Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/dtor/input
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,5,6 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Changelog:
33 * 0.01: 05 Oct 2003: First release that compiles without warnings.
34 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35 * Check all PCI BARs for the register window.
36 * udelay added to mii_rw.
37 * 0.03: 06 Oct 2003: Initialize dev->irq.
38 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41 * irq mask updated
42 * 0.07: 14 Oct 2003: Further irq mask updates.
43 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44 * added into irq handler, NULL check for drain_ring.
45 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46 * requested interrupt sources.
47 * 0.10: 20 Oct 2003: First cleanup for release.
48 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49 * MAC Address init fix, set_multicast cleanup.
50 * 0.12: 23 Oct 2003: Cleanups for release.
51 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52 * Set link speed correctly. start rx before starting
53 * tx (nv_start_rx sets the link speed).
54 * 0.14: 25 Oct 2003: Nic dependant irq mask.
55 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56 * open.
57 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58 * increased to 1628 bytes.
59 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60 * the tx length.
61 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63 * addresses, really stop rx if already running
64 * in nv_start_rx, clean up a bit.
65 * 0.20: 07 Dec 2003: alloc fixes
66 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68 * on close.
69 * 0.23: 26 Jan 2004: various small cleanups
70 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71 * 0.25: 09 Mar 2004: wol support
72 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74 * added CK804/MCP04 device IDs, code fixes
75 * for registers, link status and other minor fixes.
76 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
78 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79 * into nv_close, otherwise reenabling for wol can
80 * cause DMA to kfree'd memory.
81 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
82 * capabilities.
83 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
84 * 0.33: 16 May 2005: Support for MCP51 added.
85 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86 * 0.35: 26 Jun 2005: Support for MCP55 added.
87 * 0.36: 28 Jun 2005: Add jumbo frame support.
88 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90 * per-packet flags.
91 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
92 * 0.40: 19 Jul 2005: Add support for mac address change.
93 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94 * of nv_remove
95 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
96 * in the second (and later) nv_open call
97 * 0.43: 10 Aug 2005: Add support for tx checksum.
98 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100 * 0.46: 20 Oct 2005: Add irq optimization modes.
101 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103 * 0.49: 10 Dec 2005: Fix tso for large buffers.
104 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
105 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
107 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109 * 0.55: 22 Mar 2006: Add flow control (pause frame).
110 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111 * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112 * 0.58: 30 Oct 2006: Added support for sideband management unit.
113 * 0.59: 30 Oct 2006: Added support for recoverable error.
114 * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
115 *
116 * Known bugs:
117 * We suspect that on some hardware no TX done interrupts are generated.
118 * This means recovery from netif_stop_queue only happens if the hw timer
119 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
120 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
121 * If your hardware reliably generates tx done interrupts, then you can remove
122 * DEV_NEED_TIMERIRQ from the driver_data flags.
123 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
124 * superfluous timer interrupts from the nic.
125 */
126 #ifdef CONFIG_FORCEDETH_NAPI
127 #define DRIVERNAPI "-NAPI"
128 #else
129 #define DRIVERNAPI
130 #endif
131 #define FORCEDETH_VERSION "0.60"
132 #define DRV_NAME "forcedeth"
133
134 #include <linux/module.h>
135 #include <linux/types.h>
136 #include <linux/pci.h>
137 #include <linux/interrupt.h>
138 #include <linux/netdevice.h>
139 #include <linux/etherdevice.h>
140 #include <linux/delay.h>
141 #include <linux/spinlock.h>
142 #include <linux/ethtool.h>
143 #include <linux/timer.h>
144 #include <linux/skbuff.h>
145 #include <linux/mii.h>
146 #include <linux/random.h>
147 #include <linux/init.h>
148 #include <linux/if_vlan.h>
149 #include <linux/dma-mapping.h>
150
151 #include <asm/irq.h>
152 #include <asm/io.h>
153 #include <asm/uaccess.h>
154 #include <asm/system.h>
155
156 #if 0
157 #define dprintk printk
158 #else
159 #define dprintk(x...) do { } while (0)
160 #endif
161
162
163 /*
164 * Hardware access:
165 */
166
167 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
168 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
169 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
170 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
171 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
172 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
173 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
174 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
175 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
176 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
177 #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
178 #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
179 #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
180 #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
181
182 enum {
183 NvRegIrqStatus = 0x000,
184 #define NVREG_IRQSTAT_MIIEVENT 0x040
185 #define NVREG_IRQSTAT_MASK 0x81ff
186 NvRegIrqMask = 0x004,
187 #define NVREG_IRQ_RX_ERROR 0x0001
188 #define NVREG_IRQ_RX 0x0002
189 #define NVREG_IRQ_RX_NOBUF 0x0004
190 #define NVREG_IRQ_TX_ERR 0x0008
191 #define NVREG_IRQ_TX_OK 0x0010
192 #define NVREG_IRQ_TIMER 0x0020
193 #define NVREG_IRQ_LINK 0x0040
194 #define NVREG_IRQ_RX_FORCED 0x0080
195 #define NVREG_IRQ_TX_FORCED 0x0100
196 #define NVREG_IRQ_RECOVER_ERROR 0x8000
197 #define NVREG_IRQMASK_THROUGHPUT 0x00df
198 #define NVREG_IRQMASK_CPU 0x0040
199 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
200 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
201 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
202
203 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
204 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
205 NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
206
207 NvRegUnknownSetupReg6 = 0x008,
208 #define NVREG_UNKSETUP6_VAL 3
209
210 /*
211 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
212 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
213 */
214 NvRegPollingInterval = 0x00c,
215 #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
216 #define NVREG_POLL_DEFAULT_CPU 13
217 NvRegMSIMap0 = 0x020,
218 NvRegMSIMap1 = 0x024,
219 NvRegMSIIrqMask = 0x030,
220 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
221 NvRegMisc1 = 0x080,
222 #define NVREG_MISC1_PAUSE_TX 0x01
223 #define NVREG_MISC1_HD 0x02
224 #define NVREG_MISC1_FORCE 0x3b0f3c
225
226 NvRegMacReset = 0x3c,
227 #define NVREG_MAC_RESET_ASSERT 0x0F3
228 NvRegTransmitterControl = 0x084,
229 #define NVREG_XMITCTL_START 0x01
230 #define NVREG_XMITCTL_MGMT_ST 0x40000000
231 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
232 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
233 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
234 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
235 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
236 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
237 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
238 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
239 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
240 NvRegTransmitterStatus = 0x088,
241 #define NVREG_XMITSTAT_BUSY 0x01
242
243 NvRegPacketFilterFlags = 0x8c,
244 #define NVREG_PFF_PAUSE_RX 0x08
245 #define NVREG_PFF_ALWAYS 0x7F0000
246 #define NVREG_PFF_PROMISC 0x80
247 #define NVREG_PFF_MYADDR 0x20
248 #define NVREG_PFF_LOOPBACK 0x10
249
250 NvRegOffloadConfig = 0x90,
251 #define NVREG_OFFLOAD_HOMEPHY 0x601
252 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
253 NvRegReceiverControl = 0x094,
254 #define NVREG_RCVCTL_START 0x01
255 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
256 NvRegReceiverStatus = 0x98,
257 #define NVREG_RCVSTAT_BUSY 0x01
258
259 NvRegRandomSeed = 0x9c,
260 #define NVREG_RNDSEED_MASK 0x00ff
261 #define NVREG_RNDSEED_FORCE 0x7f00
262 #define NVREG_RNDSEED_FORCE2 0x2d00
263 #define NVREG_RNDSEED_FORCE3 0x7400
264
265 NvRegTxDeferral = 0xA0,
266 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
267 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
268 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
269 NvRegRxDeferral = 0xA4,
270 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
271 NvRegMacAddrA = 0xA8,
272 NvRegMacAddrB = 0xAC,
273 NvRegMulticastAddrA = 0xB0,
274 #define NVREG_MCASTADDRA_FORCE 0x01
275 NvRegMulticastAddrB = 0xB4,
276 NvRegMulticastMaskA = 0xB8,
277 NvRegMulticastMaskB = 0xBC,
278
279 NvRegPhyInterface = 0xC0,
280 #define PHY_RGMII 0x10000000
281
282 NvRegTxRingPhysAddr = 0x100,
283 NvRegRxRingPhysAddr = 0x104,
284 NvRegRingSizes = 0x108,
285 #define NVREG_RINGSZ_TXSHIFT 0
286 #define NVREG_RINGSZ_RXSHIFT 16
287 NvRegTransmitPoll = 0x10c,
288 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
289 NvRegLinkSpeed = 0x110,
290 #define NVREG_LINKSPEED_FORCE 0x10000
291 #define NVREG_LINKSPEED_10 1000
292 #define NVREG_LINKSPEED_100 100
293 #define NVREG_LINKSPEED_1000 50
294 #define NVREG_LINKSPEED_MASK (0xFFF)
295 NvRegUnknownSetupReg5 = 0x130,
296 #define NVREG_UNKSETUP5_BIT31 (1<<31)
297 NvRegTxWatermark = 0x13c,
298 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
299 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
300 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
301 NvRegTxRxControl = 0x144,
302 #define NVREG_TXRXCTL_KICK 0x0001
303 #define NVREG_TXRXCTL_BIT1 0x0002
304 #define NVREG_TXRXCTL_BIT2 0x0004
305 #define NVREG_TXRXCTL_IDLE 0x0008
306 #define NVREG_TXRXCTL_RESET 0x0010
307 #define NVREG_TXRXCTL_RXCHECK 0x0400
308 #define NVREG_TXRXCTL_DESC_1 0
309 #define NVREG_TXRXCTL_DESC_2 0x002100
310 #define NVREG_TXRXCTL_DESC_3 0xc02200
311 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
312 #define NVREG_TXRXCTL_VLANINS 0x00080
313 NvRegTxRingPhysAddrHigh = 0x148,
314 NvRegRxRingPhysAddrHigh = 0x14C,
315 NvRegTxPauseFrame = 0x170,
316 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
317 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
318 NvRegMIIStatus = 0x180,
319 #define NVREG_MIISTAT_ERROR 0x0001
320 #define NVREG_MIISTAT_LINKCHANGE 0x0008
321 #define NVREG_MIISTAT_MASK 0x000f
322 #define NVREG_MIISTAT_MASK2 0x000f
323 NvRegMIIMask = 0x184,
324 #define NVREG_MII_LINKCHANGE 0x0008
325
326 NvRegAdapterControl = 0x188,
327 #define NVREG_ADAPTCTL_START 0x02
328 #define NVREG_ADAPTCTL_LINKUP 0x04
329 #define NVREG_ADAPTCTL_PHYVALID 0x40000
330 #define NVREG_ADAPTCTL_RUNNING 0x100000
331 #define NVREG_ADAPTCTL_PHYSHIFT 24
332 NvRegMIISpeed = 0x18c,
333 #define NVREG_MIISPEED_BIT8 (1<<8)
334 #define NVREG_MIIDELAY 5
335 NvRegMIIControl = 0x190,
336 #define NVREG_MIICTL_INUSE 0x08000
337 #define NVREG_MIICTL_WRITE 0x00400
338 #define NVREG_MIICTL_ADDRSHIFT 5
339 NvRegMIIData = 0x194,
340 NvRegWakeUpFlags = 0x200,
341 #define NVREG_WAKEUPFLAGS_VAL 0x7770
342 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
343 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
344 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
345 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
346 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
347 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
348 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
349 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
350 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
351 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
352
353 NvRegPatternCRC = 0x204,
354 NvRegPatternMask = 0x208,
355 NvRegPowerCap = 0x268,
356 #define NVREG_POWERCAP_D3SUPP (1<<30)
357 #define NVREG_POWERCAP_D2SUPP (1<<26)
358 #define NVREG_POWERCAP_D1SUPP (1<<25)
359 NvRegPowerState = 0x26c,
360 #define NVREG_POWERSTATE_POWEREDUP 0x8000
361 #define NVREG_POWERSTATE_VALID 0x0100
362 #define NVREG_POWERSTATE_MASK 0x0003
363 #define NVREG_POWERSTATE_D0 0x0000
364 #define NVREG_POWERSTATE_D1 0x0001
365 #define NVREG_POWERSTATE_D2 0x0002
366 #define NVREG_POWERSTATE_D3 0x0003
367 NvRegTxCnt = 0x280,
368 NvRegTxZeroReXmt = 0x284,
369 NvRegTxOneReXmt = 0x288,
370 NvRegTxManyReXmt = 0x28c,
371 NvRegTxLateCol = 0x290,
372 NvRegTxUnderflow = 0x294,
373 NvRegTxLossCarrier = 0x298,
374 NvRegTxExcessDef = 0x29c,
375 NvRegTxRetryErr = 0x2a0,
376 NvRegRxFrameErr = 0x2a4,
377 NvRegRxExtraByte = 0x2a8,
378 NvRegRxLateCol = 0x2ac,
379 NvRegRxRunt = 0x2b0,
380 NvRegRxFrameTooLong = 0x2b4,
381 NvRegRxOverflow = 0x2b8,
382 NvRegRxFCSErr = 0x2bc,
383 NvRegRxFrameAlignErr = 0x2c0,
384 NvRegRxLenErr = 0x2c4,
385 NvRegRxUnicast = 0x2c8,
386 NvRegRxMulticast = 0x2cc,
387 NvRegRxBroadcast = 0x2d0,
388 NvRegTxDef = 0x2d4,
389 NvRegTxFrame = 0x2d8,
390 NvRegRxCnt = 0x2dc,
391 NvRegTxPause = 0x2e0,
392 NvRegRxPause = 0x2e4,
393 NvRegRxDropFrame = 0x2e8,
394 NvRegVlanControl = 0x300,
395 #define NVREG_VLANCONTROL_ENABLE 0x2000
396 NvRegMSIXMap0 = 0x3e0,
397 NvRegMSIXMap1 = 0x3e4,
398 NvRegMSIXIrqStatus = 0x3f0,
399
400 NvRegPowerState2 = 0x600,
401 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
402 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
403 };
404
405 /* Big endian: should work, but is untested */
406 struct ring_desc {
407 __le32 buf;
408 __le32 flaglen;
409 };
410
411 struct ring_desc_ex {
412 __le32 bufhigh;
413 __le32 buflow;
414 __le32 txvlan;
415 __le32 flaglen;
416 };
417
418 union ring_type {
419 struct ring_desc* orig;
420 struct ring_desc_ex* ex;
421 };
422
423 #define FLAG_MASK_V1 0xffff0000
424 #define FLAG_MASK_V2 0xffffc000
425 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
426 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
427
428 #define NV_TX_LASTPACKET (1<<16)
429 #define NV_TX_RETRYERROR (1<<19)
430 #define NV_TX_FORCED_INTERRUPT (1<<24)
431 #define NV_TX_DEFERRED (1<<26)
432 #define NV_TX_CARRIERLOST (1<<27)
433 #define NV_TX_LATECOLLISION (1<<28)
434 #define NV_TX_UNDERFLOW (1<<29)
435 #define NV_TX_ERROR (1<<30)
436 #define NV_TX_VALID (1<<31)
437
438 #define NV_TX2_LASTPACKET (1<<29)
439 #define NV_TX2_RETRYERROR (1<<18)
440 #define NV_TX2_FORCED_INTERRUPT (1<<30)
441 #define NV_TX2_DEFERRED (1<<25)
442 #define NV_TX2_CARRIERLOST (1<<26)
443 #define NV_TX2_LATECOLLISION (1<<27)
444 #define NV_TX2_UNDERFLOW (1<<28)
445 /* error and valid are the same for both */
446 #define NV_TX2_ERROR (1<<30)
447 #define NV_TX2_VALID (1<<31)
448 #define NV_TX2_TSO (1<<28)
449 #define NV_TX2_TSO_SHIFT 14
450 #define NV_TX2_TSO_MAX_SHIFT 14
451 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
452 #define NV_TX2_CHECKSUM_L3 (1<<27)
453 #define NV_TX2_CHECKSUM_L4 (1<<26)
454
455 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
456
457 #define NV_RX_DESCRIPTORVALID (1<<16)
458 #define NV_RX_MISSEDFRAME (1<<17)
459 #define NV_RX_SUBSTRACT1 (1<<18)
460 #define NV_RX_ERROR1 (1<<23)
461 #define NV_RX_ERROR2 (1<<24)
462 #define NV_RX_ERROR3 (1<<25)
463 #define NV_RX_ERROR4 (1<<26)
464 #define NV_RX_CRCERR (1<<27)
465 #define NV_RX_OVERFLOW (1<<28)
466 #define NV_RX_FRAMINGERR (1<<29)
467 #define NV_RX_ERROR (1<<30)
468 #define NV_RX_AVAIL (1<<31)
469
470 #define NV_RX2_CHECKSUMMASK (0x1C000000)
471 #define NV_RX2_CHECKSUMOK1 (0x10000000)
472 #define NV_RX2_CHECKSUMOK2 (0x14000000)
473 #define NV_RX2_CHECKSUMOK3 (0x18000000)
474 #define NV_RX2_DESCRIPTORVALID (1<<29)
475 #define NV_RX2_SUBSTRACT1 (1<<25)
476 #define NV_RX2_ERROR1 (1<<18)
477 #define NV_RX2_ERROR2 (1<<19)
478 #define NV_RX2_ERROR3 (1<<20)
479 #define NV_RX2_ERROR4 (1<<21)
480 #define NV_RX2_CRCERR (1<<22)
481 #define NV_RX2_OVERFLOW (1<<23)
482 #define NV_RX2_FRAMINGERR (1<<24)
483 /* error and avail are the same for both */
484 #define NV_RX2_ERROR (1<<30)
485 #define NV_RX2_AVAIL (1<<31)
486
487 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
488 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
489
490 /* Miscelaneous hardware related defines: */
491 #define NV_PCI_REGSZ_VER1 0x270
492 #define NV_PCI_REGSZ_VER2 0x2d4
493 #define NV_PCI_REGSZ_VER3 0x604
494
495 /* various timeout delays: all in usec */
496 #define NV_TXRX_RESET_DELAY 4
497 #define NV_TXSTOP_DELAY1 10
498 #define NV_TXSTOP_DELAY1MAX 500000
499 #define NV_TXSTOP_DELAY2 100
500 #define NV_RXSTOP_DELAY1 10
501 #define NV_RXSTOP_DELAY1MAX 500000
502 #define NV_RXSTOP_DELAY2 100
503 #define NV_SETUP5_DELAY 5
504 #define NV_SETUP5_DELAYMAX 50000
505 #define NV_POWERUP_DELAY 5
506 #define NV_POWERUP_DELAYMAX 5000
507 #define NV_MIIBUSY_DELAY 50
508 #define NV_MIIPHY_DELAY 10
509 #define NV_MIIPHY_DELAYMAX 10000
510 #define NV_MAC_RESET_DELAY 64
511
512 #define NV_WAKEUPPATTERNS 5
513 #define NV_WAKEUPMASKENTRIES 4
514
515 /* General driver defaults */
516 #define NV_WATCHDOG_TIMEO (5*HZ)
517
518 #define RX_RING_DEFAULT 128
519 #define TX_RING_DEFAULT 256
520 #define RX_RING_MIN 128
521 #define TX_RING_MIN 64
522 #define RING_MAX_DESC_VER_1 1024
523 #define RING_MAX_DESC_VER_2_3 16384
524
525 /* rx/tx mac addr + type + vlan + align + slack*/
526 #define NV_RX_HEADERS (64)
527 /* even more slack. */
528 #define NV_RX_ALLOC_PAD (64)
529
530 /* maximum mtu size */
531 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
532 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
533
534 #define OOM_REFILL (1+HZ/20)
535 #define POLL_WAIT (1+HZ/100)
536 #define LINK_TIMEOUT (3*HZ)
537 #define STATS_INTERVAL (10*HZ)
538
539 /*
540 * desc_ver values:
541 * The nic supports three different descriptor types:
542 * - DESC_VER_1: Original
543 * - DESC_VER_2: support for jumbo frames.
