[PATCH] forcedeth config: statistics
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 * 0.55: 22 Mar 2006: Add flow control (pause frame).
111 *
112 * Known bugs:
113 * We suspect that on some hardware no TX done interrupts are generated.
114 * This means recovery from netif_stop_queue only happens if the hw timer
115 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
116 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
117 * If your hardware reliably generates tx done interrupts, then you can remove
118 * DEV_NEED_TIMERIRQ from the driver_data flags.
119 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
120 * superfluous timer interrupts from the nic.
121 */
122 #define FORCEDETH_VERSION "0.55"
123 #define DRV_NAME "forcedeth"
124
125 #include <linux/module.h>
126 #include <linux/types.h>
127 #include <linux/pci.h>
128 #include <linux/interrupt.h>
129 #include <linux/netdevice.h>
130 #include <linux/etherdevice.h>
131 #include <linux/delay.h>
132 #include <linux/spinlock.h>
133 #include <linux/ethtool.h>
134 #include <linux/timer.h>
135 #include <linux/skbuff.h>
136 #include <linux/mii.h>
137 #include <linux/random.h>
138 #include <linux/init.h>
139 #include <linux/if_vlan.h>
140 #include <linux/dma-mapping.h>
141
142 #include <asm/irq.h>
143 #include <asm/io.h>
144 #include <asm/uaccess.h>
145 #include <asm/system.h>
146
147 #if 0
148 #define dprintk printk
149 #else
150 #define dprintk(x...) do { } while (0)
151 #endif
152
153
154 /*
155 * Hardware access:
156 */
157
158 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
159 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
160 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
161 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
162 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
163 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
164 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
165 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
166 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
167 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
168 #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
169
170 enum {
171 NvRegIrqStatus = 0x000,
172 #define NVREG_IRQSTAT_MIIEVENT 0x040
173 #define NVREG_IRQSTAT_MASK 0x1ff
174 NvRegIrqMask = 0x004,
175 #define NVREG_IRQ_RX_ERROR 0x0001
176 #define NVREG_IRQ_RX 0x0002
177 #define NVREG_IRQ_RX_NOBUF 0x0004
178 #define NVREG_IRQ_TX_ERR 0x0008
179 #define NVREG_IRQ_TX_OK 0x0010
180 #define NVREG_IRQ_TIMER 0x0020
181 #define NVREG_IRQ_LINK 0x0040
182 #define NVREG_IRQ_RX_FORCED 0x0080
183 #define NVREG_IRQ_TX_FORCED 0x0100
184 #define NVREG_IRQMASK_THROUGHPUT 0x00df
185 #define NVREG_IRQMASK_CPU 0x0040
186 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
187 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
188 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
189
190 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
191 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
192 NVREG_IRQ_TX_FORCED))
193
194 NvRegUnknownSetupReg6 = 0x008,
195 #define NVREG_UNKSETUP6_VAL 3
196
197 /*
198 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
199 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
200 */
201 NvRegPollingInterval = 0x00c,
202 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
203 #define NVREG_POLL_DEFAULT_CPU 13
204 NvRegMSIMap0 = 0x020,
205 NvRegMSIMap1 = 0x024,
206 NvRegMSIIrqMask = 0x030,
207 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
208 NvRegMisc1 = 0x080,
209 #define NVREG_MISC1_PAUSE_TX 0x01
210 #define NVREG_MISC1_HD 0x02
211 #define NVREG_MISC1_FORCE 0x3b0f3c
212
213 NvRegMacReset = 0x3c,
214 #define NVREG_MAC_RESET_ASSERT 0x0F3
215 NvRegTransmitterControl = 0x084,
216 #define NVREG_XMITCTL_START 0x01
217 NvRegTransmitterStatus = 0x088,
218 #define NVREG_XMITSTAT_BUSY 0x01
219
220 NvRegPacketFilterFlags = 0x8c,
221 #define NVREG_PFF_PAUSE_RX 0x08
222 #define NVREG_PFF_ALWAYS 0x7F0000
223 #define NVREG_PFF_PROMISC 0x80
224 #define NVREG_PFF_MYADDR 0x20
225
226 NvRegOffloadConfig = 0x90,
227 #define NVREG_OFFLOAD_HOMEPHY 0x601
228 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
229 NvRegReceiverControl = 0x094,
230 #define NVREG_RCVCTL_START 0x01
231 NvRegReceiverStatus = 0x98,
232 #define NVREG_RCVSTAT_BUSY 0x01
233
234 NvRegRandomSeed = 0x9c,
235 #define NVREG_RNDSEED_MASK 0x00ff
236 #define NVREG_RNDSEED_FORCE 0x7f00
237 #define NVREG_RNDSEED_FORCE2 0x2d00
238 #define NVREG_RNDSEED_FORCE3 0x7400
239
240 NvRegUnknownSetupReg1 = 0xA0,
241 #define NVREG_UNKSETUP1_VAL 0x16070f
242 NvRegUnknownSetupReg2 = 0xA4,
243 #define NVREG_UNKSETUP2_VAL 0x16
244 NvRegMacAddrA = 0xA8,
245 NvRegMacAddrB = 0xAC,
246 NvRegMulticastAddrA = 0xB0,
247 #define NVREG_MCASTADDRA_FORCE 0x01
248 NvRegMulticastAddrB = 0xB4,
249 NvRegMulticastMaskA = 0xB8,
250 NvRegMulticastMaskB = 0xBC,
251
252 NvRegPhyInterface = 0xC0,
253 #define PHY_RGMII 0x10000000
254
255 NvRegTxRingPhysAddr = 0x100,
256 NvRegRxRingPhysAddr = 0x104,
257 NvRegRingSizes = 0x108,
258 #define NVREG_RINGSZ_TXSHIFT 0
259 #define NVREG_RINGSZ_RXSHIFT 16
260 NvRegUnknownTransmitterReg = 0x10c,
261 NvRegLinkSpeed = 0x110,
262 #define NVREG_LINKSPEED_FORCE 0x10000
263 #define NVREG_LINKSPEED_10 1000
264 #define NVREG_LINKSPEED_100 100
265 #define NVREG_LINKSPEED_1000 50
266 #define NVREG_LINKSPEED_MASK (0xFFF)
267 NvRegUnknownSetupReg5 = 0x130,
268 #define NVREG_UNKSETUP5_BIT31 (1<<31)
269 NvRegUnknownSetupReg3 = 0x13c,
270 #define NVREG_UNKSETUP3_VAL1 0x200010
271 NvRegTxRxControl = 0x144,
272 #define NVREG_TXRXCTL_KICK 0x0001
273 #define NVREG_TXRXCTL_BIT1 0x0002
274 #define NVREG_TXRXCTL_BIT2 0x0004
275 #define NVREG_TXRXCTL_IDLE 0x0008
276 #define NVREG_TXRXCTL_RESET 0x0010
277 #define NVREG_TXRXCTL_RXCHECK 0x0400
278 #define NVREG_TXRXCTL_DESC_1 0
279 #define NVREG_TXRXCTL_DESC_2 0x02100
280 #define NVREG_TXRXCTL_DESC_3 0x02200
281 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
282 #define NVREG_TXRXCTL_VLANINS 0x00080
283 NvRegTxRingPhysAddrHigh = 0x148,
284 NvRegRxRingPhysAddrHigh = 0x14C,
285 NvRegTxPauseFrame = 0x170,
286 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
287 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
288 NvRegMIIStatus = 0x180,
289 #define NVREG_MIISTAT_ERROR 0x0001
290 #define NVREG_MIISTAT_LINKCHANGE 0x0008
291 #define NVREG_MIISTAT_MASK 0x000f
292 #define NVREG_MIISTAT_MASK2 0x000f
293 NvRegUnknownSetupReg4 = 0x184,
294 #define NVREG_UNKSETUP4_VAL 8
295
296 NvRegAdapterControl = 0x188,
297 #define NVREG_ADAPTCTL_START 0x02
298 #define NVREG_ADAPTCTL_LINKUP 0x04
299 #define NVREG_ADAPTCTL_PHYVALID 0x40000
300 #define NVREG_ADAPTCTL_RUNNING 0x100000
301 #define NVREG_ADAPTCTL_PHYSHIFT 24
302 NvRegMIISpeed = 0x18c,
303 #define NVREG_MIISPEED_BIT8 (1<<8)
304 #define NVREG_MIIDELAY 5
305 NvRegMIIControl = 0x190,
306 #define NVREG_MIICTL_INUSE 0x08000
307 #define NVREG_MIICTL_WRITE 0x00400
308 #define NVREG_MIICTL_ADDRSHIFT 5
309 NvRegMIIData = 0x194,
310 NvRegWakeUpFlags = 0x200,
311 #define NVREG_WAKEUPFLAGS_VAL 0x7770
312 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
313 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
314 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
315 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
316 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
317 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
318 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
319 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
320 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
321 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
322
323 NvRegPatternCRC = 0x204,
324 NvRegPatternMask = 0x208,
325 NvRegPowerCap = 0x268,
326 #define NVREG_POWERCAP_D3SUPP (1<<30)
327 #define NVREG_POWERCAP_D2SUPP (1<<26)
328 #define NVREG_POWERCAP_D1SUPP (1<<25)
329 NvRegPowerState = 0x26c,
330 #define NVREG_POWERSTATE_POWEREDUP 0x8000
331 #define NVREG_POWERSTATE_VALID 0x0100
332 #define NVREG_POWERSTATE_MASK 0x0003
333 #define NVREG_POWERSTATE_D0 0x0000
334 #define NVREG_POWERSTATE_D1 0x0001
335 #define NVREG_POWERSTATE_D2 0x0002
336 #define NVREG_POWERSTATE_D3 0x0003
337 NvRegTxCnt = 0x280,
338 NvRegTxZeroReXmt = 0x284,
339 NvRegTxOneReXmt = 0x288,
340 NvRegTxManyReXmt = 0x28c,
341 NvRegTxLateCol = 0x290,
342 NvRegTxUnderflow = 0x294,
343 NvRegTxLossCarrier = 0x298,
344 NvRegTxExcessDef = 0x29c,
345 NvRegTxRetryErr = 0x2a0,
346 NvRegRxFrameErr = 0x2a4,
347 NvRegRxExtraByte = 0x2a8,
348 NvRegRxLateCol = 0x2ac,
349 NvRegRxRunt = 0x2b0,
350 NvRegRxFrameTooLong = 0x2b4,
351 NvRegRxOverflow = 0x2b8,
352 NvRegRxFCSErr = 0x2bc,
353 NvRegRxFrameAlignErr = 0x2c0,
354 NvRegRxLenErr = 0x2c4,
355 NvRegRxUnicast = 0x2c8,
356 NvRegRxMulticast = 0x2cc,
357 NvRegRxBroadcast = 0x2d0,
358 NvRegTxDef = 0x2d4,
359 NvRegTxFrame = 0x2d8,
360 NvRegRxCnt = 0x2dc,
361 NvRegTxPause = 0x2e0,
362 NvRegRxPause = 0x2e4,
363 NvRegRxDropFrame = 0x2e8,
364 NvRegVlanControl = 0x300,
365 #define NVREG_VLANCONTROL_ENABLE 0x2000
366 NvRegMSIXMap0 = 0x3e0,
367 NvRegMSIXMap1 = 0x3e4,
368 NvRegMSIXIrqStatus = 0x3f0,
369
370 NvRegPowerState2 = 0x600,
371 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
372 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
373 };
374
375 /* Big endian: should work, but is untested */
376 struct ring_desc {
377 u32 PacketBuffer;
378 u32 FlagLen;
379 };
380
381 struct ring_desc_ex {
382 u32 PacketBufferHigh;
383 u32 PacketBufferLow;
384 u32 TxVlan;
385 u32 FlagLen;
386 };
387
388 typedef union _ring_type {
389 struct ring_desc* orig;
390 struct ring_desc_ex* ex;
391 } ring_type;
392
393 #define FLAG_MASK_V1 0xffff0000
394 #define FLAG_MASK_V2 0xffffc000
395 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
396 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
397
398 #define NV_TX_LASTPACKET (1<<16)
399 #define NV_TX_RETRYERROR (1<<19)
400 #define NV_TX_FORCED_INTERRUPT (1<<24)
401 #define NV_TX_DEFERRED (1<<26)
402 #define NV_TX_CARRIERLOST (1<<27)
403 #define NV_TX_LATECOLLISION (1<<28)
404 #define NV_TX_UNDERFLOW (1<<29)
405 #define NV_TX_ERROR (1<<30)
406 #define NV_TX_VALID (1<<31)
407
408 #define NV_TX2_LASTPACKET (1<<29)
409 #define NV_TX2_RETRYERROR (1<<18)
410 #define NV_TX2_FORCED_INTERRUPT (1<<30)
411 #define NV_TX2_DEFERRED (1<<25)
412 #define NV_TX2_CARRIERLOST (1<<26)
413 #define NV_TX2_LATECOLLISION (1<<27)
414 #define NV_TX2_UNDERFLOW (1<<28)
415 /* error and valid are the same for both */
416 #define NV_TX2_ERROR (1<<30)
417 #define NV_TX2_VALID (1<<31)
418 #define NV_TX2_TSO (1<<28)
419 #define NV_TX2_TSO_SHIFT 14
420 #define NV_TX2_TSO_MAX_SHIFT 14
421 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
422 #define NV_TX2_CHECKSUM_L3 (1<<27)
423 #define NV_TX2_CHECKSUM_L4 (1<<26)
424
425 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
426
427 #define NV_RX_DESCRIPTORVALID (1<<16)
428 #define NV_RX_MISSEDFRAME (1<<17)
429 #define NV_RX_SUBSTRACT1 (1<<18)
430 #define NV_RX_ERROR1 (1<<23)
431 #define NV_RX_ERROR2 (1<<24)
432 #define NV_RX_ERROR3 (1<<25)
433 #define NV_RX_ERROR4 (1<<26)
434 #define NV_RX_CRCERR (1<<27)
435 #define NV_RX_OVERFLOW (1<<28)
436 #define NV_RX_FRAMINGERR (1<<29)
437 #define NV_RX_ERROR (1<<30)
438 #define NV_RX_AVAIL (1<<31)
439
440 #define NV_RX2_CHECKSUMMASK (0x1C000000)
441 #define NV_RX2_CHECKSUMOK1 (0x10000000)
442 #define NV_RX2_CHECKSUMOK2 (0x14000000)
443 #define NV_RX2_CHECKSUMOK3 (0x18000000)
444 #define NV_RX2_DESCRIPTORVALID (1<<29)
445 #define NV_RX2_SUBSTRACT1 (1<<25)
446 #define NV_RX2_ERROR1 (1<<18)
447 #define NV_RX2_ERROR2 (1<<19)
448 #define NV_RX2_ERROR3 (1<<20)
449 #define NV_RX2_ERROR4 (1<<21)
450 #define NV_RX2_CRCERR (1<<22)
451 #define NV_RX2_OVERFLOW (1<<23)
452 #define NV_RX2_FRAMINGERR (1<<24)
453 /* error and avail are the same for both */
454 #define NV_RX2_ERROR (1<<30)
455 #define NV_RX2_AVAIL (1<<31)
456
457 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
458 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
459
460 /* Miscelaneous hardware related defines: */
461 #define NV_PCI_REGSZ_VER1 0x270
462 #define NV_PCI_REGSZ_VER2 0x604
463
464 /* various timeout delays: all in usec */
465 #define NV_TXRX_RESET_DELAY 4
466 #define NV_TXSTOP_DELAY1 10
467 #define NV_TXSTOP_DELAY1MAX 500000
468 #define NV_TXSTOP_DELAY2 100
469 #define NV_RXSTOP_DELAY1 10
470 #define NV_RXSTOP_DELAY1MAX 500000
471 #define NV_RXSTOP_DELAY2 100
472 #define NV_SETUP5_DELAY 5
473 #define NV_SETUP5_DELAYMAX 50000
474 #define NV_POWERUP_DELAY 5
475 #define NV_POWERUP_DELAYMAX 5000
476 #define NV_MIIBUSY_DELAY 50
477 #define NV_MIIPHY_DELAY 10
478 #define NV_MIIPHY_DELAYMAX 10000
479 #define NV_MAC_RESET_DELAY 64
480
481 #define NV_WAKEUPPATTERNS 5
482 #define NV_WAKEUPMASKENTRIES 4
483
484 /* General driver defaults */
485 #define NV_WATCHDOG_TIMEO (5*HZ)
486
487 #define RX_RING_DEFAULT 128
488 #define TX_RING_DEFAULT 256
489 #define RX_RING_MIN 128
490 #define TX_RING_MIN 64
491 #define RING_MAX_DESC_VER_1 1024
492 #define RING_MAX_DESC_VER_2_3 16384
493 /*
494 * Difference between the get and put pointers for the tx ring.
