Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / fec.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
43
44 #include <asm/cacheflush.h>
45
46 #ifndef CONFIG_ARCH_MXC
47 #include <asm/coldfire.h>
48 #include <asm/mcfsim.h>
49 #endif
50
51 #include "fec.h"
52
53 #ifdef CONFIG_ARCH_MXC
54 #include <mach/hardware.h>
55 #define FEC_ALIGNMENT 0xf
56 #else
57 #define FEC_ALIGNMENT 0x3
58 #endif
59
60 /*
61 * Define the fixed address of the FEC hardware.
62 */
63 #if defined(CONFIG_M5272)
64 #define HAVE_mii_link_interrupt
65
66 static unsigned char fec_mac_default[] = {
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
68 };
69
70 /*
71 * Some hardware gets it MAC address out of local flash memory.
72 * if this is non-zero then assume it is the address to get MAC from.
73 */
74 #if defined(CONFIG_NETtel)
75 #define FEC_FLASHMAC 0xf0006006
76 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
77 #define FEC_FLASHMAC 0xf0006000
78 #elif defined(CONFIG_CANCam)
79 #define FEC_FLASHMAC 0xf0020000
80 #elif defined (CONFIG_M5272C3)
81 #define FEC_FLASHMAC (0xffe04000 + 4)
82 #elif defined(CONFIG_MOD5272)
83 #define FEC_FLASHMAC 0xffc0406b
84 #else
85 #define FEC_FLASHMAC 0
86 #endif
87 #endif /* CONFIG_M5272 */
88
89 /* Forward declarations of some structures to support different PHYs */
90
91 typedef struct {
92 uint mii_data;
93 void (*funct)(uint mii_reg, struct net_device *dev);
94 } phy_cmd_t;
95
96 typedef struct {
97 uint id;
98 char *name;
99
100 const phy_cmd_t *config;
101 const phy_cmd_t *startup;
102 const phy_cmd_t *ack_int;
103 const phy_cmd_t *shutdown;
104 } phy_info_t;
105
106 /* The number of Tx and Rx buffers. These are allocated from the page
107 * pool. The code may assume these are power of two, so it it best
108 * to keep them that size.
109 * We don't need to allocate pages for the transmitter. We just use
110 * the skbuffer directly.
111 */
112 #define FEC_ENET_RX_PAGES 8
113 #define FEC_ENET_RX_FRSIZE 2048
114 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
115 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
116 #define FEC_ENET_TX_FRSIZE 2048
117 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
118 #define TX_RING_SIZE 16 /* Must be power of two */
119 #define TX_RING_MOD_MASK 15 /* for this to work */
120
121 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
122 #error "FEC: descriptor ring size constants too large"
123 #endif
124
125 /* Interrupt events/masks. */
126 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
127 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
128 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
129 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
130 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
131 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
132 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
133 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
134 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
135 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
136
137 /* The FEC stores dest/src/type, data, and checksum for receive packets.
138 */
139 #define PKT_MAXBUF_SIZE 1518
140 #define PKT_MINBUF_SIZE 64
141 #define PKT_MAXBLR_SIZE 1520
142
143
144 /*
145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
148 */
149 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
151 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
152 #else
153 #define OPT_FRAME_SIZE 0
154 #endif
155
156 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
157 * tx_bd_base always point to the base of the buffer descriptors. The
158 * cur_rx and cur_tx point to the currently available buffer.
159 * The dirty_tx tracks the current buffer that is being sent by the
160 * controller. The cur_tx and dirty_tx are equal under both completely
161 * empty and completely full conditions. The empty/ready indicator in
162 * the buffer descriptor determines the actual condition.
163 */
164 struct fec_enet_private {
165 /* Hardware registers of the FEC device */
166 void __iomem *hwp;
167
168 struct net_device *netdev;
169
170 struct clk *clk;
171
172 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
173 unsigned char *tx_bounce[TX_RING_SIZE];
174 struct sk_buff* tx_skbuff[TX_RING_SIZE];
175 struct sk_buff* rx_skbuff[RX_RING_SIZE];
176 ushort skb_cur;
177 ushort skb_dirty;
178
179 /* CPM dual port RAM relative addresses */
180 dma_addr_t bd_dma;
181 /* Address of Rx and Tx buffers */
182 struct bufdesc *rx_bd_base;
183 struct bufdesc *tx_bd_base;
184 /* The next free ring entry */
185 struct bufdesc *cur_rx, *cur_tx;
186 /* The ring entries to be free()ed */
187 struct bufdesc *dirty_tx;
188
189 uint tx_full;
190 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
191 spinlock_t hw_lock;
192 /* hold while accessing the mii_list_t() elements */
193 spinlock_t mii_lock;
194
195 uint phy_id;
196 uint phy_id_done;
197 uint phy_status;
198 uint phy_speed;
199 phy_info_t const *phy;
200 struct work_struct phy_task;
201
202 uint sequence_done;
203 uint mii_phy_task_queued;
204
205 uint phy_addr;
206
207 int index;
208 int opened;
209 int link;
210 int old_link;
211 int full_duplex;
212 };
213
214 static void fec_enet_mii(struct net_device *dev);
215 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
216 static void fec_enet_tx(struct net_device *dev);
217 static void fec_enet_rx(struct net_device *dev);
218 static int fec_enet_close(struct net_device *dev);
219 static void fec_restart(struct net_device *dev, int duplex);
220 static void fec_stop(struct net_device *dev);
221
222
223 /* MII processing. We keep this as simple as possible. Requests are
224 * placed on the list (if there is room). When the request is finished
225 * by the MII, an optional function may be called.
226 */
227 typedef struct mii_list {
228 uint mii_regval;
229 void (*mii_func)(uint val, struct net_device *dev);
230 struct mii_list *mii_next;
231 } mii_list_t;
232
233 #define NMII 20
234 static mii_list_t mii_cmds[NMII];
235 static mii_list_t *mii_free;
236 static mii_list_t *mii_head;
237 static mii_list_t *mii_tail;
238
239 static int mii_queue(struct net_device *dev, int request,
240 void (*func)(uint, struct net_device *));
241
242 /* Make MII read/write commands for the FEC */
243 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
244 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
245 (VAL & 0xffff))
246 #define mk_mii_end 0
247
248 /* Transmitter timeout */
249 #define TX_TIMEOUT (2 * HZ)
250
251 /* Register definitions for the PHY */
252
253 #define MII_REG_CR 0 /* Control Register */
254 #define MII_REG_SR 1 /* Status Register */
255 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
256 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
257 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
258 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
259 #define MII_REG_ANER 6 /* A-N Expansion Register */
260 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
261 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
262
263 /* values for phy_status */
264
265 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
266 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
267 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
268 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
269 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
270 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
271 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
272
273 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
274 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
275 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
276 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
277 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
278 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
279 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
280 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
281
282
283 static int
284 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
285 {
286 struct fec_enet_private *fep = netdev_priv(dev);
287 struct bufdesc *bdp;
288 unsigned short status;
289 unsigned long flags;
290
291 if (!fep->link) {
292 /* Link is down or autonegotiation is in progress. */
293 return NETDEV_TX_BUSY;
294 }
295
296 spin_lock_irqsave(&fep->hw_lock, flags);
297 /* Fill in a Tx ring entry */
298 bdp = fep->cur_tx;
299
300 status = bdp->cbd_sc;
301
302 if (status & BD_ENET_TX_READY) {
303 /* Ooops. All transmit buffers are full. Bail out.