544 * - DESC_VER_3: 64-bit format.
545 */
546 #define DESC_VER_1 1
547 #define DESC_VER_2 2
548 #define DESC_VER_3 3
549
550 /* PHY defines */
551 #define PHY_OUI_MARVELL 0x5043
552 #define PHY_OUI_CICADA 0x03f1
553 #define PHYID1_OUI_MASK 0x03ff
554 #define PHYID1_OUI_SHFT 6
555 #define PHYID2_OUI_MASK 0xfc00
556 #define PHYID2_OUI_SHFT 10
557 #define PHYID2_MODEL_MASK 0x03f0
558 #define PHY_MODEL_MARVELL_E3016 0x220
559 #define PHY_MARVELL_E3016_INITMASK 0x0300
560 #define PHY_INIT1 0x0f000
561 #define PHY_INIT2 0x0e00
562 #define PHY_INIT3 0x01000
563 #define PHY_INIT4 0x0200
564 #define PHY_INIT5 0x0004
565 #define PHY_INIT6 0x02000
566 #define PHY_GIGABIT 0x0100
567
568 #define PHY_TIMEOUT 0x1
569 #define PHY_ERROR 0x2
570
571 #define PHY_100 0x1
572 #define PHY_1000 0x2
573 #define PHY_HALF 0x100
574
575 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
576 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
577 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
578 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
579 #define NV_PAUSEFRAME_RX_REQ 0x0010
580 #define NV_PAUSEFRAME_TX_REQ 0x0020
581 #define NV_PAUSEFRAME_AUTONEG 0x0040
582
583 /* MSI/MSI-X defines */
584 #define NV_MSI_X_MAX_VECTORS 8
585 #define NV_MSI_X_VECTORS_MASK 0x000f
586 #define NV_MSI_CAPABLE 0x0010
587 #define NV_MSI_X_CAPABLE 0x0020
588 #define NV_MSI_ENABLED 0x0040
589 #define NV_MSI_X_ENABLED 0x0080
590
591 #define NV_MSI_X_VECTOR_ALL 0x0
592 #define NV_MSI_X_VECTOR_RX 0x0
593 #define NV_MSI_X_VECTOR_TX 0x1
594 #define NV_MSI_X_VECTOR_OTHER 0x2
595
596 /* statistics */
597 struct nv_ethtool_str {
598 char name[ETH_GSTRING_LEN];
599 };
600
601 static const struct nv_ethtool_str nv_estats_str[] = {
602 { "tx_bytes" },
603 { "tx_zero_rexmt" },
604 { "tx_one_rexmt" },
605 { "tx_many_rexmt" },
606 { "tx_late_collision" },
607 { "tx_fifo_errors" },
608 { "tx_carrier_errors" },
609 { "tx_excess_deferral" },
610 { "tx_retry_error" },
611 { "rx_frame_error" },
612 { "rx_extra_byte" },
613 { "rx_late_collision" },
614 { "rx_runt" },
615 { "rx_frame_too_long" },
616 { "rx_over_errors" },
617 { "rx_crc_errors" },
618 { "rx_frame_align_error" },
619 { "rx_length_error" },
620 { "rx_unicast" },
621 { "rx_multicast" },
622 { "rx_broadcast" },
623 { "rx_packets" },
624 { "rx_errors_total" },
625 { "tx_errors_total" },
626
627 /* version 2 stats */
628 { "tx_deferral" },
629 { "tx_packets" },
630 { "rx_bytes" },
631 { "tx_pause" },
632 { "rx_pause" },
633 { "rx_drop_frame" }
634 };
635
636 struct nv_ethtool_stats {
637 u64 tx_bytes;
638 u64 tx_zero_rexmt;
639 u64 tx_one_rexmt;
640 u64 tx_many_rexmt;
641 u64 tx_late_collision;
642 u64 tx_fifo_errors;
643 u64 tx_carrier_errors;
644 u64 tx_excess_deferral;
645 u64 tx_retry_error;
646 u64 rx_frame_error;
647 u64 rx_extra_byte;
648 u64 rx_late_collision;
649 u64 rx_runt;
650 u64 rx_frame_too_long;
651 u64 rx_over_errors;
652 u64 rx_crc_errors;
653 u64 rx_frame_align_error;
654 u64 rx_length_error;
655 u64 rx_unicast;
656 u64 rx_multicast;
657 u64 rx_broadcast;
658 u64 rx_packets;
659 u64 rx_errors_total;
660 u64 tx_errors_total;
661
662 /* version 2 stats */
663 u64 tx_deferral;
664 u64 tx_packets;
665 u64 rx_bytes;
666 u64 tx_pause;
667 u64 rx_pause;
668 u64 rx_drop_frame;
669 };
670
671 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
672 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
673
674 /* diagnostics */
675 #define NV_TEST_COUNT_BASE 3
676 #define NV_TEST_COUNT_EXTENDED 4
677
678 static const struct nv_ethtool_str nv_etests_str[] = {
679 { "link (online/offline)" },
680 { "register (offline) " },
681 { "interrupt (offline) " },
682 { "loopback (offline) " }
683 };
684
685 struct register_test {
686 __le32 reg;
687 __le32 mask;
688 };
689
690 static const struct register_test nv_registers_test[] = {
691 { NvRegUnknownSetupReg6, 0x01 },
692 { NvRegMisc1, 0x03c },
693 { NvRegOffloadConfig, 0x03ff },
694 { NvRegMulticastAddrA, 0xffffffff },
695 { NvRegTxWatermark, 0x0ff },
696 { NvRegWakeUpFlags, 0x07777 },
697 { 0,0 }
698 };
699
700 struct nv_skb_map {
701 struct sk_buff *skb;
702 dma_addr_t dma;
703 unsigned int dma_len;
704 };
705
706 /*
707 * SMP locking:
708 * All hardware access under dev->priv->lock, except the performance
709 * critical parts:
710 * - rx is (pseudo-) lockless: it relies on the single-threading provided
711 * by the arch code for interrupts.
712 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
713 * needs dev->priv->lock :-(
714 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
715 */
716
717 /* in dev: base, irq */
718 struct fe_priv {
719 spinlock_t lock;
720
721 /* General data:
722 * Locking: spin_lock(&np->lock); */
723 struct net_device_stats stats;
724 struct nv_ethtool_stats estats;
725 int in_shutdown;
726 u32 linkspeed;
727 int duplex;
728 int autoneg;
729 int fixed_mode;
730 int phyaddr;
731 int wolenabled;
732 unsigned int phy_oui;
733 unsigned int phy_model;
734 u16 gigabit;
735 int intr_test;
736 int recover_error;
737
738 /* General data: RO fields */
739 dma_addr_t ring_addr;
740 struct pci_dev *pci_dev;
741 u32 orig_mac[2];
742 u32 irqmask;
743 u32 desc_ver;
744 u32 txrxctl_bits;
745 u32 vlanctl_bits;
746 u32 driver_data;
747 u32 register_size;
748 int rx_csum;
749 u32 mac_in_use;
750
751 void __iomem *base;
752
753 /* rx specific fields.
754 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
755 */
756 union ring_type get_rx, put_rx, first_rx, last_rx;
757 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
758 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
759 struct nv_skb_map *rx_skb;
760
761 union ring_type rx_ring;
762 unsigned int rx_buf_sz;
763 unsigned int pkt_limit;
764 struct timer_list oom_kick;
765 struct timer_list nic_poll;
766 struct timer_list stats_poll;
767 u32 nic_poll_irq;
768 int rx_ring_size;
769
770 /* media detection workaround.
771 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
772 */
773 int need_linktimer;
774 unsigned long link_timeout;
775 /*
776 * tx specific fields.
777 */
778 union ring_type get_tx, put_tx, first_tx, last_tx;
779 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
780 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
781 struct nv_skb_map *tx_skb;
782
783 union ring_type tx_ring;
784 u32 tx_flags;
785 int tx_ring_size;
786 int tx_stop;
787
788 /* vlan fields */
789 struct vlan_group *vlangrp;
790
791 /* msi/msi-x fields */
792 u32 msi_flags;
793 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
794
795 /* flow control */
796 u32 pause_flags;
797 };
798
799 /*
800 * Maximum number of loops until we assume that a bit in the irq mask
801 * is stuck. Overridable with module param.
802 */
803 static int max_interrupt_work = 5;
804
805 /*
806 * Optimization can be either throuput mode or cpu mode
807 *
808 * Throughput Mode: Every tx and rx packet will generate an interrupt.
809 * CPU Mode: Interrupts are controlled by a timer.
810 */
811 enum {
812 NV_OPTIMIZATION_MODE_THROUGHPUT,
813 NV_OPTIMIZATION_MODE_CPU
814 };
815 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
816
817 /*
818 * Poll interval for timer irq
819 *
820 * This interval determines how frequent an interrupt is generated.
821 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
822 * Min = 0, and Max = 65535
823 */
824 static int poll_interval = -1;
825
826 /*
827 * MSI interrupts
828 */
829 enum {
830 NV_MSI_INT_DISABLED,
831 NV_MSI_INT_ENABLED
832 };
833 static int msi = NV_MSI_INT_ENABLED;
834
835 /*
836 * MSIX interrupts
837 */
838 enum {
839 NV_MSIX_INT_DISABLED,
840 NV_MSIX_INT_ENABLED
841 };
842 static int msix = NV_MSIX_INT_DISABLED;
843
844 /*
845 * DMA 64bit
846 */
847 enum {
848 NV_DMA_64BIT_DISABLED,
849 NV_DMA_64BIT_ENABLED
850 };
851 static int dma_64bit = NV_DMA_64BIT_ENABLED;
852
853 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
854 {
855 return netdev_priv(dev);
856 }
857
858 static inline u8 __iomem *get_hwbase(struct net_device *dev)
859 {
860 return ((struct fe_priv *)netdev_priv(dev))->base;
861 }
862
863 static inline void pci_push(u8 __iomem *base)
864 {
865 /* force out pending posted writes */
866 readl(base);
867 }
868
869 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
870 {
871 return le32_to_cpu(prd->flaglen)
872 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
873 }
874
875 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
876 {
877 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
878 }
879
880 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
881 int delay, int delaymax, const char *msg)
882 {
883 u8 __iomem *base = get_hwbase(dev);
884
885 pci_push(base);
886 do {
887 udelay(delay);
888 delaymax -= delay;
889 if (delaymax < 0) {
890 if (msg)
891 printk(msg);
892 return 1;
893 }
894 } while ((readl(base + offset) & mask) != target);
895 return 0;
896 }
897
898 #define NV_SETUP_RX_RING 0x01
899 #define NV_SETUP_TX_RING 0x02
900
901 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
902 {
903 struct fe_priv *np = get_nvpriv(dev);
904 u8 __iomem *base = get_hwbase(dev);
905
906 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
907 if (rxtx_flags & NV_SETUP_RX_RING) {
908 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
909 }
910 if (rxtx_flags & NV_SETUP_TX_RING) {
911 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
912 }
913 } else {
914 if (rxtx_flags & NV_SETUP_RX_RING) {
915 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
916 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
917 }
918 if (rxtx_flags & NV_SETUP_TX_RING) {
919 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
920 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
921 }
922 }
923 }
924
925 static void free_rings(struct net_device *dev)
926 {
927 struct fe_priv *np = get_nvpriv(dev);
928
929 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
930 if (np->rx_ring.orig)
931 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
932 np->rx_ring.orig, np->ring_addr);
933 } else {
934 if (np->rx_ring.ex)
935 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
936 np->rx_ring.ex, np->ring_addr);
937 }
938 if (np->rx_skb)
939 kfree(np->rx_skb);
940 if (np->tx_skb)
941 kfree(np->tx_skb);
942 }
943
944 static int using_multi_irqs(struct net_device *dev)
945 {
946 struct fe_priv *np = get_nvpriv(dev);
947
948 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
949 ((np->msi_flags & NV_MSI_X_ENABLED) &&
950 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
951 return 0;
952 else
953 return 1;
954 }
955
956 static void nv_enable_irq(struct net_device *dev)
957 {
958 struct fe_priv *np = get_nvpriv(dev);
959
960 if (!using_multi_irqs(dev)) {
961 if (np->msi_flags & NV_MSI_X_ENABLED)
962 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
963 else
964 enable_irq(dev->irq);
965 } else {
966 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
967 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
968 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
969 }
970 }
971
972 static void nv_disable_irq(struct net_device *dev)
973 {
974 struct fe_priv *np = get_nvpriv(dev);
975
976 if (!using_multi_irqs(dev)) {
977 if (np->msi_flags & NV_MSI_X_ENABLED)
978 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
979 else
980 disable_irq(dev->irq);
981 } else {
982 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
983 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
984 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
985 }
986 }
987
988 /* In MSIX mode, a write to irqmask behaves as XOR */
989 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
990 {
991 u8 __iomem *base = get_hwbase(dev);
992
993 writel(mask, base + NvRegIrqMask);
994 }
995
996 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
997 {
998 struct fe_priv *np = get_nvpriv(dev);
999 u8 __iomem *base = get_hwbase(dev);
1000
1001 if (np->msi_flags & NV_MSI_X_ENABLED) {
1002 writel(mask, base + NvRegIrqMask);
1003 } else {
1004 if (np->msi_flags & NV_MSI_ENABLED)
1005 writel(0, base + NvRegMSIIrqMask);
1006 writel(0, base + NvRegIrqMask);
1007 }
1008 }
1009
1010 #define MII_READ (-1)
1011 /* mii_rw: read/write a register on the PHY.
1012 *
1013 * Caller must guarantee serialization
1014 */
1015 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1016 {
1017 u8 __iomem *base = get_hwbase(dev);
1018 u32 reg;
1019 int retval;
1020
1021 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1022
1023 reg = readl(base + NvRegMIIControl);
1024 if (reg & NVREG_MIICTL_INUSE) {
1025 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1026 udelay(NV_MIIBUSY_DELAY);
1027 }
1028
1029 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1030 if (value != MII_READ) {
1031 writel(value, base + NvRegMIIData);
1032 reg |= NVREG_MIICTL_WRITE;
1033 }
1034 writel(reg, base + NvRegMIIControl);
1035
1036 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1037 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1038 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1039 dev->name, miireg, addr);
1040 retval = -1;
1041 } else if (value != MII_READ) {
1042 /* it was a write operation - fewer failures are detectable */
1043 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1044 dev->name, value, miireg, addr);
1045 retval = 0;
1046 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1047 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1048 dev->name, miireg, addr);
1049 retval = -1;
1050 } else {
1051 retval = readl(base + NvRegMIIData);
1052 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1053 dev->name, miireg, addr, retval);
1054 }
1055
1056 return retval;
1057 }
1058
1059 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1060 {
1061 struct fe_priv *np = netdev_priv(dev);
1062 u32 miicontrol;
1063 unsigned int tries = 0;
1064
1065 miicontrol = BMCR_RESET | bmcr_setup;
1066 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1067 return -1;
1068 }
1069
1070 /* wait for 500ms */
1071 msleep(500);
1072
1073 /* must wait till reset is deasserted */
1074 while (miicontrol & BMCR_RESET) {
1075 msleep(10);
1076 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1077 /* FIXME: 100 tries seem excessive */
1078 if (tries++ > 100)
1079 return -1;
1080 }
1081 return 0;
1082 }
1083
1084 static int phy_init(struct net_device *dev)
1085 {
1086 struct fe_priv *np = get_nvpriv(dev);
1087 u8 __iomem *base = get_hwbase(dev);
1088 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1089
1090 /* phy errata for E3016 phy */
1091 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1092 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1093 reg &= ~PHY_MARVELL_E3016_INITMASK;
1094 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1095 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1096 return PHY_ERROR;
1097 }
1098 }
1099
1100 /* set advertise register */
1101 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1102 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1103 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1104 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1105 return PHY_ERROR;
1106 }
1107
1108 /* get phy interface type */
1109 phyinterface = readl(base + NvRegPhyInterface);
1110
1111 /* see if gigabit phy */
1112 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1113 if (mii_status & PHY_GIGABIT) {
1114 np->gigabit = PHY_GIGABIT;
1115 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1116 mii_control_1000 &= ~ADVERTISE_1000HALF;
1117 if (phyinterface & PHY_RGMII)
1118 mii_control_1000 |= ADVERTISE_1000FULL;
1119 else
1120 mii_control_1000 &= ~ADVERTISE_1000FULL;
1121
1122 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1123 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1124 return PHY_ERROR;
1125 }
1126 }
1127 else
1128 np->gigabit = 0;
1129
1130 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1131 mii_control |= BMCR_ANENABLE;
1132
1133 /* reset the phy
1134 * (certain phys need bmcr to be setup with reset)
1135 */
1136 if (phy_reset(dev, mii_control)) {
1137 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1138 return PHY_ERROR;
1139 }
1140
1141 /* phy vendor specific configuration */
1142 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1143 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1144 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1145 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1146 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1147 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1148 return PHY_ERROR;
1149 }
1150 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1151 phy_reserved |= PHY_INIT5;
1152 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1153 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1154 return PHY_ERROR;
1155 }
1156 }
1157 if (np->phy_oui == PHY_OUI_CICADA) {
1158 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1159 phy_reserved |= PHY_INIT6;
1160 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1161 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1162 return PHY_ERROR;
1163 }
1164 }
1165 /* some phys clear out pause advertisment on reset, set it back */
1166 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1167
1168 /* restart auto negotiation */
1169 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1170 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1171 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1172 return PHY_ERROR;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static void nv_start_rx(struct net_device *dev)
1179 {
1180 struct fe_priv *np = netdev_priv(dev);
1181 u8 __iomem *base = get_hwbase(dev);
1182 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1183
1184 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1185 /* Already running? Stop it. */
1186 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1187 rx_ctrl &= ~NVREG_RCVCTL_START;
1188 writel(rx_ctrl, base + NvRegReceiverControl);
1189 pci_push(base);
1190 }
1191 writel(np->linkspeed, base + NvRegLinkSpeed);
1192 pci_push(base);
1193 rx_ctrl |= NVREG_RCVCTL_START;
1194 if (np->mac_in_use)
1195 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1196 writel(rx_ctrl, base + NvRegReceiverControl);
1197 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1198 dev->name, np->duplex, np->linkspeed);
1199 pci_push(base);
1200 }
1201
1202 static void nv_stop_rx(struct net_device *dev)
1203 {
1204 struct fe_priv *np = netdev_priv(dev);
1205 u8 __iomem *base = get_hwbase(dev);
1206 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1207
1208 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1209 if (!np->mac_in_use)
1210 rx_ctrl &= ~NVREG_RCVCTL_START;
1211 else
1212 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1213 writel(rx_ctrl, base + NvRegReceiverControl);
1214 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1215 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1216 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1217
1218 udelay(NV_RXSTOP_DELAY2);
1219 if (!np->mac_in_use)
1220 writel(0, base + NvRegLinkSpeed);
1221 }
1222
1223 static void nv_start_tx(struct net_device *dev)
1224 {
1225 struct fe_priv *np = netdev_priv(dev);
1226 u8 __iomem *base = get_hwbase(dev);
1227 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1228
1229 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1230 tx_ctrl |= NVREG_XMITCTL_START;
1231 if (np->mac_in_use)
1232 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1233 writel(tx_ctrl, base + NvRegTransmitterControl);
1234 pci_push(base);
1235 }
1236
1237 static void nv_stop_tx(struct net_device *dev)
1238 {
1239 struct fe_priv *np = netdev_priv(dev);
1240 u8 __iomem *base = get_hwbase(dev);
1241 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1242
1243 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1244 if (!np->mac_in_use)
1245 tx_ctrl &= ~NVREG_XMITCTL_START;
1246 else
1247 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1248 writel(tx_ctrl, base + NvRegTransmitterControl);
1249 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1250 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1251 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1252
1253 udelay(NV_TXSTOP_DELAY2);
1254 if (!np->mac_in_use)
1255 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1256 base + NvRegTransmitPoll);
1257 }
1258
1259 static void nv_txrx_reset(struct net_device *dev)
1260 {
1261 struct fe_priv *np = netdev_priv(dev);
1262 u8 __iomem *base = get_hwbase(dev);
1263
1264 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1265 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1266 pci_push(base);
1267 udelay(NV_TXRX_RESET_DELAY);
1268 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1269 pci_push(base);
1270 }
1271
1272 static void nv_mac_reset(struct net_device *dev)
1273 {
1274 struct fe_priv *np = netdev_priv(dev);
1275 u8 __iomem *base = get_hwbase(dev);
1276
1277 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1278 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1279 pci_push(base);
1280 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1281 pci_push(base);
1282 udelay(NV_MAC_RESET_DELAY);
1283 writel(0, base + NvRegMacReset);
1284 pci_push(base);
1285 udelay(NV_MAC_RESET_DELAY);
1286 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1287 pci_push(base);
1288 }
1289
1290 static void nv_get_hw_stats(struct net_device *dev)
1291 {
1292 struct fe_priv *np = netdev_priv(dev);
1293 u8 __iomem *base = get_hwbase(dev);
1294
1295 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1296 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1297 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1298 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1299 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1300 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1301 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1302 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1303 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1304 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1305 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1306 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1307 np->estats.rx_runt += readl(base + NvRegRxRunt);
1308 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1309 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1310 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1311 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1312 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1313 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1314 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1315 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1316 np->estats.rx_packets =
1317 np->estats.rx_unicast +
1318 np->estats.rx_multicast +
1319 np->estats.rx_broadcast;
1320 np->estats.rx_errors_total =
1321 np->estats.rx_crc_errors +
1322 np->estats.rx_over_errors +
1323 np->estats.rx_frame_error +
1324 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1325 np->estats.rx_late_collision +
1326 np->estats.rx_runt +
1327 np->estats.rx_frame_too_long;
1328 np->estats.tx_errors_total =
1329 np->estats.tx_late_collision +
1330 np->estats.tx_fifo_errors +
1331 np->estats.tx_carrier_errors +
1332 np->estats.tx_excess_deferral +
1333 np->estats.tx_retry_error;
1334
1335 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1336 np->estats.tx_deferral += readl(base + NvRegTxDef);
1337 np->estats.tx_packets += readl(base + NvRegTxFrame);
1338 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1339 np->estats.tx_pause += readl(base + NvRegTxPause);
1340 np->estats.rx_pause += readl(base + NvRegRxPause);
1341 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1342 }
1343 }
1344
1345 /*
1346 * nv_get_stats: dev->get_stats function
1347 * Get latest stats value from the nic.
