gfargrp[0].regs;
1543 /* Init hash registers to zero */
1544 gfar_write(&regs->igaddr0, 0);
1545 gfar_write(&regs->igaddr1, 0);
1546 gfar_write(&regs->igaddr2, 0);
1547 gfar_write(&regs->igaddr3, 0);
1548 gfar_write(&regs->igaddr4, 0);
1549 gfar_write(&regs->igaddr5, 0);
1550 gfar_write(&regs->igaddr6, 0);
1551 gfar_write(&regs->igaddr7, 0);
1552
1553 gfar_write(&regs->gaddr0, 0);
1554 gfar_write(&regs->gaddr1, 0);
1555 gfar_write(&regs->gaddr2, 0);
1556 gfar_write(&regs->gaddr3, 0);
1557 gfar_write(&regs->gaddr4, 0);
1558 gfar_write(&regs->gaddr5, 0);
1559 gfar_write(&regs->gaddr6, 0);
1560 gfar_write(&regs->gaddr7, 0);
1561
1562 /* Zero out the rmon mib registers if it has them */
1563 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1564 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1565
1566 /* Mask off the CAM interrupts */
1567 gfar_write(&regs->rmon.cam1, 0xffffffff);
1568 gfar_write(&regs->rmon.cam2, 0xffffffff);
1569 }
1570
1571 /* Initialize the max receive buffer length */
1572 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1573
1574 /* Initialize the Minimum Frame Length Register */
1575 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1576 }
1577
1578 static int __gfar_is_rx_idle(struct gfar_private *priv)
1579 {
1580 u32 res;
1581
1582 /*
1583 * Normaly TSEC should not hang on GRS commands, so we should
1584 * actually wait for IEVENT_GRSC flag.
1585 */
1586 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1587 return 0;
1588
1589 /*
1590 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1591 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1592 * and the Rx can be safely reset.
1593 */
1594 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1595 res &= 0x7f807f80;
1596 if ((res & 0xffff) == (res >> 16))
1597 return 1;
1598
1599 return 0;
1600 }
1601
1602 /* Halt the receive and transmit queues */
1603 static void gfar_halt_nodisable(struct net_device *dev)
1604 {
1605 struct gfar_private *priv = netdev_priv(dev);
1606 struct gfar __iomem *regs = NULL;
1607 u32 tempval;
1608 int i = 0;
1609
1610 for (i = 0; i < priv->num_grps; i++) {
1611 regs = priv->gfargrp[i].regs;
1612 /* Mask all interrupts */
1613 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1614
1615 /* Clear all interrupts */
1616 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1617 }
1618
1619 regs = priv->gfargrp[0].regs;
1620 /* Stop the DMA, and wait for it to stop */
1621 tempval = gfar_read(&regs->dmactrl);
1622 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1623 != (DMACTRL_GRS | DMACTRL_GTS)) {
1624 int ret;
1625
1626 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1627 gfar_write(&regs->dmactrl, tempval);
1628
1629 do {
1630 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1631 (IEVENT_GRSC | IEVENT_GTSC)) ==
1632 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1633 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1634 ret = __gfar_is_rx_idle(priv);
1635 } while (!ret);
1636 }
1637 }
1638
1639 /* Halt the receive and transmit queues */
1640 void gfar_halt(struct net_device *dev)
1641 {
1642 struct gfar_private *priv = netdev_priv(dev);
1643 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1644 u32 tempval;
1645
1646 gfar_halt_nodisable(dev);
1647
1648 /* Disable Rx and Tx */
1649 tempval = gfar_read(&regs->maccfg1);
1650 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1651 gfar_write(&regs->maccfg1, tempval);
1652 }
1653
1654 static void free_grp_irqs(struct gfar_priv_grp *grp)
1655 {
1656 free_irq(grp->interruptError, grp);
1657 free_irq(grp->interruptTransmit, grp);
1658 free_irq(grp->interruptReceive, grp);
1659 }
1660
1661 void stop_gfar(struct net_device *dev)
1662 {
1663 struct gfar_private *priv = netdev_priv(dev);
1664 unsigned long flags;
1665 int i;
1666
1667 phy_stop(priv->phydev);
1668
1669
1670 /* Lock it down */
1671 local_irq_save(flags);
1672 lock_tx_qs(priv);
1673 lock_rx_qs(priv);
1674
1675 gfar_halt(dev);
1676
1677 unlock_rx_qs(priv);
1678 unlock_tx_qs(priv);
1679 local_irq_restore(flags);
1680
1681 /* Free the IRQs */
1682 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1683 for (i = 0; i < priv->num_grps; i++)
1684 free_grp_irqs(&priv->gfargrp[i]);
1685 } else {
1686 for (i = 0; i < priv->num_grps; i++)
1687 free_irq(priv->gfargrp[i].interruptTransmit,
1688 &priv->gfargrp[i]);
1689 }
1690
1691 free_skb_resources(priv);
1692 }
1693
1694 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1695 {
1696 struct txbd8 *txbdp;
1697 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1698 int i, j;
1699
1700 txbdp = tx_queue->tx_bd_base;
1701
1702 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1703 if (!tx_queue->tx_skbuff[i])
1704 continue;
1705
1706 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1707 txbdp->length, DMA_TO_DEVICE);
1708 txbdp->lstatus = 0;
1709 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1710 j++) {
1711 txbdp++;
1712 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1713 txbdp->length, DMA_TO_DEVICE);
1714 }
1715 txbdp++;
1716 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1717 tx_queue->tx_skbuff[i] = NULL;
1718 }
1719 kfree(tx_queue->tx_skbuff);
1720 }
1721
1722 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1723 {
1724 struct rxbd8 *rxbdp;
1725 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1726 int i;
1727
1728 rxbdp = rx_queue->rx_bd_base;
1729
1730 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1731 if (rx_queue->rx_skbuff[i]) {
1732 dma_unmap_single(&priv->ofdev->dev,
1733 rxbdp->bufPtr, priv->rx_buffer_size,
1734 DMA_FROM_DEVICE);
1735 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1736 rx_queue->rx_skbuff[i] = NULL;
1737 }
1738 rxbdp->lstatus = 0;
1739 rxbdp->bufPtr = 0;
1740 rxbdp++;
1741 }
1742 kfree(rx_queue->rx_skbuff);
1743 }
1744
1745 /* If there are any tx skbs or rx skbs still around, free them.
