Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.64"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/spinlock.h>
53 #include <linux/ethtool.h>
54 #include <linux/timer.h>
55 #include <linux/skbuff.h>
56 #include <linux/mii.h>
57 #include <linux/random.h>
58 #include <linux/init.h>
59 #include <linux/if_vlan.h>
60 #include <linux/dma-mapping.h>
61
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/uaccess.h>
65 #include <asm/system.h>
66
67 #if 0
68 #define dprintk printk
69 #else
70 #define dprintk(x...) do { } while (0)
71 #endif
72
73 #define TX_WORK_PER_LOOP 64
74 #define RX_WORK_PER_LOOP 64
75
76 /*
77 * Hardware access:
78 */
79
80 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
87 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
91 #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
92 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
93 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
94 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
95 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
99 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
100 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
101 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
102 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
103 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
104 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
105
106 enum {
107 NvRegIrqStatus = 0x000,
108 #define NVREG_IRQSTAT_MIIEVENT 0x040
109 #define NVREG_IRQSTAT_MASK 0x83ff
110 NvRegIrqMask = 0x004,
111 #define NVREG_IRQ_RX_ERROR 0x0001
112 #define NVREG_IRQ_RX 0x0002
113 #define NVREG_IRQ_RX_NOBUF 0x0004
114 #define NVREG_IRQ_TX_ERR 0x0008
115 #define NVREG_IRQ_TX_OK 0x0010
116 #define NVREG_IRQ_TIMER 0x0020
117 #define NVREG_IRQ_LINK 0x0040
118 #define NVREG_IRQ_RX_FORCED 0x0080
119 #define NVREG_IRQ_TX_FORCED 0x0100
120 #define NVREG_IRQ_RECOVER_ERROR 0x8200
121 #define NVREG_IRQMASK_THROUGHPUT 0x00df
122 #define NVREG_IRQMASK_CPU 0x0060
123 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
124 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
125 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
126
127 NvRegUnknownSetupReg6 = 0x008,
128 #define NVREG_UNKSETUP6_VAL 3
129
130 /*
131 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
132 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
133 */
134 NvRegPollingInterval = 0x00c,
135 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
136 #define NVREG_POLL_DEFAULT_CPU 13
137 NvRegMSIMap0 = 0x020,
138 NvRegMSIMap1 = 0x024,
139 NvRegMSIIrqMask = 0x030,
140 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
141 NvRegMisc1 = 0x080,
142 #define NVREG_MISC1_PAUSE_TX 0x01
143 #define NVREG_MISC1_HD 0x02
144 #define NVREG_MISC1_FORCE 0x3b0f3c
145
146 NvRegMacReset = 0x34,
147 #define NVREG_MAC_RESET_ASSERT 0x0F3
148 NvRegTransmitterControl = 0x084,
149 #define NVREG_XMITCTL_START 0x01
150 #define NVREG_XMITCTL_MGMT_ST 0x40000000
151 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
152 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
153 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
154 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
155 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
156 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
157 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
158 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
159 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
160 #define NVREG_XMITCTL_DATA_START 0x00100000
161 #define NVREG_XMITCTL_DATA_READY 0x00010000
162 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
163 NvRegTransmitterStatus = 0x088,
164 #define NVREG_XMITSTAT_BUSY 0x01
165
166 NvRegPacketFilterFlags = 0x8c,
167 #define NVREG_PFF_PAUSE_RX 0x08
168 #define NVREG_PFF_ALWAYS 0x7F0000
169 #define NVREG_PFF_PROMISC 0x80
170 #define NVREG_PFF_MYADDR 0x20
171 #define NVREG_PFF_LOOPBACK 0x10
172
173 NvRegOffloadConfig = 0x90,
174 #define NVREG_OFFLOAD_HOMEPHY 0x601
175 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
176 NvRegReceiverControl = 0x094,
177 #define NVREG_RCVCTL_START 0x01
178 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
179 NvRegReceiverStatus = 0x98,
180 #define NVREG_RCVSTAT_BUSY 0x01
181
182 NvRegSlotTime = 0x9c,
183 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
184 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
185 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
186 #define NVREG_SLOTTIME_HALF 0x0000ff00
187 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
188 #define NVREG_SLOTTIME_MASK 0x000000ff
189
190 NvRegTxDeferral = 0xA0,
191 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
192 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
193 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
194 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
196 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
197 NvRegRxDeferral = 0xA4,
198 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
199 NvRegMacAddrA = 0xA8,
200 NvRegMacAddrB = 0xAC,
201 NvRegMulticastAddrA = 0xB0,
202 #define NVREG_MCASTADDRA_FORCE 0x01
203 NvRegMulticastAddrB = 0xB4,
204 NvRegMulticastMaskA = 0xB8,
205 #define NVREG_MCASTMASKA_NONE 0xffffffff
206 NvRegMulticastMaskB = 0xBC,
207 #define NVREG_MCASTMASKB_NONE 0xffff
208
209 NvRegPhyInterface = 0xC0,
210 #define PHY_RGMII 0x10000000
211 NvRegBackOffControl = 0xC4,
212 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
213 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
214 #define NVREG_BKOFFCTRL_SELECT 24
215 #define NVREG_BKOFFCTRL_GEAR 12
216
217 NvRegTxRingPhysAddr = 0x100,
218 NvRegRxRingPhysAddr = 0x104,
219 NvRegRingSizes = 0x108,
220 #define NVREG_RINGSZ_TXSHIFT 0
221 #define NVREG_RINGSZ_RXSHIFT 16
222 NvRegTransmitPoll = 0x10c,
223 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
224 NvRegLinkSpeed = 0x110,
225 #define NVREG_LINKSPEED_FORCE 0x10000
226 #define NVREG_LINKSPEED_10 1000
227 #define NVREG_LINKSPEED_100 100
228 #define NVREG_LINKSPEED_1000 50
229 #define NVREG_LINKSPEED_MASK (0xFFF)
230 NvRegUnknownSetupReg5 = 0x130,
231 #define NVREG_UNKSETUP5_BIT31 (1<<31)
232 NvRegTxWatermark = 0x13c,
233 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
234 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
235 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
236 NvRegTxRxControl = 0x144,
237 #define NVREG_TXRXCTL_KICK 0x0001
238 #define NVREG_TXRXCTL_BIT1 0x0002
239 #define NVREG_TXRXCTL_BIT2 0x0004
240 #define NVREG_TXRXCTL_IDLE 0x0008
241 #define NVREG_TXRXCTL_RESET 0x0010
242 #define NVREG_TXRXCTL_RXCHECK 0x0400
243 #define NVREG_TXRXCTL_DESC_1 0
244 #define NVREG_TXRXCTL_DESC_2 0x002100
245 #define NVREG_TXRXCTL_DESC_3 0xc02200
246 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
247 #define NVREG_TXRXCTL_VLANINS 0x00080
248 NvRegTxRingPhysAddrHigh = 0x148,
249 NvRegRxRingPhysAddrHigh = 0x14C,
250 NvRegTxPauseFrame = 0x170,
251 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
252 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
253 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
255 NvRegTxPauseFrameLimit = 0x174,
256 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
257 NvRegMIIStatus = 0x180,
258 #define NVREG_MIISTAT_ERROR 0x0001
259 #define NVREG_MIISTAT_LINKCHANGE 0x0008
260 #define NVREG_MIISTAT_MASK_RW 0x0007
261 #define NVREG_MIISTAT_MASK_ALL 0x000f
262 NvRegMIIMask = 0x184,
263 #define NVREG_MII_LINKCHANGE 0x0008
264
265 NvRegAdapterControl = 0x188,
266 #define NVREG_ADAPTCTL_START 0x02
267 #define NVREG_ADAPTCTL_LINKUP 0x04
268 #define NVREG_ADAPTCTL_PHYVALID 0x40000
269 #define NVREG_ADAPTCTL_RUNNING 0x100000
270 #define NVREG_ADAPTCTL_PHYSHIFT 24
271 NvRegMIISpeed = 0x18c,
272 #define NVREG_MIISPEED_BIT8 (1<<8)
273 #define NVREG_MIIDELAY 5
274 NvRegMIIControl = 0x190,
275 #define NVREG_MIICTL_INUSE 0x08000
276 #define NVREG_MIICTL_WRITE 0x00400
277 #define NVREG_MIICTL_ADDRSHIFT 5
278 NvRegMIIData = 0x194,
279 NvRegTxUnicast = 0x1a0,
280 NvRegTxMulticast = 0x1a4,
281 NvRegTxBroadcast = 0x1a8,
282 NvRegWakeUpFlags = 0x200,
283 #define NVREG_WAKEUPFLAGS_VAL 0x7770
284 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
285 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
286 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
287 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
288 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
289 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
290 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
291 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
292 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
293 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
294
295 NvRegMgmtUnitGetVersion = 0x204,
296 #define NVREG_MGMTUNITGETVERSION 0x01
297 NvRegMgmtUnitVersion = 0x208,
298 #define NVREG_MGMTUNITVERSION 0x08
299 NvRegPowerCap = 0x268,
300 #define NVREG_POWERCAP_D3SUPP (1<<30)
301 #define NVREG_POWERCAP_D2SUPP (1<<26)
302 #define NVREG_POWERCAP_D1SUPP (1<<25)
303 NvRegPowerState = 0x26c,
304 #define NVREG_POWERSTATE_POWEREDUP 0x8000
305 #define NVREG_POWERSTATE_VALID 0x0100
306 #define NVREG_POWERSTATE_MASK 0x0003
307 #define NVREG_POWERSTATE_D0 0x0000
308 #define NVREG_POWERSTATE_D1 0x0001
309 #define NVREG_POWERSTATE_D2 0x0002
310 #define NVREG_POWERSTATE_D3 0x0003
311 NvRegMgmtUnitControl = 0x278,
312 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
313 NvRegTxCnt = 0x280,
314 NvRegTxZeroReXmt = 0x284,
315 NvRegTxOneReXmt = 0x288,
316 NvRegTxManyReXmt = 0x28c,
317 NvRegTxLateCol = 0x290,
318 NvRegTxUnderflow = 0x294,
319 NvRegTxLossCarrier = 0x298,
320 NvRegTxExcessDef = 0x29c,
321 NvRegTxRetryErr = 0x2a0,
322 NvRegRxFrameErr = 0x2a4,
323 NvRegRxExtraByte = 0x2a8,
324 NvRegRxLateCol = 0x2ac,
325 NvRegRxRunt = 0x2b0,
326 NvRegRxFrameTooLong = 0x2b4,
327 NvRegRxOverflow = 0x2b8,
328 NvRegRxFCSErr = 0x2bc,
329 NvRegRxFrameAlignErr = 0x2c0,
330 NvRegRxLenErr = 0x2c4,
331 NvRegRxUnicast = 0x2c8,
332 NvRegRxMulticast = 0x2cc,
333 NvRegRxBroadcast = 0x2d0,
334 NvRegTxDef = 0x2d4,
335 NvRegTxFrame = 0x2d8,
336 NvRegRxCnt = 0x2dc,
337 NvRegTxPause = 0x2e0,
338 NvRegRxPause = 0x2e4,
339 NvRegRxDropFrame = 0x2e8,
340 NvRegVlanControl = 0x300,
341 #define NVREG_VLANCONTROL_ENABLE 0x2000
342 NvRegMSIXMap0 = 0x3e0,
343 NvRegMSIXMap1 = 0x3e4,
344 NvRegMSIXIrqStatus = 0x3f0,
345
346 NvRegPowerState2 = 0x600,
347 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
348 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
349 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
350 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
351 };
352
353 /* Big endian: should work, but is untested */
354 struct ring_desc {
355 __le32 buf;
356 __le32 flaglen;
357 };
358
359 struct ring_desc_ex {
360 __le32 bufhigh;
361 __le32 buflow;
362 __le32 txvlan;
363 __le32 flaglen;
364 };
365
366 union ring_type {
367 struct ring_desc* orig;
368 struct ring_desc_ex* ex;
369 };
370
371 #define FLAG_MASK_V1 0xffff0000
372 #define FLAG_MASK_V2 0xffffc000
373 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
374 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
375
376 #define NV_TX_LASTPACKET (1<<16)
377 #define NV_TX_RETRYERROR (1<<19)
378 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
379 #define NV_TX_FORCED_INTERRUPT (1<<24)
380 #define NV_TX_DEFERRED (1<<26)
381 #define NV_TX_CARRIERLOST (1<<27)
382 #define NV_TX_LATECOLLISION (1<<28)
383 #define NV_TX_UNDERFLOW (1<<29)
384 #define NV_TX_ERROR (1<<30)
385 #define NV_TX_VALID (1<<31)
386
387 #define NV_TX2_LASTPACKET (1<<29)
388 #define NV_TX2_RETRYERROR (1<<18)
389 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
390 #define NV_TX2_FORCED_INTERRUPT (1<<30)
391 #define NV_TX2_DEFERRED (1<<25)
392 #define NV_TX2_CARRIERLOST (1<<26)
393 #define NV_TX2_LATECOLLISION (1<<27)
394 #define NV_TX2_UNDERFLOW (1<<28)
395 /* error and valid are the same for both */
396 #define NV_TX2_ERROR (1<<30)
397 #define NV_TX2_VALID (1<<31)
398 #define NV_TX2_TSO (1<<28)
399 #define NV_TX2_TSO_SHIFT 14
400 #define NV_TX2_TSO_MAX_SHIFT 14
401 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
402 #define NV_TX2_CHECKSUM_L3 (1<<27)
403 #define NV_TX2_CHECKSUM_L4 (1<<26)
404
405 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
406
407 #define NV_RX_DESCRIPTORVALID (1<<16)
408 #define NV_RX_MISSEDFRAME (1<<17)
409 #define NV_RX_SUBSTRACT1 (1<<18)
410 #define NV_RX_ERROR1 (1<<23)
411 #define NV_RX_ERROR2 (1<<24)
412 #define NV_RX_ERROR3 (1<<25)
413 #define NV_RX_ERROR4 (1<<26)
414 #define NV_RX_CRCERR (1<<27)
415 #define NV_RX_OVERFLOW (1<<28)
416 #define NV_RX_FRAMINGERR (1<<29)
417 #define NV_RX_ERROR (1<<30)
418 #define NV_RX_AVAIL (1<<31)
419 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
420
421 #define NV_RX2_CHECKSUMMASK (0x1C000000)
422 #define NV_RX2_CHECKSUM_IP (0x10000000)
423 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
424 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
425 #define NV_RX2_DESCRIPTORVALID (1<<29)
426 #define NV_RX2_SUBSTRACT1 (1<<25)
427 #define NV_RX2_ERROR1 (1<<18)
428 #define NV_RX2_ERROR2 (1<<19)
429 #define NV_RX2_ERROR3 (1<<20)
430 #define NV_RX2_ERROR4 (1<<21)
431 #define NV_RX2_CRCERR (1<<22)
432 #define NV_RX2_OVERFLOW (1<<23)
433 #define NV_RX2_FRAMINGERR (1<<24)
434 /* error and avail are the same for both */
435 #define NV_RX2_ERROR (1<<30)
436 #define NV_RX2_AVAIL (1<<31)
437 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
438
439 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
440 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
441
442 /* Miscelaneous hardware related defines: */
443 #define NV_PCI_REGSZ_VER1 0x270
444 #define NV_PCI_REGSZ_VER2 0x2d4
445 #define NV_PCI_REGSZ_VER3 0x604
446 #define NV_PCI_REGSZ_MAX 0x604
447
448 /* various timeout delays: all in usec */
449 #define NV_TXRX_RESET_DELAY 4
450 #define NV_TXSTOP_DELAY1 10
451 #define NV_TXSTOP_DELAY1MAX 500000
452 #define NV_TXSTOP_DELAY2 100
453 #define NV_RXSTOP_DELAY1 10
454 #define NV_RXSTOP_DELAY1MAX 500000
455 #define NV_RXSTOP_DELAY2 100
456 #define NV_SETUP5_DELAY 5
457 #define NV_SETUP5_DELAYMAX 50000
458 #define NV_POWERUP_DELAY 5
459 #define NV_POWERUP_DELAYMAX 5000
460 #define NV_MIIBUSY_DELAY 50
461 #define NV_MIIPHY_DELAY 10
462 #define NV_MIIPHY_DELAYMAX 10000
463 #define NV_MAC_RESET_DELAY 64
464
465 #define NV_WAKEUPPATTERNS 5
466 #define NV_WAKEUPMASKENTRIES 4
467
468 /* General driver defaults */
469 #define NV_WATCHDOG_TIMEO (5*HZ)
470
471 #define RX_RING_DEFAULT 512
472 #define TX_RING_DEFAULT 256
473 #define RX_RING_MIN 128
474 #define TX_RING_MIN 64
475 #define RING_MAX_DESC_VER_1 1024
476 #define RING_MAX_DESC_VER_2_3 16384
477
478 /* rx/tx mac addr + type + vlan + align + slack*/
479 #define NV_RX_HEADERS (64)
480 /* even more slack. */
481 #define NV_RX_ALLOC_PAD (64)
482
483 /* maximum mtu size */
484 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
485 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
486
487 #define OOM_REFILL (1+HZ/20)
488 #define POLL_WAIT (1+HZ/100)
489 #define LINK_TIMEOUT (3*HZ)
490 #define STATS_INTERVAL (10*HZ)
491
492 /*
493 * desc_ver values:
494 * The nic supports three different descriptor types:
495 * - DESC_VER_1: Original
496 * - DESC_VER_2: support for jumbo frames.
497 * - DESC_VER_3: 64-bit format.
498 */
499 #define DESC_VER_1 1
500 #define DESC_VER_2 2
501 #define DESC_VER_3 3
502
503 /* PHY defines */
504 #define PHY_OUI_MARVELL 0x5043
505 #define PHY_OUI_CICADA 0x03f1
506 #define PHY_OUI_VITESSE 0x01c1
507 #define PHY_OUI_REALTEK 0x0732
508 #define PHY_OUI_REALTEK2 0x0020
509 #define PHYID1_OUI_MASK 0x03ff
510 #define PHYID1_OUI_SHFT 6
511 #define PHYID2_OUI_MASK 0xfc00
512 #define PHYID2_OUI_SHFT 10
513 #define PHYID2_MODEL_MASK 0x03f0
514 #define PHY_MODEL_REALTEK_8211 0x0110
515 #define PHY_REV_MASK 0x0001
516 #define PHY_REV_REALTEK_8211B 0x0000
517 #define PHY_REV_REALTEK_8211C 0x0001
518 #define PHY_MODEL_REALTEK_8201 0x0200
519 #define PHY_MODEL_MARVELL_E3016 0x0220
520 #define PHY_MARVELL_E3016_INITMASK 0x0300
521 #define PHY_CICADA_INIT1 0x0f000
522 #define PHY_CICADA_INIT2 0x0e00
523 #define PHY_CICADA_INIT3 0x01000
524 #define PHY_CICADA_INIT4 0x0200
525 #define PHY_CICADA_INIT5 0x0004
526 #define PHY_CICADA_INIT6 0x02000
527 #define PHY_VITESSE_INIT_REG1 0x1f
528 #define PHY_VITESSE_INIT_REG2 0x10
529 #define PHY_VITESSE_INIT_REG3 0x11
530 #define PHY_VITESSE_INIT_REG4 0x12
531 #define PHY_VITESSE_INIT_MSK1 0xc
532 #define PHY_VITESSE_INIT_MSK2 0x0180
533 #define PHY_VITESSE_INIT1 0x52b5
534 #define PHY_VITESSE_INIT2 0xaf8a
535 #define PHY_VITESSE_INIT3 0x8
536 #define PHY_VITESSE_INIT4 0x8f8a
537 #define PHY_VITESSE_INIT5 0xaf86
538 #define PHY_VITESSE_INIT6 0x8f86
539 #define PHY_VITESSE_INIT7 0xaf82
540 #define PHY_VITESSE_INIT8 0x0100
541 #define PHY_VITESSE_INIT9 0x8f82
542 #define PHY_VITESSE_INIT10 0x0
543 #define PHY_REALTEK_INIT_REG1 0x1f
544 #define PHY_REALTEK_INIT_REG2 0x19
545 #define PHY_REALTEK_INIT_REG3 0x13
546 #define PHY_REALTEK_INIT_REG4 0x14
547 #define PHY_REALTEK_INIT_REG5 0x18
548 #define PHY_REALTEK_INIT_REG6 0x11
549 #define PHY_REALTEK_INIT_REG7 0x01
550 #define PHY_REALTEK_INIT1 0x0000
551 #define PHY_REALTEK_INIT2 0x8e00
552 #define PHY_REALTEK_INIT3 0x0001
553 #define PHY_REALTEK_INIT4 0xad17
554 #define PHY_REALTEK_INIT5 0xfb54
555 #define PHY_REALTEK_INIT6 0xf5c7
556 #define PHY_REALTEK_INIT7 0x1000
557 #define PHY_REALTEK_INIT8 0x0003
558 #define PHY_REALTEK_INIT9 0x0008
559 #define PHY_REALTEK_INIT10 0x0005
560 #define PHY_REALTEK_INIT11 0x0200
561 #define PHY_REALTEK_INIT_MSK1 0x0003
562
563 #define PHY_GIGABIT 0x0100
564
565 #define PHY_TIMEOUT 0x1
566 #define PHY_ERROR 0x2
567
568 #define PHY_100 0x1
569 #define PHY_1000 0x2
570 #define PHY_HALF 0x100
571
572 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
573 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
574 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
575 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
576 #define NV_PAUSEFRAME_RX_REQ 0x0010
577 #define NV_PAUSEFRAME_TX_REQ 0x0020
578 #define NV_PAUSEFRAME_AUTONEG 0x0040
579
580 /* MSI/MSI-X defines */
581 #define NV_MSI_X_MAX_VECTORS 8
582 #define NV_MSI_X_VECTORS_MASK 0x000f
583 #define NV_MSI_CAPABLE 0x0010
584 #define NV_MSI_X_CAPABLE 0x0020
585 #define NV_MSI_ENABLED 0x0040
586 #define NV_MSI_X_ENABLED 0x0080
587
588 #define NV_MSI_X_VECTOR_ALL 0x0
589 #define NV_MSI_X_VECTOR_RX 0x0
590 #define NV_MSI_X_VECTOR_TX 0x1
591 #define NV_MSI_X_VECTOR_OTHER 0x2
592
593 #define NV_MSI_PRIV_OFFSET 0x68
594 #define NV_MSI_PRIV_VALUE 0xffffffff
595
596 #define NV_RESTART_TX 0x1
597 #define NV_RESTART_RX 0x2
598
599 #define NV_TX_LIMIT_COUNT 16
600
601 #define NV_DYNAMIC_THRESHOLD 4
602 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
603
604 /* statistics */
605 struct nv_ethtool_str {
606 char name[ETH_GSTRING_LEN];
607 };
608
609 static const struct nv_ethtool_str nv_estats_str[] = {
610 { "tx_bytes" },
611 { "tx_zero_rexmt" },
612 { "tx_one_rexmt" },
613 { "tx_many_rexmt" },
614 { "tx_late_collision" },
615 { "tx_fifo_errors" },
616 { "tx_carrier_errors" },
617 { "tx_excess_deferral" },
618 { "tx_retry_error" },
619 { "rx_frame_error" },
620 { "rx_extra_byte" },
621 { "rx_late_collision" },
622 { "rx_runt" },
623 { "rx_frame_too_long" },
624 { "rx_over_errors" },
625 { "rx_crc_errors" },
626 { "rx_frame_align_error" },
627 { "rx_length_error" },
628 { "rx_unicast" },
629 { "rx_multicast" },
630 { "rx_broadcast" },
631 { "rx_packets" },
632 { "rx_errors_total" },
633 { "tx_errors_total" },
634
635 /* version 2 stats */
636 { "tx_deferral" },
637 { "tx_packets" },
638 { "rx_bytes" },
639 { "tx_pause" },
640 { "rx_pause" },
641 { "rx_drop_frame" },
642
643 /* version 3 stats */
644 { "tx_unicast" },
645 { "tx_multicast" },
646 { "tx_broadcast" }
647 };
648
649 struct nv_ethtool_stats {
650 u64 tx_bytes;
651 u64 tx_zero_rexmt;
652 u64 tx_one_rexmt;
653 u64 tx_many_rexmt;
654 u64 tx_late_collision;
655 u64 tx_fifo_errors;
656 u64 tx_carrier_errors;
657 u64 tx_excess_deferral;
658 u64 tx_retry_error;
659 u64 rx_frame_error;
660 u64 rx_extra_byte;
661 u64 rx_late_collision;
662 u64 rx_runt;
663 u64 rx_frame_too_long;
664 u64 rx_over_errors;
665 u64 rx_crc_errors;
666 u64 rx_frame_align_error;
667 u64 rx_length_error;
668 u64 rx_unicast;
669 u64 rx_multicast;
670 u64 rx_broadcast;
671 u64 rx_packets;
672 u64 rx_errors_total;
673 u64 tx_errors_total;
674
675 /* version 2 stats */
676 u64 tx_deferral;
677 u64 tx_packets;
678 u64 rx_bytes;
679 u64 tx_pause;
680 u64 rx_pause;
681 u64 rx_drop_frame;
682
683 /* version 3 stats */
684 u64 tx_unicast;
685 u64 tx_multicast;
686 u64 tx_broadcast;
687 };
688
689 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
690 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
691 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
692
693 /* diagnostics */
694 #define NV_TEST_COUNT_BASE 3
695 #define NV_TEST_COUNT_EXTENDED 4
696
697 static const struct nv_ethtool_str nv_etests_str[] = {
698 { "link (online/offline)" },
699 { "register (offline) " },
700 { "interrupt (offline) " },
701 { "loopback (offline) " }
702 };
703
704 struct register_test {
705 __u32 reg;
706 __u32 mask;
707 };
708
709 static const struct register_test nv_registers_test[] = {
710 { NvRegUnknownSetupReg6, 0x01 },
711 { NvRegMisc1, 0x03c },
712 { NvRegOffloadConfig, 0x03ff },
713 { NvRegMulticastAddrA, 0xffffffff },
714 { NvRegTxWatermark, 0x0ff },
715 { NvRegWakeUpFlags, 0x07777 },
716 { 0,0 }
717 };
718
719 struct nv_skb_map {
720 struct sk_buff *skb;
721 dma_addr_t dma;
722 unsigned int dma_len:31;
723 unsigned int dma_single:1;
724 struct ring_desc_ex *first_tx_desc;
725 struct nv_skb_map *next_tx_ctx;
726 };
727
728 /*
729 * SMP locking:
730 * All hardware access under netdev_priv(dev)->lock, except the performance
731 * critical parts:
732 * - rx is (pseudo-) lockless: it relies on the single-threading provided
733 * by the arch code for interrupts.
