Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95 #include <linux/phy_fixed.h>
96 #include <linux/of.h>
97
98 #include "gianfar.h"
99 #include "fsl_pq_mdio.h"
100
101 #define TX_TIMEOUT (1*HZ)
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 const char gfar_driver_name[] = "Gianfar Ethernet";
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct of_device *ofdev,
125 const struct of_device_id *match);
126 static int gfar_remove(struct of_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 int amount_pull);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140 struct vlan_group *grp);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 dma_addr_t buf)
154 {
155 u32 lstatus;
156
157 bdp->bufPtr = buf;
158
159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163 eieio();
164
165 bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 struct gfar_private *priv = netdev_priv(ndev);
171 struct gfar_priv_tx_q *tx_queue = NULL;
172 struct gfar_priv_rx_q *rx_queue = NULL;
173 struct txbd8 *txbdp;
174 struct rxbd8 *rxbdp;
175 int i, j;
176
177 for (i = 0; i < priv->num_tx_queues; i++) {
178 tx_queue = priv->tx_queue[i];
179 /* Initialize some variables in our dev structure */
180 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 tx_queue->cur_tx = tx_queue->tx_bd_base;
183 tx_queue->skb_curtx = 0;
184 tx_queue->skb_dirtytx = 0;
185
186 /* Initialize Transmit Descriptor Ring */
187 txbdp = tx_queue->tx_bd_base;
188 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 txbdp->lstatus = 0;
190 txbdp->bufPtr = 0;
191 txbdp++;
192 }
193
194 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp--;
196 txbdp->status |= TXBD_WRAP;
197 }
198
199 for (i = 0; i < priv->num_rx_queues; i++) {
200 rx_queue = priv->rx_queue[i];
201 rx_queue->cur_rx = rx_queue->rx_bd_base;
202 rx_queue->skb_currx = 0;
203 rxbdp = rx_queue->rx_bd_base;
204
205 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208 if (skb) {
209 gfar_init_rxbdp(rx_queue, rxbdp,
210 rxbdp->bufPtr);
211 } else {
212 skb = gfar_new_skb(ndev);
213 if (!skb) {
214 pr_err("%s: Can't allocate RX buffers\n",
215 ndev->name);
216 goto err_rxalloc_fail;
217 }
218 rx_queue->rx_skbuff[j] = skb;
219
220 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 }
222
223 rxbdp++;
224 }
225
226 }
227
228 return 0;
229
230 err_rxalloc_fail:
231 free_skb_resources(priv);
232 return -ENOMEM;
233 }
234
235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237 void *vaddr;
238 dma_addr_t addr;
239 int i, j, k;
240 struct gfar_private *priv = netdev_priv(ndev);
241 struct device *dev = &priv->ofdev->dev;
242 struct gfar_priv_tx_q *tx_queue = NULL;
243 struct gfar_priv_rx_q *rx_queue = NULL;
244
245 priv->total_tx_ring_size = 0;
246 for (i = 0; i < priv->num_tx_queues; i++)
247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249 priv->total_rx_ring_size = 0;
250 for (i = 0; i < priv->num_rx_queues; i++)
251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253 /* Allocate memory for the buffer descriptors */
254 vaddr = dma_alloc_coherent(dev,
255 sizeof(struct txbd8) * priv->total_tx_ring_size +
256 sizeof(struct rxbd8) * priv->total_rx_ring_size,
257 &addr, GFP_KERNEL);
258 if (!vaddr) {
259 if (netif_msg_ifup(priv))
260 pr_err("%s: Could not allocate buffer descriptors!\n",
261 ndev->name);
262 return -ENOMEM;
263 }
264
265 for (i = 0; i < priv->num_tx_queues; i++) {
266 tx_queue = priv->tx_queue[i];
267 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268 tx_queue->tx_bd_dma_base = addr;
269 tx_queue->dev = ndev;
270 /* enet DMA only understands physical addresses */
271 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 }
274
275 /* Start the rx descriptor ring where the tx ring leaves off */
276 for (i = 0; i < priv->num_rx_queues; i++) {
277 rx_queue = priv->rx_queue[i];
278 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279 rx_queue->rx_bd_dma_base = addr;
280 rx_queue->dev = ndev;
281 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 }
284
285 /* Setup the skbuff rings */
286 for (i = 0; i < priv->num_tx_queues; i++) {
287 tx_queue = priv->tx_queue[i];
288 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289 tx_queue->tx_ring_size, GFP_KERNEL);
290 if (!tx_queue->tx_skbuff) {
291 if (netif_msg_ifup(priv))
292 pr_err("%s: Could not allocate tx_skbuff\n",
293 ndev->name);
294 goto cleanup;
295 }
296
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
299 }
300
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL);
305
306 if (!rx_queue->rx_skbuff) {
307 if (netif_msg_ifup(priv))
308 pr_err("%s: Could not allocate rx_skbuff\n",
309 ndev->name);
310 goto cleanup;
311 }
312
313 for (j = 0; j < rx_queue->rx_ring_size; j++)
314 rx_queue->rx_skbuff[j] = NULL;
315 }
316
317 if (gfar_init_bds(ndev))
318 goto cleanup;
319
320 return 0;
321
322 cleanup:
323 free_skb_resources(priv);
324 return -ENOMEM;
325 }
326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 {
329 struct gfar __iomem *regs = priv->gfargrp[0].regs;
330 u32 __iomem *baddr;
331 int i;
332
333 baddr = &regs->tbase0;
334 for(i = 0; i < priv->num_tx_queues; i++) {
335 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336 baddr += 2;
337 }
338
339 baddr = &regs->rbase0;
340 for(i = 0; i < priv->num_rx_queues; i++) {
341 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342 baddr += 2;
343 }
344 }
345
346 static void gfar_init_mac(struct net_device *ndev)
347 {
348 struct gfar_private *priv = netdev_priv(ndev);
349 struct gfar __iomem *regs = priv->gfargrp[0].regs;
350 u32 rctrl = 0;
351 u32 tctrl = 0;
352 u32 attrs = 0;
353
354 /* write the tx/rx base registers */
355 gfar_init_tx_rx_base(priv);
356
357 /* Configure the coalescing support */
358 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359
360 if (priv->rx_filer_enable) {
361 rctrl |= RCTRL_FILREN;
362 /* Program the RIR0 reg with the required distribution */
363 gfar_write(&regs->rir0, DEFAULT_RIR0);
364 }
365
366 if (priv->rx_csum_enable)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash) {
370 rctrl |= RCTRL_EXTHASH;
371
372 gfar_clear_exact_match(ndev);
373 rctrl |= RCTRL_EMEN;
374 }
375
376 if (priv->padding) {
377 rctrl &= ~RCTRL_PAL_MASK;
378 rctrl |= RCTRL_PADDING(priv->padding);
379 }
380
381 /* Insert receive time stamps into padding alignment bytes */
382 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
383 rctrl &= ~RCTRL_PAL_MASK;
384 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE | RCTRL_PADDING(8);
385 priv->padding = 8;
386 }
387
388 /* keep vlan related bits if it's enabled */
389 if (priv->vlgrp) {
390 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391 tctrl |= TCTRL_VLINS;
392 }
393
394 /* Init rctrl based on our settings */
395 gfar_write(&regs->rctrl, rctrl);
396
397 if (ndev->features & NETIF_F_IP_CSUM)
398 tctrl |= TCTRL_INIT_CSUM;
399
400 tctrl |= TCTRL_TXSCHED_PRIO;
401
402 gfar_write(&regs->tctrl, tctrl);
403
404 /* Set the extraction length and index */
405 attrs = ATTRELI_EL(priv->rx_stash_size) |
406 ATTRELI_EI(priv->rx_stash_index);
407
408 gfar_write(&regs->attreli, attrs);
409
410 /* Start with defaults, and add stashing or locking
411 * depending on the approprate variables */
412 attrs = ATTR_INIT_SETTINGS;
413
414 if (priv->bd_stash_en)
415 attrs |= ATTR_BDSTASH;
416
417 if (priv->rx_stash_size != 0)
418 attrs |= ATTR_BUFSTASH;
419
420 gfar_write(&regs->attr, attrs);
421
422 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425 }
426
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428 {
429 struct gfar_private *priv = netdev_priv(dev);
430 struct netdev_queue *txq;
431 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
432 unsigned long tx_packets = 0, tx_bytes = 0;
433 int i = 0;
434
435 for (i = 0; i < priv->num_rx_queues; i++) {
436 rx_packets += priv->rx_queue[i]->stats.rx_packets;
437 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
438 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
439 }
440
441 dev->stats.rx_packets = rx_packets;
442 dev->stats.rx_bytes = rx_bytes;
443 dev->stats.rx_dropped = rx_dropped;
444
445 for (i = 0; i < priv->num_tx_queues; i++) {
446 txq = netdev_get_tx_queue(dev, i);
447 tx_bytes += txq->tx_bytes;
448 tx_packets += txq->tx_packets;
449 }
450
451 dev->stats.tx_bytes = tx_bytes;
452 dev->stats.tx_packets = tx_packets;
453
454 return &dev->stats;
455 }
456
457 static const struct net_device_ops gfar_netdev_ops = {
458 .ndo_open = gfar_enet_open,
459 .ndo_start_xmit = gfar_start_xmit,
460 .ndo_stop = gfar_close,
461 .ndo_change_mtu = gfar_change_mtu,
462 .ndo_set_multicast_list = gfar_set_multi,
463 .ndo_tx_timeout = gfar_timeout,
464 .ndo_do_ioctl = gfar_ioctl,
465 .ndo_get_stats = gfar_get_stats,
466 .ndo_vlan_rx_register = gfar_vlan_rx_register,
467 .ndo_set_mac_address = eth_mac_addr,
468 .ndo_validate_addr = eth_validate_addr,
469 #ifdef CONFIG_NET_POLL_CONTROLLER
470 .ndo_poll_controller = gfar_netpoll,
471 #endif
472 };
473
474 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
475 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
476
477 void lock_rx_qs(struct gfar_private *priv)
478 {
479 int i = 0x0;
480
481 for (i = 0; i < priv->num_rx_queues; i++)
482 spin_lock(&priv->rx_queue[i]->rxlock);
483 }
484
485 void lock_tx_qs(struct gfar_private *priv)
486 {
487 int i = 0x0;
488
489 for (i = 0; i < priv->num_tx_queues; i++)
490 spin_lock(&priv->tx_queue[i]->txlock);
491 }
492
493 void unlock_rx_qs(struct gfar_private *priv)
494 {
495 int i = 0x0;
496
497 for (i = 0; i < priv->num_rx_queues; i++)
498 spin_unlock(&priv->rx_queue[i]->rxlock);
499 }
500
501 void unlock_tx_qs(struct gfar_private *priv)
502 {
503 int i = 0x0;
504
505 for (i = 0; i < priv->num_tx_queues; i++)
506 spin_unlock(&priv->tx_queue[i]->txlock);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512 return priv->vlgrp || priv->rx_csum_enable ||
513 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
514 }
515
516 static void free_tx_pointers(struct gfar_private *priv)
517 {
518 int i = 0;
519
520 for (i = 0; i < priv->num_tx_queues; i++)
521 kfree(priv->tx_queue[i]);
522 }
523
524 static void free_rx_pointers(struct gfar_private *priv)
525 {
526 int i = 0;
527
528 for (i = 0; i < priv->num_rx_queues; i++)
529 kfree(priv->rx_queue[i]);
530 }
531
532 static void unmap_group_regs(struct gfar_private *priv)
533 {
534 int i = 0;
535
536 for (i = 0; i < MAXGROUPS; i++)
537 if (priv->gfargrp[i].regs)
538 iounmap(priv->gfargrp[i].regs);
539 }
540
541 static void disable_napi(struct gfar_private *priv)
542 {
543 int i = 0;
544
545 for (i = 0; i < priv->num_grps; i++)
546 napi_disable(&priv->gfargrp[i].napi);
547 }
548
549 static void enable_napi(struct gfar_private *priv)
550 {
551 int i = 0;
552
553 for (i = 0; i < priv->num_grps; i++)
554 napi_enable(&priv->gfargrp[i].napi);
555 }
556
557 static int gfar_parse_group(struct device_node *np,
558 struct gfar_private *priv, const char *model)
559 {
560 u32 *queue_mask;
561
562 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
563 if (!priv->gfargrp[priv->num_grps].regs)
564 return -ENOMEM;
565
566 priv->gfargrp[priv->num_grps].interruptTransmit =
567 irq_of_parse_and_map(np, 0);
568
569 /* If we aren't the FEC we have multiple interrupts */
570 if (model && strcasecmp(model, "FEC")) {
571 priv->gfargrp[priv->num_grps].interruptReceive =
572 irq_of_parse_and_map(np, 1);
573 priv->gfargrp[priv->num_grps].interruptError =
574 irq_of_parse_and_map(np,2);