304 * This should not happen, since dev->tbusy should be set.
305 */
306 printk("%s: tx queue full!.\n", dev->name);
307 spin_unlock_irqrestore(&fep->hw_lock, flags);
308 return NETDEV_TX_BUSY;
309 }
310
311 /* Clear all of the status flags */
312 status &= ~BD_ENET_TX_STATS;
313
314 /* Set buffer length and buffer pointer */
315 bdp->cbd_bufaddr = __pa(skb->data);
316 bdp->cbd_datlen = skb->len;
317
318 /*
319 * On some FEC implementations data must be aligned on
320 * 4-byte boundaries. Use bounce buffers to copy data
321 * and get it aligned. Ugh.
322 */
323 if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
324 unsigned int index;
325 index = bdp - fep->tx_bd_base;
326 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
327 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
328 }
329
330 /* Save skb pointer */
331 fep->tx_skbuff[fep->skb_cur] = skb;
332
333 dev->stats.tx_bytes += skb->len;
334 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
335
336 /* Push the data cache so the CPM does not get stale memory
337 * data.
338 */
339 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
340 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
341
342 /* Send it on its way. Tell FEC it's ready, interrupt when done,
343 * it's the last BD of the frame, and to put the CRC on the end.
344 */
345 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
346 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
347 bdp->cbd_sc = status;
348
349 dev->trans_start = jiffies;
350
351 /* Trigger transmission start */
352 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
353
354 /* If this was the last BD in the ring, start at the beginning again. */
355 if (status & BD_ENET_TX_WRAP)
356 bdp = fep->tx_bd_base;
357 else
358 bdp++;
359
360 if (bdp == fep->dirty_tx) {
361 fep->tx_full = 1;
362 netif_stop_queue(dev);
363 }
364
365 fep->cur_tx = bdp;
366
367 spin_unlock_irqrestore(&fep->hw_lock, flags);
368
369 return 0;
370 }
371
372 static void
373 fec_timeout(struct net_device *dev)
374 {
375 struct fec_enet_private *fep = netdev_priv(dev);
376
377 dev->stats.tx_errors++;
378
379 fec_restart(dev, fep->full_duplex);
380 netif_wake_queue(dev);
381 }
382
383 static irqreturn_t
384 fec_enet_interrupt(int irq, void * dev_id)
385 {
386 struct net_device *dev = dev_id;
387 struct fec_enet_private *fep = netdev_priv(dev);
388 uint int_events;
389 irqreturn_t ret = IRQ_NONE;
390
391 do {
392 int_events = readl(fep->hwp + FEC_IEVENT);
393 writel(int_events, fep->hwp + FEC_IEVENT);
394
395 if (int_events & FEC_ENET_RXF) {
396 ret = IRQ_HANDLED;
397 fec_enet_rx(dev);
398 }
399
400 /* Transmit OK, or non-fatal error. Update the buffer
401 * descriptors. FEC handles all errors, we just discover
402 * them as part of the transmit process.
403 */
404 if (int_events & FEC_ENET_TXF) {
405 ret = IRQ_HANDLED;
406 fec_enet_tx(dev);
407 }
408
409 if (int_events & FEC_ENET_MII) {
410 ret = IRQ_HANDLED;
411 fec_enet_mii(dev);
412 }
413
414 } while (int_events);
415
416 return ret;
417 }
418
419
420 static void
421 fec_enet_tx(struct net_device *dev)
422 {
423 struct fec_enet_private *fep;
424 struct bufdesc *bdp;
425 unsigned short status;
426 struct sk_buff *skb;
427
428 fep = netdev_priv(dev);
429 spin_lock_irq(&fep->hw_lock);
430 bdp = fep->dirty_tx;
431
432 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
433 if (bdp == fep->cur_tx && fep->tx_full == 0)
434 break;
435
436 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
437 bdp->cbd_bufaddr = 0;
438
439 skb = fep->tx_skbuff[fep->skb_dirty];
440 /* Check for errors. */
441 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
442 BD_ENET_TX_RL | BD_ENET_TX_UN |
443 BD_ENET_TX_CSL)) {
444 dev->stats.tx_errors++;
445 if (status & BD_ENET_TX_HB) /* No heartbeat */
446 dev->stats.tx_heartbeat_errors++;
447 if (status & BD_ENET_TX_LC) /* Late collision */
448 dev->stats.tx_window_errors++;
449 if (status & BD_ENET_TX_RL) /* Retrans limit */
450 dev->stats.tx_aborted_errors++;
451 if (status & BD_ENET_TX_UN) /* Underrun */
452 dev->stats.tx_fifo_errors++;
453 if (status & BD_ENET_TX_CSL) /* Carrier lost */
454 dev->stats.tx_carrier_errors++;
455 } else {
456 dev->stats.tx_packets++;
457 }
458
459 if (status & BD_ENET_TX_READY)
460 printk("HEY! Enet xmit interrupt and TX_READY.\n");
461
462 /* Deferred means some collisions occurred during transmit,
463 * but we eventually sent the packet OK.
464 */
465 if (status & BD_ENET_TX_DEF)
466 dev->stats.collisions++;
467
468 /* Free the sk buffer associated with this last transmit */
469 dev_kfree_skb_any(skb);
470 fep->tx_skbuff[fep->skb_dirty] = NULL;
471 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
472
473 /* Update pointer to next buffer descriptor to be transmitted */
474 if (status & BD_ENET_TX_WRAP)
475 bdp = fep->tx_bd_base;
476 else
477 bdp++;
478
479 /* Since we have freed up a buffer, the ring is no longer full
480 */
481 if (fep->tx_full) {
482 fep->tx_full = 0;
483 if (netif_queue_stopped(dev))
484 netif_wake_queue(dev);
485 }
486 }
487 fep->dirty_tx = bdp;
488 spin_unlock_irq(&fep->hw_lock);
489 }
490
491
492 /* During a receive, the cur_rx points to the current incoming buffer.
493 * When we update through the ring, if the next incoming buffer has
494 * not been given to the system, we just set the empty indicator,
495 * effectively tossing the packet.
496 */
497 static void
498 fec_enet_rx(struct net_device *dev)
499 {
500 struct fec_enet_private *fep = netdev_priv(dev);
501 struct bufdesc *bdp;
502 unsigned short status;
503 struct sk_buff *skb;
504 ushort pkt_len;
505 __u8 *data;
506
507 #ifdef CONFIG_M532x
508 flush_cache_all();
509 #endif
510
511 spin_lock_irq(&fep->hw_lock);
512
513 /* First, grab all of the stats for the incoming packet.
514 * These get messed up if we get called due to a busy condition.
515 */
516 bdp = fep->cur_rx;
517
518 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
519
520 /* Since we have allocated space to hold a complete frame,
521 * the last indicator should be set.
522 */
523 if ((status & BD_ENET_RX_LAST) == 0)
524 printk("FEC ENET: rcv is not +last\n");
525
526 if (!fep->opened)
527 goto rx_processing_done;
528
529 /* Check for errors. */
530 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
531 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
532 dev->stats.rx_errors++;
533 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
534 /* Frame too long or too short. */
535 dev->stats.rx_length_errors++;
536 }
537 if (status & BD_ENET_RX_NO) /* Frame alignment */
538 dev->stats.rx_frame_errors++;
539 if (status & BD_ENET_RX_CR) /* CRC Error */
540 dev->stats.rx_crc_errors++;
541 if (status & BD_ENET_RX_OV) /* FIFO overrun */
542 dev->stats.rx_fifo_errors++;
543 }
544
545 /* Report late collisions as a frame error.
