[PATCH] forcedeth config: module parameters
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 * 0.55: 22 Mar 2006: Add flow control (pause frame).
111 *
112 * Known bugs:
113 * We suspect that on some hardware no TX done interrupts are generated.
114 * This means recovery from netif_stop_queue only happens if the hw timer
115 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
116 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
117 * If your hardware reliably generates tx done interrupts, then you can remove
118 * DEV_NEED_TIMERIRQ from the driver_data flags.
119 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
120 * superfluous timer interrupts from the nic.
121 */
122 #define FORCEDETH_VERSION "0.55"
123 #define DRV_NAME "forcedeth"
124
125 #include <linux/module.h>
126 #include <linux/types.h>
127 #include <linux/pci.h>
128 #include <linux/interrupt.h>
129 #include <linux/netdevice.h>
130 #include <linux/etherdevice.h>
131 #include <linux/delay.h>
132 #include <linux/spinlock.h>
133 #include <linux/ethtool.h>
134 #include <linux/timer.h>
135 #include <linux/skbuff.h>
136 #include <linux/mii.h>
137 #include <linux/random.h>
138 #include <linux/init.h>
139 #include <linux/if_vlan.h>
140 #include <linux/dma-mapping.h>
141
142 #include <asm/irq.h>
143 #include <asm/io.h>
144 #include <asm/uaccess.h>
145 #include <asm/system.h>
146
147 #if 0
148 #define dprintk printk
149 #else
150 #define dprintk(x...) do { } while (0)
151 #endif
152
153
154 /*
155 * Hardware access:
156 */
157
158 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
159 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
160 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
161 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
162 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
163 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
164 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
165 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
166 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
167 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
168 #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
169 #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
170
171 enum {
172 NvRegIrqStatus = 0x000,
173 #define NVREG_IRQSTAT_MIIEVENT 0x040
174 #define NVREG_IRQSTAT_MASK 0x1ff
175 NvRegIrqMask = 0x004,
176 #define NVREG_IRQ_RX_ERROR 0x0001
177 #define NVREG_IRQ_RX 0x0002
178 #define NVREG_IRQ_RX_NOBUF 0x0004
179 #define NVREG_IRQ_TX_ERR 0x0008
180 #define NVREG_IRQ_TX_OK 0x0010
181 #define NVREG_IRQ_TIMER 0x0020
182 #define NVREG_IRQ_LINK 0x0040
183 #define NVREG_IRQ_RX_FORCED 0x0080
184 #define NVREG_IRQ_TX_FORCED 0x0100
185 #define NVREG_IRQMASK_THROUGHPUT 0x00df
186 #define NVREG_IRQMASK_CPU 0x0040
187 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
188 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
189 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
190
191 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
192 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
193 NVREG_IRQ_TX_FORCED))
194
195 NvRegUnknownSetupReg6 = 0x008,
196 #define NVREG_UNKSETUP6_VAL 3
197
198 /*
199 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
200 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
201 */
202 NvRegPollingInterval = 0x00c,
203 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
204 #define NVREG_POLL_DEFAULT_CPU 13
205 NvRegMSIMap0 = 0x020,
206 NvRegMSIMap1 = 0x024,
207 NvRegMSIIrqMask = 0x030,
208 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
209 NvRegMisc1 = 0x080,
210 #define NVREG_MISC1_PAUSE_TX 0x01
211 #define NVREG_MISC1_HD 0x02
212 #define NVREG_MISC1_FORCE 0x3b0f3c
213
214 NvRegMacReset = 0x3c,
215 #define NVREG_MAC_RESET_ASSERT 0x0F3
216 NvRegTransmitterControl = 0x084,
217 #define NVREG_XMITCTL_START 0x01
218 NvRegTransmitterStatus = 0x088,
219 #define NVREG_XMITSTAT_BUSY 0x01
220
221 NvRegPacketFilterFlags = 0x8c,
222 #define NVREG_PFF_PAUSE_RX 0x08
223 #define NVREG_PFF_ALWAYS 0x7F0000
224 #define NVREG_PFF_PROMISC 0x80
225 #define NVREG_PFF_MYADDR 0x20
226 #define NVREG_PFF_LOOPBACK 0x10
227
228 NvRegOffloadConfig = 0x90,
229 #define NVREG_OFFLOAD_HOMEPHY 0x601
230 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
231 NvRegReceiverControl = 0x094,
232 #define NVREG_RCVCTL_START 0x01
233 NvRegReceiverStatus = 0x98,
234 #define NVREG_RCVSTAT_BUSY 0x01
235
236 NvRegRandomSeed = 0x9c,
237 #define NVREG_RNDSEED_MASK 0x00ff
238 #define NVREG_RNDSEED_FORCE 0x7f00
239 #define NVREG_RNDSEED_FORCE2 0x2d00
240 #define NVREG_RNDSEED_FORCE3 0x7400
241
242 NvRegUnknownSetupReg1 = 0xA0,
243 #define NVREG_UNKSETUP1_VAL 0x16070f
244 NvRegUnknownSetupReg2 = 0xA4,
245 #define NVREG_UNKSETUP2_VAL 0x16
246 NvRegMacAddrA = 0xA8,
247 NvRegMacAddrB = 0xAC,
248 NvRegMulticastAddrA = 0xB0,
249 #define NVREG_MCASTADDRA_FORCE 0x01
250 NvRegMulticastAddrB = 0xB4,
251 NvRegMulticastMaskA = 0xB8,
252 NvRegMulticastMaskB = 0xBC,
253
254 NvRegPhyInterface = 0xC0,
255 #define PHY_RGMII 0x10000000
256
257 NvRegTxRingPhysAddr = 0x100,
258 NvRegRxRingPhysAddr = 0x104,
259 NvRegRingSizes = 0x108,
260 #define NVREG_RINGSZ_TXSHIFT 0
261 #define NVREG_RINGSZ_RXSHIFT 16
262 NvRegUnknownTransmitterReg = 0x10c,
263 NvRegLinkSpeed = 0x110,
264 #define NVREG_LINKSPEED_FORCE 0x10000
265 #define NVREG_LINKSPEED_10 1000
266 #define NVREG_LINKSPEED_100 100
267 #define NVREG_LINKSPEED_1000 50
268 #define NVREG_LINKSPEED_MASK (0xFFF)
269 NvRegUnknownSetupReg5 = 0x130,
270 #define NVREG_UNKSETUP5_BIT31 (1<<31)
271 NvRegUnknownSetupReg3 = 0x13c,
272 #define NVREG_UNKSETUP3_VAL1 0x200010
273 NvRegTxRxControl = 0x144,
274 #define NVREG_TXRXCTL_KICK 0x0001
275 #define NVREG_TXRXCTL_BIT1 0x0002
276 #define NVREG_TXRXCTL_BIT2 0x0004
277 #define NVREG_TXRXCTL_IDLE 0x0008
278 #define NVREG_TXRXCTL_RESET 0x0010
279 #define NVREG_TXRXCTL_RXCHECK 0x0400
280 #define NVREG_TXRXCTL_DESC_1 0
281 #define NVREG_TXRXCTL_DESC_2 0x02100
282 #define NVREG_TXRXCTL_DESC_3 0x02200
283 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
284 #define NVREG_TXRXCTL_VLANINS 0x00080
285 NvRegTxRingPhysAddrHigh = 0x148,
286 NvRegRxRingPhysAddrHigh = 0x14C,
287 NvRegTxPauseFrame = 0x170,
288 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
289 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
290 NvRegMIIStatus = 0x180,
291 #define NVREG_MIISTAT_ERROR 0x0001
292 #define NVREG_MIISTAT_LINKCHANGE 0x0008
293 #define NVREG_MIISTAT_MASK 0x000f
294 #define NVREG_MIISTAT_MASK2 0x000f
295 NvRegUnknownSetupReg4 = 0x184,
296 #define NVREG_UNKSETUP4_VAL 8
297
298 NvRegAdapterControl = 0x188,
299 #define NVREG_ADAPTCTL_START 0x02
300 #define NVREG_ADAPTCTL_LINKUP 0x04
301 #define NVREG_ADAPTCTL_PHYVALID 0x40000
302 #define NVREG_ADAPTCTL_RUNNING 0x100000
303 #define NVREG_ADAPTCTL_PHYSHIFT 24
304 NvRegMIISpeed = 0x18c,
305 #define NVREG_MIISPEED_BIT8 (1<<8)
306 #define NVREG_MIIDELAY 5
307 NvRegMIIControl = 0x190,
308 #define NVREG_MIICTL_INUSE 0x08000
309 #define NVREG_MIICTL_WRITE 0x00400
310 #define NVREG_MIICTL_ADDRSHIFT 5
311 NvRegMIIData = 0x194,
312 NvRegWakeUpFlags = 0x200,
313 #define NVREG_WAKEUPFLAGS_VAL 0x7770
314 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
315 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
316 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
317 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
318 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
319 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
320 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
321 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
322 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
323 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
324
325 NvRegPatternCRC = 0x204,
326 NvRegPatternMask = 0x208,
327 NvRegPowerCap = 0x268,
328 #define NVREG_POWERCAP_D3SUPP (1<<30)
329 #define NVREG_POWERCAP_D2SUPP (1<<26)
330 #define NVREG_POWERCAP_D1SUPP (1<<25)
331 NvRegPowerState = 0x26c,
332 #define NVREG_POWERSTATE_POWEREDUP 0x8000
333 #define NVREG_POWERSTATE_VALID 0x0100
334 #define NVREG_POWERSTATE_MASK 0x0003
335 #define NVREG_POWERSTATE_D0 0x0000
336 #define NVREG_POWERSTATE_D1 0x0001
337 #define NVREG_POWERSTATE_D2 0x0002
338 #define NVREG_POWERSTATE_D3 0x0003
339 NvRegTxCnt = 0x280,
340 NvRegTxZeroReXmt = 0x284,
341 NvRegTxOneReXmt = 0x288,
342 NvRegTxManyReXmt = 0x28c,
343 NvRegTxLateCol = 0x290,
344 NvRegTxUnderflow = 0x294,
345 NvRegTxLossCarrier = 0x298,
346 NvRegTxExcessDef = 0x29c,
347 NvRegTxRetryErr = 0x2a0,
348 NvRegRxFrameErr = 0x2a4,
349 NvRegRxExtraByte = 0x2a8,
350 NvRegRxLateCol = 0x2ac,
351 NvRegRxRunt = 0x2b0,
352 NvRegRxFrameTooLong = 0x2b4,
353 NvRegRxOverflow = 0x2b8,
354 NvRegRxFCSErr = 0x2bc,
355 NvRegRxFrameAlignErr = 0x2c0,
356 NvRegRxLenErr = 0x2c4,
357 NvRegRxUnicast = 0x2c8,
358 NvRegRxMulticast = 0x2cc,
359 NvRegRxBroadcast = 0x2d0,
360 NvRegTxDef = 0x2d4,
361 NvRegTxFrame = 0x2d8,
362 NvRegRxCnt = 0x2dc,
363 NvRegTxPause = 0x2e0,
364 NvRegRxPause = 0x2e4,
365 NvRegRxDropFrame = 0x2e8,
366 NvRegVlanControl = 0x300,
367 #define NVREG_VLANCONTROL_ENABLE 0x2000
368 NvRegMSIXMap0 = 0x3e0,
369 NvRegMSIXMap1 = 0x3e4,
370 NvRegMSIXIrqStatus = 0x3f0,
371
372 NvRegPowerState2 = 0x600,
373 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
374 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
375 };
376
377 /* Big endian: should work, but is untested */
378 struct ring_desc {
379 u32 PacketBuffer;
380 u32 FlagLen;
381 };
382
383 struct ring_desc_ex {
384 u32 PacketBufferHigh;
385 u32 PacketBufferLow;
386 u32 TxVlan;
387 u32 FlagLen;
388 };
389
390 typedef union _ring_type {
391 struct ring_desc* orig;
392 struct ring_desc_ex* ex;
393 } ring_type;
394
395 #define FLAG_MASK_V1 0xffff0000
396 #define FLAG_MASK_V2 0xffffc000
397 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
398 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
399
400 #define NV_TX_LASTPACKET (1<<16)
401 #define NV_TX_RETRYERROR (1<<19)
402 #define NV_TX_FORCED_INTERRUPT (1<<24)
403 #define NV_TX_DEFERRED (1<<26)
404 #define NV_TX_CARRIERLOST (1<<27)
405 #define NV_TX_LATECOLLISION (1<<28)
406 #define NV_TX_UNDERFLOW (1<<29)
407 #define NV_TX_ERROR (1<<30)
408 #define NV_TX_VALID (1<<31)
409
410 #define NV_TX2_LASTPACKET (1<<29)
411 #define NV_TX2_RETRYERROR (1<<18)
412 #define NV_TX2_FORCED_INTERRUPT (1<<30)
413 #define NV_TX2_DEFERRED (1<<25)
414 #define NV_TX2_CARRIERLOST (1<<26)
415 #define NV_TX2_LATECOLLISION (1<<27)
416 #define NV_TX2_UNDERFLOW (1<<28)
417 /* error and valid are the same for both */
418 #define NV_TX2_ERROR (1<<30)
419 #define NV_TX2_VALID (1<<31)
420 #define NV_TX2_TSO (1<<28)
421 #define NV_TX2_TSO_SHIFT 14
422 #define NV_TX2_TSO_MAX_SHIFT 14
423 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
424 #define NV_TX2_CHECKSUM_L3 (1<<27)
425 #define NV_TX2_CHECKSUM_L4 (1<<26)
426
427 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
428
429 #define NV_RX_DESCRIPTORVALID (1<<16)
430 #define NV_RX_MISSEDFRAME (1<<17)
431 #define NV_RX_SUBSTRACT1 (1<<18)
432 #define NV_RX_ERROR1 (1<<23)
433 #define NV_RX_ERROR2 (1<<24)
434 #define NV_RX_ERROR3 (1<<25)
435 #define NV_RX_ERROR4 (1<<26)
436 #define NV_RX_CRCERR (1<<27)
437 #define NV_RX_OVERFLOW (1<<28)
438 #define NV_RX_FRAMINGERR (1<<29)
439 #define NV_RX_ERROR (1<<30)
440 #define NV_RX_AVAIL (1<<31)
441
442 #define NV_RX2_CHECKSUMMASK (0x1C000000)
443 #define NV_RX2_CHECKSUMOK1 (0x10000000)
444 #define NV_RX2_CHECKSUMOK2 (0x14000000)
445 #define NV_RX2_CHECKSUMOK3 (0x18000000)
446 #define NV_RX2_DESCRIPTORVALID (1<<29)
447 #define NV_RX2_SUBSTRACT1 (1<<25)
448 #define NV_RX2_ERROR1 (1<<18)
449 #define NV_RX2_ERROR2 (1<<19)
450 #define NV_RX2_ERROR3 (1<<20)
451 #define NV_RX2_ERROR4 (1<<21)
452 #define NV_RX2_CRCERR (1<<22)
453 #define NV_RX2_OVERFLOW (1<<23)
454 #define NV_RX2_FRAMINGERR (1<<24)
455 /* error and avail are the same for both */
456 #define NV_RX2_ERROR (1<<30)
457 #define NV_RX2_AVAIL (1<<31)
458
459 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
460 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
461
462 /* Miscelaneous hardware related defines: */
463 #define NV_PCI_REGSZ_VER1 0x270
464 #define NV_PCI_REGSZ_VER2 0x604
465
466 /* various timeout delays: all in usec */
467 #define NV_TXRX_RESET_DELAY 4
468 #define NV_TXSTOP_DELAY1 10
469 #define NV_TXSTOP_DELAY1MAX 500000
470 #define NV_TXSTOP_DELAY2 100
471 #define NV_RXSTOP_DELAY1 10
472 #define NV_RXSTOP_DELAY1MAX 500000
473 #define NV_RXSTOP_DELAY2 100
474 #define NV_SETUP5_DELAY 5
475 #define NV_SETUP5_DELAYMAX 50000
476 #define NV_POWERUP_DELAY 5
477 #define NV_POWERUP_DELAYMAX 5000
478 #define NV_MIIBUSY_DELAY 50
479 #define NV_MIIPHY_DELAY 10
480 #define NV_MIIPHY_DELAYMAX 10000
481 #define NV_MAC_RESET_DELAY 64
482
483 #define NV_WAKEUPPATTERNS 5
484 #define NV_WAKEUPMASKENTRIES 4
485
486 /* General driver defaults */
487 #define NV_WATCHDOG_TIMEO (5*HZ)
488
489 #define RX_RING_DEFAULT 128
490 #define TX_RING_DEFAULT 256
491 #define RX_RING_MIN 128
492 #define TX_RING_MIN 64
493 #define RING_MAX_DESC_VER_1 1024
494 #define RING_MAX_DESC_VER_2_3 16384
495 /*
496 * Difference between the get and put pointers for the tx ring.