575 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
576 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
577 priv->gfargrp[priv->num_grps].interruptError < 0) {
578 return -EINVAL;
579 }
580 }
581
582 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
583 priv->gfargrp[priv->num_grps].priv = priv;
584 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
585 if(priv->mode == MQ_MG_MODE) {
586 queue_mask = (u32 *)of_get_property(np,
587 "fsl,rx-bit-map", NULL);
588 priv->gfargrp[priv->num_grps].rx_bit_map =
589 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
590 queue_mask = (u32 *)of_get_property(np,
591 "fsl,tx-bit-map", NULL);
592 priv->gfargrp[priv->num_grps].tx_bit_map =
593 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
594 } else {
595 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
596 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
597 }
598 priv->num_grps++;
599
600 return 0;
601 }
602
603 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
604 {
605 const char *model;
606 const char *ctype;
607 const void *mac_addr;
608 int err = 0, i;
609 struct net_device *dev = NULL;
610 struct gfar_private *priv = NULL;
611 struct device_node *np = ofdev->dev.of_node;
612 struct device_node *child = NULL;
613 const u32 *stash;
614 const u32 *stash_len;
615 const u32 *stash_idx;
616 unsigned int num_tx_qs, num_rx_qs;
617 u32 *tx_queues, *rx_queues;
618
619 if (!np || !of_device_is_available(np))
620 return -ENODEV;
621
622 /* parse the num of tx and rx queues */
623 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
624 num_tx_qs = tx_queues ? *tx_queues : 1;
625
626 if (num_tx_qs > MAX_TX_QS) {
627 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
628 num_tx_qs, MAX_TX_QS);
629 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
630 return -EINVAL;
631 }
632
633 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
634 num_rx_qs = rx_queues ? *rx_queues : 1;
635
636 if (num_rx_qs > MAX_RX_QS) {
637 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
638 num_tx_qs, MAX_TX_QS);
639 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
640 return -EINVAL;
641 }
642
643 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
644 dev = *pdev;
645 if (NULL == dev)
646 return -ENOMEM;
647
648 priv = netdev_priv(dev);
649 priv->node = ofdev->dev.of_node;
650 priv->ndev = dev;
651
652 dev->num_tx_queues = num_tx_qs;
653 dev->real_num_tx_queues = num_tx_qs;
654 priv->num_tx_queues = num_tx_qs;
655 priv->num_rx_queues = num_rx_qs;
656 priv->num_grps = 0x0;
657
658 model = of_get_property(np, "model", NULL);
659
660 for (i = 0; i < MAXGROUPS; i++)
661 priv->gfargrp[i].regs = NULL;
662
663 /* Parse and initialize group specific information */
664 if (of_device_is_compatible(np, "fsl,etsec2")) {
665 priv->mode = MQ_MG_MODE;
666 for_each_child_of_node(np, child) {
667 err = gfar_parse_group(child, priv, model);
668 if (err)
669 goto err_grp_init;
670 }
671 } else {
672 priv->mode = SQ_SG_MODE;
673 err = gfar_parse_group(np, priv, model);
674 if(err)
675 goto err_grp_init;
676 }
677
678 for (i = 0; i < priv->num_tx_queues; i++)
679 priv->tx_queue[i] = NULL;
680 for (i = 0; i < priv->num_rx_queues; i++)
681 priv->rx_queue[i] = NULL;
682
683 for (i = 0; i < priv->num_tx_queues; i++) {
684 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kzalloc(
685 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
686 if (!priv->tx_queue[i]) {
687 err = -ENOMEM;
688 goto tx_alloc_failed;
689 }
690 priv->tx_queue[i]->tx_skbuff = NULL;
691 priv->tx_queue[i]->qindex = i;
692 priv->tx_queue[i]->dev = dev;
693 spin_lock_init(&(priv->tx_queue[i]->txlock));
694 }
695
696 for (i = 0; i < priv->num_rx_queues; i++) {
697 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kzalloc(
698 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
699 if (!priv->rx_queue[i]) {
700 err = -ENOMEM;
701 goto rx_alloc_failed;
702 }
703 priv->rx_queue[i]->rx_skbuff = NULL;
704 priv->rx_queue[i]->qindex = i;
705 priv->rx_queue[i]->dev = dev;
706 spin_lock_init(&(priv->rx_queue[i]->rxlock));
707 }
708
709
710 stash = of_get_property(np, "bd-stash", NULL);
711
712 if (stash) {
713 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
714 priv->bd_stash_en = 1;
715 }
716
717 stash_len = of_get_property(np, "rx-stash-len", NULL);
718
719 if (stash_len)
720 priv->rx_stash_size = *stash_len;
721
722 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
723
724 if (stash_idx)
725 priv->rx_stash_index = *stash_idx;
726
727 if (stash_len || stash_idx)
728 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
729
730 mac_addr = of_get_mac_address(np);
731 if (mac_addr)
732 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
733
734 if (model && !strcasecmp(model, "TSEC"))
735 priv->device_flags =
736 FSL_GIANFAR_DEV_HAS_GIGABIT |
737 FSL_GIANFAR_DEV_HAS_COALESCE |
738 FSL_GIANFAR_DEV_HAS_RMON |
739 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
740 if (model && !strcasecmp(model, "eTSEC"))
741 priv->device_flags =
742 FSL_GIANFAR_DEV_HAS_GIGABIT |
743 FSL_GIANFAR_DEV_HAS_COALESCE |
744 FSL_GIANFAR_DEV_HAS_RMON |
745 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
746 FSL_GIANFAR_DEV_HAS_PADDING |
747 FSL_GIANFAR_DEV_HAS_CSUM |
748 FSL_GIANFAR_DEV_HAS_VLAN |
749 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
750 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
751 FSL_GIANFAR_DEV_HAS_TIMER;
752
753 ctype = of_get_property(np, "phy-connection-type", NULL);
754
755 /* We only care about rgmii-id. The rest are autodetected */
756 if (ctype && !strcmp(ctype, "rgmii-id"))
757 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
758 else
759 priv->interface = PHY_INTERFACE_MODE_MII;
760
761 if (of_get_property(np, "fsl,magic-packet", NULL))
762 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
763
764 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
765
766 /* Find the TBI PHY. If it's not there, we don't support SGMII */
767 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
768
769 return 0;
770
771 rx_alloc_failed:
772 free_rx_pointers(priv);
773 tx_alloc_failed:
774 free_tx_pointers(priv);
775 err_grp_init:
776 unmap_group_regs(priv);
777 free_netdev(dev);
778 return err;
779 }
780
781 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
782 struct ifreq *ifr, int cmd)
783 {
784 struct hwtstamp_config config;
785 struct gfar_private *priv = netdev_priv(netdev);
786
787 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
788 return -EFAULT;
789
790 /* reserved for future extensions */
791 if (config.flags)
792 return -EINVAL;
793
794 switch (config.tx_type) {
795 case HWTSTAMP_TX_OFF:
796 priv->hwts_tx_en = 0;
797 break;
798 case HWTSTAMP_TX_ON:
799 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
800 return -ERANGE;
801 priv->hwts_tx_en = 1;
802 break;
803 default:
804 return -ERANGE;
805 }
806
807 switch (config.rx_filter) {
808 case HWTSTAMP_FILTER_NONE:
809 priv->hwts_rx_en = 0;
810 break;
811 default:
812 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
813 return -ERANGE;
814 priv->hwts_rx_en = 1;
815 config.rx_filter = HWTSTAMP_FILTER_ALL;
816 break;
817 }
818
819 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
820 -EFAULT : 0;
821 }
822
823 /* Ioctl MII Interface */
824 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
825 {
826 struct gfar_private *priv = netdev_priv(dev);
827
828 if (!netif_running(dev))
829 return -EINVAL;
830
831 if (cmd == SIOCSHWTSTAMP)
832 return gfar_hwtstamp_ioctl(dev, rq, cmd);
833
834 if (!priv->phydev)
835 return -ENODEV;
836
837 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
838 }
839
840 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
841 {
842 unsigned int new_bit_map = 0x0;
843 int mask = 0x1 << (max_qs - 1), i;
844 for (i = 0; i < max_qs; i++) {
845 if (bit_map & mask)
846 new_bit_map = new_bit_map + (1 << i);
847 mask = mask >> 0x1;
848 }
849 return new_bit_map;
850 }
851
852 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
853 u32 class)
854 {
855 u32 rqfpr = FPR_FILER_MASK;
856 u32 rqfcr = 0x0;
857
858 rqfar--;
859 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
860 ftp_rqfpr[rqfar] = rqfpr;
861 ftp_rqfcr[rqfar] = rqfcr;
862 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
863
864 rqfar--;
865 rqfcr = RQFCR_CMP_NOMATCH;
866 ftp_rqfpr[rqfar] = rqfpr;
867 ftp_rqfcr[rqfar] = rqfcr;
868 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
869
870 rqfar--;
871 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
872 rqfpr = class;
873 ftp_rqfcr[rqfar] = rqfcr;
874 ftp_rqfpr[rqfar] = rqfpr;
875 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877 rqfar--;
878 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
879 rqfpr = class;
880 ftp_rqfcr[rqfar] = rqfcr;
881 ftp_rqfpr[rqfar] = rqfpr;
882 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
883
884 return rqfar;
885 }
886
887 static void gfar_init_filer_table(struct gfar_private *priv)
888 {
889 int i = 0x0;
890 u32 rqfar = MAX_FILER_IDX;
891 u32 rqfcr = 0x0;
892 u32 rqfpr = FPR_FILER_MASK;
893
894 /* Default rule */
895 rqfcr = RQFCR_CMP_MATCH;
896 ftp_rqfcr[rqfar] = rqfcr;
897 ftp_rqfpr[rqfar] = rqfpr;
898 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
901 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
902 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
903 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
904 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
906
907 /* cur_filer_idx indicated the fisrt non-masked rule */
908 priv->cur_filer_idx = rqfar;
909
910 /* Rest are masked rules */
911 rqfcr = RQFCR_CMP_NOMATCH;
912 for (i = 0; i < rqfar; i++) {
913 ftp_rqfcr[i] = rqfcr;
914 ftp_rqfpr[i] = rqfpr;
915 gfar_write_filer(priv, i, rqfcr, rqfpr);
916 }
917 }
918
919 /* Set up the ethernet device structure, private data,
920 * and anything else we need before we start */
921 static int gfar_probe(struct of_device *ofdev,
922 const struct of_device_id *match)
923 {
924 u32 tempval;
925 struct net_device *dev = NULL;
926 struct gfar_private *priv = NULL;
927 struct gfar __iomem *regs = NULL;
928 int err = 0, i, grp_idx = 0;
929 int len_devname;
930 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
931 u32 isrg = 0;
932 u32 __iomem *baddr;
933
934 err = gfar_of_init(ofdev, &dev);
935
936 if (err)
937 return err;
938
939 priv = netdev_priv(dev);
940 priv->ndev = dev;
941 priv->ofdev = ofdev;
942 priv->node = ofdev->dev.of_node;
943 SET_NETDEV_DEV(dev, &ofdev->dev);
944
945 spin_lock_init(&priv->bflock);
946 INIT_WORK(&priv->reset_task, gfar_reset_task);
947
948 dev_set_drvdata(&ofdev->dev, priv);
949 regs = priv->gfargrp[0].regs;
950
951 /* Stop the DMA engine now, in case it was running before */
952 /* (The firmware could have used it, and left it running). */
953 gfar_halt(dev);
954
955 /* Reset MAC layer */
956 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
957
958 /* We need to delay at least 3 TX clocks */
959 udelay(2);
960
961 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
962 gfar_write(&regs->maccfg1, tempval);
963
964 /* Initialize MACCFG2. */
965 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
966
967 /* Initialize ECNTRL */
968 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
969
970 /* Set the dev->base_addr to the gfar reg region */
971 dev->base_addr = (unsigned long) regs;
972
973 SET_NETDEV_DEV(dev, &ofdev->dev);
974
975 /* Fill in the dev structure */
976 dev->watchdog_timeo = TX_TIMEOUT;
