Merge branch 'release' of git://lm-sensors.org/kernel/mhoffman/hwmon-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
33 *
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
39 *
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
56 * skb.
57 *
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
66 */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 #ifdef CONFIG_GFAR_NAPI
105 #define RECEIVE(x) netif_receive_skb(x)
106 #else
107 #define RECEIVE(x) netif_rx(x)
108 #endif
109
110 const char gfar_driver_name[] = "Gianfar Ethernet";
111 const char gfar_driver_version[] = "1.3";
112
113 static int gfar_enet_open(struct net_device *dev);
114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115 static void gfar_timeout(struct net_device *dev);
116 static int gfar_close(struct net_device *dev);
117 struct sk_buff *gfar_new_skb(struct net_device *dev);
118 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
119 struct sk_buff *skb);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 static void gfar_configure_serdes(struct net_device *dev);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct napi_struct *napi, int budget);
136 #endif
137 #ifdef CONFIG_NET_POLL_CONTROLLER
138 static void gfar_netpoll(struct net_device *dev);
139 #endif
140 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
141 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
142 static void gfar_vlan_rx_register(struct net_device *netdev,
143 struct vlan_group *grp);
144 void gfar_halt(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
148
149 extern const struct ethtool_ops gfar_ethtool_ops;
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 /* Returns 1 if incoming frames use an FCB */
156 static inline int gfar_uses_fcb(struct gfar_private *priv)
157 {
158 return (priv->vlan_enable || priv->rx_csum_enable);
159 }
160
161 /* Set up the ethernet device structure, private data,
162 * and anything else we need before we start */
163 static int gfar_probe(struct platform_device *pdev)
164 {
165 u32 tempval;
166 struct net_device *dev = NULL;
167 struct gfar_private *priv = NULL;
168 struct gianfar_platform_data *einfo;
169 struct resource *r;
170 int err = 0;
171 DECLARE_MAC_BUF(mac);
172
173 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
174
175 if (NULL == einfo) {
176 printk(KERN_ERR "gfar %d: Missing additional data!\n",
177 pdev->id);
178
179 return -ENODEV;
180 }
181
182 /* Create an ethernet device instance */
183 dev = alloc_etherdev(sizeof (*priv));
184
185 if (NULL == dev)
186 return -ENOMEM;
187
188 priv = netdev_priv(dev);
189 priv->dev = dev;
190
191 /* Set the info in the priv to the current info */
192 priv->einfo = einfo;
193
194 /* fill out IRQ fields */
195 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
196 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
197 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
198 priv->interruptError = platform_get_irq_byname(pdev, "error");
199 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
200 goto regs_fail;
201 } else {
202 priv->interruptTransmit = platform_get_irq(pdev, 0);
203 if (priv->interruptTransmit < 0)
204 goto regs_fail;
205 }
206
207 /* get a pointer to the register memory */
208 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
209 priv->regs = ioremap(r->start, sizeof (struct gfar));
210
211 if (NULL == priv->regs) {
212 err = -ENOMEM;
213 goto regs_fail;
214 }
215
216 spin_lock_init(&priv->txlock);
217 spin_lock_init(&priv->rxlock);
218
219 platform_set_drvdata(pdev, dev);
220
221 /* Stop the DMA engine now, in case it was running before */
222 /* (The firmware could have used it, and left it running). */
223 /* To do this, we write Graceful Receive Stop and Graceful */
224 /* Transmit Stop, and then wait until the corresponding bits */
225 /* in IEVENT indicate the stops have completed. */
226 tempval = gfar_read(&priv->regs->dmactrl);
227 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
228 gfar_write(&priv->regs->dmactrl, tempval);
229
230 tempval = gfar_read(&priv->regs->dmactrl);
231 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
232 gfar_write(&priv->regs->dmactrl, tempval);
233
234 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
235 cpu_relax();
236
237 /* Reset MAC layer */
238 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
239
240 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
241 gfar_write(&priv->regs->maccfg1, tempval);
242
243 /* Initialize MACCFG2. */
244 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
245
246 /* Initialize ECNTRL */
247 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
248
249 /* Copy the station address into the dev structure, */
250 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
251
252 /* Set the dev->base_addr to the gfar reg region */
253 dev->base_addr = (unsigned long) (priv->regs);
254
255 SET_NETDEV_DEV(dev, &pdev->dev);
256
257 /* Fill in the dev structure */
258 dev->open = gfar_enet_open;
259 dev->hard_start_xmit = gfar_start_xmit;
260 dev->tx_timeout = gfar_timeout;
261 dev->watchdog_timeo = TX_TIMEOUT;
262 #ifdef CONFIG_GFAR_NAPI
263 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
264 #endif
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266 dev->poll_controller = gfar_netpoll;
267 #endif
268 dev->stop = gfar_close;
269 dev->change_mtu = gfar_change_mtu;
270 dev->mtu = 1500;
271 dev->set_multicast_list = gfar_set_multi;
272
273 dev->ethtool_ops = &gfar_ethtool_ops;
274
275 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
276 priv->rx_csum_enable = 1;
277 dev->features |= NETIF_F_IP_CSUM;
278 } else
279 priv->rx_csum_enable = 0;
280
281 priv->vlgrp = NULL;
282
283 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
284 dev->vlan_rx_register = gfar_vlan_rx_register;
285
286 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
287
288 priv->vlan_enable = 1;
289 }
290
291 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
292 priv->extended_hash = 1;
293 priv->hash_width = 9;
294
295 priv->hash_regs[0] = &priv->regs->igaddr0;
296 priv->hash_regs[1] = &priv->regs->igaddr1;
297 priv->hash_regs[2] = &priv->regs->igaddr2;
298 priv->hash_regs[3] = &priv->regs->igaddr3;
299 priv->hash_regs[4] = &priv->regs->igaddr4;
300 priv->hash_regs[5] = &priv->regs->igaddr5;
301 priv->hash_regs[6] = &priv->regs->igaddr6;
302 priv->hash_regs[7] = &priv->regs->igaddr7;
303 priv->hash_regs[8] = &priv->regs->gaddr0;
304 priv->hash_regs[9] = &priv->regs->gaddr1;
305 priv->hash_regs[10] = &priv->regs->gaddr2;
306 priv->hash_regs[11] = &priv->regs->gaddr3;
307 priv->hash_regs[12] = &priv->regs->gaddr4;
308 priv->hash_regs[13] = &priv->regs->gaddr5;
309 priv->hash_regs[14] = &priv->regs->gaddr6;
310 priv->hash_regs[15] = &priv->regs->gaddr7;
311
312 } else {
313 priv->extended_hash = 0;
314 priv->hash_width = 8;
315
316 priv->hash_regs[0] = &priv->regs->gaddr0;
317 priv->hash_regs[1] = &priv->regs->gaddr1;
318 priv->hash_regs[2] = &priv->regs->gaddr2;
319 priv->hash_regs[3] = &priv->regs->gaddr3;
320 priv->hash_regs[4] = &priv->regs->gaddr4;
321 priv->hash_regs[5] = &priv->regs->gaddr5;
322 priv->hash_regs[6] = &priv->regs->gaddr6;
323 priv->hash_regs[7] = &priv->regs->gaddr7;
324 }
325
326 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
327 priv->padding = DEFAULT_PADDING;
328 else
329 priv->padding = 0;
330
331 if (dev->features & NETIF_F_IP_CSUM)
332 dev->hard_header_len += GMAC_FCB_LEN;
333
334 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
335 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
336 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
337
338 priv->txcoalescing = DEFAULT_TX_COALESCE;
339 priv->txcount = DEFAULT_TXCOUNT;
340 priv->txtime = DEFAULT_TXTIME;
341 priv->rxcoalescing = DEFAULT_RX_COALESCE;
342 priv->rxcount = DEFAULT_RXCOUNT;
343 priv->rxtime = DEFAULT_RXTIME;
344
345 /* Enable most messages by default */
346 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
347
348 err = register_netdev(dev);
349
350 if (err) {
351 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
352 dev->name);
353 goto register_fail;
354 }
355
356 /* Create all the sysfs files */
357 gfar_init_sysfs(dev);
358
359 /* Print out the device info */
360 printk(KERN_INFO DEVICE_NAME "%s\n",
361 dev->name, print_mac(mac, dev->dev_addr));
362
363 /* Even more device info helps when determining which kernel */
364 /* provided which set of benchmarks. */
365 #ifdef CONFIG_GFAR_NAPI
366 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
367 #else
368 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
369 #endif
370 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
371 dev->name, priv->rx_ring_size, priv->tx_ring_size);
372
373 return 0;
374
375 register_fail:
376 iounmap(priv->regs);
377 regs_fail:
378 free_netdev(dev);
379 return err;
380 }
381
382 static int gfar_remove(struct platform_device *pdev)
383 {
384 struct net_device *dev = platform_get_drvdata(pdev);
385 struct gfar_private *priv = netdev_priv(dev);
386
387 platform_set_drvdata(pdev, NULL);
388
389 iounmap(priv->regs);
390 free_netdev(dev);
391
392 return 0;
393 }
394
395
396 /* Reads the controller's registers to determine what interface
397 * connects it to the PHY.