1746 * Then free tx_skbuff and rx_skbuff */
1747 static void free_skb_resources(struct gfar_private *priv)
1748 {
1749 struct gfar_priv_tx_q *tx_queue = NULL;
1750 struct gfar_priv_rx_q *rx_queue = NULL;
1751 int i;
1752
1753 /* Go through all the buffer descriptors and free their data buffers */
1754 for (i = 0; i < priv->num_tx_queues; i++) {
1755 tx_queue = priv->tx_queue[i];
1756 if(tx_queue->tx_skbuff)
1757 free_skb_tx_queue(tx_queue);
1758 }
1759
1760 for (i = 0; i < priv->num_rx_queues; i++) {
1761 rx_queue = priv->rx_queue[i];
1762 if(rx_queue->rx_skbuff)
1763 free_skb_rx_queue(rx_queue);
1764 }
1765
1766 dma_free_coherent(&priv->ofdev->dev,
1767 sizeof(struct txbd8) * priv->total_tx_ring_size +
1768 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1769 priv->tx_queue[0]->tx_bd_base,
1770 priv->tx_queue[0]->tx_bd_dma_base);
1771 skb_queue_purge(&priv->rx_recycle);
1772 }
1773
1774 void gfar_start(struct net_device *dev)
1775 {
1776 struct gfar_private *priv = netdev_priv(dev);
1777 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1778 u32 tempval;
1779 int i = 0;
1780
1781 /* Enable Rx and Tx in MACCFG1 */
1782 tempval = gfar_read(&regs->maccfg1);
1783 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1784 gfar_write(&regs->maccfg1, tempval);
1785
1786 /* Initialize DMACTRL to have WWR and WOP */
1787 tempval = gfar_read(&regs->dmactrl);
1788 tempval |= DMACTRL_INIT_SETTINGS;
1789 gfar_write(&regs->dmactrl, tempval);
1790
1791 /* Make sure we aren't stopped */
1792 tempval = gfar_read(&regs->dmactrl);
1793 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1794 gfar_write(&regs->dmactrl, tempval);
1795
1796 for (i = 0; i < priv->num_grps; i++) {
1797 regs = priv->gfargrp[i].regs;
1798 /* Clear THLT/RHLT, so that the DMA starts polling now */
1799 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1800 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1801 /* Unmask the interrupts we look for */
1802 gfar_write(&regs->imask, IMASK_DEFAULT);
1803 }
1804
1805 dev->trans_start = jiffies; /* prevent tx timeout */
1806 }
1807
1808 void gfar_configure_coalescing(struct gfar_private *priv,
1809 unsigned long tx_mask, unsigned long rx_mask)
1810 {
1811 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1812 u32 __iomem *baddr;
1813 int i = 0;
1814
1815 /* Backward compatible case ---- even if we enable
1816 * multiple queues, there's only single reg to program
1817 */
1818 gfar_write(&regs->txic, 0);
1819 if(likely(priv->tx_queue[0]->txcoalescing))
1820 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1821
1822 gfar_write(&regs->rxic, 0);
1823 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1824 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1825
1826 if (priv->mode == MQ_MG_MODE) {
1827 baddr = &regs->txic0;
1828 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1829 if (likely(priv->tx_queue[i]->txcoalescing)) {
1830 gfar_write(baddr + i, 0);
1831 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1832 }
1833 }
1834
1835 baddr = &regs->rxic0;
1836 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1837 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1838 gfar_write(baddr + i, 0);
1839 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1840 }
1841 }
1842 }
1843 }
1844
1845 static int register_grp_irqs(struct gfar_priv_grp *grp)
1846 {
1847 struct gfar_private *priv = grp->priv;
1848 struct net_device *dev = priv->ndev;
1849 int err;
1850
1851 /* If the device has multiple interrupts, register for
1852 * them. Otherwise, only register for the one */
1853 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1854 /* Install our interrupt handlers for Error,
1855 * Transmit, and Receive */
1856 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1857 grp->int_name_er,grp)) < 0) {
1858 if (netif_msg_intr(priv))
1859 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1860 dev->name, grp->interruptError);
1861
1862 goto err_irq_fail;
1863 }
1864
1865 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1866 0, grp->int_name_tx, grp)) < 0) {
1867 if (netif_msg_intr(priv))
1868 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1869 dev->name, grp->interruptTransmit);
1870 goto tx_irq_fail;
1871 }
1872
1873 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1874 grp->int_name_rx, grp)) < 0) {
1875 if (netif_msg_intr(priv))
1876 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1877 dev->name, grp->interruptReceive);
1878 goto rx_irq_fail;
1879 }
1880 } else {
1881 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882 grp->int_name_tx, grp)) < 0) {
1883 if (netif_msg_intr(priv))
1884 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1885 dev->name, grp->interruptTransmit);
1886 goto err_irq_fail;
1887 }
1888 }
1889
1890 return 0;
1891
1892 rx_irq_fail:
1893 free_irq(grp->interruptTransmit, grp);
1894 tx_irq_fail:
1895 free_irq(grp->interruptError, grp);
1896 err_irq_fail:
1897 return err;
1898
1899 }
1900
1901 /* Bring the controller up and running */
1902 int startup_gfar(struct net_device *ndev)
1903 {
1904 struct gfar_private *priv = netdev_priv(ndev);
1905 struct gfar __iomem *regs = NULL;
1906 int err, i, j;
1907
1908 for (i = 0; i < priv->num_grps; i++) {
1909 regs= priv->gfargrp[i].regs;
1910 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1911 }
1912
1913 regs= priv->gfargrp[0].regs;
1914 err = gfar_alloc_skb_resources(ndev);
1915 if (err)
1916 return err;
1917
1918 gfar_init_mac(ndev);
1919
1920 for (i = 0; i < priv->num_grps; i++) {
1921 err = register_grp_irqs(&priv->gfargrp[i]);
1922 if (err) {
1923 for (j = 0; j < i; j++)
1924 free_grp_irqs(&priv->gfargrp[j]);
1925 goto irq_fail;
1926 }
1927 }
1928
1929 /* Start the controller */
1930 gfar_start(ndev);
1931
1932 phy_start(priv->phydev);
1933
1934 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1935
1936 return 0;
1937
1938 irq_fail:
1939 free_skb_resources(priv);
1940 return err;
1941 }
1942
1943 /* Called when something needs to use the ethernet device */
1944 /* Returns 0 for success. */
1945 static int gfar_enet_open(struct net_device *dev)
1946 {
1947 struct gfar_private *priv = netdev_priv(dev);
1948 int err;
1949
1950 enable_napi(priv);
1951
1952 skb_queue_head_init(&priv->rx_recycle);
1953
1954 /* Initialize a bunch of registers */
1955 init_registers(dev);
1956
1957 gfar_set_mac_address(dev);
1958
1959 err = init_phy(dev);
1960
1961 if (err) {
1962 disable_napi(priv);
1963 return err;
1964 }
1965
1966 err = startup_gfar(dev);
1967 if (err) {
1968 disable_napi(priv);
1969 return err;
1970 }
1971
1972 netif_tx_start_all_queues(dev);
1973
1974 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1975
1976 return err;
1977 }
1978
1979 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1980 {
1981 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1982
1983 memset(fcb, 0, GMAC_FCB_LEN);
1984
1985 return fcb;
1986 }
1987
1988 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1989 {
1990 u8 flags = 0;
1991
1992 /* If we're here, it's a IP packet with a TCP or UDP
1993 * payload. We set it to checksum, using a pseudo-header
1994 * we provide
1995 */
1996 flags = TXFCB_DEFAULT;
1997
1998 /* Tell the controller what the protocol is */
1999 /* And provide the already calculated phcs */
2000 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2001 flags |= TXFCB_UDP;
2002 fcb->phcs = udp_hdr(skb)->check;
2003 } else
2004 fcb->phcs = tcp_hdr(skb)->check;
2005
2006 /* l3os is the distance between the start of the
2007 * frame (skb->data) and the start of the IP hdr.