495 * This is used to throttle the amount of data outstanding in the
496 * tx ring.
497 */
498 #define TX_LIMIT_DIFFERENCE 1
499
500 /* rx/tx mac addr + type + vlan + align + slack*/
501 #define NV_RX_HEADERS (64)
502 /* even more slack. */
503 #define NV_RX_ALLOC_PAD (64)
504
505 /* maximum mtu size */
506 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
507 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
508
509 #define OOM_REFILL (1+HZ/20)
510 #define POLL_WAIT (1+HZ/100)
511 #define LINK_TIMEOUT (3*HZ)
512 #define STATS_INTERVAL (10*HZ)
513
514 /*
515 * desc_ver values:
516 * The nic supports three different descriptor types:
517 * - DESC_VER_1: Original
518 * - DESC_VER_2: support for jumbo frames.
519 * - DESC_VER_3: 64-bit format.
520 */
521 #define DESC_VER_1 1
522 #define DESC_VER_2 2
523 #define DESC_VER_3 3
524
525 /* PHY defines */
526 #define PHY_OUI_MARVELL 0x5043
527 #define PHY_OUI_CICADA 0x03f1
528 #define PHYID1_OUI_MASK 0x03ff
529 #define PHYID1_OUI_SHFT 6
530 #define PHYID2_OUI_MASK 0xfc00
531 #define PHYID2_OUI_SHFT 10
532 #define PHY_INIT1 0x0f000
533 #define PHY_INIT2 0x0e00
534 #define PHY_INIT3 0x01000
535 #define PHY_INIT4 0x0200
536 #define PHY_INIT5 0x0004
537 #define PHY_INIT6 0x02000
538 #define PHY_GIGABIT 0x0100
539
540 #define PHY_TIMEOUT 0x1
541 #define PHY_ERROR 0x2
542
543 #define PHY_100 0x1
544 #define PHY_1000 0x2
545 #define PHY_HALF 0x100
546
547 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
548 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
549 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
550 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
551 #define NV_PAUSEFRAME_RX_REQ 0x0010
552 #define NV_PAUSEFRAME_TX_REQ 0x0020
553 #define NV_PAUSEFRAME_AUTONEG 0x0040
554
555 /* MSI/MSI-X defines */
556 #define NV_MSI_X_MAX_VECTORS 8
557 #define NV_MSI_X_VECTORS_MASK 0x000f
558 #define NV_MSI_CAPABLE 0x0010
559 #define NV_MSI_X_CAPABLE 0x0020
560 #define NV_MSI_ENABLED 0x0040
561 #define NV_MSI_X_ENABLED 0x0080
562
563 #define NV_MSI_X_VECTOR_ALL 0x0
564 #define NV_MSI_X_VECTOR_RX 0x0
565 #define NV_MSI_X_VECTOR_TX 0x1
566 #define NV_MSI_X_VECTOR_OTHER 0x2
567
568 /* statistics */
569 struct nv_ethtool_str {
570 char name[ETH_GSTRING_LEN];
571 };
572
573 static const struct nv_ethtool_str nv_estats_str[] = {
574 { "tx_bytes" },
575 { "tx_zero_rexmt" },
576 { "tx_one_rexmt" },
577 { "tx_many_rexmt" },
578 { "tx_late_collision" },
579 { "tx_fifo_errors" },
580 { "tx_carrier_errors" },
581 { "tx_excess_deferral" },
582 { "tx_retry_error" },
583 { "tx_deferral" },
584 { "tx_packets" },
585 { "tx_pause" },
586 { "rx_frame_error" },
587 { "rx_extra_byte" },
588 { "rx_late_collision" },
589 { "rx_runt" },
590 { "rx_frame_too_long" },
591 { "rx_over_errors" },
592 { "rx_crc_errors" },
593 { "rx_frame_align_error" },
594 { "rx_length_error" },
595 { "rx_unicast" },
596 { "rx_multicast" },
597 { "rx_broadcast" },
598 { "rx_bytes" },
599 { "rx_pause" },
600 { "rx_drop_frame" },
601 { "rx_packets" },
602 { "rx_errors_total" }
603 };
604
605 struct nv_ethtool_stats {
606 u64 tx_bytes;
607 u64 tx_zero_rexmt;
608 u64 tx_one_rexmt;
609 u64 tx_many_rexmt;
610 u64 tx_late_collision;
611 u64 tx_fifo_errors;
612 u64 tx_carrier_errors;
613 u64 tx_excess_deferral;
614 u64 tx_retry_error;
615 u64 tx_deferral;
616 u64 tx_packets;
617 u64 tx_pause;
618 u64 rx_frame_error;
619 u64 rx_extra_byte;
620 u64 rx_late_collision;
621 u64 rx_runt;
622 u64 rx_frame_too_long;
623 u64 rx_over_errors;
624 u64 rx_crc_errors;
625 u64 rx_frame_align_error;
626 u64 rx_length_error;
627 u64 rx_unicast;
628 u64 rx_multicast;
629 u64 rx_broadcast;
630 u64 rx_bytes;
631 u64 rx_pause;
632 u64 rx_drop_frame;
633 u64 rx_packets;
634 u64 rx_errors_total;
635 };
636
637 /*
638 * SMP locking:
639 * All hardware access under dev->priv->lock, except the performance
640 * critical parts:
641 * - rx is (pseudo-) lockless: it relies on the single-threading provided
642 * by the arch code for interrupts.
643 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
644 * needs dev->priv->lock :-(
645 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
646 */
647
648 /* in dev: base, irq */
649 struct fe_priv {
650 spinlock_t lock;
651
652 /* General data:
653 * Locking: spin_lock(&np->lock); */
654 struct net_device_stats stats;
655 struct nv_ethtool_stats estats;
656 int in_shutdown;
657 u32 linkspeed;
658 int duplex;
659 int autoneg;
660 int fixed_mode;
661 int phyaddr;
662 int wolenabled;
663 unsigned int phy_oui;
664 u16 gigabit;
665
666 /* General data: RO fields */
667 dma_addr_t ring_addr;
668 struct pci_dev *pci_dev;
669 u32 orig_mac[2];
670 u32 irqmask;
671 u32 desc_ver;
672 u32 txrxctl_bits;
673 u32 vlanctl_bits;
674 u32 driver_data;
675 u32 register_size;
676
677 void __iomem *base;
678
679 /* rx specific fields.
680 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
681 */
682 ring_type rx_ring;
683 unsigned int cur_rx, refill_rx;
684 struct sk_buff **rx_skbuff;
685 dma_addr_t *rx_dma;
686 unsigned int rx_buf_sz;
687 unsigned int pkt_limit;
688 struct timer_list oom_kick;
689 struct timer_list nic_poll;
690 struct timer_list stats_poll;
691 u32 nic_poll_irq;
692 int rx_ring_size;
693
694 /* media detection workaround.
695 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
696 */
697 int need_linktimer;
698 unsigned long link_timeout;
699 /*
700 * tx specific fields.
701 */
702 ring_type tx_ring;
703 unsigned int next_tx, nic_tx;
704 struct sk_buff **tx_skbuff;
705 dma_addr_t *tx_dma;
706 unsigned int *tx_dma_len;
707 u32 tx_flags;
708 int tx_ring_size;
709 int tx_limit_start;
710 int tx_limit_stop;
711
712 /* vlan fields */
713 struct vlan_group *vlangrp;
714
715 /* msi/msi-x fields */
716 u32 msi_flags;
717 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
718
719 /* flow control */
720 u32 pause_flags;
721 };
722
723 /*
724 * Maximum number of loops until we assume that a bit in the irq mask
725 * is stuck. Overridable with module param.
726 */
727 static int max_interrupt_work = 5;
728
729 /*
730 * Optimization can be either throuput mode or cpu mode
731 *
732 * Throughput Mode: Every tx and rx packet will generate an interrupt.
733 * CPU Mode: Interrupts are controlled by a timer.
734 */
735 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
736 #define NV_OPTIMIZATION_MODE_CPU 1
737 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
738
739 /*
740 * Poll interval for timer irq
741 *
742 * This interval determines how frequent an interrupt is generated.
743 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
744 * Min = 0, and Max = 65535
745 */
746 static int poll_interval = -1;
747
748 /*
749 * Disable MSI interrupts
750 */
751 static int disable_msi = 0;
752
753 /*
754 * Disable MSIX interrupts
755 */
756 static int disable_msix = 0;
757
758 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
759 {
760 return netdev_priv(dev);
761 }
762
763 static inline u8 __iomem *get_hwbase(struct net_device *dev)
764 {
765 return ((struct fe_priv *)netdev_priv(dev))->base;
766 }
767
768 static inline void pci_push(u8 __iomem *base)
769 {
770 /* force out pending posted writes */
771 readl(base);
772 }
773
774 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
775 {
776 return le32_to_cpu(prd->FlagLen)
777 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
778 }
779
780 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
781 {
782 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
783 }
784
785 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
786 int delay, int delaymax, const char *msg)
787 {
788 u8 __iomem *base = get_hwbase(dev);
789
790 pci_push(base);
791 do {
792 udelay(delay);
793 delaymax -= delay;
794 if (delaymax < 0) {
795 if (msg)
796 printk(msg);
797 return 1;
798 }
799 } while ((readl(base + offset) & mask) != target);
800 return 0;
801 }
802
803 #define NV_SETUP_RX_RING 0x01
804 #define NV_SETUP_TX_RING 0x02
805
806 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
807 {
808 struct fe_priv *np = get_nvpriv(dev);
809 u8 __iomem *base = get_hwbase(dev);
810
811 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
812 if (rxtx_flags & NV_SETUP_RX_RING) {
813 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
814 }
815 if (rxtx_flags & NV_SETUP_TX_RING) {
816 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
817 }
818 } else {
819 if (rxtx_flags & NV_SETUP_RX_RING) {
820 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
821 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
822 }
823 if (rxtx_flags & NV_SETUP_TX_RING) {
824 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
825 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
826 }
827 }
828 }
829
830 static void free_rings(struct net_device *dev)
831 {
832 struct fe_priv *np = get_nvpriv(dev);
833
834 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
835 if(np->rx_ring.orig)
836 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
837 np->rx_ring.orig, np->ring_addr);
838 } else {
839 if (np->rx_ring.ex)
840 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
841 np->rx_ring.ex, np->ring_addr);
842 }
843 if (np->rx_skbuff)
844 kfree(np->rx_skbuff);
845 if (np->rx_dma)
846 kfree(np->rx_dma);
847 if (np->tx_skbuff)
848 kfree(np->tx_skbuff);
849 if (np->tx_dma)
850 kfree(np->tx_dma);
851 if (np->tx_dma_len)
852 kfree(np->tx_dma_len);
853 }
854
855 static int using_multi_irqs(struct net_device *dev)
856 {
857 struct fe_priv *np = get_nvpriv(dev);
858
859 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
860 ((np->msi_flags & NV_MSI_X_ENABLED) &&
861 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
862 return 0;
863 else
864 return 1;
865 }
866
867 static void nv_enable_irq(struct net_device *dev)
868 {
869 struct fe_priv *np = get_nvpriv(dev);
870
871 if (!using_multi_irqs(dev)) {
872 if (np->msi_flags & NV_MSI_X_ENABLED)
873 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
874 else
875 enable_irq(dev->irq);
876 } else {
877 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
878 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
879 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
880 }
881 }
882
883 static void nv_disable_irq(struct net_device *dev)
884 {
885 struct fe_priv *np = get_nvpriv(dev);
886
887 if (!using_multi_irqs(dev)) {
888 if (np->msi_flags & NV_MSI_X_ENABLED)
889 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
890 else
891 disable_irq(dev->irq);
892 } else {
893 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
894 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
895 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
896 }
897 }
898
899 /* In MSIX mode, a write to irqmask behaves as XOR */
900 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
901 {
902 u8 __iomem *base = get_hwbase(dev);
903
904 writel(mask, base + NvRegIrqMask);
905 }
906
907 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
908 {
909 struct fe_priv *np = get_nvpriv(dev);
910 u8 __iomem *base = get_hwbase(dev);
911
912 if (np->msi_flags & NV_MSI_X_ENABLED) {
913 writel(mask, base + NvRegIrqMask);
914 } else {
915 if (np->msi_flags & NV_MSI_ENABLED)
916 writel(0, base + NvRegMSIIrqMask);
917 writel(0, base + NvRegIrqMask);
918 }
919 }
920
921 #define MII_READ (-1)
922 /* mii_rw: read/write a register on the PHY.