398 */
399 static phy_interface_t gfar_get_interface(struct net_device *dev)
400 {
401 struct gfar_private *priv = netdev_priv(dev);
402 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
403
404 if (ecntrl & ECNTRL_SGMII_MODE)
405 return PHY_INTERFACE_MODE_SGMII;
406
407 if (ecntrl & ECNTRL_TBI_MODE) {
408 if (ecntrl & ECNTRL_REDUCED_MODE)
409 return PHY_INTERFACE_MODE_RTBI;
410 else
411 return PHY_INTERFACE_MODE_TBI;
412 }
413
414 if (ecntrl & ECNTRL_REDUCED_MODE) {
415 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
416 return PHY_INTERFACE_MODE_RMII;
417 else {
418 phy_interface_t interface = priv->einfo->interface;
419
420 /*
421 * This isn't autodetected right now, so it must
422 * be set by the device tree or platform code.
423 */
424 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
425 return PHY_INTERFACE_MODE_RGMII_ID;
426
427 return PHY_INTERFACE_MODE_RGMII;
428 }
429 }
430
431 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
432 return PHY_INTERFACE_MODE_GMII;
433
434 return PHY_INTERFACE_MODE_MII;
435 }
436
437
438 /* Initializes driver's PHY state, and attaches to the PHY.
439 * Returns 0 on success.
440 */
441 static int init_phy(struct net_device *dev)
442 {
443 struct gfar_private *priv = netdev_priv(dev);
444 uint gigabit_support =
445 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
446 SUPPORTED_1000baseT_Full : 0;
447 struct phy_device *phydev;
448 char phy_id[BUS_ID_SIZE];
449 phy_interface_t interface;
450
451 priv->oldlink = 0;
452 priv->oldspeed = 0;
453 priv->oldduplex = -1;
454
455 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
456
457 interface = gfar_get_interface(dev);
458
459 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
460
461 if (interface == PHY_INTERFACE_MODE_SGMII)
462 gfar_configure_serdes(dev);
463
464 if (IS_ERR(phydev)) {
465 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
466 return PTR_ERR(phydev);
467 }
468
469 /* Remove any features not supported by the controller */
470 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
471 phydev->advertising = phydev->supported;
472
473 priv->phydev = phydev;
474
475 return 0;
476 }
477
478 /*
479 * Initialize TBI PHY interface for communicating with the
480 * SERDES lynx PHY on the chip. We communicate with this PHY
481 * through the MDIO bus on each controller, treating it as a
482 * "normal" PHY at the address found in the TBIPA register. We assume
483 * that the TBIPA register is valid. Either the MDIO bus code will set
484 * it to a value that doesn't conflict with other PHYs on the bus, or the
485 * value doesn't matter, as there are no other PHYs on the bus.
486 */
487 static void gfar_configure_serdes(struct net_device *dev)
488 {
489 struct gfar_private *priv = netdev_priv(dev);
490 struct gfar_mii __iomem *regs =
491 (void __iomem *)&priv->regs->gfar_mii_regs;
492 int tbipa = gfar_read(&priv->regs->tbipa);
493
494 /* Single clk mode, mii mode off(for serdes communication) */
495 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
496
497 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
498 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
499 ADVERTISE_1000XPSE_ASYM);
500
501 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
502 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
503 }
504
505 static void init_registers(struct net_device *dev)
506 {
507 struct gfar_private *priv = netdev_priv(dev);
508
509 /* Clear IEVENT */
510 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
511
512 /* Initialize IMASK */
513 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
514
515 /* Init hash registers to zero */
516 gfar_write(&priv->regs->igaddr0, 0);
517 gfar_write(&priv->regs->igaddr1, 0);
518 gfar_write(&priv->regs->igaddr2, 0);
519 gfar_write(&priv->regs->igaddr3, 0);
520 gfar_write(&priv->regs->igaddr4, 0);
521 gfar_write(&priv->regs->igaddr5, 0);
522 gfar_write(&priv->regs->igaddr6, 0);
523 gfar_write(&priv->regs->igaddr7, 0);
524
525 gfar_write(&priv->regs->gaddr0, 0);
526 gfar_write(&priv->regs->gaddr1, 0);
527 gfar_write(&priv->regs->gaddr2, 0);
528 gfar_write(&priv->regs->gaddr3, 0);
529 gfar_write(&priv->regs->gaddr4, 0);
530 gfar_write(&priv->regs->gaddr5, 0);
531 gfar_write(&priv->regs->gaddr6, 0);
532 gfar_write(&priv->regs->gaddr7, 0);
533
534 /* Zero out the rmon mib registers if it has them */
535 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
536 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
537
538 /* Mask off the CAM interrupts */
539 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
540 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
541 }
542
543 /* Initialize the max receive buffer length */
544 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
545
546 /* Initialize the Minimum Frame Length Register */
547 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
548 }
549
550
551 /* Halt the receive and transmit queues */
552 void gfar_halt(struct net_device *dev)
553 {
554 struct gfar_private *priv = netdev_priv(dev);
555 struct gfar __iomem *regs = priv->regs;
556 u32 tempval;
557
558 /* Mask all interrupts */
559 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
560
561 /* Clear all interrupts */
562 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
563
564 /* Stop the DMA, and wait for it to stop */
565 tempval = gfar_read(&priv->regs->dmactrl);
566 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
567 != (DMACTRL_GRS | DMACTRL_GTS)) {
568 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
569 gfar_write(&priv->regs->dmactrl, tempval);
570
571 while (!(gfar_read(&priv->regs->ievent) &
572 (IEVENT_GRSC | IEVENT_GTSC)))
573 cpu_relax();
574 }
575
576 /* Disable Rx and Tx */
577 tempval = gfar_read(&regs->maccfg1);
578 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
579 gfar_write(&regs->maccfg1, tempval);
580 }
581
582 void stop_gfar(struct net_device *dev)
583 {
584 struct gfar_private *priv = netdev_priv(dev);
585 struct gfar __iomem *regs = priv->regs;
586 unsigned long flags;
587
588 phy_stop(priv->phydev);
589
590 /* Lock it down */
591 spin_lock_irqsave(&priv->txlock, flags);
592 spin_lock(&priv->rxlock);
593
594 gfar_halt(dev);
595
596 spin_unlock(&priv->rxlock);
597 spin_unlock_irqrestore(&priv->txlock, flags);
598
599 /* Free the IRQs */
600 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
601 free_irq(priv->interruptError, dev);
602 free_irq(priv->interruptTransmit, dev);
603 free_irq(priv->interruptReceive, dev);
604 } else {
605 free_irq(priv->interruptTransmit, dev);
606 }
607
608 free_skb_resources(priv);
609
610 dma_free_coherent(&dev->dev,
611 sizeof(struct txbd8)*priv->tx_ring_size
612 + sizeof(struct rxbd8)*priv->rx_ring_size,
613 priv->tx_bd_base,
614 gfar_read(&regs->tbase0));
615 }
616
617 /* If there are any tx skbs or rx skbs still around, free them.