734 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
735 * needs netdev_priv(dev)->lock :-(
736 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
737 */
738
739 /* in dev: base, irq */
740 struct fe_priv {
741 spinlock_t lock;
742
743 struct net_device *dev;
744 struct napi_struct napi;
745
746 /* General data:
747 * Locking: spin_lock(&np->lock); */
748 struct nv_ethtool_stats estats;
749 int in_shutdown;
750 u32 linkspeed;
751 int duplex;
752 int autoneg;
753 int fixed_mode;
754 int phyaddr;
755 int wolenabled;
756 unsigned int phy_oui;
757 unsigned int phy_model;
758 unsigned int phy_rev;
759 u16 gigabit;
760 int intr_test;
761 int recover_error;
762 int quiet_count;
763
764 /* General data: RO fields */
765 dma_addr_t ring_addr;
766 struct pci_dev *pci_dev;
767 u32 orig_mac[2];
768 u32 events;
769 u32 irqmask;
770 u32 desc_ver;
771 u32 txrxctl_bits;
772 u32 vlanctl_bits;
773 u32 driver_data;
774 u32 device_id;
775 u32 register_size;
776 int rx_csum;
777 u32 mac_in_use;
778 int mgmt_version;
779 int mgmt_sema;
780
781 void __iomem *base;
782
783 /* rx specific fields.
784 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
785 */
786 union ring_type get_rx, put_rx, first_rx, last_rx;
787 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
788 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
789 struct nv_skb_map *rx_skb;
790
791 union ring_type rx_ring;
792 unsigned int rx_buf_sz;
793 unsigned int pkt_limit;
794 struct timer_list oom_kick;
795 struct timer_list nic_poll;
796 struct timer_list stats_poll;
797 u32 nic_poll_irq;
798 int rx_ring_size;
799
800 /* media detection workaround.
801 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
802 */
803 int need_linktimer;
804 unsigned long link_timeout;
805 /*
806 * tx specific fields.
807 */
808 union ring_type get_tx, put_tx, first_tx, last_tx;
809 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
810 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
811 struct nv_skb_map *tx_skb;
812
813 union ring_type tx_ring;
814 u32 tx_flags;
815 int tx_ring_size;
816 int tx_limit;
817 u32 tx_pkts_in_progress;
818 struct nv_skb_map *tx_change_owner;
819 struct nv_skb_map *tx_end_flip;
820 int tx_stop;
821
822 /* vlan fields */
823 struct vlan_group *vlangrp;
824
825 /* msi/msi-x fields */
826 u32 msi_flags;
827 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
828
829 /* flow control */
830 u32 pause_flags;
831
832 /* power saved state */
833 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
834
835 /* for different msi-x irq type */
836 char name_rx[IFNAMSIZ + 3]; /* -rx */
837 char name_tx[IFNAMSIZ + 3]; /* -tx */
838 char name_other[IFNAMSIZ + 6]; /* -other */
839 };
840
841 /*
842 * Maximum number of loops until we assume that a bit in the irq mask
843 * is stuck. Overridable with module param.
844 */
845 static int max_interrupt_work = 4;
846
847 /*
848 * Optimization can be either throuput mode or cpu mode
849 *
850 * Throughput Mode: Every tx and rx packet will generate an interrupt.
851 * CPU Mode: Interrupts are controlled by a timer.
852 */
853 enum {
854 NV_OPTIMIZATION_MODE_THROUGHPUT,
855 NV_OPTIMIZATION_MODE_CPU,
856 NV_OPTIMIZATION_MODE_DYNAMIC
857 };
858 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
859
860 /*
861 * Poll interval for timer irq
862 *
863 * This interval determines how frequent an interrupt is generated.
864 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
865 * Min = 0, and Max = 65535
866 */
867 static int poll_interval = -1;
868
869 /*
870 * MSI interrupts
871 */
872 enum {
873 NV_MSI_INT_DISABLED,
874 NV_MSI_INT_ENABLED
875 };
876 static int msi = NV_MSI_INT_ENABLED;
877
878 /*
879 * MSIX interrupts
880 */
881 enum {
882 NV_MSIX_INT_DISABLED,
883 NV_MSIX_INT_ENABLED
884 };
885 static int msix = NV_MSIX_INT_ENABLED;
886
887 /*
888 * DMA 64bit
889 */
890 enum {
891 NV_DMA_64BIT_DISABLED,
892 NV_DMA_64BIT_ENABLED
893 };
894 static int dma_64bit = NV_DMA_64BIT_ENABLED;
895
896 /*
897 * Crossover Detection
898 * Realtek 8201 phy + some OEM boards do not work properly.
899 */
900 enum {
901 NV_CROSSOVER_DETECTION_DISABLED,
902 NV_CROSSOVER_DETECTION_ENABLED
903 };
904 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
905
906 /*
907 * Power down phy when interface is down (persists through reboot;
908 * older Linux and other OSes may not power it up again)
909 */
910 static int phy_power_down = 0;
911
912 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
913 {
914 return netdev_priv(dev);
915 }
916
917 static inline u8 __iomem *get_hwbase(struct net_device *dev)
918 {
919 return ((struct fe_priv *)netdev_priv(dev))->base;
920 }
921
922 static inline void pci_push(u8 __iomem *base)
923 {
924 /* force out pending posted writes */
925 readl(base);
926 }
927
928 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
929 {
930 return le32_to_cpu(prd->flaglen)
931 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
932 }
933
934 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
935 {
936 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
937 }
938
939 static bool nv_optimized(struct fe_priv *np)
940 {
941 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
942 return false;
943 return true;
944 }
945
946 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
947 int delay, int delaymax, const char *msg)
948 {
949 u8 __iomem *base = get_hwbase(dev);
950
951 pci_push(base);
952 do {
953 udelay(delay);
954 delaymax -= delay;
955 if (delaymax < 0) {
956 if (msg)
957 printk("%s", msg);
958 return 1;
959 }
960 } while ((readl(base + offset) & mask) != target);
961 return 0;
962 }
963
964 #define NV_SETUP_RX_RING 0x01
965 #define NV_SETUP_TX_RING 0x02
966
967 static inline u32 dma_low(dma_addr_t addr)
968 {
969 return addr;
970 }
971
972 static inline u32 dma_high(dma_addr_t addr)
973 {
974 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
975 }
976
977 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
978 {
979 struct fe_priv *np = get_nvpriv(dev);
980 u8 __iomem *base = get_hwbase(dev);
981
982 if (!nv_optimized(np)) {
983 if (rxtx_flags & NV_SETUP_RX_RING) {
984 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
985 }
986 if (rxtx_flags & NV_SETUP_TX_RING) {
987 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
988 }
989 } else {
990 if (rxtx_flags & NV_SETUP_RX_RING) {
991 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
992 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
993 }
994 if (rxtx_flags & NV_SETUP_TX_RING) {
995 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
996 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
997 }
998 }
999 }
1000
1001 static void free_rings(struct net_device *dev)
1002 {
1003 struct fe_priv *np = get_nvpriv(dev);
1004
1005 if (!nv_optimized(np)) {
1006 if (np->rx_ring.orig)
1007 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1008 np->rx_ring.orig, np->ring_addr);
1009 } else {
1010 if (np->rx_ring.ex)
1011 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1012 np->rx_ring.ex, np->ring_addr);
1013 }
1014 if (np->rx_skb)
1015 kfree(np->rx_skb);
1016 if (np->tx_skb)
1017 kfree(np->tx_skb);
1018 }
1019
1020 static int using_multi_irqs(struct net_device *dev)
1021 {
1022 struct fe_priv *np = get_nvpriv(dev);
1023
1024 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1025 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1026 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1027 return 0;
1028 else
1029 return 1;
1030 }
1031
1032 static void nv_txrx_gate(struct net_device *dev, bool gate)
1033 {
1034 struct fe_priv *np = get_nvpriv(dev);
1035 u8 __iomem *base = get_hwbase(dev);
1036 u32 powerstate;
1037
1038 if (!np->mac_in_use &&
1039 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1040 powerstate = readl(base + NvRegPowerState2);
1041 if (gate)
1042 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1043 else
1044 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1045 writel(powerstate, base + NvRegPowerState2);
1046 }
1047 }
1048
1049 static void nv_enable_irq(struct net_device *dev)
1050 {
1051 struct fe_priv *np = get_nvpriv(dev);
1052
1053 if (!using_multi_irqs(dev)) {
1054 if (np->msi_flags & NV_MSI_X_ENABLED)
1055 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1056 else
1057 enable_irq(np->pci_dev->irq);
1058 } else {
1059 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1060 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1061 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1062 }
1063 }
1064
1065 static void nv_disable_irq(struct net_device *dev)
1066 {
1067 struct fe_priv *np = get_nvpriv(dev);
1068
1069 if (!using_multi_irqs(dev)) {
1070 if (np->msi_flags & NV_MSI_X_ENABLED)
1071 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1072 else
1073 disable_irq(np->pci_dev->irq);
1074 } else {
1075 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1076 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1077 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1078 }
1079 }
1080
1081 /* In MSIX mode, a write to irqmask behaves as XOR */
1082 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1083 {
1084 u8 __iomem *base = get_hwbase(dev);
1085
1086 writel(mask, base + NvRegIrqMask);
1087 }
1088
1089 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1090 {
1091 struct fe_priv *np = get_nvpriv(dev);
1092 u8 __iomem *base = get_hwbase(dev);
1093
1094 if (np->msi_flags & NV_MSI_X_ENABLED) {
1095 writel(mask, base + NvRegIrqMask);
1096 } else {
1097 if (np->msi_flags & NV_MSI_ENABLED)
1098 writel(0, base + NvRegMSIIrqMask);
1099 writel(0, base + NvRegIrqMask);
1100 }
1101 }
1102
1103 static void nv_napi_enable(struct net_device *dev)
1104 {
1105 #ifdef CONFIG_FORCEDETH_NAPI
1106 struct fe_priv *np = get_nvpriv(dev);
1107
1108 napi_enable(&np->napi);
1109 #endif
1110 }
1111
1112 static void nv_napi_disable(struct net_device *dev)
1113 {
1114 #ifdef CONFIG_FORCEDETH_NAPI
1115 struct fe_priv *np = get_nvpriv(dev);
1116
1117 napi_disable(&np->napi);
1118 #endif
1119 }
1120
1121 #define MII_READ (-1)
1122 /* mii_rw: read/write a register on the PHY.
1123 *
1124 * Caller must guarantee serialization
1125 */
1126 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1127 {
1128 u8 __iomem *base = get_hwbase(dev);
1129 u32 reg;
1130 int retval;
1131
1132 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1133
1134 reg = readl(base + NvRegMIIControl);
1135 if (reg & NVREG_MIICTL_INUSE) {
1136 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1137 udelay(NV_MIIBUSY_DELAY);
1138 }
1139
1140 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1141 if (value != MII_READ) {
1142 writel(value, base + NvRegMIIData);
1143 reg |= NVREG_MIICTL_WRITE;
1144 }
1145 writel(reg, base + NvRegMIIControl);
1146
1147 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1148 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1149 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1150 dev->name, miireg, addr);
1151 retval = -1;
1152 } else if (value != MII_READ) {
1153 /* it was a write operation - fewer failures are detectable */
1154 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1155 dev->name, value, miireg, addr);
1156 retval = 0;
1157 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1158 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1159 dev->name, miireg, addr);
1160 retval = -1;
1161 } else {
1162 retval = readl(base + NvRegMIIData);
1163 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1164 dev->name, miireg, addr, retval);
1165 }
1166
1167 return retval;
1168 }
1169
1170 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1171 {
1172 struct fe_priv *np = netdev_priv(dev);
1173 u32 miicontrol;
1174 unsigned int tries = 0;
1175
1176 miicontrol = BMCR_RESET | bmcr_setup;
1177 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1178 return -1;
1179 }
1180
1181 /* wait for 500ms */
1182 msleep(500);
1183
1184 /* must wait till reset is deasserted */
1185 while (miicontrol & BMCR_RESET) {
1186 msleep(10);
1187 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1188 /* FIXME: 100 tries seem excessive */
1189 if (tries++ > 100)
1190 return -1;
1191 }
1192 return 0;
1193 }
1194
1195 static int phy_init(struct net_device *dev)
1196 {
1197 struct fe_priv *np = get_nvpriv(dev);
1198 u8 __iomem *base = get_hwbase(dev);
1199 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1200
1201 /* phy errata for E3016 phy */
1202 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1203 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1204 reg &= ~PHY_MARVELL_E3016_INITMASK;
1205 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1206 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1207 return PHY_ERROR;
1208 }
1209 }
1210 if (np->phy_oui == PHY_OUI_REALTEK) {
1211 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1212 np->phy_rev == PHY_REV_REALTEK_8211B) {
1213 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1214 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1215 return PHY_ERROR;
1216 }
1217 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1218 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1219 return PHY_ERROR;
1220 }
1221 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1222 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1223 return PHY_ERROR;
1224 }
1225 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1226 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1227 return PHY_ERROR;
1228 }
1229 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1230 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1231 return PHY_ERROR;
1232 }
1233 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1234 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1235 return PHY_ERROR;
1236 }
1237 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1238 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1239 return PHY_ERROR;
1240 }
1241 }
1242 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1243 np->phy_rev == PHY_REV_REALTEK_8211C) {
1244 u32 powerstate = readl(base + NvRegPowerState2);
1245
1246 /* need to perform hw phy reset */
1247 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1248 writel(powerstate, base + NvRegPowerState2);
1249 msleep(25);
1250
1251 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1252 writel(powerstate, base + NvRegPowerState2);
1253 msleep(25);
1254
1255 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1256 reg |= PHY_REALTEK_INIT9;
1257 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1258 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1259 return PHY_ERROR;
1260 }
1261 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1262 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1263 return PHY_ERROR;
1264 }
1265 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1266 if (!(reg & PHY_REALTEK_INIT11)) {
1267 reg |= PHY_REALTEK_INIT11;
1268 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1269 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1270 return PHY_ERROR;
1271 }
1272 }
1273 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1274 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1275 return PHY_ERROR;
1276 }
1277 }
1278 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1279 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1280 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1281 phy_reserved |= PHY_REALTEK_INIT7;
1282 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1283 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1284 return PHY_ERROR;
1285 }
1286 }
1287 }
1288 }
1289
1290 /* set advertise register */
1291 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1292 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1293 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1294 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1295 return PHY_ERROR;
1296 }
1297
1298 /* get phy interface type */
1299 phyinterface = readl(base + NvRegPhyInterface);
1300
1301 /* see if gigabit phy */
1302 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1303 if (mii_status & PHY_GIGABIT) {
1304 np->gigabit = PHY_GIGABIT;
1305 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1306 mii_control_1000 &= ~ADVERTISE_1000HALF;
1307 if (phyinterface & PHY_RGMII)
1308 mii_control_1000 |= ADVERTISE_1000FULL;
1309 else
1310 mii_control_1000 &= ~ADVERTISE_1000FULL;
1311
1312 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1313 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1314 return PHY_ERROR;
1315 }
1316 }
1317 else
1318 np->gigabit = 0;
1319
1320 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1321 mii_control |= BMCR_ANENABLE;
1322
1323 if (np->phy_oui == PHY_OUI_REALTEK &&
1324 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1325 np->phy_rev == PHY_REV_REALTEK_8211C) {
1326 /* start autoneg since we already performed hw reset above */
1327 mii_control |= BMCR_ANRESTART;
1328 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1329 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1330 return PHY_ERROR;
1331 }
1332 } else {
1333 /* reset the phy
1334 * (certain phys need bmcr to be setup with reset)
1335 */
1336 if (phy_reset(dev, mii_control)) {
1337 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1338 return PHY_ERROR;
1339 }
1340 }
1341
1342 /* phy vendor specific configuration */
1343 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1344 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1345 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1346 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1347 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1348 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1349 return PHY_ERROR;
1350 }
1351 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1352 phy_reserved |= PHY_CICADA_INIT5;
1353 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1354 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1355 return PHY_ERROR;
1356 }
1357 }
1358 if (np->phy_oui == PHY_OUI_CICADA) {
1359 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1360 phy_reserved |= PHY_CICADA_INIT6;
1361 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1362 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1363 return PHY_ERROR;
1364 }
1365 }
1366 if (np->phy_oui == PHY_OUI_VITESSE) {
1367 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1368 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1369 return PHY_ERROR;
1370 }
1371 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1372 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1373 return PHY_ERROR;
1374 }
1375 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1376 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1377 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1378 return PHY_ERROR;
1379 }
1380 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1381 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1382 phy_reserved |= PHY_VITESSE_INIT3;
1383 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1384 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1385 return PHY_ERROR;
1386 }
1387 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1388 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1389 return PHY_ERROR;
1390 }
1391 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1392 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1393 return PHY_ERROR;
1394 }
1395 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1396 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1397 phy_reserved |= PHY_VITESSE_INIT3;
1398 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1399 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1400 return PHY_ERROR;
1401 }
1402 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1403 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1404 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1405 return PHY_ERROR;
1406 }
1407 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1408 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1409 return PHY_ERROR;
1410 }
1411 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1412 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1413 return PHY_ERROR;
1414 }
1415 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1416 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1417 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1418 return PHY_ERROR;
1419 }
1420 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1421 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1422 phy_reserved |= PHY_VITESSE_INIT8;
1423 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1424 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1425 return PHY_ERROR;
1426 }
1427 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1428 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1429 return PHY_ERROR;
1430 }
1431 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1432 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1433 return PHY_ERROR;
1434 }
1435 }
1436 if (np->phy_oui == PHY_OUI_REALTEK) {
1437 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1438 np->phy_rev == PHY_REV_REALTEK_8211B) {
1439 /* reset could have cleared these out, set them back */
1440 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1441 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1442 return PHY_ERROR;
1443 }
1444 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1445 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1446 return PHY_ERROR;
1447 }
1448 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1449 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1450 return PHY_ERROR;
1451 }
1452 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1453 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1454 return PHY_ERROR;
1455 }
1456 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1457 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1458 return PHY_ERROR;
1459 }
1460 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1461 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1462 return PHY_ERROR;
1463 }
1464 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1465 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1466 return PHY_ERROR;
1467 }
1468 }
1469 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1470 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1471 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1472 phy_reserved |= PHY_REALTEK_INIT7;
1473 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1474 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1475 return PHY_ERROR;
1476 }
1477 }
1478 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1479 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1480 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1481 return PHY_ERROR;
1482 }
1483 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1484 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1485 phy_reserved |= PHY_REALTEK_INIT3;
1486 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1487 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1488 return PHY_ERROR;
1489 }
1490 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1491 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1492 return PHY_ERROR;
1493 }
1494 }
1495 }
1496 }
1497
1498 /* some phys clear out pause advertisment on reset, set it back */
1499 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1500
1501 /* restart auto negotiation, power down phy */
1502 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1503 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1504 if (phy_power_down) {
1505 mii_control |= BMCR_PDOWN;
1506 }
1507 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1508 return PHY_ERROR;
1509 }
1510
1511 return 0;
1512 }
1513
1514 static void nv_start_rx(struct net_device *dev)
1515 {
1516 struct fe_priv *np = netdev_priv(dev);
1517 u8 __iomem *base = get_hwbase(dev);
1518 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1519
1520 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1521 /* Already running? Stop it. */
1522 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1523 rx_ctrl &= ~NVREG_RCVCTL_START;
1524 writel(rx_ctrl, base + NvRegReceiverControl);
1525 pci_push(base);
1526 }
1527 writel(np->linkspeed, base + NvRegLinkSpeed);
1528 pci_push(base);
1529 rx_ctrl |= NVREG_RCVCTL_START;
1530 if (np->mac_in_use)
1531 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1532 writel(rx_ctrl, base + NvRegReceiverControl);
1533 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1534 dev->name, np->duplex, np->linkspeed);
1535 pci_push(base);
1536 }
1537
1538 static void nv_stop_rx(struct net_device *dev)
1539 {
1540 struct fe_priv *np = netdev_priv(dev);
1541 u8 __iomem *base = get_hwbase(dev);
1542 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1543
1544 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1545 if (!np->mac_in_use)
1546 rx_ctrl &= ~NVREG_RCVCTL_START;
1547 else
1548 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1549 writel(rx_ctrl, base + NvRegReceiverControl);
1550 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1551 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1552 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1553
1554 udelay(NV_RXSTOP_DELAY2);
1555 if (!np->mac_in_use)
1556 writel(0, base + NvRegLinkSpeed);
1557 }
1558
1559 static void nv_start_tx(struct net_device *dev)
1560 {
1561 struct fe_priv *np = netdev_priv(dev);
1562 u8 __iomem *base = get_hwbase(dev);
1563 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1564
1565 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1566 tx_ctrl |= NVREG_XMITCTL_START;
1567 if (np->mac_in_use)
1568 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1569 writel(tx_ctrl, base + NvRegTransmitterControl);
1570 pci_push(base);
1571 }
1572
1573 static void nv_stop_tx(struct net_device *dev)
1574 {
1575 struct fe_priv *np = netdev_priv(dev);
1576 u8 __iomem *base = get_hwbase(dev);
1577 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1578
1579 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1580 if (!np->mac_in_use)
1581 tx_ctrl &= ~NVREG_XMITCTL_START;
1582 else
1583 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1584 writel(tx_ctrl, base + NvRegTransmitterControl);
1585 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1586 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1587 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1588
1589 udelay(NV_TXSTOP_DELAY2);
1590 if (!np->mac_in_use)
1591 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1592 base + NvRegTransmitPoll);
1593 }
1594
1595 static void nv_start_rxtx(struct net_device *dev)
1596 {
1597 nv_start_rx(dev);
1598 nv_start_tx(dev);
1599 }
1600
1601 static void nv_stop_rxtx(struct net_device *dev)
1602 {
1603 nv_stop_rx(dev);
1604 nv_stop_tx(dev);
1605 }
1606
1607 static void nv_txrx_reset(struct net_device *dev)
1608 {
1609 struct fe_priv *np = netdev_priv(dev);
1610 u8 __iomem *base = get_hwbase(dev);
1611
1612 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1613 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1614 pci_push(base);
1615 udelay(NV_TXRX_RESET_DELAY);
1616 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1617 pci_push(base);
1618 }
1619
1620 static void nv_mac_reset(struct net_device *dev)
1621 {
1622 struct fe_priv *np = netdev_priv(dev);
1623 u8 __iomem *base = get_hwbase(dev);
1624 u32 temp1, temp2, temp3;
1625
1626 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1627
1628 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1629 pci_push(base);
1630
1631 /* save registers since they will be cleared on reset */
1632 temp1 = readl(base + NvRegMacAddrA);
1633 temp2 = readl(base + NvRegMacAddrB);
1634 temp3 = readl(base + NvRegTransmitPoll);
1635
1636 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1637 pci_push(base);
1638 udelay(NV_MAC_RESET_DELAY);
1639 writel(0, base + NvRegMacReset);
1640 pci_push(base);
1641 udelay(NV_MAC_RESET_DELAY);
1642
1643 /* restore saved registers */
1644 writel(temp1, base + NvRegMacAddrA);
1645 writel(temp2, base + NvRegMacAddrB);
1646 writel(temp3, base + NvRegTransmitPoll);
1647
1648 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1649 pci_push(base);
1650 }
1651
1652 static void nv_get_hw_stats(struct net_device *dev)
1653 {
1654 struct fe_priv *np = netdev_priv(dev);
1655 u8 __iomem *base = get_hwbase(dev);
1656
1657 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1658 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1659 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1660 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1661 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1662 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1663 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1664 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1665 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1666 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1667 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1668 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1669 np->estats.rx_runt += readl(base + NvRegRxRunt);
1670 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1671 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1672 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1673 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1674 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1675 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1676 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1677 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1678 np->estats.rx_packets =
1679 np->estats.rx_unicast +
1680 np->estats.rx_multicast +
1681 np->estats.rx_broadcast;
1682 np->estats.rx_errors_total =
1683 np->estats.rx_crc_errors +
1684 np->estats.rx_over_errors +
1685 np->estats.rx_frame_error +
1686 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1687 np->estats.rx_late_collision +
1688 np->estats.rx_runt +
1689 np->estats.rx_frame_too_long;
1690 np->estats.tx_errors_total =
1691 np->estats.tx_late_collision +
1692 np->estats.tx_fifo_errors +
1693 np->estats.tx_carrier_errors +
1694 np->estats.tx_excess_deferral +
1695 np->estats.tx_retry_error;
1696
1697 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1698 np->estats.tx_deferral += readl(base + NvRegTxDef);
1699 np->estats.tx_packets += readl(base + NvRegTxFrame);
1700 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1701 np->estats.tx_pause += readl(base + NvRegTxPause);
1702 np->estats.rx_pause += readl(base + NvRegRxPause);
1703 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1704 }
1705
1706 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1707 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1708 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1709 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1710 }
1711 }
1712
1713 /*
1714 * nv_get_stats: dev->get_stats function
1715 * Get latest stats value from the nic.