1348 * Called with read_lock(&dev_base_lock) held for read -
1349 * only synchronized against unregister_netdevice.
1350 */
1351 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1352 {
1353 struct fe_priv *np = netdev_priv(dev);
1354
1355 /* If the nic supports hw counters then retrieve latest values */
1356 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1357 nv_get_hw_stats(dev);
1358
1359 /* copy to net_device stats */
1360 np->stats.tx_bytes = np->estats.tx_bytes;
1361 np->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1362 np->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1363 np->stats.rx_crc_errors = np->estats.rx_crc_errors;
1364 np->stats.rx_over_errors = np->estats.rx_over_errors;
1365 np->stats.rx_errors = np->estats.rx_errors_total;
1366 np->stats.tx_errors = np->estats.tx_errors_total;
1367 }
1368 return &np->stats;
1369 }
1370
1371 /*
1372 * nv_alloc_rx: fill rx ring entries.
1373 * Return 1 if the allocations for the skbs failed and the
1374 * rx engine is without Available descriptors
1375 */
1376 static int nv_alloc_rx(struct net_device *dev)
1377 {
1378 struct fe_priv *np = netdev_priv(dev);
1379 struct ring_desc* less_rx;
1380
1381 less_rx = np->get_rx.orig;
1382 if (less_rx-- == np->first_rx.orig)
1383 less_rx = np->last_rx.orig;
1384
1385 while (np->put_rx.orig != less_rx) {
1386 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1387 if (skb) {
1388 skb->dev = dev;
1389 np->put_rx_ctx->skb = skb;
1390 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data,
1391 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1392 np->put_rx_ctx->dma_len = skb->end-skb->data;
1393 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1394 wmb();
1395 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1396 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1397 np->put_rx.orig = np->first_rx.orig;
1398 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1399 np->put_rx_ctx = np->first_rx_ctx;
1400 } else {
1401 return 1;
1402 }
1403 }
1404 return 0;
1405 }
1406
1407 static int nv_alloc_rx_optimized(struct net_device *dev)
1408 {
1409 struct fe_priv *np = netdev_priv(dev);
1410 struct ring_desc_ex* less_rx;
1411
1412 less_rx = np->get_rx.ex;
1413 if (less_rx-- == np->first_rx.ex)
1414 less_rx = np->last_rx.ex;
1415
1416 while (np->put_rx.ex != less_rx) {
1417 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1418 if (skb) {
1419 skb->dev = dev;
1420 np->put_rx_ctx->skb = skb;
1421 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data,
1422 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1423 np->put_rx_ctx->dma_len = skb->end-skb->data;
1424 np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
1425 np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
1426 wmb();
1427 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1428 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1429 np->put_rx.ex = np->first_rx.ex;
1430 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1431 np->put_rx_ctx = np->first_rx_ctx;
1432 } else {
1433 return 1;
1434 }
1435 }
1436 return 0;
1437 }
1438
1439 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1440 #ifdef CONFIG_FORCEDETH_NAPI
1441 static void nv_do_rx_refill(unsigned long data)
1442 {
1443 struct net_device *dev = (struct net_device *) data;
1444
1445 /* Just reschedule NAPI rx processing */
1446 netif_rx_schedule(dev);
1447 }
1448 #else
1449 static void nv_do_rx_refill(unsigned long data)
1450 {
1451 struct net_device *dev = (struct net_device *) data;
1452 struct fe_priv *np = netdev_priv(dev);
1453 int retcode;
1454
1455 if (!using_multi_irqs(dev)) {
1456 if (np->msi_flags & NV_MSI_X_ENABLED)
1457 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1458 else
1459 disable_irq(dev->irq);
1460 } else {
1461 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1462 }
1463 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1464 retcode = nv_alloc_rx(dev);
1465 else
1466 retcode = nv_alloc_rx_optimized(dev);
1467 if (retcode) {
1468 spin_lock_irq(&np->lock);
1469 if (!np->in_shutdown)
1470 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1471 spin_unlock_irq(&np->lock);
1472 }
1473 if (!using_multi_irqs(dev)) {
1474 if (np->msi_flags & NV_MSI_X_ENABLED)
1475 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1476 else
1477 enable_irq(dev->irq);
1478 } else {
1479 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1480 }
1481 }
1482 #endif
1483
1484 static void nv_init_rx(struct net_device *dev)
1485 {
1486 struct fe_priv *np = netdev_priv(dev);
1487 int i;
1488 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1489 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1490 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1491 else
1492 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1493 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1494 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1495
1496 for (i = 0; i < np->rx_ring_size; i++) {
1497 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1498 np->rx_ring.orig[i].flaglen = 0;
1499 np->rx_ring.orig[i].buf = 0;
1500 } else {
1501 np->rx_ring.ex[i].flaglen = 0;
1502 np->rx_ring.ex[i].txvlan = 0;
1503 np->rx_ring.ex[i].bufhigh = 0;
1504 np->rx_ring.ex[i].buflow = 0;
1505 }
1506 np->rx_skb[i].skb = NULL;
1507 np->rx_skb[i].dma = 0;
1508 }
1509 }
1510
1511 static void nv_init_tx(struct net_device *dev)
1512 {
1513 struct fe_priv *np = netdev_priv(dev);
1514 int i;
1515 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1516 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1517 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1518 else
1519 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1520 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1521 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1522
1523 for (i = 0; i < np->tx_ring_size; i++) {
1524 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1525 np->tx_ring.orig[i].flaglen = 0;
1526 np->tx_ring.orig[i].buf = 0;
1527 } else {
1528 np->tx_ring.ex[i].flaglen = 0;
1529 np->tx_ring.ex[i].txvlan = 0;
1530 np->tx_ring.ex[i].bufhigh = 0;
1531 np->tx_ring.ex[i].buflow = 0;
1532 }
1533 np->tx_skb[i].skb = NULL;
1534 np->tx_skb[i].dma = 0;
1535 }
1536 }
1537
1538 static int nv_init_ring(struct net_device *dev)
1539 {
1540 struct fe_priv *np = netdev_priv(dev);
1541
1542 nv_init_tx(dev);
1543 nv_init_rx(dev);
1544 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1545 return nv_alloc_rx(dev);
1546 else
1547 return nv_alloc_rx_optimized(dev);
1548 }
1549
1550 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1551 {
1552 struct fe_priv *np = netdev_priv(dev);
1553
1554 if (tx_skb->dma) {
1555 pci_unmap_page(np->pci_dev, tx_skb->dma,
1556 tx_skb->dma_len,
1557 PCI_DMA_TODEVICE);
1558 tx_skb->dma = 0;
1559 }
1560 if (tx_skb->skb) {
1561 dev_kfree_skb_any(tx_skb->skb);
1562 tx_skb->skb = NULL;
1563 return 1;
1564 } else {
1565 return 0;
1566 }
1567 }
1568
1569 static void nv_drain_tx(struct net_device *dev)
1570 {
1571 struct fe_priv *np = netdev_priv(dev);
1572 unsigned int i;
1573
1574 for (i = 0; i < np->tx_ring_size; i++) {
1575 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1576 np->tx_ring.orig[i].flaglen = 0;
1577 np->tx_ring.orig[i].buf = 0;
1578 } else {
1579 np->tx_ring.ex[i].flaglen = 0;
1580 np->tx_ring.ex[i].txvlan = 0;
1581 np->tx_ring.ex[i].bufhigh = 0;
1582 np->tx_ring.ex[i].buflow = 0;
1583 }
1584 if (nv_release_txskb(dev, &np->tx_skb[i]))
1585 np->stats.tx_dropped++;
1586 }
1587 }
1588
1589 static void nv_drain_rx(struct net_device *dev)
1590 {
1591 struct fe_priv *np = netdev_priv(dev);
1592 int i;
1593
1594 for (i = 0; i < np->rx_ring_size; i++) {
1595 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1596 np->rx_ring.orig[i].flaglen = 0;
1597 np->rx_ring.orig[i].buf = 0;
1598 } else {
1599 np->rx_ring.ex[i].flaglen = 0;
1600 np->rx_ring.ex[i].txvlan = 0;
1601 np->rx_ring.ex[i].bufhigh = 0;
1602 np->rx_ring.ex[i].buflow = 0;
1603 }
1604 wmb();
1605 if (np->rx_skb[i].skb) {
1606 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1607 np->rx_skb[i].skb->end-np->rx_skb[i].skb->data,
1608 PCI_DMA_FROMDEVICE);
1609 dev_kfree_skb(np->rx_skb[i].skb);
1610 np->rx_skb[i].skb = NULL;
1611 }
1612 }
1613 }
1614
1615 static void drain_ring(struct net_device *dev)
1616 {
1617 nv_drain_tx(dev);
1618 nv_drain_rx(dev);
1619 }
1620
1621 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1622 {
1623 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1624 }
1625
1626 /*
1627 * nv_start_xmit: dev->hard_start_xmit function
1628 * Called with netif_tx_lock held.
1629 */
1630 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1631 {
1632 struct fe_priv *np = netdev_priv(dev);
1633 u32 tx_flags = 0;
1634 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1635 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1636 unsigned int i;
1637 u32 offset = 0;
1638 u32 bcnt;
1639 u32 size = skb->len-skb->data_len;
1640 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1641 u32 empty_slots;
1642 struct ring_desc* put_tx;
1643 struct ring_desc* start_tx;
1644 struct ring_desc* prev_tx;
1645 struct nv_skb_map* prev_tx_ctx;
1646
1647 /* add fragments to entries count */
1648 for (i = 0; i < fragments; i++) {
1649 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1650 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1651 }
1652
1653 empty_slots = nv_get_empty_tx_slots(np);
1654 if (unlikely(empty_slots <= entries)) {
1655 spin_lock_irq(&np->lock);
1656 netif_stop_queue(dev);
1657 np->tx_stop = 1;
1658 spin_unlock_irq(&np->lock);
1659 return NETDEV_TX_BUSY;
1660 }
1661
1662 start_tx = put_tx = np->put_tx.orig;
1663
1664 /* setup the header buffer */
1665 do {
1666 prev_tx = put_tx;
1667 prev_tx_ctx = np->put_tx_ctx;
1668 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1669 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1670 PCI_DMA_TODEVICE);
1671 np->put_tx_ctx->dma_len = bcnt;
1672 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1673 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1674
1675 tx_flags = np->tx_flags;
1676 offset += bcnt;
1677 size -= bcnt;
1678 if (unlikely(put_tx++ == np->last_tx.orig))
1679 put_tx = np->first_tx.orig;
1680 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1681 np->put_tx_ctx = np->first_tx_ctx;
1682 } while (size);
1683
1684 /* setup the fragments */
1685 for (i = 0; i < fragments; i++) {
1686 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1687 u32 size = frag->size;
1688 offset = 0;
1689
1690 do {
1691 prev_tx = put_tx;
1692 prev_tx_ctx = np->put_tx_ctx;
1693 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1694 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1695 PCI_DMA_TODEVICE);
1696 np->put_tx_ctx->dma_len = bcnt;
1697 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1698 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1699
1700 offset += bcnt;
1701 size -= bcnt;
1702 if (unlikely(put_tx++ == np->last_tx.orig))
1703 put_tx = np->first_tx.orig;
1704 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1705 np->put_tx_ctx = np->first_tx_ctx;
1706 } while (size);
1707 }
1708
1709 /* set last fragment flag */
1710 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1711
1712 /* save skb in this slot's context area */
1713 prev_tx_ctx->skb = skb;
1714
1715 if (skb_is_gso(skb))
1716 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1717 else
1718 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1719 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1720
1721 spin_lock_irq(&np->lock);
1722
1723 /* set tx flags */
1724 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1725 np->put_tx.orig = put_tx;
1726
1727 spin_unlock_irq(&np->lock);
1728
1729 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1730 dev->name, entries, tx_flags_extra);
1731 {
1732 int j;
1733 for (j=0; j<64; j++) {
1734 if ((j%16) == 0)
1735 dprintk("\n%03x:", j);
1736 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1737 }
1738 dprintk("\n");
1739 }
1740
1741 dev->trans_start = jiffies;
1742 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1743 return NETDEV_TX_OK;
1744 }
1745
1746 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 struct fe_priv *np = netdev_priv(dev);
1749 u32 tx_flags = 0;
1750 u32 tx_flags_extra;
1751 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1752 unsigned int i;
1753 u32 offset = 0;
1754 u32 bcnt;
1755 u32 size = skb->len-skb->data_len;
1756 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1757 u32 empty_slots;
1758 struct ring_desc_ex* put_tx;
1759 struct ring_desc_ex* start_tx;
1760 struct ring_desc_ex* prev_tx;
1761 struct nv_skb_map* prev_tx_ctx;
1762
1763 /* add fragments to entries count */
1764 for (i = 0; i < fragments; i++) {
1765 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1766 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1767 }
1768
1769 empty_slots = nv_get_empty_tx_slots(np);
1770 if (unlikely(empty_slots <= entries)) {
1771 spin_lock_irq(&np->lock);
1772 netif_stop_queue(dev);
1773 np->tx_stop = 1;
1774 spin_unlock_irq(&np->lock);
1775 return NETDEV_TX_BUSY;
1776 }
1777
1778 start_tx = put_tx = np->put_tx.ex;
1779
1780 /* setup the header buffer */
1781 do {
1782 prev_tx = put_tx;
1783 prev_tx_ctx = np->put_tx_ctx;
1784 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1785 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1786 PCI_DMA_TODEVICE);
1787 np->put_tx_ctx->dma_len = bcnt;
1788 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1789 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1790 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1791
1792 tx_flags = NV_TX2_VALID;
1793 offset += bcnt;
1794 size -= bcnt;
1795 if (unlikely(put_tx++ == np->last_tx.ex))
1796 put_tx = np->first_tx.ex;
1797 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1798 np->put_tx_ctx = np->first_tx_ctx;
1799 } while (size);
1800
1801 /* setup the fragments */
1802 for (i = 0; i < fragments; i++) {
1803 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1804 u32 size = frag->size;
1805 offset = 0;
1806
1807 do {
1808 prev_tx = put_tx;
1809 prev_tx_ctx = np->put_tx_ctx;
1810 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1811 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1812 PCI_DMA_TODEVICE);
1813 np->put_tx_ctx->dma_len = bcnt;
1814 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1815 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1816 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1817
1818 offset += bcnt;
1819 size -= bcnt;
1820 if (unlikely(put_tx++ == np->last_tx.ex))
1821 put_tx = np->first_tx.ex;
1822 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1823 np->put_tx_ctx = np->first_tx_ctx;
1824 } while (size);
1825 }
1826
1827 /* set last fragment flag */
1828 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
1829
1830 /* save skb in this slot's context area */
1831 prev_tx_ctx->skb = skb;
1832
1833 if (skb_is_gso(skb))
1834 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1835 else
1836 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1837 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1838
1839 /* vlan tag */
1840 if (likely(!np->vlangrp)) {
1841 start_tx->txvlan = 0;
1842 } else {
1843 if (vlan_tx_tag_present(skb))
1844 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
1845 else
1846 start_tx->txvlan = 0;
1847 }
1848
1849 spin_lock_irq(&np->lock);
1850
1851 /* set tx flags */
1852 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1853 np->put_tx.ex = put_tx;
1854
1855 spin_unlock_irq(&np->lock);
1856
1857 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
1858 dev->name, entries, tx_flags_extra);
1859 {
1860 int j;
1861 for (j=0; j<64; j++) {
1862 if ((j%16) == 0)
1863 dprintk("\n%03x:", j);
1864 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1865 }
1866 dprintk("\n");
1867 }
1868
1869 dev->trans_start = jiffies;
1870 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1871 return NETDEV_TX_OK;
1872 }
1873
1874 /*
1875 * nv_tx_done: check for completed packets, release the skbs.
1876 *
1877 * Caller must own np->lock.