618 * Then free tx_skbuff and rx_skbuff */
619 static void free_skb_resources(struct gfar_private *priv)
620 {
621 struct rxbd8 *rxbdp;
622 struct txbd8 *txbdp;
623 int i;
624
625 /* Go through all the buffer descriptors and free their data buffers */
626 txbdp = priv->tx_bd_base;
627
628 for (i = 0; i < priv->tx_ring_size; i++) {
629
630 if (priv->tx_skbuff[i]) {
631 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
632 txbdp->length,
633 DMA_TO_DEVICE);
634 dev_kfree_skb_any(priv->tx_skbuff[i]);
635 priv->tx_skbuff[i] = NULL;
636 }
637 }
638
639 kfree(priv->tx_skbuff);
640
641 rxbdp = priv->rx_bd_base;
642
643 /* rx_skbuff is not guaranteed to be allocated, so only
644 * free it and its contents if it is allocated */
645 if(priv->rx_skbuff != NULL) {
646 for (i = 0; i < priv->rx_ring_size; i++) {
647 if (priv->rx_skbuff[i]) {
648 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
649 priv->rx_buffer_size,
650 DMA_FROM_DEVICE);
651
652 dev_kfree_skb_any(priv->rx_skbuff[i]);
653 priv->rx_skbuff[i] = NULL;
654 }
655
656 rxbdp->status = 0;
657 rxbdp->length = 0;
658 rxbdp->bufPtr = 0;
659
660 rxbdp++;
661 }
662
663 kfree(priv->rx_skbuff);
664 }
665 }
666
667 void gfar_start(struct net_device *dev)
668 {
669 struct gfar_private *priv = netdev_priv(dev);
670 struct gfar __iomem *regs = priv->regs;
671 u32 tempval;
672
673 /* Enable Rx and Tx in MACCFG1 */
674 tempval = gfar_read(&regs->maccfg1);
675 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
676 gfar_write(&regs->maccfg1, tempval);
677
678 /* Initialize DMACTRL to have WWR and WOP */
679 tempval = gfar_read(&priv->regs->dmactrl);
680 tempval |= DMACTRL_INIT_SETTINGS;
681 gfar_write(&priv->regs->dmactrl, tempval);
682
683 /* Make sure we aren't stopped */
684 tempval = gfar_read(&priv->regs->dmactrl);
685 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
686 gfar_write(&priv->regs->dmactrl, tempval);
687
688 /* Clear THLT/RHLT, so that the DMA starts polling now */
689 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
690 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
691
692 /* Unmask the interrupts we look for */
693 gfar_write(&regs->imask, IMASK_DEFAULT);
694 }
695
696 /* Bring the controller up and running */
697 int startup_gfar(struct net_device *dev)
698 {
699 struct txbd8 *txbdp;
700 struct rxbd8 *rxbdp;
701 dma_addr_t addr = 0;
702 unsigned long vaddr;
703 int i;
704 struct gfar_private *priv = netdev_priv(dev);
705 struct gfar __iomem *regs = priv->regs;
706 int err = 0;
707 u32 rctrl = 0;
708 u32 attrs = 0;
709
710 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
711
712 /* Allocate memory for the buffer descriptors */
713 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
714 sizeof (struct txbd8) * priv->tx_ring_size +
715 sizeof (struct rxbd8) * priv->rx_ring_size,
716 &addr, GFP_KERNEL);
717
718 if (vaddr == 0) {
719 if (netif_msg_ifup(priv))
720 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
721 dev->name);
722 return -ENOMEM;
723 }
724
725 priv->tx_bd_base = (struct txbd8 *) vaddr;
726
727 /* enet DMA only understands physical addresses */
728 gfar_write(&regs->tbase0, addr);
729
730 /* Start the rx descriptor ring where the tx ring leaves off */
731 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
732 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
733 priv->rx_bd_base = (struct rxbd8 *) vaddr;
734 gfar_write(&regs->rbase0, addr);
735
736 /* Setup the skbuff rings */
737 priv->tx_skbuff =
738 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
739 priv->tx_ring_size, GFP_KERNEL);
740
741 if (NULL == priv->tx_skbuff) {
742 if (netif_msg_ifup(priv))
743 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
744 dev->name);
745 err = -ENOMEM;
746 goto tx_skb_fail;
747 }
748
749 for (i = 0; i < priv->tx_ring_size; i++)
750 priv->tx_skbuff[i] = NULL;
751
752 priv->rx_skbuff =
753 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
754 priv->rx_ring_size, GFP_KERNEL);
755
756 if (NULL == priv->rx_skbuff) {
757 if (netif_msg_ifup(priv))
758 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
759 dev->name);
760 err = -ENOMEM;
761 goto rx_skb_fail;
762 }
763
764 for (i = 0; i < priv->rx_ring_size; i++)
765 priv->rx_skbuff[i] = NULL;
766
767 /* Initialize some variables in our dev structure */
768 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
769 priv->cur_rx = priv->rx_bd_base;
770 priv->skb_curtx = priv->skb_dirtytx = 0;
771 priv->skb_currx = 0;
772
773 /* Initialize Transmit Descriptor Ring */
774 txbdp = priv->tx_bd_base;
775 for (i = 0; i < priv->tx_ring_size; i++) {
776 txbdp->status = 0;
777 txbdp->length = 0;
778 txbdp->bufPtr = 0;
779 txbdp++;
780 }
781
782 /* Set the last descriptor in the ring to indicate wrap */
783 txbdp--;
784 txbdp->status |= TXBD_WRAP;
785
786 rxbdp = priv->rx_bd_base;
787 for (i = 0; i < priv->rx_ring_size; i++) {
788 struct sk_buff *skb;
789
790 skb = gfar_new_skb(dev);
791
792 if (!skb) {
793 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
794 dev->name);
795
796 goto err_rxalloc_fail;
797 }
798
799 priv->rx_skbuff[i] = skb;
800
801 gfar_new_rxbdp(dev, rxbdp, skb);
802
803 rxbdp++;
804 }
805
806 /* Set the last descriptor in the ring to wrap */
807 rxbdp--;
808 rxbdp->status |= RXBD_WRAP;
809
810 /* If the device has multiple interrupts, register for
811 * them. Otherwise, only register for the one */
812 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
813 /* Install our interrupt handlers for Error,
814 * Transmit, and Receive */
815 if (request_irq(priv->interruptError, gfar_error,
816 0, "enet_error", dev) < 0) {
817 if (netif_msg_intr(priv))
818 printk(KERN_ERR "%s: Can't get IRQ %d\n",
819 dev->name, priv->interruptError);
820
821 err = -1;
822 goto err_irq_fail;
823 }
824
825 if (request_irq(priv->interruptTransmit, gfar_transmit,
826 0, "enet_tx", dev) < 0) {
827 if (netif_msg_intr(priv))
828 printk(KERN_ERR "%s: Can't get IRQ %d\n",
829 dev->name, priv->interruptTransmit);
830
831 err = -1;
832
833 goto tx_irq_fail;
834 }
835
836 if (request_irq(priv->interruptReceive, gfar_receive,
837 0, "enet_rx", dev) < 0) {
838 if (netif_msg_intr(priv))
839 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
840 dev->name, priv->interruptReceive);
841
842 err = -1;
843 goto rx_irq_fail;
844 }
845 } else {
846 if (request_irq(priv->interruptTransmit, gfar_interrupt,
847 0, "gfar_interrupt", dev) < 0) {
848 if (netif_msg_intr(priv))
849 printk(KERN_ERR "%s: Can't get IRQ %d\n",