1716 * Called with read_lock(&dev_base_lock) held for read -
1717 * only synchronized against unregister_netdevice.
1718 */
1719 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1720 {
1721 struct fe_priv *np = netdev_priv(dev);
1722
1723 /* If the nic supports hw counters then retrieve latest values */
1724 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1725 nv_get_hw_stats(dev);
1726
1727 /* copy to net_device stats */
1728 dev->stats.tx_bytes = np->estats.tx_bytes;
1729 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1730 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1731 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1732 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1733 dev->stats.rx_errors = np->estats.rx_errors_total;
1734 dev->stats.tx_errors = np->estats.tx_errors_total;
1735 }
1736
1737 return &dev->stats;
1738 }
1739
1740 /*
1741 * nv_alloc_rx: fill rx ring entries.
1742 * Return 1 if the allocations for the skbs failed and the
1743 * rx engine is without Available descriptors
1744 */
1745 static int nv_alloc_rx(struct net_device *dev)
1746 {
1747 struct fe_priv *np = netdev_priv(dev);
1748 struct ring_desc* less_rx;
1749
1750 less_rx = np->get_rx.orig;
1751 if (less_rx-- == np->first_rx.orig)
1752 less_rx = np->last_rx.orig;
1753
1754 while (np->put_rx.orig != less_rx) {
1755 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1756 if (skb) {
1757 np->put_rx_ctx->skb = skb;
1758 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1759 skb->data,
1760 skb_tailroom(skb),
1761 PCI_DMA_FROMDEVICE);
1762 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1763 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1764 wmb();
1765 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1766 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1767 np->put_rx.orig = np->first_rx.orig;
1768 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1769 np->put_rx_ctx = np->first_rx_ctx;
1770 } else {
1771 return 1;
1772 }
1773 }
1774 return 0;
1775 }
1776
1777 static int nv_alloc_rx_optimized(struct net_device *dev)
1778 {
1779 struct fe_priv *np = netdev_priv(dev);
1780 struct ring_desc_ex* less_rx;
1781
1782 less_rx = np->get_rx.ex;
1783 if (less_rx-- == np->first_rx.ex)
1784 less_rx = np->last_rx.ex;
1785
1786 while (np->put_rx.ex != less_rx) {
1787 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1788 if (skb) {
1789 np->put_rx_ctx->skb = skb;
1790 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1791 skb->data,
1792 skb_tailroom(skb),
1793 PCI_DMA_FROMDEVICE);
1794 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1795 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1796 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1797 wmb();
1798 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1799 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1800 np->put_rx.ex = np->first_rx.ex;
1801 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1802 np->put_rx_ctx = np->first_rx_ctx;
1803 } else {
1804 return 1;
1805 }
1806 }
1807 return 0;
1808 }
1809
1810 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1811 #ifdef CONFIG_FORCEDETH_NAPI
1812 static void nv_do_rx_refill(unsigned long data)
1813 {
1814 struct net_device *dev = (struct net_device *) data;
1815 struct fe_priv *np = netdev_priv(dev);
1816
1817 /* Just reschedule NAPI rx processing */
1818 napi_schedule(&np->napi);
1819 }
1820 #else
1821 static void nv_do_rx_refill(unsigned long data)
1822 {
1823 struct net_device *dev = (struct net_device *) data;
1824 struct fe_priv *np = netdev_priv(dev);
1825 int retcode;
1826
1827 if (!using_multi_irqs(dev)) {
1828 if (np->msi_flags & NV_MSI_X_ENABLED)
1829 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1830 else
1831 disable_irq(np->pci_dev->irq);
1832 } else {
1833 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1834 }
1835 if (!nv_optimized(np))
1836 retcode = nv_alloc_rx(dev);
1837 else
1838 retcode = nv_alloc_rx_optimized(dev);
1839 if (retcode) {
1840 spin_lock_irq(&np->lock);
1841 if (!np->in_shutdown)
1842 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1843 spin_unlock_irq(&np->lock);
1844 }
1845 if (!using_multi_irqs(dev)) {
1846 if (np->msi_flags & NV_MSI_X_ENABLED)
1847 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1848 else
1849 enable_irq(np->pci_dev->irq);
1850 } else {
1851 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1852 }
1853 }
1854 #endif
1855
1856 static void nv_init_rx(struct net_device *dev)
1857 {
1858 struct fe_priv *np = netdev_priv(dev);
1859 int i;
1860
1861 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1862
1863 if (!nv_optimized(np))
1864 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1865 else
1866 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1867 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1868 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1869
1870 for (i = 0; i < np->rx_ring_size; i++) {
1871 if (!nv_optimized(np)) {
1872 np->rx_ring.orig[i].flaglen = 0;
1873 np->rx_ring.orig[i].buf = 0;
1874 } else {
1875 np->rx_ring.ex[i].flaglen = 0;
1876 np->rx_ring.ex[i].txvlan = 0;
1877 np->rx_ring.ex[i].bufhigh = 0;
1878 np->rx_ring.ex[i].buflow = 0;
1879 }
1880 np->rx_skb[i].skb = NULL;
1881 np->rx_skb[i].dma = 0;
1882 }
1883 }
1884
1885 static void nv_init_tx(struct net_device *dev)
1886 {
1887 struct fe_priv *np = netdev_priv(dev);
1888 int i;
1889
1890 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1891
1892 if (!nv_optimized(np))
1893 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1894 else
1895 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1896 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1897 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1898 np->tx_pkts_in_progress = 0;
1899 np->tx_change_owner = NULL;
1900 np->tx_end_flip = NULL;
1901 np->tx_stop = 0;
1902
1903 for (i = 0; i < np->tx_ring_size; i++) {
1904 if (!nv_optimized(np)) {
1905 np->tx_ring.orig[i].flaglen = 0;
1906 np->tx_ring.orig[i].buf = 0;
1907 } else {
1908 np->tx_ring.ex[i].flaglen = 0;
1909 np->tx_ring.ex[i].txvlan = 0;
1910 np->tx_ring.ex[i].bufhigh = 0;
1911 np->tx_ring.ex[i].buflow = 0;
1912 }
1913 np->tx_skb[i].skb = NULL;
1914 np->tx_skb[i].dma = 0;
1915 np->tx_skb[i].dma_len = 0;
1916 np->tx_skb[i].dma_single = 0;
1917 np->tx_skb[i].first_tx_desc = NULL;
1918 np->tx_skb[i].next_tx_ctx = NULL;
1919 }
1920 }
1921
1922 static int nv_init_ring(struct net_device *dev)
1923 {
1924 struct fe_priv *np = netdev_priv(dev);
1925
1926 nv_init_tx(dev);
1927 nv_init_rx(dev);
1928
1929 if (!nv_optimized(np))
1930 return nv_alloc_rx(dev);
1931 else
1932 return nv_alloc_rx_optimized(dev);
1933 }
1934
1935 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1936 {
1937 if (tx_skb->dma) {
1938 if (tx_skb->dma_single)
1939 pci_unmap_single(np->pci_dev, tx_skb->dma,
1940 tx_skb->dma_len,
1941 PCI_DMA_TODEVICE);
1942 else
1943 pci_unmap_page(np->pci_dev, tx_skb->dma,
1944 tx_skb->dma_len,
1945 PCI_DMA_TODEVICE);
1946 tx_skb->dma = 0;
1947 }
1948 }
1949
1950 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1951 {
1952 nv_unmap_txskb(np, tx_skb);
1953 if (tx_skb->skb) {
1954 dev_kfree_skb_any(tx_skb->skb);
1955 tx_skb->skb = NULL;
1956 return 1;
1957 }
1958 return 0;
1959 }
1960
1961 static void nv_drain_tx(struct net_device *dev)
1962 {
1963 struct fe_priv *np = netdev_priv(dev);
1964 unsigned int i;
1965
1966 for (i = 0; i < np->tx_ring_size; i++) {
1967 if (!nv_optimized(np)) {
1968 np->tx_ring.orig[i].flaglen = 0;
1969 np->tx_ring.orig[i].buf = 0;
1970 } else {
1971 np->tx_ring.ex[i].flaglen = 0;
1972 np->tx_ring.ex[i].txvlan = 0;
1973 np->tx_ring.ex[i].bufhigh = 0;
1974 np->tx_ring.ex[i].buflow = 0;
1975 }
1976 if (nv_release_txskb(np, &np->tx_skb[i]))
1977 dev->stats.tx_dropped++;
1978 np->tx_skb[i].dma = 0;
1979 np->tx_skb[i].dma_len = 0;
1980 np->tx_skb[i].dma_single = 0;
1981 np->tx_skb[i].first_tx_desc = NULL;
1982 np->tx_skb[i].next_tx_ctx = NULL;
1983 }
1984 np->tx_pkts_in_progress = 0;
1985 np->tx_change_owner = NULL;
1986 np->tx_end_flip = NULL;
1987 }
1988
1989 static void nv_drain_rx(struct net_device *dev)
1990 {
1991 struct fe_priv *np = netdev_priv(dev);
1992 int i;
1993
1994 for (i = 0; i < np->rx_ring_size; i++) {
1995 if (!nv_optimized(np)) {
1996 np->rx_ring.orig[i].flaglen = 0;
1997 np->rx_ring.orig[i].buf = 0;
1998 } else {
1999 np->rx_ring.ex[i].flaglen = 0;
2000 np->rx_ring.ex[i].txvlan = 0;
2001 np->rx_ring.ex[i].bufhigh = 0;
2002 np->rx_ring.ex[i].buflow = 0;
2003 }
2004 wmb();
2005 if (np->rx_skb[i].skb) {
2006 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2007 (skb_end_pointer(np->rx_skb[i].skb) -
2008 np->rx_skb[i].skb->data),
2009 PCI_DMA_FROMDEVICE);
2010 dev_kfree_skb(np->rx_skb[i].skb);
2011 np->rx_skb[i].skb = NULL;
2012 }
2013 }
2014 }
2015
2016 static void nv_drain_rxtx(struct net_device *dev)
2017 {
2018 nv_drain_tx(dev);
2019 nv_drain_rx(dev);
2020 }
2021
2022 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2023 {
2024 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2025 }
2026
2027 static void nv_legacybackoff_reseed(struct net_device *dev)
2028 {
2029 u8 __iomem *base = get_hwbase(dev);
2030 u32 reg;
2031 u32 low;
2032 int tx_status = 0;
2033
2034 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2035 get_random_bytes(&low, sizeof(low));
2036 reg |= low & NVREG_SLOTTIME_MASK;
2037
2038 /* Need to stop tx before change takes effect.
2039 * Caller has already gained np->lock.
2040 */
2041 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2042 if (tx_status)
2043 nv_stop_tx(dev);
2044 nv_stop_rx(dev);
2045 writel(reg, base + NvRegSlotTime);
2046 if (tx_status)
2047 nv_start_tx(dev);
2048 nv_start_rx(dev);
2049 }
2050
2051 /* Gear Backoff Seeds */
2052 #define BACKOFF_SEEDSET_ROWS 8
2053 #define BACKOFF_SEEDSET_LFSRS 15
2054
2055 /* Known Good seed sets */
2056 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2057 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2058 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2059 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2060 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2061 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2062 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2063 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2064 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2065
2066 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2067 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2068 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2069 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2070 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2071 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2072 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2073 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2074 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2075
2076 static void nv_gear_backoff_reseed(struct net_device *dev)
2077 {
2078 u8 __iomem *base = get_hwbase(dev);
2079 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2080 u32 temp, seedset, combinedSeed;
2081 int i;
2082
2083 /* Setup seed for free running LFSR */
2084 /* We are going to read the time stamp counter 3 times
2085 and swizzle bits around to increase randomness */
2086 get_random_bytes(&miniseed1, sizeof(miniseed1));
2087 miniseed1 &= 0x0fff;
2088 if (miniseed1 == 0)
2089 miniseed1 = 0xabc;
2090
2091 get_random_bytes(&miniseed2, sizeof(miniseed2));
2092 miniseed2 &= 0x0fff;
2093 if (miniseed2 == 0)
2094 miniseed2 = 0xabc;
2095 miniseed2_reversed =
2096 ((miniseed2 & 0xF00) >> 8) |
2097 (miniseed2 & 0x0F0) |
2098 ((miniseed2 & 0x00F) << 8);
2099
2100 get_random_bytes(&miniseed3, sizeof(miniseed3));
2101 miniseed3 &= 0x0fff;
2102 if (miniseed3 == 0)
2103 miniseed3 = 0xabc;
2104 miniseed3_reversed =
2105 ((miniseed3 & 0xF00) >> 8) |
2106 (miniseed3 & 0x0F0) |
2107 ((miniseed3 & 0x00F) << 8);
2108
2109 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2110 (miniseed2 ^ miniseed3_reversed);
2111
2112 /* Seeds can not be zero */
2113 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2114 combinedSeed |= 0x08;
2115 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2116 combinedSeed |= 0x8000;
2117
2118 /* No need to disable tx here */
2119 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2120 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2121 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2122 writel(temp,base + NvRegBackOffControl);
2123
2124 /* Setup seeds for all gear LFSRs. */
2125 get_random_bytes(&seedset, sizeof(seedset));
2126 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2127 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2128 {
2129 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2130 temp |= main_seedset[seedset][i-1] & 0x3ff;
2131 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2132 writel(temp, base + NvRegBackOffControl);
2133 }
2134 }
2135
2136 /*
2137 * nv_start_xmit: dev->hard_start_xmit function
2138 * Called with netif_tx_lock held.
2139 */
2140 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2141 {
2142 struct fe_priv *np = netdev_priv(dev);
2143 u32 tx_flags = 0;
2144 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2145 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2146 unsigned int i;
2147 u32 offset = 0;
2148 u32 bcnt;
2149 u32 size = skb->len-skb->data_len;
2150 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2151 u32 empty_slots;
2152 struct ring_desc* put_tx;
2153 struct ring_desc* start_tx;
2154 struct ring_desc* prev_tx;
2155 struct nv_skb_map* prev_tx_ctx;
2156 unsigned long flags;
2157
2158 /* add fragments to entries count */
2159 for (i = 0; i < fragments; i++) {
2160 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2161 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2162 }
2163
2164 spin_lock_irqsave(&np->lock, flags);
2165 empty_slots = nv_get_empty_tx_slots(np);
2166 if (unlikely(empty_slots <= entries)) {
2167 netif_stop_queue(dev);
2168 np->tx_stop = 1;
2169 spin_unlock_irqrestore(&np->lock, flags);
2170 return NETDEV_TX_BUSY;
2171 }
2172 spin_unlock_irqrestore(&np->lock, flags);
2173
2174 start_tx = put_tx = np->put_tx.orig;
2175
2176 /* setup the header buffer */
2177 do {
2178 prev_tx = put_tx;
2179 prev_tx_ctx = np->put_tx_ctx;
2180 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2181 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2182 PCI_DMA_TODEVICE);
2183 np->put_tx_ctx->dma_len = bcnt;
2184 np->put_tx_ctx->dma_single = 1;
2185 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2186 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2187
2188 tx_flags = np->tx_flags;
2189 offset += bcnt;
2190 size -= bcnt;
2191 if (unlikely(put_tx++ == np->last_tx.orig))
2192 put_tx = np->first_tx.orig;
2193 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2194 np->put_tx_ctx = np->first_tx_ctx;
2195 } while (size);
2196
2197 /* setup the fragments */
2198 for (i = 0; i < fragments; i++) {
2199 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2200 u32 size = frag->size;
2201 offset = 0;
2202
2203 do {
2204 prev_tx = put_tx;
2205 prev_tx_ctx = np->put_tx_ctx;
2206 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2207 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2208 PCI_DMA_TODEVICE);
2209 np->put_tx_ctx->dma_len = bcnt;
2210 np->put_tx_ctx->dma_single = 0;
2211 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2212 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2213
2214 offset += bcnt;
2215 size -= bcnt;
2216 if (unlikely(put_tx++ == np->last_tx.orig))
2217 put_tx = np->first_tx.orig;
2218 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2219 np->put_tx_ctx = np->first_tx_ctx;
2220 } while (size);
2221 }
2222
2223 /* set last fragment flag */
2224 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2225
2226 /* save skb in this slot's context area */
2227 prev_tx_ctx->skb = skb;
2228
2229 if (skb_is_gso(skb))
2230 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2231 else
2232 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2233 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2234
2235 spin_lock_irqsave(&np->lock, flags);
2236
2237 /* set tx flags */
2238 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2239 np->put_tx.orig = put_tx;
2240
2241 spin_unlock_irqrestore(&np->lock, flags);
2242
2243 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2244 dev->name, entries, tx_flags_extra);
2245 {
2246 int j;
2247 for (j=0; j<64; j++) {
2248 if ((j%16) == 0)
2249 dprintk("\n%03x:", j);
2250 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2251 }
2252 dprintk("\n");
2253 }
2254
2255 dev->trans_start = jiffies;
2256 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2257 return NETDEV_TX_OK;
2258 }
2259
2260 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
2261 {
2262 struct fe_priv *np = netdev_priv(dev);
2263 u32 tx_flags = 0;
2264 u32 tx_flags_extra;
2265 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2266 unsigned int i;
2267 u32 offset = 0;
2268 u32 bcnt;
2269 u32 size = skb->len-skb->data_len;
2270 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2271 u32 empty_slots;
2272 struct ring_desc_ex* put_tx;
2273 struct ring_desc_ex* start_tx;
2274 struct ring_desc_ex* prev_tx;
2275 struct nv_skb_map* prev_tx_ctx;
2276 struct nv_skb_map* start_tx_ctx;
2277 unsigned long flags;
2278
2279 /* add fragments to entries count */
2280 for (i = 0; i < fragments; i++) {
2281 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2282 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2283 }
2284
2285 spin_lock_irqsave(&np->lock, flags);
2286 empty_slots = nv_get_empty_tx_slots(np);
2287 if (unlikely(empty_slots <= entries)) {
2288 netif_stop_queue(dev);
2289 np->tx_stop = 1;
2290 spin_unlock_irqrestore(&np->lock, flags);
2291 return NETDEV_TX_BUSY;
2292 }
2293 spin_unlock_irqrestore(&np->lock, flags);
2294
2295 start_tx = put_tx = np->put_tx.ex;
2296 start_tx_ctx = np->put_tx_ctx;
2297
2298 /* setup the header buffer */
2299 do {
2300 prev_tx = put_tx;
2301 prev_tx_ctx = np->put_tx_ctx;
2302 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2303 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2304 PCI_DMA_TODEVICE);
2305 np->put_tx_ctx->dma_len = bcnt;
2306 np->put_tx_ctx->dma_single = 1;
2307 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2308 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2309 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2310
2311 tx_flags = NV_TX2_VALID;
2312 offset += bcnt;
2313 size -= bcnt;
2314 if (unlikely(put_tx++ == np->last_tx.ex))
2315 put_tx = np->first_tx.ex;
2316 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2317 np->put_tx_ctx = np->first_tx_ctx;
2318 } while (size);
2319
2320 /* setup the fragments */
2321 for (i = 0; i < fragments; i++) {
2322 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2323 u32 size = frag->size;
2324 offset = 0;
2325
2326 do {
2327 prev_tx = put_tx;
2328 prev_tx_ctx = np->put_tx_ctx;
2329 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2330 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2331 PCI_DMA_TODEVICE);
2332 np->put_tx_ctx->dma_len = bcnt;
2333 np->put_tx_ctx->dma_single = 0;
2334 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2335 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2336 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2337
2338 offset += bcnt;
2339 size -= bcnt;
2340 if (unlikely(put_tx++ == np->last_tx.ex))
2341 put_tx = np->first_tx.ex;
2342 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2343 np->put_tx_ctx = np->first_tx_ctx;
2344 } while (size);
2345 }
2346
2347 /* set last fragment flag */
2348 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2349
2350 /* save skb in this slot's context area */
2351 prev_tx_ctx->skb = skb;
2352
2353 if (skb_is_gso(skb))
2354 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2355 else
2356 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2357 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2358
2359 /* vlan tag */
2360 if (likely(!np->vlangrp)) {
2361 start_tx->txvlan = 0;
2362 } else {
2363 if (vlan_tx_tag_present(skb))
2364 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2365 else
2366 start_tx->txvlan = 0;
2367 }
2368
2369 spin_lock_irqsave(&np->lock, flags);
2370
2371 if (np->tx_limit) {
2372 /* Limit the number of outstanding tx. Setup all fragments, but
2373 * do not set the VALID bit on the first descriptor. Save a pointer
2374 * to that descriptor and also for next skb_map element.