1878 */
1879 static void nv_tx_done(struct net_device *dev)
1880 {
1881 struct fe_priv *np = netdev_priv(dev);
1882 u32 flags;
1883 struct ring_desc* orig_get_tx = np->get_tx.orig;
1884
1885 while ((np->get_tx.orig != np->put_tx.orig) &&
1886 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
1887
1888 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
1889 dev->name, flags);
1890
1891 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
1892 np->get_tx_ctx->dma_len,
1893 PCI_DMA_TODEVICE);
1894 np->get_tx_ctx->dma = 0;
1895
1896 if (np->desc_ver == DESC_VER_1) {
1897 if (flags & NV_TX_LASTPACKET) {
1898 if (flags & NV_TX_ERROR) {
1899 if (flags & NV_TX_UNDERFLOW)
1900 np->stats.tx_fifo_errors++;
1901 if (flags & NV_TX_CARRIERLOST)
1902 np->stats.tx_carrier_errors++;
1903 np->stats.tx_errors++;
1904 } else {
1905 np->stats.tx_packets++;
1906 np->stats.tx_bytes += np->get_tx_ctx->skb->len;
1907 }
1908 dev_kfree_skb_any(np->get_tx_ctx->skb);
1909 np->get_tx_ctx->skb = NULL;
1910 }
1911 } else {
1912 if (flags & NV_TX2_LASTPACKET) {
1913 if (flags & NV_TX2_ERROR) {
1914 if (flags & NV_TX2_UNDERFLOW)
1915 np->stats.tx_fifo_errors++;
1916 if (flags & NV_TX2_CARRIERLOST)
1917 np->stats.tx_carrier_errors++;
1918 np->stats.tx_errors++;
1919 } else {
1920 np->stats.tx_packets++;
1921 np->stats.tx_bytes += np->get_tx_ctx->skb->len;
1922 }
1923 dev_kfree_skb_any(np->get_tx_ctx->skb);
1924 np->get_tx_ctx->skb = NULL;
1925 }
1926 }
1927 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
1928 np->get_tx.orig = np->first_tx.orig;
1929 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
1930 np->get_tx_ctx = np->first_tx_ctx;
1931 }
1932 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
1933 np->tx_stop = 0;
1934 netif_wake_queue(dev);
1935 }
1936 }
1937
1938 static void nv_tx_done_optimized(struct net_device *dev, int limit)
1939 {
1940 struct fe_priv *np = netdev_priv(dev);
1941 u32 flags;
1942 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
1943
1944 while ((np->get_tx.ex != np->put_tx.ex) &&
1945 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
1946 (limit-- > 0)) {
1947
1948 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
1949 dev->name, flags);
1950
1951 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
1952 np->get_tx_ctx->dma_len,
1953 PCI_DMA_TODEVICE);
1954 np->get_tx_ctx->dma = 0;
1955
1956 if (flags & NV_TX2_LASTPACKET) {
1957 if (!(flags & NV_TX2_ERROR))
1958 np->stats.tx_packets++;
1959 dev_kfree_skb_any(np->get_tx_ctx->skb);
1960 np->get_tx_ctx->skb = NULL;
1961 }
1962 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
1963 np->get_tx.ex = np->first_tx.ex;
1964 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
1965 np->get_tx_ctx = np->first_tx_ctx;
1966 }
1967 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
1968 np->tx_stop = 0;
1969 netif_wake_queue(dev);
1970 }
1971 }
1972
1973 /*
1974 * nv_tx_timeout: dev->tx_timeout function
1975 * Called with netif_tx_lock held.
1976 */
1977 static void nv_tx_timeout(struct net_device *dev)
1978 {
1979 struct fe_priv *np = netdev_priv(dev);
1980 u8 __iomem *base = get_hwbase(dev);
1981 u32 status;
1982
1983 if (np->msi_flags & NV_MSI_X_ENABLED)
1984 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1985 else
1986 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1987
1988 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1989
1990 {
1991 int i;
1992
1993 printk(KERN_INFO "%s: Ring at %lx\n",
1994 dev->name, (unsigned long)np->ring_addr);
1995 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1996 for (i=0;i<=np->register_size;i+= 32) {
1997 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1998 i,
1999 readl(base + i + 0), readl(base + i + 4),
2000 readl(base + i + 8), readl(base + i + 12),
2001 readl(base + i + 16), readl(base + i + 20),
2002 readl(base + i + 24), readl(base + i + 28));
2003 }
2004 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2005 for (i=0;i<np->tx_ring_size;i+= 4) {
2006 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2007 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2008 i,
2009 le32_to_cpu(np->tx_ring.orig[i].buf),
2010 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2011 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2012 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2013 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2014 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2015 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2016 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2017 } else {
2018 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2019 i,
2020 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2021 le32_to_cpu(np->tx_ring.ex[i].buflow),
2022 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2023 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2024 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2025 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2026 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2027 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2028 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2029 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2030 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2031 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2032 }
2033 }
2034 }
2035
2036 spin_lock_irq(&np->lock);
2037
2038 /* 1) stop tx engine */
2039 nv_stop_tx(dev);
2040
2041 /* 2) check that the packets were not sent already: */
2042 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2043 nv_tx_done(dev);
2044 else
2045 nv_tx_done_optimized(dev, np->tx_ring_size);
2046
2047 /* 3) if there are dead entries: clear everything */
2048 if (np->get_tx_ctx != np->put_tx_ctx) {
2049 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2050 nv_drain_tx(dev);
2051 nv_init_tx(dev);
2052 setup_hw_rings(dev, NV_SETUP_TX_RING);
2053 netif_wake_queue(dev);
2054 }
2055
2056 /* 4) restart tx engine */
2057 nv_start_tx(dev);
2058 spin_unlock_irq(&np->lock);
2059 }
2060
2061 /*
2062 * Called when the nic notices a mismatch between the actual data len on the
2063 * wire and the len indicated in the 802 header
2064 */
2065 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2066 {
2067 int hdrlen; /* length of the 802 header */
2068 int protolen; /* length as stored in the proto field */
2069
2070 /* 1) calculate len according to header */
2071 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2072 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2073 hdrlen = VLAN_HLEN;
2074 } else {
2075 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2076 hdrlen = ETH_HLEN;
2077 }
2078 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2079 dev->name, datalen, protolen, hdrlen);
2080 if (protolen > ETH_DATA_LEN)
2081 return datalen; /* Value in proto field not a len, no checks possible */
2082
2083 protolen += hdrlen;
2084 /* consistency checks: */
2085 if (datalen > ETH_ZLEN) {
2086 if (datalen >= protolen) {
2087 /* more data on wire than in 802 header, trim of
2088 * additional data.
2089 */
2090 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2091 dev->name, protolen);
2092 return protolen;
2093 } else {
2094 /* less data on wire than mentioned in header.
2095 * Discard the packet.
2096 */
2097 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2098 dev->name);
2099 return -1;
2100 }
2101 } else {
2102 /* short packet. Accept only if 802 values are also short */
2103 if (protolen > ETH_ZLEN) {
2104 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2105 dev->name);
2106 return -1;
2107 }
2108 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2109 dev->name, datalen);
2110 return datalen;
2111 }
2112 }
2113
2114 static int nv_rx_process(struct net_device *dev, int limit)
2115 {
2116 struct fe_priv *np = netdev_priv(dev);
2117 u32 flags;
2118 u32 rx_processed_cnt = 0;
2119 struct sk_buff *skb;
2120 int len;
2121
2122 while((np->get_rx.orig != np->put_rx.orig) &&
2123 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2124 (rx_processed_cnt++ < limit)) {
2125
2126 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2127 dev->name, flags);
2128
2129 /*
2130 * the packet is for us - immediately tear down the pci mapping.
2131 * TODO: check if a prefetch of the first cacheline improves
2132 * the performance.
2133 */
2134 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2135 np->get_rx_ctx->dma_len,
2136 PCI_DMA_FROMDEVICE);
2137 skb = np->get_rx_ctx->skb;
2138 np->get_rx_ctx->skb = NULL;
2139
2140 {
2141 int j;
2142 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2143 for (j=0; j<64; j++) {
2144 if ((j%16) == 0)
2145 dprintk("\n%03x:", j);
2146 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2147 }
2148 dprintk("\n");
2149 }
2150 /* look at what we actually got: */
2151 if (np->desc_ver == DESC_VER_1) {
2152 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2153 len = flags & LEN_MASK_V1;
2154 if (unlikely(flags & NV_RX_ERROR)) {
2155 if (flags & NV_RX_ERROR4) {
2156 len = nv_getlen(dev, skb->data, len);
2157 if (len < 0) {
2158 np->stats.rx_errors++;
2159 dev_kfree_skb(skb);
2160 goto next_pkt;
2161 }
2162 }
2163 /* framing errors are soft errors */
2164 else if (flags & NV_RX_FRAMINGERR) {
2165 if (flags & NV_RX_SUBSTRACT1) {
2166 len--;
2167 }
2168 }
2169 /* the rest are hard errors */
2170 else {
2171 if (flags & NV_RX_MISSEDFRAME)
2172 np->stats.rx_missed_errors++;
2173 if (flags & NV_RX_CRCERR)
2174 np->stats.rx_crc_errors++;
2175 if (flags & NV_RX_OVERFLOW)
2176 np->stats.rx_over_errors++;
2177 np->stats.rx_errors++;
2178 dev_kfree_skb(skb);
2179 goto next_pkt;
2180 }
2181 }
2182 } else {
2183 dev_kfree_skb(skb);
2184 goto next_pkt;
2185 }
2186 } else {
2187 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2188 len = flags & LEN_MASK_V2;
2189 if (unlikely(flags & NV_RX2_ERROR)) {
2190 if (flags & NV_RX2_ERROR4) {
2191 len = nv_getlen(dev, skb->data, len);
2192 if (len < 0) {
2193 np->stats.rx_errors++;
2194 dev_kfree_skb(skb);
2195 goto next_pkt;
2196 }
2197 }
2198 /* framing errors are soft errors */
2199 else if (flags & NV_RX2_FRAMINGERR) {
2200 if (flags & NV_RX2_SUBSTRACT1) {
2201 len--;
2202 }
2203 }
2204 /* the rest are hard errors */
2205 else {
2206 if (flags & NV_RX2_CRCERR)
2207 np->stats.rx_crc_errors++;
2208 if (flags & NV_RX2_OVERFLOW)
2209 np->stats.rx_over_errors++;
2210 np->stats.rx_errors++;
2211 dev_kfree_skb(skb);
2212 goto next_pkt;
2213 }
2214 }
2215 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2216 skb->ip_summed = CHECKSUM_UNNECESSARY;
2217 } else {
2218 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2219 (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2220 skb->ip_summed = CHECKSUM_UNNECESSARY;
2221 }
2222 }
2223 } else {
2224 dev_kfree_skb(skb);
2225 goto next_pkt;
2226 }
2227 }
2228 /* got a valid packet - forward it to the network core */
2229 skb_put(skb, len);
2230 skb->protocol = eth_type_trans(skb, dev);
2231 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2232 dev->name, len, skb->protocol);
2233 #ifdef CONFIG_FORCEDETH_NAPI
2234 netif_receive_skb(skb);
2235 #else
2236 netif_rx(skb);
2237 #endif
2238 dev->last_rx = jiffies;
2239 np->stats.rx_packets++;
2240 np->stats.rx_bytes += len;
2241 next_pkt:
2242 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2243 np->get_rx.orig = np->first_rx.orig;
2244 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2245 np->get_rx_ctx = np->first_rx_ctx;
2246 }
2247
2248 return rx_processed_cnt;
2249 }
2250
2251 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2252 {
2253 struct fe_priv *np = netdev_priv(dev);
2254 u32 flags;
2255 u32 vlanflags = 0;
2256 u32 rx_processed_cnt = 0;
2257 struct sk_buff *skb;
2258 int len;
2259
2260 while((np->get_rx.ex != np->put_rx.ex) &&
2261 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2262 (rx_processed_cnt++ < limit)) {
2263
2264 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2265 dev->name, flags);
2266
2267 /*
2268 * the packet is for us - immediately tear down the pci mapping.
2269 * TODO: check if a prefetch of the first cacheline improves
2270 * the performance.
2271 */
2272 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2273 np->get_rx_ctx->dma_len,
2274 PCI_DMA_FROMDEVICE);
2275 skb = np->get_rx_ctx->skb;
2276 np->get_rx_ctx->skb = NULL;
2277
2278 {
2279 int j;
2280 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2281 for (j=0; j<64; j++) {
2282 if ((j%16) == 0)
2283 dprintk("\n%03x:", j);
2284 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2285 }
2286 dprintk("\n");
2287 }
2288 /* look at what we actually got: */
2289 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2290 len = flags & LEN_MASK_V2;
2291 if (unlikely(flags & NV_RX2_ERROR)) {
2292 if (flags & NV_RX2_ERROR4) {
2293 len = nv_getlen(dev, skb->data, len);
2294 if (len < 0) {
2295 dev_kfree_skb(skb);
2296 goto next_pkt;
2297 }
2298 }
2299 /* framing errors are soft errors */
2300 else if (flags & NV_RX2_FRAMINGERR) {
2301 if (flags & NV_RX2_SUBSTRACT1) {
2302 len--;
2303 }
2304 }
2305 /* the rest are hard errors */
2306 else {
2307 dev_kfree_skb(skb);
2308 goto next_pkt;
2309 }
2310 }
2311
2312 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2313 skb->ip_summed = CHECKSUM_UNNECESSARY;
2314 } else {
2315 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2316 (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2317 skb->ip_summed = CHECKSUM_UNNECESSARY;
2318 }
2319 }
2320
2321 /* got a valid packet - forward it to the network core */
2322 skb_put(skb, len);
2323 skb->protocol = eth_type_trans(skb, dev);
2324 prefetch(skb->data);
2325
2326 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2327 dev->name, len, skb->protocol);
2328
2329 if (likely(!np->vlangrp)) {
2330 #ifdef CONFIG_FORCEDETH_NAPI
2331 netif_receive_skb(skb);
2332 #else
2333 netif_rx(skb);
2334 #endif
2335 } else {
2336 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2337 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2338 #ifdef CONFIG_FORCEDETH_NAPI
2339 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2340 vlanflags & NV_RX3_VLAN_TAG_MASK);
2341 #else
2342 vlan_hwaccel_rx(skb, np->vlangrp,
2343 vlanflags & NV_RX3_VLAN_TAG_MASK);
2344 #endif
2345 } else {
2346 #ifdef CONFIG_FORCEDETH_NAPI
2347 netif_receive_skb(skb);
2348 #else
2349 netif_rx(skb);
2350 #endif
2351 }
2352 }
2353
2354 dev->last_rx = jiffies;
2355 np->stats.rx_packets++;
2356 np->stats.rx_bytes += len;
2357 } else {
2358 dev_kfree_skb(skb);
2359 }
2360 next_pkt:
2361 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2362 np->get_rx.ex = np->first_rx.ex;
2363 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2364 np->get_rx_ctx = np->first_rx_ctx;
2365 }
2366
2367 return rx_processed_cnt;
2368 }
2369
2370 static void set_bufsize(struct net_device *dev)
2371 {
2372 struct fe_priv *np = netdev_priv(dev);
2373
2374 if (dev->mtu <= ETH_DATA_LEN)
2375 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2376 else
2377 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2378 }
2379
2380 /*
2381 * nv_change_mtu: dev->change_mtu function
2382 * Called with dev_base_lock held for read.
2383 */
2384 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2385 {
2386 struct fe_priv *np = netdev_priv(dev);
2387 int old_mtu;
2388
2389 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2390 return -EINVAL;
2391
2392 old_mtu = dev->mtu;
2393 dev->mtu = new_mtu;
2394
2395 /* return early if the buffer sizes will not change */
2396 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2397 return 0;
2398 if (old_mtu == new_mtu)
2399 return 0;
2400
2401 /* synchronized against open : rtnl_lock() held by caller */
2402 if (netif_running(dev)) {
2403 u8 __iomem *base = get_hwbase(dev);
2404 /*
2405 * It seems that the nic preloads valid ring entries into an
2406 * internal buffer. The procedure for flushing everything is
2407 * guessed, there is probably a simpler approach.
2408 * Changing the MTU is a rare event, it shouldn't matter.
2409 */
2410 nv_disable_irq(dev);
2411 netif_tx_lock_bh(dev);
2412 spin_lock(&np->lock);
2413 /* stop engines */
2414 nv_stop_rx(dev);
2415 nv_stop_tx(dev);
2416 nv_txrx_reset(dev);
2417 /* drain rx queue */
2418 nv_drain_rx(dev);
2419 nv_drain_tx(dev);
2420 /* reinit driver view of the rx queue */
2421 set_bufsize(dev);
2422 if (nv_init_ring(dev)) {
2423 if (!np->in_shutdown)
2424 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2425 }
2426 /* reinit nic view of the rx queue */
2427 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2428 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2429 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2430 base + NvRegRingSizes);
2431 pci_push(base);
2432 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2433 pci_push(base);
2434
2435 /* restart rx engine */
2436 nv_start_rx(dev);
2437 nv_start_tx(dev);
2438 spin_unlock(&np->lock);
2439 netif_tx_unlock_bh(dev);
2440 nv_enable_irq(dev);
2441 }
2442 return 0;
2443 }
2444
2445 static void nv_copy_mac_to_hw(struct net_device *dev)
2446 {
2447 u8 __iomem *base = get_hwbase(dev);
2448 u32 mac[2];
2449
2450 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2451 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2452 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2453
2454 writel(mac[0], base + NvRegMacAddrA);
2455 writel(mac[1], base + NvRegMacAddrB);
2456 }
2457
2458 /*
2459 * nv_set_mac_address: dev->set_mac_address function
2460 * Called with rtnl_lock() held.
2461 */
2462 static int nv_set_mac_address(struct net_device *dev, void *addr)
2463 {
2464 struct fe_priv *np = netdev_priv(dev);
2465 struct sockaddr *macaddr = (struct sockaddr*)addr;
2466
2467 if (!is_valid_ether_addr(macaddr->sa_data))
2468 return -EADDRNOTAVAIL;
2469
2470 /* synchronized against open : rtnl_lock() held by caller */
2471 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2472
2473 if (netif_running(dev)) {
2474 netif_tx_lock_bh(dev);
2475 spin_lock_irq(&np->lock);
2476
2477 /* stop rx engine */
2478 nv_stop_rx(dev);
2479
2480 /* set mac address */
2481 nv_copy_mac_to_hw(dev);
2482
2483 /* restart rx engine */
2484 nv_start_rx(dev);
2485 spin_unlock_irq(&np->lock);
2486 netif_tx_unlock_bh(dev);
2487 } else {
2488 nv_copy_mac_to_hw(dev);
2489 }
2490 return 0;
2491 }
2492
2493 /*
2494 * nv_set_multicast: dev->set_multicast function
2495 * Called with netif_tx_lock held.
2496 */
2497 static void nv_set_multicast(struct net_device *dev)
2498 {
2499 struct fe_priv *np = netdev_priv(dev);
2500 u8 __iomem *base = get_hwbase(dev);
2501 u32 addr[2];
2502 u32 mask[2];
2503 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2504
2505 memset(addr, 0, sizeof(addr));
2506 memset(mask, 0, sizeof(mask));
2507
2508 if (dev->flags & IFF_PROMISC) {
2509 pff |= NVREG_PFF_PROMISC;
2510 } else {
2511 pff |= NVREG_PFF_MYADDR;
2512
2513 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2514 u32 alwaysOff[2];
2515 u32 alwaysOn[2];
2516
2517 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2518 if (dev->flags & IFF_ALLMULTI) {
2519 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2520 } else {
2521 struct dev_mc_list *walk;
2522
2523 walk = dev->mc_list;
2524 while (walk != NULL) {
2525 u32 a, b;
2526 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2527 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2528 alwaysOn[0] &= a;
2529 alwaysOff[0] &= ~a;
2530 alwaysOn[1] &= b;
2531 alwaysOff[1] &= ~b;
2532 walk = walk->next;
2533 }
2534 }
2535 addr[0] = alwaysOn[0];
2536 addr[1] = alwaysOn[1];
2537 mask[0] = alwaysOn[0] | alwaysOff[0];
2538 mask[1] = alwaysOn[1] | alwaysOff[1];
2539 }
2540 }
2541 addr[0] |= NVREG_MCASTADDRA_FORCE;
2542 pff |= NVREG_PFF_ALWAYS;
2543 spin_lock_irq(&np->lock);
2544 nv_stop_rx(dev);
2545 writel(addr[0], base + NvRegMulticastAddrA);
2546 writel(addr[1], base + NvRegMulticastAddrB);
2547 writel(mask[0], base + NvRegMulticastMaskA);
2548 writel(mask[1], base + NvRegMulticastMaskB);
2549 writel(pff, base + NvRegPacketFilterFlags);
2550 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2551 dev->name);
2552 nv_start_rx(dev);
2553 spin_unlock_irq(&np->lock);
2554 }
2555
2556 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2557 {
2558 struct fe_priv *np = netdev_priv(dev);
2559 u8 __iomem *base = get_hwbase(dev);
2560
2561 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2562
2563 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2564 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2565 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2566 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2567 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2568 } else {
2569 writel(pff, base + NvRegPacketFilterFlags);
2570 }
2571 }
2572 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2573 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2574 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2575 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2576 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2577 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2578 } else {
2579 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2580 writel(regmisc, base + NvRegMisc1);
2581 }
2582 }
2583 }
2584
2585 /**
2586 * nv_update_linkspeed: Setup the MAC according to the link partner
2587 * @dev: Network device to be configured
2588 *
2589 * The function queries the PHY and checks if there is a link partner.