923 *
924 * Caller must guarantee serialization
925 */
926 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
927 {
928 u8 __iomem *base = get_hwbase(dev);
929 u32 reg;
930 int retval;
931
932 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
933
934 reg = readl(base + NvRegMIIControl);
935 if (reg & NVREG_MIICTL_INUSE) {
936 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
937 udelay(NV_MIIBUSY_DELAY);
938 }
939
940 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
941 if (value != MII_READ) {
942 writel(value, base + NvRegMIIData);
943 reg |= NVREG_MIICTL_WRITE;
944 }
945 writel(reg, base + NvRegMIIControl);
946
947 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
948 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
949 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
950 dev->name, miireg, addr);
951 retval = -1;
952 } else if (value != MII_READ) {
953 /* it was a write operation - fewer failures are detectable */
954 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
955 dev->name, value, miireg, addr);
956 retval = 0;
957 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
958 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
959 dev->name, miireg, addr);
960 retval = -1;
961 } else {
962 retval = readl(base + NvRegMIIData);
963 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
964 dev->name, miireg, addr, retval);
965 }
966
967 return retval;
968 }
969
970 static int phy_reset(struct net_device *dev)
971 {
972 struct fe_priv *np = netdev_priv(dev);
973 u32 miicontrol;
974 unsigned int tries = 0;
975
976 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
977 miicontrol |= BMCR_RESET;
978 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
979 return -1;
980 }
981
982 /* wait for 500ms */
983 msleep(500);
984
985 /* must wait till reset is deasserted */
986 while (miicontrol & BMCR_RESET) {
987 msleep(10);
988 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
989 /* FIXME: 100 tries seem excessive */
990 if (tries++ > 100)
991 return -1;
992 }
993 return 0;
994 }
995
996 static int phy_init(struct net_device *dev)
997 {
998 struct fe_priv *np = get_nvpriv(dev);
999 u8 __iomem *base = get_hwbase(dev);
1000 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1001
1002 /* set advertise register */
1003 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1004 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1005 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1006 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1007 return PHY_ERROR;
1008 }
1009
1010 /* get phy interface type */
1011 phyinterface = readl(base + NvRegPhyInterface);
1012
1013 /* see if gigabit phy */
1014 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1015 if (mii_status & PHY_GIGABIT) {
1016 np->gigabit = PHY_GIGABIT;
1017 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1018 mii_control_1000 &= ~ADVERTISE_1000HALF;
1019 if (phyinterface & PHY_RGMII)
1020 mii_control_1000 |= ADVERTISE_1000FULL;
1021 else
1022 mii_control_1000 &= ~ADVERTISE_1000FULL;
1023
1024 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1025 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1026 return PHY_ERROR;
1027 }
1028 }
1029 else
1030 np->gigabit = 0;
1031
1032 /* reset the phy */
1033 if (phy_reset(dev)) {
1034 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1035 return PHY_ERROR;
1036 }
1037
1038 /* phy vendor specific configuration */
1039 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1040 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1041 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1042 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1043 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1044 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1045 return PHY_ERROR;
1046 }
1047 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1048 phy_reserved |= PHY_INIT5;
1049 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1050 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1051 return PHY_ERROR;
1052 }
1053 }
1054 if (np->phy_oui == PHY_OUI_CICADA) {
1055 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1056 phy_reserved |= PHY_INIT6;
1057 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1058 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1059 return PHY_ERROR;
1060 }
1061 }
1062 /* some phys clear out pause advertisment on reset, set it back */
1063 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1064
1065 /* restart auto negotiation */
1066 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1067 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1068 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1069 return PHY_ERROR;
1070 }
1071
1072 return 0;
1073 }
1074
1075 static void nv_start_rx(struct net_device *dev)
1076 {
1077 struct fe_priv *np = netdev_priv(dev);
1078 u8 __iomem *base = get_hwbase(dev);
1079
1080 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1081 /* Already running? Stop it. */
1082 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1083 writel(0, base + NvRegReceiverControl);
1084 pci_push(base);
1085 }
1086 writel(np->linkspeed, base + NvRegLinkSpeed);
1087 pci_push(base);
1088 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1089 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1090 dev->name, np->duplex, np->linkspeed);
1091 pci_push(base);
1092 }
1093
1094 static void nv_stop_rx(struct net_device *dev)
1095 {
1096 u8 __iomem *base = get_hwbase(dev);
1097
1098 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1099 writel(0, base + NvRegReceiverControl);
1100 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1101 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1102 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1103
1104 udelay(NV_RXSTOP_DELAY2);
1105 writel(0, base + NvRegLinkSpeed);
1106 }
1107
1108 static void nv_start_tx(struct net_device *dev)
1109 {
1110 u8 __iomem *base = get_hwbase(dev);
1111
1112 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1113 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1114 pci_push(base);
1115 }
1116
1117 static void nv_stop_tx(struct net_device *dev)
1118 {
1119 u8 __iomem *base = get_hwbase(dev);
1120
1121 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1122 writel(0, base + NvRegTransmitterControl);
1123 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1124 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1125 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1126
1127 udelay(NV_TXSTOP_DELAY2);
1128 writel(0, base + NvRegUnknownTransmitterReg);
1129 }
1130
1131 static void nv_txrx_reset(struct net_device *dev)
1132 {
1133 struct fe_priv *np = netdev_priv(dev);
1134 u8 __iomem *base = get_hwbase(dev);
1135
1136 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1137 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1138 pci_push(base);
1139 udelay(NV_TXRX_RESET_DELAY);
1140 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1141 pci_push(base);
1142 }
1143
1144 static void nv_mac_reset(struct net_device *dev)
1145 {
1146 struct fe_priv *np = netdev_priv(dev);
1147 u8 __iomem *base = get_hwbase(dev);
1148
1149 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1150 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1151 pci_push(base);
1152 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1153 pci_push(base);
1154 udelay(NV_MAC_RESET_DELAY);
1155 writel(0, base + NvRegMacReset);
1156 pci_push(base);
1157 udelay(NV_MAC_RESET_DELAY);
1158 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1159 pci_push(base);
1160 }
1161
1162 /*
1163 * nv_get_stats: dev->get_stats function
1164 * Get latest stats value from the nic.
1165 * Called with read_lock(&dev_base_lock) held for read -
1166 * only synchronized against unregister_netdevice.
1167 */
1168 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1169 {
1170 struct fe_priv *np = netdev_priv(dev);
1171
1172 /* It seems that the nic always generates interrupts and doesn't
1173 * accumulate errors internally. Thus the current values in np->stats
1174 * are already up to date.
1175 */
1176 return &np->stats;
1177 }
1178
1179 /*
1180 * nv_alloc_rx: fill rx ring entries.
1181 * Return 1 if the allocations for the skbs failed and the
1182 * rx engine is without Available descriptors
1183 */
1184 static int nv_alloc_rx(struct net_device *dev)
1185 {
1186 struct fe_priv *np = netdev_priv(dev);
1187 unsigned int refill_rx = np->refill_rx;
1188 int nr;
1189
1190 while (np->cur_rx != refill_rx) {
1191 struct sk_buff *skb;
1192
1193 nr = refill_rx % np->rx_ring_size;
1194 if (np->rx_skbuff[nr] == NULL) {
1195
1196 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1197 if (!skb)
1198 break;
1199
1200 skb->dev = dev;
1201 np->rx_skbuff[nr] = skb;
1202 } else {
1203 skb = np->rx_skbuff[nr];
1204 }
1205 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1206 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1207 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1208 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1209 wmb();
1210 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1211 } else {
1212 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1213 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1214 wmb();
1215 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1216 }
1217 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1218 dev->name, refill_rx);
1219 refill_rx++;
1220 }
1221 np->refill_rx = refill_rx;
1222 if (np->cur_rx - refill_rx == np->rx_ring_size)
1223 return 1;
1224 return 0;
1225 }
1226
1227 static void nv_do_rx_refill(unsigned long data)
1228 {
1229 struct net_device *dev = (struct net_device *) data;
1230 struct fe_priv *np = netdev_priv(dev);
1231
1232 if (!using_multi_irqs(dev)) {
1233 if (np->msi_flags & NV_MSI_X_ENABLED)
1234 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1235 else
1236 disable_irq(dev->irq);
1237 } else {
1238 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1239 }
1240 if (nv_alloc_rx(dev)) {
1241 spin_lock_irq(&np->lock);
1242 if (!np->in_shutdown)
1243 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1244 spin_unlock_irq(&np->lock);
1245 }
1246 if (!using_multi_irqs(dev)) {
1247 if (np->msi_flags & NV_MSI_X_ENABLED)
1248 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1249 else
1250 enable_irq(dev->irq);
1251 } else {
1252 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1253 }
1254 }
1255
1256 static void nv_init_rx(struct net_device *dev)
1257 {
1258 struct fe_priv *np = netdev_priv(dev);
1259 int i;
1260
1261 np->cur_rx = np->rx_ring_size;
1262 np->refill_rx = 0;
1263 for (i = 0; i < np->rx_ring_size; i++)
1264 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1265 np->rx_ring.orig[i].FlagLen = 0;
1266 else
1267 np->rx_ring.ex[i].FlagLen = 0;
1268 }
1269
1270 static void nv_init_tx(struct net_device *dev)
1271 {
1272 struct fe_priv *np = netdev_priv(dev);
1273 int i;
1274
1275 np->next_tx = np->nic_tx = 0;
1276 for (i = 0; i < np->tx_ring_size; i++) {
1277 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1278 np->tx_ring.orig[i].FlagLen = 0;
1279 else
1280 np->tx_ring.ex[i].FlagLen = 0;
1281 np->tx_skbuff[i] = NULL;
1282 np->tx_dma[i] = 0;
1283 }
1284 }
1285
1286 static int nv_init_ring(struct net_device *dev)
1287 {
1288 nv_init_tx(dev);
1289 nv_init_rx(dev);
1290 return nv_alloc_rx(dev);
1291 }
1292
1293 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1294 {
1295 struct fe_priv *np = netdev_priv(dev);
1296
1297 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1298 dev->name, skbnr);
1299
1300 if (np->tx_dma[skbnr]) {
1301 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1302 np->tx_dma_len[skbnr],
1303 PCI_DMA_TODEVICE);
1304 np->tx_dma[skbnr] = 0;
1305 }
1306
1307 if (np->tx_skbuff[skbnr]) {
1308 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1309 np->tx_skbuff[skbnr] = NULL;
1310 return 1;
1311 } else {
1312 return 0;
1313 }
1314 }
1315
1316 static void nv_drain_tx(struct net_device *dev)
1317 {
1318 struct fe_priv *np = netdev_priv(dev);
1319 unsigned int i;
1320
1321 for (i = 0; i < np->tx_ring_size; i++) {
1322 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1323 np->tx_ring.orig[i].FlagLen = 0;
1324 else
1325 np->tx_ring.ex[i].FlagLen = 0;
1326 if (nv_release_txskb(dev, i))
1327 np->stats.tx_dropped++;
1328 }
1329 }
1330
1331 static void nv_drain_rx(struct net_device *dev)
1332 {
1333 struct fe_priv *np = netdev_priv(dev);
1334 int i;
1335 for (i = 0; i < np->rx_ring_size; i++) {
1336 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1337 np->rx_ring.orig[i].FlagLen = 0;
1338 else
1339 np->rx_ring.ex[i].FlagLen = 0;
1340 wmb();
1341 if (np->rx_skbuff[i]) {
1342 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1343 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1344 PCI_DMA_FROMDEVICE);
1345 dev_kfree_skb(np->rx_skbuff[i]);
1346 np->rx_skbuff[i] = NULL;
1347 }
1348 }
1349 }
1350
1351 static void drain_ring(struct net_device *dev)
1352 {
1353 nv_drain_tx(dev);
1354 nv_drain_rx(dev);
1355 }
1356
1357 /*
1358 * nv_start_xmit: dev->hard_start_xmit function
1359 * Called with dev->xmit_lock held.
1360 */
1361 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1362 {
1363 struct fe_priv *np = netdev_priv(dev);
1364 u32 tx_flags = 0;
1365 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1366 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1367 unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1368 unsigned int start_nr = np->next_tx % np->tx_ring_size;
1369 unsigned int i;
1370 u32 offset = 0;
1371 u32 bcnt;
1372 u32 size = skb->len-skb->data_len;
1373 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1374 u32 tx_flags_vlan = 0;
1375
1376 /* add fragments to entries count */
1377 for (i = 0; i < fragments; i++) {
1378 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1379 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1380 }
1381
1382 spin_lock_irq(&np->lock);
1383
1384 if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1385 spin_unlock_irq(&np->lock);
1386 netif_stop_queue(dev);
1387 return NETDEV_TX_BUSY;
1388 }
1389
1390 /* setup the header buffer */
1391 do {
1392 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1393 nr = (nr + 1) % np->tx_ring_size;
1394
1395 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1396 PCI_DMA_TODEVICE);
1397 np->tx_dma_len[nr] = bcnt;
1398
1399 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1400 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1401 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1402 } else {
1403 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1404 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1405 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1406 }
1407 tx_flags = np->tx_flags;
1408 offset += bcnt;
1409 size -= bcnt;
1410 } while(size);
1411
1412 /* setup the fragments */
1413 for (i = 0; i < fragments; i++) {
1414 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1415 u32 size = frag->size;
1416 offset = 0;
1417
1418 do {
1419 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1420 nr = (nr + 1) % np->tx_ring_size;
1421
1422 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1423 PCI_DMA_TODEVICE);
1424 np->tx_dma_len[nr] = bcnt;
1425
1426 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1427 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1428 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1429 } else {
1430 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1431 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1432 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1433 }
1434 offset += bcnt;
1435 size -= bcnt;
1436 } while (size);
1437 }
1438
1439 /* set last fragment flag */
1440 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1441 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1442 } else {
1443 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1444 }
1445
1446 np->tx_skbuff[nr] = skb;
1447
1448 #ifdef NETIF_F_TSO
1449 if (skb_shinfo(skb)->tso_size)
1450 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1451 else
1452 #endif
1453 tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1454
1455 /* vlan tag */
1456 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1457 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1458 }
1459
1460 /* set tx flags */
1461 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1462 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1463 } else {
1464 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1465 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1466 }
1467
1468 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1469 dev->name, np->next_tx, entries, tx_flags_extra);
1470 {
1471 int j;
1472 for (j=0; j<64; j++) {
1473 if ((j%16) == 0)
1474 dprintk("\n%03x:", j);
1475 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1476 }
1477 dprintk("\n");
1478 }
1479
1480 np->next_tx += entries;
1481
1482 dev->trans_start = jiffies;
1483 spin_unlock_irq(&np->lock);
1484 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1485 pci_push(get_hwbase(dev));
1486 return NETDEV_TX_OK;
1487 }
1488
1489 /*
1490 * nv_tx_done: check for completed packets, release the skbs.