2375 */
2376
2377 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2378 if (!np->tx_change_owner)
2379 np->tx_change_owner = start_tx_ctx;
2380
2381 /* remove VALID bit */
2382 tx_flags &= ~NV_TX2_VALID;
2383 start_tx_ctx->first_tx_desc = start_tx;
2384 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2385 np->tx_end_flip = np->put_tx_ctx;
2386 } else {
2387 np->tx_pkts_in_progress++;
2388 }
2389 }
2390
2391 /* set tx flags */
2392 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2393 np->put_tx.ex = put_tx;
2394
2395 spin_unlock_irqrestore(&np->lock, flags);
2396
2397 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2398 dev->name, entries, tx_flags_extra);
2399 {
2400 int j;
2401 for (j=0; j<64; j++) {
2402 if ((j%16) == 0)
2403 dprintk("\n%03x:", j);
2404 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2405 }
2406 dprintk("\n");
2407 }
2408
2409 dev->trans_start = jiffies;
2410 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2411 return NETDEV_TX_OK;
2412 }
2413
2414 static inline void nv_tx_flip_ownership(struct net_device *dev)
2415 {
2416 struct fe_priv *np = netdev_priv(dev);
2417
2418 np->tx_pkts_in_progress--;
2419 if (np->tx_change_owner) {
2420 np->tx_change_owner->first_tx_desc->flaglen |=
2421 cpu_to_le32(NV_TX2_VALID);
2422 np->tx_pkts_in_progress++;
2423
2424 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2425 if (np->tx_change_owner == np->tx_end_flip)
2426 np->tx_change_owner = NULL;
2427
2428 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2429 }
2430 }
2431
2432 /*
2433 * nv_tx_done: check for completed packets, release the skbs.
2434 *
2435 * Caller must own np->lock.
2436 */
2437 static int nv_tx_done(struct net_device *dev, int limit)
2438 {
2439 struct fe_priv *np = netdev_priv(dev);
2440 u32 flags;
2441 int tx_work = 0;
2442 struct ring_desc* orig_get_tx = np->get_tx.orig;
2443
2444 while ((np->get_tx.orig != np->put_tx.orig) &&
2445 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2446 (tx_work < limit)) {
2447
2448 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2449 dev->name, flags);
2450
2451 nv_unmap_txskb(np, np->get_tx_ctx);
2452
2453 if (np->desc_ver == DESC_VER_1) {
2454 if (flags & NV_TX_LASTPACKET) {
2455 if (flags & NV_TX_ERROR) {
2456 if (flags & NV_TX_UNDERFLOW)
2457 dev->stats.tx_fifo_errors++;
2458 if (flags & NV_TX_CARRIERLOST)
2459 dev->stats.tx_carrier_errors++;
2460 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2461 nv_legacybackoff_reseed(dev);
2462 dev->stats.tx_errors++;
2463 } else {
2464 dev->stats.tx_packets++;
2465 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2466 }
2467 dev_kfree_skb_any(np->get_tx_ctx->skb);
2468 np->get_tx_ctx->skb = NULL;
2469 tx_work++;
2470 }
2471 } else {
2472 if (flags & NV_TX2_LASTPACKET) {
2473 if (flags & NV_TX2_ERROR) {
2474 if (flags & NV_TX2_UNDERFLOW)
2475 dev->stats.tx_fifo_errors++;
2476 if (flags & NV_TX2_CARRIERLOST)
2477 dev->stats.tx_carrier_errors++;
2478 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2479 nv_legacybackoff_reseed(dev);
2480 dev->stats.tx_errors++;
2481 } else {
2482 dev->stats.tx_packets++;
2483 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2484 }
2485 dev_kfree_skb_any(np->get_tx_ctx->skb);
2486 np->get_tx_ctx->skb = NULL;
2487 tx_work++;
2488 }
2489 }
2490 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2491 np->get_tx.orig = np->first_tx.orig;
2492 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2493 np->get_tx_ctx = np->first_tx_ctx;
2494 }
2495 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2496 np->tx_stop = 0;
2497 netif_wake_queue(dev);
2498 }
2499 return tx_work;
2500 }
2501
2502 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2503 {
2504 struct fe_priv *np = netdev_priv(dev);
2505 u32 flags;
2506 int tx_work = 0;
2507 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2508
2509 while ((np->get_tx.ex != np->put_tx.ex) &&
2510 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2511 (tx_work < limit)) {
2512
2513 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2514 dev->name, flags);
2515
2516 nv_unmap_txskb(np, np->get_tx_ctx);
2517
2518 if (flags & NV_TX2_LASTPACKET) {
2519 if (!(flags & NV_TX2_ERROR))
2520 dev->stats.tx_packets++;
2521 else {
2522 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2523 if (np->driver_data & DEV_HAS_GEAR_MODE)
2524 nv_gear_backoff_reseed(dev);
2525 else
2526 nv_legacybackoff_reseed(dev);
2527 }
2528 }
2529
2530 dev_kfree_skb_any(np->get_tx_ctx->skb);
2531 np->get_tx_ctx->skb = NULL;
2532 tx_work++;
2533
2534 if (np->tx_limit) {
2535 nv_tx_flip_ownership(dev);
2536 }
2537 }
2538 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2539 np->get_tx.ex = np->first_tx.ex;
2540 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2541 np->get_tx_ctx = np->first_tx_ctx;
2542 }
2543 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2544 np->tx_stop = 0;
2545 netif_wake_queue(dev);
2546 }
2547 return tx_work;
2548 }
2549
2550 /*
2551 * nv_tx_timeout: dev->tx_timeout function
2552 * Called with netif_tx_lock held.
2553 */
2554 static void nv_tx_timeout(struct net_device *dev)
2555 {
2556 struct fe_priv *np = netdev_priv(dev);
2557 u8 __iomem *base = get_hwbase(dev);
2558 u32 status;
2559 union ring_type put_tx;
2560 int saved_tx_limit;
2561
2562 if (np->msi_flags & NV_MSI_X_ENABLED)
2563 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2564 else
2565 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2566
2567 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2568
2569 {
2570 int i;
2571
2572 printk(KERN_INFO "%s: Ring at %lx\n",
2573 dev->name, (unsigned long)np->ring_addr);
2574 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2575 for (i=0;i<=np->register_size;i+= 32) {
2576 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2577 i,
2578 readl(base + i + 0), readl(base + i + 4),
2579 readl(base + i + 8), readl(base + i + 12),
2580 readl(base + i + 16), readl(base + i + 20),
2581 readl(base + i + 24), readl(base + i + 28));
2582 }
2583 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2584 for (i=0;i<np->tx_ring_size;i+= 4) {
2585 if (!nv_optimized(np)) {
2586 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2587 i,
2588 le32_to_cpu(np->tx_ring.orig[i].buf),
2589 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2590 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2591 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2592 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2593 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2594 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2595 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2596 } else {
2597 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2598 i,
2599 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2600 le32_to_cpu(np->tx_ring.ex[i].buflow),
2601 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2602 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2603 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2604 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2605 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2606 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2607 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2608 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2609 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2610 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2611 }
2612 }
2613 }
2614
2615 spin_lock_irq(&np->lock);
2616
2617 /* 1) stop tx engine */
2618 nv_stop_tx(dev);
2619
2620 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2621 saved_tx_limit = np->tx_limit;
2622 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2623 np->tx_stop = 0; /* prevent waking tx queue */
2624 if (!nv_optimized(np))
2625 nv_tx_done(dev, np->tx_ring_size);
2626 else
2627 nv_tx_done_optimized(dev, np->tx_ring_size);
2628
2629 /* save current HW postion */
2630 if (np->tx_change_owner)
2631 put_tx.ex = np->tx_change_owner->first_tx_desc;
2632 else
2633 put_tx = np->put_tx;
2634
2635 /* 3) clear all tx state */
2636 nv_drain_tx(dev);
2637 nv_init_tx(dev);
2638
2639 /* 4) restore state to current HW position */
2640 np->get_tx = np->put_tx = put_tx;
2641 np->tx_limit = saved_tx_limit;
2642
2643 /* 5) restart tx engine */
2644 nv_start_tx(dev);
2645 netif_wake_queue(dev);
2646 spin_unlock_irq(&np->lock);
2647 }
2648
2649 /*
2650 * Called when the nic notices a mismatch between the actual data len on the
2651 * wire and the len indicated in the 802 header
2652 */
2653 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2654 {
2655 int hdrlen; /* length of the 802 header */
2656 int protolen; /* length as stored in the proto field */
2657
2658 /* 1) calculate len according to header */
2659 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2660 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2661 hdrlen = VLAN_HLEN;
2662 } else {
2663 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2664 hdrlen = ETH_HLEN;
2665 }
2666 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2667 dev->name, datalen, protolen, hdrlen);
2668 if (protolen > ETH_DATA_LEN)
2669 return datalen; /* Value in proto field not a len, no checks possible */
2670
2671 protolen += hdrlen;
2672 /* consistency checks: */
2673 if (datalen > ETH_ZLEN) {
2674 if (datalen >= protolen) {
2675 /* more data on wire than in 802 header, trim of
2676 * additional data.
2677 */
2678 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2679 dev->name, protolen);
2680 return protolen;
2681 } else {
2682 /* less data on wire than mentioned in header.
2683 * Discard the packet.
2684 */
2685 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2686 dev->name);
2687 return -1;
2688 }
2689 } else {
2690 /* short packet. Accept only if 802 values are also short */
2691 if (protolen > ETH_ZLEN) {
2692 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2693 dev->name);
2694 return -1;
2695 }
2696 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2697 dev->name, datalen);
2698 return datalen;
2699 }
2700 }
2701
2702 static int nv_rx_process(struct net_device *dev, int limit)
2703 {
2704 struct fe_priv *np = netdev_priv(dev);
2705 u32 flags;
2706 int rx_work = 0;
2707 struct sk_buff *skb;
2708 int len;
2709
2710 while((np->get_rx.orig != np->put_rx.orig) &&
2711 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2712 (rx_work < limit)) {
2713
2714 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2715 dev->name, flags);
2716
2717 /*
2718 * the packet is for us - immediately tear down the pci mapping.
2719 * TODO: check if a prefetch of the first cacheline improves
2720 * the performance.
2721 */
2722 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2723 np->get_rx_ctx->dma_len,
2724 PCI_DMA_FROMDEVICE);
2725 skb = np->get_rx_ctx->skb;
2726 np->get_rx_ctx->skb = NULL;
2727
2728 {
2729 int j;
2730 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2731 for (j=0; j<64; j++) {
2732 if ((j%16) == 0)
2733 dprintk("\n%03x:", j);
2734 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2735 }
2736 dprintk("\n");
2737 }
2738 /* look at what we actually got: */
2739 if (np->desc_ver == DESC_VER_1) {
2740 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2741 len = flags & LEN_MASK_V1;
2742 if (unlikely(flags & NV_RX_ERROR)) {
2743 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2744 len = nv_getlen(dev, skb->data, len);
2745 if (len < 0) {
2746 dev->stats.rx_errors++;
2747 dev_kfree_skb(skb);
2748 goto next_pkt;
2749 }
2750 }
2751 /* framing errors are soft errors */
2752 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2753 if (flags & NV_RX_SUBSTRACT1) {
2754 len--;
2755 }
2756 }
2757 /* the rest are hard errors */
2758 else {
2759 if (flags & NV_RX_MISSEDFRAME)
2760 dev->stats.rx_missed_errors++;
2761 if (flags & NV_RX_CRCERR)
2762 dev->stats.rx_crc_errors++;
2763 if (flags & NV_RX_OVERFLOW)
2764 dev->stats.rx_over_errors++;
2765 dev->stats.rx_errors++;
2766 dev_kfree_skb(skb);
2767 goto next_pkt;
2768 }
2769 }
2770 } else {
2771 dev_kfree_skb(skb);
2772 goto next_pkt;
2773 }
2774 } else {
2775 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2776 len = flags & LEN_MASK_V2;
2777 if (unlikely(flags & NV_RX2_ERROR)) {
2778 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2779 len = nv_getlen(dev, skb->data, len);
2780 if (len < 0) {
2781 dev->stats.rx_errors++;
2782 dev_kfree_skb(skb);
2783 goto next_pkt;
2784 }
2785 }
2786 /* framing errors are soft errors */
2787 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2788 if (flags & NV_RX2_SUBSTRACT1) {
2789 len--;
2790 }
2791 }
2792 /* the rest are hard errors */
2793 else {
2794 if (flags & NV_RX2_CRCERR)
2795 dev->stats.rx_crc_errors++;
2796 if (flags & NV_RX2_OVERFLOW)
2797 dev->stats.rx_over_errors++;
2798 dev->stats.rx_errors++;
2799 dev_kfree_skb(skb);
2800 goto next_pkt;
2801 }
2802 }
2803 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2804 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2805 skb->ip_summed = CHECKSUM_UNNECESSARY;
2806 } else {
2807 dev_kfree_skb(skb);
2808 goto next_pkt;
2809 }
2810 }
2811 /* got a valid packet - forward it to the network core */
2812 skb_put(skb, len);
2813 skb->protocol = eth_type_trans(skb, dev);
2814 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2815 dev->name, len, skb->protocol);
2816 #ifdef CONFIG_FORCEDETH_NAPI
2817 netif_receive_skb(skb);
2818 #else
2819 netif_rx(skb);
2820 #endif
2821 dev->stats.rx_packets++;
2822 dev->stats.rx_bytes += len;
2823 next_pkt:
2824 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2825 np->get_rx.orig = np->first_rx.orig;
2826 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2827 np->get_rx_ctx = np->first_rx_ctx;
2828
2829 rx_work++;
2830 }
2831
2832 return rx_work;
2833 }
2834
2835 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2836 {
2837 struct fe_priv *np = netdev_priv(dev);
2838 u32 flags;
2839 u32 vlanflags = 0;
2840 int rx_work = 0;
2841 struct sk_buff *skb;
2842 int len;
2843
2844 while((np->get_rx.ex != np->put_rx.ex) &&
2845 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2846 (rx_work < limit)) {
2847
2848 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2849 dev->name, flags);
2850
2851 /*
2852 * the packet is for us - immediately tear down the pci mapping.
2853 * TODO: check if a prefetch of the first cacheline improves
2854 * the performance.
2855 */
2856 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2857 np->get_rx_ctx->dma_len,
2858 PCI_DMA_FROMDEVICE);
2859 skb = np->get_rx_ctx->skb;
2860 np->get_rx_ctx->skb = NULL;
2861
2862 {
2863 int j;
2864 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2865 for (j=0; j<64; j++) {
2866 if ((j%16) == 0)
2867 dprintk("\n%03x:", j);
2868 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2869 }
2870 dprintk("\n");
2871 }
2872 /* look at what we actually got: */
2873 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2874 len = flags & LEN_MASK_V2;
2875 if (unlikely(flags & NV_RX2_ERROR)) {
2876 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2877 len = nv_getlen(dev, skb->data, len);
2878 if (len < 0) {
2879 dev_kfree_skb(skb);
2880 goto next_pkt;
2881 }
2882 }
2883 /* framing errors are soft errors */
2884 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2885 if (flags & NV_RX2_SUBSTRACT1) {
2886 len--;
2887 }
2888 }
2889 /* the rest are hard errors */
2890 else {
2891 dev_kfree_skb(skb);
2892 goto next_pkt;
2893 }
2894 }
2895
2896 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2897 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2898 skb->ip_summed = CHECKSUM_UNNECESSARY;
2899
2900 /* got a valid packet - forward it to the network core */
2901 skb_put(skb, len);
2902 skb->protocol = eth_type_trans(skb, dev);
2903 prefetch(skb->data);
2904
2905 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2906 dev->name, len, skb->protocol);
2907
2908 if (likely(!np->vlangrp)) {
2909 #ifdef CONFIG_FORCEDETH_NAPI
2910 netif_receive_skb(skb);
2911 #else
2912 netif_rx(skb);
2913 #endif
2914 } else {
2915 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2916 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2917 #ifdef CONFIG_FORCEDETH_NAPI
2918 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2919 vlanflags & NV_RX3_VLAN_TAG_MASK);
2920 #else
2921 vlan_hwaccel_rx(skb, np->vlangrp,
2922 vlanflags & NV_RX3_VLAN_TAG_MASK);
2923 #endif
2924 } else {
2925 #ifdef CONFIG_FORCEDETH_NAPI
2926 netif_receive_skb(skb);
2927 #else
2928 netif_rx(skb);
2929 #endif
2930 }
2931 }
2932
2933 dev->stats.rx_packets++;
2934 dev->stats.rx_bytes += len;
2935 } else {
2936 dev_kfree_skb(skb);
2937 }
2938 next_pkt:
2939 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2940 np->get_rx.ex = np->first_rx.ex;
2941 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2942 np->get_rx_ctx = np->first_rx_ctx;
2943
2944 rx_work++;
2945 }
2946
2947 return rx_work;
2948 }
2949
2950 static void set_bufsize(struct net_device *dev)
2951 {
2952 struct fe_priv *np = netdev_priv(dev);
2953
2954 if (dev->mtu <= ETH_DATA_LEN)
2955 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2956 else
2957 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2958 }
2959
2960 /*
2961 * nv_change_mtu: dev->change_mtu function
2962 * Called with dev_base_lock held for read.
2963 */
2964 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2965 {
2966 struct fe_priv *np = netdev_priv(dev);
2967 int old_mtu;
2968
2969 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2970 return -EINVAL;
2971
2972 old_mtu = dev->mtu;
2973 dev->mtu = new_mtu;
2974
2975 /* return early if the buffer sizes will not change */
2976 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2977 return 0;
2978 if (old_mtu == new_mtu)
2979 return 0;
2980
2981 /* synchronized against open : rtnl_lock() held by caller */
2982 if (netif_running(dev)) {
2983 u8 __iomem *base = get_hwbase(dev);
2984 /*
2985 * It seems that the nic preloads valid ring entries into an
2986 * internal buffer. The procedure for flushing everything is
2987 * guessed, there is probably a simpler approach.
2988 * Changing the MTU is a rare event, it shouldn't matter.
2989 */
2990 nv_disable_irq(dev);
2991 nv_napi_disable(dev);
2992 netif_tx_lock_bh(dev);
2993 netif_addr_lock(dev);
2994 spin_lock(&np->lock);
2995 /* stop engines */
2996 nv_stop_rxtx(dev);
2997 nv_txrx_reset(dev);
2998 /* drain rx queue */
2999 nv_drain_rxtx(dev);
3000 /* reinit driver view of the rx queue */
3001 set_bufsize(dev);
3002 if (nv_init_ring(dev)) {
3003 if (!np->in_shutdown)
3004 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3005 }
3006 /* reinit nic view of the rx queue */
3007 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3008 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3009 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3010 base + NvRegRingSizes);
3011 pci_push(base);
3012 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3013 pci_push(base);
3014
3015 /* restart rx engine */
3016 nv_start_rxtx(dev);
3017 spin_unlock(&np->lock);
3018 netif_addr_unlock(dev);
3019 netif_tx_unlock_bh(dev);
3020 nv_napi_enable(dev);
3021 nv_enable_irq(dev);
3022 }
3023 return 0;
3024 }
3025
3026 static void nv_copy_mac_to_hw(struct net_device *dev)
3027 {
3028 u8 __iomem *base = get_hwbase(dev);
3029 u32 mac[2];
3030
3031 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3032 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3033 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3034
3035 writel(mac[0], base + NvRegMacAddrA);
3036 writel(mac[1], base + NvRegMacAddrB);
3037 }
3038
3039 /*
3040 * nv_set_mac_address: dev->set_mac_address function
3041 * Called with rtnl_lock() held.
3042 */
3043 static int nv_set_mac_address(struct net_device *dev, void *addr)
3044 {
3045 struct fe_priv *np = netdev_priv(dev);
3046 struct sockaddr *macaddr = (struct sockaddr*)addr;
3047
3048 if (!is_valid_ether_addr(macaddr->sa_data))
3049 return -EADDRNOTAVAIL;
3050
3051 /* synchronized against open : rtnl_lock() held by caller */
3052 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3053
3054 if (netif_running(dev)) {
3055 netif_tx_lock_bh(dev);
3056 netif_addr_lock(dev);
3057 spin_lock_irq(&np->lock);
3058
3059 /* stop rx engine */
3060 nv_stop_rx(dev);
3061
3062 /* set mac address */
3063 nv_copy_mac_to_hw(dev);
3064
3065 /* restart rx engine */
3066 nv_start_rx(dev);
3067 spin_unlock_irq(&np->lock);
3068 netif_addr_unlock(dev);
3069 netif_tx_unlock_bh(dev);
3070 } else {
3071 nv_copy_mac_to_hw(dev);
3072 }
3073 return 0;
3074 }
3075
3076 /*
3077 * nv_set_multicast: dev->set_multicast function
3078 * Called with netif_tx_lock held.