2590 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2591 * set to 10 MBit HD.
2592 *
2593 * The function returns 0 if there is no link partner and 1 if there is
2594 * a good link partner.
2595 */
2596 static int nv_update_linkspeed(struct net_device *dev)
2597 {
2598 struct fe_priv *np = netdev_priv(dev);
2599 u8 __iomem *base = get_hwbase(dev);
2600 int adv = 0;
2601 int lpa = 0;
2602 int adv_lpa, adv_pause, lpa_pause;
2603 int newls = np->linkspeed;
2604 int newdup = np->duplex;
2605 int mii_status;
2606 int retval = 0;
2607 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2608
2609 /* BMSR_LSTATUS is latched, read it twice:
2610 * we want the current value.
2611 */
2612 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2613 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2614
2615 if (!(mii_status & BMSR_LSTATUS)) {
2616 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2617 dev->name);
2618 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2619 newdup = 0;
2620 retval = 0;
2621 goto set_speed;
2622 }
2623
2624 if (np->autoneg == 0) {
2625 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2626 dev->name, np->fixed_mode);
2627 if (np->fixed_mode & LPA_100FULL) {
2628 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2629 newdup = 1;
2630 } else if (np->fixed_mode & LPA_100HALF) {
2631 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2632 newdup = 0;
2633 } else if (np->fixed_mode & LPA_10FULL) {
2634 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2635 newdup = 1;
2636 } else {
2637 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2638 newdup = 0;
2639 }
2640 retval = 1;
2641 goto set_speed;
2642 }
2643 /* check auto negotiation is complete */
2644 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2645 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2646 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2647 newdup = 0;
2648 retval = 0;
2649 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2650 goto set_speed;
2651 }
2652
2653 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2654 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2655 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2656 dev->name, adv, lpa);
2657
2658 retval = 1;
2659 if (np->gigabit == PHY_GIGABIT) {
2660 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2661 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2662
2663 if ((control_1000 & ADVERTISE_1000FULL) &&
2664 (status_1000 & LPA_1000FULL)) {
2665 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2666 dev->name);
2667 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2668 newdup = 1;
2669 goto set_speed;
2670 }
2671 }
2672
2673 /* FIXME: handle parallel detection properly */
2674 adv_lpa = lpa & adv;
2675 if (adv_lpa & LPA_100FULL) {
2676 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2677 newdup = 1;
2678 } else if (adv_lpa & LPA_100HALF) {
2679 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2680 newdup = 0;
2681 } else if (adv_lpa & LPA_10FULL) {
2682 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2683 newdup = 1;
2684 } else if (adv_lpa & LPA_10HALF) {
2685 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2686 newdup = 0;
2687 } else {
2688 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2689 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2690 newdup = 0;
2691 }
2692
2693 set_speed:
2694 if (np->duplex == newdup && np->linkspeed == newls)
2695 return retval;
2696
2697 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2698 dev->name, np->linkspeed, np->duplex, newls, newdup);
2699
2700 np->duplex = newdup;
2701 np->linkspeed = newls;
2702
2703 if (np->gigabit == PHY_GIGABIT) {
2704 phyreg = readl(base + NvRegRandomSeed);
2705 phyreg &= ~(0x3FF00);
2706 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2707 phyreg |= NVREG_RNDSEED_FORCE3;
2708 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2709 phyreg |= NVREG_RNDSEED_FORCE2;
2710 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2711 phyreg |= NVREG_RNDSEED_FORCE;
2712 writel(phyreg, base + NvRegRandomSeed);
2713 }
2714
2715 phyreg = readl(base + NvRegPhyInterface);
2716 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2717 if (np->duplex == 0)
2718 phyreg |= PHY_HALF;
2719 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2720 phyreg |= PHY_100;
2721 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2722 phyreg |= PHY_1000;
2723 writel(phyreg, base + NvRegPhyInterface);
2724
2725 if (phyreg & PHY_RGMII) {
2726 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2727 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2728 else
2729 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2730 } else {
2731 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2732 }
2733 writel(txreg, base + NvRegTxDeferral);
2734
2735 if (np->desc_ver == DESC_VER_1) {
2736 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2737 } else {
2738 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2739 txreg = NVREG_TX_WM_DESC2_3_1000;
2740 else
2741 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2742 }
2743 writel(txreg, base + NvRegTxWatermark);
2744
2745 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2746 base + NvRegMisc1);
2747 pci_push(base);
2748 writel(np->linkspeed, base + NvRegLinkSpeed);
2749 pci_push(base);
2750
2751 pause_flags = 0;
2752 /* setup pause frame */
2753 if (np->duplex != 0) {
2754 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2755 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2756 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2757
2758 switch (adv_pause) {
2759 case ADVERTISE_PAUSE_CAP:
2760 if (lpa_pause & LPA_PAUSE_CAP) {
2761 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2762 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2763 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2764 }
2765 break;
2766 case ADVERTISE_PAUSE_ASYM:
2767 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2768 {
2769 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2770 }
2771 break;
2772 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2773 if (lpa_pause & LPA_PAUSE_CAP)
2774 {
2775 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2776 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2777 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2778 }
2779 if (lpa_pause == LPA_PAUSE_ASYM)
2780 {
2781 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2782 }
2783 break;
2784 }
2785 } else {
2786 pause_flags = np->pause_flags;
2787 }
2788 }
2789 nv_update_pause(dev, pause_flags);
2790
2791 return retval;
2792 }
2793
2794 static void nv_linkchange(struct net_device *dev)
2795 {
2796 if (nv_update_linkspeed(dev)) {
2797 if (!netif_carrier_ok(dev)) {
2798 netif_carrier_on(dev);
2799 printk(KERN_INFO "%s: link up.\n", dev->name);
2800 nv_start_rx(dev);
2801 }
2802 } else {
2803 if (netif_carrier_ok(dev)) {
2804 netif_carrier_off(dev);
2805 printk(KERN_INFO "%s: link down.\n", dev->name);
2806 nv_stop_rx(dev);
2807 }
2808 }
2809 }
2810
2811 static void nv_link_irq(struct net_device *dev)
2812 {
2813 u8 __iomem *base = get_hwbase(dev);
2814 u32 miistat;
2815
2816 miistat = readl(base + NvRegMIIStatus);
2817 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2818 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2819
2820 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2821 nv_linkchange(dev);
2822 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2823 }
2824
2825 static irqreturn_t nv_nic_irq(int foo, void *data)
2826 {
2827 struct net_device *dev = (struct net_device *) data;
2828 struct fe_priv *np = netdev_priv(dev);
2829 u8 __iomem *base = get_hwbase(dev);
2830 u32 events;
2831 int i;
2832
2833 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2834
2835 for (i=0; ; i++) {
2836 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2837 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2838 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2839 } else {
2840 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2841 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2842 }
2843 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2844 if (!(events & np->irqmask))
2845 break;
2846
2847 spin_lock(&np->lock);
2848 nv_tx_done(dev);
2849 spin_unlock(&np->lock);
2850
2851 #ifdef CONFIG_FORCEDETH_NAPI
2852 if (events & NVREG_IRQ_RX_ALL) {
2853 netif_rx_schedule(dev);
2854
2855 /* Disable furthur receive irq's */
2856 spin_lock(&np->lock);
2857 np->irqmask &= ~NVREG_IRQ_RX_ALL;
2858
2859 if (np->msi_flags & NV_MSI_X_ENABLED)
2860 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2861 else
2862 writel(np->irqmask, base + NvRegIrqMask);
2863 spin_unlock(&np->lock);
2864 }
2865 #else
2866 if (nv_rx_process(dev, dev->weight)) {
2867 if (unlikely(nv_alloc_rx(dev))) {
2868 spin_lock(&np->lock);
2869 if (!np->in_shutdown)
2870 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2871 spin_unlock(&np->lock);
2872 }
2873 }
2874 #endif
2875 if (unlikely(events & NVREG_IRQ_LINK)) {
2876 spin_lock(&np->lock);
2877 nv_link_irq(dev);
2878 spin_unlock(&np->lock);
2879 }
2880 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
2881 spin_lock(&np->lock);
2882 nv_linkchange(dev);
2883 spin_unlock(&np->lock);
2884 np->link_timeout = jiffies + LINK_TIMEOUT;
2885 }
2886 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
2887 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2888 dev->name, events);
2889 }
2890 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
2891 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2892 dev->name, events);
2893 }
2894 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
2895 spin_lock(&np->lock);
2896 /* disable interrupts on the nic */
2897 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2898 writel(0, base + NvRegIrqMask);
2899 else
2900 writel(np->irqmask, base + NvRegIrqMask);
2901 pci_push(base);
2902
2903 if (!np->in_shutdown) {
2904 np->nic_poll_irq = np->irqmask;
2905 np->recover_error = 1;
2906 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2907 }
2908 spin_unlock(&np->lock);
2909 break;
2910 }
2911 if (unlikely(i > max_interrupt_work)) {
2912 spin_lock(&np->lock);
2913 /* disable interrupts on the nic */
2914 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2915 writel(0, base + NvRegIrqMask);
2916 else
2917 writel(np->irqmask, base + NvRegIrqMask);
2918 pci_push(base);
2919
2920 if (!np->in_shutdown) {
2921 np->nic_poll_irq = np->irqmask;
2922 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2923 }
2924 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2925 spin_unlock(&np->lock);
2926 break;
2927 }
2928
2929 }
2930 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2931
2932 return IRQ_RETVAL(i);
2933 }
2934
2935 #define TX_WORK_PER_LOOP 64
2936 #define RX_WORK_PER_LOOP 64
2937 /**
2938 * All _optimized functions are used to help increase performance
2939 * (reduce CPU and increase throughput). They use descripter version 3,
2940 * compiler directives, and reduce memory accesses.
2941 */
2942 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
2943 {
2944 struct net_device *dev = (struct net_device *) data;
2945 struct fe_priv *np = netdev_priv(dev);
2946 u8 __iomem *base = get_hwbase(dev);
2947 u32 events;
2948 int i;
2949
2950 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
2951
2952 for (i=0; ; i++) {
2953 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2954 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2955 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2956 } else {
2957 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2958 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2959 }
2960 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2961 if (!(events & np->irqmask))
2962 break;
2963
2964 spin_lock(&np->lock);
2965 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
2966 spin_unlock(&np->lock);
2967
2968 #ifdef CONFIG_FORCEDETH_NAPI
2969 if (events & NVREG_IRQ_RX_ALL) {
2970 netif_rx_schedule(dev);
2971
2972 /* Disable furthur receive irq's */
2973 spin_lock(&np->lock);
2974 np->irqmask &= ~NVREG_IRQ_RX_ALL;
2975
2976 if (np->msi_flags & NV_MSI_X_ENABLED)
2977 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2978 else
2979 writel(np->irqmask, base + NvRegIrqMask);
2980 spin_unlock(&np->lock);
2981 }
2982 #else
2983 if (nv_rx_process_optimized(dev, dev->weight)) {
2984 if (unlikely(nv_alloc_rx_optimized(dev))) {
2985 spin_lock(&np->lock);
2986 if (!np->in_shutdown)
2987 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2988 spin_unlock(&np->lock);
2989 }
2990 }
2991 #endif
2992 if (unlikely(events & NVREG_IRQ_LINK)) {
2993 spin_lock(&np->lock);
2994 nv_link_irq(dev);
2995 spin_unlock(&np->lock);
2996 }
2997 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
2998 spin_lock(&np->lock);
2999 nv_linkchange(dev);
3000 spin_unlock(&np->lock);
3001 np->link_timeout = jiffies + LINK_TIMEOUT;
3002 }
3003 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3004 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3005 dev->name, events);
3006 }
3007 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3008 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3009 dev->name, events);
3010 }
3011 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3012 spin_lock(&np->lock);
3013 /* disable interrupts on the nic */
3014 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3015 writel(0, base + NvRegIrqMask);
3016 else
3017 writel(np->irqmask, base + NvRegIrqMask);
3018 pci_push(base);
3019
3020 if (!np->in_shutdown) {
3021 np->nic_poll_irq = np->irqmask;
3022 np->recover_error = 1;
3023 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3024 }
3025 spin_unlock(&np->lock);
3026 break;
3027 }
3028
3029 if (unlikely(i > max_interrupt_work)) {
3030 spin_lock(&np->lock);
3031 /* disable interrupts on the nic */
3032 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3033 writel(0, base + NvRegIrqMask);
3034 else
3035 writel(np->irqmask, base + NvRegIrqMask);
3036 pci_push(base);
3037
3038 if (!np->in_shutdown) {
3039 np->nic_poll_irq = np->irqmask;
3040 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3041 }
3042 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3043 spin_unlock(&np->lock);
3044 break;
3045 }
3046
3047 }
3048 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3049
3050 return IRQ_RETVAL(i);
3051 }
3052
3053 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3054 {
3055 struct net_device *dev = (struct net_device *) data;
3056 struct fe_priv *np = netdev_priv(dev);
3057 u8 __iomem *base = get_hwbase(dev);
3058 u32 events;
3059 int i;
3060 unsigned long flags;
3061
3062 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3063
3064 for (i=0; ; i++) {
3065 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3066 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3067 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3068 if (!(events & np->irqmask))
3069 break;
3070
3071 spin_lock_irqsave(&np->lock, flags);
3072 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3073 spin_unlock_irqrestore(&np->lock, flags);
3074
3075 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3076 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3077 dev->name, events);
3078 }
3079 if (unlikely(i > max_interrupt_work)) {
3080 spin_lock_irqsave(&np->lock, flags);
3081 /* disable interrupts on the nic */
3082 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3083 pci_push(base);
3084
3085 if (!np->in_shutdown) {
3086 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3087 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3088 }
3089 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3090 spin_unlock_irqrestore(&np->lock, flags);
3091 break;
3092 }
3093
3094 }
3095 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3096
3097 return IRQ_RETVAL(i);
3098 }
3099
3100 #ifdef CONFIG_FORCEDETH_NAPI
3101 static int nv_napi_poll(struct net_device *dev, int *budget)
3102 {
3103 int pkts, limit = min(*budget, dev->quota);
3104 struct fe_priv *np = netdev_priv(dev);
3105 u8 __iomem *base = get_hwbase(dev);
3106 unsigned long flags;
3107 int retcode;
3108
3109 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3110 pkts = nv_rx_process(dev, limit);
3111 retcode = nv_alloc_rx(dev);
3112 } else {
3113 pkts = nv_rx_process_optimized(dev, limit);
3114 retcode = nv_alloc_rx_optimized(dev);
3115 }
3116
3117 if (retcode) {
3118 spin_lock_irqsave(&np->lock, flags);
3119 if (!np->in_shutdown)
3120 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3121 spin_unlock_irqrestore(&np->lock, flags);
3122 }
3123
3124 if (pkts < limit) {
3125 /* all done, no more packets present */
3126 netif_rx_complete(dev);
3127
3128 /* re-enable receive interrupts */
3129 spin_lock_irqsave(&np->lock, flags);
3130
3131 np->irqmask |= NVREG_IRQ_RX_ALL;
3132 if (np->msi_flags & NV_MSI_X_ENABLED)
3133 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3134 else
3135 writel(np->irqmask, base + NvRegIrqMask);
3136
3137 spin_unlock_irqrestore(&np->lock, flags);
3138 return 0;
3139 } else {
3140 /* used up our quantum, so reschedule */
3141 dev->quota -= pkts;
3142 *budget -= pkts;
3143 return 1;
3144 }
3145 }
3146 #endif
3147
3148 #ifdef CONFIG_FORCEDETH_NAPI
3149 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3150 {
3151 struct net_device *dev = (struct net_device *) data;
3152 u8 __iomem *base = get_hwbase(dev);
3153 u32 events;
3154
3155 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3156 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3157
3158 if (events) {
3159 netif_rx_schedule(dev);
3160 /* disable receive interrupts on the nic */
3161 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3162 pci_push(base);
3163 }
3164 return IRQ_HANDLED;
3165 }
3166 #else
3167 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3168 {
3169 struct net_device *dev = (struct net_device *) data;
3170 struct fe_priv *np = netdev_priv(dev);
3171 u8 __iomem *base = get_hwbase(dev);
3172 u32 events;
3173 int i;
3174 unsigned long flags;
3175
3176 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3177
3178 for (i=0; ; i++) {
3179 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3180 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3181 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3182 if (!(events & np->irqmask))
3183 break;
3184
3185 if (nv_rx_process_optimized(dev, dev->weight)) {
3186 if (unlikely(nv_alloc_rx_optimized(dev))) {
3187 spin_lock_irqsave(&np->lock, flags);
3188 if (!np->in_shutdown)
3189 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3190 spin_unlock_irqrestore(&np->lock, flags);
3191 }
3192 }
3193
3194 if (unlikely(i > max_interrupt_work)) {
3195 spin_lock_irqsave(&np->lock, flags);
3196 /* disable interrupts on the nic */
3197 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3198 pci_push(base);
3199
3200 if (!np->in_shutdown) {
3201 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3202 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3203 }
3204 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3205 spin_unlock_irqrestore(&np->lock, flags);
3206 break;
3207 }
3208 }
3209 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3210
3211 return IRQ_RETVAL(i);
3212 }
3213 #endif
3214
3215 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3216 {
3217 struct net_device *dev = (struct net_device *) data;
3218 struct fe_priv *np = netdev_priv(dev);
3219 u8 __iomem *base = get_hwbase(dev);
3220 u32 events;
3221 int i;
3222 unsigned long flags;
3223
3224 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3225
3226 for (i=0; ; i++) {
3227 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3228 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3229 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3230 if (!(events & np->irqmask))
3231 break;
3232
3233 /* check tx in case we reached max loop limit in tx isr */
3234 spin_lock_irqsave(&np->lock, flags);
3235 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3236 spin_unlock_irqrestore(&np->lock, flags);
3237
3238 if (events & NVREG_IRQ_LINK) {
3239 spin_lock_irqsave(&np->lock, flags);
3240 nv_link_irq(dev);
3241 spin_unlock_irqrestore(&np->lock, flags);
3242 }
3243 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3244 spin_lock_irqsave(&np->lock, flags);
3245 nv_linkchange(dev);
3246 spin_unlock_irqrestore(&np->lock, flags);
3247 np->link_timeout = jiffies + LINK_TIMEOUT;
3248 }
3249 if (events & NVREG_IRQ_RECOVER_ERROR) {
3250 spin_lock_irq(&np->lock);
3251 /* disable interrupts on the nic */
3252 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3253 pci_push(base);
3254
3255 if (!np->in_shutdown) {
3256 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3257 np->recover_error = 1;
3258 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3259 }
3260 spin_unlock_irq(&np->lock);
3261 break;
3262 }
3263 if (events & (NVREG_IRQ_UNKNOWN)) {
3264 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3265 dev->name, events);
3266 }
3267 if (unlikely(i > max_interrupt_work)) {
3268 spin_lock_irqsave(&np->lock, flags);
3269 /* disable interrupts on the nic */
3270 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3271 pci_push(base);
3272
3273 if (!np->in_shutdown) {
3274 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3275 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3276 }
3277 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3278 spin_unlock_irqrestore(&np->lock, flags);
3279 break;
3280 }
3281
3282 }
3283 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3284
3285 return IRQ_RETVAL(i);
3286 }
3287
3288 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3289 {
3290 struct net_device *dev = (struct net_device *) data;
3291 struct fe_priv *np = netdev_priv(dev);
3292 u8 __iomem *base = get_hwbase(dev);
3293 u32 events;
3294
3295 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3296
3297 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3298 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3299 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3300 } else {
3301 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3302 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3303 }
3304 pci_push(base);
3305 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3306 if (!(events & NVREG_IRQ_TIMER))
3307 return IRQ_RETVAL(0);
3308
3309 spin_lock(&np->lock);
3310 np->intr_test = 1;
3311 spin_unlock(&np->lock);
3312
3313 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3314
3315 return IRQ_RETVAL(1);
3316 }
3317
3318 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3319 {
3320 u8 __iomem *base = get_hwbase(dev);
3321 int i;
3322 u32 msixmap = 0;
3323
3324 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3325 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3326 * the remaining 8 interrupts.