497 * This is used to throttle the amount of data outstanding in the
498 * tx ring.
499 */
500 #define TX_LIMIT_DIFFERENCE 1
501
502 /* rx/tx mac addr + type + vlan + align + slack*/
503 #define NV_RX_HEADERS (64)
504 /* even more slack. */
505 #define NV_RX_ALLOC_PAD (64)
506
507 /* maximum mtu size */
508 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
509 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
510
511 #define OOM_REFILL (1+HZ/20)
512 #define POLL_WAIT (1+HZ/100)
513 #define LINK_TIMEOUT (3*HZ)
514 #define STATS_INTERVAL (10*HZ)
515
516 /*
517 * desc_ver values:
518 * The nic supports three different descriptor types:
519 * - DESC_VER_1: Original
520 * - DESC_VER_2: support for jumbo frames.
521 * - DESC_VER_3: 64-bit format.
522 */
523 #define DESC_VER_1 1
524 #define DESC_VER_2 2
525 #define DESC_VER_3 3
526
527 /* PHY defines */
528 #define PHY_OUI_MARVELL 0x5043
529 #define PHY_OUI_CICADA 0x03f1
530 #define PHYID1_OUI_MASK 0x03ff
531 #define PHYID1_OUI_SHFT 6
532 #define PHYID2_OUI_MASK 0xfc00
533 #define PHYID2_OUI_SHFT 10
534 #define PHY_INIT1 0x0f000
535 #define PHY_INIT2 0x0e00
536 #define PHY_INIT3 0x01000
537 #define PHY_INIT4 0x0200
538 #define PHY_INIT5 0x0004
539 #define PHY_INIT6 0x02000
540 #define PHY_GIGABIT 0x0100
541
542 #define PHY_TIMEOUT 0x1
543 #define PHY_ERROR 0x2
544
545 #define PHY_100 0x1
546 #define PHY_1000 0x2
547 #define PHY_HALF 0x100
548
549 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
550 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
551 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
552 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
553 #define NV_PAUSEFRAME_RX_REQ 0x0010
554 #define NV_PAUSEFRAME_TX_REQ 0x0020
555 #define NV_PAUSEFRAME_AUTONEG 0x0040
556
557 /* MSI/MSI-X defines */
558 #define NV_MSI_X_MAX_VECTORS 8
559 #define NV_MSI_X_VECTORS_MASK 0x000f
560 #define NV_MSI_CAPABLE 0x0010
561 #define NV_MSI_X_CAPABLE 0x0020
562 #define NV_MSI_ENABLED 0x0040
563 #define NV_MSI_X_ENABLED 0x0080
564
565 #define NV_MSI_X_VECTOR_ALL 0x0
566 #define NV_MSI_X_VECTOR_RX 0x0
567 #define NV_MSI_X_VECTOR_TX 0x1
568 #define NV_MSI_X_VECTOR_OTHER 0x2
569
570 /* statistics */
571 struct nv_ethtool_str {
572 char name[ETH_GSTRING_LEN];
573 };
574
575 static const struct nv_ethtool_str nv_estats_str[] = {
576 { "tx_bytes" },
577 { "tx_zero_rexmt" },
578 { "tx_one_rexmt" },
579 { "tx_many_rexmt" },
580 { "tx_late_collision" },
581 { "tx_fifo_errors" },
582 { "tx_carrier_errors" },
583 { "tx_excess_deferral" },
584 { "tx_retry_error" },
585 { "tx_deferral" },
586 { "tx_packets" },
587 { "tx_pause" },
588 { "rx_frame_error" },
589 { "rx_extra_byte" },
590 { "rx_late_collision" },
591 { "rx_runt" },
592 { "rx_frame_too_long" },
593 { "rx_over_errors" },
594 { "rx_crc_errors" },
595 { "rx_frame_align_error" },
596 { "rx_length_error" },
597 { "rx_unicast" },
598 { "rx_multicast" },
599 { "rx_broadcast" },
600 { "rx_bytes" },
601 { "rx_pause" },
602 { "rx_drop_frame" },
603 { "rx_packets" },
604 { "rx_errors_total" }
605 };
606
607 struct nv_ethtool_stats {
608 u64 tx_bytes;
609 u64 tx_zero_rexmt;
610 u64 tx_one_rexmt;
611 u64 tx_many_rexmt;
612 u64 tx_late_collision;
613 u64 tx_fifo_errors;
614 u64 tx_carrier_errors;
615 u64 tx_excess_deferral;
616 u64 tx_retry_error;
617 u64 tx_deferral;
618 u64 tx_packets;
619 u64 tx_pause;
620 u64 rx_frame_error;
621 u64 rx_extra_byte;
622 u64 rx_late_collision;
623 u64 rx_runt;
624 u64 rx_frame_too_long;
625 u64 rx_over_errors;
626 u64 rx_crc_errors;
627 u64 rx_frame_align_error;
628 u64 rx_length_error;
629 u64 rx_unicast;
630 u64 rx_multicast;
631 u64 rx_broadcast;
632 u64 rx_bytes;
633 u64 rx_pause;
634 u64 rx_drop_frame;
635 u64 rx_packets;
636 u64 rx_errors_total;
637 };
638
639 /* diagnostics */
640 #define NV_TEST_COUNT_BASE 3
641 #define NV_TEST_COUNT_EXTENDED 4
642
643 static const struct nv_ethtool_str nv_etests_str[] = {
644 { "link (online/offline)" },
645 { "register (offline) " },
646 { "interrupt (offline) " },
647 { "loopback (offline) " }
648 };
649
650 struct register_test {
651 u32 reg;
652 u32 mask;
653 };
654
655 static const struct register_test nv_registers_test[] = {
656 { NvRegUnknownSetupReg6, 0x01 },
657 { NvRegMisc1, 0x03c },
658 { NvRegOffloadConfig, 0x03ff },
659 { NvRegMulticastAddrA, 0xffffffff },
660 { NvRegUnknownSetupReg3, 0x0ff },
661 { NvRegWakeUpFlags, 0x07777 },
662 { 0,0 }
663 };
664
665 /*
666 * SMP locking:
667 * All hardware access under dev->priv->lock, except the performance
668 * critical parts:
669 * - rx is (pseudo-) lockless: it relies on the single-threading provided
670 * by the arch code for interrupts.
671 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
672 * needs dev->priv->lock :-(
673 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
674 */
675
676 /* in dev: base, irq */
677 struct fe_priv {
678 spinlock_t lock;
679
680 /* General data:
681 * Locking: spin_lock(&np->lock); */
682 struct net_device_stats stats;
683 struct nv_ethtool_stats estats;
684 int in_shutdown;
685 u32 linkspeed;
686 int duplex;
687 int autoneg;
688 int fixed_mode;
689 int phyaddr;
690 int wolenabled;
691 unsigned int phy_oui;
692 u16 gigabit;
693 int intr_test;
694
695 /* General data: RO fields */
696 dma_addr_t ring_addr;
697 struct pci_dev *pci_dev;
698 u32 orig_mac[2];
699 u32 irqmask;
700 u32 desc_ver;
701 u32 txrxctl_bits;
702 u32 vlanctl_bits;
703 u32 driver_data;
704 u32 register_size;
705
706 void __iomem *base;
707
708 /* rx specific fields.
709 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
710 */
711 ring_type rx_ring;
712 unsigned int cur_rx, refill_rx;
713 struct sk_buff **rx_skbuff;
714 dma_addr_t *rx_dma;
715 unsigned int rx_buf_sz;
716 unsigned int pkt_limit;
717 struct timer_list oom_kick;
718 struct timer_list nic_poll;
719 struct timer_list stats_poll;
720 u32 nic_poll_irq;
721 int rx_ring_size;
722
723 /* media detection workaround.
724 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
725 */
726 int need_linktimer;
727 unsigned long link_timeout;
728 /*
729 * tx specific fields.
730 */
731 ring_type tx_ring;
732 unsigned int next_tx, nic_tx;
733 struct sk_buff **tx_skbuff;
734 dma_addr_t *tx_dma;
735 unsigned int *tx_dma_len;
736 u32 tx_flags;
737 int tx_ring_size;
738 int tx_limit_start;
739 int tx_limit_stop;
740
741 /* vlan fields */
742 struct vlan_group *vlangrp;
743
744 /* msi/msi-x fields */
745 u32 msi_flags;
746 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
747
748 /* flow control */
749 u32 pause_flags;
750 };
751
752 /*
753 * Maximum number of loops until we assume that a bit in the irq mask
754 * is stuck. Overridable with module param.
755 */
756 static int max_interrupt_work = 5;
757
758 /*
759 * Optimization can be either throuput mode or cpu mode
760 *
761 * Throughput Mode: Every tx and rx packet will generate an interrupt.
762 * CPU Mode: Interrupts are controlled by a timer.
763 */
764 enum {
765 NV_OPTIMIZATION_MODE_THROUGHPUT,
766 NV_OPTIMIZATION_MODE_CPU
767 };
768 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
769
770 /*
771 * Poll interval for timer irq
772 *
773 * This interval determines how frequent an interrupt is generated.
774 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
775 * Min = 0, and Max = 65535
776 */
777 static int poll_interval = -1;
778
779 /*
780 * MSI interrupts
781 */
782 enum {
783 NV_MSI_INT_DISABLED,
784 NV_MSI_INT_ENABLED
785 };
786 static int msi = NV_MSI_INT_ENABLED;
787
788 /*
789 * MSIX interrupts
790 */
791 enum {
792 NV_MSIX_INT_DISABLED,
793 NV_MSIX_INT_ENABLED
794 };
795 static int msix = NV_MSIX_INT_ENABLED;
796
797 /*
798 * DMA 64bit
799 */
800 enum {
801 NV_DMA_64BIT_DISABLED,
802 NV_DMA_64BIT_ENABLED
803 };
804 static int dma_64bit = NV_DMA_64BIT_ENABLED;
805
806 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
807 {
808 return netdev_priv(dev);
809 }
810
811 static inline u8 __iomem *get_hwbase(struct net_device *dev)
812 {
813 return ((struct fe_priv *)netdev_priv(dev))->base;
814 }
815
816 static inline void pci_push(u8 __iomem *base)
817 {
818 /* force out pending posted writes */
819 readl(base);
820 }
821
822 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
823 {
824 return le32_to_cpu(prd->FlagLen)
825 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
826 }
827
828 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
829 {
830 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
831 }
832
833 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
834 int delay, int delaymax, const char *msg)
835 {
836 u8 __iomem *base = get_hwbase(dev);
837
838 pci_push(base);
839 do {
840 udelay(delay);
841 delaymax -= delay;
842 if (delaymax < 0) {
843 if (msg)
844 printk(msg);
845 return 1;
846 }
847 } while ((readl(base + offset) & mask) != target);
848 return 0;
849 }
850
851 #define NV_SETUP_RX_RING 0x01
852 #define NV_SETUP_TX_RING 0x02
853
854 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
855 {
856 struct fe_priv *np = get_nvpriv(dev);
857 u8 __iomem *base = get_hwbase(dev);
858
859 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
860 if (rxtx_flags & NV_SETUP_RX_RING) {
861 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
862 }
863 if (rxtx_flags & NV_SETUP_TX_RING) {
864 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
865 }
866 } else {
867 if (rxtx_flags & NV_SETUP_RX_RING) {
868 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
869 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
870 }
871 if (rxtx_flags & NV_SETUP_TX_RING) {
872 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
873 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
874 }
875 }
876 }
877
878 static void free_rings(struct net_device *dev)
879 {
880 struct fe_priv *np = get_nvpriv(dev);
881
882 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
883 if(np->rx_ring.orig)
884 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
885 np->rx_ring.orig, np->ring_addr);
886 } else {
887 if (np->rx_ring.ex)
888 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
889 np->rx_ring.ex, np->ring_addr);
890 }
891 if (np->rx_skbuff)
892 kfree(np->rx_skbuff);
893 if (np->rx_dma)
894 kfree(np->rx_dma);
895 if (np->tx_skbuff)
896 kfree(np->tx_skbuff);
897 if (np->tx_dma)
898 kfree(np->tx_dma);
899 if (np->tx_dma_len)
900 kfree(np->tx_dma_len);
901 }
902
903 static int using_multi_irqs(struct net_device *dev)
904 {
905 struct fe_priv *np = get_nvpriv(dev);
906
907 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
908 ((np->msi_flags & NV_MSI_X_ENABLED) &&
909 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
910 return 0;
911 else
912 return 1;
913 }
914
915 static void nv_enable_irq(struct net_device *dev)
916 {
917 struct fe_priv *np = get_nvpriv(dev);
918
919 if (!using_multi_irqs(dev)) {
920 if (np->msi_flags & NV_MSI_X_ENABLED)
921 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
922 else
923 enable_irq(dev->irq);
924 } else {
925 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
926 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
927 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
928 }
929 }
930
931 static void nv_disable_irq(struct net_device *dev)
932 {
933 struct fe_priv *np = get_nvpriv(dev);
934
935 if (!using_multi_irqs(dev)) {
936 if (np->msi_flags & NV_MSI_X_ENABLED)
937 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
938 else
939 disable_irq(dev->irq);
940 } else {
941 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
942 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
943 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
944 }
945 }
946
947 /* In MSIX mode, a write to irqmask behaves as XOR */
948 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
949 {
950 u8 __iomem *base = get_hwbase(dev);
951
952 writel(mask, base + NvRegIrqMask);
953 }
954
955 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
956 {
957 struct fe_priv *np = get_nvpriv(dev);
958 u8 __iomem *base = get_hwbase(dev);
959
960 if (np->msi_flags & NV_MSI_X_ENABLED) {
961 writel(mask, base + NvRegIrqMask);
962 } else {
963 if (np->msi_flags & NV_MSI_ENABLED)
964 writel(0, base + NvRegMSIIrqMask);
965 writel(0, base + NvRegIrqMask);
966 }
967 }
968
969 #define MII_READ (-1)
970 /* mii_rw: read/write a register on the PHY.