3079 */
3080 static void nv_set_multicast(struct net_device *dev)
3081 {
3082 struct fe_priv *np = netdev_priv(dev);
3083 u8 __iomem *base = get_hwbase(dev);
3084 u32 addr[2];
3085 u32 mask[2];
3086 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3087
3088 memset(addr, 0, sizeof(addr));
3089 memset(mask, 0, sizeof(mask));
3090
3091 if (dev->flags & IFF_PROMISC) {
3092 pff |= NVREG_PFF_PROMISC;
3093 } else {
3094 pff |= NVREG_PFF_MYADDR;
3095
3096 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
3097 u32 alwaysOff[2];
3098 u32 alwaysOn[2];
3099
3100 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3101 if (dev->flags & IFF_ALLMULTI) {
3102 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3103 } else {
3104 struct dev_mc_list *walk;
3105
3106 walk = dev->mc_list;
3107 while (walk != NULL) {
3108 u32 a, b;
3109 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3110 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3111 alwaysOn[0] &= a;
3112 alwaysOff[0] &= ~a;
3113 alwaysOn[1] &= b;
3114 alwaysOff[1] &= ~b;
3115 walk = walk->next;
3116 }
3117 }
3118 addr[0] = alwaysOn[0];
3119 addr[1] = alwaysOn[1];
3120 mask[0] = alwaysOn[0] | alwaysOff[0];
3121 mask[1] = alwaysOn[1] | alwaysOff[1];
3122 } else {
3123 mask[0] = NVREG_MCASTMASKA_NONE;
3124 mask[1] = NVREG_MCASTMASKB_NONE;
3125 }
3126 }
3127 addr[0] |= NVREG_MCASTADDRA_FORCE;
3128 pff |= NVREG_PFF_ALWAYS;
3129 spin_lock_irq(&np->lock);
3130 nv_stop_rx(dev);
3131 writel(addr[0], base + NvRegMulticastAddrA);
3132 writel(addr[1], base + NvRegMulticastAddrB);
3133 writel(mask[0], base + NvRegMulticastMaskA);
3134 writel(mask[1], base + NvRegMulticastMaskB);
3135 writel(pff, base + NvRegPacketFilterFlags);
3136 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3137 dev->name);
3138 nv_start_rx(dev);
3139 spin_unlock_irq(&np->lock);
3140 }
3141
3142 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3143 {
3144 struct fe_priv *np = netdev_priv(dev);
3145 u8 __iomem *base = get_hwbase(dev);
3146
3147 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3148
3149 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3150 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3151 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3152 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3153 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3154 } else {
3155 writel(pff, base + NvRegPacketFilterFlags);
3156 }
3157 }
3158 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3159 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3160 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3161 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3162 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3163 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3164 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3165 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3166 /* limit the number of tx pause frames to a default of 8 */
3167 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3168 }
3169 writel(pause_enable, base + NvRegTxPauseFrame);
3170 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3171 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3172 } else {
3173 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3174 writel(regmisc, base + NvRegMisc1);
3175 }
3176 }
3177 }
3178
3179 /**
3180 * nv_update_linkspeed: Setup the MAC according to the link partner
3181 * @dev: Network device to be configured
3182 *
3183 * The function queries the PHY and checks if there is a link partner.
3184 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3185 * set to 10 MBit HD.
3186 *
3187 * The function returns 0 if there is no link partner and 1 if there is
3188 * a good link partner.
3189 */
3190 static int nv_update_linkspeed(struct net_device *dev)
3191 {
3192 struct fe_priv *np = netdev_priv(dev);
3193 u8 __iomem *base = get_hwbase(dev);
3194 int adv = 0;
3195 int lpa = 0;
3196 int adv_lpa, adv_pause, lpa_pause;
3197 int newls = np->linkspeed;
3198 int newdup = np->duplex;
3199 int mii_status;
3200 int retval = 0;
3201 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3202 u32 txrxFlags = 0;
3203 u32 phy_exp;
3204
3205 /* BMSR_LSTATUS is latched, read it twice:
3206 * we want the current value.
3207 */
3208 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3209 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3210
3211 if (!(mii_status & BMSR_LSTATUS)) {
3212 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3213 dev->name);
3214 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3215 newdup = 0;
3216 retval = 0;
3217 goto set_speed;
3218 }
3219
3220 if (np->autoneg == 0) {
3221 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3222 dev->name, np->fixed_mode);
3223 if (np->fixed_mode & LPA_100FULL) {
3224 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3225 newdup = 1;
3226 } else if (np->fixed_mode & LPA_100HALF) {
3227 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3228 newdup = 0;
3229 } else if (np->fixed_mode & LPA_10FULL) {
3230 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3231 newdup = 1;
3232 } else {
3233 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3234 newdup = 0;
3235 }
3236 retval = 1;
3237 goto set_speed;
3238 }
3239 /* check auto negotiation is complete */
3240 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3241 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3242 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3243 newdup = 0;
3244 retval = 0;
3245 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3246 goto set_speed;
3247 }
3248
3249 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3250 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3251 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3252 dev->name, adv, lpa);
3253
3254 retval = 1;
3255 if (np->gigabit == PHY_GIGABIT) {
3256 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3257 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3258
3259 if ((control_1000 & ADVERTISE_1000FULL) &&
3260 (status_1000 & LPA_1000FULL)) {
3261 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3262 dev->name);
3263 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3264 newdup = 1;
3265 goto set_speed;
3266 }
3267 }
3268
3269 /* FIXME: handle parallel detection properly */
3270 adv_lpa = lpa & adv;
3271 if (adv_lpa & LPA_100FULL) {
3272 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3273 newdup = 1;
3274 } else if (adv_lpa & LPA_100HALF) {
3275 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3276 newdup = 0;
3277 } else if (adv_lpa & LPA_10FULL) {
3278 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3279 newdup = 1;
3280 } else if (adv_lpa & LPA_10HALF) {
3281 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3282 newdup = 0;
3283 } else {
3284 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3285 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3286 newdup = 0;
3287 }
3288
3289 set_speed:
3290 if (np->duplex == newdup && np->linkspeed == newls)
3291 return retval;
3292
3293 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3294 dev->name, np->linkspeed, np->duplex, newls, newdup);
3295
3296 np->duplex = newdup;
3297 np->linkspeed = newls;
3298
3299 /* The transmitter and receiver must be restarted for safe update */
3300 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3301 txrxFlags |= NV_RESTART_TX;
3302 nv_stop_tx(dev);
3303 }
3304 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3305 txrxFlags |= NV_RESTART_RX;
3306 nv_stop_rx(dev);
3307 }
3308
3309 if (np->gigabit == PHY_GIGABIT) {
3310 phyreg = readl(base + NvRegSlotTime);
3311 phyreg &= ~(0x3FF00);
3312 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3313 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3314 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3315 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3316 phyreg |= NVREG_SLOTTIME_1000_FULL;
3317 writel(phyreg, base + NvRegSlotTime);
3318 }
3319
3320 phyreg = readl(base + NvRegPhyInterface);
3321 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3322 if (np->duplex == 0)
3323 phyreg |= PHY_HALF;
3324 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3325 phyreg |= PHY_100;
3326 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3327 phyreg |= PHY_1000;
3328 writel(phyreg, base + NvRegPhyInterface);
3329
3330 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3331 if (phyreg & PHY_RGMII) {
3332 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3333 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3334 } else {
3335 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3336 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3337 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3338 else
3339 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3340 } else {
3341 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3342 }
3343 }
3344 } else {
3345 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3346 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3347 else
3348 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3349 }
3350 writel(txreg, base + NvRegTxDeferral);
3351
3352 if (np->desc_ver == DESC_VER_1) {
3353 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3354 } else {
3355 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3356 txreg = NVREG_TX_WM_DESC2_3_1000;
3357 else
3358 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3359 }
3360 writel(txreg, base + NvRegTxWatermark);
3361
3362 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3363 base + NvRegMisc1);
3364 pci_push(base);
3365 writel(np->linkspeed, base + NvRegLinkSpeed);
3366 pci_push(base);
3367
3368 pause_flags = 0;
3369 /* setup pause frame */
3370 if (np->duplex != 0) {
3371 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3372 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3373 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3374
3375 switch (adv_pause) {
3376 case ADVERTISE_PAUSE_CAP:
3377 if (lpa_pause & LPA_PAUSE_CAP) {
3378 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3379 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3380 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3381 }
3382 break;
3383 case ADVERTISE_PAUSE_ASYM:
3384 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3385 {
3386 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3387 }
3388 break;
3389 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3390 if (lpa_pause & LPA_PAUSE_CAP)
3391 {
3392 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3393 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3394 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3395 }
3396 if (lpa_pause == LPA_PAUSE_ASYM)
3397 {
3398 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3399 }
3400 break;
3401 }
3402 } else {
3403 pause_flags = np->pause_flags;
3404 }
3405 }
3406 nv_update_pause(dev, pause_flags);
3407
3408 if (txrxFlags & NV_RESTART_TX)
3409 nv_start_tx(dev);
3410 if (txrxFlags & NV_RESTART_RX)
3411 nv_start_rx(dev);
3412
3413 return retval;
3414 }
3415
3416 static void nv_linkchange(struct net_device *dev)
3417 {
3418 if (nv_update_linkspeed(dev)) {
3419 if (!netif_carrier_ok(dev)) {
3420 netif_carrier_on(dev);
3421 printk(KERN_INFO "%s: link up.\n", dev->name);
3422 nv_txrx_gate(dev, false);
3423 nv_start_rx(dev);
3424 }
3425 } else {
3426 if (netif_carrier_ok(dev)) {
3427 netif_carrier_off(dev);
3428 printk(KERN_INFO "%s: link down.\n", dev->name);
3429 nv_txrx_gate(dev, true);
3430 nv_stop_rx(dev);
3431 }
3432 }
3433 }
3434
3435 static void nv_link_irq(struct net_device *dev)
3436 {
3437 u8 __iomem *base = get_hwbase(dev);
3438 u32 miistat;
3439
3440 miistat = readl(base + NvRegMIIStatus);
3441 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3442 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3443
3444 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3445 nv_linkchange(dev);
3446 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3447 }
3448
3449 static void nv_msi_workaround(struct fe_priv *np)
3450 {
3451
3452 /* Need to toggle the msi irq mask within the ethernet device,
3453 * otherwise, future interrupts will not be detected.
3454 */
3455 if (np->msi_flags & NV_MSI_ENABLED) {
3456 u8 __iomem *base = np->base;
3457
3458 writel(0, base + NvRegMSIIrqMask);
3459 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3460 }
3461 }
3462
3463 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3464 {
3465 struct fe_priv *np = netdev_priv(dev);
3466
3467 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3468 if (total_work > NV_DYNAMIC_THRESHOLD) {
3469 /* transition to poll based interrupts */
3470 np->quiet_count = 0;
3471 if (np->irqmask != NVREG_IRQMASK_CPU) {
3472 np->irqmask = NVREG_IRQMASK_CPU;
3473 return 1;
3474 }
3475 } else {
3476 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3477 np->quiet_count++;
3478 } else {
3479 /* reached a period of low activity, switch
3480 to per tx/rx packet interrupts */
3481 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3482 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3483 return 1;
3484 }
3485 }
3486 }
3487 }
3488 return 0;
3489 }
3490
3491 static irqreturn_t nv_nic_irq(int foo, void *data)
3492 {
3493 struct net_device *dev = (struct net_device *) data;
3494 struct fe_priv *np = netdev_priv(dev);
3495 u8 __iomem *base = get_hwbase(dev);
3496 #ifndef CONFIG_FORCEDETH_NAPI
3497 int total_work = 0;
3498 int loop_count = 0;
3499 #endif
3500
3501 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3502
3503 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3504 np->events = readl(base + NvRegIrqStatus);
3505 writel(np->events, base + NvRegIrqStatus);
3506 } else {
3507 np->events = readl(base + NvRegMSIXIrqStatus);
3508 writel(np->events, base + NvRegMSIXIrqStatus);
3509 }
3510 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3511 if (!(np->events & np->irqmask))
3512 return IRQ_NONE;
3513
3514 nv_msi_workaround(np);
3515
3516 #ifdef CONFIG_FORCEDETH_NAPI
3517 if (napi_schedule_prep(&np->napi)) {
3518 /*
3519 * Disable further irq's (msix not enabled with napi)
3520 */
3521 writel(0, base + NvRegIrqMask);
3522 __napi_schedule(&np->napi);
3523 }
3524
3525 #else
3526 do
3527 {
3528 int work = 0;
3529 if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
3530 if (unlikely(nv_alloc_rx(dev))) {
3531 spin_lock(&np->lock);
3532 if (!np->in_shutdown)
3533 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3534 spin_unlock(&np->lock);
3535 }
3536 }
3537
3538 spin_lock(&np->lock);
3539 work += nv_tx_done(dev, TX_WORK_PER_LOOP);
3540 spin_unlock(&np->lock);
3541
3542 if (!work)
3543 break;
3544
3545 total_work += work;
3546
3547 loop_count++;
3548 }
3549 while (loop_count < max_interrupt_work);
3550
3551 if (nv_change_interrupt_mode(dev, total_work)) {
3552 /* setup new irq mask */
3553 writel(np->irqmask, base + NvRegIrqMask);
3554 }
3555
3556 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3557 spin_lock(&np->lock);
3558 nv_link_irq(dev);
3559 spin_unlock(&np->lock);
3560 }
3561 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3562 spin_lock(&np->lock);
3563 nv_linkchange(dev);
3564 spin_unlock(&np->lock);
3565 np->link_timeout = jiffies + LINK_TIMEOUT;
3566 }
3567 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3568 spin_lock(&np->lock);
3569 /* disable interrupts on the nic */
3570 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3571 writel(0, base + NvRegIrqMask);
3572 else
3573 writel(np->irqmask, base + NvRegIrqMask);
3574 pci_push(base);
3575
3576 if (!np->in_shutdown) {
3577 np->nic_poll_irq = np->irqmask;
3578 np->recover_error = 1;
3579 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3580 }
3581 spin_unlock(&np->lock);
3582 }
3583 #endif
3584 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3585
3586 return IRQ_HANDLED;
3587 }
3588
3589 /**
3590 * All _optimized functions are used to help increase performance
3591 * (reduce CPU and increase throughput). They use descripter version 3,
3592 * compiler directives, and reduce memory accesses.
3593 */
3594 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3595 {
3596 struct net_device *dev = (struct net_device *) data;
3597 struct fe_priv *np = netdev_priv(dev);
3598 u8 __iomem *base = get_hwbase(dev);
3599 #ifndef CONFIG_FORCEDETH_NAPI
3600 int total_work = 0;
3601 int loop_count = 0;
3602 #endif
3603
3604 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3605
3606 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3607 np->events = readl(base + NvRegIrqStatus);
3608 writel(np->events, base + NvRegIrqStatus);
3609 } else {
3610 np->events = readl(base + NvRegMSIXIrqStatus);
3611 writel(np->events, base + NvRegMSIXIrqStatus);
3612 }
3613 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3614 if (!(np->events & np->irqmask))
3615 return IRQ_NONE;
3616
3617 nv_msi_workaround(np);
3618
3619 #ifdef CONFIG_FORCEDETH_NAPI
3620 if (napi_schedule_prep(&np->napi)) {
3621 /*
3622 * Disable further irq's (msix not enabled with napi)
3623 */
3624 writel(0, base + NvRegIrqMask);
3625 __napi_schedule(&np->napi);
3626 }
3627 #else
3628 do
3629 {
3630 int work = 0;
3631 if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
3632 if (unlikely(nv_alloc_rx_optimized(dev))) {
3633 spin_lock(&np->lock);
3634 if (!np->in_shutdown)
3635 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3636 spin_unlock(&np->lock);
3637 }
3638 }
3639
3640 spin_lock(&np->lock);
3641 work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3642 spin_unlock(&np->lock);
3643
3644 if (!work)
3645 break;
3646
3647 total_work += work;
3648
3649 loop_count++;
3650 }
3651 while (loop_count < max_interrupt_work);
3652
3653 if (nv_change_interrupt_mode(dev, total_work)) {
3654 /* setup new irq mask */
3655 writel(np->irqmask, base + NvRegIrqMask);
3656 }
3657
3658 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3659 spin_lock(&np->lock);
3660 nv_link_irq(dev);
3661 spin_unlock(&np->lock);
3662 }
3663 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3664 spin_lock(&np->lock);
3665 nv_linkchange(dev);
3666 spin_unlock(&np->lock);
3667 np->link_timeout = jiffies + LINK_TIMEOUT;
3668 }
3669 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3670 spin_lock(&np->lock);
3671 /* disable interrupts on the nic */
3672 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3673 writel(0, base + NvRegIrqMask);
3674 else
3675 writel(np->irqmask, base + NvRegIrqMask);
3676 pci_push(base);
3677
3678 if (!np->in_shutdown) {
3679 np->nic_poll_irq = np->irqmask;
3680 np->recover_error = 1;
3681 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3682 }
3683 spin_unlock(&np->lock);
3684 }
3685
3686 #endif
3687 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3688
3689 return IRQ_HANDLED;
3690 }
3691
3692 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3693 {
3694 struct net_device *dev = (struct net_device *) data;
3695 struct fe_priv *np = netdev_priv(dev);
3696 u8 __iomem *base = get_hwbase(dev);
3697 u32 events;
3698 int i;
3699 unsigned long flags;
3700
3701 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3702
3703 for (i=0; ; i++) {
3704 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3705 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3706 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3707 if (!(events & np->irqmask))
3708 break;
3709
3710 spin_lock_irqsave(&np->lock, flags);
3711 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3712 spin_unlock_irqrestore(&np->lock, flags);
3713
3714 if (unlikely(i > max_interrupt_work)) {
3715 spin_lock_irqsave(&np->lock, flags);
3716 /* disable interrupts on the nic */
3717 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3718 pci_push(base);
3719
3720 if (!np->in_shutdown) {
3721 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3722 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3723 }
3724 spin_unlock_irqrestore(&np->lock, flags);
3725 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3726 break;
3727 }
3728
3729 }
3730 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3731
3732 return IRQ_RETVAL(i);
3733 }
3734
3735 #ifdef CONFIG_FORCEDETH_NAPI
3736 static int nv_napi_poll(struct napi_struct *napi, int budget)
3737 {
3738 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3739 struct net_device *dev = np->dev;
3740 u8 __iomem *base = get_hwbase(dev);
3741 unsigned long flags;
3742 int retcode;
3743 int tx_work, rx_work;
3744
3745 if (!nv_optimized(np)) {
3746 spin_lock_irqsave(&np->lock, flags);
3747 tx_work = nv_tx_done(dev, np->tx_ring_size);
3748 spin_unlock_irqrestore(&np->lock, flags);
3749
3750 rx_work = nv_rx_process(dev, budget);
3751 retcode = nv_alloc_rx(dev);
3752 } else {
3753 spin_lock_irqsave(&np->lock, flags);
3754 tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
3755 spin_unlock_irqrestore(&np->lock, flags);
3756
3757 rx_work = nv_rx_process_optimized(dev, budget);
3758 retcode = nv_alloc_rx_optimized(dev);
3759 }
3760
3761 if (retcode) {
3762 spin_lock_irqsave(&np->lock, flags);
3763 if (!np->in_shutdown)
3764 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3765 spin_unlock_irqrestore(&np->lock, flags);
3766 }
3767
3768 nv_change_interrupt_mode(dev, tx_work + rx_work);
3769
3770 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3771 spin_lock_irqsave(&np->lock, flags);
3772 nv_link_irq(dev);
3773 spin_unlock_irqrestore(&np->lock, flags);
3774 }
3775 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3776 spin_lock_irqsave(&np->lock, flags);
3777 nv_linkchange(dev);
3778 spin_unlock_irqrestore(&np->lock, flags);
3779 np->link_timeout = jiffies + LINK_TIMEOUT;
3780 }
3781 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3782 spin_lock_irqsave(&np->lock, flags);
3783 if (!np->in_shutdown) {
3784 np->nic_poll_irq = np->irqmask;
3785 np->recover_error = 1;
3786 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3787 }
3788 spin_unlock_irqrestore(&np->lock, flags);
3789 napi_complete(napi);
3790 return rx_work;
3791 }
3792
3793 if (rx_work < budget) {
3794 /* re-enable interrupts
3795 (msix not enabled in napi) */
3796 napi_complete(napi);
3797
3798 writel(np->irqmask, base + NvRegIrqMask);
3799 }
3800 return rx_work;
3801 }
3802 #endif
3803
3804 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3805 {
3806 struct net_device *dev = (struct net_device *) data;
3807 struct fe_priv *np = netdev_priv(dev);
3808 u8 __iomem *base = get_hwbase(dev);
3809 u32 events;
3810 int i;
3811 unsigned long flags;
3812
3813 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3814
3815 for (i=0; ; i++) {
3816 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3817 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3818 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3819 if (!(events & np->irqmask))
3820 break;
3821
3822 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3823 if (unlikely(nv_alloc_rx_optimized(dev))) {
3824 spin_lock_irqsave(&np->lock, flags);
3825 if (!np->in_shutdown)
3826 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3827 spin_unlock_irqrestore(&np->lock, flags);
3828 }
3829 }
3830
3831 if (unlikely(i > max_interrupt_work)) {
3832 spin_lock_irqsave(&np->lock, flags);
3833 /* disable interrupts on the nic */
3834 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3835 pci_push(base);
3836
3837 if (!np->in_shutdown) {
3838 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3839 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3840 }
3841 spin_unlock_irqrestore(&np->lock, flags);
3842 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3843 break;
3844 }
3845 }
3846 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3847
3848 return IRQ_RETVAL(i);
3849 }
3850
3851 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3852 {
3853 struct net_device *dev = (struct net_device *) data;
3854 struct fe_priv *np = netdev_priv(dev);
3855 u8 __iomem *base = get_hwbase(dev);
3856 u32 events;
3857 int i;
3858 unsigned long flags;
3859
3860 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3861
3862 for (i=0; ; i++) {
3863 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3864 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3865 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3866 if (!(events & np->irqmask))
3867 break;
3868
3869 /* check tx in case we reached max loop limit in tx isr */
3870 spin_lock_irqsave(&np->lock, flags);
3871 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3872 spin_unlock_irqrestore(&np->lock, flags);
3873
3874 if (events & NVREG_IRQ_LINK) {
3875 spin_lock_irqsave(&np->lock, flags);
3876 nv_link_irq(dev);
3877 spin_unlock_irqrestore(&np->lock, flags);
3878 }
3879 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3880 spin_lock_irqsave(&np->lock, flags);
3881 nv_linkchange(dev);
3882 spin_unlock_irqrestore(&np->lock, flags);
3883 np->link_timeout = jiffies + LINK_TIMEOUT;
3884 }
3885 if (events & NVREG_IRQ_RECOVER_ERROR) {
3886 spin_lock_irq(&np->lock);
3887 /* disable interrupts on the nic */
3888 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3889 pci_push(base);
3890
3891 if (!np->in_shutdown) {
3892 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3893 np->recover_error = 1;
3894 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3895 }
3896 spin_unlock_irq(&np->lock);
3897 break;
3898 }
3899 if (unlikely(i > max_interrupt_work)) {
3900 spin_lock_irqsave(&np->lock, flags);
3901 /* disable interrupts on the nic */
3902 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3903 pci_push(base);
3904
3905 if (!np->in_shutdown) {
3906 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3907 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3908 }
3909 spin_unlock_irqrestore(&np->lock, flags);
3910 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3911 break;
3912 }
3913
3914 }
3915 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3916
3917 return IRQ_RETVAL(i);
3918 }
3919
3920 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3921 {
3922 struct net_device *dev = (struct net_device *) data;
3923 struct fe_priv *np = netdev_priv(dev);
3924 u8 __iomem *base = get_hwbase(dev);
3925 u32 events;
3926
3927 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3928
3929 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3930 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3931 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3932 } else {
3933 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3934 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3935 }
3936 pci_push(base);
3937 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3938 if (!(events & NVREG_IRQ_TIMER))
3939 return IRQ_RETVAL(0);
3940
3941 nv_msi_workaround(np);
3942
3943 spin_lock(&np->lock);
3944 np->intr_test = 1;
3945 spin_unlock(&np->lock);
3946
3947 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3948
3949 return IRQ_RETVAL(1);
3950 }
3951
3952 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3953 {
3954 u8 __iomem *base = get_hwbase(dev);
3955 int i;
3956 u32 msixmap = 0;
3957
3958 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3959 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3960 * the remaining 8 interrupts.