3327 */
3328 for (i = 0; i < 8; i++) {
3329 if ((irqmask >> i) & 0x1) {
3330 msixmap |= vector << (i << 2);
3331 }
3332 }
3333 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3334
3335 msixmap = 0;
3336 for (i = 0; i < 8; i++) {
3337 if ((irqmask >> (i + 8)) & 0x1) {
3338 msixmap |= vector << (i << 2);
3339 }
3340 }
3341 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3342 }
3343
3344 static int nv_request_irq(struct net_device *dev, int intr_test)
3345 {
3346 struct fe_priv *np = get_nvpriv(dev);
3347 u8 __iomem *base = get_hwbase(dev);
3348 int ret = 1;
3349 int i;
3350 irqreturn_t (*handler)(int foo, void *data);
3351
3352 if (intr_test) {
3353 handler = nv_nic_irq_test;
3354 } else {
3355 if (np->desc_ver == DESC_VER_3)
3356 handler = nv_nic_irq_optimized;
3357 else
3358 handler = nv_nic_irq;
3359 }
3360
3361 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3362 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3363 np->msi_x_entry[i].entry = i;
3364 }
3365 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3366 np->msi_flags |= NV_MSI_X_ENABLED;
3367 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3368 /* Request irq for rx handling */
3369 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3370 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3371 pci_disable_msix(np->pci_dev);
3372 np->msi_flags &= ~NV_MSI_X_ENABLED;
3373 goto out_err;
3374 }
3375 /* Request irq for tx handling */
3376 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3377 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3378 pci_disable_msix(np->pci_dev);
3379 np->msi_flags &= ~NV_MSI_X_ENABLED;
3380 goto out_free_rx;
3381 }
3382 /* Request irq for link and timer handling */
3383 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3384 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3385 pci_disable_msix(np->pci_dev);
3386 np->msi_flags &= ~NV_MSI_X_ENABLED;
3387 goto out_free_tx;
3388 }
3389 /* map interrupts to their respective vector */
3390 writel(0, base + NvRegMSIXMap0);
3391 writel(0, base + NvRegMSIXMap1);
3392 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3393 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3394 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3395 } else {
3396 /* Request irq for all interrupts */
3397 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3398 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3399 pci_disable_msix(np->pci_dev);
3400 np->msi_flags &= ~NV_MSI_X_ENABLED;
3401 goto out_err;
3402 }
3403
3404 /* map interrupts to vector 0 */
3405 writel(0, base + NvRegMSIXMap0);
3406 writel(0, base + NvRegMSIXMap1);
3407 }
3408 }
3409 }
3410 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3411 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3412 np->msi_flags |= NV_MSI_ENABLED;
3413 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3414 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3415 pci_disable_msi(np->pci_dev);
3416 np->msi_flags &= ~NV_MSI_ENABLED;
3417 goto out_err;
3418 }
3419
3420 /* map interrupts to vector 0 */
3421 writel(0, base + NvRegMSIMap0);
3422 writel(0, base + NvRegMSIMap1);
3423 /* enable msi vector 0 */
3424 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3425 }
3426 }
3427 if (ret != 0) {
3428 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3429 goto out_err;
3430
3431 }
3432
3433 return 0;
3434 out_free_tx:
3435 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3436 out_free_rx:
3437 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3438 out_err:
3439 return 1;
3440 }
3441
3442 static void nv_free_irq(struct net_device *dev)
3443 {
3444 struct fe_priv *np = get_nvpriv(dev);
3445 int i;
3446
3447 if (np->msi_flags & NV_MSI_X_ENABLED) {
3448 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3449 free_irq(np->msi_x_entry[i].vector, dev);
3450 }
3451 pci_disable_msix(np->pci_dev);
3452 np->msi_flags &= ~NV_MSI_X_ENABLED;
3453 } else {
3454 free_irq(np->pci_dev->irq, dev);
3455 if (np->msi_flags & NV_MSI_ENABLED) {
3456 pci_disable_msi(np->pci_dev);
3457 np->msi_flags &= ~NV_MSI_ENABLED;
3458 }
3459 }
3460 }
3461
3462 static void nv_do_nic_poll(unsigned long data)
3463 {
3464 struct net_device *dev = (struct net_device *) data;
3465 struct fe_priv *np = netdev_priv(dev);
3466 u8 __iomem *base = get_hwbase(dev);
3467 u32 mask = 0;
3468
3469 /*
3470 * First disable irq(s) and then
3471 * reenable interrupts on the nic, we have to do this before calling
3472 * nv_nic_irq because that may decide to do otherwise
3473 */
3474
3475 if (!using_multi_irqs(dev)) {
3476 if (np->msi_flags & NV_MSI_X_ENABLED)
3477 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3478 else
3479 disable_irq_lockdep(dev->irq);
3480 mask = np->irqmask;
3481 } else {
3482 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3483 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3484 mask |= NVREG_IRQ_RX_ALL;
3485 }
3486 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3487 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3488 mask |= NVREG_IRQ_TX_ALL;
3489 }
3490 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3491 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3492 mask |= NVREG_IRQ_OTHER;
3493 }
3494 }
3495 np->nic_poll_irq = 0;
3496
3497 if (np->recover_error) {
3498 np->recover_error = 0;
3499 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3500 if (netif_running(dev)) {
3501 netif_tx_lock_bh(dev);
3502 spin_lock(&np->lock);
3503 /* stop engines */
3504 nv_stop_rx(dev);
3505 nv_stop_tx(dev);
3506 nv_txrx_reset(dev);
3507 /* drain rx queue */
3508 nv_drain_rx(dev);
3509 nv_drain_tx(dev);
3510 /* reinit driver view of the rx queue */
3511 set_bufsize(dev);
3512 if (nv_init_ring(dev)) {
3513 if (!np->in_shutdown)
3514 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3515 }
3516 /* reinit nic view of the rx queue */
3517 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3518 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3519 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3520 base + NvRegRingSizes);
3521 pci_push(base);
3522 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3523 pci_push(base);
3524
3525 /* restart rx engine */
3526 nv_start_rx(dev);
3527 nv_start_tx(dev);
3528 spin_unlock(&np->lock);
3529 netif_tx_unlock_bh(dev);
3530 }
3531 }
3532
3533 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
3534
3535 writel(mask, base + NvRegIrqMask);
3536 pci_push(base);
3537
3538 if (!using_multi_irqs(dev)) {
3539 nv_nic_irq(0, dev);
3540 if (np->msi_flags & NV_MSI_X_ENABLED)
3541 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3542 else
3543 enable_irq_lockdep(dev->irq);
3544 } else {
3545 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3546 nv_nic_irq_rx(0, dev);
3547 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3548 }
3549 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3550 nv_nic_irq_tx(0, dev);
3551 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3552 }
3553 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3554 nv_nic_irq_other(0, dev);
3555 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3556 }
3557 }
3558 }
3559
3560 #ifdef CONFIG_NET_POLL_CONTROLLER
3561 static void nv_poll_controller(struct net_device *dev)
3562 {
3563 nv_do_nic_poll((unsigned long) dev);
3564 }
3565 #endif
3566
3567 static void nv_do_stats_poll(unsigned long data)
3568 {
3569 struct net_device *dev = (struct net_device *) data;
3570 struct fe_priv *np = netdev_priv(dev);
3571
3572 nv_get_hw_stats(dev);
3573
3574 if (!np->in_shutdown)
3575 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3576 }
3577
3578 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3579 {
3580 struct fe_priv *np = netdev_priv(dev);
3581 strcpy(info->driver, "forcedeth");
3582 strcpy(info->version, FORCEDETH_VERSION);
3583 strcpy(info->bus_info, pci_name(np->pci_dev));
3584 }
3585
3586 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3587 {
3588 struct fe_priv *np = netdev_priv(dev);
3589 wolinfo->supported = WAKE_MAGIC;
3590
3591 spin_lock_irq(&np->lock);
3592 if (np->wolenabled)
3593 wolinfo->wolopts = WAKE_MAGIC;
3594 spin_unlock_irq(&np->lock);
3595 }
3596
3597 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3598 {
3599 struct fe_priv *np = netdev_priv(dev);
3600 u8 __iomem *base = get_hwbase(dev);
3601 u32 flags = 0;
3602
3603 if (wolinfo->wolopts == 0) {
3604 np->wolenabled = 0;
3605 } else if (wolinfo->wolopts & WAKE_MAGIC) {
3606 np->wolenabled = 1;
3607 flags = NVREG_WAKEUPFLAGS_ENABLE;
3608 }
3609 if (netif_running(dev)) {
3610 spin_lock_irq(&np->lock);
3611 writel(flags, base + NvRegWakeUpFlags);
3612 spin_unlock_irq(&np->lock);
3613 }
3614 return 0;
3615 }
3616
3617 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3618 {
3619 struct fe_priv *np = netdev_priv(dev);
3620 int adv;
3621
3622 spin_lock_irq(&np->lock);
3623 ecmd->port = PORT_MII;
3624 if (!netif_running(dev)) {
3625 /* We do not track link speed / duplex setting if the
3626 * interface is disabled. Force a link check */
3627 if (nv_update_linkspeed(dev)) {
3628 if (!netif_carrier_ok(dev))
3629 netif_carrier_on(dev);
3630 } else {
3631 if (netif_carrier_ok(dev))
3632 netif_carrier_off(dev);
3633 }
3634 }
3635
3636 if (netif_carrier_ok(dev)) {
3637 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3638 case NVREG_LINKSPEED_10:
3639 ecmd->speed = SPEED_10;
3640 break;
3641 case NVREG_LINKSPEED_100:
3642 ecmd->speed = SPEED_100;
3643 break;
3644 case NVREG_LINKSPEED_1000:
3645 ecmd->speed = SPEED_1000;
3646 break;
3647 }
3648 ecmd->duplex = DUPLEX_HALF;
3649 if (np->duplex)
3650 ecmd->duplex = DUPLEX_FULL;
3651 } else {
3652 ecmd->speed = -1;
3653 ecmd->duplex = -1;
3654 }
3655
3656 ecmd->autoneg = np->autoneg;
3657
3658 ecmd->advertising = ADVERTISED_MII;
3659 if (np->autoneg) {
3660 ecmd->advertising |= ADVERTISED_Autoneg;
3661 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3662 if (adv & ADVERTISE_10HALF)
3663 ecmd->advertising |= ADVERTISED_10baseT_Half;
3664 if (adv & ADVERTISE_10FULL)
3665 ecmd->advertising |= ADVERTISED_10baseT_Full;
3666 if (adv & ADVERTISE_100HALF)
3667 ecmd->advertising |= ADVERTISED_100baseT_Half;
3668 if (adv & ADVERTISE_100FULL)
3669 ecmd->advertising |= ADVERTISED_100baseT_Full;
3670 if (np->gigabit == PHY_GIGABIT) {
3671 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3672 if (adv & ADVERTISE_1000FULL)
3673 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3674 }
3675 }
3676 ecmd->supported = (SUPPORTED_Autoneg |
3677 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3678 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3679 SUPPORTED_MII);
3680 if (np->gigabit == PHY_GIGABIT)
3681 ecmd->supported |= SUPPORTED_1000baseT_Full;
3682
3683 ecmd->phy_address = np->phyaddr;
3684 ecmd->transceiver = XCVR_EXTERNAL;
3685
3686 /* ignore maxtxpkt, maxrxpkt for now */
3687 spin_unlock_irq(&np->lock);
3688 return 0;
3689 }
3690
3691 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3692 {
3693 struct fe_priv *np = netdev_priv(dev);
3694
3695 if (ecmd->port != PORT_MII)
3696 return -EINVAL;
3697 if (ecmd->transceiver != XCVR_EXTERNAL)
3698 return -EINVAL;
3699 if (ecmd->phy_address != np->phyaddr) {
3700 /* TODO: support switching between multiple phys. Should be
3701 * trivial, but not enabled due to lack of test hardware. */
3702 return -EINVAL;
3703 }
3704 if (ecmd->autoneg == AUTONEG_ENABLE) {
3705 u32 mask;
3706
3707 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3708 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3709 if (np->gigabit == PHY_GIGABIT)
3710 mask |= ADVERTISED_1000baseT_Full;
3711
3712 if ((ecmd->advertising & mask) == 0)
3713 return -EINVAL;
3714
3715 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3716 /* Note: autonegotiation disable, speed 1000 intentionally
3717 * forbidden - noone should need that. */
3718
3719 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3720 return -EINVAL;
3721 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3722 return -EINVAL;
3723 } else {
3724 return -EINVAL;
3725 }
3726
3727 netif_carrier_off(dev);
3728 if (netif_running(dev)) {
3729 nv_disable_irq(dev);
3730 netif_tx_lock_bh(dev);
3731 spin_lock(&np->lock);
3732 /* stop engines */
3733 nv_stop_rx(dev);
3734 nv_stop_tx(dev);
3735 spin_unlock(&np->lock);
3736 netif_tx_unlock_bh(dev);
3737 }
3738
3739 if (ecmd->autoneg == AUTONEG_ENABLE) {
3740 int adv, bmcr;
3741
3742 np->autoneg = 1;
3743
3744 /* advertise only what has been requested */
3745 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3746 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3747 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3748 adv |= ADVERTISE_10HALF;
3749 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3750 adv |= ADVERTISE_10FULL;
3751 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3752 adv |= ADVERTISE_100HALF;
3753 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3754 adv |= ADVERTISE_100FULL;
3755 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3756 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3757 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3758 adv |= ADVERTISE_PAUSE_ASYM;
3759 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3760
3761 if (np->gigabit == PHY_GIGABIT) {
3762 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3763 adv &= ~ADVERTISE_1000FULL;
3764 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3765 adv |= ADVERTISE_1000FULL;
3766 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3767 }
3768
3769 if (netif_running(dev))
3770 printk(KERN_INFO "%s: link down.\n", dev->name);
3771 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3772 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3773 bmcr |= BMCR_ANENABLE;
3774 /* reset the phy in order for settings to stick,
3775 * and cause autoneg to start */
3776 if (phy_reset(dev, bmcr)) {
3777 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3778 return -EINVAL;
3779 }
3780 } else {
3781 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3782 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3783 }
3784 } else {
3785 int adv, bmcr;
3786
3787 np->autoneg = 0;
3788
3789 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3790 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3791 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3792 adv |= ADVERTISE_10HALF;
3793 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3794 adv |= ADVERTISE_10FULL;
3795 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3796 adv |= ADVERTISE_100HALF;
3797 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3798 adv |= ADVERTISE_100FULL;
3799 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3800 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3801 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3802 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3803 }
3804 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3805 adv |= ADVERTISE_PAUSE_ASYM;
3806 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3807 }
3808 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3809 np->fixed_mode = adv;
3810
3811 if (np->gigabit == PHY_GIGABIT) {
3812 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3813 adv &= ~ADVERTISE_1000FULL;
3814 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3815 }
3816
3817 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3818 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3819 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3820 bmcr |= BMCR_FULLDPLX;
3821 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3822 bmcr |= BMCR_SPEED100;
3823 if (np->phy_oui == PHY_OUI_MARVELL) {
3824 /* reset the phy in order for forced mode settings to stick */
3825 if (phy_reset(dev, bmcr)) {
3826 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3827 return -EINVAL;
3828 }
3829 } else {
3830 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3831 if (netif_running(dev)) {
3832 /* Wait a bit and then reconfigure the nic. */
3833 udelay(10);
3834 nv_linkchange(dev);
3835 }
3836 }
3837 }
3838
3839 if (netif_running(dev)) {
3840 nv_start_rx(dev);
3841 nv_start_tx(dev);
3842 nv_enable_irq(dev);
3843 }
3844
3845 return 0;
3846 }
3847
3848 #define FORCEDETH_REGS_VER 1
3849
3850 static int nv_get_regs_len(struct net_device *dev)
3851 {
3852 struct fe_priv *np = netdev_priv(dev);
3853 return np->register_size;
3854 }
3855
3856 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3857 {
3858 struct fe_priv *np = netdev_priv(dev);
3859 u8 __iomem *base = get_hwbase(dev);
3860 u32 *rbuf = buf;
3861 int i;
3862
3863 regs->version = FORCEDETH_REGS_VER;
3864 spin_lock_irq(&np->lock);
3865 for (i = 0;i <= np->register_size/sizeof(u32); i++)
3866 rbuf[i] = readl(base + i*sizeof(u32));
3867 spin_unlock_irq(&np->lock);
3868 }
3869
3870 static int nv_nway_reset(struct net_device *dev)
3871 {
3872 struct fe_priv *np = netdev_priv(dev);
3873 int ret;
3874
3875 if (np->autoneg) {
3876 int bmcr;
3877
3878 netif_carrier_off(dev);
3879 if (netif_running(dev)) {
3880 nv_disable_irq(dev);
3881 netif_tx_lock_bh(dev);
3882 spin_lock(&np->lock);
3883 /* stop engines */
3884 nv_stop_rx(dev);
3885 nv_stop_tx(dev);
3886 spin_unlock(&np->lock);
3887 netif_tx_unlock_bh(dev);
3888 printk(KERN_INFO "%s: link down.\n", dev->name);
3889 }
3890
3891 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3892 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3893 bmcr |= BMCR_ANENABLE;
3894 /* reset the phy in order for settings to stick*/
3895 if (phy_reset(dev, bmcr)) {
3896 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3897 return -EINVAL;
3898 }
3899 } else {
3900 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3901 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3902 }
3903
3904 if (netif_running(dev)) {
3905 nv_start_rx(dev);
3906 nv_start_tx(dev);
3907 nv_enable_irq(dev);
3908 }
3909 ret = 0;
3910 } else {
3911 ret = -EINVAL;
3912 }
3913
3914 return ret;
3915 }
3916
3917 static int nv_set_tso(struct net_device *dev, u32 value)
3918 {
3919 struct fe_priv *np = netdev_priv(dev);
3920
3921 if ((np->driver_data & DEV_HAS_CHECKSUM))
3922 return ethtool_op_set_tso(dev, value);
3923 else
3924 return -EOPNOTSUPP;
3925 }
3926
3927 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3928 {
3929 struct fe_priv *np = netdev_priv(dev);
3930
3931 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3932 ring->rx_mini_max_pending = 0;
3933 ring->rx_jumbo_max_pending = 0;
3934 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3935
3936 ring->rx_pending = np->rx_ring_size;
3937 ring->rx_mini_pending = 0;
3938 ring->rx_jumbo_pending = 0;
3939 ring->tx_pending = np->tx_ring_size;
3940 }
3941
3942 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3943 {
3944 struct fe_priv *np = netdev_priv(dev);
3945 u8 __iomem *base = get_hwbase(dev);
3946 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
3947 dma_addr_t ring_addr;
3948
3949 if (ring->rx_pending < RX_RING_MIN ||
3950 ring->tx_pending < TX_RING_MIN ||
3951 ring->rx_mini_pending != 0 ||
3952 ring->rx_jumbo_pending != 0 ||
3953 (np->desc_ver == DESC_VER_1 &&
3954 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3955 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3956 (np->desc_ver != DESC_VER_1 &&
3957 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3958 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3959 return -EINVAL;
3960 }
3961
3962 /* allocate new rings */
3963 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3964 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3965 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3966 &ring_addr);
3967 } else {
3968 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3969 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3970 &ring_addr);
3971 }
3972 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
3973 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
3974 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
3975 /* fall back to old rings */
3976 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3977 if (rxtx_ring)
3978 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3979 rxtx_ring, ring_addr);
3980 } else {
3981 if (rxtx_ring)
3982 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3983 rxtx_ring, ring_addr);
3984 }
3985 if (rx_skbuff)
3986 kfree(rx_skbuff);
3987 if (tx_skbuff)
3988 kfree(tx_skbuff);
3989 goto exit;
3990 }
3991
3992 if (netif_running(dev)) {
3993 nv_disable_irq(dev);
3994 netif_tx_lock_bh(dev);
3995 spin_lock(&np->lock);
3996 /* stop engines */
3997 nv_stop_rx(dev);
3998 nv_stop_tx(dev);
3999 nv_txrx_reset(dev);
4000 /* drain queues */
4001 nv_drain_rx(dev);
4002 nv_drain_tx(dev);
4003 /* delete queues */
4004 free_rings(dev);
4005 }
4006
4007 /* set new values */
4008 np->rx_ring_size = ring->rx_pending;
4009 np->tx_ring_size = ring->tx_pending;
4010 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4011 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4012 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4013 } else {
4014 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4015 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4016 }
4017 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4018 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4019 np->ring_addr = ring_addr;
4020
4021 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4022 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4023
4024 if (netif_running(dev)) {
4025 /* reinit driver view of the queues */
4026 set_bufsize(dev);
4027 if (nv_init_ring(dev)) {
4028 if (!np->in_shutdown)
4029 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4030 }