546 * On this error, the BD is closed, but we don't know what we
547 * have in the buffer. So, just drop this frame on the floor.
548 */
549 if (status & BD_ENET_RX_CL) {
550 dev->stats.rx_errors++;
551 dev->stats.rx_frame_errors++;
552 goto rx_processing_done;
553 }
554
555 /* Process the incoming frame. */
556 dev->stats.rx_packets++;
557 pkt_len = bdp->cbd_datlen;
558 dev->stats.rx_bytes += pkt_len;
559 data = (__u8*)__va(bdp->cbd_bufaddr);
560
561 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
562 DMA_FROM_DEVICE);
563
564 /* This does 16 byte alignment, exactly what we need.
565 * The packet length includes FCS, but we don't want to
566 * include that when passing upstream as it messes up
567 * bridging applications.
568 */
569 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
570
571 if (unlikely(!skb)) {
572 printk("%s: Memory squeeze, dropping packet.\n",
573 dev->name);
574 dev->stats.rx_dropped++;
575 } else {
576 skb_reserve(skb, NET_IP_ALIGN);
577 skb_put(skb, pkt_len - 4); /* Make room */
578 skb_copy_to_linear_data(skb, data, pkt_len - 4);
579 skb->protocol = eth_type_trans(skb, dev);
580 netif_rx(skb);
581 }
582
583 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
584 DMA_FROM_DEVICE);
585 rx_processing_done:
586 /* Clear the status flags for this buffer */
587 status &= ~BD_ENET_RX_STATS;
588
589 /* Mark the buffer empty */
590 status |= BD_ENET_RX_EMPTY;
591 bdp->cbd_sc = status;
592
593 /* Update BD pointer to next entry */
594 if (status & BD_ENET_RX_WRAP)
595 bdp = fep->rx_bd_base;
596 else
597 bdp++;
598 /* Doing this here will keep the FEC running while we process
599 * incoming frames. On a heavily loaded network, we should be
600 * able to keep up at the expense of system resources.
601 */
602 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
603 }
604 fep->cur_rx = bdp;
605
606 spin_unlock_irq(&fep->hw_lock);
607 }
608
609 /* called from interrupt context */
610 static void
611 fec_enet_mii(struct net_device *dev)
612 {
613 struct fec_enet_private *fep;
614 mii_list_t *mip;
615
616 fep = netdev_priv(dev);
617 spin_lock_irq(&fep->mii_lock);
618
619 if ((mip = mii_head) == NULL) {
620 printk("MII and no head!\n");
621 goto unlock;
622 }
623
624 if (mip->mii_func != NULL)
625 (*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
626
627 mii_head = mip->mii_next;
628 mip->mii_next = mii_free;
629 mii_free = mip;
630
631 if ((mip = mii_head) != NULL)
632 writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
633
634 unlock:
635 spin_unlock_irq(&fep->mii_lock);
636 }
637
638 static int
639 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
640 {
641 struct fec_enet_private *fep;
642 unsigned long flags;
643 mii_list_t *mip;
644 int retval;
645
646 /* Add PHY address to register command */
647 fep = netdev_priv(dev);
648 spin_lock_irqsave(&fep->mii_lock, flags);
649
650 regval |= fep->phy_addr << 23;
651 retval = 0;
652
653 if ((mip = mii_free) != NULL) {
654 mii_free = mip->mii_next;
655 mip->mii_regval = regval;
656 mip->mii_func = func;
657 mip->mii_next = NULL;
658 if (mii_head) {
659 mii_tail->mii_next = mip;
660 mii_tail = mip;
661 } else {
662 mii_head = mii_tail = mip;
663 writel(regval, fep->hwp + FEC_MII_DATA);
664 }
665 } else {
666 retval = 1;
667 }
668
669 spin_unlock_irqrestore(&fep->mii_lock, flags);
670 return retval;
671 }
672
673 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
674 {
675 if(!c)
676 return;
677
678 for (; c->mii_data != mk_mii_end; c++)
679 mii_queue(dev, c->mii_data, c->funct);
680 }
681
682 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
683 {
684 struct fec_enet_private *fep = netdev_priv(dev);
685 volatile uint *s = &(fep->phy_status);
686 uint status;
687
688 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
689
690 if (mii_reg & 0x0004)
691 status |= PHY_STAT_LINK;
692 if (mii_reg & 0x0010)
693 status |= PHY_STAT_FAULT;
694 if (mii_reg & 0x0020)
695 status |= PHY_STAT_ANC;
696 *s = status;
697 }
698
699 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
700 {
701 struct fec_enet_private *fep = netdev_priv(dev);
702 volatile uint *s = &(fep->phy_status);
703 uint status;
704
705 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
706
707 if (mii_reg & 0x1000)
708 status |= PHY_CONF_ANE;
709 if (mii_reg & 0x4000)
710 status |= PHY_CONF_LOOP;
711 *s = status;
712 }
713
714 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
715 {
716 struct fec_enet_private *fep = netdev_priv(dev);
717 volatile uint *s = &(fep->phy_status);
718 uint status;
719
720 status = *s & ~(PHY_CONF_SPMASK);
721
722 if (mii_reg & 0x0020)
723 status |= PHY_CONF_10HDX;
724 if (mii_reg & 0x0040)
725 status |= PHY_CONF_10FDX;
726 if (mii_reg & 0x0080)
727 status |= PHY_CONF_100HDX;
728 if (mii_reg & 0x00100)
729 status |= PHY_CONF_100FDX;
730 *s = status;
731 }
732
733 /* ------------------------------------------------------------------------- */
734 /* The Level one LXT970 is used by many boards */
735
736 #define MII_LXT970_MIRROR 16 /* Mirror register */
737 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
738 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
739 #define MII_LXT970_CONFIG 19 /* Configuration Register */
740 #define MII_LXT970_CSR 20 /* Chip Status Register */
741
742 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
743 {
744 struct fec_enet_private *fep = netdev_priv(dev);
745 volatile uint *s = &(fep->phy_status);
746 uint status;
747
748 status = *s & ~(PHY_STAT_SPMASK);
749 if (mii_reg & 0x0800) {
750 if (mii_reg & 0x1000)
751 status |= PHY_STAT_100FDX;
752 else
753 status |= PHY_STAT_100HDX;
754 } else {
755 if (mii_reg & 0x1000)
756 status |= PHY_STAT_10FDX;
757 else
758 status |= PHY_STAT_10HDX;
759 }
760 *s = status;
761 }
762
763 static phy_cmd_t const phy_cmd_lxt970_config[] = {
764 { mk_mii_read(MII_REG_CR), mii_parse_cr },
765 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
766 { mk_mii_end, }
767 };
768 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
769 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
770 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
771 { mk_mii_end, }
772 };
773 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
774 /* read SR and ISR to acknowledge */
775 { mk_mii_read(MII_REG_SR), mii_parse_sr },
776 { mk_mii_read(MII_LXT970_ISR), NULL },
777
778 /* find out the current status */
779 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
780 { mk_mii_end, }
781 };
782 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
783 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
784 { mk_mii_end, }
785 };
786 static phy_info_t const phy_info_lxt970 = {
787 .id = 0x07810000,
788 .name = "LXT970",
789 .config = phy_cmd_lxt970_config,
790 .startup = phy_cmd_lxt970_startup,
791 .ack_int = phy_cmd_lxt970_ack_int,
792 .shutdown = phy_cmd_lxt970_shutdown
793 };
794
795 /* ------------------------------------------------------------------------- */
796 /* The Level one LXT971 is used on some of my custom boards */
797
798 /* register definitions for the 971 */
799
800 #define MII_LXT971_PCR 16 /* Port Control Register */
801 #define MII_LXT971_SR2 17 /* Status Register 2 */
802 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
803 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
804 #define MII_LXT971_LCR 20 /* LED Control Register */
805 #define MII_LXT971_TCR 30 /* Transmit Control Register */
806
807 /*
808 * I had some nice ideas of running the MDIO faster...