971 *
972 * Caller must guarantee serialization
973 */
974 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
975 {
976 u8 __iomem *base = get_hwbase(dev);
977 u32 reg;
978 int retval;
979
980 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
981
982 reg = readl(base + NvRegMIIControl);
983 if (reg & NVREG_MIICTL_INUSE) {
984 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
985 udelay(NV_MIIBUSY_DELAY);
986 }
987
988 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
989 if (value != MII_READ) {
990 writel(value, base + NvRegMIIData);
991 reg |= NVREG_MIICTL_WRITE;
992 }
993 writel(reg, base + NvRegMIIControl);
994
995 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
996 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
997 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
998 dev->name, miireg, addr);
999 retval = -1;
1000 } else if (value != MII_READ) {
1001 /* it was a write operation - fewer failures are detectable */
1002 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1003 dev->name, value, miireg, addr);
1004 retval = 0;
1005 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1006 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1007 dev->name, miireg, addr);
1008 retval = -1;
1009 } else {
1010 retval = readl(base + NvRegMIIData);
1011 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1012 dev->name, miireg, addr, retval);
1013 }
1014
1015 return retval;
1016 }
1017
1018 static int phy_reset(struct net_device *dev)
1019 {
1020 struct fe_priv *np = netdev_priv(dev);
1021 u32 miicontrol;
1022 unsigned int tries = 0;
1023
1024 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1025 miicontrol |= BMCR_RESET;
1026 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1027 return -1;
1028 }
1029
1030 /* wait for 500ms */
1031 msleep(500);
1032
1033 /* must wait till reset is deasserted */
1034 while (miicontrol & BMCR_RESET) {
1035 msleep(10);
1036 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1037 /* FIXME: 100 tries seem excessive */
1038 if (tries++ > 100)
1039 return -1;
1040 }
1041 return 0;
1042 }
1043
1044 static int phy_init(struct net_device *dev)
1045 {
1046 struct fe_priv *np = get_nvpriv(dev);
1047 u8 __iomem *base = get_hwbase(dev);
1048 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1049
1050 /* set advertise register */
1051 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1052 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1053 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1054 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1055 return PHY_ERROR;
1056 }
1057
1058 /* get phy interface type */
1059 phyinterface = readl(base + NvRegPhyInterface);
1060
1061 /* see if gigabit phy */
1062 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1063 if (mii_status & PHY_GIGABIT) {
1064 np->gigabit = PHY_GIGABIT;
1065 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1066 mii_control_1000 &= ~ADVERTISE_1000HALF;
1067 if (phyinterface & PHY_RGMII)
1068 mii_control_1000 |= ADVERTISE_1000FULL;
1069 else
1070 mii_control_1000 &= ~ADVERTISE_1000FULL;
1071
1072 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1073 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1074 return PHY_ERROR;
1075 }
1076 }
1077 else
1078 np->gigabit = 0;
1079
1080 /* reset the phy */
1081 if (phy_reset(dev)) {
1082 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1083 return PHY_ERROR;
1084 }
1085
1086 /* phy vendor specific configuration */
1087 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1088 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1089 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1090 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1091 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1092 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1093 return PHY_ERROR;
1094 }
1095 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1096 phy_reserved |= PHY_INIT5;
1097 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1098 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1099 return PHY_ERROR;
1100 }
1101 }
1102 if (np->phy_oui == PHY_OUI_CICADA) {
1103 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1104 phy_reserved |= PHY_INIT6;
1105 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1106 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1107 return PHY_ERROR;
1108 }
1109 }
1110 /* some phys clear out pause advertisment on reset, set it back */
1111 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1112
1113 /* restart auto negotiation */
1114 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1115 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1116 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1117 return PHY_ERROR;
1118 }
1119
1120 return 0;
1121 }
1122
1123 static void nv_start_rx(struct net_device *dev)
1124 {
1125 struct fe_priv *np = netdev_priv(dev);
1126 u8 __iomem *base = get_hwbase(dev);
1127
1128 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1129 /* Already running? Stop it. */
1130 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1131 writel(0, base + NvRegReceiverControl);
1132 pci_push(base);
1133 }
1134 writel(np->linkspeed, base + NvRegLinkSpeed);
1135 pci_push(base);
1136 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1137 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1138 dev->name, np->duplex, np->linkspeed);
1139 pci_push(base);
1140 }
1141
1142 static void nv_stop_rx(struct net_device *dev)
1143 {
1144 u8 __iomem *base = get_hwbase(dev);
1145
1146 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1147 writel(0, base + NvRegReceiverControl);
1148 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1149 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1150 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1151
1152 udelay(NV_RXSTOP_DELAY2);
1153 writel(0, base + NvRegLinkSpeed);
1154 }
1155
1156 static void nv_start_tx(struct net_device *dev)
1157 {
1158 u8 __iomem *base = get_hwbase(dev);
1159
1160 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1161 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1162 pci_push(base);
1163 }
1164
1165 static void nv_stop_tx(struct net_device *dev)
1166 {
1167 u8 __iomem *base = get_hwbase(dev);
1168
1169 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1170 writel(0, base + NvRegTransmitterControl);
1171 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1172 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1173 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1174
1175 udelay(NV_TXSTOP_DELAY2);
1176 writel(0, base + NvRegUnknownTransmitterReg);
1177 }
1178
1179 static void nv_txrx_reset(struct net_device *dev)
1180 {
1181 struct fe_priv *np = netdev_priv(dev);
1182 u8 __iomem *base = get_hwbase(dev);
1183
1184 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1185 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1186 pci_push(base);
1187 udelay(NV_TXRX_RESET_DELAY);
1188 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1189 pci_push(base);
1190 }
1191
1192 static void nv_mac_reset(struct net_device *dev)
1193 {
1194 struct fe_priv *np = netdev_priv(dev);
1195 u8 __iomem *base = get_hwbase(dev);
1196
1197 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1198 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1199 pci_push(base);
1200 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1201 pci_push(base);
1202 udelay(NV_MAC_RESET_DELAY);
1203 writel(0, base + NvRegMacReset);
1204 pci_push(base);
1205 udelay(NV_MAC_RESET_DELAY);
1206 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1207 pci_push(base);
1208 }
1209
1210 /*
1211 * nv_get_stats: dev->get_stats function
1212 * Get latest stats value from the nic.
1213 * Called with read_lock(&dev_base_lock) held for read -
1214 * only synchronized against unregister_netdevice.
1215 */
1216 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1217 {
1218 struct fe_priv *np = netdev_priv(dev);
1219
1220 /* It seems that the nic always generates interrupts and doesn't
1221 * accumulate errors internally. Thus the current values in np->stats
1222 * are already up to date.
1223 */
1224 return &np->stats;
1225 }
1226
1227 /*
1228 * nv_alloc_rx: fill rx ring entries.
1229 * Return 1 if the allocations for the skbs failed and the
1230 * rx engine is without Available descriptors
1231 */
1232 static int nv_alloc_rx(struct net_device *dev)
1233 {
1234 struct fe_priv *np = netdev_priv(dev);
1235 unsigned int refill_rx = np->refill_rx;
1236 int nr;
1237
1238 while (np->cur_rx != refill_rx) {
1239 struct sk_buff *skb;
1240
1241 nr = refill_rx % np->rx_ring_size;
1242 if (np->rx_skbuff[nr] == NULL) {
1243
1244 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1245 if (!skb)
1246 break;
1247
1248 skb->dev = dev;
1249 np->rx_skbuff[nr] = skb;
1250 } else {
1251 skb = np->rx_skbuff[nr];
1252 }
1253 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1254 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1255 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1256 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1257 wmb();
1258 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1259 } else {
1260 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1261 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1262 wmb();
1263 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1264 }
1265 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1266 dev->name, refill_rx);
1267 refill_rx++;
1268 }
1269 np->refill_rx = refill_rx;
1270 if (np->cur_rx - refill_rx == np->rx_ring_size)
1271 return 1;
1272 return 0;
1273 }
1274
1275 static void nv_do_rx_refill(unsigned long data)
1276 {
1277 struct net_device *dev = (struct net_device *) data;
1278 struct fe_priv *np = netdev_priv(dev);
1279
1280 if (!using_multi_irqs(dev)) {
1281 if (np->msi_flags & NV_MSI_X_ENABLED)
1282 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1283 else
1284 disable_irq(dev->irq);
1285 } else {
1286 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1287 }
1288 if (nv_alloc_rx(dev)) {
1289 spin_lock_irq(&np->lock);
1290 if (!np->in_shutdown)
1291 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1292 spin_unlock_irq(&np->lock);
1293 }
1294 if (!using_multi_irqs(dev)) {
1295 if (np->msi_flags & NV_MSI_X_ENABLED)
1296 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1297 else
1298 enable_irq(dev->irq);
1299 } else {
1300 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1301 }
1302 }
1303
1304 static void nv_init_rx(struct net_device *dev)
1305 {
1306 struct fe_priv *np = netdev_priv(dev);
1307 int i;
1308
1309 np->cur_rx = np->rx_ring_size;
1310 np->refill_rx = 0;
1311 for (i = 0; i < np->rx_ring_size; i++)
1312 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1313 np->rx_ring.orig[i].FlagLen = 0;
1314 else
1315 np->rx_ring.ex[i].FlagLen = 0;
1316 }
1317
1318 static void nv_init_tx(struct net_device *dev)
1319 {
1320 struct fe_priv *np = netdev_priv(dev);
1321 int i;
1322
1323 np->next_tx = np->nic_tx = 0;
1324 for (i = 0; i < np->tx_ring_size; i++) {
1325 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1326 np->tx_ring.orig[i].FlagLen = 0;
1327 else
1328 np->tx_ring.ex[i].FlagLen = 0;
1329 np->tx_skbuff[i] = NULL;
1330 np->tx_dma[i] = 0;
1331 }
1332 }
1333
1334 static int nv_init_ring(struct net_device *dev)
1335 {
1336 nv_init_tx(dev);
1337 nv_init_rx(dev);
1338 return nv_alloc_rx(dev);
1339 }
1340
1341 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1342 {
1343 struct fe_priv *np = netdev_priv(dev);
1344
1345 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1346 dev->name, skbnr);
1347
1348 if (np->tx_dma[skbnr]) {
1349 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1350 np->tx_dma_len[skbnr],
1351 PCI_DMA_TODEVICE);
1352 np->tx_dma[skbnr] = 0;
1353 }
1354
1355 if (np->tx_skbuff[skbnr]) {
1356 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1357 np->tx_skbuff[skbnr] = NULL;
1358 return 1;
1359 } else {
1360 return 0;
1361 }
1362 }
1363
1364 static void nv_drain_tx(struct net_device *dev)
1365 {
1366 struct fe_priv *np = netdev_priv(dev);
1367 unsigned int i;
1368
1369 for (i = 0; i < np->tx_ring_size; i++) {
1370 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1371 np->tx_ring.orig[i].FlagLen = 0;
1372 else
1373 np->tx_ring.ex[i].FlagLen = 0;
1374 if (nv_release_txskb(dev, i))
1375 np->stats.tx_dropped++;
1376 }
1377 }
1378
1379 static void nv_drain_rx(struct net_device *dev)
1380 {
1381 struct fe_priv *np = netdev_priv(dev);
1382 int i;
1383 for (i = 0; i < np->rx_ring_size; i++) {
1384 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1385 np->rx_ring.orig[i].FlagLen = 0;
1386 else
1387 np->rx_ring.ex[i].FlagLen = 0;
1388 wmb();
1389 if (np->rx_skbuff[i]) {
1390 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1391 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1392 PCI_DMA_FROMDEVICE);
1393 dev_kfree_skb(np->rx_skbuff[i]);
1394 np->rx_skbuff[i] = NULL;
1395 }
1396 }
1397 }
1398
1399 static void drain_ring(struct net_device *dev)
1400 {
1401 nv_drain_tx(dev);
1402 nv_drain_rx(dev);
1403 }
1404
1405 /*
1406 * nv_start_xmit: dev->hard_start_xmit function
1407 * Called with dev->xmit_lock held.
1408 */
1409 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1410 {
1411 struct fe_priv *np = netdev_priv(dev);
1412 u32 tx_flags = 0;
1413 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1414 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1415 unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1416 unsigned int start_nr = np->next_tx % np->tx_ring_size;
1417 unsigned int i;
1418 u32 offset = 0;
1419 u32 bcnt;
1420 u32 size = skb->len-skb->data_len;
1421 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1422 u32 tx_flags_vlan = 0;
1423
1424 /* add fragments to entries count */
1425 for (i = 0; i < fragments; i++) {
1426 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1427 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1428 }
1429
1430 spin_lock_irq(&np->lock);
1431
1432 if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1433 spin_unlock_irq(&np->lock);
1434 netif_stop_queue(dev);
1435 return NETDEV_TX_BUSY;
1436 }
1437
1438 /* setup the header buffer */
1439 do {
1440 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1441 nr = (nr + 1) % np->tx_ring_size;
1442
1443 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1444 PCI_DMA_TODEVICE);
1445 np->tx_dma_len[nr] = bcnt;
1446
1447 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1448 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1449 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1450 } else {
1451 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1452 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1453 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1454 }
1455 tx_flags = np->tx_flags;
1456 offset += bcnt;
1457 size -= bcnt;
1458 } while(size);
1459
1460 /* setup the fragments */
1461 for (i = 0; i < fragments; i++) {
1462 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1463 u32 size = frag->size;
1464 offset = 0;
1465
1466 do {
1467 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1468 nr = (nr + 1) % np->tx_ring_size;
1469
1470 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1471 PCI_DMA_TODEVICE);
1472 np->tx_dma_len[nr] = bcnt;
1473
1474 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1475 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1476 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1477 } else {
1478 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1479 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1480 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1481 }
1482 offset += bcnt;
1483 size -= bcnt;
1484 } while (size);
1485 }
1486
1487 /* set last fragment flag */
1488 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1489 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1490 } else {
1491 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1492 }
1493
1494 np->tx_skbuff[nr] = skb;
1495
1496 #ifdef NETIF_F_TSO
1497 if (skb_shinfo(skb)->tso_size)
1498 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1499 else
1500 #endif
1501 tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1502
1503 /* vlan tag */
1504 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1505 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1506 }
1507
1508 /* set tx flags */
1509 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1510 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1511 } else {
1512 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1513 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1514 }
1515
1516 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1517 dev->name, np->next_tx, entries, tx_flags_extra);
1518 {
1519 int j;
1520 for (j=0; j<64; j++) {
1521 if ((j%16) == 0)
1522 dprintk("\n%03x:", j);
1523 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1524 }
1525 dprintk("\n");
1526 }
1527
1528 np->next_tx += entries;
1529
1530 dev->trans_start = jiffies;
1531 spin_unlock_irq(&np->lock);
1532 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1533 pci_push(get_hwbase(dev));
1534 return NETDEV_TX_OK;
1535 }
1536
1537 /*
1538 * nv_tx_done: check for completed packets, release the skbs.
1539 *
1540 * Caller must own np->lock.
1541 */
1542 static void nv_tx_done(struct net_device *dev)
1543 {
1544 struct fe_priv *np = netdev_priv(dev);
1545 u32 Flags;
1546 unsigned int i;
1547 struct sk_buff *skb;
1548
1549 while (np->nic_tx != np->next_tx) {
1550 i = np->nic_tx % np->tx_ring_size;
1551
1552 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1553 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1554 else
1555 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1556
1557 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1558 dev->name, np->nic_tx, Flags);
1559 if (Flags & NV_TX_VALID)
1560 break;
1561 if (np->desc_ver == DESC_VER_1) {
1562 if (Flags & NV_TX_LASTPACKET) {
1563 skb = np->tx_skbuff[i];
1564 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1565 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1566 if (Flags & NV_TX_UNDERFLOW)
1567 np->stats.tx_fifo_errors++;
1568 if (Flags & NV_TX_CARRIERLOST)
1569 np->stats.tx_carrier_errors++;
1570 np->stats.tx_errors++;
1571 } else {
1572 np->stats.tx_packets++;
1573 np->stats.tx_bytes += skb->len;
1574 }
1575 }
1576 } else {
1577 if (Flags & NV_TX2_LASTPACKET) {
1578 skb = np->tx_skbuff[i];
1579 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1580 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1581 if (Flags & NV_TX2_UNDERFLOW)
1582 np->stats.tx_fifo_errors++;
1583 if (Flags & NV_TX2_CARRIERLOST)
1584 np->stats.tx_carrier_errors++;
1585 np->stats.tx_errors++;
1586 } else {
1587 np->stats.tx_packets++;
1588 np->stats.tx_bytes += skb->len;
1589 }
1590 }
1591 }
1592 nv_release_txskb(dev, i);
1593 np->nic_tx++;
1594 }
1595 if (np->next_tx - np->nic_tx < np->tx_limit_start)
1596 netif_wake_queue(dev);
1597 }
1598
1599 /*
1600 * nv_tx_timeout: dev->tx_timeout function
1601 * Called with dev->xmit_lock held.