977 dev->mtu = 1500;
978 dev->netdev_ops = &gfar_netdev_ops;
979 dev->ethtool_ops = &gfar_ethtool_ops;
980
981 /* Register for napi ...We are registering NAPI for each grp */
982 for (i = 0; i < priv->num_grps; i++)
983 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
984
985 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
986 priv->rx_csum_enable = 1;
987 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
988 } else
989 priv->rx_csum_enable = 0;
990
991 priv->vlgrp = NULL;
992
993 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
994 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
995
996 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
997 priv->extended_hash = 1;
998 priv->hash_width = 9;
999
1000 priv->hash_regs[0] = &regs->igaddr0;
1001 priv->hash_regs[1] = &regs->igaddr1;
1002 priv->hash_regs[2] = &regs->igaddr2;
1003 priv->hash_regs[3] = &regs->igaddr3;
1004 priv->hash_regs[4] = &regs->igaddr4;
1005 priv->hash_regs[5] = &regs->igaddr5;
1006 priv->hash_regs[6] = &regs->igaddr6;
1007 priv->hash_regs[7] = &regs->igaddr7;
1008 priv->hash_regs[8] = &regs->gaddr0;
1009 priv->hash_regs[9] = &regs->gaddr1;
1010 priv->hash_regs[10] = &regs->gaddr2;
1011 priv->hash_regs[11] = &regs->gaddr3;
1012 priv->hash_regs[12] = &regs->gaddr4;
1013 priv->hash_regs[13] = &regs->gaddr5;
1014 priv->hash_regs[14] = &regs->gaddr6;
1015 priv->hash_regs[15] = &regs->gaddr7;
1016
1017 } else {
1018 priv->extended_hash = 0;
1019 priv->hash_width = 8;
1020
1021 priv->hash_regs[0] = &regs->gaddr0;
1022 priv->hash_regs[1] = &regs->gaddr1;
1023 priv->hash_regs[2] = &regs->gaddr2;
1024 priv->hash_regs[3] = &regs->gaddr3;
1025 priv->hash_regs[4] = &regs->gaddr4;
1026 priv->hash_regs[5] = &regs->gaddr5;
1027 priv->hash_regs[6] = &regs->gaddr6;
1028 priv->hash_regs[7] = &regs->gaddr7;
1029 }
1030
1031 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1032 priv->padding = DEFAULT_PADDING;
1033 else
1034 priv->padding = 0;
1035
1036 if (dev->features & NETIF_F_IP_CSUM ||
1037 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1038 dev->hard_header_len += GMAC_FCB_LEN;
1039
1040 /* Program the isrg regs only if number of grps > 1 */
1041 if (priv->num_grps > 1) {
1042 baddr = &regs->isrg0;
1043 for (i = 0; i < priv->num_grps; i++) {
1044 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1045 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1046 gfar_write(baddr, isrg);
1047 baddr++;
1048 isrg = 0x0;
1049 }
1050 }
1051
1052 /* Need to reverse the bit maps as bit_map's MSB is q0
1053 * but, for_each_set_bit parses from right to left, which
1054 * basically reverses the queue numbers */
1055 for (i = 0; i< priv->num_grps; i++) {
1056 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1057 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1058 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1059 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1060 }
1061
1062 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1063 * also assign queues to groups */
1064 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1065 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1066 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1067 priv->num_rx_queues) {
1068 priv->gfargrp[grp_idx].num_rx_queues++;
1069 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1070 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1071 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1072 }
1073 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1074 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1075 priv->num_tx_queues) {
1076 priv->gfargrp[grp_idx].num_tx_queues++;
1077 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1078 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1079 tqueue = tqueue | (TQUEUE_EN0 >> i);
1080 }
1081 priv->gfargrp[grp_idx].rstat = rstat;
1082 priv->gfargrp[grp_idx].tstat = tstat;
1083 rstat = tstat =0;
1084 }
1085
1086 gfar_write(&regs->rqueue, rqueue);
1087 gfar_write(&regs->tqueue, tqueue);
1088
1089 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1090
1091 /* Initializing some of the rx/tx queue level parameters */
1092 for (i = 0; i < priv->num_tx_queues; i++) {
1093 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1094 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1095 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1096 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1097 }
1098
1099 for (i = 0; i < priv->num_rx_queues; i++) {
1100 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1101 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1102 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1103 }
1104
1105 /* enable filer if using multiple RX queues*/
1106 if(priv->num_rx_queues > 1)
1107 priv->rx_filer_enable = 1;
1108 /* Enable most messages by default */
1109 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1110
1111 /* Carrier starts down, phylib will bring it up */
1112 netif_carrier_off(dev);
1113
1114 err = register_netdev(dev);
1115
1116 if (err) {
1117 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1118 dev->name);
1119 goto register_fail;
1120 }
1121
1122 device_init_wakeup(&dev->dev,
1123 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1124
1125 /* fill out IRQ number and name fields */
1126 len_devname = strlen(dev->name);
1127 for (i = 0; i < priv->num_grps; i++) {
1128 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1129 len_devname);
1130 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1131 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1132 "_g", sizeof("_g"));
1133 priv->gfargrp[i].int_name_tx[
1134 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1135 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1136 priv->gfargrp[i].int_name_tx)],
1137 "_tx", sizeof("_tx") + 1);
1138
1139 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1140 len_devname);
1141 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1142 "_g", sizeof("_g"));
1143 priv->gfargrp[i].int_name_rx[
1144 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1145 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1146 priv->gfargrp[i].int_name_rx)],
1147 "_rx", sizeof("_rx") + 1);
1148
1149 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1150 len_devname);
1151 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1152 "_g", sizeof("_g"));
1153 priv->gfargrp[i].int_name_er[strlen(
1154 priv->gfargrp[i].int_name_er)] = i+48;
1155 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1156 priv->gfargrp[i].int_name_er)],
1157 "_er", sizeof("_er") + 1);
1158 } else
1159 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1160 }
1161
1162 /* Initialize the filer table */
1163 gfar_init_filer_table(priv);
1164
1165 /* Create all the sysfs files */
1166 gfar_init_sysfs(dev);
1167
1168 /* Print out the device info */
1169 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1170
1171 /* Even more device info helps when determining which kernel */
1172 /* provided which set of benchmarks. */
1173 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1174 for (i = 0; i < priv->num_rx_queues; i++)
1175 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1176 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1177 for(i = 0; i < priv->num_tx_queues; i++)
1178 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1179 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1180
1181 return 0;
1182
1183 register_fail:
1184 unmap_group_regs(priv);
1185 free_tx_pointers(priv);
1186 free_rx_pointers(priv);
1187 if (priv->phy_node)
1188 of_node_put(priv->phy_node);
1189 if (priv->tbi_node)
1190 of_node_put(priv->tbi_node);
1191 free_netdev(dev);
1192 return err;
1193 }
1194
1195 static int gfar_remove(struct of_device *ofdev)
1196 {
1197 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1198
1199 if (priv->phy_node)
1200 of_node_put(priv->phy_node);
1201 if (priv->tbi_node)
1202 of_node_put(priv->tbi_node);
1203
1204 dev_set_drvdata(&ofdev->dev, NULL);
1205
1206 unregister_netdev(priv->ndev);
1207 unmap_group_regs(priv);
1208 free_netdev(priv->ndev);
1209
1210 return 0;
1211 }
1212
1213 #ifdef CONFIG_PM
1214
1215 static int gfar_suspend(struct device *dev)
1216 {
1217 struct gfar_private *priv = dev_get_drvdata(dev);
1218 struct net_device *ndev = priv->ndev;
1219 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 unsigned long flags;
1221 u32 tempval;
1222
1223 int magic_packet = priv->wol_en &&
1224 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1225
1226 netif_device_detach(ndev);
1227
1228 if (netif_running(ndev)) {
1229
1230 local_irq_save(flags);
1231 lock_tx_qs(priv);
1232 lock_rx_qs(priv);
1233
1234 gfar_halt_nodisable(ndev);
1235
1236 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1237 tempval = gfar_read(&regs->maccfg1);
1238
1239 tempval &= ~MACCFG1_TX_EN;
1240
1241 if (!magic_packet)
1242 tempval &= ~MACCFG1_RX_EN;
1243
1244 gfar_write(&regs->maccfg1, tempval);
1245
1246 unlock_rx_qs(priv);
1247 unlock_tx_qs(priv);
1248 local_irq_restore(flags);
1249
1250 disable_napi(priv);
1251
1252 if (magic_packet) {
1253 /* Enable interrupt on Magic Packet */
1254 gfar_write(&regs->imask, IMASK_MAG);
1255
1256 /* Enable Magic Packet mode */
1257 tempval = gfar_read(&regs->maccfg2);
1258 tempval |= MACCFG2_MPEN;
1259 gfar_write(&regs->maccfg2, tempval);
1260 } else {
1261 phy_stop(priv->phydev);
1262 }
1263 }
1264
1265 return 0;
1266 }
1267
1268 static int gfar_resume(struct device *dev)
1269 {
1270 struct gfar_private *priv = dev_get_drvdata(dev);
1271 struct net_device *ndev = priv->ndev;
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273 unsigned long flags;
1274 u32 tempval;
1275 int magic_packet = priv->wol_en &&
1276 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1277
1278 if (!netif_running(ndev)) {
1279 netif_device_attach(ndev);
1280 return 0;
1281 }
1282
1283 if (!magic_packet && priv->phydev)
1284 phy_start(priv->phydev);
1285
1286 /* Disable Magic Packet mode, in case something
1287 * else woke us up.
1288 */
1289 local_irq_save(flags);
1290 lock_tx_qs(priv);
1291 lock_rx_qs(priv);
1292
1293 tempval = gfar_read(&regs->maccfg2);
1294 tempval &= ~MACCFG2_MPEN;
1295 gfar_write(&regs->maccfg2, tempval);
1296
1297 gfar_start(ndev);
1298
1299 unlock_rx_qs(priv);
1300 unlock_tx_qs(priv);
1301 local_irq_restore(flags);
1302
1303 netif_device_attach(ndev);
1304
1305 enable_napi(priv);
1306
1307 return 0;
1308 }
1309
1310 static int gfar_restore(struct device *dev)
1311 {
1312 struct gfar_private *priv = dev_get_drvdata(dev);
1313 struct net_device *ndev = priv->ndev;
1314
1315 if (!netif_running(ndev))
1316 return 0;
1317
1318 gfar_init_bds(ndev);
1319 init_registers(ndev);
1320 gfar_set_mac_address(ndev);
1321 gfar_init_mac(ndev);
1322 gfar_start(ndev);
1323
1324 priv->oldlink = 0;
1325 priv->oldspeed = 0;
1326 priv->oldduplex = -1;
1327
1328 if (priv->phydev)
1329 phy_start(priv->phydev);
1330
1331 netif_device_attach(ndev);
1332 enable_napi(priv);
1333
1334 return 0;
1335 }
1336
1337 static struct dev_pm_ops gfar_pm_ops = {
1338 .suspend = gfar_suspend,
1339 .resume = gfar_resume,
1340 .freeze = gfar_suspend,
1341 .thaw = gfar_resume,
1342 .restore = gfar_restore,
1343 };
1344
1345 #define GFAR_PM_OPS (&gfar_pm_ops)
1346
1347 #else
1348
1349 #define GFAR_PM_OPS NULL
1350
1351 #endif
1352
1353 /* Reads the controller's registers to determine what interface
1354 * connects it to the PHY.