809 * The 971 should support 8MHz and I tried it, but things acted really
810 * weird, so 2.5 MHz ought to be enough for anyone...
811 */
812
813 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
814 {
815 struct fec_enet_private *fep = netdev_priv(dev);
816 volatile uint *s = &(fep->phy_status);
817 uint status;
818
819 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
820
821 if (mii_reg & 0x0400) {
822 fep->link = 1;
823 status |= PHY_STAT_LINK;
824 } else {
825 fep->link = 0;
826 }
827 if (mii_reg & 0x0080)
828 status |= PHY_STAT_ANC;
829 if (mii_reg & 0x4000) {
830 if (mii_reg & 0x0200)
831 status |= PHY_STAT_100FDX;
832 else
833 status |= PHY_STAT_100HDX;
834 } else {
835 if (mii_reg & 0x0200)
836 status |= PHY_STAT_10FDX;
837 else
838 status |= PHY_STAT_10HDX;
839 }
840 if (mii_reg & 0x0008)
841 status |= PHY_STAT_FAULT;
842
843 *s = status;
844 }
845
846 static phy_cmd_t const phy_cmd_lxt971_config[] = {
847 /* limit to 10MBit because my prototype board
848 * doesn't work with 100. */
849 { mk_mii_read(MII_REG_CR), mii_parse_cr },
850 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
851 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
852 { mk_mii_end, }
853 };
854 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
855 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
856 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
857 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
858 /* Somehow does the 971 tell me that the link is down
859 * the first read after power-up.
860 * read here to get a valid value in ack_int */
861 { mk_mii_read(MII_REG_SR), mii_parse_sr },
862 { mk_mii_end, }
863 };
864 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
865 /* acknowledge the int before reading status ! */
866 { mk_mii_read(MII_LXT971_ISR), NULL },
867 /* find out the current status */
868 { mk_mii_read(MII_REG_SR), mii_parse_sr },
869 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
870 { mk_mii_end, }
871 };
872 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
873 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
874 { mk_mii_end, }
875 };
876 static phy_info_t const phy_info_lxt971 = {
877 .id = 0x0001378e,
878 .name = "LXT971",
879 .config = phy_cmd_lxt971_config,
880 .startup = phy_cmd_lxt971_startup,
881 .ack_int = phy_cmd_lxt971_ack_int,
882 .shutdown = phy_cmd_lxt971_shutdown
883 };
884
885 /* ------------------------------------------------------------------------- */
886 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
887
888 /* register definitions */
889
890 #define MII_QS6612_MCR 17 /* Mode Control Register */
891 #define MII_QS6612_FTR 27 /* Factory Test Register */
892 #define MII_QS6612_MCO 28 /* Misc. Control Register */
893 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
894 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
895 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
896
897 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
898 {
899 struct fec_enet_private *fep = netdev_priv(dev);
900 volatile uint *s = &(fep->phy_status);
901 uint status;
902
903 status = *s & ~(PHY_STAT_SPMASK);
904
905 switch((mii_reg >> 2) & 7) {
906 case 1: status |= PHY_STAT_10HDX; break;
907 case 2: status |= PHY_STAT_100HDX; break;
908 case 5: status |= PHY_STAT_10FDX; break;
909 case 6: status |= PHY_STAT_100FDX; break;
910 }
911
912 *s = status;
913 }
914
915 static phy_cmd_t const phy_cmd_qs6612_config[] = {
916 /* The PHY powers up isolated on the RPX,
917 * so send a command to allow operation.
918 */
919 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
920
921 /* parse cr and anar to get some info */
922 { mk_mii_read(MII_REG_CR), mii_parse_cr },
923 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
924 { mk_mii_end, }
925 };
926 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
927 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
928 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
929 { mk_mii_end, }
930 };
931 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
932 /* we need to read ISR, SR and ANER to acknowledge */
933 { mk_mii_read(MII_QS6612_ISR), NULL },
934 { mk_mii_read(MII_REG_SR), mii_parse_sr },
935 { mk_mii_read(MII_REG_ANER), NULL },
936
937 /* read pcr to get info */
938 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
939 { mk_mii_end, }
940 };
941 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
942 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
943 { mk_mii_end, }
944 };
945 static phy_info_t const phy_info_qs6612 = {
946 .id = 0x00181440,
947 .name = "QS6612",
948 .config = phy_cmd_qs6612_config,
949 .startup = phy_cmd_qs6612_startup,
950 .ack_int = phy_cmd_qs6612_ack_int,
951 .shutdown = phy_cmd_qs6612_shutdown
952 };
953
954 /* ------------------------------------------------------------------------- */
955 /* AMD AM79C874 phy */
956
957 /* register definitions for the 874 */
958
959 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
960 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
961 #define MII_AM79C874_DR 18 /* Diagnostic Register */
962 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
963 #define MII_AM79C874_MCR 21 /* ModeControl Register */
964 #define MII_AM79C874_DC 23 /* Disconnect Counter */
965 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
966
967 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
968 {
969 struct fec_enet_private *fep = netdev_priv(dev);
970 volatile uint *s = &(fep->phy_status);
971 uint status;
972
973 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
974
975 if (mii_reg & 0x0080)
976 status |= PHY_STAT_ANC;
977 if (mii_reg & 0x0400)
978 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
979 else
980 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
981
982 *s = status;
983 }
984
985 static phy_cmd_t const phy_cmd_am79c874_config[] = {
986 { mk_mii_read(MII_REG_CR), mii_parse_cr },
987 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
988 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
989 { mk_mii_end, }
990 };
991 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
992 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
993 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
994 { mk_mii_read(MII_REG_SR), mii_parse_sr },
995 { mk_mii_end, }
996 };
997 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
998 /* find out the current status */
999 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1000 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1001 /* we only need to read ISR to acknowledge */
1002 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1003 { mk_mii_end, }
1004 };
1005 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1006 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1007 { mk_mii_end, }
1008 };
1009 static phy_info_t const phy_info_am79c874 = {
1010 .id = 0x00022561,
1011 .name = "AM79C874",
1012 .config = phy_cmd_am79c874_config,
1013 .startup = phy_cmd_am79c874_startup,
1014 .ack_int = phy_cmd_am79c874_ack_int,
1015 .shutdown = phy_cmd_am79c874_shutdown
1016 };
1017
1018
1019 /* ------------------------------------------------------------------------- */
1020 /* Kendin KS8721BL phy */
1021
1022 /* register definitions for the 8721 */
1023
1024 #define MII_KS8721BL_RXERCR 21
1025 #define MII_KS8721BL_ICSR 27
1026 #define MII_KS8721BL_PHYCR 31
1027