2008 * l4os is the distance between the start of the
2009 * l3 hdr and the l4 hdr */
2010 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2011 fcb->l4os = skb_network_header_len(skb);
2012
2013 fcb->flags = flags;
2014 }
2015
2016 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017 {
2018 fcb->flags |= TXFCB_VLN;
2019 fcb->vlctl = vlan_tx_tag_get(skb);
2020 }
2021
2022 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2023 struct txbd8 *base, int ring_size)
2024 {
2025 struct txbd8 *new_bd = bdp + stride;
2026
2027 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028 }
2029
2030 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2031 int ring_size)
2032 {
2033 return skip_txbd(bdp, 1, base, ring_size);
2034 }
2035
2036 /* This is called by the kernel when a frame is ready for transmission. */
2037 /* It is pointed to by the dev->hard_start_xmit function pointer */
2038 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039 {
2040 struct gfar_private *priv = netdev_priv(dev);
2041 struct gfar_priv_tx_q *tx_queue = NULL;
2042 struct netdev_queue *txq;
2043 struct gfar __iomem *regs = NULL;
2044 struct txfcb *fcb = NULL;
2045 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2046 u32 lstatus;
2047 int i, rq = 0, do_tstamp = 0;
2048 u32 bufaddr;
2049 unsigned long flags;
2050 unsigned int nr_frags, nr_txbds, length;
2051
2052 /*
2053 * TOE=1 frames larger than 2500 bytes may see excess delays
2054 * before start of transmission.
2055 */
2056 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2057 skb->ip_summed == CHECKSUM_PARTIAL &&
2058 skb->len > 2500)) {
2059 int ret;
2060
2061 ret = skb_checksum_help(skb);
2062 if (ret)
2063 return ret;
2064 }
2065
2066 rq = skb->queue_mapping;
2067 tx_queue = priv->tx_queue[rq];
2068 txq = netdev_get_tx_queue(dev, rq);
2069 base = tx_queue->tx_bd_base;
2070 regs = tx_queue->grp->regs;
2071
2072 /* check if time stamp should be generated */
2073 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2074 priv->hwts_tx_en))
2075 do_tstamp = 1;
2076
2077 /* make space for additional header when fcb is needed */
2078 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2079 (priv->vlgrp && vlan_tx_tag_present(skb)) ||
2080 unlikely(do_tstamp)) &&
2081 (skb_headroom(skb) < GMAC_FCB_LEN)) {
2082 struct sk_buff *skb_new;
2083
2084 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2085 if (!skb_new) {
2086 dev->stats.tx_errors++;
2087 kfree_skb(skb);
2088 return NETDEV_TX_OK;
2089 }
2090 kfree_skb(skb);
2091 skb = skb_new;
2092 }
2093
2094 /* total number of fragments in the SKB */
2095 nr_frags = skb_shinfo(skb)->nr_frags;
2096
2097 /* calculate the required number of TxBDs for this skb */
2098 if (unlikely(do_tstamp))
2099 nr_txbds = nr_frags + 2;
2100 else
2101 nr_txbds = nr_frags + 1;
2102
2103 /* check if there is space to queue this packet */
2104 if (nr_txbds > tx_queue->num_txbdfree) {
2105 /* no space, stop the queue */
2106 netif_tx_stop_queue(txq);
2107 dev->stats.tx_fifo_errors++;
2108 return NETDEV_TX_BUSY;
2109 }
2110
2111 /* Update transmit stats */
2112 txq->tx_bytes += skb->len;
2113 txq->tx_packets ++;
2114
2115 txbdp = txbdp_start = tx_queue->cur_tx;
2116 lstatus = txbdp->lstatus;
2117
2118 /* Time stamp insertion requires one additional TxBD */
2119 if (unlikely(do_tstamp))
2120 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2121 tx_queue->tx_ring_size);
2122
2123 if (nr_frags == 0) {
2124 if (unlikely(do_tstamp))
2125 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2126 TXBD_INTERRUPT);
2127 else
2128 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2129 } else {
2130 /* Place the fragment addresses and lengths into the TxBDs */
2131 for (i = 0; i < nr_frags; i++) {
2132 /* Point at the next BD, wrapping as needed */
2133 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2134
2135 length = skb_shinfo(skb)->frags[i].size;
2136
2137 lstatus = txbdp->lstatus | length |
2138 BD_LFLAG(TXBD_READY);
2139
2140 /* Handle the last BD specially */
2141 if (i == nr_frags - 1)
2142 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2143
2144 bufaddr = dma_map_page(&priv->ofdev->dev,
2145 skb_shinfo(skb)->frags[i].page,
2146 skb_shinfo(skb)->frags[i].page_offset,
2147 length,
2148 DMA_TO_DEVICE);
2149
2150 /* set the TxBD length and buffer pointer */
2151 txbdp->bufPtr = bufaddr;
2152 txbdp->lstatus = lstatus;
2153 }
2154
2155 lstatus = txbdp_start->lstatus;
2156 }
2157
2158 /* Set up checksumming */
2159 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2160 fcb = gfar_add_fcb(skb);
2161 lstatus |= BD_LFLAG(TXBD_TOE);
2162 gfar_tx_checksum(skb, fcb);
2163 }
2164
2165 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2166 if (unlikely(NULL == fcb)) {
2167 fcb = gfar_add_fcb(skb);
2168 lstatus |= BD_LFLAG(TXBD_TOE);
2169 }
2170
2171 gfar_tx_vlan(skb, fcb);
2172 }
2173
2174 /* Setup tx hardware time stamping if requested */
2175 if (unlikely(do_tstamp)) {
2176 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2177 if (fcb == NULL)
2178 fcb = gfar_add_fcb(skb);
2179 fcb->ptp = 1;
2180 lstatus |= BD_LFLAG(TXBD_TOE);
2181 }
2182
2183 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2184 skb_headlen(skb), DMA_TO_DEVICE);
2185
2186 /*
2187 * If time stamping is requested one additional TxBD must be set up. The
2188 * first TxBD points to the FCB and must have a data length of
2189 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2190 * the full frame length.
2191 */
2192 if (unlikely(do_tstamp)) {
2193 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2194 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2195 (skb_headlen(skb) - GMAC_FCB_LEN);
2196 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2197 } else {
2198 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2199 }
2200
2201 /*
2202 * We can work in parallel with gfar_clean_tx_ring(), except
2203 * when modifying num_txbdfree. Note that we didn't grab the lock
2204 * when we were reading the num_txbdfree and checking for available
2205 * space, that's because outside of this function it can only grow,
2206 * and once we've got needed space, it cannot suddenly disappear.
2207 *
2208 * The lock also protects us from gfar_error(), which can modify
2209 * regs->tstat and thus retrigger the transfers, which is why we
2210 * also must grab the lock before setting ready bit for the first
2211 * to be transmitted BD.