1355 */
1356 static phy_interface_t gfar_get_interface(struct net_device *dev)
1357 {
1358 struct gfar_private *priv = netdev_priv(dev);
1359 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1360 u32 ecntrl;
1361
1362 ecntrl = gfar_read(&regs->ecntrl);
1363
1364 if (ecntrl & ECNTRL_SGMII_MODE)
1365 return PHY_INTERFACE_MODE_SGMII;
1366
1367 if (ecntrl & ECNTRL_TBI_MODE) {
1368 if (ecntrl & ECNTRL_REDUCED_MODE)
1369 return PHY_INTERFACE_MODE_RTBI;
1370 else
1371 return PHY_INTERFACE_MODE_TBI;
1372 }
1373
1374 if (ecntrl & ECNTRL_REDUCED_MODE) {
1375 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1376 return PHY_INTERFACE_MODE_RMII;
1377 else {
1378 phy_interface_t interface = priv->interface;
1379
1380 /*
1381 * This isn't autodetected right now, so it must
1382 * be set by the device tree or platform code.
1383 */
1384 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1385 return PHY_INTERFACE_MODE_RGMII_ID;
1386
1387 return PHY_INTERFACE_MODE_RGMII;
1388 }
1389 }
1390
1391 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1392 return PHY_INTERFACE_MODE_GMII;
1393
1394 return PHY_INTERFACE_MODE_MII;
1395 }
1396
1397
1398 /* Initializes driver's PHY state, and attaches to the PHY.
1399 * Returns 0 on success.
1400 */
1401 static int init_phy(struct net_device *dev)
1402 {
1403 struct gfar_private *priv = netdev_priv(dev);
1404 uint gigabit_support =
1405 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1406 SUPPORTED_1000baseT_Full : 0;
1407 phy_interface_t interface;
1408
1409 priv->oldlink = 0;
1410 priv->oldspeed = 0;
1411 priv->oldduplex = -1;
1412
1413 interface = gfar_get_interface(dev);
1414
1415 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1416 interface);
1417 if (!priv->phydev)
1418 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1419 interface);
1420 if (!priv->phydev) {
1421 dev_err(&dev->dev, "could not attach to PHY\n");
1422 return -ENODEV;
1423 }
1424
1425 if (interface == PHY_INTERFACE_MODE_SGMII)
1426 gfar_configure_serdes(dev);
1427
1428 /* Remove any features not supported by the controller */
1429 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1430 priv->phydev->advertising = priv->phydev->supported;
1431
1432 return 0;
1433 }
1434
1435 /*
1436 * Initialize TBI PHY interface for communicating with the
1437 * SERDES lynx PHY on the chip. We communicate with this PHY
1438 * through the MDIO bus on each controller, treating it as a
1439 * "normal" PHY at the address found in the TBIPA register. We assume
1440 * that the TBIPA register is valid. Either the MDIO bus code will set
1441 * it to a value that doesn't conflict with other PHYs on the bus, or the
1442 * value doesn't matter, as there are no other PHYs on the bus.
1443 */
1444 static void gfar_configure_serdes(struct net_device *dev)
1445 {
1446 struct gfar_private *priv = netdev_priv(dev);
1447 struct phy_device *tbiphy;
1448
1449 if (!priv->tbi_node) {
1450 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1451 "device tree specify a tbi-handle\n");
1452 return;
1453 }
1454
1455 tbiphy = of_phy_find_device(priv->tbi_node);
1456 if (!tbiphy) {
1457 dev_err(&dev->dev, "error: Could not get TBI device\n");
1458 return;
1459 }
1460
1461 /*
1462 * If the link is already up, we must already be ok, and don't need to
1463 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1464 * everything for us? Resetting it takes the link down and requires
1465 * several seconds for it to come back.
1466 */
1467 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1468 return;
1469
1470 /* Single clk mode, mii mode off(for serdes communication) */
1471 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1472
1473 phy_write(tbiphy, MII_ADVERTISE,
1474 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1475 ADVERTISE_1000XPSE_ASYM);
1476
1477 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1478 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1479 }
1480
1481 static void init_registers(struct net_device *dev)
1482 {
1483 struct gfar_private *priv = netdev_priv(dev);
1484 struct gfar __iomem *regs = NULL;
1485 int i = 0;
1486
1487 for (i = 0; i < priv->num_grps; i++) {
1488 regs = priv->gfargrp[i].regs;
1489 /* Clear IEVENT */
1490 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1491
1492 /* Initialize IMASK */
1493 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1494 }
1495
1496 regs = priv->gfargrp[0].regs;
1497 /* Init hash registers to zero */
1498 gfar_write(&regs->igaddr0, 0);
1499 gfar_write(&regs->igaddr1, 0);
1500 gfar_write(&regs->igaddr2, 0);
1501 gfar_write(&regs->igaddr3, 0);
1502 gfar_write(&regs->igaddr4, 0);
1503 gfar_write(&regs->igaddr5, 0);
1504 gfar_write(&regs->igaddr6, 0);
1505 gfar_write(&regs->igaddr7, 0);
1506
1507 gfar_write(&regs->gaddr0, 0);
1508 gfar_write(&regs->gaddr1, 0);
1509 gfar_write(&regs->gaddr2, 0);
1510 gfar_write(&regs->gaddr3, 0);
1511 gfar_write(&regs->gaddr4, 0);
1512 gfar_write(&regs->gaddr5, 0);
1513 gfar_write(&regs->gaddr6, 0);
1514 gfar_write(&regs->gaddr7, 0);
1515
1516 /* Zero out the rmon mib registers if it has them */
1517 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1518 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1519
1520 /* Mask off the CAM interrupts */
1521 gfar_write(&regs->rmon.cam1, 0xffffffff);
1522 gfar_write(&regs->rmon.cam2, 0xffffffff);
1523 }
1524
1525 /* Initialize the max receive buffer length */
1526 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1527
1528 /* Initialize the Minimum Frame Length Register */
1529 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1530 }
1531
1532
1533 /* Halt the receive and transmit queues */
1534 static void gfar_halt_nodisable(struct net_device *dev)
1535 {
1536 struct gfar_private *priv = netdev_priv(dev);
1537 struct gfar __iomem *regs = NULL;
1538 u32 tempval;
1539 int i = 0;
1540
1541 for (i = 0; i < priv->num_grps; i++) {
1542 regs = priv->gfargrp[i].regs;
1543 /* Mask all interrupts */
1544 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1545
1546 /* Clear all interrupts */
1547 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1548 }
1549
1550 regs = priv->gfargrp[0].regs;
1551 /* Stop the DMA, and wait for it to stop */
1552 tempval = gfar_read(&regs->dmactrl);
1553 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1554 != (DMACTRL_GRS | DMACTRL_GTS)) {
1555 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1556 gfar_write(&regs->dmactrl, tempval);
1557
1558 spin_event_timeout(((gfar_read(&regs->ievent) &
1559 (IEVENT_GRSC | IEVENT_GTSC)) ==
1560 (IEVENT_GRSC | IEVENT_GTSC)), -1, 0);
1561 }
1562 }
1563
1564 /* Halt the receive and transmit queues */
1565 void gfar_halt(struct net_device *dev)
1566 {
1567 struct gfar_private *priv = netdev_priv(dev);
1568 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1569 u32 tempval;
1570
1571 gfar_halt_nodisable(dev);
1572
1573 /* Disable Rx and Tx */
1574 tempval = gfar_read(&regs->maccfg1);
1575 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1576 gfar_write(&regs->maccfg1, tempval);
1577 }
1578
1579 static void free_grp_irqs(struct gfar_priv_grp *grp)
1580 {
1581 free_irq(grp->interruptError, grp);
1582 free_irq(grp->interruptTransmit, grp);
1583 free_irq(grp->interruptReceive, grp);
1584 }
1585
1586 void stop_gfar(struct net_device *dev)
1587 {
1588 struct gfar_private *priv = netdev_priv(dev);
1589 unsigned long flags;
1590 int i;
1591
1592 phy_stop(priv->phydev);
1593
1594
1595 /* Lock it down */
1596 local_irq_save(flags);
1597 lock_tx_qs(priv);
1598 lock_rx_qs(priv);
1599
1600 gfar_halt(dev);
1601
1602 unlock_rx_qs(priv);
1603 unlock_tx_qs(priv);
1604 local_irq_restore(flags);
1605
1606 /* Free the IRQs */
1607 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1608 for (i = 0; i < priv->num_grps; i++)
1609 free_grp_irqs(&priv->gfargrp[i]);
1610 } else {
1611 for (i = 0; i < priv->num_grps; i++)
1612 free_irq(priv->gfargrp[i].interruptTransmit,
1613 &priv->gfargrp[i]);
1614 }
1615
1616 free_skb_resources(priv);
1617 }
1618
1619 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1620 {
1621 struct txbd8 *txbdp;
1622 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1623 int i, j;
1624
1625 txbdp = tx_queue->tx_bd_base;
1626
1627 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1628 if (!tx_queue->tx_skbuff[i])
1629 continue;
1630
1631 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1632 txbdp->length, DMA_TO_DEVICE);
1633 txbdp->lstatus = 0;
1634 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1635 j++) {
1636 txbdp++;
1637 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1638 txbdp->length, DMA_TO_DEVICE);
1639 }
1640 txbdp++;
1641 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1642 tx_queue->tx_skbuff[i] = NULL;
1643 }
1644 kfree(tx_queue->tx_skbuff);
1645 }
1646
1647 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1648 {
1649 struct rxbd8 *rxbdp;
1650 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1651 int i;
1652
1653 rxbdp = rx_queue->rx_bd_base;
1654
1655 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1656 if (rx_queue->rx_skbuff[i]) {
1657 dma_unmap_single(&priv->ofdev->dev,
1658 rxbdp->bufPtr, priv->rx_buffer_size,
1659 DMA_FROM_DEVICE);
1660 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1661 rx_queue->rx_skbuff[i] = NULL;
1662 }
1663 rxbdp->lstatus = 0;
1664 rxbdp->bufPtr = 0;
1665 rxbdp++;
1666 }
1667 kfree(rx_queue->rx_skbuff);
1668 }
1669
1670 /* If there are any tx skbs or rx skbs still around, free them.