1028 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1029 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1030 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1031 { mk_mii_end, }
1032 };
1033 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1034 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1035 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1036 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1037 { mk_mii_end, }
1038 };
1039 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1040 /* find out the current status */
1041 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1042 /* we only need to read ISR to acknowledge */
1043 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1044 { mk_mii_end, }
1045 };
1046 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1047 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1048 { mk_mii_end, }
1049 };
1050 static phy_info_t const phy_info_ks8721bl = {
1051 .id = 0x00022161,
1052 .name = "KS8721BL",
1053 .config = phy_cmd_ks8721bl_config,
1054 .startup = phy_cmd_ks8721bl_startup,
1055 .ack_int = phy_cmd_ks8721bl_ack_int,
1056 .shutdown = phy_cmd_ks8721bl_shutdown
1057 };
1058
1059 /* ------------------------------------------------------------------------- */
1060 /* register definitions for the DP83848 */
1061
1062 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1063
1064 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1065 {
1066 struct fec_enet_private *fep = netdev_priv(dev);
1067 volatile uint *s = &(fep->phy_status);
1068
1069 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1070
1071 /* Link up */
1072 if (mii_reg & 0x0001) {
1073 fep->link = 1;
1074 *s |= PHY_STAT_LINK;
1075 } else
1076 fep->link = 0;
1077 /* Status of link */
1078 if (mii_reg & 0x0010) /* Autonegotioation complete */
1079 *s |= PHY_STAT_ANC;
1080 if (mii_reg & 0x0002) { /* 10MBps? */
1081 if (mii_reg & 0x0004) /* Full Duplex? */
1082 *s |= PHY_STAT_10FDX;
1083 else
1084 *s |= PHY_STAT_10HDX;
1085 } else { /* 100 Mbps? */
1086 if (mii_reg & 0x0004) /* Full Duplex? */
1087 *s |= PHY_STAT_100FDX;
1088 else
1089 *s |= PHY_STAT_100HDX;
1090 }
1091 if (mii_reg & 0x0008)
1092 *s |= PHY_STAT_FAULT;
1093 }
1094
1095 static phy_info_t phy_info_dp83848= {
1096 0x020005c9,
1097 "DP83848",
1098
1099 (const phy_cmd_t []) { /* config */
1100 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1101 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1102 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1103 { mk_mii_end, }
1104 },
1105 (const phy_cmd_t []) { /* startup - enable interrupts */
1106 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1107 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1108 { mk_mii_end, }
1109 },
1110 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1111 { mk_mii_end, }
1112 },
1113 (const phy_cmd_t []) { /* shutdown */
1114 { mk_mii_end, }
1115 },
1116 };
1117
1118 /* ------------------------------------------------------------------------- */
1119
1120 static phy_info_t const * const phy_info[] = {
1121 &phy_info_lxt970,
1122 &phy_info_lxt971,
1123 &phy_info_qs6612,
1124 &phy_info_am79c874,
1125 &phy_info_ks8721bl,
1126 &phy_info_dp83848,
1127 NULL
1128 };
1129
1130 /* ------------------------------------------------------------------------- */
1131 #ifdef HAVE_mii_link_interrupt
1132 static irqreturn_t
1133 mii_link_interrupt(int irq, void * dev_id);
1134
1135 /*
1136 * This is specific to the MII interrupt setup of the M5272EVB.
1137 */
1138 static void __inline__ fec_request_mii_intr(struct net_device *dev)
1139 {
1140 if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
1141 printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
1142 }
1143
1144 static void __inline__ fec_disable_phy_intr(void)
1145 {
1146 volatile unsigned long *icrp;
1147 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1148 *icrp = 0x08000000;
1149 }
1150
1151 static void __inline__ fec_phy_ack_intr(void)
1152 {
1153 volatile unsigned long *icrp;
1154 /* Acknowledge the interrupt */
1155 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1156 *icrp = 0x0d000000;
1157 }
1158 #endif
1159
1160 #ifdef CONFIG_M5272
1161 static void __inline__ fec_get_mac(struct net_device *dev)
1162 {
1163 struct fec_enet_private *fep = netdev_priv(dev);
1164 unsigned char *iap, tmpaddr[ETH_ALEN];
1165
1166 if (FEC_FLASHMAC) {
1167 /*
1168 * Get MAC address from FLASH.
1169 * If it is all 1's or 0's, use the default.
1170 */
1171 iap = (unsigned char *)FEC_FLASHMAC;
1172 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1173 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1174 iap = fec_mac_default;
1175 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1176 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1177 iap = fec_mac_default;
1178 } else {
1179 *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
1180 *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1181 iap = &tmpaddr[0];
1182 }
1183
1184 memcpy(dev->dev_addr, iap, ETH_ALEN);
1185
1186 /* Adjust MAC if using default MAC address */
1187 if (iap == fec_mac_default)
1188 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1189 }
1190 #endif
1191
1192 /* ------------------------------------------------------------------------- */
1193
1194 static void mii_display_status(struct net_device *dev)
1195 {
1196 struct fec_enet_private *fep = netdev_priv(dev);
1197 volatile uint *s = &(fep->phy_status);
1198
1199 if (!fep->link && !fep->old_link) {
1200 /* Link is still down - don't print anything */
1201 return;
1202 }
1203
1204 printk("%s: status: ", dev->name);
1205
1206 if (!fep->link) {
1207 printk("link down");
1208 } else {
1209 printk("link up");
1210
1211 switch(*s & PHY_STAT_SPMASK) {
1212 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1213 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1214 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1215 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1216 default:
1217 printk(", Unknown speed/duplex");
1218 }
1219
1220 if (*s & PHY_STAT_ANC)
1221 printk(", auto-negotiation complete");
1222 }
1223
1224 if (*s & PHY_STAT_FAULT)
1225 printk(", remote fault");
1226
1227 printk(".\n");
1228 }
1229
1230 static void mii_display_config(struct work_struct *work)
1231 {
1232 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1233 struct net_device *dev = fep->netdev;
1234 uint status = fep->phy_status;
1235
1236 /*
1237 ** When we get here, phy_task is already removed from
1238 ** the workqueue. It is thus safe to allow to reuse it.
1239 */
1240 fep->mii_phy_task_queued = 0;
1241 printk("%s: config: auto-negotiation ", dev->name);
1242
1243 if (status & PHY_CONF_ANE)
1244 printk("on");
1245 else
1246 printk("off");
1247
1248 if (status & PHY_CONF_100FDX)
1249 printk(", 100FDX");
1250 if (status & PHY_CONF_100HDX)
1251 printk(", 100HDX");
1252 if (status & PHY_CONF_10FDX)
1253 printk(", 10FDX");
1254 if (status & PHY_CONF_10HDX)
1255 printk(", 10HDX");
1256 if (!(status & PHY_CONF_SPMASK))
1257 printk(", No speed/duplex selected?");
1258
1259 if (status & PHY_CONF_LOOP)
1260 printk(", loopback enabled");
1261
1262 printk(".\n");
1263
1264 fep->sequence_done = 1;
1265 }
1266
1267 static void mii_relink(struct work_struct *work)
1268 {
1269 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1270 struct net_device *dev = fep->netdev;
1271 int duplex;
1272
1273 /*
1274 ** When we get here, phy_task is already removed from
1275 ** the workqueue. It is thus safe to allow to reuse it.