2212 */
2213 spin_lock_irqsave(&tx_queue->txlock, flags);
2214
2215 /*
2216 * The powerpc-specific eieio() is used, as wmb() has too strong
2217 * semantics (it requires synchronization between cacheable and
2218 * uncacheable mappings, which eieio doesn't provide and which we
2219 * don't need), thus requiring a more expensive sync instruction. At
2220 * some point, the set of architecture-independent barrier functions
2221 * should be expanded to include weaker barriers.
2222 */
2223 eieio();
2224
2225 txbdp_start->lstatus = lstatus;
2226
2227 eieio(); /* force lstatus write before tx_skbuff */
2228
2229 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2230
2231 /* Update the current skb pointer to the next entry we will use
2232 * (wrapping if necessary) */
2233 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2234 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2235
2236 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2237
2238 /* reduce TxBD free count */
2239 tx_queue->num_txbdfree -= (nr_txbds);
2240
2241 /* If the next BD still needs to be cleaned up, then the bds
2242 are full. We need to tell the kernel to stop sending us stuff. */
2243 if (!tx_queue->num_txbdfree) {
2244 netif_tx_stop_queue(txq);
2245
2246 dev->stats.tx_fifo_errors++;
2247 }
2248
2249 /* Tell the DMA to go go go */
2250 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2251
2252 /* Unlock priv */
2253 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2254
2255 return NETDEV_TX_OK;
2256 }
2257
2258 /* Stops the kernel queue, and halts the controller */
2259 static int gfar_close(struct net_device *dev)
2260 {
2261 struct gfar_private *priv = netdev_priv(dev);
2262
2263 disable_napi(priv);
2264
2265 cancel_work_sync(&priv->reset_task);
2266 stop_gfar(dev);
2267
2268 /* Disconnect from the PHY */
2269 phy_disconnect(priv->phydev);
2270 priv->phydev = NULL;
2271
2272 netif_tx_stop_all_queues(dev);
2273
2274 return 0;
2275 }
2276
2277 /* Changes the mac address if the controller is not running. */
2278 static int gfar_set_mac_address(struct net_device *dev)
2279 {
2280 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2281
2282 return 0;
2283 }
2284
2285
2286 /* Enables and disables VLAN insertion/extraction */
2287 static void gfar_vlan_rx_register(struct net_device *dev,
2288 struct vlan_group *grp)
2289 {
2290 struct gfar_private *priv = netdev_priv(dev);
2291 struct gfar __iomem *regs = NULL;
2292 unsigned long flags;
2293 u32 tempval;
2294
2295 regs = priv->gfargrp[0].regs;
2296 local_irq_save(flags);
2297 lock_rx_qs(priv);
2298
2299 priv->vlgrp = grp;
2300
2301 if (grp) {
2302 /* Enable VLAN tag insertion */
2303 tempval = gfar_read(&regs->tctrl);
2304 tempval |= TCTRL_VLINS;
2305
2306 gfar_write(&regs->tctrl, tempval);
2307
2308 /* Enable VLAN tag extraction */
2309 tempval = gfar_read(&regs->rctrl);
2310 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2311 gfar_write(&regs->rctrl, tempval);
2312 } else {
2313 /* Disable VLAN tag insertion */
2314 tempval = gfar_read(&regs->tctrl);
2315 tempval &= ~TCTRL_VLINS;
2316 gfar_write(&regs->tctrl, tempval);
2317
2318 /* Disable VLAN tag extraction */
2319 tempval = gfar_read(&regs->rctrl);
2320 tempval &= ~RCTRL_VLEX;
2321 /* If parse is no longer required, then disable parser */
2322 if (tempval & RCTRL_REQ_PARSER)
2323 tempval |= RCTRL_PRSDEP_INIT;
2324 else
2325 tempval &= ~RCTRL_PRSDEP_INIT;
2326 gfar_write(&regs->rctrl, tempval);
2327 }
2328
2329 gfar_change_mtu(dev, dev->mtu);
2330
2331 unlock_rx_qs(priv);
2332 local_irq_restore(flags);
2333 }
2334
2335 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2336 {
2337 int tempsize, tempval;
2338 struct gfar_private *priv = netdev_priv(dev);
2339 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2340 int oldsize = priv->rx_buffer_size;
2341 int frame_size = new_mtu + ETH_HLEN;
2342
2343 if (priv->vlgrp)
2344 frame_size += VLAN_HLEN;
2345
2346 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2347 if (netif_msg_drv(priv))
2348 printk(KERN_ERR "%s: Invalid MTU setting\n",
2349 dev->name);
2350 return -EINVAL;
2351 }
2352
2353 if (gfar_uses_fcb(priv))
2354 frame_size += GMAC_FCB_LEN;
2355
2356 frame_size += priv->padding;
2357
2358 tempsize =
2359 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2360 INCREMENTAL_BUFFER_SIZE;
2361
2362 /* Only stop and start the controller if it isn't already
2363 * stopped, and we changed something */
2364 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2365 stop_gfar(dev);
2366
2367 priv->rx_buffer_size = tempsize;
2368
2369 dev->mtu = new_mtu;
2370
2371 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2372 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2373
2374 /* If the mtu is larger than the max size for standard
2375 * ethernet frames (ie, a jumbo frame), then set maccfg2
2376 * to allow huge frames, and to check the length */
2377 tempval = gfar_read(&regs->maccfg2);
2378
2379 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2380 gfar_has_errata(priv, GFAR_ERRATA_74))
2381 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2382 else
2383 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2384
2385 gfar_write(&regs->maccfg2, tempval);
2386
2387 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2388 startup_gfar(dev);
2389
2390 return 0;
2391 }
2392
2393 /* gfar_reset_task gets scheduled when a packet has not been
2394 * transmitted after a set amount of time.
2395 * For now, assume that clearing out all the structures, and
2396 * starting over will fix the problem.
2397 */
2398 static void gfar_reset_task(struct work_struct *work)
2399 {
2400 struct gfar_private *priv = container_of(work, struct gfar_private,
2401 reset_task);
2402 struct net_device *dev = priv->ndev;
2403
2404 if (dev->flags & IFF_UP) {
2405 netif_tx_stop_all_queues(dev);
2406 stop_gfar(dev);
2407 startup_gfar(dev);
2408 netif_tx_start_all_queues(dev);
2409 }
2410
2411 netif_tx_schedule_all(dev);
2412 }
2413
2414 static void gfar_timeout(struct net_device *dev)
2415 {
2416 struct gfar_private *priv = netdev_priv(dev);
2417
2418 dev->stats.tx_errors++;
2419 schedule_work(&priv->reset_task);
2420 }
2421
2422 static void gfar_align_skb(struct sk_buff *skb)
2423 {
2424 /* We need the data buffer to be aligned properly. We will reserve
2425 * as many bytes as needed to align the data properly
2426 */
2427 skb_reserve(skb, RXBUF_ALIGNMENT -
2428 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2429 }
2430
2431 /* Interrupt Handler for Transmit complete */
2432 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2433 {
2434 struct net_device *dev = tx_queue->dev;
2435 struct gfar_private *priv = netdev_priv(dev);
2436 struct gfar_priv_rx_q *rx_queue = NULL;
2437 struct txbd8 *bdp, *next = NULL;
2438 struct txbd8 *lbdp = NULL;
2439 struct txbd8 *base = tx_queue->tx_bd_base;
2440 struct sk_buff *skb;
2441 int skb_dirtytx;
2442 int tx_ring_size = tx_queue->tx_ring_size;
2443 int frags = 0, nr_txbds = 0;
2444 int i;
2445 int howmany = 0;
2446 u32 lstatus;
2447 size_t buflen;
2448
2449 rx_queue = priv->rx_queue[tx_queue->qindex];
2450 bdp = tx_queue->dirty_tx;
2451 skb_dirtytx = tx_queue->skb_dirtytx;
2452
2453 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2454 unsigned long flags;
2455
2456 frags = skb_shinfo(skb)->nr_frags;
2457
2458 /*
2459 * When time stamping, one additional TxBD must be freed.