850 dev->name, priv->interruptError);
851
852 err = -1;
853 goto err_irq_fail;
854 }
855 }
856
857 phy_start(priv->phydev);
858
859 /* Configure the coalescing support */
860 if (priv->txcoalescing)
861 gfar_write(&regs->txic,
862 mk_ic_value(priv->txcount, priv->txtime));
863 else
864 gfar_write(&regs->txic, 0);
865
866 if (priv->rxcoalescing)
867 gfar_write(&regs->rxic,
868 mk_ic_value(priv->rxcount, priv->rxtime));
869 else
870 gfar_write(&regs->rxic, 0);
871
872 if (priv->rx_csum_enable)
873 rctrl |= RCTRL_CHECKSUMMING;
874
875 if (priv->extended_hash) {
876 rctrl |= RCTRL_EXTHASH;
877
878 gfar_clear_exact_match(dev);
879 rctrl |= RCTRL_EMEN;
880 }
881
882 if (priv->vlan_enable)
883 rctrl |= RCTRL_VLAN;
884
885 if (priv->padding) {
886 rctrl &= ~RCTRL_PAL_MASK;
887 rctrl |= RCTRL_PADDING(priv->padding);
888 }
889
890 /* Init rctrl based on our settings */
891 gfar_write(&priv->regs->rctrl, rctrl);
892
893 if (dev->features & NETIF_F_IP_CSUM)
894 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
895
896 /* Set the extraction length and index */
897 attrs = ATTRELI_EL(priv->rx_stash_size) |
898 ATTRELI_EI(priv->rx_stash_index);
899
900 gfar_write(&priv->regs->attreli, attrs);
901
902 /* Start with defaults, and add stashing or locking
903 * depending on the approprate variables */
904 attrs = ATTR_INIT_SETTINGS;
905
906 if (priv->bd_stash_en)
907 attrs |= ATTR_BDSTASH;
908
909 if (priv->rx_stash_size != 0)
910 attrs |= ATTR_BUFSTASH;
911
912 gfar_write(&priv->regs->attr, attrs);
913
914 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
915 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
916 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
917
918 /* Start the controller */
919 gfar_start(dev);
920
921 return 0;
922
923 rx_irq_fail:
924 free_irq(priv->interruptTransmit, dev);
925 tx_irq_fail:
926 free_irq(priv->interruptError, dev);
927 err_irq_fail:
928 err_rxalloc_fail:
929 rx_skb_fail:
930 free_skb_resources(priv);
931 tx_skb_fail:
932 dma_free_coherent(&dev->dev,
933 sizeof(struct txbd8)*priv->tx_ring_size
934 + sizeof(struct rxbd8)*priv->rx_ring_size,
935 priv->tx_bd_base,
936 gfar_read(&regs->tbase0));
937
938 return err;
939 }
940
941 /* Called when something needs to use the ethernet device */
942 /* Returns 0 for success. */
943 static int gfar_enet_open(struct net_device *dev)
944 {
945 #ifdef CONFIG_GFAR_NAPI
946 struct gfar_private *priv = netdev_priv(dev);
947 #endif
948 int err;
949
950 #ifdef CONFIG_GFAR_NAPI
951 napi_enable(&priv->napi);
952 #endif
953
954 /* Initialize a bunch of registers */
955 init_registers(dev);
956
957 gfar_set_mac_address(dev);
958
959 err = init_phy(dev);
960
961 if(err) {
962 #ifdef CONFIG_GFAR_NAPI
963 napi_disable(&priv->napi);
964 #endif
965 return err;
966 }
967
968 err = startup_gfar(dev);
969 if (err) {
970 #ifdef CONFIG_GFAR_NAPI
971 napi_disable(&priv->napi);
972 #endif
973 return err;
974 }
975
976 netif_start_queue(dev);
977
978 return err;
979 }
980
981 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
982 {
983 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
984
985 memset(fcb, 0, GMAC_FCB_LEN);
986
987 return fcb;
988 }
989
990 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
991 {
992 u8 flags = 0;
993
994 /* If we're here, it's a IP packet with a TCP or UDP
995 * payload. We set it to checksum, using a pseudo-header
996 * we provide
997 */
998 flags = TXFCB_DEFAULT;
999
1000 /* Tell the controller what the protocol is */
1001 /* And provide the already calculated phcs */
1002 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1003 flags |= TXFCB_UDP;
1004 fcb->phcs = udp_hdr(skb)->check;
1005 } else
1006 fcb->phcs = tcp_hdr(skb)->check;
1007
1008 /* l3os is the distance between the start of the
1009 * frame (skb->data) and the start of the IP hdr.
1010 * l4os is the distance between the start of the
1011 * l3 hdr and the l4 hdr */
1012 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1013 fcb->l4os = skb_network_header_len(skb);
1014
1015 fcb->flags = flags;
1016 }
1017
1018 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1019 {
1020 fcb->flags |= TXFCB_VLN;
1021 fcb->vlctl = vlan_tx_tag_get(skb);
1022 }
1023
1024 /* This is called by the kernel when a frame is ready for transmission. */
1025 /* It is pointed to by the dev->hard_start_xmit function pointer */
1026 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1027 {
1028 struct gfar_private *priv = netdev_priv(dev);
1029 struct txfcb *fcb = NULL;
1030 struct txbd8 *txbdp;
1031 u16 status;
1032 unsigned long flags;
1033
1034 /* Update transmit stats */
1035 dev->stats.tx_bytes += skb->len;
1036
1037 /* Lock priv now */
1038 spin_lock_irqsave(&priv->txlock, flags);
1039
1040 /* Point at the first free tx descriptor */
1041 txbdp = priv->cur_tx;
1042
1043 /* Clear all but the WRAP status flags */
1044 status = txbdp->status & TXBD_WRAP;
1045
1046 /* Set up checksumming */
1047 if (likely((dev->features & NETIF_F_IP_CSUM)
1048 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1049 fcb = gfar_add_fcb(skb, txbdp);
1050 status |= TXBD_TOE;
1051 gfar_tx_checksum(skb, fcb);
1052 }
1053
1054 if (priv->vlan_enable &&
1055 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1056 if (unlikely(NULL == fcb)) {
1057 fcb = gfar_add_fcb(skb, txbdp);
1058 status |= TXBD_TOE;
1059 }
1060
1061 gfar_tx_vlan(skb, fcb);
1062 }
1063
1064 /* Set buffer length and pointer */
1065 txbdp->length = skb->len;
1066 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1067 skb->len, DMA_TO_DEVICE);
1068
1069 /* Save the skb pointer so we can free it later */
1070 priv->tx_skbuff[priv->skb_curtx] = skb;
1071
1072 /* Update the current skb pointer (wrapping if this was the last) */
1073 priv->skb_curtx =
1074 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1075
1076 /* Flag the BD as interrupt-causing */
1077 status |= TXBD_INTERRUPT;
1078
1079 /* Flag the BD as ready to go, last in frame, and */
1080 /* in need of CRC */
1081 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1082
1083 dev->trans_start = jiffies;
1084
1085 /* The powerpc-specific eieio() is used, as wmb() has too strong
1086 * semantics (it requires synchronization between cacheable and
1087 * uncacheable mappings, which eieio doesn't provide and which we
1088 * don't need), thus requiring a more expensive sync instruction. At
1089 * some point, the set of architecture-independent barrier functions
1090 * should be expanded to include weaker barriers.