4031
4032 /* reinit nic view of the queues */
4033 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4034 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4035 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4036 base + NvRegRingSizes);
4037 pci_push(base);
4038 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4039 pci_push(base);
4040
4041 /* restart engines */
4042 nv_start_rx(dev);
4043 nv_start_tx(dev);
4044 spin_unlock(&np->lock);
4045 netif_tx_unlock_bh(dev);
4046 nv_enable_irq(dev);
4047 }
4048 return 0;
4049 exit:
4050 return -ENOMEM;
4051 }
4052
4053 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4054 {
4055 struct fe_priv *np = netdev_priv(dev);
4056
4057 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4058 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4059 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4060 }
4061
4062 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4063 {
4064 struct fe_priv *np = netdev_priv(dev);
4065 int adv, bmcr;
4066
4067 if ((!np->autoneg && np->duplex == 0) ||
4068 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4069 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4070 dev->name);
4071 return -EINVAL;
4072 }
4073 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4074 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4075 return -EINVAL;
4076 }
4077
4078 netif_carrier_off(dev);
4079 if (netif_running(dev)) {
4080 nv_disable_irq(dev);
4081 netif_tx_lock_bh(dev);
4082 spin_lock(&np->lock);
4083 /* stop engines */
4084 nv_stop_rx(dev);
4085 nv_stop_tx(dev);
4086 spin_unlock(&np->lock);
4087 netif_tx_unlock_bh(dev);
4088 }
4089
4090 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4091 if (pause->rx_pause)
4092 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4093 if (pause->tx_pause)
4094 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4095
4096 if (np->autoneg && pause->autoneg) {
4097 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4098
4099 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4100 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4101 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4102 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4103 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4104 adv |= ADVERTISE_PAUSE_ASYM;
4105 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4106
4107 if (netif_running(dev))
4108 printk(KERN_INFO "%s: link down.\n", dev->name);
4109 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4110 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4111 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4112 } else {
4113 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4114 if (pause->rx_pause)
4115 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4116 if (pause->tx_pause)
4117 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4118
4119 if (!netif_running(dev))
4120 nv_update_linkspeed(dev);
4121 else
4122 nv_update_pause(dev, np->pause_flags);
4123 }
4124
4125 if (netif_running(dev)) {
4126 nv_start_rx(dev);
4127 nv_start_tx(dev);
4128 nv_enable_irq(dev);
4129 }
4130 return 0;
4131 }
4132
4133 static u32 nv_get_rx_csum(struct net_device *dev)
4134 {
4135 struct fe_priv *np = netdev_priv(dev);
4136 return (np->rx_csum) != 0;
4137 }
4138
4139 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4140 {
4141 struct fe_priv *np = netdev_priv(dev);
4142 u8 __iomem *base = get_hwbase(dev);
4143 int retcode = 0;
4144
4145 if (np->driver_data & DEV_HAS_CHECKSUM) {
4146 if (data) {
4147 np->rx_csum = 1;
4148 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4149 } else {
4150 np->rx_csum = 0;
4151 /* vlan is dependent on rx checksum offload */
4152 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4153 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4154 }
4155 if (netif_running(dev)) {
4156 spin_lock_irq(&np->lock);
4157 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4158 spin_unlock_irq(&np->lock);
4159 }
4160 } else {
4161 return -EINVAL;
4162 }
4163
4164 return retcode;
4165 }
4166
4167 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4168 {
4169 struct fe_priv *np = netdev_priv(dev);
4170
4171 if (np->driver_data & DEV_HAS_CHECKSUM)
4172 return ethtool_op_set_tx_hw_csum(dev, data);
4173 else
4174 return -EOPNOTSUPP;
4175 }
4176
4177 static int nv_set_sg(struct net_device *dev, u32 data)
4178 {
4179 struct fe_priv *np = netdev_priv(dev);
4180
4181 if (np->driver_data & DEV_HAS_CHECKSUM)
4182 return ethtool_op_set_sg(dev, data);
4183 else
4184 return -EOPNOTSUPP;
4185 }
4186
4187 static int nv_get_stats_count(struct net_device *dev)
4188 {
4189 struct fe_priv *np = netdev_priv(dev);
4190
4191 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4192 return NV_DEV_STATISTICS_V1_COUNT;
4193 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4194 return NV_DEV_STATISTICS_V2_COUNT;
4195 else
4196 return 0;
4197 }
4198
4199 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4200 {
4201 struct fe_priv *np = netdev_priv(dev);
4202
4203 /* update stats */
4204 nv_do_stats_poll((unsigned long)dev);
4205
4206 memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
4207 }
4208
4209 static int nv_self_test_count(struct net_device *dev)
4210 {
4211 struct fe_priv *np = netdev_priv(dev);
4212
4213 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4214 return NV_TEST_COUNT_EXTENDED;
4215 else
4216 return NV_TEST_COUNT_BASE;
4217 }
4218
4219 static int nv_link_test(struct net_device *dev)
4220 {
4221 struct fe_priv *np = netdev_priv(dev);
4222 int mii_status;
4223
4224 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4225 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4226
4227 /* check phy link status */
4228 if (!(mii_status & BMSR_LSTATUS))
4229 return 0;
4230 else
4231 return 1;
4232 }
4233
4234 static int nv_register_test(struct net_device *dev)
4235 {
4236 u8 __iomem *base = get_hwbase(dev);
4237 int i = 0;
4238 u32 orig_read, new_read;
4239
4240 do {
4241 orig_read = readl(base + nv_registers_test[i].reg);
4242
4243 /* xor with mask to toggle bits */
4244 orig_read ^= nv_registers_test[i].mask;
4245
4246 writel(orig_read, base + nv_registers_test[i].reg);
4247
4248 new_read = readl(base + nv_registers_test[i].reg);
4249
4250 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4251 return 0;
4252
4253 /* restore original value */
4254 orig_read ^= nv_registers_test[i].mask;
4255 writel(orig_read, base + nv_registers_test[i].reg);
4256
4257 } while (nv_registers_test[++i].reg != 0);
4258
4259 return 1;
4260 }
4261
4262 static int nv_interrupt_test(struct net_device *dev)
4263 {
4264 struct fe_priv *np = netdev_priv(dev);
4265 u8 __iomem *base = get_hwbase(dev);
4266 int ret = 1;
4267 int testcnt;
4268 u32 save_msi_flags, save_poll_interval = 0;
4269
4270 if (netif_running(dev)) {
4271 /* free current irq */
4272 nv_free_irq(dev);
4273 save_poll_interval = readl(base+NvRegPollingInterval);
4274 }
4275
4276 /* flag to test interrupt handler */
4277 np->intr_test = 0;
4278
4279 /* setup test irq */
4280 save_msi_flags = np->msi_flags;
4281 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4282 np->msi_flags |= 0x001; /* setup 1 vector */
4283 if (nv_request_irq(dev, 1))
4284 return 0;
4285
4286 /* setup timer interrupt */
4287 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4288 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4289
4290 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4291
4292 /* wait for at least one interrupt */
4293 msleep(100);
4294
4295 spin_lock_irq(&np->lock);
4296
4297 /* flag should be set within ISR */
4298 testcnt = np->intr_test;
4299 if (!testcnt)
4300 ret = 2;
4301
4302 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4303 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4304 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4305 else
4306 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4307
4308 spin_unlock_irq(&np->lock);
4309
4310 nv_free_irq(dev);
4311
4312 np->msi_flags = save_msi_flags;
4313
4314 if (netif_running(dev)) {
4315 writel(save_poll_interval, base + NvRegPollingInterval);
4316 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4317 /* restore original irq */
4318 if (nv_request_irq(dev, 0))
4319 return 0;
4320 }
4321
4322 return ret;
4323 }
4324
4325 static int nv_loopback_test(struct net_device *dev)
4326 {
4327 struct fe_priv *np = netdev_priv(dev);
4328 u8 __iomem *base = get_hwbase(dev);
4329 struct sk_buff *tx_skb, *rx_skb;
4330 dma_addr_t test_dma_addr;
4331 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4332 u32 flags;
4333 int len, i, pkt_len;
4334 u8 *pkt_data;
4335 u32 filter_flags = 0;
4336 u32 misc1_flags = 0;
4337 int ret = 1;
4338
4339 if (netif_running(dev)) {
4340 nv_disable_irq(dev);
4341 filter_flags = readl(base + NvRegPacketFilterFlags);
4342 misc1_flags = readl(base + NvRegMisc1);
4343 } else {
4344 nv_txrx_reset(dev);
4345 }
4346
4347 /* reinit driver view of the rx queue */
4348 set_bufsize(dev);
4349 nv_init_ring(dev);
4350
4351 /* setup hardware for loopback */
4352 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4353 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4354
4355 /* reinit nic view of the rx queue */
4356 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4357 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4358 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4359 base + NvRegRingSizes);
4360 pci_push(base);
4361
4362 /* restart rx engine */
4363 nv_start_rx(dev);
4364 nv_start_tx(dev);
4365
4366 /* setup packet for tx */
4367 pkt_len = ETH_DATA_LEN;
4368 tx_skb = dev_alloc_skb(pkt_len);
4369 if (!tx_skb) {
4370 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4371 " of %s\n", dev->name);
4372 ret = 0;
4373 goto out;
4374 }
4375 pkt_data = skb_put(tx_skb, pkt_len);
4376 for (i = 0; i < pkt_len; i++)
4377 pkt_data[i] = (u8)(i & 0xff);
4378 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4379 tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
4380
4381 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4382 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4383 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4384 } else {
4385 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
4386 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
4387 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4388 }
4389 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4390 pci_push(get_hwbase(dev));
4391
4392 msleep(500);
4393
4394 /* check for rx of the packet */
4395 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4396 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4397 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4398
4399 } else {
4400 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4401 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4402 }
4403
4404 if (flags & NV_RX_AVAIL) {
4405 ret = 0;
4406 } else if (np->desc_ver == DESC_VER_1) {
4407 if (flags & NV_RX_ERROR)
4408 ret = 0;
4409 } else {
4410 if (flags & NV_RX2_ERROR) {
4411 ret = 0;
4412 }
4413 }
4414
4415 if (ret) {
4416 if (len != pkt_len) {
4417 ret = 0;
4418 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4419 dev->name, len, pkt_len);
4420 } else {
4421 rx_skb = np->rx_skb[0].skb;
4422 for (i = 0; i < pkt_len; i++) {
4423 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4424 ret = 0;
4425 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4426 dev->name, i);
4427 break;
4428 }
4429 }
4430 }
4431 } else {
4432 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4433 }
4434
4435 pci_unmap_page(np->pci_dev, test_dma_addr,
4436 tx_skb->end-tx_skb->data,
4437 PCI_DMA_TODEVICE);
4438 dev_kfree_skb_any(tx_skb);
4439 out:
4440 /* stop engines */
4441 nv_stop_rx(dev);
4442 nv_stop_tx(dev);
4443 nv_txrx_reset(dev);
4444 /* drain rx queue */
4445 nv_drain_rx(dev);
4446 nv_drain_tx(dev);
4447
4448 if (netif_running(dev)) {
4449 writel(misc1_flags, base + NvRegMisc1);
4450 writel(filter_flags, base + NvRegPacketFilterFlags);
4451 nv_enable_irq(dev);
4452 }
4453
4454 return ret;
4455 }
4456
4457 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4458 {
4459 struct fe_priv *np = netdev_priv(dev);
4460 u8 __iomem *base = get_hwbase(dev);
4461 int result;
4462 memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
4463
4464 if (!nv_link_test(dev)) {
4465 test->flags |= ETH_TEST_FL_FAILED;
4466 buffer[0] = 1;
4467 }
4468
4469 if (test->flags & ETH_TEST_FL_OFFLINE) {
4470 if (netif_running(dev)) {
4471 netif_stop_queue(dev);
4472 netif_poll_disable(dev);
4473 netif_tx_lock_bh(dev);
4474 spin_lock_irq(&np->lock);
4475 nv_disable_hw_interrupts(dev, np->irqmask);
4476 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4477 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4478 } else {
4479 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4480 }
4481 /* stop engines */
4482 nv_stop_rx(dev);
4483 nv_stop_tx(dev);
4484 nv_txrx_reset(dev);
4485 /* drain rx queue */
4486 nv_drain_rx(dev);
4487 nv_drain_tx(dev);
4488 spin_unlock_irq(&np->lock);
4489 netif_tx_unlock_bh(dev);
4490 }
4491
4492 if (!nv_register_test(dev)) {
4493 test->flags |= ETH_TEST_FL_FAILED;
4494 buffer[1] = 1;
4495 }
4496
4497 result = nv_interrupt_test(dev);
4498 if (result != 1) {
4499 test->flags |= ETH_TEST_FL_FAILED;
4500 buffer[2] = 1;
4501 }
4502 if (result == 0) {
4503 /* bail out */
4504 return;
4505 }
4506
4507 if (!nv_loopback_test(dev)) {
4508 test->flags |= ETH_TEST_FL_FAILED;
4509 buffer[3] = 1;
4510 }
4511
4512 if (netif_running(dev)) {
4513 /* reinit driver view of the rx queue */
4514 set_bufsize(dev);
4515 if (nv_init_ring(dev)) {
4516 if (!np->in_shutdown)
4517 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4518 }
4519 /* reinit nic view of the rx queue */
4520 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4521 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4522 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4523 base + NvRegRingSizes);
4524 pci_push(base);
4525 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4526 pci_push(base);
4527 /* restart rx engine */
4528 nv_start_rx(dev);
4529 nv_start_tx(dev);
4530 netif_start_queue(dev);
4531 netif_poll_enable(dev);
4532 nv_enable_hw_interrupts(dev, np->irqmask);
4533 }
4534 }
4535 }
4536
4537 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4538 {
4539 switch (stringset) {
4540 case ETH_SS_STATS:
4541 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
4542 break;
4543 case ETH_SS_TEST:
4544 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
4545 break;
4546 }
4547 }
4548
4549 static const struct ethtool_ops ops = {
4550 .get_drvinfo = nv_get_drvinfo,
4551 .get_link = ethtool_op_get_link,
4552 .get_wol = nv_get_wol,
4553 .set_wol = nv_set_wol,
4554 .get_settings = nv_get_settings,
4555 .set_settings = nv_set_settings,
4556 .get_regs_len = nv_get_regs_len,
4557 .get_regs = nv_get_regs,
4558 .nway_reset = nv_nway_reset,
4559 .get_perm_addr = ethtool_op_get_perm_addr,
4560 .get_tso = ethtool_op_get_tso,
4561 .set_tso = nv_set_tso,
4562 .get_ringparam = nv_get_ringparam,
4563 .set_ringparam = nv_set_ringparam,
4564 .get_pauseparam = nv_get_pauseparam,
4565 .set_pauseparam = nv_set_pauseparam,
4566 .get_rx_csum = nv_get_rx_csum,
4567 .set_rx_csum = nv_set_rx_csum,
4568 .get_tx_csum = ethtool_op_get_tx_csum,
4569 .set_tx_csum = nv_set_tx_csum,
4570 .get_sg = ethtool_op_get_sg,
4571 .set_sg = nv_set_sg,
4572 .get_strings = nv_get_strings,
4573 .get_stats_count = nv_get_stats_count,
4574 .get_ethtool_stats = nv_get_ethtool_stats,
4575 .self_test_count = nv_self_test_count,
4576 .self_test = nv_self_test,
4577 };
4578
4579 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4580 {
4581 struct fe_priv *np = get_nvpriv(dev);
4582
4583 spin_lock_irq(&np->lock);
4584
4585 /* save vlan group */
4586 np->vlangrp = grp;
4587
4588 if (grp) {
4589 /* enable vlan on MAC */
4590 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4591 } else {
4592 /* disable vlan on MAC */
4593 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4594 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4595 }
4596
4597 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4598
4599 spin_unlock_irq(&np->lock);
4600 };
4601
4602 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
4603 {
4604 /* nothing to do */
4605 };
4606
4607 /* The mgmt unit and driver use a semaphore to access the phy during init */
4608 static int nv_mgmt_acquire_sema(struct net_device *dev)
4609 {
4610 u8 __iomem *base = get_hwbase(dev);
4611 int i;
4612 u32 tx_ctrl, mgmt_sema;
4613
4614 for (i = 0; i < 10; i++) {
4615 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4616 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4617 break;
4618 msleep(500);
4619 }
4620
4621 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4622 return 0;
4623
4624 for (i = 0; i < 2; i++) {
4625 tx_ctrl = readl(base + NvRegTransmitterControl);
4626 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4627 writel(tx_ctrl, base + NvRegTransmitterControl);
4628
4629 /* verify that semaphore was acquired */
4630 tx_ctrl = readl(base + NvRegTransmitterControl);
4631 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4632 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4633 return 1;
4634 else
4635 udelay(50);
4636 }
4637
4638 return 0;
4639 }
4640
4641 static int nv_open(struct net_device *dev)
4642 {
4643 struct fe_priv *np = netdev_priv(dev);
4644 u8 __iomem *base = get_hwbase(dev);
4645 int ret = 1;
4646 int oom, i;
4647
4648 dprintk(KERN_DEBUG "nv_open: begin\n");
4649
4650 /* erase previous misconfiguration */
4651 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4652 nv_mac_reset(dev);
4653 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4654 writel(0, base + NvRegMulticastAddrB);
4655 writel(0, base + NvRegMulticastMaskA);
4656 writel(0, base + NvRegMulticastMaskB);
4657 writel(0, base + NvRegPacketFilterFlags);
4658
4659 writel(0, base + NvRegTransmitterControl);
4660 writel(0, base + NvRegReceiverControl);
4661
4662 writel(0, base + NvRegAdapterControl);
4663
4664 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4665 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
4666
4667 /* initialize descriptor rings */
4668 set_bufsize(dev);
4669 oom = nv_init_ring(dev);
4670
4671 writel(0, base + NvRegLinkSpeed);
4672 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4673 nv_txrx_reset(dev);
4674 writel(0, base + NvRegUnknownSetupReg6);
4675
4676 np->in_shutdown = 0;
4677
4678 /* give hw rings */
4679 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4680 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4681 base + NvRegRingSizes);
4682
4683 writel(np->linkspeed, base + NvRegLinkSpeed);
4684 if (np->desc_ver == DESC_VER_1)
4685 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4686 else
4687 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4688 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4689 writel(np->vlanctl_bits, base + NvRegVlanControl);
4690 pci_push(base);
4691 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4692 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4693 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4694 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4695
4696 writel(0, base + NvRegMIIMask);
4697 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4698 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4699
4700 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4701 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4702 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4703 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4704
4705 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4706 get_random_bytes(&i, sizeof(i));
4707 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4708 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4709 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4710 if (poll_interval == -1) {
4711 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4712 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4713 else
4714 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4715 }
4716 else
4717 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4718 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4719 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4720 base + NvRegAdapterControl);
4721 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4722 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
4723 if (np->wolenabled)
4724 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4725
4726 i = readl(base + NvRegPowerState);
4727 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4728 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4729
4730 pci_push(base);
4731 udelay(10);
4732 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4733
4734 nv_disable_hw_interrupts(dev, np->irqmask);
4735 pci_push(base);
4736 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4737 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4738 pci_push(base);
4739
4740 if (nv_request_irq(dev, 0)) {
4741 goto out_drain;
4742 }
4743
4744 /* ask for interrupts */
4745 nv_enable_hw_interrupts(dev, np->irqmask);
4746
4747 spin_lock_irq(&np->lock);
4748 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4749 writel(0, base + NvRegMulticastAddrB);
4750 writel(0, base + NvRegMulticastMaskA);
4751 writel(0, base + NvRegMulticastMaskB);
4752 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4753 /* One manual link speed update: Interrupts are enabled, future link
4754 * speed changes cause interrupts and are handled by nv_link_irq().