2460 * Also, we need to dma_unmap_single() the TxPAL.
2461 */
2462 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2463 nr_txbds = frags + 2;
2464 else
2465 nr_txbds = frags + 1;
2466
2467 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2468
2469 lstatus = lbdp->lstatus;
2470
2471 /* Only clean completed frames */
2472 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2473 (lstatus & BD_LENGTH_MASK))
2474 break;
2475
2476 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2477 next = next_txbd(bdp, base, tx_ring_size);
2478 buflen = next->length + GMAC_FCB_LEN;
2479 } else
2480 buflen = bdp->length;
2481
2482 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2483 buflen, DMA_TO_DEVICE);
2484
2485 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2486 struct skb_shared_hwtstamps shhwtstamps;
2487 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2488 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2489 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2490 skb_tstamp_tx(skb, &shhwtstamps);
2491 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2492 bdp = next;
2493 }
2494
2495 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2496 bdp = next_txbd(bdp, base, tx_ring_size);
2497
2498 for (i = 0; i < frags; i++) {
2499 dma_unmap_page(&priv->ofdev->dev,
2500 bdp->bufPtr,
2501 bdp->length,
2502 DMA_TO_DEVICE);
2503 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2504 bdp = next_txbd(bdp, base, tx_ring_size);
2505 }
2506
2507 /*
2508 * If there's room in the queue (limit it to rx_buffer_size)
2509 * we add this skb back into the pool, if it's the right size
2510 */
2511 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2512 skb_recycle_check(skb, priv->rx_buffer_size +
2513 RXBUF_ALIGNMENT)) {
2514 gfar_align_skb(skb);
2515 __skb_queue_head(&priv->rx_recycle, skb);
2516 } else
2517 dev_kfree_skb_any(skb);
2518
2519 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2520
2521 skb_dirtytx = (skb_dirtytx + 1) &
2522 TX_RING_MOD_MASK(tx_ring_size);
2523
2524 howmany++;
2525 spin_lock_irqsave(&tx_queue->txlock, flags);
2526 tx_queue->num_txbdfree += nr_txbds;
2527 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2528 }
2529
2530 /* If we freed a buffer, we can restart transmission, if necessary */
2531 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2532 netif_wake_subqueue(dev, tx_queue->qindex);
2533
2534 /* Update dirty indicators */
2535 tx_queue->skb_dirtytx = skb_dirtytx;
2536 tx_queue->dirty_tx = bdp;
2537
2538 return howmany;
2539 }
2540
2541 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2542 {
2543 unsigned long flags;
2544
2545 spin_lock_irqsave(&gfargrp->grplock, flags);
2546 if (napi_schedule_prep(&gfargrp->napi)) {
2547 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2548 __napi_schedule(&gfargrp->napi);
2549 } else {
2550 /*
2551 * Clear IEVENT, so interrupts aren't called again
2552 * because of the packets that have already arrived.
2553 */
2554 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2555 }
2556 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2557
2558 }
2559
2560 /* Interrupt Handler for Transmit complete */
2561 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2562 {
2563 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2564 return IRQ_HANDLED;
2565 }
2566
2567 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2568 struct sk_buff *skb)
2569 {
2570 struct net_device *dev = rx_queue->dev;
2571 struct gfar_private *priv = netdev_priv(dev);
2572 dma_addr_t buf;
2573
2574 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2575 priv->rx_buffer_size, DMA_FROM_DEVICE);
2576 gfar_init_rxbdp(rx_queue, bdp, buf);
2577 }
2578
2579 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2580 {
2581 struct gfar_private *priv = netdev_priv(dev);
2582 struct sk_buff *skb = NULL;
2583
2584 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2585 if (!skb)
2586 return NULL;
2587
2588 gfar_align_skb(skb);
2589
2590 return skb;
2591 }
2592
2593 struct sk_buff * gfar_new_skb(struct net_device *dev)
2594 {
2595 struct gfar_private *priv = netdev_priv(dev);
2596 struct sk_buff *skb = NULL;
2597
2598 skb = __skb_dequeue(&priv->rx_recycle);
2599 if (!skb)
2600 skb = gfar_alloc_skb(dev);
2601
2602 return skb;
2603 }
2604
2605 static inline void count_errors(unsigned short status, struct net_device *dev)
2606 {
2607 struct gfar_private *priv = netdev_priv(dev);
2608 struct net_device_stats *stats = &dev->stats;
2609 struct gfar_extra_stats *estats = &priv->extra_stats;
2610
2611 /* If the packet was truncated, none of the other errors
2612 * matter */
2613 if (status & RXBD_TRUNCATED) {
2614 stats->rx_length_errors++;
2615
2616 estats->rx_trunc++;
2617
2618 return;
2619 }
2620 /* Count the errors, if there were any */
2621 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2622 stats->rx_length_errors++;
2623
2624 if (status & RXBD_LARGE)
2625 estats->rx_large++;
2626 else
2627 estats->rx_short++;
2628 }
2629 if (status & RXBD_NONOCTET) {
2630 stats->rx_frame_errors++;
2631 estats->rx_nonoctet++;
2632 }
2633 if (status & RXBD_CRCERR) {
2634 estats->rx_crcerr++;
2635 stats->rx_crc_errors++;
2636 }
2637 if (status & RXBD_OVERRUN) {
2638 estats->rx_overrun++;
2639 stats->rx_crc_errors++;
2640 }
2641 }
2642
2643 irqreturn_t gfar_receive(int irq, void *grp_id)
2644 {
2645 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2646 return IRQ_HANDLED;
2647 }
2648
2649 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2650 {
2651 /* If valid headers were found, and valid sums
2652 * were verified, then we tell the kernel that no
2653 * checksumming is necessary. Otherwise, it is */
2654 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2655 skb->ip_summed = CHECKSUM_UNNECESSARY;
2656 else
2657 skb->ip_summed = CHECKSUM_NONE;
2658 }
2659
2660
2661 /* gfar_process_frame() -- handle one incoming packet if skb
2662 * isn't NULL. */
2663 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2664 int amount_pull)
2665 {
2666 struct gfar_private *priv = netdev_priv(dev);
