Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85
86 #include <asm/io.h>
87 #include <asm/irq.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
95 #include <linux/of.h>
96
97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3";
106
107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev,
124 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 dma_addr_t buf)
153 {
154 u32 lstatus;
155
156 bdp->bufPtr = buf;
157
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162 eieio();
163
164 bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 struct gfar_private *priv = netdev_priv(ndev);
170 struct gfar_priv_tx_q *tx_queue = NULL;
171 struct gfar_priv_rx_q *rx_queue = NULL;
172 struct txbd8 *txbdp;
173 struct rxbd8 *rxbdp;
174 int i, j;
175
176 for (i = 0; i < priv->num_tx_queues; i++) {
177 tx_queue = priv->tx_queue[i];
178 /* Initialize some variables in our dev structure */
179 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 tx_queue->cur_tx = tx_queue->tx_bd_base;
182 tx_queue->skb_curtx = 0;
183 tx_queue->skb_dirtytx = 0;
184
185 /* Initialize Transmit Descriptor Ring */
186 txbdp = tx_queue->tx_bd_base;
187 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 txbdp->lstatus = 0;
189 txbdp->bufPtr = 0;
190 txbdp++;
191 }
192
193 /* Set the last descriptor in the ring to indicate wrap */
194 txbdp--;
195 txbdp->status |= TXBD_WRAP;
196 }
197
198 for (i = 0; i < priv->num_rx_queues; i++) {
199 rx_queue = priv->rx_queue[i];
200 rx_queue->cur_rx = rx_queue->rx_bd_base;
201 rx_queue->skb_currx = 0;
202 rxbdp = rx_queue->rx_bd_base;
203
204 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207 if (skb) {
208 gfar_init_rxbdp(rx_queue, rxbdp,
209 rxbdp->bufPtr);
210 } else {
211 skb = gfar_new_skb(ndev);
212 if (!skb) {
213 pr_err("%s: Can't allocate RX buffers\n",
214 ndev->name);
215 goto err_rxalloc_fail;
216 }
217 rx_queue->rx_skbuff[j] = skb;
218
219 gfar_new_rxbdp(rx_queue, rxbdp, skb);
220 }
221
222 rxbdp++;
223 }
224
225 }
226
227 return 0;
228
229 err_rxalloc_fail:
230 free_skb_resources(priv);
231 return -ENOMEM;
232 }
233
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
235 {
236 void *vaddr;
237 dma_addr_t addr;
238 int i, j, k;
239 struct gfar_private *priv = netdev_priv(ndev);
240 struct device *dev = &priv->ofdev->dev;
241 struct gfar_priv_tx_q *tx_queue = NULL;
242 struct gfar_priv_rx_q *rx_queue = NULL;
243
244 priv->total_tx_ring_size = 0;
245 for (i = 0; i < priv->num_tx_queues; i++)
246 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247
248 priv->total_rx_ring_size = 0;
249 for (i = 0; i < priv->num_rx_queues; i++)
250 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251
252 /* Allocate memory for the buffer descriptors */
253 vaddr = dma_alloc_coherent(dev,
254 sizeof(struct txbd8) * priv->total_tx_ring_size +
255 sizeof(struct rxbd8) * priv->total_rx_ring_size,
256 &addr, GFP_KERNEL);
257 if (!vaddr) {
258 if (netif_msg_ifup(priv))
259 pr_err("%s: Could not allocate buffer descriptors!\n",
260 ndev->name);
261 return -ENOMEM;
262 }
263
264 for (i = 0; i < priv->num_tx_queues; i++) {
265 tx_queue = priv->tx_queue[i];
266 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
267 tx_queue->tx_bd_dma_base = addr;
268 tx_queue->dev = ndev;
269 /* enet DMA only understands physical addresses */
270 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272 }
273
274 /* Start the rx descriptor ring where the tx ring leaves off */
275 for (i = 0; i < priv->num_rx_queues; i++) {
276 rx_queue = priv->rx_queue[i];
277 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
278 rx_queue->rx_bd_dma_base = addr;
279 rx_queue->dev = ndev;
280 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282 }
283
284 /* Setup the skbuff rings */
285 for (i = 0; i < priv->num_tx_queues; i++) {
286 tx_queue = priv->tx_queue[i];
287 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
288 tx_queue->tx_ring_size, GFP_KERNEL);
289 if (!tx_queue->tx_skbuff) {
290 if (netif_msg_ifup(priv))
291 pr_err("%s: Could not allocate tx_skbuff\n",
292 ndev->name);
293 goto cleanup;
294 }
295
296 for (k = 0; k < tx_queue->tx_ring_size; k++)
297 tx_queue->tx_skbuff[k] = NULL;
298 }
299
300 for (i = 0; i < priv->num_rx_queues; i++) {
301 rx_queue = priv->rx_queue[i];
302 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
303 rx_queue->rx_ring_size, GFP_KERNEL);
304
305 if (!rx_queue->rx_skbuff) {
306 if (netif_msg_ifup(priv))
307 pr_err("%s: Could not allocate rx_skbuff\n",
308 ndev->name);
309 goto cleanup;
310 }
311
312 for (j = 0; j < rx_queue->rx_ring_size; j++)
313 rx_queue->rx_skbuff[j] = NULL;
314 }
315
316 if (gfar_init_bds(ndev))
317 goto cleanup;
318
319 return 0;
320
321 cleanup:
322 free_skb_resources(priv);
323 return -ENOMEM;
324 }
325
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
327 {
328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
329 u32 __iomem *baddr;
330 int i;
331
332 baddr = &regs->tbase0;
333 for(i = 0; i < priv->num_tx_queues; i++) {
334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335 baddr += 2;
336 }
337
338 baddr = &regs->rbase0;
339 for(i = 0; i < priv->num_rx_queues; i++) {
340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341 baddr += 2;
342 }
343 }
344
345 static void gfar_init_mac(struct net_device *ndev)
346 {
347 struct gfar_private *priv = netdev_priv(ndev);
348 struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 u32 rctrl = 0;
350 u32 tctrl = 0;
351 u32 attrs = 0;
352
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv);
355
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv, 0xFF, 0xFF);
358
359 if (priv->rx_filer_enable) {
360 rctrl |= RCTRL_FILREN;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(&regs->rir0, DEFAULT_RIR0);
363 }
364
365 if (priv->rx_csum_enable)
366 rctrl |= RCTRL_CHECKSUMMING;
367
368 if (priv->extended_hash) {
369 rctrl |= RCTRL_EXTHASH;
370
371 gfar_clear_exact_match(ndev);
372 rctrl |= RCTRL_EMEN;
373 }
374
375 if (priv->padding) {
376 rctrl &= ~RCTRL_PAL_MASK;
377 rctrl |= RCTRL_PADDING(priv->padding);
378 }
379
380 /* keep vlan related bits if it's enabled */
381 if (priv->vlgrp) {
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 tctrl |= TCTRL_VLINS;
384 }
385
386 /* Init rctrl based on our settings */
387 gfar_write(&regs->rctrl, rctrl);
388
389 if (ndev->features & NETIF_F_IP_CSUM)
390 tctrl |= TCTRL_INIT_CSUM;
391
392 tctrl |= TCTRL_TXSCHED_PRIO;
393
394 gfar_write(&regs->tctrl, tctrl);
395
396 /* Set the extraction length and index */
397 attrs = ATTRELI_EL(priv->rx_stash_size) |
398 ATTRELI_EI(priv->rx_stash_index);
399
400 gfar_write(&regs->attreli, attrs);
401
402 /* Start with defaults, and add stashing or locking
403 * depending on the approprate variables */
404 attrs = ATTR_INIT_SETTINGS;
405
406 if (priv->bd_stash_en)
407 attrs |= ATTR_BDSTASH;
408
409 if (priv->rx_stash_size != 0)
410 attrs |= ATTR_BUFSTASH;
411
412 gfar_write(&regs->attr, attrs);
413
414 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
415 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
416 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
417 }
418
419 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
420 {
421 struct gfar_private *priv = netdev_priv(dev);
422 struct netdev_queue *txq;
423 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
424 unsigned long tx_packets = 0, tx_bytes = 0;
425 int i = 0;
426
427 for (i = 0; i < priv->num_rx_queues; i++) {
428 rx_packets += priv->rx_queue[i]->stats.rx_packets;
429 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
430 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
431 }
432
433 dev->stats.rx_packets = rx_packets;
434 dev->stats.rx_bytes = rx_bytes;
435 dev->stats.rx_dropped = rx_dropped;
436
437 for (i = 0; i < priv->num_tx_queues; i++) {
438 txq = netdev_get_tx_queue(dev, i);
439 tx_bytes += txq->tx_bytes;
440 tx_packets += txq->tx_packets;
441 }
442
443 dev->stats.tx_bytes = tx_bytes;
444 dev->stats.tx_packets = tx_packets;
445
446 return &dev->stats;
447 }
448
449 static const struct net_device_ops gfar_netdev_ops = {
450 .ndo_open = gfar_enet_open,
451 .ndo_start_xmit = gfar_start_xmit,
452 .ndo_stop = gfar_close,
453 .ndo_change_mtu = gfar_change_mtu,
454 .ndo_set_multicast_list = gfar_set_multi,
455 .ndo_tx_timeout = gfar_timeout,
456 .ndo_do_ioctl = gfar_ioctl,
457 .ndo_get_stats = gfar_get_stats,
458 .ndo_vlan_rx_register = gfar_vlan_rx_register,
459 .ndo_set_mac_address = eth_mac_addr,
460 .ndo_validate_addr = eth_validate_addr,
461 #ifdef CONFIG_NET_POLL_CONTROLLER
462 .ndo_poll_controller = gfar_netpoll,
463 #endif
464 };
465
466 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
467 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
468
469 void lock_rx_qs(struct gfar_private *priv)
470 {
471 int i = 0x0;
472
473 for (i = 0; i < priv->num_rx_queues; i++)
474 spin_lock(&priv->rx_queue[i]->rxlock);
475 }
476
477 void lock_tx_qs(struct gfar_private *priv)
478 {
479 int i = 0x0;
480
481 for (i = 0; i < priv->num_tx_queues; i++)
482 spin_lock(&priv->tx_queue[i]->txlock);
483 }
484
485 void unlock_rx_qs(struct gfar_private *priv)
486 {
487 int i = 0x0;
488
489 for (i = 0; i < priv->num_rx_queues; i++)
490 spin_unlock(&priv->rx_queue[i]->rxlock);
491 }
492
493 void unlock_tx_qs(struct gfar_private *priv)
494 {
495 int i = 0x0;
496
497 for (i = 0; i < priv->num_tx_queues; i++)
498 spin_unlock(&priv->tx_queue[i]->txlock);
499 }
500
501 /* Returns 1 if incoming frames use an FCB */
502 static inline int gfar_uses_fcb(struct gfar_private *priv)
503 {
504 return priv->vlgrp || priv->rx_csum_enable;
505 }
506
507 static void free_tx_pointers(struct gfar_private *priv)
508 {
509 int i = 0;
510
511 for (i = 0; i < priv->num_tx_queues; i++)
512 kfree(priv->tx_queue[i]);
513 }
514
515 static void free_rx_pointers(struct gfar_private *priv)
516 {
517 int i = 0;
518
519 for (i = 0; i < priv->num_rx_queues; i++)
520 kfree(priv->rx_queue[i]);
521 }
522
523 static void unmap_group_regs(struct gfar_private *priv)
524 {
525 int i = 0;
526
527 for (i = 0; i < MAXGROUPS; i++)
528 if (priv->gfargrp[i].regs)
529 iounmap(priv->gfargrp[i].regs);
530 }
531
532 static void disable_napi(struct gfar_private *priv)
533 {
534 int i = 0;
535
536 for (i = 0; i < priv->num_grps; i++)
537 napi_disable(&priv->gfargrp[i].napi);
538 }
539
540 static void enable_napi(struct gfar_private *priv)
541 {
542 int i = 0;
543
544 for (i = 0; i < priv->num_grps; i++)
545 napi_enable(&priv->gfargrp[i].napi);
546 }
547
548 static int gfar_parse_group(struct device_node *np,
549 struct gfar_private *priv, const char *model)
550 {
551 u32 *queue_mask;
552
553 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
554 if (!priv->gfargrp[priv->num_grps].regs)
555 return -ENOMEM;
556
557 priv->gfargrp[priv->num_grps].interruptTransmit =
558 irq_of_parse_and_map(np, 0);
559
560 /* If we aren't the FEC we have multiple interrupts */
561 if (model && strcasecmp(model, "FEC")) {
562 priv->gfargrp[priv->num_grps].interruptReceive =
563 irq_of_parse_and_map(np, 1);
564 priv->gfargrp[priv->num_grps].interruptError =