1602 */
1603 static void nv_tx_timeout(struct net_device *dev)
1604 {
1605 struct fe_priv *np = netdev_priv(dev);
1606 u8 __iomem *base = get_hwbase(dev);
1607 u32 status;
1608
1609 if (np->msi_flags & NV_MSI_X_ENABLED)
1610 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1611 else
1612 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1613
1614 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1615
1616 {
1617 int i;
1618
1619 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1620 dev->name, (unsigned long)np->ring_addr,
1621 np->next_tx, np->nic_tx);
1622 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1623 for (i=0;i<=np->register_size;i+= 32) {
1624 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1625 i,
1626 readl(base + i + 0), readl(base + i + 4),
1627 readl(base + i + 8), readl(base + i + 12),
1628 readl(base + i + 16), readl(base + i + 20),
1629 readl(base + i + 24), readl(base + i + 28));
1630 }
1631 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1632 for (i=0;i<np->tx_ring_size;i+= 4) {
1633 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1634 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1635 i,
1636 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1637 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1638 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1639 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1640 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1641 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1642 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1643 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1644 } else {
1645 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1646 i,
1647 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1648 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1649 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1650 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1651 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1652 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1653 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1654 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1655 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1656 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1657 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1658 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1659 }
1660 }
1661 }
1662
1663 spin_lock_irq(&np->lock);
1664
1665 /* 1) stop tx engine */
1666 nv_stop_tx(dev);
1667
1668 /* 2) check that the packets were not sent already: */
1669 nv_tx_done(dev);
1670
1671 /* 3) if there are dead entries: clear everything */
1672 if (np->next_tx != np->nic_tx) {
1673 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1674 nv_drain_tx(dev);
1675 np->next_tx = np->nic_tx = 0;
1676 setup_hw_rings(dev, NV_SETUP_TX_RING);
1677 netif_wake_queue(dev);
1678 }
1679
1680 /* 4) restart tx engine */
1681 nv_start_tx(dev);
1682 spin_unlock_irq(&np->lock);
1683 }
1684
1685 /*
1686 * Called when the nic notices a mismatch between the actual data len on the
1687 * wire and the len indicated in the 802 header
1688 */
1689 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1690 {
1691 int hdrlen; /* length of the 802 header */
1692 int protolen; /* length as stored in the proto field */
1693
1694 /* 1) calculate len according to header */
1695 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1696 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1697 hdrlen = VLAN_HLEN;
1698 } else {
1699 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1700 hdrlen = ETH_HLEN;
1701 }
1702 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1703 dev->name, datalen, protolen, hdrlen);
1704 if (protolen > ETH_DATA_LEN)
1705 return datalen; /* Value in proto field not a len, no checks possible */
1706
1707 protolen += hdrlen;
1708 /* consistency checks: */
1709 if (datalen > ETH_ZLEN) {
1710 if (datalen >= protolen) {
1711 /* more data on wire than in 802 header, trim of
1712 * additional data.
1713 */
1714 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1715 dev->name, protolen);
1716 return protolen;
1717 } else {
1718 /* less data on wire than mentioned in header.
1719 * Discard the packet.
1720 */
1721 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1722 dev->name);
1723 return -1;
1724 }
1725 } else {
1726 /* short packet. Accept only if 802 values are also short */
1727 if (protolen > ETH_ZLEN) {
1728 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1729 dev->name);
1730 return -1;
1731 }
1732 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1733 dev->name, datalen);
1734 return datalen;
1735 }
1736 }
1737
1738 static void nv_rx_process(struct net_device *dev)
1739 {
1740 struct fe_priv *np = netdev_priv(dev);
1741 u32 Flags;
1742 u32 vlanflags = 0;
1743
1744 for (;;) {
1745 struct sk_buff *skb;
1746 int len;
1747 int i;
1748 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1749 break; /* we scanned the whole ring - do not continue */
1750
1751 i = np->cur_rx % np->rx_ring_size;
1752 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1753 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1754 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1755 } else {
1756 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1757 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1758 vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1759 }
1760
1761 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1762 dev->name, np->cur_rx, Flags);
1763
1764 if (Flags & NV_RX_AVAIL)
1765 break; /* still owned by hardware, */
1766
1767 /*
1768 * the packet is for us - immediately tear down the pci mapping.
1769 * TODO: check if a prefetch of the first cacheline improves
1770 * the performance.
1771 */
1772 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1773 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1774 PCI_DMA_FROMDEVICE);
1775
1776 {
1777 int j;
1778 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1779 for (j=0; j<64; j++) {
1780 if ((j%16) == 0)
1781 dprintk("\n%03x:", j);
1782 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1783 }
1784 dprintk("\n");
1785 }
1786 /* look at what we actually got: */
1787 if (np->desc_ver == DESC_VER_1) {
1788 if (!(Flags & NV_RX_DESCRIPTORVALID))
1789 goto next_pkt;
1790
1791 if (Flags & NV_RX_ERROR) {
1792 if (Flags & NV_RX_MISSEDFRAME) {
1793 np->stats.rx_missed_errors++;
1794 np->stats.rx_errors++;
1795 goto next_pkt;
1796 }
1797 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1798 np->stats.rx_errors++;
1799 goto next_pkt;
1800 }
1801 if (Flags & NV_RX_CRCERR) {
1802 np->stats.rx_crc_errors++;
1803 np->stats.rx_errors++;
1804 goto next_pkt;
1805 }
1806 if (Flags & NV_RX_OVERFLOW) {
1807 np->stats.rx_over_errors++;
1808 np->stats.rx_errors++;
1809 goto next_pkt;
1810 }
1811 if (Flags & NV_RX_ERROR4) {
1812 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1813 if (len < 0) {
1814 np->stats.rx_errors++;
1815 goto next_pkt;
1816 }
1817 }
1818 /* framing errors are soft errors. */
1819 if (Flags & NV_RX_FRAMINGERR) {
1820 if (Flags & NV_RX_SUBSTRACT1) {
1821 len--;
1822 }
1823 }
1824 }
1825 } else {
1826 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1827 goto next_pkt;
1828
1829 if (Flags & NV_RX2_ERROR) {
1830 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1831 np->stats.rx_errors++;
1832 goto next_pkt;
1833 }
1834 if (Flags & NV_RX2_CRCERR) {
1835 np->stats.rx_crc_errors++;
1836 np->stats.rx_errors++;
1837 goto next_pkt;
1838 }
1839 if (Flags & NV_RX2_OVERFLOW) {
1840 np->stats.rx_over_errors++;
1841 np->stats.rx_errors++;
1842 goto next_pkt;
1843 }
1844 if (Flags & NV_RX2_ERROR4) {
1845 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1846 if (len < 0) {
1847 np->stats.rx_errors++;
1848 goto next_pkt;
1849 }
1850 }
1851 /* framing errors are soft errors */
1852 if (Flags & NV_RX2_FRAMINGERR) {
1853 if (Flags & NV_RX2_SUBSTRACT1) {
1854 len--;
1855 }
1856 }
1857 }
1858 if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1859 Flags &= NV_RX2_CHECKSUMMASK;
1860 if (Flags == NV_RX2_CHECKSUMOK1 ||
1861 Flags == NV_RX2_CHECKSUMOK2 ||
1862 Flags == NV_RX2_CHECKSUMOK3) {
1863 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1864 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1865 } else {
1866 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1867 }
1868 }
1869 }
1870 /* got a valid packet - forward it to the network core */
1871 skb = np->rx_skbuff[i];
1872 np->rx_skbuff[i] = NULL;
1873
1874 skb_put(skb, len);
1875 skb->protocol = eth_type_trans(skb, dev);
1876 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1877 dev->name, np->cur_rx, len, skb->protocol);
1878 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1879 vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1880 } else {
1881 netif_rx(skb);
1882 }
1883 dev->last_rx = jiffies;
1884 np->stats.rx_packets++;
1885 np->stats.rx_bytes += len;
1886 next_pkt:
1887 np->cur_rx++;
1888 }
1889 }
1890
1891 static void set_bufsize(struct net_device *dev)
1892 {
1893 struct fe_priv *np = netdev_priv(dev);
1894
1895 if (dev->mtu <= ETH_DATA_LEN)
1896 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1897 else
1898 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1899 }
1900
1901 /*
1902 * nv_change_mtu: dev->change_mtu function
1903 * Called with dev_base_lock held for read.
1904 */
1905 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1906 {
1907 struct fe_priv *np = netdev_priv(dev);
1908 int old_mtu;
1909
1910 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1911 return -EINVAL;
1912
1913 old_mtu = dev->mtu;
1914 dev->mtu = new_mtu;
1915
1916 /* return early if the buffer sizes will not change */
1917 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1918 return 0;
1919 if (old_mtu == new_mtu)
1920 return 0;
1921
1922 /* synchronized against open : rtnl_lock() held by caller */
1923 if (netif_running(dev)) {
1924 u8 __iomem *base = get_hwbase(dev);
1925 /*
1926 * It seems that the nic preloads valid ring entries into an
1927 * internal buffer. The procedure for flushing everything is
1928 * guessed, there is probably a simpler approach.
1929 * Changing the MTU is a rare event, it shouldn't matter.
1930 */
1931 nv_disable_irq(dev);
1932 spin_lock_bh(&dev->xmit_lock);
1933 spin_lock(&np->lock);
1934 /* stop engines */
1935 nv_stop_rx(dev);
1936 nv_stop_tx(dev);
1937 nv_txrx_reset(dev);
1938 /* drain rx queue */
1939 nv_drain_rx(dev);
1940 nv_drain_tx(dev);
1941 /* reinit driver view of the rx queue */
1942 set_bufsize(dev);
1943 if (nv_init_ring(dev)) {
1944 if (!np->in_shutdown)
1945 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1946 }
1947 /* reinit nic view of the rx queue */
1948 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1949 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1950 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1951 base + NvRegRingSizes);
1952 pci_push(base);
1953 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1954 pci_push(base);
1955
1956 /* restart rx engine */
1957 nv_start_rx(dev);
1958 nv_start_tx(dev);
1959 spin_unlock(&np->lock);
1960 spin_unlock_bh(&dev->xmit_lock);
1961 nv_enable_irq(dev);
1962 }
1963 return 0;
1964 }
1965
1966 static void nv_copy_mac_to_hw(struct net_device *dev)
1967 {
1968 u8 __iomem *base = get_hwbase(dev);
1969 u32 mac[2];
1970
1971 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1972 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1973 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1974
1975 writel(mac[0], base + NvRegMacAddrA);
1976 writel(mac[1], base + NvRegMacAddrB);
1977 }
1978
1979 /*
1980 * nv_set_mac_address: dev->set_mac_address function
1981 * Called with rtnl_lock() held.
1982 */
1983 static int nv_set_mac_address(struct net_device *dev, void *addr)
1984 {
1985 struct fe_priv *np = netdev_priv(dev);
1986 struct sockaddr *macaddr = (struct sockaddr*)addr;
1987
1988 if(!is_valid_ether_addr(macaddr->sa_data))
1989 return -EADDRNOTAVAIL;
1990
1991 /* synchronized against open : rtnl_lock() held by caller */
1992 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1993
1994 if (netif_running(dev)) {
1995 spin_lock_bh(&dev->xmit_lock);
1996 spin_lock_irq(&np->lock);
1997
1998 /* stop rx engine */
1999 nv_stop_rx(dev);
2000
2001 /* set mac address */
2002 nv_copy_mac_to_hw(dev);
2003
2004 /* restart rx engine */
2005 nv_start_rx(dev);
2006 spin_unlock_irq(&np->lock);
2007 spin_unlock_bh(&dev->xmit_lock);
2008 } else {
2009 nv_copy_mac_to_hw(dev);
2010 }
2011 return 0;
2012 }
2013
2014 /*
2015 * nv_set_multicast: dev->set_multicast function
2016 * Called with dev->xmit_lock held.
2017 */
2018 static void nv_set_multicast(struct net_device *dev)
2019 {
2020 struct fe_priv *np = netdev_priv(dev);
2021 u8 __iomem *base = get_hwbase(dev);
2022 u32 addr[2];
2023 u32 mask[2];
2024 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2025
2026 memset(addr, 0, sizeof(addr));
2027 memset(mask, 0, sizeof(mask));
2028
2029 if (dev->flags & IFF_PROMISC) {
2030 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2031 pff |= NVREG_PFF_PROMISC;
2032 } else {
2033 pff |= NVREG_PFF_MYADDR;
2034
2035 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2036 u32 alwaysOff[2];
2037 u32 alwaysOn[2];
2038
2039 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2040 if (dev->flags & IFF_ALLMULTI) {
2041 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2042 } else {
2043 struct dev_mc_list *walk;
2044
2045 walk = dev->mc_list;
2046 while (walk != NULL) {
2047 u32 a, b;
2048 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2049 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2050 alwaysOn[0] &= a;
2051 alwaysOff[0] &= ~a;
2052 alwaysOn[1] &= b;
2053 alwaysOff[1] &= ~b;
2054 walk = walk->next;
2055 }
2056 }
2057 addr[0] = alwaysOn[0];
2058 addr[1] = alwaysOn[1];
2059 mask[0] = alwaysOn[0] | alwaysOff[0];
2060 mask[1] = alwaysOn[1] | alwaysOff[1];
2061 }
2062 }
2063 addr[0] |= NVREG_MCASTADDRA_FORCE;
2064 pff |= NVREG_PFF_ALWAYS;
2065 spin_lock_irq(&np->lock);
2066 nv_stop_rx(dev);
2067 writel(addr[0], base + NvRegMulticastAddrA);
2068 writel(addr[1], base + NvRegMulticastAddrB);
2069 writel(mask[0], base + NvRegMulticastMaskA);
2070 writel(mask[1], base + NvRegMulticastMaskB);
2071 writel(pff, base + NvRegPacketFilterFlags);
2072 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2073 dev->name);
2074 nv_start_rx(dev);
2075 spin_unlock_irq(&np->lock);
2076 }
2077
2078 void nv_update_pause(struct net_device *dev, u32 pause_flags)
2079 {
2080 struct fe_priv *np = netdev_priv(dev);
2081 u8 __iomem *base = get_hwbase(dev);
2082
2083 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2084
2085 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2086 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2087 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2088 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2089 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2090 } else {
2091 writel(pff, base + NvRegPacketFilterFlags);
2092 }
2093 }
2094 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2095 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2096 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2097 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2098 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2099 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2100 } else {
2101 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2102 writel(regmisc, base + NvRegMisc1);
2103 }
2104 }
2105 }
2106
2107 /**
2108 * nv_update_linkspeed: Setup the MAC according to the link partner
2109 * @dev: Network device to be configured
2110 *
2111 * The function queries the PHY and checks if there is a link partner.
2112 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2113 * set to 10 MBit HD.
2114 *
2115 * The function returns 0 if there is no link partner and 1 if there is
2116 * a good link partner.
2117 */
2118 static int nv_update_linkspeed(struct net_device *dev)
2119 {
2120 struct fe_priv *np = netdev_priv(dev);
2121 u8 __iomem *base = get_hwbase(dev);
2122 int adv = 0;
2123 int lpa = 0;
2124 int adv_lpa, adv_pause, lpa_pause;
2125 int newls = np->linkspeed;
2126 int newdup = np->duplex;
2127 int mii_status;
2128 int retval = 0;
2129 u32 control_1000, status_1000, phyreg, pause_flags;
2130
2131 /* BMSR_LSTATUS is latched, read it twice:
2132 * we want the current value.