1671 * Then free tx_skbuff and rx_skbuff */
1672 static void free_skb_resources(struct gfar_private *priv)
1673 {
1674 struct gfar_priv_tx_q *tx_queue = NULL;
1675 struct gfar_priv_rx_q *rx_queue = NULL;
1676 int i;
1677
1678 /* Go through all the buffer descriptors and free their data buffers */
1679 for (i = 0; i < priv->num_tx_queues; i++) {
1680 tx_queue = priv->tx_queue[i];
1681 if(tx_queue->tx_skbuff)
1682 free_skb_tx_queue(tx_queue);
1683 }
1684
1685 for (i = 0; i < priv->num_rx_queues; i++) {
1686 rx_queue = priv->rx_queue[i];
1687 if(rx_queue->rx_skbuff)
1688 free_skb_rx_queue(rx_queue);
1689 }
1690
1691 dma_free_coherent(&priv->ofdev->dev,
1692 sizeof(struct txbd8) * priv->total_tx_ring_size +
1693 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1694 priv->tx_queue[0]->tx_bd_base,
1695 priv->tx_queue[0]->tx_bd_dma_base);
1696 skb_queue_purge(&priv->rx_recycle);
1697 }
1698
1699 void gfar_start(struct net_device *dev)
1700 {
1701 struct gfar_private *priv = netdev_priv(dev);
1702 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1703 u32 tempval;
1704 int i = 0;
1705
1706 /* Enable Rx and Tx in MACCFG1 */
1707 tempval = gfar_read(&regs->maccfg1);
1708 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1709 gfar_write(&regs->maccfg1, tempval);
1710
1711 /* Initialize DMACTRL to have WWR and WOP */
1712 tempval = gfar_read(&regs->dmactrl);
1713 tempval |= DMACTRL_INIT_SETTINGS;
1714 gfar_write(&regs->dmactrl, tempval);
1715
1716 /* Make sure we aren't stopped */
1717 tempval = gfar_read(&regs->dmactrl);
1718 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1719 gfar_write(&regs->dmactrl, tempval);
1720
1721 for (i = 0; i < priv->num_grps; i++) {
1722 regs = priv->gfargrp[i].regs;
1723 /* Clear THLT/RHLT, so that the DMA starts polling now */
1724 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1725 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1726 /* Unmask the interrupts we look for */
1727 gfar_write(&regs->imask, IMASK_DEFAULT);
1728 }
1729
1730 dev->trans_start = jiffies; /* prevent tx timeout */
1731 }
1732
1733 void gfar_configure_coalescing(struct gfar_private *priv,
1734 unsigned long tx_mask, unsigned long rx_mask)
1735 {
1736 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1737 u32 __iomem *baddr;
1738 int i = 0;
1739
1740 /* Backward compatible case ---- even if we enable
1741 * multiple queues, there's only single reg to program
1742 */
1743 gfar_write(&regs->txic, 0);
1744 if(likely(priv->tx_queue[0]->txcoalescing))
1745 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1746
1747 gfar_write(&regs->rxic, 0);
1748 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1749 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1750
1751 if (priv->mode == MQ_MG_MODE) {
1752 baddr = &regs->txic0;
1753 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1754 if (likely(priv->tx_queue[i]->txcoalescing)) {
1755 gfar_write(baddr + i, 0);
1756 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1757 }
1758 }
1759
1760 baddr = &regs->rxic0;
1761 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1762 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1763 gfar_write(baddr + i, 0);
1764 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1765 }
1766 }
1767 }
1768 }
1769
1770 static int register_grp_irqs(struct gfar_priv_grp *grp)
1771 {
1772 struct gfar_private *priv = grp->priv;
1773 struct net_device *dev = priv->ndev;
1774 int err;
1775
1776 /* If the device has multiple interrupts, register for
1777 * them. Otherwise, only register for the one */
1778 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1779 /* Install our interrupt handlers for Error,
1780 * Transmit, and Receive */
1781 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1782 grp->int_name_er,grp)) < 0) {
1783 if (netif_msg_intr(priv))
1784 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1785 dev->name, grp->interruptError);
1786
1787 goto err_irq_fail;
1788 }
1789
1790 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1791 0, grp->int_name_tx, grp)) < 0) {
1792 if (netif_msg_intr(priv))
1793 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1794 dev->name, grp->interruptTransmit);
1795 goto tx_irq_fail;
1796 }
1797
1798 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1799 grp->int_name_rx, grp)) < 0) {
1800 if (netif_msg_intr(priv))
1801 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1802 dev->name, grp->interruptReceive);
1803 goto rx_irq_fail;
1804 }
1805 } else {
1806 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1807 grp->int_name_tx, grp)) < 0) {
1808 if (netif_msg_intr(priv))
1809 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1810 dev->name, grp->interruptTransmit);
1811 goto err_irq_fail;
1812 }
1813 }
1814
1815 return 0;
1816
1817 rx_irq_fail:
1818 free_irq(grp->interruptTransmit, grp);
1819 tx_irq_fail:
1820 free_irq(grp->interruptError, grp);
1821 err_irq_fail:
1822 return err;
1823
1824 }
1825
1826 /* Bring the controller up and running */
1827 int startup_gfar(struct net_device *ndev)
1828 {
1829 struct gfar_private *priv = netdev_priv(ndev);
1830 struct gfar __iomem *regs = NULL;
1831 int err, i, j;
1832
1833 for (i = 0; i < priv->num_grps; i++) {
1834 regs= priv->gfargrp[i].regs;
1835 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1836 }
1837
1838 regs= priv->gfargrp[0].regs;
1839 err = gfar_alloc_skb_resources(ndev);
1840 if (err)
1841 return err;
1842
1843 gfar_init_mac(ndev);
1844
1845 for (i = 0; i < priv->num_grps; i++) {
1846 err = register_grp_irqs(&priv->gfargrp[i]);
1847 if (err) {
1848 for (j = 0; j < i; j++)
1849 free_grp_irqs(&priv->gfargrp[j]);
1850 goto irq_fail;
1851 }
1852 }
1853
1854 /* Start the controller */
1855 gfar_start(ndev);
1856
1857 phy_start(priv->phydev);
1858
1859 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1860
1861 return 0;
1862
1863 irq_fail:
1864 free_skb_resources(priv);
1865 return err;
1866 }
1867
1868 /* Called when something needs to use the ethernet device */
1869 /* Returns 0 for success. */
1870 static int gfar_enet_open(struct net_device *dev)
1871 {
1872 struct gfar_private *priv = netdev_priv(dev);
1873 int err;
1874
1875 enable_napi(priv);
1876
1877 skb_queue_head_init(&priv->rx_recycle);
1878
1879 /* Initialize a bunch of registers */
1880 init_registers(dev);
1881
1882 gfar_set_mac_address(dev);
1883
1884 err = init_phy(dev);
1885
1886 if (err) {
1887 disable_napi(priv);
1888 return err;
1889 }
1890
1891 err = startup_gfar(dev);
1892 if (err) {
1893 disable_napi(priv);
1894 return err;
1895 }
1896
1897 netif_tx_start_all_queues(dev);
1898
1899 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1900
1901 return err;
1902 }
1903
1904 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1905 {
1906 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1907
1908 memset(fcb, 0, GMAC_FCB_LEN);
1909
1910 return fcb;
1911 }
1912
1913 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1914 {
1915 u8 flags = 0;
1916
1917 /* If we're here, it's a IP packet with a TCP or UDP
1918 * payload. We set it to checksum, using a pseudo-header
1919 * we provide
1920 */
1921 flags = TXFCB_DEFAULT;
1922
1923 /* Tell the controller what the protocol is */
1924 /* And provide the already calculated phcs */
1925 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1926 flags |= TXFCB_UDP;
1927 fcb->phcs = udp_hdr(skb)->check;
1928 } else
1929 fcb->phcs = tcp_hdr(skb)->check;
1930
1931 /* l3os is the distance between the start of the
1932 * frame (skb->data) and the start of the IP hdr.
1933 * l4os is the distance between the start of the
1934 * l3 hdr and the l4 hdr */
1935 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1936 fcb->l4os = skb_network_header_len(skb);
1937
1938 fcb->flags = flags;
1939 }
1940
1941 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1942 {
1943 fcb->flags |= TXFCB_VLN;
1944 fcb->vlctl = vlan_tx_tag_get(skb);
1945 }
1946
1947 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1948 struct txbd8 *base, int ring_size)
1949 {
1950 struct txbd8 *new_bd = bdp + stride;
1951
1952 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1953 }
1954
1955 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1956 int ring_size)
1957 {
1958 return skip_txbd(bdp, 1, base, ring_size);
1959 }
1960
1961 /* This is called by the kernel when a frame is ready for transmission. */
1962 /* It is pointed to by the dev->hard_start_xmit function pointer */
1963 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965 struct gfar_private *priv = netdev_priv(dev);
1966 struct gfar_priv_tx_q *tx_queue = NULL;
1967 struct netdev_queue *txq;
1968 struct gfar __iomem *regs = NULL;
1969 struct txfcb *fcb = NULL;
1970 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1971 u32 lstatus;
1972 int i, rq = 0, do_tstamp = 0;
1973 u32 bufaddr;
1974 unsigned long flags;
1975 unsigned int nr_frags, nr_txbds, length;
1976 union skb_shared_tx *shtx;
1977
1978 rq = skb->queue_mapping;
1979 tx_queue = priv->tx_queue[rq];
1980 txq = netdev_get_tx_queue(dev, rq);
1981 base = tx_queue->tx_bd_base;
1982 regs = tx_queue->grp->regs;
1983 shtx = skb_tx(skb);
1984
1985 /* check if time stamp should be generated */
1986 if (unlikely(shtx->hardware && priv->hwts_tx_en))
1987 do_tstamp = 1;
1988
1989 /* make space for additional header when fcb is needed */
1990 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1991 (priv->vlgrp && vlan_tx_tag_present(skb)) ||
1992 unlikely(do_tstamp)) &&
1993 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1994 struct sk_buff *skb_new;
1995
1996 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1997 if (!skb_new) {
1998 dev->stats.tx_errors++;
1999 kfree_skb(skb);
2000 return NETDEV_TX_OK;
2001 }
2002 kfree_skb(skb);
2003 skb = skb_new;
2004 }
2005
2006 /* total number of fragments in the SKB */
2007 nr_frags = skb_shinfo(skb)->nr_frags;
2008
2009 /* calculate the required number of TxBDs for this skb */
2010 if (unlikely(do_tstamp))
2011 nr_txbds = nr_frags + 2;
2012 else
2013 nr_txbds = nr_frags + 1;
2014
2015 /* check if there is space to queue this packet */
2016 if (nr_txbds > tx_queue->num_txbdfree) {
2017 /* no space, stop the queue */
2018 netif_tx_stop_queue(txq);
2019 dev->stats.tx_fifo_errors++;
2020 return NETDEV_TX_BUSY;
2021 }
2022
2023 /* Update transmit stats */
2024 txq->tx_bytes += skb->len;
2025 txq->tx_packets ++;
2026
2027 txbdp = txbdp_start = tx_queue->cur_tx;
2028 lstatus = txbdp->lstatus;
2029
2030 /* Time stamp insertion requires one additional TxBD */
2031 if (unlikely(do_tstamp))
2032 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2033 tx_queue->tx_ring_size);
2034
2035 if (nr_frags == 0) {
2036 if (unlikely(do_tstamp))
2037 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2038 TXBD_INTERRUPT);
2039 else
2040 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2041 } else {
2042 /* Place the fragment addresses and lengths into the TxBDs */
2043 for (i = 0; i < nr_frags; i++) {
2044 /* Point at the next BD, wrapping as needed */
2045 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2046
2047 length = skb_shinfo(skb)->frags[i].size;
2048
2049 lstatus = txbdp->lstatus | length |
2050 BD_LFLAG(TXBD_READY);
2051
2052 /* Handle the last BD specially */
2053 if (i == nr_frags - 1)
2054 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2055
2056 bufaddr = dma_map_page(&priv->ofdev->dev,
2057 skb_shinfo(skb)->frags[i].page,
2058 skb_shinfo(skb)->frags[i].page_offset,
2059 length,
2060 DMA_TO_DEVICE);
2061
2062 /* set the TxBD length and buffer pointer */
2063 txbdp->bufPtr = bufaddr;
2064 txbdp->lstatus = lstatus;
2065 }
2066
2067 lstatus = txbdp_start->lstatus;
2068 }
2069
2070 /* Set up checksumming */
2071 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2072 fcb = gfar_add_fcb(skb);
2073 lstatus |= BD_LFLAG(TXBD_TOE);
2074 gfar_tx_checksum(skb, fcb);
2075 }
2076
2077 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2078 if (unlikely(NULL == fcb)) {
2079 fcb = gfar_add_fcb(skb);
2080 lstatus |= BD_LFLAG(TXBD_TOE);
2081 }
2082
2083 gfar_tx_vlan(skb, fcb);
2084 }
2085
2086 /* Setup tx hardware time stamping if requested */
2087 if (unlikely(do_tstamp)) {
2088 shtx->in_progress = 1;
2089 if (fcb == NULL)
2090 fcb = gfar_add_fcb(skb);
2091 fcb->ptp = 1;
2092 lstatus |= BD_LFLAG(TXBD_TOE);
2093 }
2094
2095 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2096 skb_headlen(skb), DMA_TO_DEVICE);
2097
2098 /*
2099 * If time stamping is requested one additional TxBD must be set up. The
2100 * first TxBD points to the FCB and must have a data length of
2101 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2102 * the full frame length.