565 irq_of_parse_and_map(np,2);
566 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
567 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
568 priv->gfargrp[priv->num_grps].interruptError < 0) {
569 return -EINVAL;
570 }
571 }
572
573 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
574 priv->gfargrp[priv->num_grps].priv = priv;
575 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
576 if(priv->mode == MQ_MG_MODE) {
577 queue_mask = (u32 *)of_get_property(np,
578 "fsl,rx-bit-map", NULL);
579 priv->gfargrp[priv->num_grps].rx_bit_map =
580 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
581 queue_mask = (u32 *)of_get_property(np,
582 "fsl,tx-bit-map", NULL);
583 priv->gfargrp[priv->num_grps].tx_bit_map =
584 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
585 } else {
586 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
587 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
588 }
589 priv->num_grps++;
590
591 return 0;
592 }
593
594 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
595 {
596 const char *model;
597 const char *ctype;
598 const void *mac_addr;
599 int err = 0, i;
600 struct net_device *dev = NULL;
601 struct gfar_private *priv = NULL;
602 struct device_node *np = ofdev->node;
603 struct device_node *child = NULL;
604 const u32 *stash;
605 const u32 *stash_len;
606 const u32 *stash_idx;
607 unsigned int num_tx_qs, num_rx_qs;
608 u32 *tx_queues, *rx_queues;
609
610 if (!np || !of_device_is_available(np))
611 return -ENODEV;
612
613 /* parse the num of tx and rx queues */
614 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
615 num_tx_qs = tx_queues ? *tx_queues : 1;
616
617 if (num_tx_qs > MAX_TX_QS) {
618 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
619 num_tx_qs, MAX_TX_QS);
620 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
621 return -EINVAL;
622 }
623
624 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
625 num_rx_qs = rx_queues ? *rx_queues : 1;
626
627 if (num_rx_qs > MAX_RX_QS) {
628 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
629 num_tx_qs, MAX_TX_QS);
630 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
631 return -EINVAL;
632 }
633
634 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
635 dev = *pdev;
636 if (NULL == dev)
637 return -ENOMEM;
638
639 priv = netdev_priv(dev);
640 priv->node = ofdev->node;
641 priv->ndev = dev;
642
643 dev->num_tx_queues = num_tx_qs;
644 dev->real_num_tx_queues = num_tx_qs;
645 priv->num_tx_queues = num_tx_qs;
646 priv->num_rx_queues = num_rx_qs;
647 priv->num_grps = 0x0;
648
649 model = of_get_property(np, "model", NULL);
650
651 for (i = 0; i < MAXGROUPS; i++)
652 priv->gfargrp[i].regs = NULL;
653
654 /* Parse and initialize group specific information */
655 if (of_device_is_compatible(np, "fsl,etsec2")) {
656 priv->mode = MQ_MG_MODE;
657 for_each_child_of_node(np, child) {
658 err = gfar_parse_group(child, priv, model);
659 if (err)
660 goto err_grp_init;
661 }
662 } else {
663 priv->mode = SQ_SG_MODE;
664 err = gfar_parse_group(np, priv, model);
665 if(err)
666 goto err_grp_init;
667 }
668
669 for (i = 0; i < priv->num_tx_queues; i++)
670 priv->tx_queue[i] = NULL;
671 for (i = 0; i < priv->num_rx_queues; i++)
672 priv->rx_queue[i] = NULL;
673
674 for (i = 0; i < priv->num_tx_queues; i++) {
675 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kzalloc(
676 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
677 if (!priv->tx_queue[i]) {
678 err = -ENOMEM;
679 goto tx_alloc_failed;
680 }
681 priv->tx_queue[i]->tx_skbuff = NULL;
682 priv->tx_queue[i]->qindex = i;
683 priv->tx_queue[i]->dev = dev;
684 spin_lock_init(&(priv->tx_queue[i]->txlock));
685 }
686
687 for (i = 0; i < priv->num_rx_queues; i++) {
688 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kzalloc(
689 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
690 if (!priv->rx_queue[i]) {
691 err = -ENOMEM;
692 goto rx_alloc_failed;
693 }
694 priv->rx_queue[i]->rx_skbuff = NULL;
695 priv->rx_queue[i]->qindex = i;
696 priv->rx_queue[i]->dev = dev;
697 spin_lock_init(&(priv->rx_queue[i]->rxlock));
698 }
699
700
701 stash = of_get_property(np, "bd-stash", NULL);
702
703 if (stash) {
704 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
705 priv->bd_stash_en = 1;
706 }
707
708 stash_len = of_get_property(np, "rx-stash-len", NULL);
709
710 if (stash_len)
711 priv->rx_stash_size = *stash_len;
712
713 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
714
715 if (stash_idx)
716 priv->rx_stash_index = *stash_idx;
717
718 if (stash_len || stash_idx)
719 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
720
721 mac_addr = of_get_mac_address(np);
722 if (mac_addr)
723 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
724
725 if (model && !strcasecmp(model, "TSEC"))
726 priv->device_flags =
727 FSL_GIANFAR_DEV_HAS_GIGABIT |
728 FSL_GIANFAR_DEV_HAS_COALESCE |
729 FSL_GIANFAR_DEV_HAS_RMON |
730 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
731 if (model && !strcasecmp(model, "eTSEC"))
732 priv->device_flags =
733 FSL_GIANFAR_DEV_HAS_GIGABIT |
734 FSL_GIANFAR_DEV_HAS_COALESCE |
735 FSL_GIANFAR_DEV_HAS_RMON |
736 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
737 FSL_GIANFAR_DEV_HAS_PADDING |
738 FSL_GIANFAR_DEV_HAS_CSUM |
739 FSL_GIANFAR_DEV_HAS_VLAN |
740 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
741 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
742
743 ctype = of_get_property(np, "phy-connection-type", NULL);
744
745 /* We only care about rgmii-id. The rest are autodetected */
746 if (ctype && !strcmp(ctype, "rgmii-id"))
747 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
748 else
749 priv->interface = PHY_INTERFACE_MODE_MII;
750
751 if (of_get_property(np, "fsl,magic-packet", NULL))
752 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
753
754 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
755
756 /* Find the TBI PHY. If it's not there, we don't support SGMII */
757 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
758
759 return 0;
760
761 rx_alloc_failed:
762 free_rx_pointers(priv);
763 tx_alloc_failed:
764 free_tx_pointers(priv);
765 err_grp_init:
766 unmap_group_regs(priv);
767 free_netdev(dev);
768 return err;
769 }
770
771 /* Ioctl MII Interface */
772 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
773 {
774 struct gfar_private *priv = netdev_priv(dev);
775
776 if (!netif_running(dev))
777 return -EINVAL;
778
779 if (!priv->phydev)
780 return -ENODEV;
781
782 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
783 }
784
785 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
786 {
787 unsigned int new_bit_map = 0x0;
788 int mask = 0x1 << (max_qs - 1), i;
789 for (i = 0; i < max_qs; i++) {
790 if (bit_map & mask)
791 new_bit_map = new_bit_map + (1 << i);
792 mask = mask >> 0x1;
793 }
794 return new_bit_map;
795 }
796
797 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
798 u32 class)
799 {
800 u32 rqfpr = FPR_FILER_MASK;
801 u32 rqfcr = 0x0;
802
803 rqfar--;
804 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
805 ftp_rqfpr[rqfar] = rqfpr;
806 ftp_rqfcr[rqfar] = rqfcr;
807 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
808
809 rqfar--;
810 rqfcr = RQFCR_CMP_NOMATCH;
811 ftp_rqfpr[rqfar] = rqfpr;
812 ftp_rqfcr[rqfar] = rqfcr;
813 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
814
815 rqfar--;
816 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
817 rqfpr = class;
818 ftp_rqfcr[rqfar] = rqfcr;
819 ftp_rqfpr[rqfar] = rqfpr;
820 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
821
822 rqfar--;
823 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
824 rqfpr = class;
825 ftp_rqfcr[rqfar] = rqfcr;
826 ftp_rqfpr[rqfar] = rqfpr;
827 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
828
829 return rqfar;
830 }
831
832 static void gfar_init_filer_table(struct gfar_private *priv)
833 {
834 int i = 0x0;
835 u32 rqfar = MAX_FILER_IDX;
836 u32 rqfcr = 0x0;
837 u32 rqfpr = FPR_FILER_MASK;
838
839 /* Default rule */
840 rqfcr = RQFCR_CMP_MATCH;
841 ftp_rqfcr[rqfar] = rqfcr;
842 ftp_rqfpr[rqfar] = rqfpr;
843 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
844
845 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
846 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
847 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
848 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
849 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
850 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
851
852 /* cur_filer_idx indicated the fisrt non-masked rule */
853 priv->cur_filer_idx = rqfar;
854
855 /* Rest are masked rules */
856 rqfcr = RQFCR_CMP_NOMATCH;
857 for (i = 0; i < rqfar; i++) {
858 ftp_rqfcr[i] = rqfcr;
859 ftp_rqfpr[i] = rqfpr;
860 gfar_write_filer(priv, i, rqfcr, rqfpr);
861 }
862 }
863
864 /* Set up the ethernet device structure, private data,
865 * and anything else we need before we start */
866 static int gfar_probe(struct of_device *ofdev,
867 const struct of_device_id *match)
868 {
869 u32 tempval;
870 struct net_device *dev = NULL;
871 struct gfar_private *priv = NULL;
872 struct gfar __iomem *regs = NULL;
873 int err = 0, i, grp_idx = 0;
874 int len_devname;
875 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
876 u32 isrg = 0;
877 u32 __iomem *baddr;
878
879 err = gfar_of_init(ofdev, &dev);
880
881 if (err)
882 return err;
883
884 priv = netdev_priv(dev);
885 priv->ndev = dev;
886 priv->ofdev = ofdev;
887 priv->node = ofdev->node;
888 SET_NETDEV_DEV(dev, &ofdev->dev);
889
890 spin_lock_init(&priv->bflock);
891 INIT_WORK(&priv->reset_task, gfar_reset_task);
892
893 dev_set_drvdata(&ofdev->dev, priv);
894 regs = priv->gfargrp[0].regs;
895
896 /* Stop the DMA engine now, in case it was running before */
897 /* (The firmware could have used it, and left it running). */
898 gfar_halt(dev);
899
900 /* Reset MAC layer */
901 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
902
903 /* We need to delay at least 3 TX clocks */
904 udelay(2);
905
906 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
907 gfar_write(&regs->maccfg1, tempval);
908
909 /* Initialize MACCFG2. */
910 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
911
912 /* Initialize ECNTRL */
913 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
914
915 /* Set the dev->base_addr to the gfar reg region */
916 dev->base_addr = (unsigned long) regs;
917
918 SET_NETDEV_DEV(dev, &ofdev->dev);
919
920 /* Fill in the dev structure */
921 dev->watchdog_timeo = TX_TIMEOUT;
922 dev->mtu = 1500;
923 dev->netdev_ops = &gfar_netdev_ops;
924 dev->ethtool_ops = &gfar_ethtool_ops;
925
926 /* Register for napi ...We are registering NAPI for each grp */
927 for (i = 0; i < priv->num_grps; i++)
928 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
929
930 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
931 priv->rx_csum_enable = 1;
932 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
933 } else
934 priv->rx_csum_enable = 0;
935
936 priv->vlgrp = NULL;
937
938 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