3961 */
3962 for (i = 0; i < 8; i++) {
3963 if ((irqmask >> i) & 0x1) {
3964 msixmap |= vector << (i << 2);
3965 }
3966 }
3967 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3968
3969 msixmap = 0;
3970 for (i = 0; i < 8; i++) {
3971 if ((irqmask >> (i + 8)) & 0x1) {
3972 msixmap |= vector << (i << 2);
3973 }
3974 }
3975 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3976 }
3977
3978 static int nv_request_irq(struct net_device *dev, int intr_test)
3979 {
3980 struct fe_priv *np = get_nvpriv(dev);
3981 u8 __iomem *base = get_hwbase(dev);
3982 int ret = 1;
3983 int i;
3984 irqreturn_t (*handler)(int foo, void *data);
3985
3986 if (intr_test) {
3987 handler = nv_nic_irq_test;
3988 } else {
3989 if (nv_optimized(np))
3990 handler = nv_nic_irq_optimized;
3991 else
3992 handler = nv_nic_irq;
3993 }
3994
3995 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3996 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3997 np->msi_x_entry[i].entry = i;
3998 }
3999 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
4000 np->msi_flags |= NV_MSI_X_ENABLED;
4001 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
4002 /* Request irq for rx handling */
4003 sprintf(np->name_rx, "%s-rx", dev->name);
4004 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4005 &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
4006 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
4007 pci_disable_msix(np->pci_dev);
4008 np->msi_flags &= ~NV_MSI_X_ENABLED;
4009 goto out_err;
4010 }
4011 /* Request irq for tx handling */
4012 sprintf(np->name_tx, "%s-tx", dev->name);
4013 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4014 &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
4015 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
4016 pci_disable_msix(np->pci_dev);
4017 np->msi_flags &= ~NV_MSI_X_ENABLED;
4018 goto out_free_rx;
4019 }
4020 /* Request irq for link and timer handling */
4021 sprintf(np->name_other, "%s-other", dev->name);
4022 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4023 &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
4024 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
4025 pci_disable_msix(np->pci_dev);
4026 np->msi_flags &= ~NV_MSI_X_ENABLED;
4027 goto out_free_tx;
4028 }
4029 /* map interrupts to their respective vector */
4030 writel(0, base + NvRegMSIXMap0);
4031 writel(0, base + NvRegMSIXMap1);
4032 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4033 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4034 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4035 } else {
4036 /* Request irq for all interrupts */
4037 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
4038 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4039 pci_disable_msix(np->pci_dev);
4040 np->msi_flags &= ~NV_MSI_X_ENABLED;
4041 goto out_err;
4042 }
4043
4044 /* map interrupts to vector 0 */
4045 writel(0, base + NvRegMSIXMap0);
4046 writel(0, base + NvRegMSIXMap1);
4047 }
4048 }
4049 }
4050 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
4051 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
4052 np->msi_flags |= NV_MSI_ENABLED;
4053 dev->irq = np->pci_dev->irq;
4054 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
4055 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4056 pci_disable_msi(np->pci_dev);
4057 np->msi_flags &= ~NV_MSI_ENABLED;
4058 dev->irq = np->pci_dev->irq;
4059 goto out_err;
4060 }
4061
4062 /* map interrupts to vector 0 */
4063 writel(0, base + NvRegMSIMap0);
4064 writel(0, base + NvRegMSIMap1);
4065 /* enable msi vector 0 */
4066 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4067 }
4068 }
4069 if (ret != 0) {
4070 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4071 goto out_err;
4072
4073 }
4074
4075 return 0;
4076 out_free_tx:
4077 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4078 out_free_rx:
4079 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4080 out_err:
4081 return 1;
4082 }
4083
4084 static void nv_free_irq(struct net_device *dev)
4085 {
4086 struct fe_priv *np = get_nvpriv(dev);
4087 int i;
4088
4089 if (np->msi_flags & NV_MSI_X_ENABLED) {
4090 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4091 free_irq(np->msi_x_entry[i].vector, dev);
4092 }
4093 pci_disable_msix(np->pci_dev);
4094 np->msi_flags &= ~NV_MSI_X_ENABLED;
4095 } else {
4096 free_irq(np->pci_dev->irq, dev);
4097 if (np->msi_flags & NV_MSI_ENABLED) {
4098 pci_disable_msi(np->pci_dev);
4099 np->msi_flags &= ~NV_MSI_ENABLED;
4100 }
4101 }
4102 }
4103
4104 static void nv_do_nic_poll(unsigned long data)
4105 {
4106 struct net_device *dev = (struct net_device *) data;
4107 struct fe_priv *np = netdev_priv(dev);
4108 u8 __iomem *base = get_hwbase(dev);
4109 u32 mask = 0;
4110
4111 /*
4112 * First disable irq(s) and then
4113 * reenable interrupts on the nic, we have to do this before calling
4114 * nv_nic_irq because that may decide to do otherwise
4115 */
4116
4117 if (!using_multi_irqs(dev)) {
4118 if (np->msi_flags & NV_MSI_X_ENABLED)
4119 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4120 else
4121 disable_irq_lockdep(np->pci_dev->irq);
4122 mask = np->irqmask;
4123 } else {
4124 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4125 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4126 mask |= NVREG_IRQ_RX_ALL;
4127 }
4128 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4129 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4130 mask |= NVREG_IRQ_TX_ALL;
4131 }
4132 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4133 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4134 mask |= NVREG_IRQ_OTHER;
4135 }
4136 }
4137 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4138
4139 if (np->recover_error) {
4140 np->recover_error = 0;
4141 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4142 if (netif_running(dev)) {
4143 netif_tx_lock_bh(dev);
4144 netif_addr_lock(dev);
4145 spin_lock(&np->lock);
4146 /* stop engines */
4147 nv_stop_rxtx(dev);
4148 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4149 nv_mac_reset(dev);
4150 nv_txrx_reset(dev);
4151 /* drain rx queue */
4152 nv_drain_rxtx(dev);
4153 /* reinit driver view of the rx queue */
4154 set_bufsize(dev);
4155 if (nv_init_ring(dev)) {
4156 if (!np->in_shutdown)
4157 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4158 }
4159 /* reinit nic view of the rx queue */
4160 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4161 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4162 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4163 base + NvRegRingSizes);
4164 pci_push(base);
4165 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4166 pci_push(base);
4167 /* clear interrupts */
4168 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4169 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4170 else
4171 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4172
4173 /* restart rx engine */
4174 nv_start_rxtx(dev);
4175 spin_unlock(&np->lock);
4176 netif_addr_unlock(dev);
4177 netif_tx_unlock_bh(dev);
4178 }
4179 }
4180
4181 writel(mask, base + NvRegIrqMask);
4182 pci_push(base);
4183
4184 if (!using_multi_irqs(dev)) {
4185 np->nic_poll_irq = 0;
4186 if (nv_optimized(np))
4187 nv_nic_irq_optimized(0, dev);
4188 else
4189 nv_nic_irq(0, dev);
4190 if (np->msi_flags & NV_MSI_X_ENABLED)
4191 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4192 else
4193 enable_irq_lockdep(np->pci_dev->irq);
4194 } else {
4195 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4196 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4197 nv_nic_irq_rx(0, dev);
4198 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4199 }
4200 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4201 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4202 nv_nic_irq_tx(0, dev);
4203 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4204 }
4205 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4206 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4207 nv_nic_irq_other(0, dev);
4208 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4209 }
4210 }
4211
4212 }
4213
4214 #ifdef CONFIG_NET_POLL_CONTROLLER
4215 static void nv_poll_controller(struct net_device *dev)
4216 {
4217 nv_do_nic_poll((unsigned long) dev);
4218 }
4219 #endif
4220
4221 static void nv_do_stats_poll(unsigned long data)
4222 {
4223 struct net_device *dev = (struct net_device *) data;
4224 struct fe_priv *np = netdev_priv(dev);
4225
4226 nv_get_hw_stats(dev);
4227
4228 if (!np->in_shutdown)
4229 mod_timer(&np->stats_poll,
4230 round_jiffies(jiffies + STATS_INTERVAL));
4231 }
4232
4233 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4234 {
4235 struct fe_priv *np = netdev_priv(dev);
4236 strcpy(info->driver, DRV_NAME);
4237 strcpy(info->version, FORCEDETH_VERSION);
4238 strcpy(info->bus_info, pci_name(np->pci_dev));
4239 }
4240
4241 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4242 {
4243 struct fe_priv *np = netdev_priv(dev);
4244 wolinfo->supported = WAKE_MAGIC;
4245
4246 spin_lock_irq(&np->lock);
4247 if (np->wolenabled)
4248 wolinfo->wolopts = WAKE_MAGIC;
4249 spin_unlock_irq(&np->lock);
4250 }
4251
4252 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4253 {
4254 struct fe_priv *np = netdev_priv(dev);
4255 u8 __iomem *base = get_hwbase(dev);
4256 u32 flags = 0;
4257
4258 if (wolinfo->wolopts == 0) {
4259 np->wolenabled = 0;
4260 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4261 np->wolenabled = 1;
4262 flags = NVREG_WAKEUPFLAGS_ENABLE;
4263 }
4264 if (netif_running(dev)) {
4265 spin_lock_irq(&np->lock);
4266 writel(flags, base + NvRegWakeUpFlags);
4267 spin_unlock_irq(&np->lock);
4268 }
4269 return 0;
4270 }
4271
4272 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4273 {
4274 struct fe_priv *np = netdev_priv(dev);
4275 int adv;
4276
4277 spin_lock_irq(&np->lock);
4278 ecmd->port = PORT_MII;
4279 if (!netif_running(dev)) {
4280 /* We do not track link speed / duplex setting if the
4281 * interface is disabled. Force a link check */
4282 if (nv_update_linkspeed(dev)) {
4283 if (!netif_carrier_ok(dev))
4284 netif_carrier_on(dev);
4285 } else {
4286 if (netif_carrier_ok(dev))
4287 netif_carrier_off(dev);
4288 }
4289 }
4290
4291 if (netif_carrier_ok(dev)) {
4292 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4293 case NVREG_LINKSPEED_10:
4294 ecmd->speed = SPEED_10;
4295 break;
4296 case NVREG_LINKSPEED_100:
4297 ecmd->speed = SPEED_100;
4298 break;
4299 case NVREG_LINKSPEED_1000:
4300 ecmd->speed = SPEED_1000;
4301 break;
4302 }
4303 ecmd->duplex = DUPLEX_HALF;
4304 if (np->duplex)
4305 ecmd->duplex = DUPLEX_FULL;
4306 } else {
4307 ecmd->speed = -1;
4308 ecmd->duplex = -1;
4309 }
4310
4311 ecmd->autoneg = np->autoneg;
4312
4313 ecmd->advertising = ADVERTISED_MII;
4314 if (np->autoneg) {
4315 ecmd->advertising |= ADVERTISED_Autoneg;
4316 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4317 if (adv & ADVERTISE_10HALF)
4318 ecmd->advertising |= ADVERTISED_10baseT_Half;
4319 if (adv & ADVERTISE_10FULL)
4320 ecmd->advertising |= ADVERTISED_10baseT_Full;
4321 if (adv & ADVERTISE_100HALF)
4322 ecmd->advertising |= ADVERTISED_100baseT_Half;
4323 if (adv & ADVERTISE_100FULL)
4324 ecmd->advertising |= ADVERTISED_100baseT_Full;
4325 if (np->gigabit == PHY_GIGABIT) {
4326 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4327 if (adv & ADVERTISE_1000FULL)
4328 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4329 }
4330 }
4331 ecmd->supported = (SUPPORTED_Autoneg |
4332 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4333 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4334 SUPPORTED_MII);
4335 if (np->gigabit == PHY_GIGABIT)
4336 ecmd->supported |= SUPPORTED_1000baseT_Full;
4337
4338 ecmd->phy_address = np->phyaddr;
4339 ecmd->transceiver = XCVR_EXTERNAL;
4340
4341 /* ignore maxtxpkt, maxrxpkt for now */
4342 spin_unlock_irq(&np->lock);
4343 return 0;
4344 }
4345
4346 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4347 {
4348 struct fe_priv *np = netdev_priv(dev);
4349
4350 if (ecmd->port != PORT_MII)
4351 return -EINVAL;
4352 if (ecmd->transceiver != XCVR_EXTERNAL)
4353 return -EINVAL;
4354 if (ecmd->phy_address != np->phyaddr) {
4355 /* TODO: support switching between multiple phys. Should be
4356 * trivial, but not enabled due to lack of test hardware. */
4357 return -EINVAL;
4358 }
4359 if (ecmd->autoneg == AUTONEG_ENABLE) {
4360 u32 mask;
4361
4362 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4363 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4364 if (np->gigabit == PHY_GIGABIT)
4365 mask |= ADVERTISED_1000baseT_Full;
4366
4367 if ((ecmd->advertising & mask) == 0)
4368 return -EINVAL;
4369
4370 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4371 /* Note: autonegotiation disable, speed 1000 intentionally
4372 * forbidden - noone should need that. */
4373
4374 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4375 return -EINVAL;
4376 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4377 return -EINVAL;
4378 } else {
4379 return -EINVAL;
4380 }
4381
4382 netif_carrier_off(dev);
4383 if (netif_running(dev)) {
4384 unsigned long flags;
4385
4386 nv_disable_irq(dev);
4387 netif_tx_lock_bh(dev);
4388 netif_addr_lock(dev);
4389 /* with plain spinlock lockdep complains */
4390 spin_lock_irqsave(&np->lock, flags);
4391 /* stop engines */
4392 /* FIXME:
4393 * this can take some time, and interrupts are disabled
4394 * due to spin_lock_irqsave, but let's hope no daemon
4395 * is going to change the settings very often...
4396 * Worst case:
4397 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4398 * + some minor delays, which is up to a second approximately
4399 */
4400 nv_stop_rxtx(dev);
4401 spin_unlock_irqrestore(&np->lock, flags);
4402 netif_addr_unlock(dev);
4403 netif_tx_unlock_bh(dev);
4404 }
4405
4406 if (ecmd->autoneg == AUTONEG_ENABLE) {
4407 int adv, bmcr;
4408
4409 np->autoneg = 1;
4410
4411 /* advertise only what has been requested */
4412 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4413 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4414 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4415 adv |= ADVERTISE_10HALF;
4416 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4417 adv |= ADVERTISE_10FULL;
4418 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4419 adv |= ADVERTISE_100HALF;
4420 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4421 adv |= ADVERTISE_100FULL;
4422 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4423 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4424 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4425 adv |= ADVERTISE_PAUSE_ASYM;
4426 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4427
4428 if (np->gigabit == PHY_GIGABIT) {
4429 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4430 adv &= ~ADVERTISE_1000FULL;
4431 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4432 adv |= ADVERTISE_1000FULL;
4433 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4434 }
4435
4436 if (netif_running(dev))
4437 printk(KERN_INFO "%s: link down.\n", dev->name);
4438 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4439 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4440 bmcr |= BMCR_ANENABLE;
4441 /* reset the phy in order for settings to stick,
4442 * and cause autoneg to start */
4443 if (phy_reset(dev, bmcr)) {
4444 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4445 return -EINVAL;
4446 }
4447 } else {
4448 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4449 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4450 }
4451 } else {
4452 int adv, bmcr;
4453
4454 np->autoneg = 0;
4455
4456 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4457 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4458 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4459 adv |= ADVERTISE_10HALF;
4460 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4461 adv |= ADVERTISE_10FULL;
4462 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4463 adv |= ADVERTISE_100HALF;
4464 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4465 adv |= ADVERTISE_100FULL;
4466 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4467 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4468 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4469 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4470 }
4471 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4472 adv |= ADVERTISE_PAUSE_ASYM;
4473 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4474 }
4475 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4476 np->fixed_mode = adv;
4477
4478 if (np->gigabit == PHY_GIGABIT) {
4479 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4480 adv &= ~ADVERTISE_1000FULL;
4481 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4482 }
4483
4484 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4485 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4486 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4487 bmcr |= BMCR_FULLDPLX;
4488 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4489 bmcr |= BMCR_SPEED100;
4490 if (np->phy_oui == PHY_OUI_MARVELL) {
4491 /* reset the phy in order for forced mode settings to stick */
4492 if (phy_reset(dev, bmcr)) {
4493 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4494 return -EINVAL;
4495 }
4496 } else {
4497 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4498 if (netif_running(dev)) {
4499 /* Wait a bit and then reconfigure the nic. */
4500 udelay(10);
4501 nv_linkchange(dev);
4502 }
4503 }
4504 }
4505
4506 if (netif_running(dev)) {
4507 nv_start_rxtx(dev);
4508 nv_enable_irq(dev);
4509 }
4510
4511 return 0;
4512 }
4513
4514 #define FORCEDETH_REGS_VER 1
4515
4516 static int nv_get_regs_len(struct net_device *dev)
4517 {
4518 struct fe_priv *np = netdev_priv(dev);
4519 return np->register_size;
4520 }
4521
4522 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4523 {
4524 struct fe_priv *np = netdev_priv(dev);
4525 u8 __iomem *base = get_hwbase(dev);
4526 u32 *rbuf = buf;
4527 int i;
4528
4529 regs->version = FORCEDETH_REGS_VER;
4530 spin_lock_irq(&np->lock);
4531 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4532 rbuf[i] = readl(base + i*sizeof(u32));
4533 spin_unlock_irq(&np->lock);
4534 }
4535
4536 static int nv_nway_reset(struct net_device *dev)
4537 {
4538 struct fe_priv *np = netdev_priv(dev);
4539 int ret;
4540
4541 if (np->autoneg) {
4542 int bmcr;
4543
4544 netif_carrier_off(dev);
4545 if (netif_running(dev)) {
4546 nv_disable_irq(dev);
4547 netif_tx_lock_bh(dev);
4548 netif_addr_lock(dev);
4549 spin_lock(&np->lock);
4550 /* stop engines */
4551 nv_stop_rxtx(dev);
4552 spin_unlock(&np->lock);
4553 netif_addr_unlock(dev);
4554 netif_tx_unlock_bh(dev);
4555 printk(KERN_INFO "%s: link down.\n", dev->name);
4556 }
4557
4558 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4559 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4560 bmcr |= BMCR_ANENABLE;
4561 /* reset the phy in order for settings to stick*/
4562 if (phy_reset(dev, bmcr)) {
4563 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4564 return -EINVAL;
4565 }
4566 } else {
4567 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4568 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4569 }
4570
4571 if (netif_running(dev)) {
4572 nv_start_rxtx(dev);
4573 nv_enable_irq(dev);
4574 }
4575 ret = 0;
4576 } else {
4577 ret = -EINVAL;
4578 }
4579
4580 return ret;
4581 }
4582
4583 static int nv_set_tso(struct net_device *dev, u32 value)
4584 {
4585 struct fe_priv *np = netdev_priv(dev);
4586
4587 if ((np->driver_data & DEV_HAS_CHECKSUM))
4588 return ethtool_op_set_tso(dev, value);
4589 else
4590 return -EOPNOTSUPP;
4591 }
4592
4593 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4594 {
4595 struct fe_priv *np = netdev_priv(dev);
4596
4597 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4598 ring->rx_mini_max_pending = 0;
4599 ring->rx_jumbo_max_pending = 0;
4600 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4601
4602 ring->rx_pending = np->rx_ring_size;
4603 ring->rx_mini_pending = 0;
4604 ring->rx_jumbo_pending = 0;
4605 ring->tx_pending = np->tx_ring_size;
4606 }
4607
4608 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4609 {
4610 struct fe_priv *np = netdev_priv(dev);
4611 u8 __iomem *base = get_hwbase(dev);
4612 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4613 dma_addr_t ring_addr;
4614
4615 if (ring->rx_pending < RX_RING_MIN ||
4616 ring->tx_pending < TX_RING_MIN ||
4617 ring->rx_mini_pending != 0 ||
4618 ring->rx_jumbo_pending != 0 ||
4619 (np->desc_ver == DESC_VER_1 &&
4620 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4621 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4622 (np->desc_ver != DESC_VER_1 &&
4623 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4624 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4625 return -EINVAL;
4626 }
4627
4628 /* allocate new rings */
4629 if (!nv_optimized(np)) {
4630 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4631 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4632 &ring_addr);
4633 } else {
4634 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4635 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4636 &ring_addr);
4637 }
4638 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4639 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4640 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4641 /* fall back to old rings */
4642 if (!nv_optimized(np)) {
4643 if (rxtx_ring)
4644 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4645 rxtx_ring, ring_addr);
4646 } else {
4647 if (rxtx_ring)
4648 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4649 rxtx_ring, ring_addr);
4650 }
4651 if (rx_skbuff)
4652 kfree(rx_skbuff);
4653 if (tx_skbuff)
4654 kfree(tx_skbuff);
4655 goto exit;
4656 }
4657
4658 if (netif_running(dev)) {
4659 nv_disable_irq(dev);
4660 nv_napi_disable(dev);
4661 netif_tx_lock_bh(dev);
4662 netif_addr_lock(dev);
4663 spin_lock(&np->lock);
4664 /* stop engines */
4665 nv_stop_rxtx(dev);
4666 nv_txrx_reset(dev);
4667 /* drain queues */
4668 nv_drain_rxtx(dev);
4669 /* delete queues */
4670 free_rings(dev);
4671 }
4672
4673 /* set new values */
4674 np->rx_ring_size = ring->rx_pending;
4675 np->tx_ring_size = ring->tx_pending;
4676
4677 if (!nv_optimized(np)) {
4678 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4679 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4680 } else {
4681 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4682 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4683 }
4684 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4685 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4686 np->ring_addr = ring_addr;
4687
4688 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4689 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4690
4691 if (netif_running(dev)) {
4692 /* reinit driver view of the queues */
4693 set_bufsize(dev);
4694 if (nv_init_ring(dev)) {
4695 if (!np->in_shutdown)
4696 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4697 }
4698
4699 /* reinit nic view of the queues */