2103 */
2104 if (unlikely(do_tstamp)) {
2105 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2106 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2107 (skb_headlen(skb) - GMAC_FCB_LEN);
2108 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2109 } else {
2110 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2111 }
2112
2113 /*
2114 * We can work in parallel with gfar_clean_tx_ring(), except
2115 * when modifying num_txbdfree. Note that we didn't grab the lock
2116 * when we were reading the num_txbdfree and checking for available
2117 * space, that's because outside of this function it can only grow,
2118 * and once we've got needed space, it cannot suddenly disappear.
2119 *
2120 * The lock also protects us from gfar_error(), which can modify
2121 * regs->tstat and thus retrigger the transfers, which is why we
2122 * also must grab the lock before setting ready bit for the first
2123 * to be transmitted BD.
2124 */
2125 spin_lock_irqsave(&tx_queue->txlock, flags);
2126
2127 /*
2128 * The powerpc-specific eieio() is used, as wmb() has too strong
2129 * semantics (it requires synchronization between cacheable and
2130 * uncacheable mappings, which eieio doesn't provide and which we
2131 * don't need), thus requiring a more expensive sync instruction. At
2132 * some point, the set of architecture-independent barrier functions
2133 * should be expanded to include weaker barriers.
2134 */
2135 eieio();
2136
2137 txbdp_start->lstatus = lstatus;
2138
2139 eieio(); /* force lstatus write before tx_skbuff */
2140
2141 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2142
2143 /* Update the current skb pointer to the next entry we will use
2144 * (wrapping if necessary) */
2145 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2146 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2147
2148 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2149
2150 /* reduce TxBD free count */
2151 tx_queue->num_txbdfree -= (nr_txbds);
2152
2153 /* If the next BD still needs to be cleaned up, then the bds
2154 are full. We need to tell the kernel to stop sending us stuff. */
2155 if (!tx_queue->num_txbdfree) {
2156 netif_tx_stop_queue(txq);
2157
2158 dev->stats.tx_fifo_errors++;
2159 }
2160
2161 /* Tell the DMA to go go go */
2162 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2163
2164 /* Unlock priv */
2165 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2166
2167 return NETDEV_TX_OK;
2168 }
2169
2170 /* Stops the kernel queue, and halts the controller */
2171 static int gfar_close(struct net_device *dev)
2172 {
2173 struct gfar_private *priv = netdev_priv(dev);
2174
2175 disable_napi(priv);
2176
2177 cancel_work_sync(&priv->reset_task);
2178 stop_gfar(dev);
2179
2180 /* Disconnect from the PHY */
2181 phy_disconnect(priv->phydev);
2182 priv->phydev = NULL;
2183
2184 netif_tx_stop_all_queues(dev);
2185
2186 return 0;
2187 }
2188
2189 /* Changes the mac address if the controller is not running. */
2190 static int gfar_set_mac_address(struct net_device *dev)
2191 {
2192 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2193
2194 return 0;
2195 }
2196
2197
2198 /* Enables and disables VLAN insertion/extraction */
2199 static void gfar_vlan_rx_register(struct net_device *dev,
2200 struct vlan_group *grp)
2201 {
2202 struct gfar_private *priv = netdev_priv(dev);
2203 struct gfar __iomem *regs = NULL;
2204 unsigned long flags;
2205 u32 tempval;
2206
2207 regs = priv->gfargrp[0].regs;
2208 local_irq_save(flags);
2209 lock_rx_qs(priv);
2210
2211 priv->vlgrp = grp;
2212
2213 if (grp) {
2214 /* Enable VLAN tag insertion */
2215 tempval = gfar_read(&regs->tctrl);
2216 tempval |= TCTRL_VLINS;
2217
2218 gfar_write(&regs->tctrl, tempval);
2219
2220 /* Enable VLAN tag extraction */
2221 tempval = gfar_read(&regs->rctrl);
2222 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2223 gfar_write(&regs->rctrl, tempval);
2224 } else {
2225 /* Disable VLAN tag insertion */
2226 tempval = gfar_read(&regs->tctrl);
2227 tempval &= ~TCTRL_VLINS;
2228 gfar_write(&regs->tctrl, tempval);
2229
2230 /* Disable VLAN tag extraction */
2231 tempval = gfar_read(&regs->rctrl);
2232 tempval &= ~RCTRL_VLEX;
2233 /* If parse is no longer required, then disable parser */
2234 if (tempval & RCTRL_REQ_PARSER)
2235 tempval |= RCTRL_PRSDEP_INIT;
2236 else
2237 tempval &= ~RCTRL_PRSDEP_INIT;
2238 gfar_write(&regs->rctrl, tempval);
2239 }
2240
2241 gfar_change_mtu(dev, dev->mtu);
2242
2243 unlock_rx_qs(priv);
2244 local_irq_restore(flags);
2245 }
2246
2247 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2248 {
2249 int tempsize, tempval;
2250 struct gfar_private *priv = netdev_priv(dev);
2251 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2252 int oldsize = priv->rx_buffer_size;
2253 int frame_size = new_mtu + ETH_HLEN;
2254
2255 if (priv->vlgrp)
2256 frame_size += VLAN_HLEN;
2257
2258 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2259 if (netif_msg_drv(priv))
2260 printk(KERN_ERR "%s: Invalid MTU setting\n",
2261 dev->name);
2262 return -EINVAL;
2263 }
2264
2265 if (gfar_uses_fcb(priv))
2266 frame_size += GMAC_FCB_LEN;
2267
2268 frame_size += priv->padding;
2269
2270 tempsize =
2271 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2272 INCREMENTAL_BUFFER_SIZE;
2273
2274 /* Only stop and start the controller if it isn't already
2275 * stopped, and we changed something */
2276 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2277 stop_gfar(dev);
2278
2279 priv->rx_buffer_size = tempsize;
2280
2281 dev->mtu = new_mtu;
2282
2283 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2284 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2285
2286 /* If the mtu is larger than the max size for standard
2287 * ethernet frames (ie, a jumbo frame), then set maccfg2
2288 * to allow huge frames, and to check the length */
2289 tempval = gfar_read(&regs->maccfg2);
2290
2291 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2292 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2293 else
2294 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2295
2296 gfar_write(&regs->maccfg2, tempval);
2297
2298 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2299 startup_gfar(dev);
2300
2301 return 0;
2302 }
2303
2304 /* gfar_reset_task gets scheduled when a packet has not been
2305 * transmitted after a set amount of time.
2306 * For now, assume that clearing out all the structures, and
2307 * starting over will fix the problem.
2308 */
2309 static void gfar_reset_task(struct work_struct *work)
2310 {
2311 struct gfar_private *priv = container_of(work, struct gfar_private,
2312 reset_task);
2313 struct net_device *dev = priv->ndev;
2314
2315 if (dev->flags & IFF_UP) {
2316 netif_tx_stop_all_queues(dev);
2317 stop_gfar(dev);
2318 startup_gfar(dev);
2319 netif_tx_start_all_queues(dev);
2320 }
2321
2322 netif_tx_schedule_all(dev);
2323 }
2324
2325 static void gfar_timeout(struct net_device *dev)
2326 {
2327 struct gfar_private *priv = netdev_priv(dev);
2328
2329 dev->stats.tx_errors++;
2330 schedule_work(&priv->reset_task);
2331 }
2332
2333 /* Interrupt Handler for Transmit complete */
2334 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2335 {
2336 struct net_device *dev = tx_queue->dev;
2337 struct gfar_private *priv = netdev_priv(dev);
2338 struct gfar_priv_rx_q *rx_queue = NULL;
2339 struct txbd8 *bdp, *next = NULL;
2340 struct txbd8 *lbdp = NULL;
2341 struct txbd8 *base = tx_queue->tx_bd_base;
2342 struct sk_buff *skb;
2343 int skb_dirtytx;
2344 int tx_ring_size = tx_queue->tx_ring_size;
2345 int frags = 0, nr_txbds = 0;
2346 int i;
2347 int howmany = 0;
2348 u32 lstatus;
2349 size_t buflen;
2350 union skb_shared_tx *shtx;
2351
2352 rx_queue = priv->rx_queue[tx_queue->qindex];
2353 bdp = tx_queue->dirty_tx;
2354 skb_dirtytx = tx_queue->skb_dirtytx;
2355
2356 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2357 unsigned long flags;
2358
2359 frags = skb_shinfo(skb)->nr_frags;
2360
2361 /*
2362 * When time stamping, one additional TxBD must be freed.
2363 * Also, we need to dma_unmap_single() the TxPAL.
2364 */
2365 shtx = skb_tx(skb);
2366 if (unlikely(shtx->in_progress))
2367 nr_txbds = frags + 2;
2368 else
2369 nr_txbds = frags + 1;
2370
2371 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2372
2373 lstatus = lbdp->lstatus;
2374
2375 /* Only clean completed frames */
2376 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2377 (lstatus & BD_LENGTH_MASK))
2378 break;
2379
2380 if (unlikely(shtx->in_progress)) {
2381 next = next_txbd(bdp, base, tx_ring_size);
2382 buflen = next->length + GMAC_FCB_LEN;
2383 } else
2384 buflen = bdp->length;
2385
2386 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2387 buflen, DMA_TO_DEVICE);
2388
2389 if (unlikely(shtx->in_progress)) {
2390 struct skb_shared_hwtstamps shhwtstamps;
2391 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2392 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2393 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2394 skb_tstamp_tx(skb, &shhwtstamps);
2395 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2396 bdp = next;
2397 }
2398
2399 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2400 bdp = next_txbd(bdp, base, tx_ring_size);
2401
2402 for (i = 0; i < frags; i++) {
2403 dma_unmap_page(&priv->ofdev->dev,
2404 bdp->bufPtr,
2405 bdp->length,
2406 DMA_TO_DEVICE);
2407 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2408 bdp = next_txbd(bdp, base, tx_ring_size);
2409 }
2410
2411 /*
2412 * If there's room in the queue (limit it to rx_buffer_size)
2413 * we add this skb back into the pool, if it's the right size
2414 */
2415 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2416 skb_recycle_check(skb, priv->rx_buffer_size +
2417 RXBUF_ALIGNMENT))
2418 __skb_queue_head(&priv->rx_recycle, skb);
2419 else
2420 dev_kfree_skb_any(skb);
2421
2422 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2423
2424 skb_dirtytx = (skb_dirtytx + 1) &
2425 TX_RING_MOD_MASK(tx_ring_size);
2426
2427 howmany++;
2428 spin_lock_irqsave(&tx_queue->txlock, flags);
2429 tx_queue->num_txbdfree += nr_txbds;
2430 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2431 }
2432
2433 /* If we freed a buffer, we can restart transmission, if necessary */
2434 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2435 netif_wake_subqueue(dev, tx_queue->qindex);
2436
2437 /* Update dirty indicators */
2438 tx_queue->skb_dirtytx = skb_dirtytx;
2439 tx_queue->dirty_tx = bdp;
2440
2441 return howmany;
2442 }
2443
2444 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2445 {
2446 unsigned long flags;
2447
2448 spin_lock_irqsave(&gfargrp->grplock, flags);
2449 if (napi_schedule_prep(&gfargrp->napi)) {
2450 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2451 __napi_schedule(&gfargrp->napi);
2452 } else {
2453 /*
2454 * Clear IEVENT, so interrupts aren't called again
2455 * because of the packets that have already arrived.