939 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
940
941 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
942 priv->extended_hash = 1;
943 priv->hash_width = 9;
944
945 priv->hash_regs[0] = &regs->igaddr0;
946 priv->hash_regs[1] = &regs->igaddr1;
947 priv->hash_regs[2] = &regs->igaddr2;
948 priv->hash_regs[3] = &regs->igaddr3;
949 priv->hash_regs[4] = &regs->igaddr4;
950 priv->hash_regs[5] = &regs->igaddr5;
951 priv->hash_regs[6] = &regs->igaddr6;
952 priv->hash_regs[7] = &regs->igaddr7;
953 priv->hash_regs[8] = &regs->gaddr0;
954 priv->hash_regs[9] = &regs->gaddr1;
955 priv->hash_regs[10] = &regs->gaddr2;
956 priv->hash_regs[11] = &regs->gaddr3;
957 priv->hash_regs[12] = &regs->gaddr4;
958 priv->hash_regs[13] = &regs->gaddr5;
959 priv->hash_regs[14] = &regs->gaddr6;
960 priv->hash_regs[15] = &regs->gaddr7;
961
962 } else {
963 priv->extended_hash = 0;
964 priv->hash_width = 8;
965
966 priv->hash_regs[0] = &regs->gaddr0;
967 priv->hash_regs[1] = &regs->gaddr1;
968 priv->hash_regs[2] = &regs->gaddr2;
969 priv->hash_regs[3] = &regs->gaddr3;
970 priv->hash_regs[4] = &regs->gaddr4;
971 priv->hash_regs[5] = &regs->gaddr5;
972 priv->hash_regs[6] = &regs->gaddr6;
973 priv->hash_regs[7] = &regs->gaddr7;
974 }
975
976 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
977 priv->padding = DEFAULT_PADDING;
978 else
979 priv->padding = 0;
980
981 if (dev->features & NETIF_F_IP_CSUM)
982 dev->hard_header_len += GMAC_FCB_LEN;
983
984 /* Program the isrg regs only if number of grps > 1 */
985 if (priv->num_grps > 1) {
986 baddr = &regs->isrg0;
987 for (i = 0; i < priv->num_grps; i++) {
988 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
989 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
990 gfar_write(baddr, isrg);
991 baddr++;
992 isrg = 0x0;
993 }
994 }
995
996 /* Need to reverse the bit maps as bit_map's MSB is q0
997 * but, for_each_set_bit parses from right to left, which
998 * basically reverses the queue numbers */
999 for (i = 0; i< priv->num_grps; i++) {
1000 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1001 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1002 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1003 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1004 }
1005
1006 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1007 * also assign queues to groups */
1008 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1009 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1010 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1011 priv->num_rx_queues) {
1012 priv->gfargrp[grp_idx].num_rx_queues++;
1013 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1014 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1015 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1016 }
1017 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1018 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1019 priv->num_tx_queues) {
1020 priv->gfargrp[grp_idx].num_tx_queues++;
1021 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1022 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1023 tqueue = tqueue | (TQUEUE_EN0 >> i);
1024 }
1025 priv->gfargrp[grp_idx].rstat = rstat;
1026 priv->gfargrp[grp_idx].tstat = tstat;
1027 rstat = tstat =0;
1028 }
1029
1030 gfar_write(&regs->rqueue, rqueue);
1031 gfar_write(&regs->tqueue, tqueue);
1032
1033 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1034
1035 /* Initializing some of the rx/tx queue level parameters */
1036 for (i = 0; i < priv->num_tx_queues; i++) {
1037 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1038 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1039 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1040 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1041 }
1042
1043 for (i = 0; i < priv->num_rx_queues; i++) {
1044 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1045 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1046 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1047 }
1048
1049 /* enable filer if using multiple RX queues*/
1050 if(priv->num_rx_queues > 1)
1051 priv->rx_filer_enable = 1;
1052 /* Enable most messages by default */
1053 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1054
1055 /* Carrier starts down, phylib will bring it up */
1056 netif_carrier_off(dev);
1057
1058 err = register_netdev(dev);
1059
1060 if (err) {
1061 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1062 dev->name);
1063 goto register_fail;
1064 }
1065
1066 device_init_wakeup(&dev->dev,
1067 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1068
1069 /* fill out IRQ number and name fields */
1070 len_devname = strlen(dev->name);
1071 for (i = 0; i < priv->num_grps; i++) {
1072 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1073 len_devname);
1074 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1075 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1076 "_g", sizeof("_g"));
1077 priv->gfargrp[i].int_name_tx[
1078 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1079 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1080 priv->gfargrp[i].int_name_tx)],
1081 "_tx", sizeof("_tx") + 1);
1082
1083 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1084 len_devname);
1085 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1086 "_g", sizeof("_g"));
1087 priv->gfargrp[i].int_name_rx[
1088 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1089 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1090 priv->gfargrp[i].int_name_rx)],
1091 "_rx", sizeof("_rx") + 1);
1092
1093 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1094 len_devname);
1095 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1096 "_g", sizeof("_g"));
1097 priv->gfargrp[i].int_name_er[strlen(
1098 priv->gfargrp[i].int_name_er)] = i+48;
1099 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1100 priv->gfargrp[i].int_name_er)],
1101 "_er", sizeof("_er") + 1);
1102 } else
1103 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1104 }
1105
1106 /* Initialize the filer table */
1107 gfar_init_filer_table(priv);
1108
1109 /* Create all the sysfs files */
1110 gfar_init_sysfs(dev);
1111
1112 /* Print out the device info */
1113 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1114
1115 /* Even more device info helps when determining which kernel */
1116 /* provided which set of benchmarks. */
1117 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1118 for (i = 0; i < priv->num_rx_queues; i++)
1119 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1120 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1121 for(i = 0; i < priv->num_tx_queues; i++)
1122 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1123 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1124
1125 return 0;
1126
1127 register_fail:
1128 unmap_group_regs(priv);
1129 free_tx_pointers(priv);
1130 free_rx_pointers(priv);
1131 if (priv->phy_node)
1132 of_node_put(priv->phy_node);
1133 if (priv->tbi_node)
1134 of_node_put(priv->tbi_node);
1135 free_netdev(dev);
1136 return err;
1137 }
1138
1139 static int gfar_remove(struct of_device *ofdev)
1140 {
1141 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1142
1143 if (priv->phy_node)
1144 of_node_put(priv->phy_node);
1145 if (priv->tbi_node)
1146 of_node_put(priv->tbi_node);
1147
1148 dev_set_drvdata(&ofdev->dev, NULL);
1149
1150 unregister_netdev(priv->ndev);
1151 unmap_group_regs(priv);
1152 free_netdev(priv->ndev);
1153
1154 return 0;
1155 }
1156
1157 #ifdef CONFIG_PM
1158
1159 static int gfar_suspend(struct device *dev)
1160 {
1161 struct gfar_private *priv = dev_get_drvdata(dev);
1162 struct net_device *ndev = priv->ndev;
1163 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1164 unsigned long flags;
1165 u32 tempval;
1166
1167 int magic_packet = priv->wol_en &&
1168 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169
1170 netif_device_detach(ndev);
1171
1172 if (netif_running(ndev)) {
1173
1174 local_irq_save(flags);
1175 lock_tx_qs(priv);
1176 lock_rx_qs(priv);
1177
1178 gfar_halt_nodisable(ndev);
1179
1180 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1181 tempval = gfar_read(&regs->maccfg1);
1182
1183 tempval &= ~MACCFG1_TX_EN;
1184
1185 if (!magic_packet)
1186 tempval &= ~MACCFG1_RX_EN;
1187
1188 gfar_write(&regs->maccfg1, tempval);
1189
1190 unlock_rx_qs(priv);
1191 unlock_tx_qs(priv);
1192 local_irq_restore(flags);
1193
1194 disable_napi(priv);
1195
1196 if (magic_packet) {
1197 /* Enable interrupt on Magic Packet */
1198 gfar_write(&regs->imask, IMASK_MAG);
1199
1200 /* Enable Magic Packet mode */
1201 tempval = gfar_read(&regs->maccfg2);
1202 tempval |= MACCFG2_MPEN;
1203 gfar_write(&regs->maccfg2, tempval);
1204 } else {
1205 phy_stop(priv->phydev);
1206 }
1207 }
1208
1209 return 0;
1210 }
1211
1212 static int gfar_resume(struct device *dev)
1213 {
1214 struct gfar_private *priv = dev_get_drvdata(dev);
1215 struct net_device *ndev = priv->ndev;
1216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1217 unsigned long flags;
1218 u32 tempval;
1219 int magic_packet = priv->wol_en &&
1220 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1221
1222 if (!netif_running(ndev)) {
1223 netif_device_attach(ndev);
1224 return 0;
1225 }
1226
1227 if (!magic_packet && priv->phydev)
1228 phy_start(priv->phydev);
1229
1230 /* Disable Magic Packet mode, in case something
1231 * else woke us up.
1232 */
1233 local_irq_save(flags);
1234 lock_tx_qs(priv);
1235 lock_rx_qs(priv);
1236
1237 tempval = gfar_read(&regs->maccfg2);
1238 tempval &= ~MACCFG2_MPEN;
1239 gfar_write(&regs->maccfg2, tempval);
1240
1241 gfar_start(ndev);
1242
1243 unlock_rx_qs(priv);
1244 unlock_tx_qs(priv);
1245 local_irq_restore(flags);
1246
1247 netif_device_attach(ndev);
1248
1249 enable_napi(priv);
1250
1251 return 0;
1252 }
1253
1254 static int gfar_restore(struct device *dev)
1255 {
1256 struct gfar_private *priv = dev_get_drvdata(dev);
1257 struct net_device *ndev = priv->ndev;
1258
1259 if (!netif_running(ndev))
1260 return 0;
1261
1262 gfar_init_bds(ndev);
1263 init_registers(ndev);
1264 gfar_set_mac_address(ndev);
1265 gfar_init_mac(ndev);
1266 gfar_start(ndev);
1267
1268 priv->oldlink = 0;
1269 priv->oldspeed = 0;
1270 priv->oldduplex = -1;
1271
1272 if (priv->phydev)
1273 phy_start(priv->phydev);
1274
1275 netif_device_attach(ndev);
1276 enable_napi(priv);
1277
1278 return 0;
1279 }
1280
1281 static struct dev_pm_ops gfar_pm_ops = {
1282 .suspend = gfar_suspend,
1283 .resume = gfar_resume,
1284 .freeze = gfar_suspend,
1285 .thaw = gfar_resume,
1286 .restore = gfar_restore,
1287 };
1288
1289 #define GFAR_PM_OPS (&gfar_pm_ops)
1290
1291 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1292 {
1293 return gfar_suspend(&ofdev->dev);
1294 }
1295
1296 static int gfar_legacy_resume(struct of_device *ofdev)
1297 {
1298 return gfar_resume(&ofdev->dev);
1299 }
1300
1301 #else
1302
1303 #define GFAR_PM_OPS NULL
1304 #define gfar_legacy_suspend NULL
1305 #define gfar_legacy_resume NULL
1306
1307 #endif
1308
1309 /* Reads the controller's registers to determine what interface
1310 * connects it to the PHY.