2133 */
2134 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2135 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2136
2137 if (!(mii_status & BMSR_LSTATUS)) {
2138 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2139 dev->name);
2140 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2141 newdup = 0;
2142 retval = 0;
2143 goto set_speed;
2144 }
2145
2146 if (np->autoneg == 0) {
2147 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2148 dev->name, np->fixed_mode);
2149 if (np->fixed_mode & LPA_100FULL) {
2150 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2151 newdup = 1;
2152 } else if (np->fixed_mode & LPA_100HALF) {
2153 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2154 newdup = 0;
2155 } else if (np->fixed_mode & LPA_10FULL) {
2156 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2157 newdup = 1;
2158 } else {
2159 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2160 newdup = 0;
2161 }
2162 retval = 1;
2163 goto set_speed;
2164 }
2165 /* check auto negotiation is complete */
2166 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2167 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2168 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2169 newdup = 0;
2170 retval = 0;
2171 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2172 goto set_speed;
2173 }
2174
2175 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2176 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2177 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2178 dev->name, adv, lpa);
2179
2180 retval = 1;
2181 if (np->gigabit == PHY_GIGABIT) {
2182 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2183 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2184
2185 if ((control_1000 & ADVERTISE_1000FULL) &&
2186 (status_1000 & LPA_1000FULL)) {
2187 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2188 dev->name);
2189 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2190 newdup = 1;
2191 goto set_speed;
2192 }
2193 }
2194
2195 /* FIXME: handle parallel detection properly */
2196 adv_lpa = lpa & adv;
2197 if (adv_lpa & LPA_100FULL) {
2198 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2199 newdup = 1;
2200 } else if (adv_lpa & LPA_100HALF) {
2201 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2202 newdup = 0;
2203 } else if (adv_lpa & LPA_10FULL) {
2204 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2205 newdup = 1;
2206 } else if (adv_lpa & LPA_10HALF) {
2207 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2208 newdup = 0;
2209 } else {
2210 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2211 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2212 newdup = 0;
2213 }
2214
2215 set_speed:
2216 if (np->duplex == newdup && np->linkspeed == newls)
2217 return retval;
2218
2219 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2220 dev->name, np->linkspeed, np->duplex, newls, newdup);
2221
2222 np->duplex = newdup;
2223 np->linkspeed = newls;
2224
2225 if (np->gigabit == PHY_GIGABIT) {
2226 phyreg = readl(base + NvRegRandomSeed);
2227 phyreg &= ~(0x3FF00);
2228 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2229 phyreg |= NVREG_RNDSEED_FORCE3;
2230 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2231 phyreg |= NVREG_RNDSEED_FORCE2;
2232 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2233 phyreg |= NVREG_RNDSEED_FORCE;
2234 writel(phyreg, base + NvRegRandomSeed);
2235 }
2236
2237 phyreg = readl(base + NvRegPhyInterface);
2238 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2239 if (np->duplex == 0)
2240 phyreg |= PHY_HALF;
2241 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2242 phyreg |= PHY_100;
2243 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2244 phyreg |= PHY_1000;
2245 writel(phyreg, base + NvRegPhyInterface);
2246
2247 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2248 base + NvRegMisc1);
2249 pci_push(base);
2250 writel(np->linkspeed, base + NvRegLinkSpeed);
2251 pci_push(base);
2252
2253 pause_flags = 0;
2254 /* setup pause frame */
2255 if (np->duplex != 0) {
2256 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2257 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2258 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2259
2260 switch (adv_pause) {
2261 case (ADVERTISE_PAUSE_CAP):
2262 if (lpa_pause & LPA_PAUSE_CAP) {
2263 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2264 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2265 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2266 }
2267 break;
2268 case (ADVERTISE_PAUSE_ASYM):
2269 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2270 {
2271 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2272 }
2273 break;
2274 case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2275 if (lpa_pause & LPA_PAUSE_CAP)
2276 {
2277 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2278 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2279 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2280 }
2281 if (lpa_pause == LPA_PAUSE_ASYM)
2282 {
2283 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2284 }
2285 break;
2286 }
2287 } else {
2288 pause_flags = np->pause_flags;
2289 }
2290 }
2291 nv_update_pause(dev, pause_flags);
2292
2293 return retval;
2294 }
2295
2296 static void nv_linkchange(struct net_device *dev)
2297 {
2298 if (nv_update_linkspeed(dev)) {
2299 if (!netif_carrier_ok(dev)) {
2300 netif_carrier_on(dev);
2301 printk(KERN_INFO "%s: link up.\n", dev->name);
2302 nv_start_rx(dev);
2303 }
2304 } else {
2305 if (netif_carrier_ok(dev)) {
2306 netif_carrier_off(dev);
2307 printk(KERN_INFO "%s: link down.\n", dev->name);
2308 nv_stop_rx(dev);
2309 }
2310 }
2311 }
2312
2313 static void nv_link_irq(struct net_device *dev)
2314 {
2315 u8 __iomem *base = get_hwbase(dev);
2316 u32 miistat;
2317
2318 miistat = readl(base + NvRegMIIStatus);
2319 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2320 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2321
2322 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2323 nv_linkchange(dev);
2324 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2325 }
2326
2327 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2328 {
2329 struct net_device *dev = (struct net_device *) data;
2330 struct fe_priv *np = netdev_priv(dev);
2331 u8 __iomem *base = get_hwbase(dev);
2332 u32 events;
2333 int i;
2334
2335 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2336
2337 for (i=0; ; i++) {
2338 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2339 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2340 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2341 } else {
2342 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2343 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2344 }
2345 pci_push(base);
2346 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2347 if (!(events & np->irqmask))
2348 break;
2349
2350 spin_lock(&np->lock);
2351 nv_tx_done(dev);
2352 spin_unlock(&np->lock);
2353
2354 nv_rx_process(dev);
2355 if (nv_alloc_rx(dev)) {
2356 spin_lock(&np->lock);
2357 if (!np->in_shutdown)
2358 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2359 spin_unlock(&np->lock);
2360 }
2361
2362 if (events & NVREG_IRQ_LINK) {
2363 spin_lock(&np->lock);
2364 nv_link_irq(dev);
2365 spin_unlock(&np->lock);
2366 }
2367 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2368 spin_lock(&np->lock);
2369 nv_linkchange(dev);
2370 spin_unlock(&np->lock);
2371 np->link_timeout = jiffies + LINK_TIMEOUT;
2372 }
2373 if (events & (NVREG_IRQ_TX_ERR)) {
2374 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2375 dev->name, events);
2376 }
2377 if (events & (NVREG_IRQ_UNKNOWN)) {
2378 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2379 dev->name, events);
2380 }
2381 if (i > max_interrupt_work) {
2382 spin_lock(&np->lock);
2383 /* disable interrupts on the nic */
2384 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2385 writel(0, base + NvRegIrqMask);
2386 else
2387 writel(np->irqmask, base + NvRegIrqMask);
2388 pci_push(base);
2389
2390 if (!np->in_shutdown) {
2391 np->nic_poll_irq = np->irqmask;
2392 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2393 }
2394 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2395 spin_unlock(&np->lock);
2396 break;
2397 }
2398
2399 }
2400 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2401
2402 return IRQ_RETVAL(i);
2403 }
2404
2405 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2406 {
2407 struct net_device *dev = (struct net_device *) data;
2408 struct fe_priv *np = netdev_priv(dev);
2409 u8 __iomem *base = get_hwbase(dev);
2410 u32 events;
2411 int i;
2412
2413 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2414
2415 for (i=0; ; i++) {
2416 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2417 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2418 pci_push(base);
2419 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2420 if (!(events & np->irqmask))
2421 break;
2422
2423 spin_lock_irq(&np->lock);
2424 nv_tx_done(dev);
2425 spin_unlock_irq(&np->lock);
2426
2427 if (events & (NVREG_IRQ_TX_ERR)) {
2428 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2429 dev->name, events);
2430 }
2431 if (i > max_interrupt_work) {
2432 spin_lock_irq(&np->lock);
2433 /* disable interrupts on the nic */
2434 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2435 pci_push(base);
2436
2437 if (!np->in_shutdown) {
2438 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2439 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2440 }
2441 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2442 spin_unlock_irq(&np->lock);
2443 break;
2444 }
2445
2446 }
2447 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2448
2449 return IRQ_RETVAL(i);
2450 }
2451
2452 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2453 {
2454 struct net_device *dev = (struct net_device *) data;
2455 struct fe_priv *np = netdev_priv(dev);
2456 u8 __iomem *base = get_hwbase(dev);
2457 u32 events;
2458 int i;
2459
2460 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2461
2462 for (i=0; ; i++) {
2463 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2464 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2465 pci_push(base);
2466 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2467 if (!(events & np->irqmask))
2468 break;
2469
2470 nv_rx_process(dev);
2471 if (nv_alloc_rx(dev)) {
2472 spin_lock_irq(&np->lock);
2473 if (!np->in_shutdown)
2474 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2475 spin_unlock_irq(&np->lock);
2476 }
2477
2478 if (i > max_interrupt_work) {
2479 spin_lock_irq(&np->lock);
2480 /* disable interrupts on the nic */
2481 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2482 pci_push(base);
2483
2484 if (!np->in_shutdown) {
2485 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2486 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2487 }
2488 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2489 spin_unlock_irq(&np->lock);
2490 break;
2491 }
2492
2493 }
2494 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2495
2496 return IRQ_RETVAL(i);
2497 }
2498
2499 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2500 {
2501 struct net_device *dev = (struct net_device *) data;
2502 struct fe_priv *np = netdev_priv(dev);
2503 u8 __iomem *base = get_hwbase(dev);
2504 u32 events;
2505 int i;
2506
2507 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2508
2509 for (i=0; ; i++) {
2510 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2511 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2512 pci_push(base);
2513 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2514 if (!(events & np->irqmask))
2515 break;
2516
2517 if (events & NVREG_IRQ_LINK) {
2518 spin_lock_irq(&np->lock);
2519 nv_link_irq(dev);
2520 spin_unlock_irq(&np->lock);
2521 }
2522 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2523 spin_lock_irq(&np->lock);
2524 nv_linkchange(dev);
2525 spin_unlock_irq(&np->lock);
2526 np->link_timeout = jiffies + LINK_TIMEOUT;
2527 }
2528 if (events & (NVREG_IRQ_UNKNOWN)) {
2529 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2530 dev->name, events);
2531 }
2532 if (i > max_interrupt_work) {
2533 spin_lock_irq(&np->lock);
2534 /* disable interrupts on the nic */
2535 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2536 pci_push(base);
2537
2538 if (!np->in_shutdown) {
2539 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2540 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2541 }
2542 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2543 spin_unlock_irq(&np->lock);
2544 break;
2545 }
2546
2547 }
2548 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2549
2550 return IRQ_RETVAL(i);
2551 }
2552
2553 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2554 {
2555 struct net_device *dev = (struct net_device *) data;
2556 struct fe_priv *np = netdev_priv(dev);
2557 u8 __iomem *base = get_hwbase(dev);
2558 u32 events;
2559
2560 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2561
2562 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2563 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2564 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2565 } else {
2566 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2567 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2568 }
2569 pci_push(base);
2570 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2571 if (!(events & NVREG_IRQ_TIMER))
2572 return IRQ_RETVAL(0);
2573
2574 spin_lock(&np->lock);
2575 np->intr_test = 1;
2576 spin_unlock(&np->lock);
2577
2578 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2579
2580 return IRQ_RETVAL(1);
2581 }
2582
2583 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2584 {
2585 u8 __iomem *base = get_hwbase(dev);
2586 int i;
2587 u32 msixmap = 0;
2588
2589 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2590 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2591 * the remaining 8 interrupts.
2592 */
2593 for (i = 0; i < 8; i++) {
2594 if ((irqmask >> i) & 0x1) {
2595 msixmap |= vector << (i << 2);
2596 }
2597 }
2598 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2599
2600 msixmap = 0;
2601 for (i = 0; i < 8; i++) {
2602 if ((irqmask >> (i + 8)) & 0x1) {
2603 msixmap |= vector << (i << 2);
2604 }
2605 }
2606 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2607 }
2608
2609 static int nv_request_irq(struct net_device *dev, int intr_test)
2610 {
2611 struct fe_priv *np = get_nvpriv(dev);
2612 u8 __iomem *base = get_hwbase(dev);
2613 int ret = 1;
2614 int i;
2615
2616 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2617 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2618 np->msi_x_entry[i].entry = i;
2619 }
2620 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2621 np->msi_flags |= NV_MSI_X_ENABLED;
2622 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2623 /* Request irq for rx handling */
2624 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2625 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2626 pci_disable_msix(np->pci_dev);
2627 np->msi_flags &= ~NV_MSI_X_ENABLED;
2628 goto out_err;
2629 }
2630 /* Request irq for tx handling */
2631 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2632 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2633 pci_disable_msix(np->pci_dev);
2634 np->msi_flags &= ~NV_MSI_X_ENABLED;
2635 goto out_free_rx;
2636 }
2637 /* Request irq for link and timer handling */
2638 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2639 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2640 pci_disable_msix(np->pci_dev);
2641 np->msi_flags &= ~NV_MSI_X_ENABLED;
2642 goto out_free_tx;
2643 }
2644 /* map interrupts to their respective vector */
2645 writel(0, base + NvRegMSIXMap0);
2646 writel(0, base + NvRegMSIXMap1);
2647 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2648 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2649 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2650 } else {
2651 /* Request irq for all interrupts */
2652 if ((!intr_test &&
2653 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2654 (intr_test &&
2655 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0)) {
2656 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2657 pci_disable_msix(np->pci_dev);
2658 np->msi_flags &= ~NV_MSI_X_ENABLED;
2659 goto out_err;
2660 }
2661
2662 /* map interrupts to vector 0 */
2663 writel(0, base + NvRegMSIXMap0);
2664 writel(0, base + NvRegMSIXMap1);
2665 }
2666 }
2667 }
2668 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2669 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2670 np->msi_flags |= NV_MSI_ENABLED;
2671 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2672 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0)) {
2673 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2674 pci_disable_msi(np->pci_dev);
2675 np->msi_flags &= ~NV_MSI_ENABLED;
2676 goto out_err;
2677 }
2678
2679 /* map interrupts to vector 0 */
2680 writel(0, base + NvRegMSIMap0);
2681 writel(0, base + NvRegMSIMap1);
2682 /* enable msi vector 0 */
2683 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2684 }
2685 }
2686 if (ret != 0) {
2687 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2688 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0))
2689 goto out_err;
2690
2691 }
2692
2693 return 0;
2694 out_free_tx:
2695 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2696 out_free_rx:
2697 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2698 out_err:
2699 return 1;
2700 }
2701
2702 static void nv_free_irq(struct net_device *dev)
2703 {
2704 struct fe_priv *np = get_nvpriv(dev);
2705 int i;
2706
2707 if (np->msi_flags & NV_MSI_X_ENABLED) {
2708 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2709 free_irq(np->msi_x_entry[i].vector, dev);
2710 }
2711 pci_disable_msix(np->pci_dev);
2712 np->msi_flags &= ~NV_MSI_X_ENABLED;
2713 } else {
2714 free_irq(np->pci_dev->irq, dev);
2715 if (np->msi_flags & NV_MSI_ENABLED) {
2716 pci_disable_msi(np->pci_dev);
2717 np->msi_flags &= ~NV_MSI_ENABLED;
2718 }
2719 }
2720 }
2721
2722 static void nv_do_nic_poll(unsigned long data)
2723 {
2724 struct net_device *dev = (struct net_device *) data;
2725 struct fe_priv *np = netdev_priv(dev);
2726 u8 __iomem *base = get_hwbase(dev);
2727 u32 mask = 0;
2728
2729 /*
2730 * First disable irq(s) and then
2731 * reenable interrupts on the nic, we have to do this before calling
2732 * nv_nic_irq because that may decide to do otherwise
2733 */
2734
2735 if (!using_multi_irqs(dev)) {
2736 if (np->msi_flags & NV_MSI_X_ENABLED)
2737 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2738 else
2739 disable_irq(dev->irq);
2740 mask = np->irqmask;
2741 } else {
2742 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2743 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2744 mask |= NVREG_IRQ_RX_ALL;
2745 }
2746 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2747 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2748 mask |= NVREG_IRQ_TX_ALL;
2749 }
2750 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2751 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2752 mask |= NVREG_IRQ_OTHER;