1491 *
1492 * Caller must own np->lock.
1493 */
1494 static void nv_tx_done(struct net_device *dev)
1495 {
1496 struct fe_priv *np = netdev_priv(dev);
1497 u32 Flags;
1498 unsigned int i;
1499 struct sk_buff *skb;
1500
1501 while (np->nic_tx != np->next_tx) {
1502 i = np->nic_tx % np->tx_ring_size;
1503
1504 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1505 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1506 else
1507 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1508
1509 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1510 dev->name, np->nic_tx, Flags);
1511 if (Flags & NV_TX_VALID)
1512 break;
1513 if (np->desc_ver == DESC_VER_1) {
1514 if (Flags & NV_TX_LASTPACKET) {
1515 skb = np->tx_skbuff[i];
1516 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1517 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1518 if (Flags & NV_TX_UNDERFLOW)
1519 np->stats.tx_fifo_errors++;
1520 if (Flags & NV_TX_CARRIERLOST)
1521 np->stats.tx_carrier_errors++;
1522 np->stats.tx_errors++;
1523 } else {
1524 np->stats.tx_packets++;
1525 np->stats.tx_bytes += skb->len;
1526 }
1527 }
1528 } else {
1529 if (Flags & NV_TX2_LASTPACKET) {
1530 skb = np->tx_skbuff[i];
1531 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1532 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1533 if (Flags & NV_TX2_UNDERFLOW)
1534 np->stats.tx_fifo_errors++;
1535 if (Flags & NV_TX2_CARRIERLOST)
1536 np->stats.tx_carrier_errors++;
1537 np->stats.tx_errors++;
1538 } else {
1539 np->stats.tx_packets++;
1540 np->stats.tx_bytes += skb->len;
1541 }
1542 }
1543 }
1544 nv_release_txskb(dev, i);
1545 np->nic_tx++;
1546 }
1547 if (np->next_tx - np->nic_tx < np->tx_limit_start)
1548 netif_wake_queue(dev);
1549 }
1550
1551 /*
1552 * nv_tx_timeout: dev->tx_timeout function
1553 * Called with dev->xmit_lock held.
1554 */
1555 static void nv_tx_timeout(struct net_device *dev)
1556 {
1557 struct fe_priv *np = netdev_priv(dev);
1558 u8 __iomem *base = get_hwbase(dev);
1559 u32 status;
1560
1561 if (np->msi_flags & NV_MSI_X_ENABLED)
1562 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1563 else
1564 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1565
1566 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1567
1568 {
1569 int i;
1570
1571 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1572 dev->name, (unsigned long)np->ring_addr,
1573 np->next_tx, np->nic_tx);
1574 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1575 for (i=0;i<=np->register_size;i+= 32) {
1576 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1577 i,
1578 readl(base + i + 0), readl(base + i + 4),
1579 readl(base + i + 8), readl(base + i + 12),
1580 readl(base + i + 16), readl(base + i + 20),
1581 readl(base + i + 24), readl(base + i + 28));
1582 }
1583 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1584 for (i=0;i<np->tx_ring_size;i+= 4) {
1585 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1586 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1587 i,
1588 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1589 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1590 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1591 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1592 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1593 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1594 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1595 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1596 } else {
1597 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1598 i,
1599 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1600 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1601 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1602 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1603 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1604 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1605 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1606 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1607 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1608 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1609 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1610 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1611 }
1612 }
1613 }
1614
1615 spin_lock_irq(&np->lock);
1616
1617 /* 1) stop tx engine */
1618 nv_stop_tx(dev);
1619
1620 /* 2) check that the packets were not sent already: */
1621 nv_tx_done(dev);
1622
1623 /* 3) if there are dead entries: clear everything */
1624 if (np->next_tx != np->nic_tx) {
1625 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1626 nv_drain_tx(dev);
1627 np->next_tx = np->nic_tx = 0;
1628 setup_hw_rings(dev, NV_SETUP_TX_RING);
1629 netif_wake_queue(dev);
1630 }
1631
1632 /* 4) restart tx engine */
1633 nv_start_tx(dev);
1634 spin_unlock_irq(&np->lock);
1635 }
1636
1637 /*
1638 * Called when the nic notices a mismatch between the actual data len on the
1639 * wire and the len indicated in the 802 header
1640 */
1641 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1642 {
1643 int hdrlen; /* length of the 802 header */
1644 int protolen; /* length as stored in the proto field */
1645
1646 /* 1) calculate len according to header */
1647 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1648 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1649 hdrlen = VLAN_HLEN;
1650 } else {
1651 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1652 hdrlen = ETH_HLEN;
1653 }
1654 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1655 dev->name, datalen, protolen, hdrlen);
1656 if (protolen > ETH_DATA_LEN)
1657 return datalen; /* Value in proto field not a len, no checks possible */
1658
1659 protolen += hdrlen;
1660 /* consistency checks: */
1661 if (datalen > ETH_ZLEN) {
1662 if (datalen >= protolen) {
1663 /* more data on wire than in 802 header, trim of
1664 * additional data.
1665 */
1666 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1667 dev->name, protolen);
1668 return protolen;
1669 } else {
1670 /* less data on wire than mentioned in header.
1671 * Discard the packet.
1672 */
1673 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1674 dev->name);
1675 return -1;
1676 }
1677 } else {
1678 /* short packet. Accept only if 802 values are also short */
1679 if (protolen > ETH_ZLEN) {
1680 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1681 dev->name);
1682 return -1;
1683 }
1684 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1685 dev->name, datalen);
1686 return datalen;
1687 }
1688 }
1689
1690 static void nv_rx_process(struct net_device *dev)
1691 {
1692 struct fe_priv *np = netdev_priv(dev);
1693 u32 Flags;
1694 u32 vlanflags = 0;
1695
1696 for (;;) {
1697 struct sk_buff *skb;
1698 int len;
1699 int i;
1700 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1701 break; /* we scanned the whole ring - do not continue */
1702
1703 i = np->cur_rx % np->rx_ring_size;
1704 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1705 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1706 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1707 } else {
1708 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1709 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1710 vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1711 }
1712
1713 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1714 dev->name, np->cur_rx, Flags);
1715
1716 if (Flags & NV_RX_AVAIL)
1717 break; /* still owned by hardware, */
1718
1719 /*
1720 * the packet is for us - immediately tear down the pci mapping.
1721 * TODO: check if a prefetch of the first cacheline improves
1722 * the performance.
1723 */
1724 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1725 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1726 PCI_DMA_FROMDEVICE);
1727
1728 {
1729 int j;
1730 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1731 for (j=0; j<64; j++) {
1732 if ((j%16) == 0)
1733 dprintk("\n%03x:", j);
1734 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1735 }
1736 dprintk("\n");
1737 }
1738 /* look at what we actually got: */
1739 if (np->desc_ver == DESC_VER_1) {
1740 if (!(Flags & NV_RX_DESCRIPTORVALID))
1741 goto next_pkt;
1742
1743 if (Flags & NV_RX_ERROR) {
1744 if (Flags & NV_RX_MISSEDFRAME) {
1745 np->stats.rx_missed_errors++;
1746 np->stats.rx_errors++;
1747 goto next_pkt;
1748 }
1749 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1750 np->stats.rx_errors++;
1751 goto next_pkt;
1752 }
1753 if (Flags & NV_RX_CRCERR) {
1754 np->stats.rx_crc_errors++;
1755 np->stats.rx_errors++;
1756 goto next_pkt;
1757 }
1758 if (Flags & NV_RX_OVERFLOW) {
1759 np->stats.rx_over_errors++;
1760 np->stats.rx_errors++;
1761 goto next_pkt;
1762 }
1763 if (Flags & NV_RX_ERROR4) {
1764 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1765 if (len < 0) {
1766 np->stats.rx_errors++;
1767 goto next_pkt;
1768 }
1769 }
1770 /* framing errors are soft errors. */
1771 if (Flags & NV_RX_FRAMINGERR) {
1772 if (Flags & NV_RX_SUBSTRACT1) {
1773 len--;
1774 }
1775 }
1776 }
1777 } else {
1778 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1779 goto next_pkt;
1780
1781 if (Flags & NV_RX2_ERROR) {
1782 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1783 np->stats.rx_errors++;
1784 goto next_pkt;
1785 }
1786 if (Flags & NV_RX2_CRCERR) {
1787 np->stats.rx_crc_errors++;
1788 np->stats.rx_errors++;
1789 goto next_pkt;
1790 }
1791 if (Flags & NV_RX2_OVERFLOW) {
1792 np->stats.rx_over_errors++;
1793 np->stats.rx_errors++;
1794 goto next_pkt;
1795 }
1796 if (Flags & NV_RX2_ERROR4) {
1797 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1798 if (len < 0) {
1799 np->stats.rx_errors++;
1800 goto next_pkt;
1801 }
1802 }
1803 /* framing errors are soft errors */
1804 if (Flags & NV_RX2_FRAMINGERR) {
1805 if (Flags & NV_RX2_SUBSTRACT1) {
1806 len--;
1807 }
1808 }
1809 }
1810 if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1811 Flags &= NV_RX2_CHECKSUMMASK;
1812 if (Flags == NV_RX2_CHECKSUMOK1 ||
1813 Flags == NV_RX2_CHECKSUMOK2 ||
1814 Flags == NV_RX2_CHECKSUMOK3) {
1815 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1816 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1817 } else {
1818 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1819 }
1820 }
1821 }
1822 /* got a valid packet - forward it to the network core */
1823 skb = np->rx_skbuff[i];
1824 np->rx_skbuff[i] = NULL;
1825
1826 skb_put(skb, len);
1827 skb->protocol = eth_type_trans(skb, dev);
1828 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1829 dev->name, np->cur_rx, len, skb->protocol);
1830 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1831 vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1832 } else {
1833 netif_rx(skb);
1834 }
1835 dev->last_rx = jiffies;
1836 np->stats.rx_packets++;
1837 np->stats.rx_bytes += len;
1838 next_pkt:
1839 np->cur_rx++;
1840 }
1841 }
1842
1843 static void set_bufsize(struct net_device *dev)
1844 {
1845 struct fe_priv *np = netdev_priv(dev);
1846
1847 if (dev->mtu <= ETH_DATA_LEN)
1848 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1849 else
1850 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1851 }
1852
1853 /*
1854 * nv_change_mtu: dev->change_mtu function
1855 * Called with dev_base_lock held for read.
1856 */
1857 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1858 {
1859 struct fe_priv *np = netdev_priv(dev);
1860 int old_mtu;
1861
1862 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1863 return -EINVAL;
1864
1865 old_mtu = dev->mtu;
1866 dev->mtu = new_mtu;
1867
1868 /* return early if the buffer sizes will not change */
1869 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1870 return 0;
1871 if (old_mtu == new_mtu)
1872 return 0;
1873
1874 /* synchronized against open : rtnl_lock() held by caller */
1875 if (netif_running(dev)) {
1876 u8 __iomem *base = get_hwbase(dev);
1877 /*
1878 * It seems that the nic preloads valid ring entries into an
1879 * internal buffer. The procedure for flushing everything is
1880 * guessed, there is probably a simpler approach.
1881 * Changing the MTU is a rare event, it shouldn't matter.
1882 */
1883 nv_disable_irq(dev);
1884 spin_lock_bh(&dev->xmit_lock);
1885 spin_lock(&np->lock);
1886 /* stop engines */
1887 nv_stop_rx(dev);
1888 nv_stop_tx(dev);
1889 nv_txrx_reset(dev);
1890 /* drain rx queue */
1891 nv_drain_rx(dev);
1892 nv_drain_tx(dev);
1893 /* reinit driver view of the rx queue */
1894 set_bufsize(dev);
1895 if (nv_init_ring(dev)) {
1896 if (!np->in_shutdown)
1897 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1898 }
1899 /* reinit nic view of the rx queue */
1900 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1901 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1902 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1903 base + NvRegRingSizes);
1904 pci_push(base);
1905 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1906 pci_push(base);
1907
1908 /* restart rx engine */
1909 nv_start_rx(dev);
1910 nv_start_tx(dev);
1911 spin_unlock(&np->lock);
1912 spin_unlock_bh(&dev->xmit_lock);
1913 nv_enable_irq(dev);
1914 }
1915 return 0;
1916 }
1917
1918 static void nv_copy_mac_to_hw(struct net_device *dev)
1919 {
1920 u8 __iomem *base = get_hwbase(dev);
1921 u32 mac[2];
1922
1923 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1924 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1925 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1926
1927 writel(mac[0], base + NvRegMacAddrA);
1928 writel(mac[1], base + NvRegMacAddrB);
1929 }
1930
1931 /*
1932 * nv_set_mac_address: dev->set_mac_address function
1933 * Called with rtnl_lock() held.
1934 */
1935 static int nv_set_mac_address(struct net_device *dev, void *addr)
1936 {
1937 struct fe_priv *np = netdev_priv(dev);
1938 struct sockaddr *macaddr = (struct sockaddr*)addr;
1939
1940 if(!is_valid_ether_addr(macaddr->sa_data))
1941 return -EADDRNOTAVAIL;
1942
1943 /* synchronized against open : rtnl_lock() held by caller */
1944 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1945
1946 if (netif_running(dev)) {
1947 spin_lock_bh(&dev->xmit_lock);
1948 spin_lock_irq(&np->lock);
1949
1950 /* stop rx engine */
1951 nv_stop_rx(dev);
1952
1953 /* set mac address */
1954 nv_copy_mac_to_hw(dev);
1955
1956 /* restart rx engine */
1957 nv_start_rx(dev);
1958 spin_unlock_irq(&np->lock);
1959 spin_unlock_bh(&dev->xmit_lock);
1960 } else {
1961 nv_copy_mac_to_hw(dev);
1962 }
1963 return 0;
1964 }
1965
1966 /*
1967 * nv_set_multicast: dev->set_multicast function
1968 * Called with dev->xmit_lock held.