1276 */
1277 fep->mii_phy_task_queued = 0;
1278 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1279 mii_display_status(dev);
1280 fep->old_link = fep->link;
1281
1282 if (fep->link) {
1283 duplex = 0;
1284 if (fep->phy_status
1285 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1286 duplex = 1;
1287 fec_restart(dev, duplex);
1288 } else
1289 fec_stop(dev);
1290 }
1291
1292 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1293 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1294 {
1295 struct fec_enet_private *fep = netdev_priv(dev);
1296
1297 /*
1298 * We cannot queue phy_task twice in the workqueue. It
1299 * would cause an endless loop in the workqueue.
1300 * Fortunately, if the last mii_relink entry has not yet been
1301 * executed now, it will do the job for the current interrupt,
1302 * which is just what we want.
1303 */
1304 if (fep->mii_phy_task_queued)
1305 return;
1306
1307 fep->mii_phy_task_queued = 1;
1308 INIT_WORK(&fep->phy_task, mii_relink);
1309 schedule_work(&fep->phy_task);
1310 }
1311
1312 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1313 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1314 {
1315 struct fec_enet_private *fep = netdev_priv(dev);
1316
1317 if (fep->mii_phy_task_queued)
1318 return;
1319
1320 fep->mii_phy_task_queued = 1;
1321 INIT_WORK(&fep->phy_task, mii_display_config);
1322 schedule_work(&fep->phy_task);
1323 }
1324
1325 phy_cmd_t const phy_cmd_relink[] = {
1326 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1327 { mk_mii_end, }
1328 };
1329 phy_cmd_t const phy_cmd_config[] = {
1330 { mk_mii_read(MII_REG_CR), mii_queue_config },
1331 { mk_mii_end, }
1332 };
1333
1334 /* Read remainder of PHY ID. */
1335 static void
1336 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1337 {
1338 struct fec_enet_private *fep;
1339 int i;
1340
1341 fep = netdev_priv(dev);
1342 fep->phy_id |= (mii_reg & 0xffff);
1343 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1344
1345 for(i = 0; phy_info[i]; i++) {
1346 if(phy_info[i]->id == (fep->phy_id >> 4))
1347 break;
1348 }
1349
1350 if (phy_info[i])
1351 printk(" -- %s\n", phy_info[i]->name);
1352 else
1353 printk(" -- unknown PHY!\n");
1354
1355 fep->phy = phy_info[i];
1356 fep->phy_id_done = 1;
1357 }
1358
1359 /* Scan all of the MII PHY addresses looking for someone to respond
1360 * with a valid ID. This usually happens quickly.
1361 */
1362 static void
1363 mii_discover_phy(uint mii_reg, struct net_device *dev)
1364 {
1365 struct fec_enet_private *fep;
1366 uint phytype;
1367
1368 fep = netdev_priv(dev);
1369
1370 if (fep->phy_addr < 32) {
1371 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1372
1373 /* Got first part of ID, now get remainder */
1374 fep->phy_id = phytype << 16;
1375 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1376 mii_discover_phy3);
1377 } else {
1378 fep->phy_addr++;
1379 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1380 mii_discover_phy);
1381 }
1382 } else {
1383 printk("FEC: No PHY device found.\n");
1384 /* Disable external MII interface */
1385 writel(0, fep->hwp + FEC_MII_SPEED);
1386 fep->phy_speed = 0;
1387 #ifdef HAVE_mii_link_interrupt
1388 fec_disable_phy_intr();
1389 #endif
1390 }
1391 }
1392
1393 /* This interrupt occurs when the PHY detects a link change */
1394 #ifdef HAVE_mii_link_interrupt
1395 static irqreturn_t
1396 mii_link_interrupt(int irq, void * dev_id)
1397 {
1398 struct net_device *dev = dev_id;
1399 struct fec_enet_private *fep = netdev_priv(dev);
1400
1401 fec_phy_ack_intr();
1402
1403 mii_do_cmd(dev, fep->phy->ack_int);
1404 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1405
1406 return IRQ_HANDLED;
1407 }
1408 #endif
1409
1410 static void fec_enet_free_buffers(struct net_device *dev)
1411 {
1412 struct fec_enet_private *fep = netdev_priv(dev);
1413 int i;
1414 struct sk_buff *skb;
1415 struct bufdesc *bdp;
1416
1417 bdp = fep->rx_bd_base;
1418 for (i = 0; i < RX_RING_SIZE; i++) {
1419 skb = fep->rx_skbuff[i];
1420
1421 if (bdp->cbd_bufaddr)
1422 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
1423 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1424 if (skb)
1425 dev_kfree_skb(skb);
1426 bdp++;
1427 }
1428
1429 bdp = fep->tx_bd_base;
1430 for (i = 0; i < TX_RING_SIZE; i++)
1431 kfree(fep->tx_bounce[i]);
1432 }
1433
1434 static int fec_enet_alloc_buffers(struct net_device *dev)
1435 {
1436 struct fec_enet_private *fep = netdev_priv(dev);
1437 int i;
1438 struct sk_buff *skb;
1439 struct bufdesc *bdp;
1440
1441 bdp = fep->rx_bd_base;
1442 for (i = 0; i < RX_RING_SIZE; i++) {
1443 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1444 if (!skb) {
1445 fec_enet_free_buffers(dev);
1446 return -ENOMEM;
1447 }
1448 fep->rx_skbuff[i] = skb;
1449
1450 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
1451 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1452 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1453 bdp++;
1454 }
1455
1456 /* Set the last buffer to wrap. */
1457 bdp--;
1458 bdp->cbd_sc |= BD_SC_WRAP;
1459
1460 bdp = fep->tx_bd_base;
1461 for (i = 0; i < TX_RING_SIZE; i++) {
1462 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1463
1464 bdp->cbd_sc = 0;
1465 bdp->cbd_bufaddr = 0;
1466 bdp++;
1467 }
1468
1469 /* Set the last buffer to wrap. */
1470 bdp--;
1471 bdp->cbd_sc |= BD_SC_WRAP;
1472
1473 return 0;
1474 }
1475
1476 static int
1477 fec_enet_open(struct net_device *dev)
1478 {
1479 struct fec_enet_private *fep = netdev_priv(dev);
1480 int ret;
1481
1482 /* I should reset the ring buffers here, but I don't yet know
1483 * a simple way to do that.
1484 */
1485
1486 ret = fec_enet_alloc_buffers(dev);
1487 if (ret)
1488 return ret;
1489
1490 fep->sequence_done = 0;
1491 fep->link = 0;
1492
1493 fec_restart(dev, 1);
1494
1495 if (fep->phy) {
1496 mii_do_cmd(dev, fep->phy->ack_int);
1497 mii_do_cmd(dev, fep->phy->config);
1498 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1499
1500 /* Poll until the PHY tells us its configuration
1501 * (not link state).
1502 * Request is initiated by mii_do_cmd above, but answer
1503 * comes by interrupt.
1504 * This should take about 25 usec per register at 2.5 MHz,
1505 * and we read approximately 5 registers.
1506 */
1507 while(!fep->sequence_done)
1508 schedule();
1509
1510 mii_do_cmd(dev, fep->phy->startup);
1511 }
1512
1513 /* Set the initial link state to true. A lot of hardware
1514 * based on this device does not implement a PHY interrupt,
1515 * so we are never notified of link change.