4700 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4701 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4702 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4703 base + NvRegRingSizes);
4704 pci_push(base);
4705 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4706 pci_push(base);
4707
4708 /* restart engines */
4709 nv_start_rxtx(dev);
4710 spin_unlock(&np->lock);
4711 netif_addr_unlock(dev);
4712 netif_tx_unlock_bh(dev);
4713 nv_napi_enable(dev);
4714 nv_enable_irq(dev);
4715 }
4716 return 0;
4717 exit:
4718 return -ENOMEM;
4719 }
4720
4721 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4722 {
4723 struct fe_priv *np = netdev_priv(dev);
4724
4725 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4726 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4727 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4728 }
4729
4730 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4731 {
4732 struct fe_priv *np = netdev_priv(dev);
4733 int adv, bmcr;
4734
4735 if ((!np->autoneg && np->duplex == 0) ||
4736 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4737 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4738 dev->name);
4739 return -EINVAL;
4740 }
4741 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4742 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4743 return -EINVAL;
4744 }
4745
4746 netif_carrier_off(dev);
4747 if (netif_running(dev)) {
4748 nv_disable_irq(dev);
4749 netif_tx_lock_bh(dev);
4750 netif_addr_lock(dev);
4751 spin_lock(&np->lock);
4752 /* stop engines */
4753 nv_stop_rxtx(dev);
4754 spin_unlock(&np->lock);
4755 netif_addr_unlock(dev);
4756 netif_tx_unlock_bh(dev);
4757 }
4758
4759 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4760 if (pause->rx_pause)
4761 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4762 if (pause->tx_pause)
4763 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4764
4765 if (np->autoneg && pause->autoneg) {
4766 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4767
4768 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4769 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4770 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4771 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4772 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4773 adv |= ADVERTISE_PAUSE_ASYM;
4774 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4775
4776 if (netif_running(dev))
4777 printk(KERN_INFO "%s: link down.\n", dev->name);
4778 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4779 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4780 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4781 } else {
4782 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4783 if (pause->rx_pause)
4784 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4785 if (pause->tx_pause)
4786 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4787
4788 if (!netif_running(dev))
4789 nv_update_linkspeed(dev);
4790 else
4791 nv_update_pause(dev, np->pause_flags);
4792 }
4793
4794 if (netif_running(dev)) {
4795 nv_start_rxtx(dev);
4796 nv_enable_irq(dev);
4797 }
4798 return 0;
4799 }
4800
4801 static u32 nv_get_rx_csum(struct net_device *dev)
4802 {
4803 struct fe_priv *np = netdev_priv(dev);
4804 return (np->rx_csum) != 0;
4805 }
4806
4807 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4808 {
4809 struct fe_priv *np = netdev_priv(dev);
4810 u8 __iomem *base = get_hwbase(dev);
4811 int retcode = 0;
4812
4813 if (np->driver_data & DEV_HAS_CHECKSUM) {
4814 if (data) {
4815 np->rx_csum = 1;
4816 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4817 } else {
4818 np->rx_csum = 0;
4819 /* vlan is dependent on rx checksum offload */
4820 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4821 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4822 }
4823 if (netif_running(dev)) {
4824 spin_lock_irq(&np->lock);
4825 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4826 spin_unlock_irq(&np->lock);
4827 }
4828 } else {
4829 return -EINVAL;
4830 }
4831
4832 return retcode;
4833 }
4834
4835 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4836 {
4837 struct fe_priv *np = netdev_priv(dev);
4838
4839 if (np->driver_data & DEV_HAS_CHECKSUM)
4840 return ethtool_op_set_tx_csum(dev, data);
4841 else
4842 return -EOPNOTSUPP;
4843 }
4844
4845 static int nv_set_sg(struct net_device *dev, u32 data)
4846 {
4847 struct fe_priv *np = netdev_priv(dev);
4848
4849 if (np->driver_data & DEV_HAS_CHECKSUM)
4850 return ethtool_op_set_sg(dev, data);
4851 else
4852 return -EOPNOTSUPP;
4853 }
4854
4855 static int nv_get_sset_count(struct net_device *dev, int sset)
4856 {
4857 struct fe_priv *np = netdev_priv(dev);
4858
4859 switch (sset) {
4860 case ETH_SS_TEST:
4861 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4862 return NV_TEST_COUNT_EXTENDED;
4863 else
4864 return NV_TEST_COUNT_BASE;
4865 case ETH_SS_STATS:
4866 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4867 return NV_DEV_STATISTICS_V3_COUNT;
4868 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4869 return NV_DEV_STATISTICS_V2_COUNT;
4870 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4871 return NV_DEV_STATISTICS_V1_COUNT;
4872 else
4873 return 0;
4874 default:
4875 return -EOPNOTSUPP;
4876 }
4877 }
4878
4879 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4880 {
4881 struct fe_priv *np = netdev_priv(dev);
4882
4883 /* update stats */
4884 nv_do_stats_poll((unsigned long)dev);
4885
4886 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4887 }
4888
4889 static int nv_link_test(struct net_device *dev)
4890 {
4891 struct fe_priv *np = netdev_priv(dev);
4892 int mii_status;
4893
4894 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4895 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4896
4897 /* check phy link status */
4898 if (!(mii_status & BMSR_LSTATUS))
4899 return 0;
4900 else
4901 return 1;
4902 }
4903
4904 static int nv_register_test(struct net_device *dev)
4905 {
4906 u8 __iomem *base = get_hwbase(dev);
4907 int i = 0;
4908 u32 orig_read, new_read;
4909
4910 do {
4911 orig_read = readl(base + nv_registers_test[i].reg);
4912
4913 /* xor with mask to toggle bits */
4914 orig_read ^= nv_registers_test[i].mask;
4915
4916 writel(orig_read, base + nv_registers_test[i].reg);
4917
4918 new_read = readl(base + nv_registers_test[i].reg);
4919
4920 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4921 return 0;
4922
4923 /* restore original value */
4924 orig_read ^= nv_registers_test[i].mask;
4925 writel(orig_read, base + nv_registers_test[i].reg);
4926
4927 } while (nv_registers_test[++i].reg != 0);
4928
4929 return 1;
4930 }
4931
4932 static int nv_interrupt_test(struct net_device *dev)
4933 {
4934 struct fe_priv *np = netdev_priv(dev);
4935 u8 __iomem *base = get_hwbase(dev);
4936 int ret = 1;
4937 int testcnt;
4938 u32 save_msi_flags, save_poll_interval = 0;
4939
4940 if (netif_running(dev)) {
4941 /* free current irq */
4942 nv_free_irq(dev);
4943 save_poll_interval = readl(base+NvRegPollingInterval);
4944 }
4945
4946 /* flag to test interrupt handler */
4947 np->intr_test = 0;
4948
4949 /* setup test irq */
4950 save_msi_flags = np->msi_flags;
4951 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4952 np->msi_flags |= 0x001; /* setup 1 vector */
4953 if (nv_request_irq(dev, 1))
4954 return 0;
4955
4956 /* setup timer interrupt */
4957 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4958 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4959
4960 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4961
4962 /* wait for at least one interrupt */
4963 msleep(100);
4964
4965 spin_lock_irq(&np->lock);
4966
4967 /* flag should be set within ISR */
4968 testcnt = np->intr_test;
4969 if (!testcnt)
4970 ret = 2;
4971
4972 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4973 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4974 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4975 else
4976 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4977
4978 spin_unlock_irq(&np->lock);
4979
4980 nv_free_irq(dev);
4981
4982 np->msi_flags = save_msi_flags;
4983
4984 if (netif_running(dev)) {
4985 writel(save_poll_interval, base + NvRegPollingInterval);
4986 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4987 /* restore original irq */
4988 if (nv_request_irq(dev, 0))
4989 return 0;
4990 }
4991
4992 return ret;
4993 }
4994
4995 static int nv_loopback_test(struct net_device *dev)
4996 {
4997 struct fe_priv *np = netdev_priv(dev);
4998 u8 __iomem *base = get_hwbase(dev);
4999 struct sk_buff *tx_skb, *rx_skb;
5000 dma_addr_t test_dma_addr;
5001 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5002 u32 flags;
5003 int len, i, pkt_len;
5004 u8 *pkt_data;
5005 u32 filter_flags = 0;
5006 u32 misc1_flags = 0;
5007 int ret = 1;
5008
5009 if (netif_running(dev)) {
5010 nv_disable_irq(dev);
5011 filter_flags = readl(base + NvRegPacketFilterFlags);
5012 misc1_flags = readl(base + NvRegMisc1);
5013 } else {
5014 nv_txrx_reset(dev);
5015 }
5016
5017 /* reinit driver view of the rx queue */
5018 set_bufsize(dev);
5019 nv_init_ring(dev);
5020
5021 /* setup hardware for loopback */
5022 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5023 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5024
5025 /* reinit nic view of the rx queue */
5026 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5027 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5028 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5029 base + NvRegRingSizes);
5030 pci_push(base);
5031
5032 /* restart rx engine */
5033 nv_start_rxtx(dev);
5034
5035 /* setup packet for tx */
5036 pkt_len = ETH_DATA_LEN;
5037 tx_skb = dev_alloc_skb(pkt_len);
5038 if (!tx_skb) {
5039 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
5040 " of %s\n", dev->name);
5041 ret = 0;
5042 goto out;
5043 }
5044 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5045 skb_tailroom(tx_skb),
5046 PCI_DMA_FROMDEVICE);
5047 pkt_data = skb_put(tx_skb, pkt_len);
5048 for (i = 0; i < pkt_len; i++)
5049 pkt_data[i] = (u8)(i & 0xff);
5050
5051 if (!nv_optimized(np)) {
5052 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5053 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5054 } else {
5055 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5056 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5057 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5058 }
5059 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5060 pci_push(get_hwbase(dev));
5061
5062 msleep(500);
5063
5064 /* check for rx of the packet */
5065 if (!nv_optimized(np)) {
5066 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5067 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5068
5069 } else {
5070 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5071 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5072 }
5073
5074 if (flags & NV_RX_AVAIL) {
5075 ret = 0;
5076 } else if (np->desc_ver == DESC_VER_1) {
5077 if (flags & NV_RX_ERROR)
5078 ret = 0;
5079 } else {
5080 if (flags & NV_RX2_ERROR) {
5081 ret = 0;
5082 }
5083 }
5084
5085 if (ret) {
5086 if (len != pkt_len) {
5087 ret = 0;
5088 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5089 dev->name, len, pkt_len);
5090 } else {
5091 rx_skb = np->rx_skb[0].skb;
5092 for (i = 0; i < pkt_len; i++) {
5093 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5094 ret = 0;
5095 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5096 dev->name, i);
5097 break;
5098 }
5099 }
5100 }
5101 } else {
5102 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5103 }
5104
5105 pci_unmap_single(np->pci_dev, test_dma_addr,
5106 (skb_end_pointer(tx_skb) - tx_skb->data),
5107 PCI_DMA_TODEVICE);
5108 dev_kfree_skb_any(tx_skb);
5109 out:
5110 /* stop engines */
5111 nv_stop_rxtx(dev);
5112 nv_txrx_reset(dev);
5113 /* drain rx queue */
5114 nv_drain_rxtx(dev);
5115
5116 if (netif_running(dev)) {
5117 writel(misc1_flags, base + NvRegMisc1);
5118 writel(filter_flags, base + NvRegPacketFilterFlags);
5119 nv_enable_irq(dev);
5120 }
5121
5122 return ret;
5123 }
5124
5125 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5126 {
5127 struct fe_priv *np = netdev_priv(dev);
5128 u8 __iomem *base = get_hwbase(dev);
5129 int result;
5130 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5131
5132 if (!nv_link_test(dev)) {
5133 test->flags |= ETH_TEST_FL_FAILED;
5134 buffer[0] = 1;
5135 }
5136
5137 if (test->flags & ETH_TEST_FL_OFFLINE) {
5138 if (netif_running(dev)) {
5139 netif_stop_queue(dev);
5140 nv_napi_disable(dev);
5141 netif_tx_lock_bh(dev);
5142 netif_addr_lock(dev);
5143 spin_lock_irq(&np->lock);
5144 nv_disable_hw_interrupts(dev, np->irqmask);
5145 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5146 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5147 } else {
5148 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5149 }
5150 /* stop engines */
5151 nv_stop_rxtx(dev);
5152 nv_txrx_reset(dev);
5153 /* drain rx queue */
5154 nv_drain_rxtx(dev);
5155 spin_unlock_irq(&np->lock);
5156 netif_addr_unlock(dev);
5157 netif_tx_unlock_bh(dev);
5158 }
5159
5160 if (!nv_register_test(dev)) {
5161 test->flags |= ETH_TEST_FL_FAILED;
5162 buffer[1] = 1;
5163 }
5164
5165 result = nv_interrupt_test(dev);
5166 if (result != 1) {
5167 test->flags |= ETH_TEST_FL_FAILED;
5168 buffer[2] = 1;
5169 }
5170 if (result == 0) {
5171 /* bail out */
5172 return;
5173 }
5174
5175 if (!nv_loopback_test(dev)) {
5176 test->flags |= ETH_TEST_FL_FAILED;
5177 buffer[3] = 1;
5178 }
5179
5180 if (netif_running(dev)) {
5181 /* reinit driver view of the rx queue */
5182 set_bufsize(dev);
5183 if (nv_init_ring(dev)) {
5184 if (!np->in_shutdown)
5185 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5186 }
5187 /* reinit nic view of the rx queue */
5188 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5189 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5190 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5191 base + NvRegRingSizes);
5192 pci_push(base);
5193 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5194 pci_push(base);
5195 /* restart rx engine */
5196 nv_start_rxtx(dev);
5197 netif_start_queue(dev);
5198 nv_napi_enable(dev);
5199 nv_enable_hw_interrupts(dev, np->irqmask);
5200 }
5201 }
5202 }
5203
5204 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5205 {
5206 switch (stringset) {
5207 case ETH_SS_STATS:
5208 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5209 break;
5210 case ETH_SS_TEST:
5211 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5212 break;
5213 }
5214 }
5215
5216 static const struct ethtool_ops ops = {
5217 .get_drvinfo = nv_get_drvinfo,
5218 .get_link = ethtool_op_get_link,
5219 .get_wol = nv_get_wol,
5220 .set_wol = nv_set_wol,
5221 .get_settings = nv_get_settings,
5222 .set_settings = nv_set_settings,
5223 .get_regs_len = nv_get_regs_len,
5224 .get_regs = nv_get_regs,
5225 .nway_reset = nv_nway_reset,
5226 .set_tso = nv_set_tso,
5227 .get_ringparam = nv_get_ringparam,
5228 .set_ringparam = nv_set_ringparam,
5229 .get_pauseparam = nv_get_pauseparam,
5230 .set_pauseparam = nv_set_pauseparam,
5231 .get_rx_csum = nv_get_rx_csum,
5232 .set_rx_csum = nv_set_rx_csum,
5233 .set_tx_csum = nv_set_tx_csum,
5234 .set_sg = nv_set_sg,
5235 .get_strings = nv_get_strings,
5236 .get_ethtool_stats = nv_get_ethtool_stats,
5237 .get_sset_count = nv_get_sset_count,
5238 .self_test = nv_self_test,
5239 };
5240
5241 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5242 {
5243 struct fe_priv *np = get_nvpriv(dev);
5244
5245 spin_lock_irq(&np->lock);
5246
5247 /* save vlan group */
5248 np->vlangrp = grp;
5249
5250 if (grp) {
5251 /* enable vlan on MAC */
5252 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5253 } else {
5254 /* disable vlan on MAC */
5255 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5256 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5257 }
5258
5259 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5260
5261 spin_unlock_irq(&np->lock);
5262 }
5263
5264 /* The mgmt unit and driver use a semaphore to access the phy during init */
5265 static int nv_mgmt_acquire_sema(struct net_device *dev)
5266 {
5267 struct fe_priv *np = netdev_priv(dev);
5268 u8 __iomem *base = get_hwbase(dev);
5269 int i;
5270 u32 tx_ctrl, mgmt_sema;
5271
5272 for (i = 0; i < 10; i++) {
5273 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5274 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5275 break;
5276 msleep(500);
5277 }
5278
5279 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5280 return 0;
5281
5282 for (i = 0; i < 2; i++) {
5283 tx_ctrl = readl(base + NvRegTransmitterControl);
5284 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5285 writel(tx_ctrl, base + NvRegTransmitterControl);
5286
5287 /* verify that semaphore was acquired */
5288 tx_ctrl = readl(base + NvRegTransmitterControl);
5289 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5290 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5291 np->mgmt_sema = 1;
5292 return 1;
5293 }
5294 else
5295 udelay(50);
5296 }
5297
5298 return 0;
5299 }
5300
5301 static void nv_mgmt_release_sema(struct net_device *dev)
5302 {
5303 struct fe_priv *np = netdev_priv(dev);
5304 u8 __iomem *base = get_hwbase(dev);
5305 u32 tx_ctrl;
5306
5307 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5308 if (np->mgmt_sema) {
5309 tx_ctrl = readl(base + NvRegTransmitterControl);
5310 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5311 writel(tx_ctrl, base + NvRegTransmitterControl);
5312 }
5313 }
5314 }
5315
5316
5317 static int nv_mgmt_get_version(struct net_device *dev)
5318 {
5319 struct fe_priv *np = netdev_priv(dev);
5320 u8 __iomem *base = get_hwbase(dev);
5321 u32 data_ready = readl(base + NvRegTransmitterControl);
5322 u32 data_ready2 = 0;
5323 unsigned long start;
5324 int ready = 0;
5325
5326 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5327 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5328 start = jiffies;
5329 while (time_before(jiffies, start + 5*HZ)) {
5330 data_ready2 = readl(base + NvRegTransmitterControl);
5331 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5332 ready = 1;
5333 break;
5334 }
5335 schedule_timeout_uninterruptible(1);
5336 }
5337
5338 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5339 return 0;
5340
5341 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5342
5343 return 1;
5344 }
5345
5346 static int nv_open(struct net_device *dev)
5347 {
5348 struct fe_priv *np = netdev_priv(dev);
5349 u8 __iomem *base = get_hwbase(dev);
5350 int ret = 1;
5351 int oom, i;
5352 u32 low;
5353
5354 dprintk(KERN_DEBUG "nv_open: begin\n");
5355
5356 /* power up phy */
5357 mii_rw(dev, np->phyaddr, MII_BMCR,
5358 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5359
5360 nv_txrx_gate(dev, false);
5361 /* erase previous misconfiguration */
5362 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5363 nv_mac_reset(dev);
5364 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5365 writel(0, base + NvRegMulticastAddrB);
5366 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5367 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5368 writel(0, base + NvRegPacketFilterFlags);
5369
5370 writel(0, base + NvRegTransmitterControl);
5371 writel(0, base + NvRegReceiverControl);
5372
5373 writel(0, base + NvRegAdapterControl);
5374
5375 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5376 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5377
5378 /* initialize descriptor rings */
5379 set_bufsize(dev);
5380 oom = nv_init_ring(dev);
5381
5382 writel(0, base + NvRegLinkSpeed);
5383 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5384 nv_txrx_reset(dev);
5385 writel(0, base + NvRegUnknownSetupReg6);
5386
5387 np->in_shutdown = 0;
5388
5389 /* give hw rings */
5390 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5391 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5392 base + NvRegRingSizes);
5393
5394 writel(np->linkspeed, base + NvRegLinkSpeed);
5395 if (np->desc_ver == DESC_VER_1)
5396 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5397 else
5398 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5399 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5400 writel(np->vlanctl_bits, base + NvRegVlanControl);
5401 pci_push(base);
5402 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5403 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5404 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5405 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5406
5407 writel(0, base + NvRegMIIMask);
5408 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5409 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5410
5411 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5412 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5413 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5414 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5415
5416 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5417
5418 get_random_bytes(&low, sizeof(low));
5419 low &= NVREG_SLOTTIME_MASK;
5420 if (np->desc_ver == DESC_VER_1) {
5421 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5422 } else {
5423 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5424 /* setup legacy backoff */
5425 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5426 } else {
5427 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5428 nv_gear_backoff_reseed(dev);
5429 }
5430 }
5431 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5432 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5433 if (poll_interval == -1) {
5434 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5435 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5436 else
5437 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5438 }
5439 else
5440 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5441 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5442 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5443 base + NvRegAdapterControl);
5444 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5445 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5446 if (np->wolenabled)
5447 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5448
5449 i = readl(base + NvRegPowerState);
5450 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5451 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5452
5453 pci_push(base);
5454 udelay(10);
5455 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5456
5457 nv_disable_hw_interrupts(dev, np->irqmask);
5458 pci_push(base);
5459 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5460 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5461 pci_push(base);
5462
5463 if (nv_request_irq(dev, 0)) {
5464 goto out_drain;
5465 }
5466
5467 /* ask for interrupts */
5468 nv_enable_hw_interrupts(dev, np->irqmask);
5469
5470 spin_lock_irq(&np->lock);
5471 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5472 writel(0, base + NvRegMulticastAddrB);
5473 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5474 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5475 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5476 /* One manual link speed update: Interrupts are enabled, future link
5477 * speed changes cause interrupts and are handled by nv_link_irq().