1969 */
1970 static void nv_set_multicast(struct net_device *dev)
1971 {
1972 struct fe_priv *np = netdev_priv(dev);
1973 u8 __iomem *base = get_hwbase(dev);
1974 u32 addr[2];
1975 u32 mask[2];
1976 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
1977
1978 memset(addr, 0, sizeof(addr));
1979 memset(mask, 0, sizeof(mask));
1980
1981 if (dev->flags & IFF_PROMISC) {
1982 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1983 pff |= NVREG_PFF_PROMISC;
1984 } else {
1985 pff |= NVREG_PFF_MYADDR;
1986
1987 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1988 u32 alwaysOff[2];
1989 u32 alwaysOn[2];
1990
1991 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1992 if (dev->flags & IFF_ALLMULTI) {
1993 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1994 } else {
1995 struct dev_mc_list *walk;
1996
1997 walk = dev->mc_list;
1998 while (walk != NULL) {
1999 u32 a, b;
2000 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2001 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2002 alwaysOn[0] &= a;
2003 alwaysOff[0] &= ~a;
2004 alwaysOn[1] &= b;
2005 alwaysOff[1] &= ~b;
2006 walk = walk->next;
2007 }
2008 }
2009 addr[0] = alwaysOn[0];
2010 addr[1] = alwaysOn[1];
2011 mask[0] = alwaysOn[0] | alwaysOff[0];
2012 mask[1] = alwaysOn[1] | alwaysOff[1];
2013 }
2014 }
2015 addr[0] |= NVREG_MCASTADDRA_FORCE;
2016 pff |= NVREG_PFF_ALWAYS;
2017 spin_lock_irq(&np->lock);
2018 nv_stop_rx(dev);
2019 writel(addr[0], base + NvRegMulticastAddrA);
2020 writel(addr[1], base + NvRegMulticastAddrB);
2021 writel(mask[0], base + NvRegMulticastMaskA);
2022 writel(mask[1], base + NvRegMulticastMaskB);
2023 writel(pff, base + NvRegPacketFilterFlags);
2024 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2025 dev->name);
2026 nv_start_rx(dev);
2027 spin_unlock_irq(&np->lock);
2028 }
2029
2030 void nv_update_pause(struct net_device *dev, u32 pause_flags)
2031 {
2032 struct fe_priv *np = netdev_priv(dev);
2033 u8 __iomem *base = get_hwbase(dev);
2034
2035 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2036
2037 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2038 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2039 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2040 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2041 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2042 } else {
2043 writel(pff, base + NvRegPacketFilterFlags);
2044 }
2045 }
2046 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2047 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2048 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2049 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2050 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2051 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2052 } else {
2053 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2054 writel(regmisc, base + NvRegMisc1);
2055 }
2056 }
2057 }
2058
2059 /**
2060 * nv_update_linkspeed: Setup the MAC according to the link partner
2061 * @dev: Network device to be configured
2062 *
2063 * The function queries the PHY and checks if there is a link partner.
2064 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2065 * set to 10 MBit HD.
2066 *
2067 * The function returns 0 if there is no link partner and 1 if there is
2068 * a good link partner.
2069 */
2070 static int nv_update_linkspeed(struct net_device *dev)
2071 {
2072 struct fe_priv *np = netdev_priv(dev);
2073 u8 __iomem *base = get_hwbase(dev);
2074 int adv = 0;
2075 int lpa = 0;
2076 int adv_lpa, adv_pause, lpa_pause;
2077 int newls = np->linkspeed;
2078 int newdup = np->duplex;
2079 int mii_status;
2080 int retval = 0;
2081 u32 control_1000, status_1000, phyreg, pause_flags;
2082
2083 /* BMSR_LSTATUS is latched, read it twice:
2084 * we want the current value.
2085 */
2086 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2087 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2088
2089 if (!(mii_status & BMSR_LSTATUS)) {
2090 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2091 dev->name);
2092 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2093 newdup = 0;
2094 retval = 0;
2095 goto set_speed;
2096 }
2097
2098 if (np->autoneg == 0) {
2099 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2100 dev->name, np->fixed_mode);
2101 if (np->fixed_mode & LPA_100FULL) {
2102 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2103 newdup = 1;
2104 } else if (np->fixed_mode & LPA_100HALF) {
2105 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2106 newdup = 0;
2107 } else if (np->fixed_mode & LPA_10FULL) {
2108 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2109 newdup = 1;
2110 } else {
2111 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2112 newdup = 0;
2113 }
2114 retval = 1;
2115 goto set_speed;
2116 }
2117 /* check auto negotiation is complete */
2118 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2119 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2120 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2121 newdup = 0;
2122 retval = 0;
2123 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2124 goto set_speed;
2125 }
2126
2127 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2128 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2129 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2130 dev->name, adv, lpa);
2131
2132 retval = 1;
2133 if (np->gigabit == PHY_GIGABIT) {
2134 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2135 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2136
2137 if ((control_1000 & ADVERTISE_1000FULL) &&
2138 (status_1000 & LPA_1000FULL)) {
2139 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2140 dev->name);
2141 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2142 newdup = 1;
2143 goto set_speed;
2144 }
2145 }
2146
2147 /* FIXME: handle parallel detection properly */
2148 adv_lpa = lpa & adv;
2149 if (adv_lpa & LPA_100FULL) {
2150 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2151 newdup = 1;
2152 } else if (adv_lpa & LPA_100HALF) {
2153 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2154 newdup = 0;
2155 } else if (adv_lpa & LPA_10FULL) {
2156 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2157 newdup = 1;
2158 } else if (adv_lpa & LPA_10HALF) {
2159 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2160 newdup = 0;
2161 } else {
2162 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2163 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2164 newdup = 0;
2165 }
2166
2167 set_speed:
2168 if (np->duplex == newdup && np->linkspeed == newls)
2169 return retval;
2170
2171 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2172 dev->name, np->linkspeed, np->duplex, newls, newdup);
2173
2174 np->duplex = newdup;
2175 np->linkspeed = newls;
2176
2177 if (np->gigabit == PHY_GIGABIT) {
2178 phyreg = readl(base + NvRegRandomSeed);
2179 phyreg &= ~(0x3FF00);
2180 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2181 phyreg |= NVREG_RNDSEED_FORCE3;
2182 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2183 phyreg |= NVREG_RNDSEED_FORCE2;
2184 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2185 phyreg |= NVREG_RNDSEED_FORCE;
2186 writel(phyreg, base + NvRegRandomSeed);
2187 }
2188
2189 phyreg = readl(base + NvRegPhyInterface);
2190 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2191 if (np->duplex == 0)
2192 phyreg |= PHY_HALF;
2193 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2194 phyreg |= PHY_100;
2195 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2196 phyreg |= PHY_1000;
2197 writel(phyreg, base + NvRegPhyInterface);
2198
2199 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2200 base + NvRegMisc1);
2201 pci_push(base);
2202 writel(np->linkspeed, base + NvRegLinkSpeed);
2203 pci_push(base);
2204
2205 pause_flags = 0;
2206 /* setup pause frame */
2207 if (np->duplex != 0) {
2208 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2209 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2210 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2211
2212 switch (adv_pause) {
2213 case (ADVERTISE_PAUSE_CAP):
2214 if (lpa_pause & LPA_PAUSE_CAP) {
2215 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2216 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2217 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2218 }
2219 break;
2220 case (ADVERTISE_PAUSE_ASYM):
2221 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2222 {
2223 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2224 }
2225 break;
2226 case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2227 if (lpa_pause & LPA_PAUSE_CAP)
2228 {
2229 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2230 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2231 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2232 }
2233 if (lpa_pause == LPA_PAUSE_ASYM)
2234 {
2235 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2236 }
2237 break;
2238 }
2239 } else {
2240 pause_flags = np->pause_flags;
2241 }
2242 }
2243 nv_update_pause(dev, pause_flags);
2244
2245 return retval;
2246 }
2247
2248 static void nv_linkchange(struct net_device *dev)
2249 {
2250 if (nv_update_linkspeed(dev)) {
2251 if (!netif_carrier_ok(dev)) {
2252 netif_carrier_on(dev);
2253 printk(KERN_INFO "%s: link up.\n", dev->name);
2254 nv_start_rx(dev);
2255 }
2256 } else {
2257 if (netif_carrier_ok(dev)) {
2258 netif_carrier_off(dev);
2259 printk(KERN_INFO "%s: link down.\n", dev->name);
2260 nv_stop_rx(dev);
2261 }
2262 }
2263 }
2264
2265 static void nv_link_irq(struct net_device *dev)
2266 {
2267 u8 __iomem *base = get_hwbase(dev);
2268 u32 miistat;
2269
2270 miistat = readl(base + NvRegMIIStatus);
2271 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2272 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2273
2274 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2275 nv_linkchange(dev);
2276 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2277 }
2278
2279 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2280 {
2281 struct net_device *dev = (struct net_device *) data;
2282 struct fe_priv *np = netdev_priv(dev);
2283 u8 __iomem *base = get_hwbase(dev);
2284 u32 events;
2285 int i;
2286
2287 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2288
2289 for (i=0; ; i++) {
2290 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2291 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2292 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2293 } else {
2294 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2295 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2296 }
2297 pci_push(base);
2298 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2299 if (!(events & np->irqmask))
2300 break;
2301
2302 spin_lock(&np->lock);
2303 nv_tx_done(dev);
2304 spin_unlock(&np->lock);
2305
2306 nv_rx_process(dev);
2307 if (nv_alloc_rx(dev)) {
2308 spin_lock(&np->lock);
2309 if (!np->in_shutdown)
2310 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2311 spin_unlock(&np->lock);
2312 }
2313
2314 if (events & NVREG_IRQ_LINK) {
2315 spin_lock(&np->lock);
2316 nv_link_irq(dev);
2317 spin_unlock(&np->lock);
2318 }
2319 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2320 spin_lock(&np->lock);
2321 nv_linkchange(dev);
2322 spin_unlock(&np->lock);
2323 np->link_timeout = jiffies + LINK_TIMEOUT;
2324 }
2325 if (events & (NVREG_IRQ_TX_ERR)) {
2326 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2327 dev->name, events);
2328 }
2329 if (events & (NVREG_IRQ_UNKNOWN)) {
2330 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2331 dev->name, events);
2332 }
2333 if (i > max_interrupt_work) {
2334 spin_lock(&np->lock);
2335 /* disable interrupts on the nic */
2336 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2337 writel(0, base + NvRegIrqMask);
2338 else
2339 writel(np->irqmask, base + NvRegIrqMask);
2340 pci_push(base);
2341
2342 if (!np->in_shutdown) {
2343 np->nic_poll_irq = np->irqmask;
2344 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2345 }
2346 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2347 spin_unlock(&np->lock);
2348 break;
2349 }
2350
2351 }
2352 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2353
2354 return IRQ_RETVAL(i);
2355 }
2356
2357 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2358 {
2359 struct net_device *dev = (struct net_device *) data;
2360 struct fe_priv *np = netdev_priv(dev);
2361 u8 __iomem *base = get_hwbase(dev);
2362 u32 events;
2363 int i;
2364
2365 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2366
2367 for (i=0; ; i++) {
2368 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2369 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2370 pci_push(base);
2371 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2372 if (!(events & np->irqmask))
2373 break;
2374
2375 spin_lock_irq(&np->lock);
2376 nv_tx_done(dev);
2377 spin_unlock_irq(&np->lock);
2378
2379 if (events & (NVREG_IRQ_TX_ERR)) {
2380 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2381 dev->name, events);
2382 }
2383 if (i > max_interrupt_work) {
2384 spin_lock_irq(&np->lock);
2385 /* disable interrupts on the nic */
2386 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2387 pci_push(base);
2388
2389 if (!np->in_shutdown) {
2390 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2391 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2392 }
2393 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2394 spin_unlock_irq(&np->lock);
2395 break;
2396 }
2397
2398 }
2399 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2400
2401 return IRQ_RETVAL(i);
2402 }
2403
2404 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2405 {
2406 struct net_device *dev = (struct net_device *) data;
2407 struct fe_priv *np = netdev_priv(dev);
2408 u8 __iomem *base = get_hwbase(dev);
2409 u32 events;
2410 int i;
2411
2412 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2413
2414 for (i=0; ; i++) {
2415 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2416 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2417 pci_push(base);
2418 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2419 if (!(events & np->irqmask))
2420 break;
2421
2422 nv_rx_process(dev);
2423 if (nv_alloc_rx(dev)) {
2424 spin_lock_irq(&np->lock);
2425 if (!np->in_shutdown)
2426 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2427 spin_unlock_irq(&np->lock);
2428 }
2429
2430 if (i > max_interrupt_work) {
2431 spin_lock_irq(&np->lock);
2432 /* disable interrupts on the nic */
2433 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2434 pci_push(base);
2435
2436 if (!np->in_shutdown) {
2437 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2438 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2439 }
2440 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2441 spin_unlock_irq(&np->lock);
2442 break;
2443 }
2444
2445 }
2446 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2447
2448 return IRQ_RETVAL(i);
2449 }
2450
2451 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2452 {
2453 struct net_device *dev = (struct net_device *) data;
2454 struct fe_priv *np = netdev_priv(dev);
2455 u8 __iomem *base = get_hwbase(dev);
2456 u32 events;
2457 int i;
2458
2459 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2460
2461 for (i=0; ; i++) {
2462 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2463 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2464 pci_push(base);
2465 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2466 if (!(events & np->irqmask))
2467 break;
2468
2469 if (events & NVREG_IRQ_LINK) {
2470 spin_lock_irq(&np->lock);
2471 nv_link_irq(dev);
2472 spin_unlock_irq(&np->lock);
2473 }
2474 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2475 spin_lock_irq(&np->lock);
2476 nv_linkchange(dev);
2477 spin_unlock_irq(&np->lock);
2478 np->link_timeout = jiffies + LINK_TIMEOUT;
2479 }
2480 if (events & (NVREG_IRQ_UNKNOWN)) {
2481 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2482 dev->name, events);
2483 }
2484 if (i > max_interrupt_work) {
2485 spin_lock_irq(&np->lock);
2486 /* disable interrupts on the nic */
2487 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2488 pci_push(base);
2489
2490 if (!np->in_shutdown) {
2491 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2492 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2493 }
2494 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2495 spin_unlock_irq(&np->lock);
2496 break;
2497 }
2498
2499 }
2500 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2501
2502 return IRQ_RETVAL(i);
2503 }
2504
2505 static void nv_do_nic_poll(unsigned long data)
2506 {
2507 struct net_device *dev = (struct net_device *) data;
2508 struct fe_priv *np = netdev_priv(dev);
2509 u8 __iomem *base = get_hwbase(dev);
2510 u32 mask = 0;
2511
2512 /*
2513 * First disable irq(s) and then
2514 * reenable interrupts on the nic, we have to do this before calling
2515 * nv_nic_irq because that may decide to do otherwise
2516 */
2517
2518 if (!using_multi_irqs(dev)) {