1091 */
1092
1093 eieio();
1094 txbdp->status = status;
1095
1096 /* If this was the last BD in the ring, the next one */
1097 /* is at the beginning of the ring */
1098 if (txbdp->status & TXBD_WRAP)
1099 txbdp = priv->tx_bd_base;
1100 else
1101 txbdp++;
1102
1103 /* If the next BD still needs to be cleaned up, then the bds
1104 are full. We need to tell the kernel to stop sending us stuff. */
1105 if (txbdp == priv->dirty_tx) {
1106 netif_stop_queue(dev);
1107
1108 dev->stats.tx_fifo_errors++;
1109 }
1110
1111 /* Update the current txbd to the next one */
1112 priv->cur_tx = txbdp;
1113
1114 /* Tell the DMA to go go go */
1115 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1116
1117 /* Unlock priv */
1118 spin_unlock_irqrestore(&priv->txlock, flags);
1119
1120 return 0;
1121 }
1122
1123 /* Stops the kernel queue, and halts the controller */
1124 static int gfar_close(struct net_device *dev)
1125 {
1126 struct gfar_private *priv = netdev_priv(dev);
1127
1128 #ifdef CONFIG_GFAR_NAPI
1129 napi_disable(&priv->napi);
1130 #endif
1131
1132 stop_gfar(dev);
1133
1134 /* Disconnect from the PHY */
1135 phy_disconnect(priv->phydev);
1136 priv->phydev = NULL;
1137
1138 netif_stop_queue(dev);
1139
1140 return 0;
1141 }
1142
1143 /* Changes the mac address if the controller is not running. */
1144 int gfar_set_mac_address(struct net_device *dev)
1145 {
1146 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1147
1148 return 0;
1149 }
1150
1151
1152 /* Enables and disables VLAN insertion/extraction */
1153 static void gfar_vlan_rx_register(struct net_device *dev,
1154 struct vlan_group *grp)
1155 {
1156 struct gfar_private *priv = netdev_priv(dev);
1157 unsigned long flags;
1158 u32 tempval;
1159
1160 spin_lock_irqsave(&priv->rxlock, flags);
1161
1162 priv->vlgrp = grp;
1163
1164 if (grp) {
1165 /* Enable VLAN tag insertion */
1166 tempval = gfar_read(&priv->regs->tctrl);
1167 tempval |= TCTRL_VLINS;
1168
1169 gfar_write(&priv->regs->tctrl, tempval);
1170
1171 /* Enable VLAN tag extraction */
1172 tempval = gfar_read(&priv->regs->rctrl);
1173 tempval |= RCTRL_VLEX;
1174 gfar_write(&priv->regs->rctrl, tempval);
1175 } else {
1176 /* Disable VLAN tag insertion */
1177 tempval = gfar_read(&priv->regs->tctrl);
1178 tempval &= ~TCTRL_VLINS;
1179 gfar_write(&priv->regs->tctrl, tempval);
1180
1181 /* Disable VLAN tag extraction */
1182 tempval = gfar_read(&priv->regs->rctrl);
1183 tempval &= ~RCTRL_VLEX;
1184 gfar_write(&priv->regs->rctrl, tempval);
1185 }
1186
1187 spin_unlock_irqrestore(&priv->rxlock, flags);
1188 }
1189
1190 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1191 {
1192 int tempsize, tempval;
1193 struct gfar_private *priv = netdev_priv(dev);
1194 int oldsize = priv->rx_buffer_size;
1195 int frame_size = new_mtu + ETH_HLEN;
1196
1197 if (priv->vlan_enable)
1198 frame_size += VLAN_HLEN;
1199
1200 if (gfar_uses_fcb(priv))
1201 frame_size += GMAC_FCB_LEN;
1202
1203 frame_size += priv->padding;
1204
1205 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1206 if (netif_msg_drv(priv))
1207 printk(KERN_ERR "%s: Invalid MTU setting\n",
1208 dev->name);
1209 return -EINVAL;
1210 }
1211
1212 tempsize =
1213 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1214 INCREMENTAL_BUFFER_SIZE;
1215
1216 /* Only stop and start the controller if it isn't already
1217 * stopped, and we changed something */
1218 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1219 stop_gfar(dev);
1220
1221 priv->rx_buffer_size = tempsize;
1222
1223 dev->mtu = new_mtu;
1224
1225 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1226 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1227
1228 /* If the mtu is larger than the max size for standard
1229 * ethernet frames (ie, a jumbo frame), then set maccfg2
1230 * to allow huge frames, and to check the length */
1231 tempval = gfar_read(&priv->regs->maccfg2);
1232
1233 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1234 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1235 else
1236 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1237
1238 gfar_write(&priv->regs->maccfg2, tempval);
1239
1240 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1241 startup_gfar(dev);
1242
1243 return 0;
1244 }
1245
1246 /* gfar_timeout gets called when a packet has not been
1247 * transmitted after a set amount of time.
1248 * For now, assume that clearing out all the structures, and
1249 * starting over will fix the problem. */
1250 static void gfar_timeout(struct net_device *dev)
1251 {
1252 dev->stats.tx_errors++;
1253
1254 if (dev->flags & IFF_UP) {
1255 stop_gfar(dev);
1256 startup_gfar(dev);
1257 }
1258
1259 netif_schedule(dev);
1260 }
1261
1262 /* Interrupt Handler for Transmit complete */
1263 int gfar_clean_tx_ring(struct net_device *dev)
1264 {
1265 struct txbd8 *bdp;
1266 struct gfar_private *priv = netdev_priv(dev);
1267 int howmany = 0;
1268
1269 bdp = priv->dirty_tx;
1270 while ((bdp->status & TXBD_READY) == 0) {
1271 /* If dirty_tx and cur_tx are the same, then either the */
1272 /* ring is empty or full now (it could only be full in the beginning, */
1273 /* obviously). If it is empty, we are done. */
1274 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1275 break;
1276
1277 howmany++;
1278
1279 /* Deferred means some collisions occurred during transmit, */
1280 /* but we eventually sent the packet. */
1281 if (bdp->status & TXBD_DEF)
1282 dev->stats.collisions++;
1283
1284 /* Free the sk buffer associated with this TxBD */
1285 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1286
1287 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1288 priv->skb_dirtytx =
1289 (priv->skb_dirtytx +
1290 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1291
1292 /* Clean BD length for empty detection */
1293 bdp->length = 0;
1294
1295 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1296 if (bdp->status & TXBD_WRAP)
1297 bdp = priv->tx_bd_base;
1298 else
1299 bdp++;
1300
1301 /* Move dirty_tx to be the next bd */
1302 priv->dirty_tx = bdp;
1303
1304 /* We freed a buffer, so now we can restart transmission */
1305 if (netif_queue_stopped(dev))
1306 netif_wake_queue(dev);
1307 } /* while ((bdp->status & TXBD_READY) == 0) */
1308
1309 dev->stats.tx_packets += howmany;
1310
1311 return howmany;
1312 }
1313
1314 /* Interrupt Handler for Transmit complete */
1315 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1316 {
1317 struct net_device *dev = (struct net_device *) dev_id;
1318 struct gfar_private *priv = netdev_priv(dev);
1319
1320 /* Clear IEVENT */
1321 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1322
1323 /* Lock priv */
1324 spin_lock(&priv->txlock);
1325
1326 gfar_clean_tx_ring(dev);
1327
1328 /* If we are coalescing the interrupts, reset the timer */
1329 /* Otherwise, clear it */
1330 if (likely(priv->txcoalescing)) {
1331 gfar_write(&priv->regs->txic, 0);
1332 gfar_write(&priv->regs->txic,
1333 mk_ic_value(priv->txcount, priv->txtime));
1334 }
1335
1336 spin_unlock(&priv->txlock);
1337
1338 return IRQ_HANDLED;
1339 }
1340
1341 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1342 struct sk_buff *skb)
1343 {
1344 struct gfar_private *priv = netdev_priv(dev);
1345 u32 * status_len = (u32 *)bdp;
1346 u16 flags;
1347
1348 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1349 priv->rx_buffer_size, DMA_FROM_DEVICE);
1350
1351 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1352
1353 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1354 flags |= RXBD_WRAP;
1355
1356 eieio();
1357
1358 *status_len = (u32)flags << 16;
1359 }
1360
1361
1362 struct sk_buff * gfar_new_skb(struct net_device *dev)
1363 {
1364 unsigned int alignamount;
1365 struct gfar_private *priv = netdev_priv(dev);
1366 struct sk_buff *skb = NULL;
1367
1368 /* We have to allocate the skb, so keep trying till we succeed */
1369 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1370
1371 if (!skb)
1372 return NULL;
1373
1374 alignamount = RXBUF_ALIGNMENT -
1375 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1376
1377 /* We need the data buffer to be aligned properly. We will reserve