2753 }
2754 }
2755 np->nic_poll_irq = 0;
2756
2757 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2758
2759 writel(mask, base + NvRegIrqMask);
2760 pci_push(base);
2761
2762 if (!using_multi_irqs(dev)) {
2763 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2764 if (np->msi_flags & NV_MSI_X_ENABLED)
2765 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2766 else
2767 enable_irq(dev->irq);
2768 } else {
2769 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2770 nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2771 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2772 }
2773 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2774 nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2775 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2776 }
2777 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2778 nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2779 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2780 }
2781 }
2782 }
2783
2784 #ifdef CONFIG_NET_POLL_CONTROLLER
2785 static void nv_poll_controller(struct net_device *dev)
2786 {
2787 nv_do_nic_poll((unsigned long) dev);
2788 }
2789 #endif
2790
2791 static void nv_do_stats_poll(unsigned long data)
2792 {
2793 struct net_device *dev = (struct net_device *) data;
2794 struct fe_priv *np = netdev_priv(dev);
2795 u8 __iomem *base = get_hwbase(dev);
2796
2797 np->estats.tx_bytes += readl(base + NvRegTxCnt);
2798 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2799 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2800 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2801 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2802 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2803 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2804 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2805 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2806 np->estats.tx_deferral += readl(base + NvRegTxDef);
2807 np->estats.tx_packets += readl(base + NvRegTxFrame);
2808 np->estats.tx_pause += readl(base + NvRegTxPause);
2809 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2810 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2811 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2812 np->estats.rx_runt += readl(base + NvRegRxRunt);
2813 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2814 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2815 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2816 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2817 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2818 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2819 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2820 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2821 np->estats.rx_bytes += readl(base + NvRegRxCnt);
2822 np->estats.rx_pause += readl(base + NvRegRxPause);
2823 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2824 np->estats.rx_packets =
2825 np->estats.rx_unicast +
2826 np->estats.rx_multicast +
2827 np->estats.rx_broadcast;
2828 np->estats.rx_errors_total =
2829 np->estats.rx_crc_errors +
2830 np->estats.rx_over_errors +
2831 np->estats.rx_frame_error +
2832 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2833 np->estats.rx_late_collision +
2834 np->estats.rx_runt +
2835 np->estats.rx_frame_too_long;
2836
2837 if (!np->in_shutdown)
2838 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2839 }
2840
2841 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2842 {
2843 struct fe_priv *np = netdev_priv(dev);
2844 strcpy(info->driver, "forcedeth");
2845 strcpy(info->version, FORCEDETH_VERSION);
2846 strcpy(info->bus_info, pci_name(np->pci_dev));
2847 }
2848
2849 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2850 {
2851 struct fe_priv *np = netdev_priv(dev);
2852 wolinfo->supported = WAKE_MAGIC;
2853
2854 spin_lock_irq(&np->lock);
2855 if (np->wolenabled)
2856 wolinfo->wolopts = WAKE_MAGIC;
2857 spin_unlock_irq(&np->lock);
2858 }
2859
2860 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2861 {
2862 struct fe_priv *np = netdev_priv(dev);
2863 u8 __iomem *base = get_hwbase(dev);
2864 u32 flags = 0;
2865
2866 if (wolinfo->wolopts == 0) {
2867 np->wolenabled = 0;
2868 } else if (wolinfo->wolopts & WAKE_MAGIC) {
2869 np->wolenabled = 1;
2870 flags = NVREG_WAKEUPFLAGS_ENABLE;
2871 }
2872 if (netif_running(dev)) {
2873 spin_lock_irq(&np->lock);
2874 writel(flags, base + NvRegWakeUpFlags);
2875 spin_unlock_irq(&np->lock);
2876 }
2877 return 0;
2878 }
2879
2880 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2881 {
2882 struct fe_priv *np = netdev_priv(dev);
2883 int adv;
2884
2885 spin_lock_irq(&np->lock);
2886 ecmd->port = PORT_MII;
2887 if (!netif_running(dev)) {
2888 /* We do not track link speed / duplex setting if the
2889 * interface is disabled. Force a link check */
2890 if (nv_update_linkspeed(dev)) {
2891 if (!netif_carrier_ok(dev))
2892 netif_carrier_on(dev);
2893 } else {
2894 if (netif_carrier_ok(dev))
2895 netif_carrier_off(dev);
2896 }
2897 }
2898
2899 if (netif_carrier_ok(dev)) {
2900 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2901 case NVREG_LINKSPEED_10:
2902 ecmd->speed = SPEED_10;
2903 break;
2904 case NVREG_LINKSPEED_100:
2905 ecmd->speed = SPEED_100;
2906 break;
2907 case NVREG_LINKSPEED_1000:
2908 ecmd->speed = SPEED_1000;
2909 break;
2910 }
2911 ecmd->duplex = DUPLEX_HALF;
2912 if (np->duplex)
2913 ecmd->duplex = DUPLEX_FULL;
2914 } else {
2915 ecmd->speed = -1;
2916 ecmd->duplex = -1;
2917 }
2918
2919 ecmd->autoneg = np->autoneg;
2920
2921 ecmd->advertising = ADVERTISED_MII;
2922 if (np->autoneg) {
2923 ecmd->advertising |= ADVERTISED_Autoneg;
2924 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2925 if (adv & ADVERTISE_10HALF)
2926 ecmd->advertising |= ADVERTISED_10baseT_Half;
2927 if (adv & ADVERTISE_10FULL)
2928 ecmd->advertising |= ADVERTISED_10baseT_Full;
2929 if (adv & ADVERTISE_100HALF)
2930 ecmd->advertising |= ADVERTISED_100baseT_Half;
2931 if (adv & ADVERTISE_100FULL)
2932 ecmd->advertising |= ADVERTISED_100baseT_Full;
2933 if (np->gigabit == PHY_GIGABIT) {
2934 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2935 if (adv & ADVERTISE_1000FULL)
2936 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2937 }
2938 }
2939 ecmd->supported = (SUPPORTED_Autoneg |
2940 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2941 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2942 SUPPORTED_MII);
2943 if (np->gigabit == PHY_GIGABIT)
2944 ecmd->supported |= SUPPORTED_1000baseT_Full;
2945
2946 ecmd->phy_address = np->phyaddr;
2947 ecmd->transceiver = XCVR_EXTERNAL;
2948
2949 /* ignore maxtxpkt, maxrxpkt for now */
2950 spin_unlock_irq(&np->lock);
2951 return 0;
2952 }
2953
2954 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2955 {
2956 struct fe_priv *np = netdev_priv(dev);
2957
2958 if (ecmd->port != PORT_MII)
2959 return -EINVAL;
2960 if (ecmd->transceiver != XCVR_EXTERNAL)
2961 return -EINVAL;
2962 if (ecmd->phy_address != np->phyaddr) {
2963 /* TODO: support switching between multiple phys. Should be
2964 * trivial, but not enabled due to lack of test hardware. */
2965 return -EINVAL;
2966 }
2967 if (ecmd->autoneg == AUTONEG_ENABLE) {
2968 u32 mask;
2969
2970 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2971 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2972 if (np->gigabit == PHY_GIGABIT)
2973 mask |= ADVERTISED_1000baseT_Full;
2974
2975 if ((ecmd->advertising & mask) == 0)
2976 return -EINVAL;
2977
2978 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2979 /* Note: autonegotiation disable, speed 1000 intentionally
2980 * forbidden - noone should need that. */
2981
2982 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2983 return -EINVAL;
2984 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2985 return -EINVAL;
2986 } else {
2987 return -EINVAL;
2988 }
2989
2990 netif_carrier_off(dev);
2991 if (netif_running(dev)) {
2992 nv_disable_irq(dev);
2993 spin_lock_bh(&dev->xmit_lock);
2994 spin_lock(&np->lock);
2995 /* stop engines */
2996 nv_stop_rx(dev);
2997 nv_stop_tx(dev);
2998 spin_unlock(&np->lock);
2999 spin_unlock_bh(&dev->xmit_lock);
3000 }
3001
3002 if (ecmd->autoneg == AUTONEG_ENABLE) {
3003 int adv, bmcr;
3004
3005 np->autoneg = 1;
3006
3007 /* advertise only what has been requested */
3008 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3009 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3010 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3011 adv |= ADVERTISE_10HALF;
3012 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3013 adv |= ADVERTISE_10FULL;
3014 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3015 adv |= ADVERTISE_100HALF;
3016 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3017 adv |= ADVERTISE_100FULL;
3018 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3019 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3020 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3021 adv |= ADVERTISE_PAUSE_ASYM;
3022 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3023
3024 if (np->gigabit == PHY_GIGABIT) {
3025 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3026 adv &= ~ADVERTISE_1000FULL;
3027 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3028 adv |= ADVERTISE_1000FULL;
3029 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3030 }
3031
3032 if (netif_running(dev))
3033 printk(KERN_INFO "%s: link down.\n", dev->name);
3034 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3035 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3036 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3037
3038 } else {
3039 int adv, bmcr;
3040
3041 np->autoneg = 0;
3042
3043 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3044 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3045 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3046 adv |= ADVERTISE_10HALF;
3047 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3048 adv |= ADVERTISE_10FULL;
3049 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3050 adv |= ADVERTISE_100HALF;
3051 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3052 adv |= ADVERTISE_100FULL;
3053 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3054 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3055 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3056 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3057 }
3058 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3059 adv |= ADVERTISE_PAUSE_ASYM;
3060 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3061 }
3062 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3063 np->fixed_mode = adv;
3064
3065 if (np->gigabit == PHY_GIGABIT) {
3066 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3067 adv &= ~ADVERTISE_1000FULL;
3068 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3069 }
3070
3071 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3072 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3073 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3074 bmcr |= BMCR_FULLDPLX;
3075 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3076 bmcr |= BMCR_SPEED100;
3077 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3078 if (np->phy_oui == PHY_OUI_MARVELL) {
3079 /* reset the phy */
3080 if (phy_reset(dev)) {
3081 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3082 return -EINVAL;
3083 }
3084 } else if (netif_running(dev)) {
3085 /* Wait a bit and then reconfigure the nic. */
3086 udelay(10);
3087 nv_linkchange(dev);
3088 }
3089 }
3090
3091 if (netif_running(dev)) {
3092 nv_start_rx(dev);
3093 nv_start_tx(dev);
3094 nv_enable_irq(dev);
3095 }
3096
3097 return 0;
3098 }
3099
3100 #define FORCEDETH_REGS_VER 1
3101
3102 static int nv_get_regs_len(struct net_device *dev)
3103 {
3104 struct fe_priv *np = netdev_priv(dev);
3105 return np->register_size;
3106 }
3107
3108 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3109 {
3110 struct fe_priv *np = netdev_priv(dev);
3111 u8 __iomem *base = get_hwbase(dev);
3112 u32 *rbuf = buf;
3113 int i;
3114
3115 regs->version = FORCEDETH_REGS_VER;
3116 spin_lock_irq(&np->lock);
3117 for (i = 0;i <= np->register_size/sizeof(u32); i++)
3118 rbuf[i] = readl(base + i*sizeof(u32));
3119 spin_unlock_irq(&np->lock);
3120 }
3121
3122 static int nv_nway_reset(struct net_device *dev)
3123 {
3124 struct fe_priv *np = netdev_priv(dev);
3125 int ret;
3126
3127 if (np->autoneg) {
3128 int bmcr;
3129
3130 netif_carrier_off(dev);
3131 if (netif_running(dev)) {
3132 nv_disable_irq(dev);
3133 spin_lock_bh(&dev->xmit_lock);
3134 spin_lock(&np->lock);
3135 /* stop engines */
3136 nv_stop_rx(dev);
3137 nv_stop_tx(dev);
3138 spin_unlock(&np->lock);
3139 spin_unlock_bh(&dev->xmit_lock);
3140 printk(KERN_INFO "%s: link down.\n", dev->name);
3141 }
3142
3143 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3144 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3145 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3146
3147 if (netif_running(dev)) {
3148 nv_start_rx(dev);
3149 nv_start_tx(dev);
3150 nv_enable_irq(dev);
3151 }
3152 ret = 0;
3153 } else {
3154 ret = -EINVAL;
3155 }
3156
3157 return ret;
3158 }
3159
3160 static int nv_set_tso(struct net_device *dev, u32 value)
3161 {
3162 struct fe_priv *np = netdev_priv(dev);
3163
3164 if ((np->driver_data & DEV_HAS_CHECKSUM))
3165 return ethtool_op_set_tso(dev, value);
3166 else
3167 return -EOPNOTSUPP;
3168 }
3169
3170 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3171 {
3172 struct fe_priv *np = netdev_priv(dev);
3173
3174 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3175 ring->rx_mini_max_pending = 0;
3176 ring->rx_jumbo_max_pending = 0;
3177 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3178
3179 ring->rx_pending = np->rx_ring_size;
3180 ring->rx_mini_pending = 0;
3181 ring->rx_jumbo_pending = 0;
3182 ring->tx_pending = np->tx_ring_size;
3183 }
3184
3185 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3186 {
3187 struct fe_priv *np = netdev_priv(dev);
3188 u8 __iomem *base = get_hwbase(dev);
3189 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3190 dma_addr_t ring_addr;
3191
3192 if (ring->rx_pending < RX_RING_MIN ||
3193 ring->tx_pending < TX_RING_MIN ||
3194 ring->rx_mini_pending != 0 ||
3195 ring->rx_jumbo_pending != 0 ||
3196 (np->desc_ver == DESC_VER_1 &&
3197 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3198 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3199 (np->desc_ver != DESC_VER_1 &&
3200 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3201 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3202 return -EINVAL;
3203 }
3204
3205 /* allocate new rings */
3206 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3207 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3208 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3209 &ring_addr);
3210 } else {
3211 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3212 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3213 &ring_addr);
3214 }
3215 rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3216 rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3217 tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3218 tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3219 tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3220 if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3221 /* fall back to old rings */
3222 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3223 if(rxtx_ring)
3224 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3225 rxtx_ring, ring_addr);
3226 } else {
3227 if (rxtx_ring)
3228 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3229 rxtx_ring, ring_addr);
3230 }
3231 if (rx_skbuff)
3232 kfree(rx_skbuff);
3233 if (rx_dma)
3234 kfree(rx_dma);
3235 if (tx_skbuff)
3236 kfree(tx_skbuff);
3237 if (tx_dma)
3238 kfree(tx_dma);
3239 if (tx_dma_len)
3240 kfree(tx_dma_len);
3241 goto exit;
3242 }
3243
3244 if (netif_running(dev)) {
3245 nv_disable_irq(dev);
3246 spin_lock_bh(&dev->xmit_lock);
3247 spin_lock(&np->lock);
3248 /* stop engines */
3249 nv_stop_rx(dev);
3250 nv_stop_tx(dev);
3251 nv_txrx_reset(dev);
3252 /* drain queues */
3253 nv_drain_rx(dev);
3254 nv_drain_tx(dev);
3255 /* delete queues */
3256 free_rings(dev);
3257 }
3258
3259 /* set new values */
3260 np->rx_ring_size = ring->rx_pending;
3261 np->tx_ring_size = ring->tx_pending;
3262 np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3263 np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3264 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3265 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3266 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3267 } else {
3268 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3269 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3270 }
3271 np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3272 np->rx_dma = (dma_addr_t*)rx_dma;
3273 np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3274 np->tx_dma = (dma_addr_t*)tx_dma;
3275 np->tx_dma_len = (unsigned int*)tx_dma_len;
3276 np->ring_addr = ring_addr;
3277
3278 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3279 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3280 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3281 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3282 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3283
3284 if (netif_running(dev)) {
3285 /* reinit driver view of the queues */
3286 set_bufsize(dev);
3287 if (nv_init_ring(dev)) {
3288 if (!np->in_shutdown)
3289 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3290 }
3291
3292 /* reinit nic view of the queues */
3293 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3294 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3295 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3296 base + NvRegRingSizes);
3297 pci_push(base);
3298 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3299 pci_push(base);
3300
3301 /* restart engines */
3302 nv_start_rx(dev);
3303 nv_start_tx(dev);
3304 spin_unlock(&np->lock);
3305 spin_unlock_bh(&dev->xmit_lock);
3306 nv_enable_irq(dev);
3307 }
3308 return 0;
3309 exit:
3310 return -ENOMEM;
3311 }
3312
3313 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3314 {
3315 struct fe_priv *np = netdev_priv(dev);
3316
3317 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3318 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3319 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3320 }
3321
3322 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3323 {
3324 struct fe_priv *np = netdev_priv(dev);
3325 int adv, bmcr;
3326
3327 if ((!np->autoneg && np->duplex == 0) ||
3328 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3329 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3330 dev->name);
3331 return -EINVAL;
3332 }
3333 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3334 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3335 return -EINVAL;
3336 }
3337
3338 netif_carrier_off(dev);
3339 if (netif_running(dev)) {
3340 nv_disable_irq(dev);
3341 spin_lock_bh(&dev->xmit_lock);
3342 spin_lock(&np->lock);
3343 /* stop engines */
3344 nv_stop_rx(dev);
3345 nv_stop_tx(dev);