2519 if (np->msi_flags & NV_MSI_X_ENABLED)
2520 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2521 else
2522 disable_irq(dev->irq);
2523 mask = np->irqmask;
2524 } else {
2525 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2526 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2527 mask |= NVREG_IRQ_RX_ALL;
2528 }
2529 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2530 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2531 mask |= NVREG_IRQ_TX_ALL;
2532 }
2533 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2534 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2535 mask |= NVREG_IRQ_OTHER;
2536 }
2537 }
2538 np->nic_poll_irq = 0;
2539
2540 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2541
2542 writel(mask, base + NvRegIrqMask);
2543 pci_push(base);
2544
2545 if (!using_multi_irqs(dev)) {
2546 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2547 if (np->msi_flags & NV_MSI_X_ENABLED)
2548 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2549 else
2550 enable_irq(dev->irq);
2551 } else {
2552 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2553 nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2554 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2555 }
2556 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2557 nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2558 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2559 }
2560 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2561 nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2562 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2563 }
2564 }
2565 }
2566
2567 #ifdef CONFIG_NET_POLL_CONTROLLER
2568 static void nv_poll_controller(struct net_device *dev)
2569 {
2570 nv_do_nic_poll((unsigned long) dev);
2571 }
2572 #endif
2573
2574 static void nv_do_stats_poll(unsigned long data)
2575 {
2576 struct net_device *dev = (struct net_device *) data;
2577 struct fe_priv *np = netdev_priv(dev);
2578 u8 __iomem *base = get_hwbase(dev);
2579
2580 np->estats.tx_bytes += readl(base + NvRegTxCnt);
2581 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2582 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2583 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2584 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2585 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2586 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2587 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2588 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2589 np->estats.tx_deferral += readl(base + NvRegTxDef);
2590 np->estats.tx_packets += readl(base + NvRegTxFrame);
2591 np->estats.tx_pause += readl(base + NvRegTxPause);
2592 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2593 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2594 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2595 np->estats.rx_runt += readl(base + NvRegRxRunt);
2596 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2597 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2598 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2599 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2600 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2601 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2602 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2603 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2604 np->estats.rx_bytes += readl(base + NvRegRxCnt);
2605 np->estats.rx_pause += readl(base + NvRegRxPause);
2606 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2607 np->estats.rx_packets =
2608 np->estats.rx_unicast +
2609 np->estats.rx_multicast +
2610 np->estats.rx_broadcast;
2611 np->estats.rx_errors_total =
2612 np->estats.rx_crc_errors +
2613 np->estats.rx_over_errors +
2614 np->estats.rx_frame_error +
2615 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2616 np->estats.rx_late_collision +
2617 np->estats.rx_runt +
2618 np->estats.rx_frame_too_long;
2619
2620 if (!np->in_shutdown)
2621 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2622 }
2623
2624 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2625 {
2626 struct fe_priv *np = netdev_priv(dev);
2627 strcpy(info->driver, "forcedeth");
2628 strcpy(info->version, FORCEDETH_VERSION);
2629 strcpy(info->bus_info, pci_name(np->pci_dev));
2630 }
2631
2632 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2633 {
2634 struct fe_priv *np = netdev_priv(dev);
2635 wolinfo->supported = WAKE_MAGIC;
2636
2637 spin_lock_irq(&np->lock);
2638 if (np->wolenabled)
2639 wolinfo->wolopts = WAKE_MAGIC;
2640 spin_unlock_irq(&np->lock);
2641 }
2642
2643 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2644 {
2645 struct fe_priv *np = netdev_priv(dev);
2646 u8 __iomem *base = get_hwbase(dev);
2647 u32 flags = 0;
2648
2649 if (wolinfo->wolopts == 0) {
2650 np->wolenabled = 0;
2651 } else if (wolinfo->wolopts & WAKE_MAGIC) {
2652 np->wolenabled = 1;
2653 flags = NVREG_WAKEUPFLAGS_ENABLE;
2654 }
2655 if (netif_running(dev)) {
2656 spin_lock_irq(&np->lock);
2657 writel(flags, base + NvRegWakeUpFlags);
2658 spin_unlock_irq(&np->lock);
2659 }
2660 return 0;
2661 }
2662
2663 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2664 {
2665 struct fe_priv *np = netdev_priv(dev);
2666 int adv;
2667
2668 spin_lock_irq(&np->lock);
2669 ecmd->port = PORT_MII;
2670 if (!netif_running(dev)) {
2671 /* We do not track link speed / duplex setting if the
2672 * interface is disabled. Force a link check */
2673 if (nv_update_linkspeed(dev)) {
2674 if (!netif_carrier_ok(dev))
2675 netif_carrier_on(dev);
2676 } else {
2677 if (netif_carrier_ok(dev))
2678 netif_carrier_off(dev);
2679 }
2680 }
2681
2682 if (netif_carrier_ok(dev)) {
2683 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2684 case NVREG_LINKSPEED_10:
2685 ecmd->speed = SPEED_10;
2686 break;
2687 case NVREG_LINKSPEED_100:
2688 ecmd->speed = SPEED_100;
2689 break;
2690 case NVREG_LINKSPEED_1000:
2691 ecmd->speed = SPEED_1000;
2692 break;
2693 }
2694 ecmd->duplex = DUPLEX_HALF;
2695 if (np->duplex)
2696 ecmd->duplex = DUPLEX_FULL;
2697 } else {
2698 ecmd->speed = -1;
2699 ecmd->duplex = -1;
2700 }
2701
2702 ecmd->autoneg = np->autoneg;
2703
2704 ecmd->advertising = ADVERTISED_MII;
2705 if (np->autoneg) {
2706 ecmd->advertising |= ADVERTISED_Autoneg;
2707 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2708 if (adv & ADVERTISE_10HALF)
2709 ecmd->advertising |= ADVERTISED_10baseT_Half;
2710 if (adv & ADVERTISE_10FULL)
2711 ecmd->advertising |= ADVERTISED_10baseT_Full;
2712 if (adv & ADVERTISE_100HALF)
2713 ecmd->advertising |= ADVERTISED_100baseT_Half;
2714 if (adv & ADVERTISE_100FULL)
2715 ecmd->advertising |= ADVERTISED_100baseT_Full;
2716 if (np->gigabit == PHY_GIGABIT) {
2717 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2718 if (adv & ADVERTISE_1000FULL)
2719 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2720 }
2721 }
2722 ecmd->supported = (SUPPORTED_Autoneg |
2723 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2724 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2725 SUPPORTED_MII);
2726 if (np->gigabit == PHY_GIGABIT)
2727 ecmd->supported |= SUPPORTED_1000baseT_Full;
2728
2729 ecmd->phy_address = np->phyaddr;
2730 ecmd->transceiver = XCVR_EXTERNAL;
2731
2732 /* ignore maxtxpkt, maxrxpkt for now */
2733 spin_unlock_irq(&np->lock);
2734 return 0;
2735 }
2736
2737 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2738 {
2739 struct fe_priv *np = netdev_priv(dev);
2740
2741 if (ecmd->port != PORT_MII)
2742 return -EINVAL;
2743 if (ecmd->transceiver != XCVR_EXTERNAL)
2744 return -EINVAL;
2745 if (ecmd->phy_address != np->phyaddr) {
2746 /* TODO: support switching between multiple phys. Should be
2747 * trivial, but not enabled due to lack of test hardware. */
2748 return -EINVAL;
2749 }
2750 if (ecmd->autoneg == AUTONEG_ENABLE) {
2751 u32 mask;
2752
2753 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2754 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2755 if (np->gigabit == PHY_GIGABIT)
2756 mask |= ADVERTISED_1000baseT_Full;
2757
2758 if ((ecmd->advertising & mask) == 0)
2759 return -EINVAL;
2760
2761 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2762 /* Note: autonegotiation disable, speed 1000 intentionally
2763 * forbidden - noone should need that. */
2764
2765 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2766 return -EINVAL;
2767 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2768 return -EINVAL;
2769 } else {
2770 return -EINVAL;
2771 }
2772
2773 netif_carrier_off(dev);
2774 if (netif_running(dev)) {
2775 nv_disable_irq(dev);
2776 spin_lock_bh(&dev->xmit_lock);
2777 spin_lock(&np->lock);
2778 /* stop engines */
2779 nv_stop_rx(dev);
2780 nv_stop_tx(dev);
2781 spin_unlock(&np->lock);
2782 spin_unlock_bh(&dev->xmit_lock);
2783 }
2784
2785 if (ecmd->autoneg == AUTONEG_ENABLE) {
2786 int adv, bmcr;
2787
2788 np->autoneg = 1;
2789
2790 /* advertise only what has been requested */
2791 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2792 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2793 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2794 adv |= ADVERTISE_10HALF;
2795 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2796 adv |= ADVERTISE_10FULL;
2797 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2798 adv |= ADVERTISE_100HALF;
2799 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2800 adv |= ADVERTISE_100FULL;
2801 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
2802 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2803 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2804 adv |= ADVERTISE_PAUSE_ASYM;
2805 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2806
2807 if (np->gigabit == PHY_GIGABIT) {
2808 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2809 adv &= ~ADVERTISE_1000FULL;
2810 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2811 adv |= ADVERTISE_1000FULL;
2812 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2813 }
2814
2815 if (netif_running(dev))
2816 printk(KERN_INFO "%s: link down.\n", dev->name);
2817 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2818 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2819 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2820
2821 } else {
2822 int adv, bmcr;
2823
2824 np->autoneg = 0;
2825
2826 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2827 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2828 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2829 adv |= ADVERTISE_10HALF;
2830 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2831 adv |= ADVERTISE_10FULL;
2832 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2833 adv |= ADVERTISE_100HALF;
2834 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2835 adv |= ADVERTISE_100FULL;
2836 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
2837 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
2838 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2839 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2840 }
2841 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
2842 adv |= ADVERTISE_PAUSE_ASYM;
2843 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2844 }
2845 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2846 np->fixed_mode = adv;
2847
2848 if (np->gigabit == PHY_GIGABIT) {
2849 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2850 adv &= ~ADVERTISE_1000FULL;
2851 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2852 }
2853
2854 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2855 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
2856 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2857 bmcr |= BMCR_FULLDPLX;
2858 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2859 bmcr |= BMCR_SPEED100;
2860 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2861 if (np->phy_oui == PHY_OUI_MARVELL) {
2862 /* reset the phy */
2863 if (phy_reset(dev)) {
2864 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
2865 return -EINVAL;
2866 }
2867 } else if (netif_running(dev)) {
2868 /* Wait a bit and then reconfigure the nic. */
2869 udelay(10);
2870 nv_linkchange(dev);
2871 }
2872 }
2873
2874 if (netif_running(dev)) {
2875 nv_start_rx(dev);
2876 nv_start_tx(dev);
2877 nv_enable_irq(dev);
2878 }
2879
2880 return 0;
2881 }
2882
2883 #define FORCEDETH_REGS_VER 1
2884
2885 static int nv_get_regs_len(struct net_device *dev)
2886 {
2887 struct fe_priv *np = netdev_priv(dev);
2888 return np->register_size;
2889 }
2890
2891 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2892 {
2893 struct fe_priv *np = netdev_priv(dev);
2894 u8 __iomem *base = get_hwbase(dev);
2895 u32 *rbuf = buf;
2896 int i;
2897
2898 regs->version = FORCEDETH_REGS_VER;
2899 spin_lock_irq(&np->lock);
2900 for (i = 0;i <= np->register_size/sizeof(u32); i++)
2901 rbuf[i] = readl(base + i*sizeof(u32));
2902 spin_unlock_irq(&np->lock);
2903 }
2904
2905 static int nv_nway_reset(struct net_device *dev)
2906 {
2907 struct fe_priv *np = netdev_priv(dev);
2908 int ret;
2909
2910 if (np->autoneg) {
2911 int bmcr;
2912
2913 netif_carrier_off(dev);
2914 if (netif_running(dev)) {
2915 nv_disable_irq(dev);
2916 spin_lock_bh(&dev->xmit_lock);
2917 spin_lock(&np->lock);
2918 /* stop engines */
2919 nv_stop_rx(dev);
2920 nv_stop_tx(dev);
2921 spin_unlock(&np->lock);
2922 spin_unlock_bh(&dev->xmit_lock);
2923 printk(KERN_INFO "%s: link down.\n", dev->name);
2924 }
2925
2926 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2927 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2928 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2929
2930 if (netif_running(dev)) {
2931 nv_start_rx(dev);
2932 nv_start_tx(dev);
2933 nv_enable_irq(dev);
2934 }
2935 ret = 0;
2936 } else {
2937 ret = -EINVAL;
2938 }
2939
2940 return ret;
2941 }
2942
2943 static int nv_set_tso(struct net_device *dev, u32 value)
2944 {
2945 struct fe_priv *np = netdev_priv(dev);
2946
2947 if ((np->driver_data & DEV_HAS_CHECKSUM))
2948 return ethtool_op_set_tso(dev, value);
2949 else
2950 return -EOPNOTSUPP;
2951 }
2952
2953 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
2954 {
2955 struct fe_priv *np = netdev_priv(dev);
2956
2957 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
2958 ring->rx_mini_max_pending = 0;
2959 ring->rx_jumbo_max_pending = 0;
2960 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
2961
2962 ring->rx_pending = np->rx_ring_size;
2963 ring->rx_mini_pending = 0;
2964 ring->rx_jumbo_pending = 0;
2965 ring->tx_pending = np->tx_ring_size;
2966 }
2967
2968 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
2969 {
2970 struct fe_priv *np = netdev_priv(dev);
2971 u8 __iomem *base = get_hwbase(dev);
2972 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
2973 dma_addr_t ring_addr;
2974
2975 if (ring->rx_pending < RX_RING_MIN ||
2976 ring->tx_pending < TX_RING_MIN ||
2977 ring->rx_mini_pending != 0 ||
2978 ring->rx_jumbo_pending != 0 ||
2979 (np->desc_ver == DESC_VER_1 &&
2980 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
2981 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
2982 (np->desc_ver != DESC_VER_1 &&
2983 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
2984 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
2985 return -EINVAL;
2986 }
2987
2988 /* allocate new rings */
2989 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2990 rxtx_ring = pci_alloc_consistent(np->pci_dev,
2991 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
2992 &ring_addr);
2993 } else {
2994 rxtx_ring = pci_alloc_consistent(np->pci_dev,
2995 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
2996 &ring_addr);
2997 }
2998 rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
2999 rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3000 tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3001 tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3002 tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3003 if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3004 /* fall back to old rings */
3005 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3006 if(rxtx_ring)
3007 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3008 rxtx_ring, ring_addr);
3009 } else {
3010 if (rxtx_ring)
3011 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3012 rxtx_ring, ring_addr);
3013 }
3014 if (rx_skbuff)
3015 kfree(rx_skbuff);
3016 if (rx_dma)
3017 kfree(rx_dma);
3018 if (tx_skbuff)
3019 kfree(tx_skbuff);
3020 if (tx_dma)
3021 kfree(tx_dma);
3022 if (tx_dma_len)
3023 kfree(tx_dma_len);
3024 goto exit;
3025 }
3026
3027 if (netif_running(dev)) {
3028 nv_disable_irq(dev);
3029 spin_lock_bh(&dev->xmit_lock);
3030 spin_lock(&np->lock);
3031 /* stop engines */
3032 nv_stop_rx(dev);
3033 nv_stop_tx(dev);
3034 nv_txrx_reset(dev);
3035 /* drain queues */
3036 nv_drain_rx(dev);
3037 nv_drain_tx(dev);
3038 /* delete queues */
3039 free_rings(dev);
3040 }
3041
3042 /* set new values */
3043 np->rx_ring_size = ring->rx_pending;
3044 np->tx_ring_size = ring->tx_pending;