1378 * as many bytes as needed to align the data properly
1379 */
1380 skb_reserve(skb, alignamount);
1381
1382 return skb;
1383 }
1384
1385 static inline void count_errors(unsigned short status, struct net_device *dev)
1386 {
1387 struct gfar_private *priv = netdev_priv(dev);
1388 struct net_device_stats *stats = &dev->stats;
1389 struct gfar_extra_stats *estats = &priv->extra_stats;
1390
1391 /* If the packet was truncated, none of the other errors
1392 * matter */
1393 if (status & RXBD_TRUNCATED) {
1394 stats->rx_length_errors++;
1395
1396 estats->rx_trunc++;
1397
1398 return;
1399 }
1400 /* Count the errors, if there were any */
1401 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1402 stats->rx_length_errors++;
1403
1404 if (status & RXBD_LARGE)
1405 estats->rx_large++;
1406 else
1407 estats->rx_short++;
1408 }
1409 if (status & RXBD_NONOCTET) {
1410 stats->rx_frame_errors++;
1411 estats->rx_nonoctet++;
1412 }
1413 if (status & RXBD_CRCERR) {
1414 estats->rx_crcerr++;
1415 stats->rx_crc_errors++;
1416 }
1417 if (status & RXBD_OVERRUN) {
1418 estats->rx_overrun++;
1419 stats->rx_crc_errors++;
1420 }
1421 }
1422
1423 irqreturn_t gfar_receive(int irq, void *dev_id)
1424 {
1425 struct net_device *dev = (struct net_device *) dev_id;
1426 struct gfar_private *priv = netdev_priv(dev);
1427 #ifdef CONFIG_GFAR_NAPI
1428 u32 tempval;
1429 #else
1430 unsigned long flags;
1431 #endif
1432
1433 /* support NAPI */
1434 #ifdef CONFIG_GFAR_NAPI
1435 /* Clear IEVENT, so interrupts aren't called again
1436 * because of the packets that have already arrived */
1437 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1438
1439 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1440 tempval = gfar_read(&priv->regs->imask);
1441 tempval &= IMASK_RTX_DISABLED;
1442 gfar_write(&priv->regs->imask, tempval);
1443
1444 __netif_rx_schedule(dev, &priv->napi);
1445 } else {
1446 if (netif_msg_rx_err(priv))
1447 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1448 dev->name, gfar_read(&priv->regs->ievent),
1449 gfar_read(&priv->regs->imask));
1450 }
1451 #else
1452 /* Clear IEVENT, so rx interrupt isn't called again
1453 * because of this interrupt */
1454 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1455
1456 spin_lock_irqsave(&priv->rxlock, flags);
1457 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1458
1459 /* If we are coalescing interrupts, update the timer */
1460 /* Otherwise, clear it */
1461 if (likely(priv->rxcoalescing)) {
1462 gfar_write(&priv->regs->rxic, 0);
1463 gfar_write(&priv->regs->rxic,
1464 mk_ic_value(priv->rxcount, priv->rxtime));
1465 }
1466
1467 spin_unlock_irqrestore(&priv->rxlock, flags);
1468 #endif
1469
1470 return IRQ_HANDLED;
1471 }
1472
1473 static inline int gfar_rx_vlan(struct sk_buff *skb,
1474 struct vlan_group *vlgrp, unsigned short vlctl)
1475 {
1476 #ifdef CONFIG_GFAR_NAPI
1477 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1478 #else
1479 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1480 #endif
1481 }
1482
1483 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1484 {
1485 /* If valid headers were found, and valid sums
1486 * were verified, then we tell the kernel that no
1487 * checksumming is necessary. Otherwise, it is */
1488 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1489 skb->ip_summed = CHECKSUM_UNNECESSARY;
1490 else
1491 skb->ip_summed = CHECKSUM_NONE;
1492 }
1493
1494
1495 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1496 {
1497 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1498
1499 /* Remove the FCB from the skb */
1500 skb_pull(skb, GMAC_FCB_LEN);
1501
1502 return fcb;
1503 }
1504
1505 /* gfar_process_frame() -- handle one incoming packet if skb
1506 * isn't NULL. */
1507 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1508 int length)
1509 {
1510 struct gfar_private *priv = netdev_priv(dev);
1511 struct rxfcb *fcb = NULL;
1512
1513 if (NULL == skb) {
1514 if (netif_msg_rx_err(priv))
1515 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1516 dev->stats.rx_dropped++;
1517 priv->extra_stats.rx_skbmissing++;
1518 } else {
1519 int ret;
1520
1521 /* Prep the skb for the packet */
1522 skb_put(skb, length);
1523
1524 /* Grab the FCB if there is one */
1525 if (gfar_uses_fcb(priv))
1526 fcb = gfar_get_fcb(skb);
1527
1528 /* Remove the padded bytes, if there are any */
1529 if (priv->padding)
1530 skb_pull(skb, priv->padding);
1531
1532 if (priv->rx_csum_enable)
1533 gfar_rx_checksum(skb, fcb);
1534
1535 /* Tell the skb what kind of packet this is */
1536 skb->protocol = eth_type_trans(skb, dev);
1537
1538 /* Send the packet up the stack */
1539 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1540 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1541 else
1542 ret = RECEIVE(skb);
1543
1544 if (NET_RX_DROP == ret)
1545 priv->extra_stats.kernel_dropped++;
1546 }
1547
1548 return 0;
1549 }
1550
1551 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1552 * until the budget/quota has been reached. Returns the number
1553 * of frames handled
1554 */
1555 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1556 {
1557 struct rxbd8 *bdp;
1558 struct sk_buff *skb;
1559 u16 pkt_len;
1560 int howmany = 0;
1561 struct gfar_private *priv = netdev_priv(dev);
1562
1563 /* Get the first full descriptor */
1564 bdp = priv->cur_rx;
1565
1566 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1567 struct sk_buff *newskb;
1568 rmb();
1569
1570 /* Add another skb for the future */
1571 newskb = gfar_new_skb(dev);
1572
1573 skb = priv->rx_skbuff[priv->skb_currx];
1574
1575 /* We drop the frame if we failed to allocate a new buffer */
1576 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1577 bdp->status & RXBD_ERR)) {
1578 count_errors(bdp->status, dev);
1579
1580 if (unlikely(!newskb))
1581 newskb = skb;
1582
1583 if (skb) {
1584 dma_unmap_single(&priv->dev->dev,
1585 bdp->bufPtr,
1586 priv->rx_buffer_size,
1587 DMA_FROM_DEVICE);
1588
1589 dev_kfree_skb_any(skb);
1590 }
1591 } else {
1592 /* Increment the number of packets */
1593 dev->stats.rx_packets++;
1594 howmany++;
1595
1596 /* Remove the FCS from the packet length */
1597 pkt_len = bdp->length - 4;
1598
1599 gfar_process_frame(dev, skb, pkt_len);
1600
1601 dev->stats.rx_bytes += pkt_len;
1602 }
1603
1604 dev->last_rx = jiffies;
1605
1606 priv->rx_skbuff[priv->skb_currx] = newskb;
1607
1608 /* Setup the new bdp */
1609 gfar_new_rxbdp(dev, bdp, newskb);
1610
1611 /* Update to the next pointer */
1612 if (bdp->status & RXBD_WRAP)
1613 bdp = priv->rx_bd_base;
1614 else
1615 bdp++;
1616
1617 /* update to point at the next skb */
1618 priv->skb_currx =
1619 (priv->skb_currx + 1) &
1620 RX_RING_MOD_MASK(priv->rx_ring_size);
1621 }
1622
1623 /* Update the current rxbd pointer to be the next one */
1624 priv->cur_rx = bdp;
1625
1626 return howmany;
1627 }
1628
1629 #ifdef CONFIG_GFAR_NAPI
1630 static int gfar_poll(struct napi_struct *napi, int budget)
1631 {
1632 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1633 struct net_device *dev = priv->dev;
1634 int howmany;
1635 unsigned long flags;
1636
1637 /* If we fail to get the lock, don't bother with the TX BDs */
1638 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1639 gfar_clean_tx_ring(dev);
1640 spin_unlock_irqrestore(&priv->txlock, flags);
1641 }
1642
1643 howmany = gfar_clean_rx_ring(dev, budget);
1644
1645 if (howmany < budget) {
1646 netif_rx_complete(dev, napi);
1647
1648 /* Clear the halt bit in RSTAT */
1649 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1650
1651 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1652
1653 /* If we are coalescing interrupts, update the timer */
1654 /* Otherwise, clear it */
1655 if (likely(priv->rxcoalescing)) {
1656 gfar_write(&priv->regs->rxic, 0);
1657 gfar_write(&priv->regs->rxic,
1658 mk_ic_value(priv->rxcount, priv->rxtime));
1659 }
1660 }
1661
1662 return howmany;
1663 }
1664 #endif
1665
1666 #ifdef CONFIG_NET_POLL_CONTROLLER
1667 /*
1668 * Polling 'interrupt' - used by things like netconsole to send skbs
1669 * without having to re-enable interrupts. It's not called while
1670 * the interrupt routine is executing.