2456 */
2457 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2458 }
2459 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2460
2461 }
2462
2463 /* Interrupt Handler for Transmit complete */
2464 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2465 {
2466 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2467 return IRQ_HANDLED;
2468 }
2469
2470 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2471 struct sk_buff *skb)
2472 {
2473 struct net_device *dev = rx_queue->dev;
2474 struct gfar_private *priv = netdev_priv(dev);
2475 dma_addr_t buf;
2476
2477 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2478 priv->rx_buffer_size, DMA_FROM_DEVICE);
2479 gfar_init_rxbdp(rx_queue, bdp, buf);
2480 }
2481
2482
2483 struct sk_buff * gfar_new_skb(struct net_device *dev)
2484 {
2485 unsigned int alignamount;
2486 struct gfar_private *priv = netdev_priv(dev);
2487 struct sk_buff *skb = NULL;
2488
2489 skb = __skb_dequeue(&priv->rx_recycle);
2490 if (!skb)
2491 skb = netdev_alloc_skb(dev,
2492 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2493
2494 if (!skb)
2495 return NULL;
2496
2497 alignamount = RXBUF_ALIGNMENT -
2498 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2499
2500 /* We need the data buffer to be aligned properly. We will reserve
2501 * as many bytes as needed to align the data properly
2502 */
2503 skb_reserve(skb, alignamount);
2504 GFAR_CB(skb)->alignamount = alignamount;
2505
2506 return skb;
2507 }
2508
2509 static inline void count_errors(unsigned short status, struct net_device *dev)
2510 {
2511 struct gfar_private *priv = netdev_priv(dev);
2512 struct net_device_stats *stats = &dev->stats;
2513 struct gfar_extra_stats *estats = &priv->extra_stats;
2514
2515 /* If the packet was truncated, none of the other errors
2516 * matter */
2517 if (status & RXBD_TRUNCATED) {
2518 stats->rx_length_errors++;
2519
2520 estats->rx_trunc++;
2521
2522 return;
2523 }
2524 /* Count the errors, if there were any */
2525 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2526 stats->rx_length_errors++;
2527
2528 if (status & RXBD_LARGE)
2529 estats->rx_large++;
2530 else
2531 estats->rx_short++;
2532 }
2533 if (status & RXBD_NONOCTET) {
2534 stats->rx_frame_errors++;
2535 estats->rx_nonoctet++;
2536 }
2537 if (status & RXBD_CRCERR) {
2538 estats->rx_crcerr++;
2539 stats->rx_crc_errors++;
2540 }
2541 if (status & RXBD_OVERRUN) {
2542 estats->rx_overrun++;
2543 stats->rx_crc_errors++;
2544 }
2545 }
2546
2547 irqreturn_t gfar_receive(int irq, void *grp_id)
2548 {
2549 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2550 return IRQ_HANDLED;
2551 }
2552
2553 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2554 {
2555 /* If valid headers were found, and valid sums
2556 * were verified, then we tell the kernel that no
2557 * checksumming is necessary. Otherwise, it is */
2558 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2559 skb->ip_summed = CHECKSUM_UNNECESSARY;
2560 else
2561 skb->ip_summed = CHECKSUM_NONE;
2562 }
2563
2564
2565 /* gfar_process_frame() -- handle one incoming packet if skb
2566 * isn't NULL. */
2567 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2568 int amount_pull)
2569 {
2570 struct gfar_private *priv = netdev_priv(dev);
2571 struct rxfcb *fcb = NULL;
2572
2573 int ret;
2574
2575 /* fcb is at the beginning if exists */
2576 fcb = (struct rxfcb *)skb->data;
2577
2578 /* Remove the FCB from the skb */
2579 /* Remove the padded bytes, if there are any */
2580 if (amount_pull) {
2581 skb_record_rx_queue(skb, fcb->rq);
2582 skb_pull(skb, amount_pull);
2583 }
2584
2585 /* Get receive timestamp from the skb */
2586 if (priv->hwts_rx_en) {
2587 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2588 u64 *ns = (u64 *) skb->data;
2589 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2590 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2591 }
2592
2593 if (priv->padding)
2594 skb_pull(skb, priv->padding);
2595
2596 if (priv->rx_csum_enable)
2597 gfar_rx_checksum(skb, fcb);
2598
2599 /* Tell the skb what kind of packet this is */
2600 skb->protocol = eth_type_trans(skb, dev);
2601
2602 /* Send the packet up the stack */
2603 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2604 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2605 else
2606 ret = netif_receive_skb(skb);
2607
2608 if (NET_RX_DROP == ret)
2609 priv->extra_stats.kernel_dropped++;
2610
2611 return 0;
2612 }
2613
2614 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2615 * until the budget/quota has been reached. Returns the number
2616 * of frames handled
2617 */
2618 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2619 {
2620 struct net_device *dev = rx_queue->dev;
2621 struct rxbd8 *bdp, *base;
2622 struct sk_buff *skb;
2623 int pkt_len;
2624 int amount_pull;
2625 int howmany = 0;
2626 struct gfar_private *priv = netdev_priv(dev);
2627
2628 /* Get the first full descriptor */
2629 bdp = rx_queue->cur_rx;
2630 base = rx_queue->rx_bd_base;
2631
2632 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2633
2634 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2635 struct sk_buff *newskb;
2636 rmb();
2637
2638 /* Add another skb for the future */
2639 newskb = gfar_new_skb(dev);
2640
2641 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2642
2643 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2644 priv->rx_buffer_size, DMA_FROM_DEVICE);
2645
2646 /* We drop the frame if we failed to allocate a new buffer */
2647 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2648 bdp->status & RXBD_ERR)) {
2649 count_errors(bdp->status, dev);
2650
2651 if (unlikely(!newskb))
2652 newskb = skb;
2653 else if (skb) {
2654 /*
2655 * We need to un-reserve() the skb to what it
2656 * was before gfar_new_skb() re-aligned
2657 * it to an RXBUF_ALIGNMENT boundary
2658 * before we put the skb back on the
2659 * recycle list.
2660 */
2661 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2662 __skb_queue_head(&priv->rx_recycle, skb);
2663 }
2664 } else {
2665 /* Increment the number of packets */
2666 rx_queue->stats.rx_packets++;
2667 howmany++;
2668
2669 if (likely(skb)) {
2670 pkt_len = bdp->length - ETH_FCS_LEN;
2671 /* Remove the FCS from the packet length */
2672 skb_put(skb, pkt_len);
2673 rx_queue->stats.rx_bytes += pkt_len;
2674 skb_record_rx_queue(skb, rx_queue->qindex);
2675 gfar_process_frame(dev, skb, amount_pull);
2676
2677 } else {
2678 if (netif_msg_rx_err(priv))
2679 printk(KERN_WARNING
2680 "%s: Missing skb!\n", dev->name);
2681 rx_queue->stats.rx_dropped++;
2682 priv->extra_stats.rx_skbmissing++;
2683 }
2684
2685 }
2686
2687 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2688
2689 /* Setup the new bdp */
2690 gfar_new_rxbdp(rx_queue, bdp, newskb);
2691
2692 /* Update to the next pointer */
2693 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2694
2695 /* update to point at the next skb */
2696 rx_queue->skb_currx =
2697 (rx_queue->skb_currx + 1) &
2698 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2699 }
2700
2701 /* Update the current rxbd pointer to be the next one */
2702 rx_queue->cur_rx = bdp;
2703
2704 return howmany;
2705 }
2706
2707 static int gfar_poll(struct napi_struct *napi, int budget)
2708 {
2709 struct gfar_priv_grp *gfargrp = container_of(napi,
2710 struct gfar_priv_grp, napi);
2711 struct gfar_private *priv = gfargrp->priv;
2712 struct gfar __iomem *regs = gfargrp->regs;
2713 struct gfar_priv_tx_q *tx_queue = NULL;
2714 struct gfar_priv_rx_q *rx_queue = NULL;
2715 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2716 int tx_cleaned = 0, i, left_over_budget = budget;
2717 unsigned long serviced_queues = 0;
2718 int num_queues = 0;
2719
2720 num_queues = gfargrp->num_rx_queues;
2721 budget_per_queue = budget/num_queues;
2722
2723 /* Clear IEVENT, so interrupts aren't called again
2724 * because of the packets that have already arrived */
2725 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2726
2727 while (num_queues && left_over_budget) {
2728
2729 budget_per_queue = left_over_budget/num_queues;
2730 left_over_budget = 0;
2731
2732 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2733 if (test_bit(i, &serviced_queues))
2734 continue;
2735 rx_queue = priv->rx_queue[i];
2736 tx_queue = priv->tx_queue[rx_queue->qindex];
2737
2738 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2739 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2740 budget_per_queue);
2741 rx_cleaned += rx_cleaned_per_queue;
2742 if(rx_cleaned_per_queue < budget_per_queue) {
2743 left_over_budget = left_over_budget +
2744 (budget_per_queue - rx_cleaned_per_queue);
2745 set_bit(i, &serviced_queues);
2746 num_queues--;
2747 }
2748 }
2749 }
2750
2751 if (tx_cleaned)
2752 return budget;
2753
2754 if (rx_cleaned < budget) {
2755 napi_complete(napi);
2756
2757 /* Clear the halt bit in RSTAT */
2758 gfar_write(&regs->rstat, gfargrp->rstat);
2759
2760 gfar_write(&regs->imask, IMASK_DEFAULT);
2761
2762 /* If we are coalescing interrupts, update the timer */
2763 /* Otherwise, clear it */
2764 gfar_configure_coalescing(priv,
2765 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2766 }
2767
2768 return rx_cleaned;
2769 }
2770
2771 #ifdef CONFIG_NET_POLL_CONTROLLER
2772 /*
2773 * Polling 'interrupt' - used by things like netconsole to send skbs
2774 * without having to re-enable interrupts. It's not called while
2775 * the interrupt routine is executing.
2776 */
2777 static void gfar_netpoll(struct net_device *dev)
2778 {
2779 struct gfar_private *priv = netdev_priv(dev);
2780 int i = 0;
2781
2782 /* If the device has multiple interrupts, run tx/rx */
2783 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2784 for (i = 0; i < priv->num_grps; i++) {
2785 disable_irq(priv->gfargrp[i].interruptTransmit);
2786 disable_irq(priv->gfargrp[i].interruptReceive);
2787 disable_irq(priv->gfargrp[i].interruptError);
2788 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2789 &priv->gfargrp[i]);
2790 enable_irq(priv->gfargrp[i].interruptError);
2791 enable_irq(priv->gfargrp[i].interruptReceive);
2792 enable_irq(priv->gfargrp[i].interruptTransmit);
2793 }
2794 } else {
2795 for (i = 0; i < priv->num_grps; i++) {
2796 disable_irq(priv->gfargrp[i].interruptTransmit);
2797 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2798 &priv->gfargrp[i]);
2799 enable_irq(priv->gfargrp[i].interruptTransmit);
2800 }
2801 }
2802 }
2803 #endif
2804
2805 /* The interrupt handler for devices with one interrupt */
2806 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2807 {
2808 struct gfar_priv_grp *gfargrp = grp_id;
2809
2810 /* Save ievent for future reference */
2811 u32 events = gfar_read(&gfargrp->regs->ievent);
2812
2813 /* Check for reception */
2814 if (events & IEVENT_RX_MASK)
2815 gfar_receive(irq, grp_id);
2816
2817 /* Check for transmit completion */
2818 if (events & IEVENT_TX_MASK)
2819 gfar_transmit(irq, grp_id);
2820
2821 /* Check for errors */
2822 if (events & IEVENT_ERR_MASK)
2823 gfar_error(irq, grp_id);
2824
2825 return IRQ_HANDLED;
2826 }
2827
2828 /* Called every time the controller might need to be made
2829 * aware of new link state. The PHY code conveys this
2830 * information through variables in the phydev structure, and this
2831 * function converts those variables into the appropriate
2832 * register values, and can bring down the device if needed.
2833 */
2834 static void adjust_link(struct net_device *dev)
2835 {
2836 struct gfar_private *priv = netdev_priv(dev);
2837 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2838 unsigned long flags;
2839 struct phy_device *phydev = priv->phydev;
2840 int new_state = 0;
2841
2842 local_irq_save(flags);
2843 lock_tx_qs(priv);
2844
2845 if (phydev->link) {
2846 u32 tempval = gfar_read(&regs->maccfg2);
2847 u32 ecntrl = gfar_read(&regs->ecntrl);
2848
2849 /* Now we make sure that we can be in full duplex mode.