3045 np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3046 np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3047 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3048 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3049 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3050 } else {
3051 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3052 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3053 }
3054 np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3055 np->rx_dma = (dma_addr_t*)rx_dma;
3056 np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3057 np->tx_dma = (dma_addr_t*)tx_dma;
3058 np->tx_dma_len = (unsigned int*)tx_dma_len;
3059 np->ring_addr = ring_addr;
3060
3061 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3062 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3063 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3064 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3065 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3066
3067 if (netif_running(dev)) {
3068 /* reinit driver view of the queues */
3069 set_bufsize(dev);
3070 if (nv_init_ring(dev)) {
3071 if (!np->in_shutdown)
3072 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3073 }
3074
3075 /* reinit nic view of the queues */
3076 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3077 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3078 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3079 base + NvRegRingSizes);
3080 pci_push(base);
3081 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3082 pci_push(base);
3083
3084 /* restart engines */
3085 nv_start_rx(dev);
3086 nv_start_tx(dev);
3087 spin_unlock(&np->lock);
3088 spin_unlock_bh(&dev->xmit_lock);
3089 nv_enable_irq(dev);
3090 }
3091 return 0;
3092 exit:
3093 return -ENOMEM;
3094 }
3095
3096 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3097 {
3098 struct fe_priv *np = netdev_priv(dev);
3099
3100 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3101 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3102 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3103 }
3104
3105 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3106 {
3107 struct fe_priv *np = netdev_priv(dev);
3108 int adv, bmcr;
3109
3110 if ((!np->autoneg && np->duplex == 0) ||
3111 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3112 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3113 dev->name);
3114 return -EINVAL;
3115 }
3116 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3117 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3118 return -EINVAL;
3119 }
3120
3121 netif_carrier_off(dev);
3122 if (netif_running(dev)) {
3123 nv_disable_irq(dev);
3124 spin_lock_bh(&dev->xmit_lock);
3125 spin_lock(&np->lock);
3126 /* stop engines */
3127 nv_stop_rx(dev);
3128 nv_stop_tx(dev);
3129 spin_unlock(&np->lock);
3130 spin_unlock_bh(&dev->xmit_lock);
3131 }
3132
3133 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3134 if (pause->rx_pause)
3135 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3136 if (pause->tx_pause)
3137 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3138
3139 if (np->autoneg && pause->autoneg) {
3140 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3141
3142 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3143 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3144 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3145 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3146 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3147 adv |= ADVERTISE_PAUSE_ASYM;
3148 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3149
3150 if (netif_running(dev))
3151 printk(KERN_INFO "%s: link down.\n", dev->name);
3152 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3153 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3154 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3155 } else {
3156 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3157 if (pause->rx_pause)
3158 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3159 if (pause->tx_pause)
3160 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3161
3162 if (!netif_running(dev))
3163 nv_update_linkspeed(dev);
3164 else
3165 nv_update_pause(dev, np->pause_flags);
3166 }
3167
3168 if (netif_running(dev)) {
3169 nv_start_rx(dev);
3170 nv_start_tx(dev);
3171 nv_enable_irq(dev);
3172 }
3173 return 0;
3174 }
3175
3176 static u32 nv_get_rx_csum(struct net_device *dev)
3177 {
3178 struct fe_priv *np = netdev_priv(dev);
3179 return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3180 }
3181
3182 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3183 {
3184 struct fe_priv *np = netdev_priv(dev);
3185 u8 __iomem *base = get_hwbase(dev);
3186 int retcode = 0;
3187
3188 if (np->driver_data & DEV_HAS_CHECKSUM) {
3189
3190 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3191 (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3192 /* already set or unset */
3193 return 0;
3194 }
3195
3196 if (data) {
3197 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3198 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3199 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3200 } else {
3201 printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3202 return -EINVAL;
3203 }
3204
3205 if (netif_running(dev)) {
3206 spin_lock_irq(&np->lock);
3207 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3208 spin_unlock_irq(&np->lock);
3209 }
3210 } else {
3211 return -EINVAL;
3212 }
3213
3214 return retcode;
3215 }
3216
3217 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3218 {
3219 struct fe_priv *np = netdev_priv(dev);
3220
3221 if (np->driver_data & DEV_HAS_CHECKSUM)
3222 return ethtool_op_set_tx_hw_csum(dev, data);
3223 else
3224 return -EOPNOTSUPP;
3225 }
3226
3227 static int nv_set_sg(struct net_device *dev, u32 data)
3228 {
3229 struct fe_priv *np = netdev_priv(dev);
3230
3231 if (np->driver_data & DEV_HAS_CHECKSUM)
3232 return ethtool_op_set_sg(dev, data);
3233 else
3234 return -EOPNOTSUPP;
3235 }
3236
3237 static int nv_get_stats_count(struct net_device *dev)
3238 {
3239 struct fe_priv *np = netdev_priv(dev);
3240
3241 if (np->driver_data & DEV_HAS_STATISTICS)
3242 return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
3243 else
3244 return 0;
3245 }
3246
3247 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3248 {
3249 struct fe_priv *np = netdev_priv(dev);
3250
3251 /* update stats */
3252 nv_do_stats_poll((unsigned long)dev);
3253
3254 memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3255 }
3256
3257 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3258 {
3259 switch (stringset) {
3260 case ETH_SS_STATS:
3261 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3262 break;
3263 }
3264 }
3265
3266 static struct ethtool_ops ops = {
3267 .get_drvinfo = nv_get_drvinfo,
3268 .get_link = ethtool_op_get_link,
3269 .get_wol = nv_get_wol,
3270 .set_wol = nv_set_wol,
3271 .get_settings = nv_get_settings,
3272 .set_settings = nv_set_settings,
3273 .get_regs_len = nv_get_regs_len,
3274 .get_regs = nv_get_regs,
3275 .nway_reset = nv_nway_reset,
3276 .get_perm_addr = ethtool_op_get_perm_addr,
3277 .get_tso = ethtool_op_get_tso,
3278 .set_tso = nv_set_tso,
3279 .get_ringparam = nv_get_ringparam,
3280 .set_ringparam = nv_set_ringparam,
3281 .get_pauseparam = nv_get_pauseparam,
3282 .set_pauseparam = nv_set_pauseparam,
3283 .get_rx_csum = nv_get_rx_csum,
3284 .set_rx_csum = nv_set_rx_csum,
3285 .get_tx_csum = ethtool_op_get_tx_csum,
3286 .set_tx_csum = nv_set_tx_csum,
3287 .get_sg = ethtool_op_get_sg,
3288 .set_sg = nv_set_sg,
3289 .get_strings = nv_get_strings,
3290 .get_stats_count = nv_get_stats_count,
3291 .get_ethtool_stats = nv_get_ethtool_stats,
3292 };
3293
3294 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3295 {
3296 struct fe_priv *np = get_nvpriv(dev);
3297
3298 spin_lock_irq(&np->lock);
3299
3300 /* save vlan group */
3301 np->vlangrp = grp;
3302
3303 if (grp) {
3304 /* enable vlan on MAC */
3305 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3306 } else {
3307 /* disable vlan on MAC */
3308 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3309 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3310 }
3311
3312 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3313
3314 spin_unlock_irq(&np->lock);
3315 };
3316
3317 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3318 {
3319 /* nothing to do */
3320 };
3321
3322 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3323 {
3324 u8 __iomem *base = get_hwbase(dev);
3325 int i;
3326 u32 msixmap = 0;
3327
3328 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3329 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3330 * the remaining 8 interrupts.
3331 */
3332 for (i = 0; i < 8; i++) {
3333 if ((irqmask >> i) & 0x1) {
3334 msixmap |= vector << (i << 2);
3335 }
3336 }
3337 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3338
3339 msixmap = 0;
3340 for (i = 0; i < 8; i++) {
3341 if ((irqmask >> (i + 8)) & 0x1) {
3342 msixmap |= vector << (i << 2);
3343 }
3344 }
3345 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3346 }
3347
3348 static int nv_request_irq(struct net_device *dev)
3349 {
3350 struct fe_priv *np = get_nvpriv(dev);
3351 u8 __iomem *base = get_hwbase(dev);
3352 int ret = 1;
3353 int i;
3354
3355 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3356 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3357 np->msi_x_entry[i].entry = i;
3358 }
3359 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3360 np->msi_flags |= NV_MSI_X_ENABLED;
3361 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3362 /* Request irq for rx handling */
3363 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
3364 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3365 pci_disable_msix(np->pci_dev);
3366 np->msi_flags &= ~NV_MSI_X_ENABLED;
3367 goto out_err;
3368 }
3369 /* Request irq for tx handling */
3370 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
3371 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3372 pci_disable_msix(np->pci_dev);
3373 np->msi_flags &= ~NV_MSI_X_ENABLED;
3374 goto out_free_rx;
3375 }
3376 /* Request irq for link and timer handling */
3377 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
3378 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3379 pci_disable_msix(np->pci_dev);
3380 np->msi_flags &= ~NV_MSI_X_ENABLED;
3381 goto out_free_tx;
3382 }
3383 /* map interrupts to their respective vector */
3384 writel(0, base + NvRegMSIXMap0);
3385 writel(0, base + NvRegMSIXMap1);
3386 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3387 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3388 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3389 } else {
3390 /* Request irq for all interrupts */
3391 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
3392 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3393 pci_disable_msix(np->pci_dev);
3394 np->msi_flags &= ~NV_MSI_X_ENABLED;
3395 goto out_err;
3396 }
3397
3398 /* map interrupts to vector 0 */
3399 writel(0, base + NvRegMSIXMap0);
3400 writel(0, base + NvRegMSIXMap1);
3401 }
3402 }
3403 }
3404 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3405 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3406 np->msi_flags |= NV_MSI_ENABLED;
3407 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
3408 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3409 pci_disable_msi(np->pci_dev);
3410 np->msi_flags &= ~NV_MSI_ENABLED;
3411 goto out_err;
3412 }
3413
3414 /* map interrupts to vector 0 */
3415 writel(0, base + NvRegMSIMap0);
3416 writel(0, base + NvRegMSIMap1);
3417 /* enable msi vector 0 */
3418 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3419 }
3420 }
3421 if (ret != 0) {
3422 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
3423 goto out_err;
3424 }
3425
3426 return 0;
3427 out_free_tx:
3428 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3429 out_free_rx:
3430 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3431 out_err:
3432 return 1;
3433 }
3434
3435 static void nv_free_irq(struct net_device *dev)
3436 {
3437 struct fe_priv *np = get_nvpriv(dev);
3438 int i;
3439
3440 if (np->msi_flags & NV_MSI_X_ENABLED) {
3441 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3442 free_irq(np->msi_x_entry[i].vector, dev);
3443 }
3444 pci_disable_msix(np->pci_dev);
3445 np->msi_flags &= ~NV_MSI_X_ENABLED;
3446 } else {
3447 free_irq(np->pci_dev->irq, dev);
3448 if (np->msi_flags & NV_MSI_ENABLED) {
3449 pci_disable_msi(np->pci_dev);
3450 np->msi_flags &= ~NV_MSI_ENABLED;
3451 }
3452 }
3453 }
3454
3455 static int nv_open(struct net_device *dev)
3456 {
3457 struct fe_priv *np = netdev_priv(dev);
3458 u8 __iomem *base = get_hwbase(dev);
3459 int ret = 1;
3460 int oom, i;
3461
3462 dprintk(KERN_DEBUG "nv_open: begin\n");
3463
3464 /* 1) erase previous misconfiguration */
3465 if (np->driver_data & DEV_HAS_POWER_CNTRL)
3466 nv_mac_reset(dev);
3467 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3468 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3469 writel(0, base + NvRegMulticastAddrB);
3470 writel(0, base + NvRegMulticastMaskA);
3471 writel(0, base + NvRegMulticastMaskB);
3472 writel(0, base + NvRegPacketFilterFlags);
3473
3474 writel(0, base + NvRegTransmitterControl);
3475 writel(0, base + NvRegReceiverControl);
3476
3477 writel(0, base + NvRegAdapterControl);
3478
3479 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3480 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3481
3482 /* 2) initialize descriptor rings */
3483 set_bufsize(dev);
3484 oom = nv_init_ring(dev);
3485
3486 writel(0, base + NvRegLinkSpeed);
3487 writel(0, base + NvRegUnknownTransmitterReg);
3488 nv_txrx_reset(dev);
3489 writel(0, base + NvRegUnknownSetupReg6);
3490
3491 np->in_shutdown = 0;
3492
3493 /* 3) set mac address */
3494 nv_copy_mac_to_hw(dev);
3495
3496 /* 4) give hw rings */
3497 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3498 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3499 base + NvRegRingSizes);
3500
3501 /* 5) continue setup */
3502 writel(np->linkspeed, base + NvRegLinkSpeed);
3503 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
3504 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3505 writel(np->vlanctl_bits, base + NvRegVlanControl);
3506 pci_push(base);
3507 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3508 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3509 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3510 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3511
3512 writel(0, base + NvRegUnknownSetupReg4);
3513 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3514 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3515
3516 /* 6) continue setup */
3517 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3518 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3519 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3520 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3521
3522 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3523 get_random_bytes(&i, sizeof(i));
3524 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3525 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
3526 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
3527 if (poll_interval == -1) {
3528 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3529 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3530 else
3531 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3532 }
3533 else
3534 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3535 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3536 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3537 base + NvRegAdapterControl);
3538 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3539 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3540 if (np->wolenabled)
3541 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3542
3543 i = readl(base + NvRegPowerState);
3544 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3545 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3546
3547 pci_push(base);
3548 udelay(10);
3549 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3550
3551 nv_disable_hw_interrupts(dev, np->irqmask);
3552 pci_push(base);
3553 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3554 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3555 pci_push(base);
3556
3557 if (nv_request_irq(dev)) {
3558 goto out_drain;
3559 }
3560
3561 /* ask for interrupts */
3562 nv_enable_hw_interrupts(dev, np->irqmask);
3563
3564 spin_lock_irq(&np->lock);
3565 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3566 writel(0, base + NvRegMulticastAddrB);
3567 writel(0, base + NvRegMulticastMaskA);
3568 writel(0, base + NvRegMulticastMaskB);
3569 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
3570 /* One manual link speed update: Interrupts are enabled, future link
3571 * speed changes cause interrupts and are handled by nv_link_irq().