2667 struct rxfcb *fcb = NULL;
2668
2669 int ret;
2670
2671 /* fcb is at the beginning if exists */
2672 fcb = (struct rxfcb *)skb->data;
2673
2674 /* Remove the FCB from the skb */
2675 /* Remove the padded bytes, if there are any */
2676 if (amount_pull) {
2677 skb_record_rx_queue(skb, fcb->rq);
2678 skb_pull(skb, amount_pull);
2679 }
2680
2681 /* Get receive timestamp from the skb */
2682 if (priv->hwts_rx_en) {
2683 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2684 u64 *ns = (u64 *) skb->data;
2685 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2686 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2687 }
2688
2689 if (priv->padding)
2690 skb_pull(skb, priv->padding);
2691
2692 if (priv->rx_csum_enable)
2693 gfar_rx_checksum(skb, fcb);
2694
2695 /* Tell the skb what kind of packet this is */
2696 skb->protocol = eth_type_trans(skb, dev);
2697
2698 /* Send the packet up the stack */
2699 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2700 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2701 else
2702 ret = netif_receive_skb(skb);
2703
2704 if (NET_RX_DROP == ret)
2705 priv->extra_stats.kernel_dropped++;
2706
2707 return 0;
2708 }
2709
2710 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2711 * until the budget/quota has been reached. Returns the number
2712 * of frames handled
2713 */
2714 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2715 {
2716 struct net_device *dev = rx_queue->dev;
2717 struct rxbd8 *bdp, *base;
2718 struct sk_buff *skb;
2719 int pkt_len;
2720 int amount_pull;
2721 int howmany = 0;
2722 struct gfar_private *priv = netdev_priv(dev);
2723
2724 /* Get the first full descriptor */
2725 bdp = rx_queue->cur_rx;
2726 base = rx_queue->rx_bd_base;
2727
2728 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2729
2730 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2731 struct sk_buff *newskb;
2732 rmb();
2733
2734 /* Add another skb for the future */
2735 newskb = gfar_new_skb(dev);
2736
2737 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2738
2739 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2740 priv->rx_buffer_size, DMA_FROM_DEVICE);
2741
2742 if (unlikely(!(bdp->status & RXBD_ERR) &&
2743 bdp->length > priv->rx_buffer_size))
2744 bdp->status = RXBD_LARGE;
2745
2746 /* We drop the frame if we failed to allocate a new buffer */
2747 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2748 bdp->status & RXBD_ERR)) {
2749 count_errors(bdp->status, dev);
2750
2751 if (unlikely(!newskb))
2752 newskb = skb;
2753 else if (skb)
2754 __skb_queue_head(&priv->rx_recycle, skb);
2755 } else {
2756 /* Increment the number of packets */
2757 rx_queue->stats.rx_packets++;
2758 howmany++;
2759
2760 if (likely(skb)) {
2761 pkt_len = bdp->length - ETH_FCS_LEN;
2762 /* Remove the FCS from the packet length */
2763 skb_put(skb, pkt_len);
2764 rx_queue->stats.rx_bytes += pkt_len;
2765 skb_record_rx_queue(skb, rx_queue->qindex);
2766 gfar_process_frame(dev, skb, amount_pull);
2767
2768 } else {
2769 if (netif_msg_rx_err(priv))
2770 printk(KERN_WARNING
2771 "%s: Missing skb!\n", dev->name);
2772 rx_queue->stats.rx_dropped++;
2773 priv->extra_stats.rx_skbmissing++;
2774 }
2775
2776 }
2777
2778 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2779
2780 /* Setup the new bdp */
2781 gfar_new_rxbdp(rx_queue, bdp, newskb);
2782
2783 /* Update to the next pointer */
2784 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2785
2786 /* update to point at the next skb */
2787 rx_queue->skb_currx =
2788 (rx_queue->skb_currx + 1) &
2789 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2790 }
2791
2792 /* Update the current rxbd pointer to be the next one */
2793 rx_queue->cur_rx = bdp;
2794
2795 return howmany;
2796 }
2797
2798 static int gfar_poll(struct napi_struct *napi, int budget)
2799 {
2800 struct gfar_priv_grp *gfargrp = container_of(napi,
2801 struct gfar_priv_grp, napi);
2802 struct gfar_private *priv = gfargrp->priv;
2803 struct gfar __iomem *regs = gfargrp->regs;
2804 struct gfar_priv_tx_q *tx_queue = NULL;
2805 struct gfar_priv_rx_q *rx_queue = NULL;
2806 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2807 int tx_cleaned = 0, i, left_over_budget = budget;
2808 unsigned long serviced_queues = 0;
2809 int num_queues = 0;
2810
2811 num_queues = gfargrp->num_rx_queues;
2812 budget_per_queue = budget/num_queues;
2813
2814 /* Clear IEVENT, so interrupts aren't called again
2815 * because of the packets that have already arrived */
2816 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2817
2818 while (num_queues && left_over_budget) {
2819
2820 budget_per_queue = left_over_budget/num_queues;
2821 left_over_budget = 0;
2822
2823 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2824 if (test_bit(i, &serviced_queues))
2825 continue;
2826 rx_queue = priv->rx_queue[i];
2827 tx_queue = priv->tx_queue[rx_queue->qindex];
2828
2829 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2830 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2831 budget_per_queue);
2832 rx_cleaned += rx_cleaned_per_queue;
2833 if(rx_cleaned_per_queue < budget_per_queue) {
2834 left_over_budget = left_over_budget +
2835 (budget_per_queue - rx_cleaned_per_queue);
2836 set_bit(i, &serviced_queues);
2837 num_queues--;
2838 }
2839 }
2840 }
2841
2842 if (tx_cleaned)
2843 return budget;
2844
2845 if (rx_cleaned < budget) {
2846 napi_complete(napi);
2847
2848 /* Clear the halt bit in RSTAT */
2849 gfar_write(&regs->rstat, gfargrp->rstat);
2850
2851 gfar_write(&regs->imask, IMASK_DEFAULT);
2852
2853 /* If we are coalescing interrupts, update the timer */
2854 /* Otherwise, clear it */
2855 gfar_configure_coalescing(priv,
2856 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2857 }
2858
2859 return rx_cleaned;
2860 }
2861
2862 #ifdef CONFIG_NET_POLL_CONTROLLER
2863 /*
2864 * Polling 'interrupt' - used by things like netconsole to send skbs
2865 * without having to re-enable interrupts. It's not called while
2866 * the interrupt routine is executing.