2850 * If not, we operate in half-duplex mode. */
2851 if (phydev->duplex != priv->oldduplex) {
2852 new_state = 1;
2853 if (!(phydev->duplex))
2854 tempval &= ~(MACCFG2_FULL_DUPLEX);
2855 else
2856 tempval |= MACCFG2_FULL_DUPLEX;
2857
2858 priv->oldduplex = phydev->duplex;
2859 }
2860
2861 if (phydev->speed != priv->oldspeed) {
2862 new_state = 1;
2863 switch (phydev->speed) {
2864 case 1000:
2865 tempval =
2866 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2867
2868 ecntrl &= ~(ECNTRL_R100);
2869 break;
2870 case 100:
2871 case 10:
2872 tempval =
2873 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2874
2875 /* Reduced mode distinguishes
2876 * between 10 and 100 */
2877 if (phydev->speed == SPEED_100)
2878 ecntrl |= ECNTRL_R100;
2879 else
2880 ecntrl &= ~(ECNTRL_R100);
2881 break;
2882 default:
2883 if (netif_msg_link(priv))
2884 printk(KERN_WARNING
2885 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2886 dev->name, phydev->speed);
2887 break;
2888 }
2889
2890 priv->oldspeed = phydev->speed;
2891 }
2892
2893 gfar_write(&regs->maccfg2, tempval);
2894 gfar_write(&regs->ecntrl, ecntrl);
2895
2896 if (!priv->oldlink) {
2897 new_state = 1;
2898 priv->oldlink = 1;
2899 }
2900 } else if (priv->oldlink) {
2901 new_state = 1;
2902 priv->oldlink = 0;
2903 priv->oldspeed = 0;
2904 priv->oldduplex = -1;
2905 }
2906
2907 if (new_state && netif_msg_link(priv))
2908 phy_print_status(phydev);
2909 unlock_tx_qs(priv);
2910 local_irq_restore(flags);
2911 }
2912
2913 /* Update the hash table based on the current list of multicast
2914 * addresses we subscribe to. Also, change the promiscuity of
2915 * the device based on the flags (this function is called
2916 * whenever dev->flags is changed */
2917 static void gfar_set_multi(struct net_device *dev)
2918 {
2919 struct netdev_hw_addr *ha;
2920 struct gfar_private *priv = netdev_priv(dev);
2921 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2922 u32 tempval;
2923
2924 if (dev->flags & IFF_PROMISC) {
2925 /* Set RCTRL to PROM */
2926 tempval = gfar_read(&regs->rctrl);
2927 tempval |= RCTRL_PROM;
2928 gfar_write(&regs->rctrl, tempval);
2929 } else {
2930 /* Set RCTRL to not PROM */
2931 tempval = gfar_read(&regs->rctrl);
2932 tempval &= ~(RCTRL_PROM);
2933 gfar_write(&regs->rctrl, tempval);
2934 }
2935
2936 if (dev->flags & IFF_ALLMULTI) {
2937 /* Set the hash to rx all multicast frames */
2938 gfar_write(&regs->igaddr0, 0xffffffff);
2939 gfar_write(&regs->igaddr1, 0xffffffff);
2940 gfar_write(&regs->igaddr2, 0xffffffff);
2941 gfar_write(&regs->igaddr3, 0xffffffff);
2942 gfar_write(&regs->igaddr4, 0xffffffff);
2943 gfar_write(&regs->igaddr5, 0xffffffff);
2944 gfar_write(&regs->igaddr6, 0xffffffff);
2945 gfar_write(&regs->igaddr7, 0xffffffff);
2946 gfar_write(&regs->gaddr0, 0xffffffff);
2947 gfar_write(&regs->gaddr1, 0xffffffff);
2948 gfar_write(&regs->gaddr2, 0xffffffff);
2949 gfar_write(&regs->gaddr3, 0xffffffff);
2950 gfar_write(&regs->gaddr4, 0xffffffff);
2951 gfar_write(&regs->gaddr5, 0xffffffff);
2952 gfar_write(&regs->gaddr6, 0xffffffff);
2953 gfar_write(&regs->gaddr7, 0xffffffff);
2954 } else {
2955 int em_num;
2956 int idx;
2957
2958 /* zero out the hash */
2959 gfar_write(&regs->igaddr0, 0x0);
2960 gfar_write(&regs->igaddr1, 0x0);
2961 gfar_write(&regs->igaddr2, 0x0);
2962 gfar_write(&regs->igaddr3, 0x0);
2963 gfar_write(&regs->igaddr4, 0x0);
2964 gfar_write(&regs->igaddr5, 0x0);
2965 gfar_write(&regs->igaddr6, 0x0);
2966 gfar_write(&regs->igaddr7, 0x0);
2967 gfar_write(&regs->gaddr0, 0x0);
2968 gfar_write(&regs->gaddr1, 0x0);
2969 gfar_write(&regs->gaddr2, 0x0);
2970 gfar_write(&regs->gaddr3, 0x0);
2971 gfar_write(&regs->gaddr4, 0x0);
2972 gfar_write(&regs->gaddr5, 0x0);
2973 gfar_write(&regs->gaddr6, 0x0);
2974 gfar_write(&regs->gaddr7, 0x0);
2975
2976 /* If we have extended hash tables, we need to
2977 * clear the exact match registers to prepare for
2978 * setting them */
2979 if (priv->extended_hash) {
2980 em_num = GFAR_EM_NUM + 1;
2981 gfar_clear_exact_match(dev);
2982 idx = 1;
2983 } else {
2984 idx = 0;
2985 em_num = 0;
2986 }
2987
2988 if (netdev_mc_empty(dev))
2989 return;
2990
2991 /* Parse the list, and set the appropriate bits */
2992 netdev_for_each_mc_addr(ha, dev) {
2993 if (idx < em_num) {
2994 gfar_set_mac_for_addr(dev, idx, ha->addr);
2995 idx++;
2996 } else
2997 gfar_set_hash_for_addr(dev, ha->addr);
2998 }
2999 }
3000 }
3001
3002
3003 /* Clears each of the exact match registers to zero, so they
3004 * don't interfere with normal reception */
3005 static void gfar_clear_exact_match(struct net_device *dev)
3006 {
3007 int idx;
3008 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3009
3010 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3011 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3012 }
3013
3014 /* Set the appropriate hash bit for the given addr */
3015 /* The algorithm works like so:
3016 * 1) Take the Destination Address (ie the multicast address), and
3017 * do a CRC on it (little endian), and reverse the bits of the
3018 * result.
3019 * 2) Use the 8 most significant bits as a hash into a 256-entry
3020 * table. The table is controlled through 8 32-bit registers:
3021 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3022 * gaddr7. This means that the 3 most significant bits in the
3023 * hash index which gaddr register to use, and the 5 other bits
3024 * indicate which bit (assuming an IBM numbering scheme, which
3025 * for PowerPC (tm) is usually the case) in the register holds
3026 * the entry. */
3027 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3028 {
3029 u32 tempval;
3030 struct gfar_private *priv = netdev_priv(dev);
3031 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3032 int width = priv->hash_width;
3033 u8 whichbit = (result >> (32 - width)) & 0x1f;
3034 u8 whichreg = result >> (32 - width + 5);
3035 u32 value = (1 << (31-whichbit));
3036
3037 tempval = gfar_read(priv->hash_regs[whichreg]);
3038 tempval |= value;
3039 gfar_write(priv->hash_regs[whichreg], tempval);
3040 }
3041
3042
3043 /* There are multiple MAC Address register pairs on some controllers
3044 * This function sets the numth pair to a given address
3045 */
3046 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3047 {
3048 struct gfar_private *priv = netdev_priv(dev);
3049 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050 int idx;
3051 char tmpbuf[MAC_ADDR_LEN];
3052 u32 tempval;
3053 u32 __iomem *macptr = &regs->macstnaddr1;
3054
3055 macptr += num*2;
3056
3057 /* Now copy it into the mac registers backwards, cuz */
3058 /* little endian is silly */
3059 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3060 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3061
3062 gfar_write(macptr, *((u32 *) (tmpbuf)));
3063
3064 tempval = *((u32 *) (tmpbuf + 4));
3065
3066 gfar_write(macptr+1, tempval);
3067 }
3068
3069 /* GFAR error interrupt handler */
3070 static irqreturn_t gfar_error(int irq, void *grp_id)
3071 {
3072 struct gfar_priv_grp *gfargrp = grp_id;
3073 struct gfar __iomem *regs = gfargrp->regs;
3074 struct gfar_private *priv= gfargrp->priv;
3075 struct net_device *dev = priv->ndev;
3076
3077 /* Save ievent for future reference */
3078 u32 events = gfar_read(&regs->ievent);
3079
3080 /* Clear IEVENT */
3081 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3082
3083 /* Magic Packet is not an error. */
3084 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3085 (events & IEVENT_MAG))
3086 events &= ~IEVENT_MAG;
3087
3088 /* Hmm... */
3089 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3090 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3091 dev->name, events, gfar_read(&regs->imask));
3092
3093 /* Update the error counters */
3094 if (events & IEVENT_TXE) {
3095 dev->stats.tx_errors++;
3096
3097 if (events & IEVENT_LC)
3098 dev->stats.tx_window_errors++;
3099 if (events & IEVENT_CRL)
3100 dev->stats.tx_aborted_errors++;
3101 if (events & IEVENT_XFUN) {
3102 unsigned long flags;
3103
3104 if (netif_msg_tx_err(priv))
3105 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3106 "packet dropped.\n", dev->name);
3107 dev->stats.tx_dropped++;
3108 priv->extra_stats.tx_underrun++;
3109
3110 local_irq_save(flags);
3111 lock_tx_qs(priv);
3112
3113 /* Reactivate the Tx Queues */
3114 gfar_write(&regs->tstat, gfargrp->tstat);
3115
3116 unlock_tx_qs(priv);
3117 local_irq_restore(flags);
3118 }
3119 if (netif_msg_tx_err(priv))
3120 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3121 }
3122 if (events & IEVENT_BSY) {
3123 dev->stats.rx_errors++;
3124 priv->extra_stats.rx_bsy++;
3125
3126 gfar_receive(irq, grp_id);
3127
3128 if (netif_msg_rx_err(priv))
3129 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3130 dev->name, gfar_read(&regs->rstat));
3131 }
3132 if (events & IEVENT_BABR) {
3133 dev->stats.rx_errors++;
3134 priv->extra_stats.rx_babr++;
3135
3136 if (netif_msg_rx_err(priv))
3137 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3138 }
3139 if (events & IEVENT_EBERR) {
3140 priv->extra_stats.eberr++;
3141 if (netif_msg_rx_err(priv))
3142 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3143 }
3144 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3145 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3146
3147 if (events & IEVENT_BABT) {
3148 priv->extra_stats.tx_babt++;
3149 if (netif_msg_tx_err(priv))
3150 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3151 }
3152 return IRQ_HANDLED;
3153 }
3154
3155 static struct of_device_id gfar_match[] =
3156 {
3157 {
3158 .type = "network",
3159 .compatible = "gianfar",
3160 },
3161 {
3162 .compatible = "fsl,etsec2",
3163 },
3164 {},
3165 };
3166 MODULE_DEVICE_TABLE(of, gfar_match);
3167
3168 /* Structure for a device driver */
3169 static struct of_platform_driver gfar_driver = {
3170 .driver = {
3171 .name = "fsl-gianfar",
3172 .owner = THIS_MODULE,
3173 .pm = GFAR_PM_OPS,
3174 .of_match_table = gfar_match,
3175 },
3176 .probe = gfar_probe,
3177 .remove = gfar_remove,
3178 };
3179
3180 static int __init gfar_init(void)
3181 {
3182 return of_register_platform_driver(&gfar_driver);
3183 }
3184
3185 static void __exit gfar_exit(void)
3186 {
3187 of_unregister_platform_driver(&gfar_driver);
3188 }
3189
3190 module_init(gfar_init);
3191 module_exit(gfar_exit);
3192