1311 */
1312 static phy_interface_t gfar_get_interface(struct net_device *dev)
1313 {
1314 struct gfar_private *priv = netdev_priv(dev);
1315 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1316 u32 ecntrl;
1317
1318 ecntrl = gfar_read(&regs->ecntrl);
1319
1320 if (ecntrl & ECNTRL_SGMII_MODE)
1321 return PHY_INTERFACE_MODE_SGMII;
1322
1323 if (ecntrl & ECNTRL_TBI_MODE) {
1324 if (ecntrl & ECNTRL_REDUCED_MODE)
1325 return PHY_INTERFACE_MODE_RTBI;
1326 else
1327 return PHY_INTERFACE_MODE_TBI;
1328 }
1329
1330 if (ecntrl & ECNTRL_REDUCED_MODE) {
1331 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1332 return PHY_INTERFACE_MODE_RMII;
1333 else {
1334 phy_interface_t interface = priv->interface;
1335
1336 /*
1337 * This isn't autodetected right now, so it must
1338 * be set by the device tree or platform code.
1339 */
1340 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1341 return PHY_INTERFACE_MODE_RGMII_ID;
1342
1343 return PHY_INTERFACE_MODE_RGMII;
1344 }
1345 }
1346
1347 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1348 return PHY_INTERFACE_MODE_GMII;
1349
1350 return PHY_INTERFACE_MODE_MII;
1351 }
1352
1353
1354 /* Initializes driver's PHY state, and attaches to the PHY.
1355 * Returns 0 on success.
1356 */
1357 static int init_phy(struct net_device *dev)
1358 {
1359 struct gfar_private *priv = netdev_priv(dev);
1360 uint gigabit_support =
1361 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1362 SUPPORTED_1000baseT_Full : 0;
1363 phy_interface_t interface;
1364
1365 priv->oldlink = 0;
1366 priv->oldspeed = 0;
1367 priv->oldduplex = -1;
1368
1369 interface = gfar_get_interface(dev);
1370
1371 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1372 interface);
1373 if (!priv->phydev)
1374 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1375 interface);
1376 if (!priv->phydev) {
1377 dev_err(&dev->dev, "could not attach to PHY\n");
1378 return -ENODEV;
1379 }
1380
1381 if (interface == PHY_INTERFACE_MODE_SGMII)
1382 gfar_configure_serdes(dev);
1383
1384 /* Remove any features not supported by the controller */
1385 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1386 priv->phydev->advertising = priv->phydev->supported;
1387
1388 return 0;
1389 }
1390
1391 /*
1392 * Initialize TBI PHY interface for communicating with the
1393 * SERDES lynx PHY on the chip. We communicate with this PHY
1394 * through the MDIO bus on each controller, treating it as a
1395 * "normal" PHY at the address found in the TBIPA register. We assume
1396 * that the TBIPA register is valid. Either the MDIO bus code will set
1397 * it to a value that doesn't conflict with other PHYs on the bus, or the
1398 * value doesn't matter, as there are no other PHYs on the bus.
1399 */
1400 static void gfar_configure_serdes(struct net_device *dev)
1401 {
1402 struct gfar_private *priv = netdev_priv(dev);
1403 struct phy_device *tbiphy;
1404
1405 if (!priv->tbi_node) {
1406 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1407 "device tree specify a tbi-handle\n");
1408 return;
1409 }
1410
1411 tbiphy = of_phy_find_device(priv->tbi_node);
1412 if (!tbiphy) {
1413 dev_err(&dev->dev, "error: Could not get TBI device\n");
1414 return;
1415 }
1416
1417 /*
1418 * If the link is already up, we must already be ok, and don't need to
1419 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1420 * everything for us? Resetting it takes the link down and requires
1421 * several seconds for it to come back.
1422 */
1423 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1424 return;
1425
1426 /* Single clk mode, mii mode off(for serdes communication) */
1427 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1428
1429 phy_write(tbiphy, MII_ADVERTISE,
1430 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1431 ADVERTISE_1000XPSE_ASYM);
1432
1433 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1434 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1435 }
1436
1437 static void init_registers(struct net_device *dev)
1438 {
1439 struct gfar_private *priv = netdev_priv(dev);
1440 struct gfar __iomem *regs = NULL;
1441 int i = 0;
1442
1443 for (i = 0; i < priv->num_grps; i++) {
1444 regs = priv->gfargrp[i].regs;
1445 /* Clear IEVENT */
1446 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1447
1448 /* Initialize IMASK */
1449 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1450 }
1451
1452 regs = priv->gfargrp[0].regs;
1453 /* Init hash registers to zero */
1454 gfar_write(&regs->igaddr0, 0);
1455 gfar_write(&regs->igaddr1, 0);
1456 gfar_write(&regs->igaddr2, 0);
1457 gfar_write(&regs->igaddr3, 0);
1458 gfar_write(&regs->igaddr4, 0);
1459 gfar_write(&regs->igaddr5, 0);
1460 gfar_write(&regs->igaddr6, 0);
1461 gfar_write(&regs->igaddr7, 0);
1462
1463 gfar_write(&regs->gaddr0, 0);
1464 gfar_write(&regs->gaddr1, 0);
1465 gfar_write(&regs->gaddr2, 0);
1466 gfar_write(&regs->gaddr3, 0);
1467 gfar_write(&regs->gaddr4, 0);
1468 gfar_write(&regs->gaddr5, 0);
1469 gfar_write(&regs->gaddr6, 0);
1470 gfar_write(&regs->gaddr7, 0);
1471
1472 /* Zero out the rmon mib registers if it has them */
1473 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1474 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1475
1476 /* Mask off the CAM interrupts */
1477 gfar_write(&regs->rmon.cam1, 0xffffffff);
1478 gfar_write(&regs->rmon.cam2, 0xffffffff);
1479 }
1480
1481 /* Initialize the max receive buffer length */
1482 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1483
1484 /* Initialize the Minimum Frame Length Register */
1485 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1486 }
1487
1488
1489 /* Halt the receive and transmit queues */
1490 static void gfar_halt_nodisable(struct net_device *dev)
1491 {
1492 struct gfar_private *priv = netdev_priv(dev);
1493 struct gfar __iomem *regs = NULL;
1494 u32 tempval;
1495 int i = 0;
1496
1497 for (i = 0; i < priv->num_grps; i++) {
1498 regs = priv->gfargrp[i].regs;
1499 /* Mask all interrupts */
1500 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1501
1502 /* Clear all interrupts */
1503 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1504 }
1505
1506 regs = priv->gfargrp[0].regs;
1507 /* Stop the DMA, and wait for it to stop */
1508 tempval = gfar_read(&regs->dmactrl);
1509 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1510 != (DMACTRL_GRS | DMACTRL_GTS)) {
1511 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1512 gfar_write(&regs->dmactrl, tempval);
1513
1514 spin_event_timeout(((gfar_read(&regs->ievent) &
1515 (IEVENT_GRSC | IEVENT_GTSC)) ==
1516 (IEVENT_GRSC | IEVENT_GTSC)), -1, 0);
1517 }
1518 }
1519
1520 /* Halt the receive and transmit queues */
1521 void gfar_halt(struct net_device *dev)
1522 {
1523 struct gfar_private *priv = netdev_priv(dev);
1524 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1525 u32 tempval;
1526
1527 gfar_halt_nodisable(dev);
1528
1529 /* Disable Rx and Tx */
1530 tempval = gfar_read(&regs->maccfg1);
1531 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1532 gfar_write(&regs->maccfg1, tempval);
1533 }
1534
1535 static void free_grp_irqs(struct gfar_priv_grp *grp)
1536 {
1537 free_irq(grp->interruptError, grp);
1538 free_irq(grp->interruptTransmit, grp);
1539 free_irq(grp->interruptReceive, grp);
1540 }
1541
1542 void stop_gfar(struct net_device *dev)
1543 {
1544 struct gfar_private *priv = netdev_priv(dev);
1545 unsigned long flags;
1546 int i;
1547
1548 phy_stop(priv->phydev);
1549
1550
1551 /* Lock it down */
1552 local_irq_save(flags);
1553 lock_tx_qs(priv);
1554 lock_rx_qs(priv);
1555
1556 gfar_halt(dev);
1557
1558 unlock_rx_qs(priv);
1559 unlock_tx_qs(priv);
1560 local_irq_restore(flags);
1561
1562 /* Free the IRQs */
1563 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1564 for (i = 0; i < priv->num_grps; i++)
1565 free_grp_irqs(&priv->gfargrp[i]);
1566 } else {
1567 for (i = 0; i < priv->num_grps; i++)
1568 free_irq(priv->gfargrp[i].interruptTransmit,
1569 &priv->gfargrp[i]);
1570 }
1571
1572 free_skb_resources(priv);
1573 }
1574
1575 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1576 {
1577 struct txbd8 *txbdp;
1578 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1579 int i, j;
1580
1581 txbdp = tx_queue->tx_bd_base;
1582
1583 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1584 if (!tx_queue->tx_skbuff[i])
1585 continue;
1586
1587 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1588 txbdp->length, DMA_TO_DEVICE);
1589 txbdp->lstatus = 0;
1590 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1591 j++) {
1592 txbdp++;
1593 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1594 txbdp->length, DMA_TO_DEVICE);
1595 }
1596 txbdp++;
1597 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1598 tx_queue->tx_skbuff[i] = NULL;
1599 }
1600 kfree(tx_queue->tx_skbuff);
1601 }
1602
1603 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1604 {
1605 struct rxbd8 *rxbdp;
1606 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1607 int i;
1608
1609 rxbdp = rx_queue->rx_bd_base;
1610
1611 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1612 if (rx_queue->rx_skbuff[i]) {
1613 dma_unmap_single(&priv->ofdev->dev,
1614 rxbdp->bufPtr, priv->rx_buffer_size,
1615 DMA_FROM_DEVICE);
1616 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1617 rx_queue->rx_skbuff[i] = NULL;
1618 }
1619 rxbdp->lstatus = 0;
1620 rxbdp->bufPtr = 0;
1621 rxbdp++;
1622 }
1623 kfree(rx_queue->rx_skbuff);
1624 }
1625
1626 /* If there are any tx skbs or rx skbs still around, free them.