3572 */
3573 {
3574 u32 miistat;
3575 miistat = readl(base + NvRegMIIStatus);
3576 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
3577 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
3578 }
3579 /* set linkspeed to invalid value, thus force nv_update_linkspeed
3580 * to init hw */
3581 np->linkspeed = 0;
3582 ret = nv_update_linkspeed(dev);
3583 nv_start_rx(dev);
3584 nv_start_tx(dev);
3585 netif_start_queue(dev);
3586 if (ret) {
3587 netif_carrier_on(dev);
3588 } else {
3589 printk("%s: no link during initialization.\n", dev->name);
3590 netif_carrier_off(dev);
3591 }
3592 if (oom)
3593 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3594
3595 /* start statistics timer */
3596 if (np->driver_data & DEV_HAS_STATISTICS)
3597 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3598
3599 spin_unlock_irq(&np->lock);
3600
3601 return 0;
3602 out_drain:
3603 drain_ring(dev);
3604 return ret;
3605 }
3606
3607 static int nv_close(struct net_device *dev)
3608 {
3609 struct fe_priv *np = netdev_priv(dev);
3610 u8 __iomem *base;
3611
3612 spin_lock_irq(&np->lock);
3613 np->in_shutdown = 1;
3614 spin_unlock_irq(&np->lock);
3615 synchronize_irq(dev->irq);
3616
3617 del_timer_sync(&np->oom_kick);
3618 del_timer_sync(&np->nic_poll);
3619 del_timer_sync(&np->stats_poll);
3620
3621 netif_stop_queue(dev);
3622 spin_lock_irq(&np->lock);
3623 nv_stop_tx(dev);
3624 nv_stop_rx(dev);
3625 nv_txrx_reset(dev);
3626
3627 /* disable interrupts on the nic or we will lock up */
3628 base = get_hwbase(dev);
3629 nv_disable_hw_interrupts(dev, np->irqmask);
3630 pci_push(base);
3631 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
3632
3633 spin_unlock_irq(&np->lock);
3634
3635 nv_free_irq(dev);
3636
3637 drain_ring(dev);
3638
3639 if (np->wolenabled)
3640 nv_start_rx(dev);
3641
3642 /* special op: write back the misordered MAC address - otherwise
3643 * the next nv_probe would see a wrong address.
3644 */
3645 writel(np->orig_mac[0], base + NvRegMacAddrA);
3646 writel(np->orig_mac[1], base + NvRegMacAddrB);
3647
3648 /* FIXME: power down nic */
3649
3650 return 0;
3651 }
3652
3653 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
3654 {
3655 struct net_device *dev;
3656 struct fe_priv *np;
3657 unsigned long addr;
3658 u8 __iomem *base;
3659 int err, i;
3660 u32 powerstate;
3661
3662 dev = alloc_etherdev(sizeof(struct fe_priv));
3663 err = -ENOMEM;
3664 if (!dev)
3665 goto out;
3666
3667 np = netdev_priv(dev);
3668 np->pci_dev = pci_dev;
3669 spin_lock_init(&np->lock);
3670 SET_MODULE_OWNER(dev);
3671 SET_NETDEV_DEV(dev, &pci_dev->dev);
3672
3673 init_timer(&np->oom_kick);
3674 np->oom_kick.data = (unsigned long) dev;
3675 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
3676 init_timer(&np->nic_poll);
3677 np->nic_poll.data = (unsigned long) dev;
3678 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
3679 init_timer(&np->stats_poll);
3680 np->stats_poll.data = (unsigned long) dev;
3681 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
3682
3683 err = pci_enable_device(pci_dev);
3684 if (err) {
3685 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
3686 err, pci_name(pci_dev));
3687 goto out_free;
3688 }
3689
3690 pci_set_master(pci_dev);
3691
3692 err = pci_request_regions(pci_dev, DRV_NAME);
3693 if (err < 0)
3694 goto out_disable;
3695
3696 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
3697 np->register_size = NV_PCI_REGSZ_VER2;
3698 else
3699 np->register_size = NV_PCI_REGSZ_VER1;
3700
3701 err = -EINVAL;
3702 addr = 0;
3703 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3704 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
3705 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
3706 pci_resource_len(pci_dev, i),
3707 pci_resource_flags(pci_dev, i));
3708 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
3709 pci_resource_len(pci_dev, i) >= np->register_size) {
3710 addr = pci_resource_start(pci_dev, i);
3711 break;
3712 }
3713 }
3714 if (i == DEVICE_COUNT_RESOURCE) {
3715 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
3716 pci_name(pci_dev));
3717 goto out_relreg;
3718 }
3719
3720 /* copy of driver data */
3721 np->driver_data = id->driver_data;
3722
3723 /* handle different descriptor versions */
3724 if (id->driver_data & DEV_HAS_HIGH_DMA) {
3725 /* packet format 3: supports 40-bit addressing */
3726 np->desc_ver = DESC_VER_3;
3727 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
3728 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
3729 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
3730 pci_name(pci_dev));
3731 } else {
3732 dev->features |= NETIF_F_HIGHDMA;
3733 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
3734 }
3735 if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
3736 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
3737 pci_name(pci_dev));
3738 }
3739 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
3740 /* packet format 2: supports jumbo frames */
3741 np->desc_ver = DESC_VER_2;
3742 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
3743 } else {
3744 /* original packet format */
3745 np->desc_ver = DESC_VER_1;
3746 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
3747 }
3748
3749 np->pkt_limit = NV_PKTLIMIT_1;
3750 if (id->driver_data & DEV_HAS_LARGEDESC)
3751 np->pkt_limit = NV_PKTLIMIT_2;
3752
3753 if (id->driver_data & DEV_HAS_CHECKSUM) {
3754 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3755 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
3756 #ifdef NETIF_F_TSO
3757 dev->features |= NETIF_F_TSO;
3758 #endif
3759 }
3760
3761 np->vlanctl_bits = 0;
3762 if (id->driver_data & DEV_HAS_VLAN) {
3763 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
3764 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
3765 dev->vlan_rx_register = nv_vlan_rx_register;
3766 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
3767 }
3768
3769 np->msi_flags = 0;
3770 if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
3771 np->msi_flags |= NV_MSI_CAPABLE;
3772 }
3773 if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
3774 np->msi_flags |= NV_MSI_X_CAPABLE;
3775 }
3776
3777 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
3778 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
3779 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
3780 }
3781
3782
3783 err = -ENOMEM;
3784 np->base = ioremap(addr, np->register_size);
3785 if (!np->base)
3786 goto out_relreg;
3787 dev->base_addr = (unsigned long)np->base;
3788
3789 dev->irq = pci_dev->irq;
3790
3791 np->rx_ring_size = RX_RING_DEFAULT;
3792 np->tx_ring_size = TX_RING_DEFAULT;
3793 np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
3794 np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
3795
3796 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3797 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
3798 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
3799 &np->ring_addr);
3800 if (!np->rx_ring.orig)
3801 goto out_unmap;
3802 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3803 } else {
3804 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3805 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
3806 &np->ring_addr);
3807 if (!np->rx_ring.ex)
3808 goto out_unmap;
3809 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3810 }
3811 np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
3812 np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
3813 np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
3814 np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
3815 np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
3816 if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
3817 goto out_freering;
3818 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3819 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3820 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3821 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3822 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3823
3824 dev->open = nv_open;
3825 dev->stop = nv_close;
3826 dev->hard_start_xmit = nv_start_xmit;
3827 dev->get_stats = nv_get_stats;
3828 dev->change_mtu = nv_change_mtu;
3829 dev->set_mac_address = nv_set_mac_address;
3830 dev->set_multicast_list = nv_set_multicast;
3831 #ifdef CONFIG_NET_POLL_CONTROLLER
3832 dev->poll_controller = nv_poll_controller;
3833 #endif
3834 SET_ETHTOOL_OPS(dev, &ops);
3835 dev->tx_timeout = nv_tx_timeout;
3836 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3837
3838 pci_set_drvdata(pci_dev, dev);
3839
3840 /* read the mac address */
3841 base = get_hwbase(dev);
3842 np->orig_mac[0] = readl(base + NvRegMacAddrA);
3843 np->orig_mac[1] = readl(base + NvRegMacAddrB);
3844
3845 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
3846 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
3847 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3848 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3849 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
3850 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
3851 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3852
3853 if (!is_valid_ether_addr(dev->perm_addr)) {
3854 /*
3855 * Bad mac address. At least one bios sets the mac address
3856 * to 01:23:45:67:89:ab
3857 */
3858 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3859 pci_name(pci_dev),
3860 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3861 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3862 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3863 dev->dev_addr[0] = 0x00;
3864 dev->dev_addr[1] = 0x00;
3865 dev->dev_addr[2] = 0x6c;
3866 get_random_bytes(&dev->dev_addr[3], 3);
3867 }
3868
3869 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3870 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3871 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3872
3873 /* disable WOL */
3874 writel(0, base + NvRegWakeUpFlags);
3875 np->wolenabled = 0;
3876
3877 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
3878 u8 revision_id;
3879 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
3880
3881 /* take phy and nic out of low power mode */
3882 powerstate = readl(base + NvRegPowerState2);
3883 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
3884 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
3885 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
3886 revision_id >= 0xA3)
3887 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
3888 writel(powerstate, base + NvRegPowerState2);
3889 }
3890
3891 if (np->desc_ver == DESC_VER_1) {
3892 np->tx_flags = NV_TX_VALID;
3893 } else {
3894 np->tx_flags = NV_TX2_VALID;
3895 }
3896 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3897 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3898 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3899 np->msi_flags |= 0x0003;
3900 } else {
3901 np->irqmask = NVREG_IRQMASK_CPU;
3902 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3903 np->msi_flags |= 0x0001;
3904 }
3905
3906 if (id->driver_data & DEV_NEED_TIMERIRQ)
3907 np->irqmask |= NVREG_IRQ_TIMER;
3908 if (id->driver_data & DEV_NEED_LINKTIMER) {
3909 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3910 np->need_linktimer = 1;
3911 np->link_timeout = jiffies + LINK_TIMEOUT;
3912 } else {
3913 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3914 np->need_linktimer = 0;
3915 }
3916
3917 /* find a suitable phy */
3918 for (i = 1; i <= 32; i++) {
3919 int id1, id2;
3920 int phyaddr = i & 0x1F;
3921
3922 spin_lock_irq(&np->lock);
3923 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3924 spin_unlock_irq(&np->lock);
3925 if (id1 < 0 || id1 == 0xffff)
3926 continue;
3927 spin_lock_irq(&np->lock);
3928 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3929 spin_unlock_irq(&np->lock);
3930 if (id2 < 0 || id2 == 0xffff)
3931 continue;
3932
3933 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3934 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3935 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3936 pci_name(pci_dev), id1, id2, phyaddr);
3937 np->phyaddr = phyaddr;
3938 np->phy_oui = id1 | id2;
3939 break;
3940 }
3941 if (i == 33) {
3942 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3943 pci_name(pci_dev));
3944 goto out_error;
3945 }
3946
3947 /* reset it */
3948 phy_init(dev);
3949
3950 /* set default link speed settings */
3951 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3952 np->duplex = 0;
3953 np->autoneg = 1;
3954
3955 err = register_netdev(dev);
3956 if (err) {
3957 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3958 goto out_error;
3959 }
3960 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3961 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3962 pci_name(pci_dev));
3963
3964 return 0;
3965
3966 out_error:
3967 pci_set_drvdata(pci_dev, NULL);
3968 out_freering:
3969 free_rings(dev);
3970 out_unmap:
3971 iounmap(get_hwbase(dev));
3972 out_relreg:
3973 pci_release_regions(pci_dev);
3974 out_disable:
3975 pci_disable_device(pci_dev);
3976 out_free:
3977 free_netdev(dev);
3978 out:
3979 return err;
3980 }
3981
3982 static void __devexit nv_remove(struct pci_dev *pci_dev)
3983 {
3984 struct net_device *dev = pci_get_drvdata(pci_dev);
3985
3986 unregister_netdev(dev);
3987
3988 /* free all structures */
3989 free_rings(dev);
3990 iounmap(get_hwbase(dev));
3991 pci_release_regions(pci_dev);
3992 pci_disable_device(pci_dev);
3993 free_netdev(dev);
3994 pci_set_drvdata(pci_dev, NULL);
3995 }
3996
3997 static struct pci_device_id pci_tbl[] = {
3998 { /* nForce Ethernet Controller */
3999 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4000 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4001 },
4002 { /* nForce2 Ethernet Controller */
4003 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4004 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4005 },
4006 { /* nForce3 Ethernet Controller */
4007 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4008 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4009 },
4010 { /* nForce3 Ethernet Controller */
4011 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4012 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4013 },
4014 { /* nForce3 Ethernet Controller */
4015 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4016 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4017 },
4018 { /* nForce3 Ethernet Controller */
4019 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4020 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4021 },
4022 { /* nForce3 Ethernet Controller */
4023 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4024 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4025 },
4026 { /* CK804 Ethernet Controller */
4027 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4028 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4029 },
4030 { /* CK804 Ethernet Controller */
4031 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4032 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4033 },
4034 { /* MCP04 Ethernet Controller */
4035 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4036 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4037 },
4038 { /* MCP04 Ethernet Controller */
4039 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4040 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4041 },
4042 { /* MCP51 Ethernet Controller */
4043 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4044 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4045 },
4046 { /* MCP51 Ethernet Controller */
4047 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4048 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4049 },
4050 { /* MCP55 Ethernet Controller */
4051 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4052 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS,
4053 },
4054 { /* MCP55 Ethernet Controller */
4055 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4056 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS,
4057 },
4058 {0,},
4059 };
4060
4061 static struct pci_driver driver = {
4062 .name = "forcedeth",
4063 .id_table = pci_tbl,
4064 .probe = nv_probe,
4065 .remove = __devexit_p(nv_remove),
4066 };
4067
4068
4069 static int __init init_nic(void)
4070 {
4071 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4072 return pci_module_init(&driver);
4073 }
4074
4075 static void __exit exit_nic(void)
4076 {
4077 pci_unregister_driver(&driver);
4078 }
4079
4080 module_param(max_interrupt_work, int, 0);
4081 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4082 module_param(optimization_mode, int, 0);
4083 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4084 module_param(poll_interval, int, 0);
4085 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4086 module_param(disable_msi, int, 0);
4087 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
4088 module_param(disable_msix, int, 0);
4089 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
4090
4091 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4092 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4093 MODULE_LICENSE("GPL");
4094
4095 MODULE_DEVICE_TABLE(pci, pci_tbl);
4096
4097 module_init(init_nic);
4098 module_exit(exit_nic);