1516 */
1517 fep->link = 1;
1518
1519 netif_start_queue(dev);
1520 fep->opened = 1;
1521 return 0;
1522 }
1523
1524 static int
1525 fec_enet_close(struct net_device *dev)
1526 {
1527 struct fec_enet_private *fep = netdev_priv(dev);
1528
1529 /* Don't know what to do yet. */
1530 fep->opened = 0;
1531 netif_stop_queue(dev);
1532 fec_stop(dev);
1533
1534 fec_enet_free_buffers(dev);
1535
1536 return 0;
1537 }
1538
1539 /* Set or clear the multicast filter for this adaptor.
1540 * Skeleton taken from sunlance driver.
1541 * The CPM Ethernet implementation allows Multicast as well as individual
1542 * MAC address filtering. Some of the drivers check to make sure it is
1543 * a group multicast address, and discard those that are not. I guess I
1544 * will do the same for now, but just remove the test if you want
1545 * individual filtering as well (do the upper net layers want or support
1546 * this kind of feature?).
1547 */
1548
1549 #define HASH_BITS 6 /* #bits in hash */
1550 #define CRC32_POLY 0xEDB88320
1551
1552 static void set_multicast_list(struct net_device *dev)
1553 {
1554 struct fec_enet_private *fep = netdev_priv(dev);
1555 struct dev_mc_list *dmi;
1556 unsigned int i, j, bit, data, crc, tmp;
1557 unsigned char hash;
1558
1559 if (dev->flags & IFF_PROMISC) {
1560 tmp = readl(fep->hwp + FEC_R_CNTRL);
1561 tmp |= 0x8;
1562 writel(tmp, fep->hwp + FEC_R_CNTRL);
1563 return;
1564 }
1565
1566 tmp = readl(fep->hwp + FEC_R_CNTRL);
1567 tmp &= ~0x8;
1568 writel(tmp, fep->hwp + FEC_R_CNTRL);
1569
1570 if (dev->flags & IFF_ALLMULTI) {
1571 /* Catch all multicast addresses, so set the
1572 * filter to all 1's
1573 */
1574 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1575 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1576
1577 return;
1578 }
1579
1580 /* Clear filter and add the addresses in hash register
1581 */
1582 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1583 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1584
1585 dmi = dev->mc_list;
1586
1587 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) {
1588 /* Only support group multicast for now */
1589 if (!(dmi->dmi_addr[0] & 1))
1590 continue;
1591
1592 /* calculate crc32 value of mac address */
1593 crc = 0xffffffff;
1594
1595 for (i = 0; i < dmi->dmi_addrlen; i++) {
1596 data = dmi->dmi_addr[i];
1597 for (bit = 0; bit < 8; bit++, data >>= 1) {
1598 crc = (crc >> 1) ^
1599 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1600 }
1601 }
1602
1603 /* only upper 6 bits (HASH_BITS) are used
1604 * which point to specific bit in he hash registers
1605 */
1606 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1607
1608 if (hash > 31) {
1609 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1610 tmp |= 1 << (hash - 32);
1611 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1612 } else {
1613 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1614 tmp |= 1 << hash;
1615 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1616 }
1617 }
1618 }
1619
1620 /* Set a MAC change in hardware. */
1621 static int
1622 fec_set_mac_address(struct net_device *dev, void *p)
1623 {
1624 struct fec_enet_private *fep = netdev_priv(dev);
1625 struct sockaddr *addr = p;
1626
1627 if (!is_valid_ether_addr(addr->sa_data))
1628 return -EADDRNOTAVAIL;
1629
1630 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1631
1632 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1633 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1634 fep->hwp + FEC_ADDR_LOW);
1635 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1636 fep + FEC_ADDR_HIGH);
1637 return 0;
1638 }
1639
1640 static const struct net_device_ops fec_netdev_ops = {
1641 .ndo_open = fec_enet_open,
1642 .ndo_stop = fec_enet_close,
1643 .ndo_start_xmit = fec_enet_start_xmit,
1644 .ndo_set_multicast_list = set_multicast_list,
1645 .ndo_change_mtu = eth_change_mtu,
1646 .ndo_validate_addr = eth_validate_addr,
1647 .ndo_tx_timeout = fec_timeout,
1648 .ndo_set_mac_address = fec_set_mac_address,
1649 };
1650
1651 /*
1652 * XXX: We need to clean up on failure exits here.
1653 *
1654 * index is only used in legacy code
1655 */
1656 int __init fec_enet_init(struct net_device *dev, int index)
1657 {
1658 struct fec_enet_private *fep = netdev_priv(dev);
1659 struct bufdesc *cbd_base;
1660 int i;
1661
1662 /* Allocate memory for buffer descriptors. */
1663 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1664 GFP_KERNEL);
1665 if (!cbd_base) {
1666 printk("FEC: allocate descriptor memory failed?\n");
1667 return -ENOMEM;
1668 }
1669
1670 spin_lock_init(&fep->hw_lock);
1671 spin_lock_init(&fep->mii_lock);
1672
1673 fep->index = index;
1674 fep->hwp = (void __iomem *)dev->base_addr;
1675 fep->netdev = dev;
1676
1677 /* Set the Ethernet address */
1678 #ifdef CONFIG_M5272
1679 fec_get_mac(dev);
1680 #else
1681 {
1682 unsigned long l;
1683 l = readl(fep->hwp + FEC_ADDR_LOW);
1684 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1685 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1686 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1687 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1688 l = readl(fep->hwp + FEC_ADDR_HIGH);
1689 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1690 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1691 }
1692 #endif
1693
1694 /* Set receive and transmit descriptor base. */
1695 fep->rx_bd_base = cbd_base;
1696 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1697
1698 #ifdef HAVE_mii_link_interrupt
1699 fec_request_mii_intr(dev);
1700 #endif
1701 /* The FEC Ethernet specific entries in the device structure */
1702 dev->watchdog_timeo = TX_TIMEOUT;
1703 dev->netdev_ops = &fec_netdev_ops;
1704
1705 for (i=0; i<NMII-1; i++)
1706 mii_cmds[i].mii_next = &mii_cmds[i+1];
1707 mii_free = mii_cmds;
1708
1709 /* Set MII speed to 2.5 MHz */
1710 fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
1711 / 2500000) / 2) & 0x3F) << 1;
1712 fec_restart(dev, 0);
1713
1714 /* Queue up command to detect the PHY and initialize the
1715 * remainder of the interface.
1716 */
1717 fep->phy_id_done = 0;
1718 fep->phy_addr = 0;
1719 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1720
1721 return 0;
1722 }
1723
1724 /* This function is called to start or restart the FEC during a link
1725 * change. This only happens when switching between half and full
1726 * duplex.