1627 * Then free tx_skbuff and rx_skbuff */
1628 static void free_skb_resources(struct gfar_private *priv)
1629 {
1630 struct gfar_priv_tx_q *tx_queue = NULL;
1631 struct gfar_priv_rx_q *rx_queue = NULL;
1632 int i;
1633
1634 /* Go through all the buffer descriptors and free their data buffers */
1635 for (i = 0; i < priv->num_tx_queues; i++) {
1636 tx_queue = priv->tx_queue[i];
1637 if(tx_queue->tx_skbuff)
1638 free_skb_tx_queue(tx_queue);
1639 }
1640
1641 for (i = 0; i < priv->num_rx_queues; i++) {
1642 rx_queue = priv->rx_queue[i];
1643 if(rx_queue->rx_skbuff)
1644 free_skb_rx_queue(rx_queue);
1645 }
1646
1647 dma_free_coherent(&priv->ofdev->dev,
1648 sizeof(struct txbd8) * priv->total_tx_ring_size +
1649 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1650 priv->tx_queue[0]->tx_bd_base,
1651 priv->tx_queue[0]->tx_bd_dma_base);
1652 skb_queue_purge(&priv->rx_recycle);
1653 }
1654
1655 void gfar_start(struct net_device *dev)
1656 {
1657 struct gfar_private *priv = netdev_priv(dev);
1658 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1659 u32 tempval;
1660 int i = 0;
1661
1662 /* Enable Rx and Tx in MACCFG1 */
1663 tempval = gfar_read(&regs->maccfg1);
1664 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1665 gfar_write(&regs->maccfg1, tempval);
1666
1667 /* Initialize DMACTRL to have WWR and WOP */
1668 tempval = gfar_read(&regs->dmactrl);
1669 tempval |= DMACTRL_INIT_SETTINGS;
1670 gfar_write(&regs->dmactrl, tempval);
1671
1672 /* Make sure we aren't stopped */
1673 tempval = gfar_read(&regs->dmactrl);
1674 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1675 gfar_write(&regs->dmactrl, tempval);
1676
1677 for (i = 0; i < priv->num_grps; i++) {
1678 regs = priv->gfargrp[i].regs;
1679 /* Clear THLT/RHLT, so that the DMA starts polling now */
1680 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1681 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1682 /* Unmask the interrupts we look for */
1683 gfar_write(&regs->imask, IMASK_DEFAULT);
1684 }
1685
1686 dev->trans_start = jiffies;
1687 }
1688
1689 void gfar_configure_coalescing(struct gfar_private *priv,
1690 unsigned long tx_mask, unsigned long rx_mask)
1691 {
1692 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1693 u32 __iomem *baddr;
1694 int i = 0;
1695
1696 /* Backward compatible case ---- even if we enable
1697 * multiple queues, there's only single reg to program
1698 */
1699 gfar_write(&regs->txic, 0);
1700 if(likely(priv->tx_queue[0]->txcoalescing))
1701 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1702
1703 gfar_write(&regs->rxic, 0);
1704 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1705 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1706
1707 if (priv->mode == MQ_MG_MODE) {
1708 baddr = &regs->txic0;
1709 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1710 if (likely(priv->tx_queue[i]->txcoalescing)) {
1711 gfar_write(baddr + i, 0);
1712 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1713 }
1714 }
1715
1716 baddr = &regs->rxic0;
1717 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1718 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1719 gfar_write(baddr + i, 0);
1720 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1721 }
1722 }
1723 }
1724 }
1725
1726 static int register_grp_irqs(struct gfar_priv_grp *grp)
1727 {
1728 struct gfar_private *priv = grp->priv;
1729 struct net_device *dev = priv->ndev;
1730 int err;
1731
1732 /* If the device has multiple interrupts, register for
1733 * them. Otherwise, only register for the one */
1734 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1735 /* Install our interrupt handlers for Error,
1736 * Transmit, and Receive */
1737 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1738 grp->int_name_er,grp)) < 0) {
1739 if (netif_msg_intr(priv))
1740 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1741 dev->name, grp->interruptError);
1742
1743 goto err_irq_fail;
1744 }
1745
1746 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1747 0, grp->int_name_tx, grp)) < 0) {
1748 if (netif_msg_intr(priv))
1749 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1750 dev->name, grp->interruptTransmit);
1751 goto tx_irq_fail;
1752 }
1753
1754 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1755 grp->int_name_rx, grp)) < 0) {
1756 if (netif_msg_intr(priv))
1757 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1758 dev->name, grp->interruptReceive);
1759 goto rx_irq_fail;
1760 }
1761 } else {
1762 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1763 grp->int_name_tx, grp)) < 0) {
1764 if (netif_msg_intr(priv))
1765 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1766 dev->name, grp->interruptTransmit);
1767 goto err_irq_fail;
1768 }
1769 }
1770
1771 return 0;
1772
1773 rx_irq_fail:
1774 free_irq(grp->interruptTransmit, grp);
1775 tx_irq_fail:
1776 free_irq(grp->interruptError, grp);
1777 err_irq_fail:
1778 return err;
1779
1780 }
1781
1782 /* Bring the controller up and running */
1783 int startup_gfar(struct net_device *ndev)
1784 {
1785 struct gfar_private *priv = netdev_priv(ndev);
1786 struct gfar __iomem *regs = NULL;
1787 int err, i, j;
1788
1789 for (i = 0; i < priv->num_grps; i++) {
1790 regs= priv->gfargrp[i].regs;
1791 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1792 }
1793
1794 regs= priv->gfargrp[0].regs;
1795 err = gfar_alloc_skb_resources(ndev);
1796 if (err)
1797 return err;
1798
1799 gfar_init_mac(ndev);
1800
1801 for (i = 0; i < priv->num_grps; i++) {
1802 err = register_grp_irqs(&priv->gfargrp[i]);
1803 if (err) {
1804 for (j = 0; j < i; j++)
1805 free_grp_irqs(&priv->gfargrp[j]);
1806 goto irq_fail;
1807 }
1808 }
1809
1810 /* Start the controller */
1811 gfar_start(ndev);
1812
1813 phy_start(priv->phydev);
1814
1815 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1816
1817 return 0;
1818
1819 irq_fail:
1820 free_skb_resources(priv);
1821 return err;
1822 }
1823
1824 /* Called when something needs to use the ethernet device */
1825 /* Returns 0 for success. */
1826 static int gfar_enet_open(struct net_device *dev)
1827 {
1828 struct gfar_private *priv = netdev_priv(dev);
1829 int err;
1830
1831 enable_napi(priv);
1832
1833 skb_queue_head_init(&priv->rx_recycle);
1834
1835 /* Initialize a bunch of registers */
1836 init_registers(dev);
1837
1838 gfar_set_mac_address(dev);
1839
1840 err = init_phy(dev);
1841
1842 if (err) {
1843 disable_napi(priv);
1844 return err;
1845 }
1846
1847 err = startup_gfar(dev);
1848 if (err) {
1849 disable_napi(priv);
1850 return err;
1851 }
1852
1853 netif_tx_start_all_queues(dev);
1854
1855 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1856
1857 return err;
1858 }
1859
1860 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1861 {
1862 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1863
1864 memset(fcb, 0, GMAC_FCB_LEN);
1865
1866 return fcb;
1867 }
1868
1869 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1870 {
1871 u8 flags = 0;
1872
1873 /* If we're here, it's a IP packet with a TCP or UDP
1874 * payload. We set it to checksum, using a pseudo-header
1875 * we provide
1876 */
1877 flags = TXFCB_DEFAULT;
1878
1879 /* Tell the controller what the protocol is */
1880 /* And provide the already calculated phcs */
1881 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1882 flags |= TXFCB_UDP;
1883 fcb->phcs = udp_hdr(skb)->check;
1884 } else
1885 fcb->phcs = tcp_hdr(skb)->check;
1886
1887 /* l3os is the distance between the start of the
1888 * frame (skb->data) and the start of the IP hdr.
1889 * l4os is the distance between the start of the
1890 * l3 hdr and the l4 hdr */
1891 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1892 fcb->l4os = skb_network_header_len(skb);
1893
1894 fcb->flags = flags;
1895 }
1896
1897 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1898 {
1899 fcb->flags |= TXFCB_VLN;
1900 fcb->vlctl = vlan_tx_tag_get(skb);
1901 }
1902
1903 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1904 struct txbd8 *base, int ring_size)
1905 {
1906 struct txbd8 *new_bd = bdp + stride;
1907
1908 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1909 }
1910
1911 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1912 int ring_size)
1913 {
1914 return skip_txbd(bdp, 1, base, ring_size);
1915 }
1916
1917 /* This is called by the kernel when a frame is ready for transmission. */
1918 /* It is pointed to by the dev->hard_start_xmit function pointer */
1919 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1920 {
1921 struct gfar_private *priv = netdev_priv(dev);
1922 struct gfar_priv_tx_q *tx_queue = NULL;
1923 struct netdev_queue *txq;
1924 struct gfar __iomem *regs = NULL;
1925 struct txfcb *fcb = NULL;
1926 struct txbd8 *txbdp, *txbdp_start, *base;
1927 u32 lstatus;
1928 int i, rq = 0;
1929 u32 bufaddr;
1930 unsigned long flags;
1931 unsigned int nr_frags, length;
1932
1933
1934 rq = skb->queue_mapping;
1935 tx_queue = priv->tx_queue[rq];
1936 txq = netdev_get_tx_queue(dev, rq);
1937 base = tx_queue->tx_bd_base;
1938 regs = tx_queue->grp->regs;
1939
1940 /* make space for additional header when fcb is needed */
1941 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1942 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1943 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1944 struct sk_buff *skb_new;
1945
1946 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1947 if (!skb_new) {
1948 dev->stats.tx_errors++;
1949 kfree_skb(skb);
1950 return NETDEV_TX_OK;
1951 }
1952 kfree_skb(skb);
1953 skb = skb_new;
1954 }
1955
1956 /* total number of fragments in the SKB */
1957 nr_frags = skb_shinfo(skb)->nr_frags;
1958
1959 /* check if there is space to queue this packet */
1960 if ((nr_frags+1) > tx_queue->num_txbdfree) {
1961 /* no space, stop the queue */
1962 netif_tx_stop_queue(txq);
1963 dev->stats.tx_fifo_errors++;
1964 return NETDEV_TX_BUSY;
1965 }
1966
1967 /* Update transmit stats */
1968 txq->tx_bytes += skb->len;
1969 txq->tx_packets ++;
1970
1971 txbdp = txbdp_start = tx_queue->cur_tx;
1972
1973 if (nr_frags == 0) {
1974 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1975 } else {
1976 /* Place the fragment addresses and lengths into the TxBDs */
1977 for (i = 0; i < nr_frags; i++) {
1978 /* Point at the next BD, wrapping as needed */
1979 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1980
1981 length = skb_shinfo(skb)->frags[i].size;
1982
1983 lstatus = txbdp->lstatus | length |
1984 BD_LFLAG(TXBD_READY);
1985
1986 /* Handle the last BD specially */
1987 if (i == nr_frags - 1)
1988 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1989
1990 bufaddr = dma_map_page(&priv->ofdev->dev,
1991 skb_shinfo(skb)->frags[i].page,
1992 skb_shinfo(skb)->frags[i].page_offset,
1993 length,
1994 DMA_TO_DEVICE);
1995
1996 /* set the TxBD length and buffer pointer */
1997 txbdp->bufPtr = bufaddr;
1998 txbdp->lstatus = lstatus;
1999 }
2000
2001 lstatus = txbdp_start->lstatus;
2002 }
2003
2004 /* Set up checksumming */
2005 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2006 fcb = gfar_add_fcb(skb);
2007 lstatus |= BD_LFLAG(TXBD_TOE);
2008 gfar_tx_checksum(skb, fcb);
2009 }
2010
2011 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2012 if (unlikely(NULL == fcb)) {
2013 fcb = gfar_add_fcb(skb);
2014 lstatus |= BD_LFLAG(TXBD_TOE);
2015 }
2016
2017 gfar_tx_vlan(skb, fcb);
2018 }
2019
2020 /* setup the TxBD length and buffer pointer for the first BD */
2021 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2022 skb_headlen(skb), DMA_TO_DEVICE);
2023
2024 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2025
2026 /*
2027 * We can work in parallel with gfar_clean_tx_ring(), except
2028 * when modifying num_txbdfree. Note that we didn't grab the lock
2029 * when we were reading the num_txbdfree and checking for available
2030 * space, that's because outside of this function it can only grow,
2031 * and once we've got needed space, it cannot suddenly disappear.