2867 */
2868 static void gfar_netpoll(struct net_device *dev)
2869 {
2870 struct gfar_private *priv = netdev_priv(dev);
2871 int i = 0;
2872
2873 /* If the device has multiple interrupts, run tx/rx */
2874 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2875 for (i = 0; i < priv->num_grps; i++) {
2876 disable_irq(priv->gfargrp[i].interruptTransmit);
2877 disable_irq(priv->gfargrp[i].interruptReceive);
2878 disable_irq(priv->gfargrp[i].interruptError);
2879 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2880 &priv->gfargrp[i]);
2881 enable_irq(priv->gfargrp[i].interruptError);
2882 enable_irq(priv->gfargrp[i].interruptReceive);
2883 enable_irq(priv->gfargrp[i].interruptTransmit);
2884 }
2885 } else {
2886 for (i = 0; i < priv->num_grps; i++) {
2887 disable_irq(priv->gfargrp[i].interruptTransmit);
2888 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2889 &priv->gfargrp[i]);
2890 enable_irq(priv->gfargrp[i].interruptTransmit);
2891 }
2892 }
2893 }
2894 #endif
2895
2896 /* The interrupt handler for devices with one interrupt */
2897 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2898 {
2899 struct gfar_priv_grp *gfargrp = grp_id;
2900
2901 /* Save ievent for future reference */
2902 u32 events = gfar_read(&gfargrp->regs->ievent);
2903
2904 /* Check for reception */
2905 if (events & IEVENT_RX_MASK)
2906 gfar_receive(irq, grp_id);
2907
2908 /* Check for transmit completion */
2909 if (events & IEVENT_TX_MASK)
2910 gfar_transmit(irq, grp_id);
2911
2912 /* Check for errors */
2913 if (events & IEVENT_ERR_MASK)
2914 gfar_error(irq, grp_id);
2915
2916 return IRQ_HANDLED;
2917 }
2918
2919 /* Called every time the controller might need to be made
2920 * aware of new link state. The PHY code conveys this
2921 * information through variables in the phydev structure, and this
2922 * function converts those variables into the appropriate
2923 * register values, and can bring down the device if needed.
2924 */
2925 static void adjust_link(struct net_device *dev)
2926 {
2927 struct gfar_private *priv = netdev_priv(dev);
2928 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2929 unsigned long flags;
2930 struct phy_device *phydev = priv->phydev;
2931 int new_state = 0;
2932
2933 local_irq_save(flags);
2934 lock_tx_qs(priv);
2935
2936 if (phydev->link) {
2937 u32 tempval = gfar_read(&regs->maccfg2);
2938 u32 ecntrl = gfar_read(&regs->ecntrl);
2939
2940 /* Now we make sure that we can be in full duplex mode.
2941 * If not, we operate in half-duplex mode. */
2942 if (phydev->duplex != priv->oldduplex) {
2943 new_state = 1;
2944 if (!(phydev->duplex))
2945 tempval &= ~(MACCFG2_FULL_DUPLEX);
2946 else
2947 tempval |= MACCFG2_FULL_DUPLEX;
2948
2949 priv->oldduplex = phydev->duplex;
2950 }
2951
2952 if (phydev->speed != priv->oldspeed) {
2953 new_state = 1;
2954 switch (phydev->speed) {
2955 case 1000:
2956 tempval =
2957 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2958
2959 ecntrl &= ~(ECNTRL_R100);
2960 break;
2961 case 100:
2962 case 10:
2963 tempval =
2964 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2965
2966 /* Reduced mode distinguishes
2967 * between 10 and 100 */
2968 if (phydev->speed == SPEED_100)
2969 ecntrl |= ECNTRL_R100;
2970 else
2971 ecntrl &= ~(ECNTRL_R100);
2972 break;
2973 default:
2974 if (netif_msg_link(priv))
2975 printk(KERN_WARNING
2976 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2977 dev->name, phydev->speed);
2978 break;
2979 }
2980
2981 priv->oldspeed = phydev->speed;
2982 }
2983
2984 gfar_write(&regs->maccfg2, tempval);
2985 gfar_write(&regs->ecntrl, ecntrl);
2986
2987 if (!priv->oldlink) {
2988 new_state = 1;
2989 priv->oldlink = 1;
2990 }
2991 } else if (priv->oldlink) {
2992 new_state = 1;
2993 priv->oldlink = 0;
2994 priv->oldspeed = 0;
2995 priv->oldduplex = -1;
2996 }
2997
2998 if (new_state && netif_msg_link(priv))
2999 phy_print_status(phydev);
3000 unlock_tx_qs(priv);
3001 local_irq_restore(flags);
3002 }
3003
3004 /* Update the hash table based on the current list of multicast
3005 * addresses we subscribe to. Also, change the promiscuity of
3006 * the device based on the flags (this function is called
3007 * whenever dev->flags is changed */
3008 static void gfar_set_multi(struct net_device *dev)
3009 {
3010 struct netdev_hw_addr *ha;
3011 struct gfar_private *priv = netdev_priv(dev);
3012 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3013 u32 tempval;
3014
3015 if (dev->flags & IFF_PROMISC) {
3016 /* Set RCTRL to PROM */
3017 tempval = gfar_read(&regs->rctrl);
3018 tempval |= RCTRL_PROM;
3019 gfar_write(&regs->rctrl, tempval);
3020 } else {
3021 /* Set RCTRL to not PROM */
3022 tempval = gfar_read(&regs->rctrl);
3023 tempval &= ~(RCTRL_PROM);
3024 gfar_write(&regs->rctrl, tempval);
3025 }
3026
3027 if (dev->flags & IFF_ALLMULTI) {
3028 /* Set the hash to rx all multicast frames */
3029 gfar_write(&regs->igaddr0, 0xffffffff);
3030 gfar_write(&regs->igaddr1, 0xffffffff);
3031 gfar_write(&regs->igaddr2, 0xffffffff);
3032 gfar_write(&regs->igaddr3, 0xffffffff);
3033 gfar_write(&regs->igaddr4, 0xffffffff);
3034 gfar_write(&regs->igaddr5, 0xffffffff);
3035 gfar_write(&regs->igaddr6, 0xffffffff);
3036 gfar_write(&regs->igaddr7, 0xffffffff);
3037 gfar_write(&regs->gaddr0, 0xffffffff);
3038 gfar_write(&regs->gaddr1, 0xffffffff);
3039 gfar_write(&regs->gaddr2, 0xffffffff);
3040 gfar_write(&regs->gaddr3, 0xffffffff);
3041 gfar_write(&regs->gaddr4, 0xffffffff);
3042 gfar_write(&regs->gaddr5, 0xffffffff);
3043 gfar_write(&regs->gaddr6, 0xffffffff);
3044 gfar_write(&regs->gaddr7, 0xffffffff);
3045 } else {
3046 int em_num;
3047 int idx;
3048
3049 /* zero out the hash */
3050 gfar_write(&regs->igaddr0, 0x0);
3051 gfar_write(&regs->igaddr1, 0x0);
3052 gfar_write(&regs->igaddr2, 0x0);
3053 gfar_write(&regs->igaddr3, 0x0);
3054 gfar_write(&regs->igaddr4, 0x0);
3055 gfar_write(&regs->igaddr5, 0x0);
3056 gfar_write(&regs->igaddr6, 0x0);
3057 gfar_write(&regs->igaddr7, 0x0);
3058 gfar_write(&regs->gaddr0, 0x0);
3059 gfar_write(&regs->gaddr1, 0x0);
3060 gfar_write(&regs->gaddr2, 0x0);
3061 gfar_write(&regs->gaddr3, 0x0);
3062 gfar_write(&regs->gaddr4, 0x0);
3063 gfar_write(&regs->gaddr5, 0x0);
3064 gfar_write(&regs->gaddr6, 0x0);
3065 gfar_write(&regs->gaddr7, 0x0);
3066
3067 /* If we have extended hash tables, we need to
3068 * clear the exact match registers to prepare for
3069 * setting them */
3070 if (priv->extended_hash) {
3071 em_num = GFAR_EM_NUM + 1;
3072 gfar_clear_exact_match(dev);
3073 idx = 1;
3074 } else {
3075 idx = 0;
3076 em_num = 0;
3077 }
3078
3079 if (netdev_mc_empty(dev))
3080 return;
3081
3082 /* Parse the list, and set the appropriate bits */
3083 netdev_for_each_mc_addr(ha, dev) {
3084 if (idx < em_num) {
3085 gfar_set_mac_for_addr(dev, idx, ha->addr);
3086 idx++;
3087 } else
3088 gfar_set_hash_for_addr(dev, ha->addr);
3089 }
3090 }
3091 }
3092
3093
3094 /* Clears each of the exact match registers to zero, so they
3095 * don't interfere with normal reception */
3096 static void gfar_clear_exact_match(struct net_device *dev)
3097 {
3098 int idx;
3099 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3100
3101 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3102 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3103 }
3104
3105 /* Set the appropriate hash bit for the given addr */
3106 /* The algorithm works like so:
3107 * 1) Take the Destination Address (ie the multicast address), and
3108 * do a CRC on it (little endian), and reverse the bits of the
3109 * result.