1727 */
1728 static void
1729 fec_restart(struct net_device *dev, int duplex)
1730 {
1731 struct fec_enet_private *fep = netdev_priv(dev);
1732 struct bufdesc *bdp;
1733 int i;
1734
1735 /* Whack a reset. We should wait for this. */
1736 writel(1, fep->hwp + FEC_ECNTRL);
1737 udelay(10);
1738
1739 /* Clear any outstanding interrupt. */
1740 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1741
1742 /* Reset all multicast. */
1743 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1744 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1745 #ifndef CONFIG_M5272
1746 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1747 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1748 #endif
1749
1750 /* Set maximum receive buffer size. */
1751 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1752
1753 /* Set receive and transmit descriptor base. */
1754 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1755 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1756 fep->hwp + FEC_X_DES_START);
1757
1758 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1759 fep->cur_rx = fep->rx_bd_base;
1760
1761 /* Reset SKB transmit buffers. */
1762 fep->skb_cur = fep->skb_dirty = 0;
1763 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1764 if (fep->tx_skbuff[i]) {
1765 dev_kfree_skb_any(fep->tx_skbuff[i]);
1766 fep->tx_skbuff[i] = NULL;
1767 }
1768 }
1769
1770 /* Initialize the receive buffer descriptors. */
1771 bdp = fep->rx_bd_base;
1772 for (i = 0; i < RX_RING_SIZE; i++) {
1773
1774 /* Initialize the BD for every fragment in the page. */
1775 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1776 bdp++;
1777 }
1778
1779 /* Set the last buffer to wrap */
1780 bdp--;
1781 bdp->cbd_sc |= BD_SC_WRAP;
1782
1783 /* ...and the same for transmit */
1784 bdp = fep->tx_bd_base;
1785 for (i = 0; i < TX_RING_SIZE; i++) {
1786
1787 /* Initialize the BD for every fragment in the page. */
1788 bdp->cbd_sc = 0;
1789 bdp->cbd_bufaddr = 0;
1790 bdp++;
1791 }
1792
1793 /* Set the last buffer to wrap */
1794 bdp--;
1795 bdp->cbd_sc |= BD_SC_WRAP;
1796
1797 /* Enable MII mode */
1798 if (duplex) {
1799 /* MII enable / FD enable */
1800 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1801 writel(0x04, fep->hwp + FEC_X_CNTRL);
1802 } else {
1803 /* MII enable / No Rcv on Xmit */
1804 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1805 writel(0x0, fep->hwp + FEC_X_CNTRL);
1806 }
1807 fep->full_duplex = duplex;
1808
1809 /* Set MII speed */
1810 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1811
1812 /* And last, enable the transmit and receive processing */
1813 writel(2, fep->hwp + FEC_ECNTRL);
1814 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1815
1816 /* Enable interrupts we wish to service */
1817 writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
1818 fep->hwp + FEC_IMASK);
1819 }
1820
1821 static void
1822 fec_stop(struct net_device *dev)
1823 {
1824 struct fec_enet_private *fep = netdev_priv(dev);
1825
1826 /* We cannot expect a graceful transmit stop without link !!! */
1827 if (fep->link) {
1828 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1829 udelay(10);
1830 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1831 printk("fec_stop : Graceful transmit stop did not complete !\n");
1832 }
1833
1834 /* Whack a reset. We should wait for this. */
1835 writel(1, fep->hwp + FEC_ECNTRL);
1836 udelay(10);
1837
1838 /* Clear outstanding MII command interrupts. */
1839 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1840
1841 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1842 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1843 }
1844
1845 static int __devinit
1846 fec_probe(struct platform_device *pdev)
1847 {
1848 struct fec_enet_private *fep;
1849 struct net_device *ndev;
1850 int i, irq, ret = 0;
1851 struct resource *r;
1852
1853 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854 if (!r)
1855 return -ENXIO;
1856
1857 r = request_mem_region(r->start, resource_size(r), pdev->name);
1858 if (!r)
1859 return -EBUSY;
1860
1861 /* Init network device */
1862 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1863 if (!ndev)
1864 return -ENOMEM;
1865
1866 SET_NETDEV_DEV(ndev, &pdev->dev);
1867
1868 /* setup board info structure */
1869 fep = netdev_priv(ndev);
1870 memset(fep, 0, sizeof(*fep));
1871
1872 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1873
1874 if (!ndev->base_addr) {
1875 ret = -ENOMEM;
1876 goto failed_ioremap;
1877 }
1878
1879 platform_set_drvdata(pdev, ndev);
1880
1881 /* This device has up to three irqs on some platforms */
1882 for (i = 0; i < 3; i++) {
1883 irq = platform_get_irq(pdev, i);
1884 if (i && irq < 0)
1885 break;
1886 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1887 if (ret) {
1888 while (i >= 0) {
1889 irq = platform_get_irq(pdev, i);
1890 free_irq(irq, ndev);
1891 i--;
1892 }
1893 goto failed_irq;
1894 }
1895 }
1896
1897 fep->clk = clk_get(&pdev->dev, "fec_clk");
1898 if (IS_ERR(fep->clk)) {
1899 ret = PTR_ERR(fep->clk);
1900 goto failed_clk;
1901 }
1902 clk_enable(fep->clk);
1903
1904 ret = fec_enet_init(ndev, 0);
1905 if (ret)
1906 goto failed_init;
1907
1908 ret = register_netdev(ndev);
1909 if (ret)
1910 goto failed_register;
1911
1912 return 0;
1913
1914 failed_register:
1915 failed_init:
1916 clk_disable(fep->clk);
1917 clk_put(fep->clk);
1918 failed_clk:
1919 for (i = 0; i < 3; i++) {
1920 irq = platform_get_irq(pdev, i);
1921 if (irq > 0)
1922 free_irq(irq, ndev);
1923 }
1924 failed_irq:
1925 iounmap((void __iomem *)ndev->base_addr);
1926 failed_ioremap:
1927 free_netdev(ndev);
1928
1929 return ret;
1930 }
1931
1932 static int __devexit
1933 fec_drv_remove(struct platform_device *pdev)
1934 {
1935 struct net_device *ndev = platform_get_drvdata(pdev);
1936 struct fec_enet_private *fep = netdev_priv(ndev);
1937
1938 platform_set_drvdata(pdev, NULL);
1939
1940 fec_stop(ndev);
1941 clk_disable(fep->clk);
1942 clk_put(fep->clk);
1943 iounmap((void __iomem *)ndev->base_addr);
1944 unregister_netdev(ndev);
1945 free_netdev(ndev);
1946 return 0;
1947 }
1948
1949 static int
1950 fec_suspend(struct platform_device *dev, pm_message_t state)
1951 {
1952 struct net_device *ndev = platform_get_drvdata(dev);
1953 struct fec_enet_private *fep;
1954
1955 if (ndev) {
1956 fep = netdev_priv(ndev);
1957 if (netif_running(ndev)) {
1958 netif_device_detach(ndev);
1959 fec_stop(ndev);
1960 }
1961 }
1962 return 0;
1963 }
1964
1965 static int
1966 fec_resume(struct platform_device *dev)
1967 {
1968 struct net_device *ndev = platform_get_drvdata(dev);
1969
1970 if (ndev) {
1971 if (netif_running(ndev)) {
1972 fec_enet_init(ndev, 0);
1973 netif_device_attach(ndev);
1974 }
1975 }
1976 return 0;
1977 }
1978
1979 static struct platform_driver fec_driver = {
1980 .driver = {
1981 .name = "fec",
1982 .owner = THIS_MODULE,
1983 },
1984 .probe = fec_probe,
1985 .remove = __devexit_p(fec_drv_remove),
1986 .suspend = fec_suspend,
1987 .resume = fec_resume,
1988 };
1989
1990 static int __init
1991 fec_enet_module_init(void)
1992 {
1993 printk(KERN_INFO "FEC Ethernet Driver\n");
1994
1995 return platform_driver_register(&fec_driver);
1996 }
1997
1998 static void __exit
1999 fec_enet_cleanup(void)
2000 {
2001 platform_driver_unregister(&fec_driver);
2002 }
2003
2004 module_exit(fec_enet_cleanup);
2005 module_init(fec_enet_module_init);
2006
2007 MODULE_LICENSE("GPL");