2032 *
2033 * The lock also protects us from gfar_error(), which can modify
2034 * regs->tstat and thus retrigger the transfers, which is why we
2035 * also must grab the lock before setting ready bit for the first
2036 * to be transmitted BD.
2037 */
2038 spin_lock_irqsave(&tx_queue->txlock, flags);
2039
2040 /*
2041 * The powerpc-specific eieio() is used, as wmb() has too strong
2042 * semantics (it requires synchronization between cacheable and
2043 * uncacheable mappings, which eieio doesn't provide and which we
2044 * don't need), thus requiring a more expensive sync instruction. At
2045 * some point, the set of architecture-independent barrier functions
2046 * should be expanded to include weaker barriers.
2047 */
2048 eieio();
2049
2050 txbdp_start->lstatus = lstatus;
2051
2052 eieio(); /* force lstatus write before tx_skbuff */
2053
2054 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2055
2056 /* Update the current skb pointer to the next entry we will use
2057 * (wrapping if necessary) */
2058 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2059 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2060
2061 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2062
2063 /* reduce TxBD free count */
2064 tx_queue->num_txbdfree -= (nr_frags + 1);
2065
2066 dev->trans_start = jiffies;
2067
2068 /* If the next BD still needs to be cleaned up, then the bds
2069 are full. We need to tell the kernel to stop sending us stuff. */
2070 if (!tx_queue->num_txbdfree) {
2071 netif_tx_stop_queue(txq);
2072
2073 dev->stats.tx_fifo_errors++;
2074 }
2075
2076 /* Tell the DMA to go go go */
2077 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2078
2079 /* Unlock priv */
2080 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2081
2082 return NETDEV_TX_OK;
2083 }
2084
2085 /* Stops the kernel queue, and halts the controller */
2086 static int gfar_close(struct net_device *dev)
2087 {
2088 struct gfar_private *priv = netdev_priv(dev);
2089
2090 disable_napi(priv);
2091
2092 cancel_work_sync(&priv->reset_task);
2093 stop_gfar(dev);
2094
2095 /* Disconnect from the PHY */
2096 phy_disconnect(priv->phydev);
2097 priv->phydev = NULL;
2098
2099 netif_tx_stop_all_queues(dev);
2100
2101 return 0;
2102 }
2103
2104 /* Changes the mac address if the controller is not running. */
2105 static int gfar_set_mac_address(struct net_device *dev)
2106 {
2107 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2108
2109 return 0;
2110 }
2111
2112
2113 /* Enables and disables VLAN insertion/extraction */
2114 static void gfar_vlan_rx_register(struct net_device *dev,
2115 struct vlan_group *grp)
2116 {
2117 struct gfar_private *priv = netdev_priv(dev);
2118 struct gfar __iomem *regs = NULL;
2119 unsigned long flags;
2120 u32 tempval;
2121
2122 regs = priv->gfargrp[0].regs;
2123 local_irq_save(flags);
2124 lock_rx_qs(priv);
2125
2126 priv->vlgrp = grp;
2127
2128 if (grp) {
2129 /* Enable VLAN tag insertion */
2130 tempval = gfar_read(&regs->tctrl);
2131 tempval |= TCTRL_VLINS;
2132
2133 gfar_write(&regs->tctrl, tempval);
2134
2135 /* Enable VLAN tag extraction */
2136 tempval = gfar_read(&regs->rctrl);
2137 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2138 gfar_write(&regs->rctrl, tempval);
2139 } else {
2140 /* Disable VLAN tag insertion */
2141 tempval = gfar_read(&regs->tctrl);
2142 tempval &= ~TCTRL_VLINS;
2143 gfar_write(&regs->tctrl, tempval);
2144
2145 /* Disable VLAN tag extraction */
2146 tempval = gfar_read(&regs->rctrl);
2147 tempval &= ~RCTRL_VLEX;
2148 /* If parse is no longer required, then disable parser */
2149 if (tempval & RCTRL_REQ_PARSER)
2150 tempval |= RCTRL_PRSDEP_INIT;
2151 else
2152 tempval &= ~RCTRL_PRSDEP_INIT;
2153 gfar_write(&regs->rctrl, tempval);
2154 }
2155
2156 gfar_change_mtu(dev, dev->mtu);
2157
2158 unlock_rx_qs(priv);
2159 local_irq_restore(flags);
2160 }
2161
2162 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2163 {
2164 int tempsize, tempval;
2165 struct gfar_private *priv = netdev_priv(dev);
2166 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2167 int oldsize = priv->rx_buffer_size;
2168 int frame_size = new_mtu + ETH_HLEN;
2169
2170 if (priv->vlgrp)
2171 frame_size += VLAN_HLEN;
2172
2173 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2174 if (netif_msg_drv(priv))
2175 printk(KERN_ERR "%s: Invalid MTU setting\n",
2176 dev->name);
2177 return -EINVAL;
2178 }
2179
2180 if (gfar_uses_fcb(priv))
2181 frame_size += GMAC_FCB_LEN;
2182
2183 frame_size += priv->padding;
2184
2185 tempsize =
2186 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2187 INCREMENTAL_BUFFER_SIZE;
2188
2189 /* Only stop and start the controller if it isn't already
2190 * stopped, and we changed something */
2191 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2192 stop_gfar(dev);
2193
2194 priv->rx_buffer_size = tempsize;
2195
2196 dev->mtu = new_mtu;
2197
2198 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2199 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2200
2201 /* If the mtu is larger than the max size for standard
2202 * ethernet frames (ie, a jumbo frame), then set maccfg2
2203 * to allow huge frames, and to check the length */
2204 tempval = gfar_read(&regs->maccfg2);
2205
2206 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2207 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2208 else
2209 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2210
2211 gfar_write(&regs->maccfg2, tempval);
2212
2213 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2214 startup_gfar(dev);
2215
2216 return 0;
2217 }
2218
2219 /* gfar_reset_task gets scheduled when a packet has not been
2220 * transmitted after a set amount of time.
2221 * For now, assume that clearing out all the structures, and
2222 * starting over will fix the problem.
2223 */
2224 static void gfar_reset_task(struct work_struct *work)
2225 {
2226 struct gfar_private *priv = container_of(work, struct gfar_private,
2227 reset_task);
2228 struct net_device *dev = priv->ndev;
2229
2230 if (dev->flags & IFF_UP) {
2231 netif_tx_stop_all_queues(dev);
2232 stop_gfar(dev);
2233 startup_gfar(dev);
2234 netif_tx_start_all_queues(dev);
2235 }
2236
2237 netif_tx_schedule_all(dev);
2238 }
2239
2240 static void gfar_timeout(struct net_device *dev)
2241 {
2242 struct gfar_private *priv = netdev_priv(dev);
2243
2244 dev->stats.tx_errors++;
2245 schedule_work(&priv->reset_task);
2246 }
2247
2248 /* Interrupt Handler for Transmit complete */
2249 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2250 {
2251 struct net_device *dev = tx_queue->dev;
2252 struct gfar_private *priv = netdev_priv(dev);
2253 struct gfar_priv_rx_q *rx_queue = NULL;
2254 struct txbd8 *bdp;
2255 struct txbd8 *lbdp = NULL;
2256 struct txbd8 *base = tx_queue->tx_bd_base;
2257 struct sk_buff *skb;
2258 int skb_dirtytx;
2259 int tx_ring_size = tx_queue->tx_ring_size;
2260 int frags = 0;
2261 int i;
2262 int howmany = 0;
2263 u32 lstatus;
2264
2265 rx_queue = priv->rx_queue[tx_queue->qindex];
2266 bdp = tx_queue->dirty_tx;
2267 skb_dirtytx = tx_queue->skb_dirtytx;
2268
2269 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2270 unsigned long flags;
2271
2272 frags = skb_shinfo(skb)->nr_frags;
2273 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2274
2275 lstatus = lbdp->lstatus;
2276
2277 /* Only clean completed frames */
2278 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2279 (lstatus & BD_LENGTH_MASK))
2280 break;
2281
2282 dma_unmap_single(&priv->ofdev->dev,
2283 bdp->bufPtr,
2284 bdp->length,
2285 DMA_TO_DEVICE);
2286
2287 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2288 bdp = next_txbd(bdp, base, tx_ring_size);
2289
2290 for (i = 0; i < frags; i++) {
2291 dma_unmap_page(&priv->ofdev->dev,
2292 bdp->bufPtr,
2293 bdp->length,
2294 DMA_TO_DEVICE);
2295 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2296 bdp = next_txbd(bdp, base, tx_ring_size);
2297 }
2298
2299 /*
2300 * If there's room in the queue (limit it to rx_buffer_size)
2301 * we add this skb back into the pool, if it's the right size
2302 */
2303 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2304 skb_recycle_check(skb, priv->rx_buffer_size +
2305 RXBUF_ALIGNMENT))
2306 __skb_queue_head(&priv->rx_recycle, skb);
2307 else
2308 dev_kfree_skb_any(skb);
2309
2310 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2311
2312 skb_dirtytx = (skb_dirtytx + 1) &
2313 TX_RING_MOD_MASK(tx_ring_size);
2314
2315 howmany++;
2316 spin_lock_irqsave(&tx_queue->txlock, flags);
2317 tx_queue->num_txbdfree += frags + 1;
2318 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2319 }
2320
2321 /* If we freed a buffer, we can restart transmission, if necessary */
2322 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2323 netif_wake_subqueue(dev, tx_queue->qindex);
2324
2325 /* Update dirty indicators */
2326 tx_queue->skb_dirtytx = skb_dirtytx;
2327 tx_queue->dirty_tx = bdp;
2328
2329 return howmany;
2330 }
2331
2332 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2333 {
2334 unsigned long flags;
2335
2336 spin_lock_irqsave(&gfargrp->grplock, flags);
2337 if (napi_schedule_prep(&gfargrp->napi)) {
2338 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2339 __napi_schedule(&gfargrp->napi);
2340 } else {
2341 /*
2342 * Clear IEVENT, so interrupts aren't called again
2343 * because of the packets that have already arrived.