3346 spin_unlock(&np->lock);
3347 spin_unlock_bh(&dev->xmit_lock);
3348 }
3349
3350 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3351 if (pause->rx_pause)
3352 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3353 if (pause->tx_pause)
3354 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3355
3356 if (np->autoneg && pause->autoneg) {
3357 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3358
3359 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3360 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3361 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3362 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3363 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3364 adv |= ADVERTISE_PAUSE_ASYM;
3365 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3366
3367 if (netif_running(dev))
3368 printk(KERN_INFO "%s: link down.\n", dev->name);
3369 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3370 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3371 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3372 } else {
3373 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3374 if (pause->rx_pause)
3375 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3376 if (pause->tx_pause)
3377 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3378
3379 if (!netif_running(dev))
3380 nv_update_linkspeed(dev);
3381 else
3382 nv_update_pause(dev, np->pause_flags);
3383 }
3384
3385 if (netif_running(dev)) {
3386 nv_start_rx(dev);
3387 nv_start_tx(dev);
3388 nv_enable_irq(dev);
3389 }
3390 return 0;
3391 }
3392
3393 static u32 nv_get_rx_csum(struct net_device *dev)
3394 {
3395 struct fe_priv *np = netdev_priv(dev);
3396 return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3397 }
3398
3399 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3400 {
3401 struct fe_priv *np = netdev_priv(dev);
3402 u8 __iomem *base = get_hwbase(dev);
3403 int retcode = 0;
3404
3405 if (np->driver_data & DEV_HAS_CHECKSUM) {
3406
3407 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3408 (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3409 /* already set or unset */
3410 return 0;
3411 }
3412
3413 if (data) {
3414 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3415 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3416 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3417 } else {
3418 printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3419 return -EINVAL;
3420 }
3421
3422 if (netif_running(dev)) {
3423 spin_lock_irq(&np->lock);
3424 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3425 spin_unlock_irq(&np->lock);
3426 }
3427 } else {
3428 return -EINVAL;
3429 }
3430
3431 return retcode;
3432 }
3433
3434 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3435 {
3436 struct fe_priv *np = netdev_priv(dev);
3437
3438 if (np->driver_data & DEV_HAS_CHECKSUM)
3439 return ethtool_op_set_tx_hw_csum(dev, data);
3440 else
3441 return -EOPNOTSUPP;
3442 }
3443
3444 static int nv_set_sg(struct net_device *dev, u32 data)
3445 {
3446 struct fe_priv *np = netdev_priv(dev);
3447
3448 if (np->driver_data & DEV_HAS_CHECKSUM)
3449 return ethtool_op_set_sg(dev, data);
3450 else
3451 return -EOPNOTSUPP;
3452 }
3453
3454 static int nv_get_stats_count(struct net_device *dev)
3455 {
3456 struct fe_priv *np = netdev_priv(dev);
3457
3458 if (np->driver_data & DEV_HAS_STATISTICS)
3459 return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
3460 else
3461 return 0;
3462 }
3463
3464 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3465 {
3466 struct fe_priv *np = netdev_priv(dev);
3467
3468 /* update stats */
3469 nv_do_stats_poll((unsigned long)dev);
3470
3471 memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3472 }
3473
3474 static int nv_self_test_count(struct net_device *dev)
3475 {
3476 struct fe_priv *np = netdev_priv(dev);
3477
3478 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3479 return NV_TEST_COUNT_EXTENDED;
3480 else
3481 return NV_TEST_COUNT_BASE;
3482 }
3483
3484 static int nv_link_test(struct net_device *dev)
3485 {
3486 struct fe_priv *np = netdev_priv(dev);
3487 int mii_status;
3488
3489 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3490 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3491
3492 /* check phy link status */
3493 if (!(mii_status & BMSR_LSTATUS))
3494 return 0;
3495 else
3496 return 1;
3497 }
3498
3499 static int nv_register_test(struct net_device *dev)
3500 {
3501 u8 __iomem *base = get_hwbase(dev);
3502 int i = 0;
3503 u32 orig_read, new_read;
3504
3505 do {
3506 orig_read = readl(base + nv_registers_test[i].reg);
3507
3508 /* xor with mask to toggle bits */
3509 orig_read ^= nv_registers_test[i].mask;
3510
3511 writel(orig_read, base + nv_registers_test[i].reg);
3512
3513 new_read = readl(base + nv_registers_test[i].reg);
3514
3515 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3516 return 0;
3517
3518 /* restore original value */
3519 orig_read ^= nv_registers_test[i].mask;
3520 writel(orig_read, base + nv_registers_test[i].reg);
3521
3522 } while (nv_registers_test[++i].reg != 0);
3523
3524 return 1;
3525 }
3526
3527 static int nv_interrupt_test(struct net_device *dev)
3528 {
3529 struct fe_priv *np = netdev_priv(dev);
3530 u8 __iomem *base = get_hwbase(dev);
3531 int ret = 1;
3532 int testcnt;
3533 u32 save_msi_flags, save_poll_interval = 0;
3534
3535 if (netif_running(dev)) {
3536 /* free current irq */
3537 nv_free_irq(dev);
3538 save_poll_interval = readl(base+NvRegPollingInterval);
3539 }
3540
3541 /* flag to test interrupt handler */
3542 np->intr_test = 0;
3543
3544 /* setup test irq */
3545 save_msi_flags = np->msi_flags;
3546 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3547 np->msi_flags |= 0x001; /* setup 1 vector */
3548 if (nv_request_irq(dev, 1))
3549 return 0;
3550
3551 /* setup timer interrupt */
3552 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3553 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3554
3555 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3556
3557 /* wait for at least one interrupt */
3558 msleep(100);
3559
3560 spin_lock_irq(&np->lock);
3561
3562 /* flag should be set within ISR */
3563 testcnt = np->intr_test;
3564 if (!testcnt)
3565 ret = 2;
3566
3567 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3568 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3569 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3570 else
3571 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3572
3573 spin_unlock_irq(&np->lock);
3574
3575 nv_free_irq(dev);
3576
3577 np->msi_flags = save_msi_flags;
3578
3579 if (netif_running(dev)) {
3580 writel(save_poll_interval, base + NvRegPollingInterval);
3581 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3582 /* restore original irq */
3583 if (nv_request_irq(dev, 0))
3584 return 0;
3585 }
3586
3587 return ret;
3588 }
3589
3590 static int nv_loopback_test(struct net_device *dev)
3591 {
3592 struct fe_priv *np = netdev_priv(dev);
3593 u8 __iomem *base = get_hwbase(dev);
3594 struct sk_buff *tx_skb, *rx_skb;
3595 dma_addr_t test_dma_addr;
3596 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3597 u32 Flags;
3598 int len, i, pkt_len;
3599 u8 *pkt_data;
3600 u32 filter_flags = 0;
3601 u32 misc1_flags = 0;
3602 int ret = 1;
3603
3604 if (netif_running(dev)) {
3605 nv_disable_irq(dev);
3606 filter_flags = readl(base + NvRegPacketFilterFlags);
3607 misc1_flags = readl(base + NvRegMisc1);
3608 } else {
3609 nv_txrx_reset(dev);
3610 }
3611
3612 /* reinit driver view of the rx queue */
3613 set_bufsize(dev);
3614 nv_init_ring(dev);
3615
3616 /* setup hardware for loopback */
3617 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3618 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3619
3620 /* reinit nic view of the rx queue */
3621 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3622 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3623 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3624 base + NvRegRingSizes);
3625 pci_push(base);
3626
3627 /* restart rx engine */
3628 nv_start_rx(dev);
3629 nv_start_tx(dev);
3630
3631 /* setup packet for tx */
3632 pkt_len = ETH_DATA_LEN;
3633 tx_skb = dev_alloc_skb(pkt_len);
3634 pkt_data = skb_put(tx_skb, pkt_len);
3635 for (i = 0; i < pkt_len; i++)
3636 pkt_data[i] = (u8)(i & 0xff);
3637 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3638 tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3639
3640 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3641 np->tx_ring.orig[0].PacketBuffer = cpu_to_le32(test_dma_addr);
3642 np->tx_ring.orig[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3643 } else {
3644 np->tx_ring.ex[0].PacketBufferHigh = cpu_to_le64(test_dma_addr) >> 32;
3645 np->tx_ring.ex[0].PacketBufferLow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3646 np->tx_ring.ex[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3647 }
3648 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3649 pci_push(get_hwbase(dev));
3650
3651 msleep(500);
3652
3653 /* check for rx of the packet */
3654 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3655 Flags = le32_to_cpu(np->rx_ring.orig[0].FlagLen);
3656 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3657
3658 } else {
3659 Flags = le32_to_cpu(np->rx_ring.ex[0].FlagLen);
3660 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3661 }
3662
3663 if (Flags & NV_RX_AVAIL) {
3664 ret = 0;
3665 } else if (np->desc_ver == DESC_VER_1) {
3666 if (Flags & NV_RX_ERROR)
3667 ret = 0;
3668 } else {
3669 if (Flags & NV_RX2_ERROR) {
3670 ret = 0;
3671 }
3672 }
3673
3674 if (ret) {
3675 if (len != pkt_len) {
3676 ret = 0;
3677 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3678 dev->name, len, pkt_len);
3679 } else {
3680 rx_skb = np->rx_skbuff[0];
3681 for (i = 0; i < pkt_len; i++) {
3682 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3683 ret = 0;
3684 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3685 dev->name, i);
3686 break;
3687 }
3688 }
3689 }
3690 } else {
3691 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3692 }
3693
3694 pci_unmap_page(np->pci_dev, test_dma_addr,
3695 tx_skb->end-tx_skb->data,
3696 PCI_DMA_TODEVICE);
3697 dev_kfree_skb_any(tx_skb);
3698
3699 /* stop engines */
3700 nv_stop_rx(dev);
3701 nv_stop_tx(dev);
3702 nv_txrx_reset(dev);
3703 /* drain rx queue */
3704 nv_drain_rx(dev);
3705 nv_drain_tx(dev);
3706
3707 if (netif_running(dev)) {
3708 writel(misc1_flags, base + NvRegMisc1);
3709 writel(filter_flags, base + NvRegPacketFilterFlags);
3710 nv_enable_irq(dev);
3711 }
3712
3713 return ret;
3714 }
3715
3716 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3717 {
3718 struct fe_priv *np = netdev_priv(dev);
3719 u8 __iomem *base = get_hwbase(dev);
3720 int result;
3721 memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3722
3723 if (!nv_link_test(dev)) {
3724 test->flags |= ETH_TEST_FL_FAILED;
3725 buffer[0] = 1;
3726 }
3727
3728 if (test->flags & ETH_TEST_FL_OFFLINE) {
3729 if (netif_running(dev)) {
3730 netif_stop_queue(dev);
3731 spin_lock_bh(&dev->xmit_lock);
3732 spin_lock_irq(&np->lock);
3733 nv_disable_hw_interrupts(dev, np->irqmask);
3734 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3735 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3736 } else {
3737 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3738 }
3739 /* stop engines */
3740 nv_stop_rx(dev);
3741 nv_stop_tx(dev);
3742 nv_txrx_reset(dev);
3743 /* drain rx queue */
3744 nv_drain_rx(dev);
3745 nv_drain_tx(dev);
3746 spin_unlock_irq(&np->lock);
3747 spin_unlock_bh(&dev->xmit_lock);
3748 }
3749
3750 if (!nv_register_test(dev)) {
3751 test->flags |= ETH_TEST_FL_FAILED;
3752 buffer[1] = 1;
3753 }
3754
3755 result = nv_interrupt_test(dev);
3756 if (result != 1) {
3757 test->flags |= ETH_TEST_FL_FAILED;
3758 buffer[2] = 1;
3759 }
3760 if (result == 0) {
3761 /* bail out */
3762 return;
3763 }
3764
3765 if (!nv_loopback_test(dev)) {
3766 test->flags |= ETH_TEST_FL_FAILED;
3767 buffer[3] = 1;
3768 }
3769
3770 if (netif_running(dev)) {
3771 /* reinit driver view of the rx queue */
3772 set_bufsize(dev);
3773 if (nv_init_ring(dev)) {
3774 if (!np->in_shutdown)
3775 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3776 }
3777 /* reinit nic view of the rx queue */
3778 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3779 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3780 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3781 base + NvRegRingSizes);
3782 pci_push(base);
3783 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3784 pci_push(base);
3785 /* restart rx engine */
3786 nv_start_rx(dev);
3787 nv_start_tx(dev);
3788 netif_start_queue(dev);
3789 nv_enable_hw_interrupts(dev, np->irqmask);
3790 }
3791 }
3792 }
3793
3794 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3795 {
3796 switch (stringset) {
3797 case ETH_SS_STATS:
3798 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3799 break;
3800 case ETH_SS_TEST:
3801 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3802 break;
3803 }
3804 }
3805
3806 static struct ethtool_ops ops = {
3807 .get_drvinfo = nv_get_drvinfo,
3808 .get_link = ethtool_op_get_link,
3809 .get_wol = nv_get_wol,
3810 .set_wol = nv_set_wol,
3811 .get_settings = nv_get_settings,
3812 .set_settings = nv_set_settings,
3813 .get_regs_len = nv_get_regs_len,
3814 .get_regs = nv_get_regs,
3815 .nway_reset = nv_nway_reset,
3816 .get_perm_addr = ethtool_op_get_perm_addr,
3817 .get_tso = ethtool_op_get_tso,
3818 .set_tso = nv_set_tso,
3819 .get_ringparam = nv_get_ringparam,
3820 .set_ringparam = nv_set_ringparam,
3821 .get_pauseparam = nv_get_pauseparam,
3822 .set_pauseparam = nv_set_pauseparam,
3823 .get_rx_csum = nv_get_rx_csum,
3824 .set_rx_csum = nv_set_rx_csum,
3825 .get_tx_csum = ethtool_op_get_tx_csum,
3826 .set_tx_csum = nv_set_tx_csum,
3827 .get_sg = ethtool_op_get_sg,
3828 .set_sg = nv_set_sg,
3829 .get_strings = nv_get_strings,
3830 .get_stats_count = nv_get_stats_count,
3831 .get_ethtool_stats = nv_get_ethtool_stats,
3832 .self_test_count = nv_self_test_count,
3833 .self_test = nv_self_test,
3834 };
3835
3836 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3837 {
3838 struct fe_priv *np = get_nvpriv(dev);
3839
3840 spin_lock_irq(&np->lock);
3841
3842 /* save vlan group */
3843 np->vlangrp = grp;
3844
3845 if (grp) {
3846 /* enable vlan on MAC */
3847 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3848 } else {
3849 /* disable vlan on MAC */
3850 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3851 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3852 }
3853
3854 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3855
3856 spin_unlock_irq(&np->lock);
3857 };
3858
3859 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3860 {
3861 /* nothing to do */
3862 };
3863
3864 static int nv_open(struct net_device *dev)
3865 {
3866 struct fe_priv *np = netdev_priv(dev);
3867 u8 __iomem *base = get_hwbase(dev);
3868 int ret = 1;
3869 int oom, i;
3870
3871 dprintk(KERN_DEBUG "nv_open: begin\n");
3872
3873 /* 1) erase previous misconfiguration */
3874 if (np->driver_data & DEV_HAS_POWER_CNTRL)
3875 nv_mac_reset(dev);
3876 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3877 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3878 writel(0, base + NvRegMulticastAddrB);
3879 writel(0, base + NvRegMulticastMaskA);
3880 writel(0, base + NvRegMulticastMaskB);
3881 writel(0, base + NvRegPacketFilterFlags);
3882
3883 writel(0, base + NvRegTransmitterControl);
3884 writel(0, base + NvRegReceiverControl);
3885
3886 writel(0, base + NvRegAdapterControl);
3887
3888 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3889 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3890
3891 /* 2) initialize descriptor rings */
3892 set_bufsize(dev);
3893 oom = nv_init_ring(dev);
3894
3895 writel(0, base + NvRegLinkSpeed);
3896 writel(0, base + NvRegUnknownTransmitterReg);
3897 nv_txrx_reset(dev);
3898 writel(0, base + NvRegUnknownSetupReg6);
3899
3900 np->in_shutdown = 0;
3901
3902 /* 3) set mac address */
3903 nv_copy_mac_to_hw(dev);
3904
3905 /* 4) give hw rings */
3906 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3907 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3908 base + NvRegRingSizes);
3909
3910 /* 5) continue setup */
3911 writel(np->linkspeed, base + NvRegLinkSpeed);
3912 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
3913 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3914 writel(np->vlanctl_bits, base + NvRegVlanControl);
3915 pci_push(base);
3916 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3917 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3918 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3919 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3920
3921 writel(0, base + NvRegUnknownSetupReg4);
3922 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3923 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3924
3925 /* 6) continue setup */
3926 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3927 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3928 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3929 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3930
3931 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3932 get_random_bytes(&i, sizeof(i));
3933 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3934 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
3935 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
3936 if (poll_interval == -1) {
3937 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3938 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3939 else
3940 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3941 }
3942 else
3943 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3944 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3945 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3946 base + NvRegAdapterControl);
3947 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3948 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3949 if (np->wolenabled)
3950 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3951
3952 i = readl(base + NvRegPowerState);
3953 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3954 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3955
3956 pci_push(base);
3957 udelay(10);
3958 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3959
3960 nv_disable_hw_interrupts(dev, np->irqmask);
3961 pci_push(base);
3962 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3963 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3964 pci_push(base);
3965
3966 if (nv_request_irq(dev, 0)) {
3967 goto out_drain;
3968 }
3969
3970 /* ask for interrupts */
3971 nv_enable_hw_interrupts(dev, np->irqmask);
3972
3973 spin_lock_irq(&np->lock);
3974 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3975 writel(0, base + NvRegMulticastAddrB);
3976 writel(0, base + NvRegMulticastMaskA);
3977 writel(0, base + NvRegMulticastMaskB);
3978 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
3979 /* One manual link speed update: Interrupts are enabled, future link
3980 * speed changes cause interrupts and are handled by nv_link_irq().