5478 */
5479 {
5480 u32 miistat;
5481 miistat = readl(base + NvRegMIIStatus);
5482 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5483 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5484 }
5485 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5486 * to init hw */
5487 np->linkspeed = 0;
5488 ret = nv_update_linkspeed(dev);
5489 nv_start_rxtx(dev);
5490 netif_start_queue(dev);
5491 nv_napi_enable(dev);
5492
5493 if (ret) {
5494 netif_carrier_on(dev);
5495 } else {
5496 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5497 netif_carrier_off(dev);
5498 }
5499 if (oom)
5500 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5501
5502 /* start statistics timer */
5503 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5504 mod_timer(&np->stats_poll,
5505 round_jiffies(jiffies + STATS_INTERVAL));
5506
5507 spin_unlock_irq(&np->lock);
5508
5509 return 0;
5510 out_drain:
5511 nv_drain_rxtx(dev);
5512 return ret;
5513 }
5514
5515 static int nv_close(struct net_device *dev)
5516 {
5517 struct fe_priv *np = netdev_priv(dev);
5518 u8 __iomem *base;
5519
5520 spin_lock_irq(&np->lock);
5521 np->in_shutdown = 1;
5522 spin_unlock_irq(&np->lock);
5523 nv_napi_disable(dev);
5524 synchronize_irq(np->pci_dev->irq);
5525
5526 del_timer_sync(&np->oom_kick);
5527 del_timer_sync(&np->nic_poll);
5528 del_timer_sync(&np->stats_poll);
5529
5530 netif_stop_queue(dev);
5531 spin_lock_irq(&np->lock);
5532 nv_stop_rxtx(dev);
5533 nv_txrx_reset(dev);
5534
5535 /* disable interrupts on the nic or we will lock up */
5536 base = get_hwbase(dev);
5537 nv_disable_hw_interrupts(dev, np->irqmask);
5538 pci_push(base);
5539 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5540
5541 spin_unlock_irq(&np->lock);
5542
5543 nv_free_irq(dev);
5544
5545 nv_drain_rxtx(dev);
5546
5547 if (np->wolenabled || !phy_power_down) {
5548 nv_txrx_gate(dev, false);
5549 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5550 nv_start_rx(dev);
5551 } else {
5552 /* power down phy */
5553 mii_rw(dev, np->phyaddr, MII_BMCR,
5554 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5555 nv_txrx_gate(dev, true);
5556 }
5557
5558 /* FIXME: power down nic */
5559
5560 return 0;
5561 }
5562
5563 static const struct net_device_ops nv_netdev_ops = {
5564 .ndo_open = nv_open,
5565 .ndo_stop = nv_close,
5566 .ndo_get_stats = nv_get_stats,
5567 .ndo_start_xmit = nv_start_xmit,
5568 .ndo_tx_timeout = nv_tx_timeout,
5569 .ndo_change_mtu = nv_change_mtu,
5570 .ndo_validate_addr = eth_validate_addr,
5571 .ndo_set_mac_address = nv_set_mac_address,
5572 .ndo_set_multicast_list = nv_set_multicast,
5573 .ndo_vlan_rx_register = nv_vlan_rx_register,
5574 #ifdef CONFIG_NET_POLL_CONTROLLER
5575 .ndo_poll_controller = nv_poll_controller,
5576 #endif
5577 };
5578
5579 static const struct net_device_ops nv_netdev_ops_optimized = {
5580 .ndo_open = nv_open,
5581 .ndo_stop = nv_close,
5582 .ndo_get_stats = nv_get_stats,
5583 .ndo_start_xmit = nv_start_xmit_optimized,
5584 .ndo_tx_timeout = nv_tx_timeout,
5585 .ndo_change_mtu = nv_change_mtu,
5586 .ndo_validate_addr = eth_validate_addr,
5587 .ndo_set_mac_address = nv_set_mac_address,
5588 .ndo_set_multicast_list = nv_set_multicast,
5589 .ndo_vlan_rx_register = nv_vlan_rx_register,
5590 #ifdef CONFIG_NET_POLL_CONTROLLER
5591 .ndo_poll_controller = nv_poll_controller,
5592 #endif
5593 };
5594
5595 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5596 {
5597 struct net_device *dev;
5598 struct fe_priv *np;
5599 unsigned long addr;
5600 u8 __iomem *base;
5601 int err, i;
5602 u32 powerstate, txreg;
5603 u32 phystate_orig = 0, phystate;
5604 int phyinitialized = 0;
5605 static int printed_version;
5606
5607 if (!printed_version++)
5608 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5609 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5610
5611 dev = alloc_etherdev(sizeof(struct fe_priv));
5612 err = -ENOMEM;
5613 if (!dev)
5614 goto out;
5615
5616 np = netdev_priv(dev);
5617 np->dev = dev;
5618 np->pci_dev = pci_dev;
5619 spin_lock_init(&np->lock);
5620 SET_NETDEV_DEV(dev, &pci_dev->dev);
5621
5622 init_timer(&np->oom_kick);
5623 np->oom_kick.data = (unsigned long) dev;
5624 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5625 init_timer(&np->nic_poll);
5626 np->nic_poll.data = (unsigned long) dev;
5627 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5628 init_timer(&np->stats_poll);
5629 np->stats_poll.data = (unsigned long) dev;
5630 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5631
5632 err = pci_enable_device(pci_dev);
5633 if (err)
5634 goto out_free;
5635
5636 pci_set_master(pci_dev);
5637
5638 err = pci_request_regions(pci_dev, DRV_NAME);
5639 if (err < 0)
5640 goto out_disable;
5641
5642 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5643 np->register_size = NV_PCI_REGSZ_VER3;
5644 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5645 np->register_size = NV_PCI_REGSZ_VER2;
5646 else
5647 np->register_size = NV_PCI_REGSZ_VER1;
5648
5649 err = -EINVAL;
5650 addr = 0;
5651 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5652 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5653 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5654 pci_resource_len(pci_dev, i),
5655 pci_resource_flags(pci_dev, i));
5656 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5657 pci_resource_len(pci_dev, i) >= np->register_size) {
5658 addr = pci_resource_start(pci_dev, i);
5659 break;
5660 }
5661 }
5662 if (i == DEVICE_COUNT_RESOURCE) {
5663 dev_printk(KERN_INFO, &pci_dev->dev,
5664 "Couldn't find register window\n");
5665 goto out_relreg;
5666 }
5667
5668 /* copy of driver data */
5669 np->driver_data = id->driver_data;
5670 /* copy of device id */
5671 np->device_id = id->device;
5672
5673 /* handle different descriptor versions */
5674 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5675 /* packet format 3: supports 40-bit addressing */
5676 np->desc_ver = DESC_VER_3;
5677 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5678 if (dma_64bit) {
5679 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5680 dev_printk(KERN_INFO, &pci_dev->dev,
5681 "64-bit DMA failed, using 32-bit addressing\n");
5682 else
5683 dev->features |= NETIF_F_HIGHDMA;
5684 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5685 dev_printk(KERN_INFO, &pci_dev->dev,
5686 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5687 }
5688 }
5689 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5690 /* packet format 2: supports jumbo frames */
5691 np->desc_ver = DESC_VER_2;
5692 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5693 } else {
5694 /* original packet format */
5695 np->desc_ver = DESC_VER_1;
5696 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5697 }
5698
5699 np->pkt_limit = NV_PKTLIMIT_1;
5700 if (id->driver_data & DEV_HAS_LARGEDESC)
5701 np->pkt_limit = NV_PKTLIMIT_2;
5702
5703 if (id->driver_data & DEV_HAS_CHECKSUM) {
5704 np->rx_csum = 1;
5705 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5706 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5707 dev->features |= NETIF_F_TSO;
5708 }
5709
5710 np->vlanctl_bits = 0;
5711 if (id->driver_data & DEV_HAS_VLAN) {
5712 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5713 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5714 }
5715
5716 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5717 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5718 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5719 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5720 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5721 }
5722
5723
5724 err = -ENOMEM;
5725 np->base = ioremap(addr, np->register_size);
5726 if (!np->base)
5727 goto out_relreg;
5728 dev->base_addr = (unsigned long)np->base;
5729
5730 dev->irq = pci_dev->irq;
5731
5732 np->rx_ring_size = RX_RING_DEFAULT;
5733 np->tx_ring_size = TX_RING_DEFAULT;
5734
5735 if (!nv_optimized(np)) {
5736 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5737 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5738 &np->ring_addr);
5739 if (!np->rx_ring.orig)
5740 goto out_unmap;
5741 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5742 } else {
5743 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5744 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5745 &np->ring_addr);
5746 if (!np->rx_ring.ex)
5747 goto out_unmap;
5748 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5749 }
5750 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5751 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5752 if (!np->rx_skb || !np->tx_skb)
5753 goto out_freering;
5754
5755 if (!nv_optimized(np))
5756 dev->netdev_ops = &nv_netdev_ops;
5757 else
5758 dev->netdev_ops = &nv_netdev_ops_optimized;
5759
5760 #ifdef CONFIG_FORCEDETH_NAPI
5761 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5762 #endif
5763 SET_ETHTOOL_OPS(dev, &ops);
5764 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5765
5766 pci_set_drvdata(pci_dev, dev);
5767
5768 /* read the mac address */
5769 base = get_hwbase(dev);
5770 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5771 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5772
5773 /* check the workaround bit for correct mac address order */
5774 txreg = readl(base + NvRegTransmitPoll);
5775 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5776 /* mac address is already in correct order */
5777 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5778 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5779 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5780 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5781 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5782 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5783 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5784 /* mac address is already in correct order */
5785 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5786 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5787 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5788 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5789 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5790 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5791 /*
5792 * Set orig mac address back to the reversed version.
5793 * This flag will be cleared during low power transition.
5794 * Therefore, we should always put back the reversed address.
5795 */
5796 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5797 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5798 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5799 } else {
5800 /* need to reverse mac address to correct order */
5801 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5802 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5803 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5804 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5805 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5806 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5807 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5808 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5809 }
5810 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5811
5812 if (!is_valid_ether_addr(dev->perm_addr)) {
5813 /*
5814 * Bad mac address. At least one bios sets the mac address
5815 * to 01:23:45:67:89:ab
5816 */
5817 dev_printk(KERN_ERR, &pci_dev->dev,
5818 "Invalid Mac address detected: %pM\n",
5819 dev->dev_addr);
5820 dev_printk(KERN_ERR, &pci_dev->dev,
5821 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5822 dev->dev_addr[0] = 0x00;
5823 dev->dev_addr[1] = 0x00;
5824 dev->dev_addr[2] = 0x6c;
5825 get_random_bytes(&dev->dev_addr[3], 3);
5826 }
5827
5828 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5829 pci_name(pci_dev), dev->dev_addr);
5830
5831 /* set mac address */
5832 nv_copy_mac_to_hw(dev);
5833
5834 /* Workaround current PCI init glitch: wakeup bits aren't
5835 * being set from PCI PM capability.
5836 */
5837 device_init_wakeup(&pci_dev->dev, 1);
5838
5839 /* disable WOL */
5840 writel(0, base + NvRegWakeUpFlags);
5841 np->wolenabled = 0;
5842
5843 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5844
5845 /* take phy and nic out of low power mode */
5846 powerstate = readl(base + NvRegPowerState2);
5847 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5848 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5849 pci_dev->revision >= 0xA3)
5850 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5851 writel(powerstate, base + NvRegPowerState2);
5852 }
5853
5854 if (np->desc_ver == DESC_VER_1) {
5855 np->tx_flags = NV_TX_VALID;
5856 } else {
5857 np->tx_flags = NV_TX2_VALID;
5858 }
5859
5860 np->msi_flags = 0;
5861 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5862 np->msi_flags |= NV_MSI_CAPABLE;
5863 }
5864 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5865 /* msix has had reported issues when modifying irqmask
5866 as in the case of napi, therefore, disable for now
5867 */
5868 #ifndef CONFIG_FORCEDETH_NAPI
5869 np->msi_flags |= NV_MSI_X_CAPABLE;
5870 #endif
5871 }
5872
5873 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5874 np->irqmask = NVREG_IRQMASK_CPU;
5875 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5876 np->msi_flags |= 0x0001;
5877 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5878 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5879 /* start off in throughput mode */
5880 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5881 /* remove support for msix mode */
5882 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5883 } else {
5884 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5885 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5886 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5887 np->msi_flags |= 0x0003;
5888 }
5889
5890 if (id->driver_data & DEV_NEED_TIMERIRQ)
5891 np->irqmask |= NVREG_IRQ_TIMER;
5892 if (id->driver_data & DEV_NEED_LINKTIMER) {
5893 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5894 np->need_linktimer = 1;
5895 np->link_timeout = jiffies + LINK_TIMEOUT;
5896 } else {
5897 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5898 np->need_linktimer = 0;
5899 }
5900
5901 /* Limit the number of tx's outstanding for hw bug */
5902 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5903 np->tx_limit = 1;
5904 if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
5905 pci_dev->revision >= 0xA2)
5906 np->tx_limit = 0;
5907 }
5908
5909 /* clear phy state and temporarily halt phy interrupts */
5910 writel(0, base + NvRegMIIMask);
5911 phystate = readl(base + NvRegAdapterControl);
5912 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5913 phystate_orig = 1;
5914 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5915 writel(phystate, base + NvRegAdapterControl);
5916 }
5917 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5918
5919 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5920 /* management unit running on the mac? */
5921 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5922 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5923 nv_mgmt_acquire_sema(dev) &&
5924 nv_mgmt_get_version(dev)) {
5925 np->mac_in_use = 1;
5926 if (np->mgmt_version > 0) {
5927 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5928 }
5929 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5930 pci_name(pci_dev), np->mac_in_use);
5931 /* management unit setup the phy already? */
5932 if (np->mac_in_use &&
5933 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5934 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5935 /* phy is inited by mgmt unit */
5936 phyinitialized = 1;
5937 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5938 pci_name(pci_dev));
5939 } else {
5940 /* we need to init the phy */
5941 }
5942 }
5943 }
5944
5945 /* find a suitable phy */
5946 for (i = 1; i <= 32; i++) {
5947 int id1, id2;
5948 int phyaddr = i & 0x1F;
5949
5950 spin_lock_irq(&np->lock);
5951 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5952 spin_unlock_irq(&np->lock);
5953 if (id1 < 0 || id1 == 0xffff)
5954 continue;
5955 spin_lock_irq(&np->lock);
5956 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5957 spin_unlock_irq(&np->lock);
5958 if (id2 < 0 || id2 == 0xffff)
5959 continue;
5960
5961 np->phy_model = id2 & PHYID2_MODEL_MASK;
5962 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5963 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5964 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5965 pci_name(pci_dev), id1, id2, phyaddr);
5966 np->phyaddr = phyaddr;
5967 np->phy_oui = id1 | id2;
5968
5969 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5970 if (np->phy_oui == PHY_OUI_REALTEK2)
5971 np->phy_oui = PHY_OUI_REALTEK;
5972 /* Setup phy revision for Realtek */
5973 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5974 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5975
5976 break;
5977 }
5978 if (i == 33) {
5979 dev_printk(KERN_INFO, &pci_dev->dev,
5980 "open: Could not find a valid PHY.\n");
5981 goto out_error;
5982 }
5983
5984 if (!phyinitialized) {
5985 /* reset it */
5986 phy_init(dev);
5987 } else {
5988 /* see if it is a gigabit phy */
5989 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5990 if (mii_status & PHY_GIGABIT) {
5991 np->gigabit = PHY_GIGABIT;
5992 }
5993 }
5994
5995 /* set default link speed settings */
5996 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5997 np->duplex = 0;
5998 np->autoneg = 1;
5999
6000 err = register_netdev(dev);
6001 if (err) {
6002 dev_printk(KERN_INFO, &pci_dev->dev,
6003 "unable to register netdev: %d\n", err);
6004 goto out_error;
6005 }
6006
6007 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
6008 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
6009 dev->name,
6010 np->phy_oui,
6011 np->phyaddr,
6012 dev->dev_addr[0],
6013 dev->dev_addr[1],
6014 dev->dev_addr[2],
6015 dev->dev_addr[3],
6016 dev->dev_addr[4],
6017 dev->dev_addr[5]);
6018
6019 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6020 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6021 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6022 "csum " : "",
6023 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
6024 "vlan " : "",
6025 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6026 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6027 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6028 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6029 np->need_linktimer ? "lnktim " : "",
6030 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6031 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6032 np->desc_ver);
6033
6034 return 0;
6035
6036 out_error:
6037 if (phystate_orig)
6038 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6039 pci_set_drvdata(pci_dev, NULL);
6040 out_freering:
6041 free_rings(dev);
6042 out_unmap:
6043 iounmap(get_hwbase(dev));
6044 out_relreg:
6045 pci_release_regions(pci_dev);
6046 out_disable:
6047 pci_disable_device(pci_dev);
6048 out_free:
6049 free_netdev(dev);
6050 out:
6051 return err;
6052 }
6053
6054 static void nv_restore_phy(struct net_device *dev)
6055 {
6056 struct fe_priv *np = netdev_priv(dev);
6057 u16 phy_reserved, mii_control;
6058
6059 if (np->phy_oui == PHY_OUI_REALTEK &&
6060 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6061 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6062 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6063 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6064 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6065 phy_reserved |= PHY_REALTEK_INIT8;
6066 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6067 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6068
6069 /* restart auto negotiation */
6070 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6071 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6072 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6073 }
6074 }
6075
6076 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6077 {
6078 struct net_device *dev = pci_get_drvdata(pci_dev);
6079 struct fe_priv *np = netdev_priv(dev);
6080 u8 __iomem *base = get_hwbase(dev);
6081
6082 /* special op: write back the misordered MAC address - otherwise
6083 * the next nv_probe would see a wrong address.
6084 */
6085 writel(np->orig_mac[0], base + NvRegMacAddrA);
6086 writel(np->orig_mac[1], base + NvRegMacAddrB);
6087 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6088 base + NvRegTransmitPoll);
6089 }
6090
6091 static void __devexit nv_remove(struct pci_dev *pci_dev)
6092 {
6093 struct net_device *dev = pci_get_drvdata(pci_dev);
6094
6095 unregister_netdev(dev);
6096
6097 nv_restore_mac_addr(pci_dev);
6098
6099 /* restore any phy related changes */
6100 nv_restore_phy(dev);
6101
6102 nv_mgmt_release_sema(dev);
6103
6104 /* free all structures */
6105 free_rings(dev);
6106 iounmap(get_hwbase(dev));
6107 pci_release_regions(pci_dev);
6108 pci_disable_device(pci_dev);
6109 free_netdev(dev);
6110 pci_set_drvdata(pci_dev, NULL);
6111 }
6112
6113 #ifdef CONFIG_PM
6114 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
6115 {
6116 struct net_device *dev = pci_get_drvdata(pdev);
6117 struct fe_priv *np = netdev_priv(dev);
6118 u8 __iomem *base = get_hwbase(dev);
6119 int i;
6120
6121 if (netif_running(dev)) {
6122 // Gross.
6123 nv_close(dev);
6124 }
6125 netif_device_detach(dev);
6126
6127 /* save non-pci configuration space */
6128 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6129 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6130
6131 pci_save_state(pdev);
6132 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
6133 pci_disable_device(pdev);
6134 pci_set_power_state(pdev, pci_choose_state(pdev, state));
6135 return 0;
6136 }
6137
6138 static int nv_resume(struct pci_dev *pdev)
6139 {
6140 struct net_device *dev = pci_get_drvdata(pdev);
6141 struct fe_priv *np = netdev_priv(dev);
6142 u8 __iomem *base = get_hwbase(dev);
6143 int i, rc = 0;
6144
6145 pci_set_power_state(pdev, PCI_D0);
6146 pci_restore_state(pdev);
6147 /* ack any pending wake events, disable PME */
6148 pci_enable_wake(pdev, PCI_D0, 0);
6149
6150 /* restore non-pci configuration space */
6151 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6152 writel(np->saved_config_space[i], base+i*sizeof(u32));
6153
6154 if (np->driver_data & DEV_NEED_MSI_FIX)
6155 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6156
6157 /* restore phy state, including autoneg */
6158 phy_init(dev);
6159
6160 netif_device_attach(dev);
6161 if (netif_running(dev)) {
6162 rc = nv_open(dev);
6163 nv_set_multicast(dev);
6164 }
6165 return rc;
6166 }
6167
6168 static void nv_shutdown(struct pci_dev *pdev)
6169 {
6170 struct net_device *dev = pci_get_drvdata(pdev);
6171 struct fe_priv *np = netdev_priv(dev);
6172
6173 if (netif_running(dev))
6174 nv_close(dev);
6175
6176 /*
6177 * Restore the MAC so a kernel started by kexec won't get confused.
6178 * If we really go for poweroff, we must not restore the MAC,
6179 * otherwise the MAC for WOL will be reversed at least on some boards.
6180 */
6181 if (system_state != SYSTEM_POWER_OFF) {
6182 nv_restore_mac_addr(pdev);
6183 }
6184
6185 pci_disable_device(pdev);
6186 /*
6187 * Apparently it is not possible to reinitialise from D3 hot,
6188 * only put the device into D3 if we really go for poweroff.
6189 */
6190 if (system_state == SYSTEM_POWER_OFF) {
6191 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6192 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6193 pci_set_power_state(pdev, PCI_D3hot);
6194 }
6195 }
6196 #else
6197 #define nv_suspend NULL
6198 #define nv_shutdown NULL
6199 #define nv_resume NULL
6200 #endif /* CONFIG_PM */
6201
6202 static struct pci_device_id pci_tbl[] = {
6203 { /* nForce Ethernet Controller */
6204 PCI_DEVICE(0x10DE, 0x01C3),
6205 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6206 },
6207 { /* nForce2 Ethernet Controller */
6208 PCI_DEVICE(0x10DE, 0x0066),
6209 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6210 },
6211 { /* nForce3 Ethernet Controller */
6212 PCI_DEVICE(0x10DE, 0x00D6),
6213 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6214 },
6215 { /* nForce3 Ethernet Controller */
6216 PCI_DEVICE(0x10DE, 0x0086),
6217 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6218 },
6219 { /* nForce3 Ethernet Controller */
6220 PCI_DEVICE(0x10DE, 0x008C),
6221 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6222 },
6223 { /* nForce3 Ethernet Controller */
6224 PCI_DEVICE(0x10DE, 0x00E6),
6225 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6226 },
6227 { /* nForce3 Ethernet Controller */
6228 PCI_DEVICE(0x10DE, 0x00DF),
6229 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6230 },
6231 { /* CK804 Ethernet Controller */
6232 PCI_DEVICE(0x10DE, 0x0056),
6233 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6234 },
6235 { /* CK804 Ethernet Controller */
6236 PCI_DEVICE(0x10DE, 0x0057),
6237 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6238 },
6239 { /* MCP04 Ethernet Controller */
6240 PCI_DEVICE(0x10DE, 0x0037),
6241 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6242 },
6243 { /* MCP04 Ethernet Controller */
6244 PCI_DEVICE(0x10DE, 0x0038),
6245 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6246 },
6247 { /* MCP51 Ethernet Controller */
6248 PCI_DEVICE(0x10DE, 0x0268),
6249 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6250 },
6251 { /* MCP51 Ethernet Controller */
6252 PCI_DEVICE(0x10DE, 0x0269),
6253 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6254 },
6255 { /* MCP55 Ethernet Controller */
6256 PCI_DEVICE(0x10DE, 0x0372),
6257 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6258 },
6259 { /* MCP55 Ethernet Controller */
6260 PCI_DEVICE(0x10DE, 0x0373),
6261 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6262 },
6263 { /* MCP61 Ethernet Controller */
6264 PCI_DEVICE(0x10DE, 0x03E5),
6265 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6266 },
6267 { /* MCP61 Ethernet Controller */
6268 PCI_DEVICE(0x10DE, 0x03E6),
6269 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6270 },
6271 { /* MCP61 Ethernet Controller */
6272 PCI_DEVICE(0x10DE, 0x03EE),
6273 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6274 },
6275 { /* MCP61 Ethernet Controller */
6276 PCI_DEVICE(0x10DE, 0x03EF),
6277 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6278 },
6279 { /* MCP65 Ethernet Controller */
6280 PCI_DEVICE(0x10DE, 0x0450),
6281 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6282 },
6283 { /* MCP65 Ethernet Controller */
6284 PCI_DEVICE(0x10DE, 0x0451),
6285 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6286 },
6287 { /* MCP65 Ethernet Controller */
6288 PCI_DEVICE(0x10DE, 0x0452),
6289 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6290 },
6291 { /* MCP65 Ethernet Controller */
6292 PCI_DEVICE(0x10DE, 0x0453),
6293 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6294 },
6295 { /* MCP67 Ethernet Controller */
6296 PCI_DEVICE(0x10DE, 0x054C),
6297 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6298 },
6299 { /* MCP67 Ethernet Controller */
6300 PCI_DEVICE(0x10DE, 0x054D),
6301 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6302 },
6303 { /* MCP67 Ethernet Controller */
6304 PCI_DEVICE(0x10DE, 0x054E),
6305 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6306 },
6307 { /* MCP67 Ethernet Controller */
6308 PCI_DEVICE(0x10DE, 0x054F),
6309 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6310 },
6311 { /* MCP73 Ethernet Controller */
6312 PCI_DEVICE(0x10DE, 0x07DC),
6313 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6314 },
6315 { /* MCP73 Ethernet Controller */
6316 PCI_DEVICE(0x10DE, 0x07DD),
6317 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6318 },
6319 { /* MCP73 Ethernet Controller */
6320 PCI_DEVICE(0x10DE, 0x07DE),
6321 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6322 },
6323 { /* MCP73 Ethernet Controller */
6324 PCI_DEVICE(0x10DE, 0x07DF),
6325 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6326 },
6327 { /* MCP77 Ethernet Controller */
6328 PCI_DEVICE(0x10DE, 0x0760),
6329 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6330 },
6331 { /* MCP77 Ethernet Controller */
6332 PCI_DEVICE(0x10DE, 0x0761),
6333 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6334 },
6335 { /* MCP77 Ethernet Controller */
6336 PCI_DEVICE(0x10DE, 0x0762),
6337 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6338 },
6339 { /* MCP77 Ethernet Controller */
6340 PCI_DEVICE(0x10DE, 0x0763),
6341 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6342 },
6343 { /* MCP79 Ethernet Controller */
6344 PCI_DEVICE(0x10DE, 0x0AB0),
6345 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6346 },
6347 { /* MCP79 Ethernet Controller */
6348 PCI_DEVICE(0x10DE, 0x0AB1),
6349 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6350 },
6351 { /* MCP79 Ethernet Controller */
6352 PCI_DEVICE(0x10DE, 0x0AB2),
6353 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6354 },
6355 { /* MCP79 Ethernet Controller */
6356 PCI_DEVICE(0x10DE, 0x0AB3),
6357 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6358 },
6359 { /* MCP89 Ethernet Controller */
6360 PCI_DEVICE(0x10DE, 0x0D7D),
6361 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6362 },
6363 {0,},
6364 };
6365
6366 static struct pci_driver driver = {
6367 .name = DRV_NAME,
6368 .id_table = pci_tbl,
6369 .probe = nv_probe,
6370 .remove = __devexit_p(nv_remove),
6371 .suspend = nv_suspend,
6372 .resume = nv_resume,
6373 .shutdown = nv_shutdown,
6374 };
6375
6376 static int __init init_nic(void)
6377 {
6378 return pci_register_driver(&driver);
6379 }
6380
6381 static void __exit exit_nic(void)
6382 {
6383 pci_unregister_driver(&driver);
6384 }
6385
6386 module_param(max_interrupt_work, int, 0);
6387 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6388 module_param(optimization_mode, int, 0);
6389 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6390 module_param(poll_interval, int, 0);
6391 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6392 module_param(msi, int, 0);
6393 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6394 module_param(msix, int, 0);
6395 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6396 module_param(dma_64bit, int, 0);
6397 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6398 module_param(phy_cross, int, 0);
6399 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6400 module_param(phy_power_down, int, 0);
6401 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6402
6403 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6404 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6405 MODULE_LICENSE("GPL");
6406
6407 MODULE_DEVICE_TABLE(pci, pci_tbl);
6408
6409 module_init(init_nic);
6410 module_exit(exit_nic);