2344 */
2345 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2346 }
2347 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2348
2349 }
2350
2351 /* Interrupt Handler for Transmit complete */
2352 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2353 {
2354 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2355 return IRQ_HANDLED;
2356 }
2357
2358 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2359 struct sk_buff *skb)
2360 {
2361 struct net_device *dev = rx_queue->dev;
2362 struct gfar_private *priv = netdev_priv(dev);
2363 dma_addr_t buf;
2364
2365 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2366 priv->rx_buffer_size, DMA_FROM_DEVICE);
2367 gfar_init_rxbdp(rx_queue, bdp, buf);
2368 }
2369
2370
2371 struct sk_buff * gfar_new_skb(struct net_device *dev)
2372 {
2373 unsigned int alignamount;
2374 struct gfar_private *priv = netdev_priv(dev);
2375 struct sk_buff *skb = NULL;
2376
2377 skb = __skb_dequeue(&priv->rx_recycle);
2378 if (!skb)
2379 skb = netdev_alloc_skb(dev,
2380 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2381
2382 if (!skb)
2383 return NULL;
2384
2385 alignamount = RXBUF_ALIGNMENT -
2386 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2387
2388 /* We need the data buffer to be aligned properly. We will reserve
2389 * as many bytes as needed to align the data properly
2390 */
2391 skb_reserve(skb, alignamount);
2392 GFAR_CB(skb)->alignamount = alignamount;
2393
2394 return skb;
2395 }
2396
2397 static inline void count_errors(unsigned short status, struct net_device *dev)
2398 {
2399 struct gfar_private *priv = netdev_priv(dev);
2400 struct net_device_stats *stats = &dev->stats;
2401 struct gfar_extra_stats *estats = &priv->extra_stats;
2402
2403 /* If the packet was truncated, none of the other errors
2404 * matter */
2405 if (status & RXBD_TRUNCATED) {
2406 stats->rx_length_errors++;
2407
2408 estats->rx_trunc++;
2409
2410 return;
2411 }
2412 /* Count the errors, if there were any */
2413 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2414 stats->rx_length_errors++;
2415
2416 if (status & RXBD_LARGE)
2417 estats->rx_large++;
2418 else
2419 estats->rx_short++;
2420 }
2421 if (status & RXBD_NONOCTET) {
2422 stats->rx_frame_errors++;
2423 estats->rx_nonoctet++;
2424 }
2425 if (status & RXBD_CRCERR) {
2426 estats->rx_crcerr++;
2427 stats->rx_crc_errors++;
2428 }
2429 if (status & RXBD_OVERRUN) {
2430 estats->rx_overrun++;
2431 stats->rx_crc_errors++;
2432 }
2433 }
2434
2435 irqreturn_t gfar_receive(int irq, void *grp_id)
2436 {
2437 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2438 return IRQ_HANDLED;
2439 }
2440
2441 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2442 {
2443 /* If valid headers were found, and valid sums
2444 * were verified, then we tell the kernel that no
2445 * checksumming is necessary. Otherwise, it is */
2446 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2447 skb->ip_summed = CHECKSUM_UNNECESSARY;
2448 else
2449 skb->ip_summed = CHECKSUM_NONE;
2450 }
2451
2452
2453 /* gfar_process_frame() -- handle one incoming packet if skb
2454 * isn't NULL. */
2455 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2456 int amount_pull)
2457 {
2458 struct gfar_private *priv = netdev_priv(dev);
2459 struct rxfcb *fcb = NULL;
2460
2461 int ret;
2462
2463 /* fcb is at the beginning if exists */
2464 fcb = (struct rxfcb *)skb->data;
2465
2466 /* Remove the FCB from the skb */
2467 /* Remove the padded bytes, if there are any */
2468 if (amount_pull) {
2469 skb_record_rx_queue(skb, fcb->rq);
2470 skb_pull(skb, amount_pull);
2471 }
2472
2473 if (priv->rx_csum_enable)
2474 gfar_rx_checksum(skb, fcb);
2475
2476 /* Tell the skb what kind of packet this is */
2477 skb->protocol = eth_type_trans(skb, dev);
2478
2479 /* Send the packet up the stack */
2480 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2481 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2482 else
2483 ret = netif_receive_skb(skb);
2484
2485 if (NET_RX_DROP == ret)
2486 priv->extra_stats.kernel_dropped++;
2487
2488 return 0;
2489 }
2490
2491 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2492 * until the budget/quota has been reached. Returns the number
2493 * of frames handled
2494 */
2495 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2496 {
2497 struct net_device *dev = rx_queue->dev;
2498 struct rxbd8 *bdp, *base;
2499 struct sk_buff *skb;
2500 int pkt_len;
2501 int amount_pull;
2502 int howmany = 0;
2503 struct gfar_private *priv = netdev_priv(dev);
2504
2505 /* Get the first full descriptor */
2506 bdp = rx_queue->cur_rx;
2507 base = rx_queue->rx_bd_base;
2508
2509 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2510 priv->padding;
2511
2512 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2513 struct sk_buff *newskb;
2514 rmb();
2515
2516 /* Add another skb for the future */
2517 newskb = gfar_new_skb(dev);
2518
2519 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2520
2521 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2522 priv->rx_buffer_size, DMA_FROM_DEVICE);
2523
2524 /* We drop the frame if we failed to allocate a new buffer */
2525 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2526 bdp->status & RXBD_ERR)) {
2527 count_errors(bdp->status, dev);
2528
2529 if (unlikely(!newskb))
2530 newskb = skb;
2531 else if (skb) {
2532 /*
2533 * We need to un-reserve() the skb to what it
2534 * was before gfar_new_skb() re-aligned
2535 * it to an RXBUF_ALIGNMENT boundary
2536 * before we put the skb back on the
2537 * recycle list.
2538 */
2539 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2540 __skb_queue_head(&priv->rx_recycle, skb);
2541 }
2542 } else {
2543 /* Increment the number of packets */
2544 rx_queue->stats.rx_packets++;
2545 howmany++;
2546
2547 if (likely(skb)) {
2548 pkt_len = bdp->length - ETH_FCS_LEN;
2549 /* Remove the FCS from the packet length */
2550 skb_put(skb, pkt_len);
2551 rx_queue->stats.rx_bytes += pkt_len;
2552 skb_record_rx_queue(skb, rx_queue->qindex);
2553 gfar_process_frame(dev, skb, amount_pull);
2554
2555 } else {
2556 if (netif_msg_rx_err(priv))
2557 printk(KERN_WARNING
2558 "%s: Missing skb!\n", dev->name);
2559 rx_queue->stats.rx_dropped++;
2560 priv->extra_stats.rx_skbmissing++;
2561 }
2562
2563 }
2564
2565 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2566
2567 /* Setup the new bdp */
2568 gfar_new_rxbdp(rx_queue, bdp, newskb);
2569
2570 /* Update to the next pointer */
2571 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2572
2573 /* update to point at the next skb */
2574 rx_queue->skb_currx =
2575 (rx_queue->skb_currx + 1) &
2576 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2577 }
2578
2579 /* Update the current rxbd pointer to be the next one */
2580 rx_queue->cur_rx = bdp;
2581
2582 return howmany;
2583 }
2584
2585 static int gfar_poll(struct napi_struct *napi, int budget)
2586 {
2587 struct gfar_priv_grp *gfargrp = container_of(napi,
2588 struct gfar_priv_grp, napi);
2589 struct gfar_private *priv = gfargrp->priv;
2590 struct gfar __iomem *regs = gfargrp->regs;
2591 struct gfar_priv_tx_q *tx_queue = NULL;
2592 struct gfar_priv_rx_q *rx_queue = NULL;
2593 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2594 int tx_cleaned = 0, i, left_over_budget = budget;
2595 unsigned long serviced_queues = 0;
2596 int num_queues = 0;
2597
2598 num_queues = gfargrp->num_rx_queues;
2599 budget_per_queue = budget/num_queues;
2600
2601 /* Clear IEVENT, so interrupts aren't called again
2602 * because of the packets that have already arrived */
2603 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2604
2605 while (num_queues && left_over_budget) {
2606
2607 budget_per_queue = left_over_budget/num_queues;
2608 left_over_budget = 0;
2609
2610 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2611 if (test_bit(i, &serviced_queues))
2612 continue;
2613 rx_queue = priv->rx_queue[i];
2614 tx_queue = priv->tx_queue[rx_queue->qindex];
2615
2616 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2617 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2618 budget_per_queue);
2619 rx_cleaned += rx_cleaned_per_queue;
2620 if(rx_cleaned_per_queue < budget_per_queue) {
2621 left_over_budget = left_over_budget +
2622 (budget_per_queue - rx_cleaned_per_queue);
2623 set_bit(i, &serviced_queues);
2624 num_queues--;
2625 }
2626 }
2627 }
2628
2629 if (tx_cleaned)
2630 return budget;
2631
2632 if (rx_cleaned < budget) {
2633 napi_complete(napi);
2634
2635 /* Clear the halt bit in RSTAT */
2636 gfar_write(&regs->rstat, gfargrp->rstat);
2637
2638 gfar_write(&regs->imask, IMASK_DEFAULT);
2639
2640 /* If we are coalescing interrupts, update the timer */
2641 /* Otherwise, clear it */
2642 gfar_configure_coalescing(priv,
2643 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2644 }
2645
2646 return rx_cleaned;
2647 }
2648
2649 #ifdef CONFIG_NET_POLL_CONTROLLER
2650 /*
2651 * Polling 'interrupt' - used by things like netconsole to send skbs
2652 * without having to re-enable interrupts. It's not called while
2653 * the interrupt routine is executing.
2654 */
2655 static void gfar_netpoll(struct net_device *dev)
2656 {
2657 struct gfar_private *priv = netdev_priv(dev);
2658 int i = 0;
2659
2660 /* If the device has multiple interrupts, run tx/rx */
2661 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2662 for (i = 0; i < priv->num_grps; i++) {
2663 disable_irq(priv->gfargrp[i].interruptTransmit);
2664 disable_irq(priv->gfargrp[i].interruptReceive);
2665 disable_irq(priv->gfargrp[i].interruptError);
2666 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2667 &priv->gfargrp[i]);
2668 enable_irq(priv->gfargrp[i].interruptError);
2669 enable_irq(priv->gfargrp[i].interruptReceive);
2670 enable_irq(priv->gfargrp[i].interruptTransmit);
2671 }
2672 } else {
2673 for (i = 0; i < priv->num_grps; i++) {
2674 disable_irq(priv->gfargrp[i].interruptTransmit);
2675 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2676 &priv->gfargrp[i]);
2677 enable_irq(priv->gfargrp[i].interruptTransmit);
2678 }
2679 }
2680 }
2681 #endif
2682
2683 /* The interrupt handler for devices with one interrupt */
2684 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2685 {
2686 struct gfar_priv_grp *gfargrp = grp_id;
2687
2688 /* Save ievent for future reference */
2689 u32 events = gfar_read(&gfargrp->regs->ievent);
2690
2691 /* Check for reception */
2692 if (events & IEVENT_RX_MASK)
2693 gfar_receive(irq, grp_id);
2694
2695 /* Check for transmit completion */
2696 if (events & IEVENT_TX_MASK)
2697 gfar_transmit(irq, grp_id);
2698
2699 /* Check for errors */
2700 if (events & IEVENT_ERR_MASK)
2701 gfar_error(irq, grp_id);
2702
2703 return IRQ_HANDLED;
2704 }
2705
2706 /* Called every time the controller might need to be made
2707 * aware of new link state. The PHY code conveys this
2708 * information through variables in the phydev structure, and this
2709 * function converts those variables into the appropriate
2710 * register values, and can bring down the device if needed.
2711 */
2712 static void adjust_link(struct net_device *dev)
2713 {
2714 struct gfar_private *priv = netdev_priv(dev);
2715 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2716 unsigned long flags;
2717 struct phy_device *phydev = priv->phydev;
2718 int new_state = 0;
2719
2720 local_irq_save(flags);
2721 lock_tx_qs(priv);
2722
2723 if (phydev->link) {
2724 u32 tempval = gfar_read(&regs->maccfg2);
2725 u32 ecntrl = gfar_read(&regs->ecntrl);
2726
2727 /* Now we make sure that we can be in full duplex mode.