3981 */
3982 {
3983 u32 miistat;
3984 miistat = readl(base + NvRegMIIStatus);
3985 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
3986 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
3987 }
3988 /* set linkspeed to invalid value, thus force nv_update_linkspeed
3989 * to init hw */
3990 np->linkspeed = 0;
3991 ret = nv_update_linkspeed(dev);
3992 nv_start_rx(dev);
3993 nv_start_tx(dev);
3994 netif_start_queue(dev);
3995 if (ret) {
3996 netif_carrier_on(dev);
3997 } else {
3998 printk("%s: no link during initialization.\n", dev->name);
3999 netif_carrier_off(dev);
4000 }
4001 if (oom)
4002 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4003
4004 /* start statistics timer */
4005 if (np->driver_data & DEV_HAS_STATISTICS)
4006 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4007
4008 spin_unlock_irq(&np->lock);
4009
4010 return 0;
4011 out_drain:
4012 drain_ring(dev);
4013 return ret;
4014 }
4015
4016 static int nv_close(struct net_device *dev)
4017 {
4018 struct fe_priv *np = netdev_priv(dev);
4019 u8 __iomem *base;
4020
4021 spin_lock_irq(&np->lock);
4022 np->in_shutdown = 1;
4023 spin_unlock_irq(&np->lock);
4024 synchronize_irq(dev->irq);
4025
4026 del_timer_sync(&np->oom_kick);
4027 del_timer_sync(&np->nic_poll);
4028 del_timer_sync(&np->stats_poll);
4029
4030 netif_stop_queue(dev);
4031 spin_lock_irq(&np->lock);
4032 nv_stop_tx(dev);
4033 nv_stop_rx(dev);
4034 nv_txrx_reset(dev);
4035
4036 /* disable interrupts on the nic or we will lock up */
4037 base = get_hwbase(dev);
4038 nv_disable_hw_interrupts(dev, np->irqmask);
4039 pci_push(base);
4040 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4041
4042 spin_unlock_irq(&np->lock);
4043
4044 nv_free_irq(dev);
4045
4046 drain_ring(dev);
4047
4048 if (np->wolenabled)
4049 nv_start_rx(dev);
4050
4051 /* special op: write back the misordered MAC address - otherwise
4052 * the next nv_probe would see a wrong address.
4053 */
4054 writel(np->orig_mac[0], base + NvRegMacAddrA);
4055 writel(np->orig_mac[1], base + NvRegMacAddrB);
4056
4057 /* FIXME: power down nic */
4058
4059 return 0;
4060 }
4061
4062 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4063 {
4064 struct net_device *dev;
4065 struct fe_priv *np;
4066 unsigned long addr;
4067 u8 __iomem *base;
4068 int err, i;
4069 u32 powerstate;
4070
4071 dev = alloc_etherdev(sizeof(struct fe_priv));
4072 err = -ENOMEM;
4073 if (!dev)
4074 goto out;
4075
4076 np = netdev_priv(dev);
4077 np->pci_dev = pci_dev;
4078 spin_lock_init(&np->lock);
4079 SET_MODULE_OWNER(dev);
4080 SET_NETDEV_DEV(dev, &pci_dev->dev);
4081
4082 init_timer(&np->oom_kick);
4083 np->oom_kick.data = (unsigned long) dev;
4084 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
4085 init_timer(&np->nic_poll);
4086 np->nic_poll.data = (unsigned long) dev;
4087 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
4088 init_timer(&np->stats_poll);
4089 np->stats_poll.data = (unsigned long) dev;
4090 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
4091
4092 err = pci_enable_device(pci_dev);
4093 if (err) {
4094 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4095 err, pci_name(pci_dev));
4096 goto out_free;
4097 }
4098
4099 pci_set_master(pci_dev);
4100
4101 err = pci_request_regions(pci_dev, DRV_NAME);
4102 if (err < 0)
4103 goto out_disable;
4104
4105 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4106 np->register_size = NV_PCI_REGSZ_VER2;
4107 else
4108 np->register_size = NV_PCI_REGSZ_VER1;
4109
4110 err = -EINVAL;
4111 addr = 0;
4112 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4113 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4114 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4115 pci_resource_len(pci_dev, i),
4116 pci_resource_flags(pci_dev, i));
4117 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4118 pci_resource_len(pci_dev, i) >= np->register_size) {
4119 addr = pci_resource_start(pci_dev, i);
4120 break;
4121 }
4122 }
4123 if (i == DEVICE_COUNT_RESOURCE) {
4124 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4125 pci_name(pci_dev));
4126 goto out_relreg;
4127 }
4128
4129 /* copy of driver data */
4130 np->driver_data = id->driver_data;
4131
4132 /* handle different descriptor versions */
4133 if (id->driver_data & DEV_HAS_HIGH_DMA) {
4134 /* packet format 3: supports 40-bit addressing */
4135 np->desc_ver = DESC_VER_3;
4136 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4137 if (dma_64bit) {
4138 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4139 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4140 pci_name(pci_dev));
4141 } else {
4142 dev->features |= NETIF_F_HIGHDMA;
4143 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4144 }
4145 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4146 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4147 pci_name(pci_dev));
4148 }
4149 }
4150 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4151 /* packet format 2: supports jumbo frames */
4152 np->desc_ver = DESC_VER_2;
4153 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4154 } else {
4155 /* original packet format */
4156 np->desc_ver = DESC_VER_1;
4157 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4158 }
4159
4160 np->pkt_limit = NV_PKTLIMIT_1;
4161 if (id->driver_data & DEV_HAS_LARGEDESC)
4162 np->pkt_limit = NV_PKTLIMIT_2;
4163
4164 if (id->driver_data & DEV_HAS_CHECKSUM) {
4165 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4166 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4167 #ifdef NETIF_F_TSO
4168 dev->features |= NETIF_F_TSO;
4169 #endif
4170 }
4171
4172 np->vlanctl_bits = 0;
4173 if (id->driver_data & DEV_HAS_VLAN) {
4174 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4175 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4176 dev->vlan_rx_register = nv_vlan_rx_register;
4177 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4178 }
4179
4180 np->msi_flags = 0;
4181 if ((id->driver_data & DEV_HAS_MSI) && msi) {
4182 np->msi_flags |= NV_MSI_CAPABLE;
4183 }
4184 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4185 np->msi_flags |= NV_MSI_X_CAPABLE;
4186 }
4187
4188 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4189 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4190 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4191 }
4192
4193
4194 err = -ENOMEM;
4195 np->base = ioremap(addr, np->register_size);
4196 if (!np->base)
4197 goto out_relreg;
4198 dev->base_addr = (unsigned long)np->base;
4199
4200 dev->irq = pci_dev->irq;
4201
4202 np->rx_ring_size = RX_RING_DEFAULT;
4203 np->tx_ring_size = TX_RING_DEFAULT;
4204 np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4205 np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4206
4207 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4208 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4209 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4210 &np->ring_addr);
4211 if (!np->rx_ring.orig)
4212 goto out_unmap;
4213 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4214 } else {
4215 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4216 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4217 &np->ring_addr);
4218 if (!np->rx_ring.ex)
4219 goto out_unmap;
4220 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4221 }
4222 np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4223 np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4224 np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4225 np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4226 np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4227 if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4228 goto out_freering;
4229 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4230 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4231 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4232 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4233 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4234
4235 dev->open = nv_open;
4236 dev->stop = nv_close;
4237 dev->hard_start_xmit = nv_start_xmit;
4238 dev->get_stats = nv_get_stats;
4239 dev->change_mtu = nv_change_mtu;
4240 dev->set_mac_address = nv_set_mac_address;
4241 dev->set_multicast_list = nv_set_multicast;
4242 #ifdef CONFIG_NET_POLL_CONTROLLER
4243 dev->poll_controller = nv_poll_controller;
4244 #endif
4245 SET_ETHTOOL_OPS(dev, &ops);
4246 dev->tx_timeout = nv_tx_timeout;
4247 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4248
4249 pci_set_drvdata(pci_dev, dev);
4250
4251 /* read the mac address */
4252 base = get_hwbase(dev);
4253 np->orig_mac[0] = readl(base + NvRegMacAddrA);
4254 np->orig_mac[1] = readl(base + NvRegMacAddrB);
4255
4256 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
4257 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
4258 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4259 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4260 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
4261 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
4262 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4263
4264 if (!is_valid_ether_addr(dev->perm_addr)) {
4265 /*
4266 * Bad mac address. At least one bios sets the mac address
4267 * to 01:23:45:67:89:ab
4268 */
4269 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4270 pci_name(pci_dev),
4271 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4272 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4273 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4274 dev->dev_addr[0] = 0x00;
4275 dev->dev_addr[1] = 0x00;
4276 dev->dev_addr[2] = 0x6c;
4277 get_random_bytes(&dev->dev_addr[3], 3);
4278 }
4279
4280 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4281 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4282 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4283
4284 /* disable WOL */
4285 writel(0, base + NvRegWakeUpFlags);
4286 np->wolenabled = 0;
4287
4288 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4289 u8 revision_id;
4290 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4291
4292 /* take phy and nic out of low power mode */
4293 powerstate = readl(base + NvRegPowerState2);
4294 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4295 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4296 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4297 revision_id >= 0xA3)
4298 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4299 writel(powerstate, base + NvRegPowerState2);
4300 }
4301
4302 if (np->desc_ver == DESC_VER_1) {
4303 np->tx_flags = NV_TX_VALID;
4304 } else {
4305 np->tx_flags = NV_TX2_VALID;
4306 }
4307 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4308 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4309 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4310 np->msi_flags |= 0x0003;
4311 } else {
4312 np->irqmask = NVREG_IRQMASK_CPU;
4313 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4314 np->msi_flags |= 0x0001;
4315 }
4316
4317 if (id->driver_data & DEV_NEED_TIMERIRQ)
4318 np->irqmask |= NVREG_IRQ_TIMER;
4319 if (id->driver_data & DEV_NEED_LINKTIMER) {
4320 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4321 np->need_linktimer = 1;
4322 np->link_timeout = jiffies + LINK_TIMEOUT;
4323 } else {
4324 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4325 np->need_linktimer = 0;
4326 }
4327
4328 /* find a suitable phy */
4329 for (i = 1; i <= 32; i++) {
4330 int id1, id2;
4331 int phyaddr = i & 0x1F;
4332
4333 spin_lock_irq(&np->lock);
4334 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4335 spin_unlock_irq(&np->lock);
4336 if (id1 < 0 || id1 == 0xffff)
4337 continue;
4338 spin_lock_irq(&np->lock);
4339 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4340 spin_unlock_irq(&np->lock);
4341 if (id2 < 0 || id2 == 0xffff)
4342 continue;
4343
4344 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4345 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4346 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4347 pci_name(pci_dev), id1, id2, phyaddr);
4348 np->phyaddr = phyaddr;
4349 np->phy_oui = id1 | id2;
4350 break;
4351 }
4352 if (i == 33) {
4353 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4354 pci_name(pci_dev));
4355 goto out_error;
4356 }
4357
4358 /* reset it */
4359 phy_init(dev);
4360
4361 /* set default link speed settings */
4362 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4363 np->duplex = 0;
4364 np->autoneg = 1;
4365
4366 err = register_netdev(dev);
4367 if (err) {
4368 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4369 goto out_error;
4370 }
4371 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4372 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4373 pci_name(pci_dev));
4374
4375 return 0;
4376
4377 out_error:
4378 pci_set_drvdata(pci_dev, NULL);
4379 out_freering:
4380 free_rings(dev);
4381 out_unmap:
4382 iounmap(get_hwbase(dev));
4383 out_relreg:
4384 pci_release_regions(pci_dev);
4385 out_disable:
4386 pci_disable_device(pci_dev);
4387 out_free:
4388 free_netdev(dev);
4389 out:
4390 return err;
4391 }
4392
4393 static void __devexit nv_remove(struct pci_dev *pci_dev)
4394 {
4395 struct net_device *dev = pci_get_drvdata(pci_dev);
4396
4397 unregister_netdev(dev);
4398
4399 /* free all structures */
4400 free_rings(dev);
4401 iounmap(get_hwbase(dev));
4402 pci_release_regions(pci_dev);
4403 pci_disable_device(pci_dev);
4404 free_netdev(dev);
4405 pci_set_drvdata(pci_dev, NULL);
4406 }
4407
4408 static struct pci_device_id pci_tbl[] = {
4409 { /* nForce Ethernet Controller */
4410 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4411 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4412 },
4413 { /* nForce2 Ethernet Controller */
4414 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4415 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4416 },
4417 { /* nForce3 Ethernet Controller */
4418 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4419 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4420 },
4421 { /* nForce3 Ethernet Controller */
4422 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4423 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4424 },
4425 { /* nForce3 Ethernet Controller */
4426 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4427 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4428 },
4429 { /* nForce3 Ethernet Controller */
4430 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4431 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4432 },
4433 { /* nForce3 Ethernet Controller */
4434 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4435 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4436 },
4437 { /* CK804 Ethernet Controller */
4438 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4439 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4440 },
4441 { /* CK804 Ethernet Controller */
4442 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4443 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4444 },
4445 { /* MCP04 Ethernet Controller */
4446 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4447 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4448 },
4449 { /* MCP04 Ethernet Controller */
4450 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4451 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4452 },
4453 { /* MCP51 Ethernet Controller */
4454 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4455 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4456 },
4457 { /* MCP51 Ethernet Controller */
4458 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4459 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4460 },
4461 { /* MCP55 Ethernet Controller */
4462 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4463 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4464 },
4465 { /* MCP55 Ethernet Controller */
4466 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4467 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4468 },
4469 {0,},
4470 };
4471
4472 static struct pci_driver driver = {
4473 .name = "forcedeth",
4474 .id_table = pci_tbl,
4475 .probe = nv_probe,
4476 .remove = __devexit_p(nv_remove),
4477 };
4478
4479
4480 static int __init init_nic(void)
4481 {
4482 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4483 return pci_module_init(&driver);
4484 }
4485
4486 static void __exit exit_nic(void)
4487 {
4488 pci_unregister_driver(&driver);
4489 }
4490
4491 module_param(max_interrupt_work, int, 0);
4492 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4493 module_param(optimization_mode, int, 0);
4494 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4495 module_param(poll_interval, int, 0);
4496 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4497 module_param(msi, int, 0);
4498 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4499 module_param(msix, int, 0);
4500 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4501 module_param(dma_64bit, int, 0);
4502 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4503
4504 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4505 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4506 MODULE_LICENSE("GPL");
4507
4508 MODULE_DEVICE_TABLE(pci, pci_tbl);
4509
4510 module_init(init_nic);
4511 module_exit(exit_nic);