1671 */
1672 static void gfar_netpoll(struct net_device *dev)
1673 {
1674 struct gfar_private *priv = netdev_priv(dev);
1675
1676 /* If the device has multiple interrupts, run tx/rx */
1677 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1678 disable_irq(priv->interruptTransmit);
1679 disable_irq(priv->interruptReceive);
1680 disable_irq(priv->interruptError);
1681 gfar_interrupt(priv->interruptTransmit, dev);
1682 enable_irq(priv->interruptError);
1683 enable_irq(priv->interruptReceive);
1684 enable_irq(priv->interruptTransmit);
1685 } else {
1686 disable_irq(priv->interruptTransmit);
1687 gfar_interrupt(priv->interruptTransmit, dev);
1688 enable_irq(priv->interruptTransmit);
1689 }
1690 }
1691 #endif
1692
1693 /* The interrupt handler for devices with one interrupt */
1694 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1695 {
1696 struct net_device *dev = dev_id;
1697 struct gfar_private *priv = netdev_priv(dev);
1698
1699 /* Save ievent for future reference */
1700 u32 events = gfar_read(&priv->regs->ievent);
1701
1702 /* Check for reception */
1703 if (events & IEVENT_RX_MASK)
1704 gfar_receive(irq, dev_id);
1705
1706 /* Check for transmit completion */
1707 if (events & IEVENT_TX_MASK)
1708 gfar_transmit(irq, dev_id);
1709
1710 /* Check for errors */
1711 if (events & IEVENT_ERR_MASK)
1712 gfar_error(irq, dev_id);
1713
1714 return IRQ_HANDLED;
1715 }
1716
1717 /* Called every time the controller might need to be made
1718 * aware of new link state. The PHY code conveys this
1719 * information through variables in the phydev structure, and this
1720 * function converts those variables into the appropriate
1721 * register values, and can bring down the device if needed.
1722 */
1723 static void adjust_link(struct net_device *dev)
1724 {
1725 struct gfar_private *priv = netdev_priv(dev);
1726 struct gfar __iomem *regs = priv->regs;
1727 unsigned long flags;
1728 struct phy_device *phydev = priv->phydev;
1729 int new_state = 0;
1730
1731 spin_lock_irqsave(&priv->txlock, flags);
1732 if (phydev->link) {
1733 u32 tempval = gfar_read(&regs->maccfg2);
1734 u32 ecntrl = gfar_read(&regs->ecntrl);
1735
1736 /* Now we make sure that we can be in full duplex mode.
1737 * If not, we operate in half-duplex mode. */
1738 if (phydev->duplex != priv->oldduplex) {
1739 new_state = 1;
1740 if (!(phydev->duplex))
1741 tempval &= ~(MACCFG2_FULL_DUPLEX);
1742 else
1743 tempval |= MACCFG2_FULL_DUPLEX;
1744
1745 priv->oldduplex = phydev->duplex;
1746 }
1747
1748 if (phydev->speed != priv->oldspeed) {
1749 new_state = 1;
1750 switch (phydev->speed) {
1751 case 1000:
1752 tempval =
1753 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1754 break;
1755 case 100:
1756 case 10:
1757 tempval =
1758 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1759
1760 /* Reduced mode distinguishes
1761 * between 10 and 100 */
1762 if (phydev->speed == SPEED_100)
1763 ecntrl |= ECNTRL_R100;
1764 else
1765 ecntrl &= ~(ECNTRL_R100);
1766 break;
1767 default:
1768 if (netif_msg_link(priv))
1769 printk(KERN_WARNING
1770 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1771 dev->name, phydev->speed);
1772 break;
1773 }
1774
1775 priv->oldspeed = phydev->speed;
1776 }
1777
1778 gfar_write(&regs->maccfg2, tempval);
1779 gfar_write(&regs->ecntrl, ecntrl);
1780
1781 if (!priv->oldlink) {
1782 new_state = 1;
1783 priv->oldlink = 1;
1784 netif_schedule(dev);
1785 }
1786 } else if (priv->oldlink) {
1787 new_state = 1;
1788 priv->oldlink = 0;
1789 priv->oldspeed = 0;
1790 priv->oldduplex = -1;
1791 }
1792
1793 if (new_state && netif_msg_link(priv))
1794 phy_print_status(phydev);
1795
1796 spin_unlock_irqrestore(&priv->txlock, flags);
1797 }
1798
1799 /* Update the hash table based on the current list of multicast
1800 * addresses we subscribe to. Also, change the promiscuity of
1801 * the device based on the flags (this function is called
1802 * whenever dev->flags is changed */
1803 static void gfar_set_multi(struct net_device *dev)
1804 {
1805 struct dev_mc_list *mc_ptr;
1806 struct gfar_private *priv = netdev_priv(dev);
1807 struct gfar __iomem *regs = priv->regs;
1808 u32 tempval;
1809
1810 if(dev->flags & IFF_PROMISC) {
1811 /* Set RCTRL to PROM */
1812 tempval = gfar_read(&regs->rctrl);
1813 tempval |= RCTRL_PROM;
1814 gfar_write(&regs->rctrl, tempval);
1815 } else {
1816 /* Set RCTRL to not PROM */
1817 tempval = gfar_read(&regs->rctrl);
1818 tempval &= ~(RCTRL_PROM);
1819 gfar_write(&regs->rctrl, tempval);
1820 }
1821
1822 if(dev->flags & IFF_ALLMULTI) {
1823 /* Set the hash to rx all multicast frames */
1824 gfar_write(&regs->igaddr0, 0xffffffff);
1825 gfar_write(&regs->igaddr1, 0xffffffff);
1826 gfar_write(&regs->igaddr2, 0xffffffff);
1827 gfar_write(&regs->igaddr3, 0xffffffff);
1828 gfar_write(&regs->igaddr4, 0xffffffff);
1829 gfar_write(&regs->igaddr5, 0xffffffff);
1830 gfar_write(&regs->igaddr6, 0xffffffff);
1831 gfar_write(&regs->igaddr7, 0xffffffff);
1832 gfar_write(&regs->gaddr0, 0xffffffff);
1833 gfar_write(&regs->gaddr1, 0xffffffff);
1834 gfar_write(&regs->gaddr2, 0xffffffff);
1835 gfar_write(&regs->gaddr3, 0xffffffff);
1836 gfar_write(&regs->gaddr4, 0xffffffff);
1837 gfar_write(&regs->gaddr5, 0xffffffff);
1838 gfar_write(&regs->gaddr6, 0xffffffff);
1839 gfar_write(&regs->gaddr7, 0xffffffff);
1840 } else {
1841 int em_num;
1842 int idx;
1843
1844 /* zero out the hash */
1845 gfar_write(&regs->igaddr0, 0x0);
1846 gfar_write(&regs->igaddr1, 0x0);
1847 gfar_write(&regs->igaddr2, 0x0);
1848 gfar_write(&regs->igaddr3, 0x0);
1849 gfar_write(&regs->igaddr4, 0x0);
1850 gfar_write(&regs->igaddr5, 0x0);
1851 gfar_write(&regs->igaddr6, 0x0);
1852 gfar_write(&regs->igaddr7, 0x0);
1853 gfar_write(&regs->gaddr0, 0x0);
1854 gfar_write(&regs->gaddr1, 0x0);
1855 gfar_write(&regs->gaddr2, 0x0);
1856 gfar_write(&regs->gaddr3, 0x0);
1857 gfar_write(&regs->gaddr4, 0x0);
1858 gfar_write(&regs->gaddr5, 0x0);
1859 gfar_write(&regs->gaddr6, 0x0);
1860 gfar_write(&regs->gaddr7, 0x0);
1861
1862 /* If we have extended hash tables, we need to
1863 * clear the exact match registers to prepare for
1864 * setting them */