2728 * If not, we operate in half-duplex mode. */
2729 if (phydev->duplex != priv->oldduplex) {
2730 new_state = 1;
2731 if (!(phydev->duplex))
2732 tempval &= ~(MACCFG2_FULL_DUPLEX);
2733 else
2734 tempval |= MACCFG2_FULL_DUPLEX;
2735
2736 priv->oldduplex = phydev->duplex;
2737 }
2738
2739 if (phydev->speed != priv->oldspeed) {
2740 new_state = 1;
2741 switch (phydev->speed) {
2742 case 1000:
2743 tempval =
2744 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2745
2746 ecntrl &= ~(ECNTRL_R100);
2747 break;
2748 case 100:
2749 case 10:
2750 tempval =
2751 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2752
2753 /* Reduced mode distinguishes
2754 * between 10 and 100 */
2755 if (phydev->speed == SPEED_100)
2756 ecntrl |= ECNTRL_R100;
2757 else
2758 ecntrl &= ~(ECNTRL_R100);
2759 break;
2760 default:
2761 if (netif_msg_link(priv))
2762 printk(KERN_WARNING
2763 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2764 dev->name, phydev->speed);
2765 break;
2766 }
2767
2768 priv->oldspeed = phydev->speed;
2769 }
2770
2771 gfar_write(&regs->maccfg2, tempval);
2772 gfar_write(&regs->ecntrl, ecntrl);
2773
2774 if (!priv->oldlink) {
2775 new_state = 1;
2776 priv->oldlink = 1;
2777 }
2778 } else if (priv->oldlink) {
2779 new_state = 1;
2780 priv->oldlink = 0;
2781 priv->oldspeed = 0;
2782 priv->oldduplex = -1;
2783 }
2784
2785 if (new_state && netif_msg_link(priv))
2786 phy_print_status(phydev);
2787 unlock_tx_qs(priv);
2788 local_irq_restore(flags);
2789 }
2790
2791 /* Update the hash table based on the current list of multicast
2792 * addresses we subscribe to. Also, change the promiscuity of
2793 * the device based on the flags (this function is called
2794 * whenever dev->flags is changed */
2795 static void gfar_set_multi(struct net_device *dev)
2796 {
2797 struct dev_mc_list *mc_ptr;
2798 struct gfar_private *priv = netdev_priv(dev);
2799 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2800 u32 tempval;
2801
2802 if (dev->flags & IFF_PROMISC) {
2803 /* Set RCTRL to PROM */
2804 tempval = gfar_read(&regs->rctrl);
2805 tempval |= RCTRL_PROM;
2806 gfar_write(&regs->rctrl, tempval);
2807 } else {
2808 /* Set RCTRL to not PROM */
2809 tempval = gfar_read(&regs->rctrl);
2810 tempval &= ~(RCTRL_PROM);
2811 gfar_write(&regs->rctrl, tempval);
2812 }
2813
2814 if (dev->flags & IFF_ALLMULTI) {
2815 /* Set the hash to rx all multicast frames */
2816 gfar_write(&regs->igaddr0, 0xffffffff);
2817 gfar_write(&regs->igaddr1, 0xffffffff);
2818 gfar_write(&regs->igaddr2, 0xffffffff);
2819 gfar_write(&regs->igaddr3, 0xffffffff);
2820 gfar_write(&regs->igaddr4, 0xffffffff);
2821 gfar_write(&regs->igaddr5, 0xffffffff);
2822 gfar_write(&regs->igaddr6, 0xffffffff);
2823 gfar_write(&regs->igaddr7, 0xffffffff);
2824 gfar_write(&regs->gaddr0, 0xffffffff);
2825 gfar_write(&regs->gaddr1, 0xffffffff);
2826 gfar_write(&regs->gaddr2, 0xffffffff);
2827 gfar_write(&regs->gaddr3, 0xffffffff);
2828 gfar_write(&regs->gaddr4, 0xffffffff);
2829 gfar_write(&regs->gaddr5, 0xffffffff);
2830 gfar_write(&regs->gaddr6, 0xffffffff);
2831 gfar_write(&regs->gaddr7, 0xffffffff);
2832 } else {
2833 int em_num;
2834 int idx;
2835
2836 /* zero out the hash */
2837 gfar_write(&regs->igaddr0, 0x0);
2838 gfar_write(&regs->igaddr1, 0x0);
2839 gfar_write(&regs->igaddr2, 0x0);
2840 gfar_write(&regs->igaddr3, 0x0);
2841 gfar_write(&regs->igaddr4, 0x0);
2842 gfar_write(&regs->igaddr5, 0x0);
2843 gfar_write(&regs->igaddr6, 0x0);
2844 gfar_write(&regs->igaddr7, 0x0);
2845 gfar_write(&regs->gaddr0, 0x0);
2846 gfar_write(&regs->gaddr1, 0x0);
2847 gfar_write(&regs->gaddr2, 0x0);
2848 gfar_write(&regs->gaddr3, 0x0);
2849 gfar_write(&regs->gaddr4, 0x0);
2850 gfar_write(&regs->gaddr5, 0x0);
2851 gfar_write(&regs->gaddr6, 0x0);
2852 gfar_write(&regs->gaddr7, 0x0);
2853
2854 /* If we have extended hash tables, we need to
2855 * clear the exact match registers to prepare for
2856 * setting them */
2857 if (priv->extended_hash) {
2858 em_num = GFAR_EM_NUM + 1;
2859 gfar_clear_exact_match(dev);
2860 idx = 1;
2861 } else {
2862 idx = 0;
2863 em_num = 0;
2864 }
2865
2866 if (netdev_mc_empty(dev))
2867 return;
2868
2869 /* Parse the list, and set the appropriate bits */
2870 netdev_for_each_mc_addr(mc_ptr, dev) {
2871 if (idx < em_num) {
2872 gfar_set_mac_for_addr(dev, idx,
2873 mc_ptr->dmi_addr);
2874 idx++;
2875 } else
2876 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2877 }
2878 }
2879
2880 return;
2881 }
2882
2883
2884 /* Clears each of the exact match registers to zero, so they
2885 * don't interfere with normal reception */
2886 static void gfar_clear_exact_match(struct net_device *dev)
2887 {
2888 int idx;
2889 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2890
2891 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2892 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2893 }
2894
2895 /* Set the appropriate hash bit for the given addr */
2896 /* The algorithm works like so:
2897 * 1) Take the Destination Address (ie the multicast address), and
2898 * do a CRC on it (little endian), and reverse the bits of the
2899 * result.
2900 * 2) Use the 8 most significant bits as a hash into a 256-entry
2901 * table. The table is controlled through 8 32-bit registers:
2902 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2903 * gaddr7. This means that the 3 most significant bits in the
2904 * hash index which gaddr register to use, and the 5 other bits
2905 * indicate which bit (assuming an IBM numbering scheme, which
2906 * for PowerPC (tm) is usually the case) in the register holds
2907 * the entry. */
2908 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2909 {
2910 u32 tempval;
2911 struct gfar_private *priv = netdev_priv(dev);
2912 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2913 int width = priv->hash_width;
2914 u8 whichbit = (result >> (32 - width)) & 0x1f;
2915 u8 whichreg = result >> (32 - width + 5);
2916 u32 value = (1 << (31-whichbit));
2917
2918 tempval = gfar_read(priv->hash_regs[whichreg]);
2919 tempval |= value;
2920 gfar_write(priv->hash_regs[whichreg], tempval);
2921
2922 return;
2923 }
2924
2925
2926 /* There are multiple MAC Address register pairs on some controllers
2927 * This function sets the numth pair to a given address
2928 */
2929 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2930 {
2931 struct gfar_private *priv = netdev_priv(dev);
2932 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2933 int idx;
2934 char tmpbuf[MAC_ADDR_LEN];
2935 u32 tempval;
2936 u32 __iomem *macptr = &regs->macstnaddr1;
2937
2938 macptr += num*2;
2939
2940 /* Now copy it into the mac registers backwards, cuz */
2941 /* little endian is silly */
2942 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2943 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2944
2945 gfar_write(macptr, *((u32 *) (tmpbuf)));
2946
2947 tempval = *((u32 *) (tmpbuf + 4));
2948
2949 gfar_write(macptr+1, tempval);
2950 }
2951
2952 /* GFAR error interrupt handler */
2953 static irqreturn_t gfar_error(int irq, void *grp_id)
2954 {
2955 struct gfar_priv_grp *gfargrp = grp_id;
2956 struct gfar __iomem *regs = gfargrp->regs;
2957 struct gfar_private *priv= gfargrp->priv;
2958 struct net_device *dev = priv->ndev;
2959
2960 /* Save ievent for future reference */
2961 u32 events = gfar_read(&regs->ievent);
2962
2963 /* Clear IEVENT */
2964 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2965
2966 /* Magic Packet is not an error. */
2967 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2968 (events & IEVENT_MAG))
2969 events &= ~IEVENT_MAG;
2970
2971 /* Hmm... */
2972 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2973 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2974 dev->name, events, gfar_read(&regs->imask));
2975
2976 /* Update the error counters */
2977 if (events & IEVENT_TXE) {
2978 dev->stats.tx_errors++;
2979
2980 if (events & IEVENT_LC)
2981 dev->stats.tx_window_errors++;
2982 if (events & IEVENT_CRL)
2983 dev->stats.tx_aborted_errors++;
2984 if (events & IEVENT_XFUN) {
2985 unsigned long flags;
2986
2987 if (netif_msg_tx_err(priv))
2988 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2989 "packet dropped.\n", dev->name);
2990 dev->stats.tx_dropped++;
2991 priv->extra_stats.tx_underrun++;
2992
2993 local_irq_save(flags);
2994 lock_tx_qs(priv);
2995
2996 /* Reactivate the Tx Queues */
2997 gfar_write(&regs->tstat, gfargrp->tstat);
2998
2999 unlock_tx_qs(priv);
3000 local_irq_restore(flags);
3001 }
3002 if (netif_msg_tx_err(priv))
3003 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3004 }
3005 if (events & IEVENT_BSY) {
3006 dev->stats.rx_errors++;
3007 priv->extra_stats.rx_bsy++;
3008
3009 gfar_receive(irq, grp_id);
3010
3011 if (netif_msg_rx_err(priv))
3012 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3013 dev->name, gfar_read(&regs->rstat));
3014 }
3015 if (events & IEVENT_BABR) {
3016 dev->stats.rx_errors++;
3017 priv->extra_stats.rx_babr++;
3018
3019 if (netif_msg_rx_err(priv))
3020 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3021 }
3022 if (events & IEVENT_EBERR) {
3023 priv->extra_stats.eberr++;
3024 if (netif_msg_rx_err(priv))
3025 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3026 }
3027 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3028 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3029
3030 if (events & IEVENT_BABT) {
3031 priv->extra_stats.tx_babt++;
3032 if (netif_msg_tx_err(priv))
3033 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3034 }
3035 return IRQ_HANDLED;
3036 }
3037
3038 static struct of_device_id gfar_match[] =
3039 {
3040 {
3041 .type = "network",
3042 .compatible = "gianfar",
3043 },
3044 {
3045 .compatible = "fsl,etsec2",
3046 },
3047 {},
3048 };
3049 MODULE_DEVICE_TABLE(of, gfar_match);
3050
3051 /* Structure for a device driver */
3052 static struct of_platform_driver gfar_driver = {
3053 .name = "fsl-gianfar",
3054 .match_table = gfar_match,
3055
3056 .probe = gfar_probe,
3057 .remove = gfar_remove,
3058 .suspend = gfar_legacy_suspend,
3059 .resume = gfar_legacy_resume,
3060 .driver.pm = GFAR_PM_OPS,
3061 };
3062
3063 static int __init gfar_init(void)
3064 {
3065 return of_register_platform_driver(&gfar_driver);
3066 }
3067
3068 static void __exit gfar_exit(void)
3069 {
3070 of_unregister_platform_driver(&gfar_driver);
3071 }
3072
3073 module_init(gfar_init);
3074 module_exit(gfar_exit);
3075