3110 * 2) Use the 8 most significant bits as a hash into a 256-entry
3111 * table. The table is controlled through 8 32-bit registers:
3112 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3113 * gaddr7. This means that the 3 most significant bits in the
3114 * hash index which gaddr register to use, and the 5 other bits
3115 * indicate which bit (assuming an IBM numbering scheme, which
3116 * for PowerPC (tm) is usually the case) in the register holds
3117 * the entry. */
3118 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3119 {
3120 u32 tempval;
3121 struct gfar_private *priv = netdev_priv(dev);
3122 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3123 int width = priv->hash_width;
3124 u8 whichbit = (result >> (32 - width)) & 0x1f;
3125 u8 whichreg = result >> (32 - width + 5);
3126 u32 value = (1 << (31-whichbit));
3127
3128 tempval = gfar_read(priv->hash_regs[whichreg]);
3129 tempval |= value;
3130 gfar_write(priv->hash_regs[whichreg], tempval);
3131 }
3132
3133
3134 /* There are multiple MAC Address register pairs on some controllers
3135 * This function sets the numth pair to a given address
3136 */
3137 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3138 {
3139 struct gfar_private *priv = netdev_priv(dev);
3140 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3141 int idx;
3142 char tmpbuf[MAC_ADDR_LEN];
3143 u32 tempval;
3144 u32 __iomem *macptr = &regs->macstnaddr1;
3145
3146 macptr += num*2;
3147
3148 /* Now copy it into the mac registers backwards, cuz */
3149 /* little endian is silly */
3150 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3151 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3152
3153 gfar_write(macptr, *((u32 *) (tmpbuf)));
3154
3155 tempval = *((u32 *) (tmpbuf + 4));
3156
3157 gfar_write(macptr+1, tempval);
3158 }
3159
3160 /* GFAR error interrupt handler */
3161 static irqreturn_t gfar_error(int irq, void *grp_id)
3162 {
3163 struct gfar_priv_grp *gfargrp = grp_id;
3164 struct gfar __iomem *regs = gfargrp->regs;
3165 struct gfar_private *priv= gfargrp->priv;
3166 struct net_device *dev = priv->ndev;
3167
3168 /* Save ievent for future reference */
3169 u32 events = gfar_read(&regs->ievent);
3170
3171 /* Clear IEVENT */
3172 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3173
3174 /* Magic Packet is not an error. */
3175 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3176 (events & IEVENT_MAG))
3177 events &= ~IEVENT_MAG;
3178
3179 /* Hmm... */
3180 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3181 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3182 dev->name, events, gfar_read(&regs->imask));
3183
3184 /* Update the error counters */
3185 if (events & IEVENT_TXE) {
3186 dev->stats.tx_errors++;
3187
3188 if (events & IEVENT_LC)
3189 dev->stats.tx_window_errors++;
3190 if (events & IEVENT_CRL)
3191 dev->stats.tx_aborted_errors++;
3192 if (events & IEVENT_XFUN) {
3193 unsigned long flags;
3194
3195 if (netif_msg_tx_err(priv))
3196 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3197 "packet dropped.\n", dev->name);
3198 dev->stats.tx_dropped++;
3199 priv->extra_stats.tx_underrun++;
3200
3201 local_irq_save(flags);
3202 lock_tx_qs(priv);
3203
3204 /* Reactivate the Tx Queues */
3205 gfar_write(&regs->tstat, gfargrp->tstat);
3206
3207 unlock_tx_qs(priv);
3208 local_irq_restore(flags);
3209 }
3210 if (netif_msg_tx_err(priv))
3211 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3212 }
3213 if (events & IEVENT_BSY) {
3214 dev->stats.rx_errors++;
3215 priv->extra_stats.rx_bsy++;
3216
3217 gfar_receive(irq, grp_id);
3218
3219 if (netif_msg_rx_err(priv))
3220 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3221 dev->name, gfar_read(&regs->rstat));
3222 }
3223 if (events & IEVENT_BABR) {
3224 dev->stats.rx_errors++;
3225 priv->extra_stats.rx_babr++;
3226
3227 if (netif_msg_rx_err(priv))
3228 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3229 }
3230 if (events & IEVENT_EBERR) {
3231 priv->extra_stats.eberr++;
3232 if (netif_msg_rx_err(priv))
3233 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3234 }
3235 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3236 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3237
3238 if (events & IEVENT_BABT) {
3239 priv->extra_stats.tx_babt++;
3240 if (netif_msg_tx_err(priv))
3241 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3242 }
3243 return IRQ_HANDLED;
3244 }
3245
3246 static struct of_device_id gfar_match[] =
3247 {
3248 {
3249 .type = "network",
3250 .compatible = "gianfar",
3251 },
3252 {
3253 .compatible = "fsl,etsec2",
3254 },
3255 {},
3256 };
3257 MODULE_DEVICE_TABLE(of, gfar_match);
3258
3259 /* Structure for a device driver */
3260 static struct of_platform_driver gfar_driver = {
3261 .driver = {
3262 .name = "fsl-gianfar",
3263 .owner = THIS_MODULE,
3264 .pm = GFAR_PM_OPS,
3265 .of_match_table = gfar_match,
3266 },
3267 .probe = gfar_probe,
3268 .remove = gfar_remove,
3269 };
3270
3271 static int __init gfar_init(void)
3272 {
3273 return of_register_platform_driver(&gfar_driver);
3274 }
3275
3276 static void __exit gfar_exit(void)
3277 {
3278 of_unregister_platform_driver(&gfar_driver);
3279 }
3280
3281 module_init(gfar_init);
3282 module_exit(gfar_exit);
3283