4755 */
4756 {
4757 u32 miistat;
4758 miistat = readl(base + NvRegMIIStatus);
4759 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4760 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4761 }
4762 /* set linkspeed to invalid value, thus force nv_update_linkspeed
4763 * to init hw */
4764 np->linkspeed = 0;
4765 ret = nv_update_linkspeed(dev);
4766 nv_start_rx(dev);
4767 nv_start_tx(dev);
4768 netif_start_queue(dev);
4769 netif_poll_enable(dev);
4770
4771 if (ret) {
4772 netif_carrier_on(dev);
4773 } else {
4774 printk("%s: no link during initialization.\n", dev->name);
4775 netif_carrier_off(dev);
4776 }
4777 if (oom)
4778 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4779
4780 /* start statistics timer */
4781 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
4782 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4783
4784 spin_unlock_irq(&np->lock);
4785
4786 return 0;
4787 out_drain:
4788 drain_ring(dev);
4789 return ret;
4790 }
4791
4792 static int nv_close(struct net_device *dev)
4793 {
4794 struct fe_priv *np = netdev_priv(dev);
4795 u8 __iomem *base;
4796
4797 spin_lock_irq(&np->lock);
4798 np->in_shutdown = 1;
4799 spin_unlock_irq(&np->lock);
4800 netif_poll_disable(dev);
4801 synchronize_irq(dev->irq);
4802
4803 del_timer_sync(&np->oom_kick);
4804 del_timer_sync(&np->nic_poll);
4805 del_timer_sync(&np->stats_poll);
4806
4807 netif_stop_queue(dev);
4808 spin_lock_irq(&np->lock);
4809 nv_stop_tx(dev);
4810 nv_stop_rx(dev);
4811 nv_txrx_reset(dev);
4812
4813 /* disable interrupts on the nic or we will lock up */
4814 base = get_hwbase(dev);
4815 nv_disable_hw_interrupts(dev, np->irqmask);
4816 pci_push(base);
4817 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4818
4819 spin_unlock_irq(&np->lock);
4820
4821 nv_free_irq(dev);
4822
4823 drain_ring(dev);
4824
4825 if (np->wolenabled)
4826 nv_start_rx(dev);
4827
4828 /* FIXME: power down nic */
4829
4830 return 0;
4831 }
4832
4833 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4834 {
4835 struct net_device *dev;
4836 struct fe_priv *np;
4837 unsigned long addr;
4838 u8 __iomem *base;
4839 int err, i;
4840 u32 powerstate, txreg;
4841 u32 phystate_orig = 0, phystate;
4842 int phyinitialized = 0;
4843
4844 dev = alloc_etherdev(sizeof(struct fe_priv));
4845 err = -ENOMEM;
4846 if (!dev)
4847 goto out;
4848
4849 np = netdev_priv(dev);
4850 np->pci_dev = pci_dev;
4851 spin_lock_init(&np->lock);
4852 SET_MODULE_OWNER(dev);
4853 SET_NETDEV_DEV(dev, &pci_dev->dev);
4854
4855 init_timer(&np->oom_kick);
4856 np->oom_kick.data = (unsigned long) dev;
4857 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
4858 init_timer(&np->nic_poll);
4859 np->nic_poll.data = (unsigned long) dev;
4860 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
4861 init_timer(&np->stats_poll);
4862 np->stats_poll.data = (unsigned long) dev;
4863 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
4864
4865 err = pci_enable_device(pci_dev);
4866 if (err) {
4867 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4868 err, pci_name(pci_dev));
4869 goto out_free;
4870 }
4871
4872 pci_set_master(pci_dev);
4873
4874 err = pci_request_regions(pci_dev, DRV_NAME);
4875 if (err < 0)
4876 goto out_disable;
4877
4878 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
4879 np->register_size = NV_PCI_REGSZ_VER3;
4880 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
4881 np->register_size = NV_PCI_REGSZ_VER2;
4882 else
4883 np->register_size = NV_PCI_REGSZ_VER1;
4884
4885 err = -EINVAL;
4886 addr = 0;
4887 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4888 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4889 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4890 pci_resource_len(pci_dev, i),
4891 pci_resource_flags(pci_dev, i));
4892 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4893 pci_resource_len(pci_dev, i) >= np->register_size) {
4894 addr = pci_resource_start(pci_dev, i);
4895 break;
4896 }
4897 }
4898 if (i == DEVICE_COUNT_RESOURCE) {
4899 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4900 pci_name(pci_dev));
4901 goto out_relreg;
4902 }
4903
4904 /* copy of driver data */
4905 np->driver_data = id->driver_data;
4906
4907 /* handle different descriptor versions */
4908 if (id->driver_data & DEV_HAS_HIGH_DMA) {
4909 /* packet format 3: supports 40-bit addressing */
4910 np->desc_ver = DESC_VER_3;
4911 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4912 if (dma_64bit) {
4913 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4914 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4915 pci_name(pci_dev));
4916 } else {
4917 dev->features |= NETIF_F_HIGHDMA;
4918 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4919 }
4920 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4921 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4922 pci_name(pci_dev));
4923 }
4924 }
4925 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4926 /* packet format 2: supports jumbo frames */
4927 np->desc_ver = DESC_VER_2;
4928 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4929 } else {
4930 /* original packet format */
4931 np->desc_ver = DESC_VER_1;
4932 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4933 }
4934
4935 np->pkt_limit = NV_PKTLIMIT_1;
4936 if (id->driver_data & DEV_HAS_LARGEDESC)
4937 np->pkt_limit = NV_PKTLIMIT_2;
4938
4939 if (id->driver_data & DEV_HAS_CHECKSUM) {
4940 np->rx_csum = 1;
4941 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4942 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4943 dev->features |= NETIF_F_TSO;
4944 }
4945
4946 np->vlanctl_bits = 0;
4947 if (id->driver_data & DEV_HAS_VLAN) {
4948 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4949 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4950 dev->vlan_rx_register = nv_vlan_rx_register;
4951 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4952 }
4953
4954 np->msi_flags = 0;
4955 if ((id->driver_data & DEV_HAS_MSI) && msi) {
4956 np->msi_flags |= NV_MSI_CAPABLE;
4957 }
4958 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4959 np->msi_flags |= NV_MSI_X_CAPABLE;
4960 }
4961
4962 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4963 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4964 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4965 }
4966
4967
4968 err = -ENOMEM;
4969 np->base = ioremap(addr, np->register_size);
4970 if (!np->base)
4971 goto out_relreg;
4972 dev->base_addr = (unsigned long)np->base;
4973
4974 dev->irq = pci_dev->irq;
4975
4976 np->rx_ring_size = RX_RING_DEFAULT;
4977 np->tx_ring_size = TX_RING_DEFAULT;
4978
4979 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4980 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4981 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4982 &np->ring_addr);
4983 if (!np->rx_ring.orig)
4984 goto out_unmap;
4985 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4986 } else {
4987 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4988 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4989 &np->ring_addr);
4990 if (!np->rx_ring.ex)
4991 goto out_unmap;
4992 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4993 }
4994 np->rx_skb = kmalloc(sizeof(struct nv_skb_map) * np->rx_ring_size, GFP_KERNEL);
4995 np->tx_skb = kmalloc(sizeof(struct nv_skb_map) * np->tx_ring_size, GFP_KERNEL);
4996 if (!np->rx_skb || !np->tx_skb)
4997 goto out_freering;
4998 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4999 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
5000
5001 dev->open = nv_open;
5002 dev->stop = nv_close;
5003 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
5004 dev->hard_start_xmit = nv_start_xmit;
5005 else
5006 dev->hard_start_xmit = nv_start_xmit_optimized;
5007 dev->get_stats = nv_get_stats;
5008 dev->change_mtu = nv_change_mtu;
5009 dev->set_mac_address = nv_set_mac_address;
5010 dev->set_multicast_list = nv_set_multicast;
5011 #ifdef CONFIG_NET_POLL_CONTROLLER
5012 dev->poll_controller = nv_poll_controller;
5013 #endif
5014 dev->weight = RX_WORK_PER_LOOP;
5015 #ifdef CONFIG_FORCEDETH_NAPI
5016 dev->poll = nv_napi_poll;
5017 #endif
5018 SET_ETHTOOL_OPS(dev, &ops);
5019 dev->tx_timeout = nv_tx_timeout;
5020 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5021
5022 pci_set_drvdata(pci_dev, dev);
5023
5024 /* read the mac address */
5025 base = get_hwbase(dev);
5026 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5027 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5028
5029 /* check the workaround bit for correct mac address order */
5030 txreg = readl(base + NvRegTransmitPoll);
5031 if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5032 /* mac address is already in correct order */
5033 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5034 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5035 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5036 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5037 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5038 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5039 } else {
5040 /* need to reverse mac address to correct order */
5041 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5042 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5043 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5044 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5045 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5046 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5047 /* set permanent address to be correct aswell */
5048 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
5049 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
5050 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
5051 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5052 }
5053 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5054
5055 if (!is_valid_ether_addr(dev->perm_addr)) {
5056 /*
5057 * Bad mac address. At least one bios sets the mac address
5058 * to 01:23:45:67:89:ab
5059 */
5060 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
5061 pci_name(pci_dev),
5062 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5063 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5064 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
5065 dev->dev_addr[0] = 0x00;
5066 dev->dev_addr[1] = 0x00;
5067 dev->dev_addr[2] = 0x6c;
5068 get_random_bytes(&dev->dev_addr[3], 3);
5069 }
5070
5071 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
5072 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5073 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5074
5075 /* set mac address */
5076 nv_copy_mac_to_hw(dev);
5077
5078 /* disable WOL */
5079 writel(0, base + NvRegWakeUpFlags);
5080 np->wolenabled = 0;
5081
5082 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5083 u8 revision_id;
5084 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
5085
5086 /* take phy and nic out of low power mode */
5087 powerstate = readl(base + NvRegPowerState2);
5088 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5089 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5090 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5091 revision_id >= 0xA3)
5092 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5093 writel(powerstate, base + NvRegPowerState2);
5094 }
5095
5096 if (np->desc_ver == DESC_VER_1) {
5097 np->tx_flags = NV_TX_VALID;
5098 } else {
5099 np->tx_flags = NV_TX2_VALID;
5100 }
5101 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5102 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5103 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5104 np->msi_flags |= 0x0003;
5105 } else {
5106 np->irqmask = NVREG_IRQMASK_CPU;
5107 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5108 np->msi_flags |= 0x0001;
5109 }
5110
5111 if (id->driver_data & DEV_NEED_TIMERIRQ)
5112 np->irqmask |= NVREG_IRQ_TIMER;
5113 if (id->driver_data & DEV_NEED_LINKTIMER) {
5114 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5115 np->need_linktimer = 1;
5116 np->link_timeout = jiffies + LINK_TIMEOUT;
5117 } else {
5118 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5119 np->need_linktimer = 0;
5120 }
5121
5122 /* clear phy state and temporarily halt phy interrupts */
5123 writel(0, base + NvRegMIIMask);
5124 phystate = readl(base + NvRegAdapterControl);
5125 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5126 phystate_orig = 1;
5127 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5128 writel(phystate, base + NvRegAdapterControl);
5129 }
5130 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
5131
5132 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5133 /* management unit running on the mac? */
5134 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5135 np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5136 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5137 for (i = 0; i < 5000; i++) {
5138 msleep(1);
5139 if (nv_mgmt_acquire_sema(dev)) {
5140 /* management unit setup the phy already? */
5141 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5142 NVREG_XMITCTL_SYNC_PHY_INIT) {
5143 /* phy is inited by mgmt unit */
5144 phyinitialized = 1;
5145 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5146 } else {
5147 /* we need to init the phy */
5148 }
5149 break;
5150 }
5151 }
5152 }
5153 }
5154
5155 /* find a suitable phy */
5156 for (i = 1; i <= 32; i++) {
5157 int id1, id2;
5158 int phyaddr = i & 0x1F;
5159
5160 spin_lock_irq(&np->lock);
5161 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5162 spin_unlock_irq(&np->lock);
5163 if (id1 < 0 || id1 == 0xffff)
5164 continue;
5165 spin_lock_irq(&np->lock);
5166 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5167 spin_unlock_irq(&np->lock);
5168 if (id2 < 0 || id2 == 0xffff)
5169 continue;
5170
5171 np->phy_model = id2 & PHYID2_MODEL_MASK;
5172 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5173 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5174 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5175 pci_name(pci_dev), id1, id2, phyaddr);
5176 np->phyaddr = phyaddr;
5177 np->phy_oui = id1 | id2;
5178 break;
5179 }
5180 if (i == 33) {
5181 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
5182 pci_name(pci_dev));
5183 goto out_error;
5184 }
5185
5186 if (!phyinitialized) {
5187 /* reset it */
5188 phy_init(dev);
5189 } else {
5190 /* see if it is a gigabit phy */
5191 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5192 if (mii_status & PHY_GIGABIT) {
5193 np->gigabit = PHY_GIGABIT;
5194 }
5195 }
5196
5197 /* set default link speed settings */
5198 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5199 np->duplex = 0;
5200 np->autoneg = 1;
5201
5202 err = register_netdev(dev);
5203 if (err) {
5204 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
5205 goto out_error;
5206 }
5207 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
5208 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
5209 pci_name(pci_dev));
5210
5211 return 0;
5212
5213 out_error:
5214 if (phystate_orig)
5215 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5216 pci_set_drvdata(pci_dev, NULL);
5217 out_freering:
5218 free_rings(dev);
5219 out_unmap:
5220 iounmap(get_hwbase(dev));
5221 out_relreg:
5222 pci_release_regions(pci_dev);
5223 out_disable:
5224 pci_disable_device(pci_dev);
5225 out_free:
5226 free_netdev(dev);
5227 out:
5228 return err;
5229 }
5230
5231 static void __devexit nv_remove(struct pci_dev *pci_dev)
5232 {
5233 struct net_device *dev = pci_get_drvdata(pci_dev);
5234 struct fe_priv *np = netdev_priv(dev);
5235 u8 __iomem *base = get_hwbase(dev);
5236
5237 unregister_netdev(dev);
5238
5239 /* special op: write back the misordered MAC address - otherwise
5240 * the next nv_probe would see a wrong address.
5241 */
5242 writel(np->orig_mac[0], base + NvRegMacAddrA);
5243 writel(np->orig_mac[1], base + NvRegMacAddrB);
5244
5245 /* free all structures */
5246 free_rings(dev);
5247 iounmap(get_hwbase(dev));
5248 pci_release_regions(pci_dev);
5249 pci_disable_device(pci_dev);
5250 free_netdev(dev);
5251 pci_set_drvdata(pci_dev, NULL);
5252 }
5253
5254 #ifdef CONFIG_PM
5255 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5256 {
5257 struct net_device *dev = pci_get_drvdata(pdev);
5258 struct fe_priv *np = netdev_priv(dev);
5259
5260 if (!netif_running(dev))
5261 goto out;
5262
5263 netif_device_detach(dev);
5264
5265 // Gross.
5266 nv_close(dev);
5267
5268 pci_save_state(pdev);
5269 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5270 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5271 out:
5272 return 0;
5273 }
5274
5275 static int nv_resume(struct pci_dev *pdev)
5276 {
5277 struct net_device *dev = pci_get_drvdata(pdev);
5278 int rc = 0;
5279
5280 if (!netif_running(dev))
5281 goto out;
5282
5283 netif_device_attach(dev);
5284
5285 pci_set_power_state(pdev, PCI_D0);
5286 pci_restore_state(pdev);
5287 pci_enable_wake(pdev, PCI_D0, 0);
5288
5289 rc = nv_open(dev);
5290 out:
5291 return rc;
5292 }
5293 #else
5294 #define nv_suspend NULL
5295 #define nv_resume NULL
5296 #endif /* CONFIG_PM */
5297
5298 static struct pci_device_id pci_tbl[] = {
5299 { /* nForce Ethernet Controller */
5300 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5301 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5302 },
5303 { /* nForce2 Ethernet Controller */
5304 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5305 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5306 },
5307 { /* nForce3 Ethernet Controller */
5308 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5309 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5310 },
5311 { /* nForce3 Ethernet Controller */
5312 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5313 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5314 },
5315 { /* nForce3 Ethernet Controller */
5316 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5317 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5318 },
5319 { /* nForce3 Ethernet Controller */
5320 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5321 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5322 },
5323 { /* nForce3 Ethernet Controller */
5324 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5325 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5326 },
5327 { /* CK804 Ethernet Controller */
5328 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5329 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5330 },
5331 { /* CK804 Ethernet Controller */
5332 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5333 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5334 },
5335 { /* MCP04 Ethernet Controller */
5336 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5337 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5338 },
5339 { /* MCP04 Ethernet Controller */
5340 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5341 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5342 },
5343 { /* MCP51 Ethernet Controller */
5344 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5345 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5346 },
5347 { /* MCP51 Ethernet Controller */
5348 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5349 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5350 },
5351 { /* MCP55 Ethernet Controller */
5352 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5353 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5354 },
5355 { /* MCP55 Ethernet Controller */
5356 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5357 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5358 },
5359 { /* MCP61 Ethernet Controller */
5360 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5361 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5362 },
5363 { /* MCP61 Ethernet Controller */
5364 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5365 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5366 },
5367 { /* MCP61 Ethernet Controller */
5368 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5369 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5370 },
5371 { /* MCP61 Ethernet Controller */
5372 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5373 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5374 },
5375 { /* MCP65 Ethernet Controller */
5376 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5377 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5378 },
5379 { /* MCP65 Ethernet Controller */
5380 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5381 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5382 },
5383 { /* MCP65 Ethernet Controller */
5384 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5385 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5386 },
5387 { /* MCP65 Ethernet Controller */
5388 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5389 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5390 },
5391 { /* MCP67 Ethernet Controller */
5392 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5393 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5394 },
5395 { /* MCP67 Ethernet Controller */
5396 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5397 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5398 },
5399 { /* MCP67 Ethernet Controller */
5400 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5401 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5402 },
5403 { /* MCP67 Ethernet Controller */
5404 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5405 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5406 },
5407 {0,},
5408 };
5409
5410 static struct pci_driver driver = {
5411 .name = "forcedeth",
5412 .id_table = pci_tbl,
5413 .probe = nv_probe,
5414 .remove = __devexit_p(nv_remove),
5415 .suspend = nv_suspend,
5416 .resume = nv_resume,
5417 };
5418
5419 static int __init init_nic(void)
5420 {
5421 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
5422 return pci_register_driver(&driver);
5423 }
5424
5425 static void __exit exit_nic(void)
5426 {
5427 pci_unregister_driver(&driver);
5428 }
5429
5430 module_param(max_interrupt_work, int, 0);
5431 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5432 module_param(optimization_mode, int, 0);
5433 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5434 module_param(poll_interval, int, 0);
5435 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5436 module_param(msi, int, 0);
5437 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5438 module_param(msix, int, 0);
5439 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5440 module_param(dma_64bit, int, 0);
5441 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5442
5443 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5444 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5445 MODULE_LICENSE("GPL");
5446
5447 MODULE_DEVICE_TABLE(pci, pci_tbl);
5448
5449 module_init(init_nic);
5450 module_exit(exit_nic);