1865 if (priv->extended_hash) {
1866 em_num = GFAR_EM_NUM + 1;
1867 gfar_clear_exact_match(dev);
1868 idx = 1;
1869 } else {
1870 idx = 0;
1871 em_num = 0;
1872 }
1873
1874 if(dev->mc_count == 0)
1875 return;
1876
1877 /* Parse the list, and set the appropriate bits */
1878 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1879 if (idx < em_num) {
1880 gfar_set_mac_for_addr(dev, idx,
1881 mc_ptr->dmi_addr);
1882 idx++;
1883 } else
1884 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1885 }
1886 }
1887
1888 return;
1889 }
1890
1891
1892 /* Clears each of the exact match registers to zero, so they
1893 * don't interfere with normal reception */
1894 static void gfar_clear_exact_match(struct net_device *dev)
1895 {
1896 int idx;
1897 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1898
1899 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1900 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1901 }
1902
1903 /* Set the appropriate hash bit for the given addr */
1904 /* The algorithm works like so:
1905 * 1) Take the Destination Address (ie the multicast address), and
1906 * do a CRC on it (little endian), and reverse the bits of the
1907 * result.
1908 * 2) Use the 8 most significant bits as a hash into a 256-entry
1909 * table. The table is controlled through 8 32-bit registers:
1910 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1911 * gaddr7. This means that the 3 most significant bits in the
1912 * hash index which gaddr register to use, and the 5 other bits
1913 * indicate which bit (assuming an IBM numbering scheme, which
1914 * for PowerPC (tm) is usually the case) in the register holds
1915 * the entry. */
1916 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1917 {
1918 u32 tempval;
1919 struct gfar_private *priv = netdev_priv(dev);
1920 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1921 int width = priv->hash_width;
1922 u8 whichbit = (result >> (32 - width)) & 0x1f;
1923 u8 whichreg = result >> (32 - width + 5);
1924 u32 value = (1 << (31-whichbit));
1925
1926 tempval = gfar_read(priv->hash_regs[whichreg]);
1927 tempval |= value;
1928 gfar_write(priv->hash_regs[whichreg], tempval);
1929
1930 return;
1931 }
1932
1933
1934 /* There are multiple MAC Address register pairs on some controllers
1935 * This function sets the numth pair to a given address
1936 */
1937 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1938 {
1939 struct gfar_private *priv = netdev_priv(dev);
1940 int idx;
1941 char tmpbuf[MAC_ADDR_LEN];
1942 u32 tempval;
1943 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1944
1945 macptr += num*2;
1946
1947 /* Now copy it into the mac registers backwards, cuz */
1948 /* little endian is silly */
1949 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1950 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1951
1952 gfar_write(macptr, *((u32 *) (tmpbuf)));
1953
1954 tempval = *((u32 *) (tmpbuf + 4));
1955
1956 gfar_write(macptr+1, tempval);
1957 }
1958
1959 /* GFAR error interrupt handler */
1960 static irqreturn_t gfar_error(int irq, void *dev_id)
1961 {
1962 struct net_device *dev = dev_id;
1963 struct gfar_private *priv = netdev_priv(dev);
1964
1965 /* Save ievent for future reference */
1966 u32 events = gfar_read(&priv->regs->ievent);
1967
1968 /* Clear IEVENT */
1969 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1970
1971 /* Hmm... */
1972 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1973 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1974 dev->name, events, gfar_read(&priv->regs->imask));
1975
1976 /* Update the error counters */
1977 if (events & IEVENT_TXE) {
1978 dev->stats.tx_errors++;
1979
1980 if (events & IEVENT_LC)
1981 dev->stats.tx_window_errors++;
1982 if (events & IEVENT_CRL)
1983 dev->stats.tx_aborted_errors++;
1984 if (events & IEVENT_XFUN) {
1985 if (netif_msg_tx_err(priv))
1986 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1987 "packet dropped.\n", dev->name);
1988 dev->stats.tx_dropped++;
1989 priv->extra_stats.tx_underrun++;
1990
1991 /* Reactivate the Tx Queues */
1992 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1993 }
1994 if (netif_msg_tx_err(priv))
1995 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1996 }
1997 if (events & IEVENT_BSY) {
1998 dev->stats.rx_errors++;
1999 priv->extra_stats.rx_bsy++;
2000
2001 gfar_receive(irq, dev_id);
2002
2003 #ifndef CONFIG_GFAR_NAPI
2004 /* Clear the halt bit in RSTAT */
2005 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
2006 #endif
2007
2008 if (netif_msg_rx_err(priv))
2009 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2010 dev->name, gfar_read(&priv->regs->rstat));
2011 }
2012 if (events & IEVENT_BABR) {
2013 dev->stats.rx_errors++;
2014 priv->extra_stats.rx_babr++;
2015
2016 if (netif_msg_rx_err(priv))
2017 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2018 }
2019 if (events & IEVENT_EBERR) {
2020 priv->extra_stats.eberr++;
2021 if (netif_msg_rx_err(priv))
2022 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2023 }
2024 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2025 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2026
2027 if (events & IEVENT_BABT) {
2028 priv->extra_stats.tx_babt++;
2029 if (netif_msg_tx_err(priv))
2030 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2031 }
2032 return IRQ_HANDLED;
2033 }
2034
2035 /* work with hotplug and coldplug */
2036 MODULE_ALIAS("platform:fsl-gianfar");
2037
2038 /* Structure for a device driver */
2039 static struct platform_driver gfar_driver = {
2040 .probe = gfar_probe,
2041 .remove = gfar_remove,
2042 .driver = {
2043 .name = "fsl-gianfar",
2044 .owner = THIS_MODULE,
2045 },
2046 };
2047
2048 static int __init gfar_init(void)
2049 {
2050 int err = gfar_mdio_init();
2051
2052 if (err)
2053 return err;
2054
2055 err = platform_driver_register(&gfar_driver);
2056
2057 if (err)
2058 gfar_mdio_exit();
2059
2060 return err;
2061 }
2062
2063 static void __exit gfar_exit(void)
2064 {
2065 platform_driver_unregister(&gfar_driver);
2066 gfar_mdio_exit();
2067 }
2068
2069 module_init(gfar_init);
2070 module_exit(gfar_exit);
2071