Merge tag 'mvebu' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / ti / cpmac.c
1 /*
2 * Copyright (C) 2006, 2007 Eugene Konev
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/types.h>
29 #include <linux/delay.h>
30
31 #include <linux/netdevice.h>
32 #include <linux/if_vlan.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/skbuff.h>
36 #include <linux/mii.h>
37 #include <linux/phy.h>
38 #include <linux/phy_fixed.h>
39 #include <linux/platform_device.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/clk.h>
42 #include <linux/gpio.h>
43 #include <linux/atomic.h>
44
45 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
46 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
47 MODULE_LICENSE("GPL");
48 MODULE_ALIAS("platform:cpmac");
49
50 static int debug_level = 8;
51 static int dumb_switch;
52
53 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
54 module_param(debug_level, int, 0444);
55 module_param(dumb_switch, int, 0444);
56
57 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
58 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
59
60 #define CPMAC_VERSION "0.5.2"
61 /* frame size + 802.1q tag + FCS size */
62 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
63 #define CPMAC_QUEUES 8
64
65 /* Ethernet registers */
66 #define CPMAC_TX_CONTROL 0x0004
67 #define CPMAC_TX_TEARDOWN 0x0008
68 #define CPMAC_RX_CONTROL 0x0014
69 #define CPMAC_RX_TEARDOWN 0x0018
70 #define CPMAC_MBP 0x0100
71 # define MBP_RXPASSCRC 0x40000000
72 # define MBP_RXQOS 0x20000000
73 # define MBP_RXNOCHAIN 0x10000000
74 # define MBP_RXCMF 0x01000000
75 # define MBP_RXSHORT 0x00800000
76 # define MBP_RXCEF 0x00400000
77 # define MBP_RXPROMISC 0x00200000
78 # define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
79 # define MBP_RXBCAST 0x00002000
80 # define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
81 # define MBP_RXMCAST 0x00000020
82 # define MBP_MCASTCHAN(channel) ((channel) & 0x7)
83 #define CPMAC_UNICAST_ENABLE 0x0104
84 #define CPMAC_UNICAST_CLEAR 0x0108
85 #define CPMAC_MAX_LENGTH 0x010c
86 #define CPMAC_BUFFER_OFFSET 0x0110
87 #define CPMAC_MAC_CONTROL 0x0160
88 # define MAC_TXPTYPE 0x00000200
89 # define MAC_TXPACE 0x00000040
90 # define MAC_MII 0x00000020
91 # define MAC_TXFLOW 0x00000010
92 # define MAC_RXFLOW 0x00000008
93 # define MAC_MTEST 0x00000004
94 # define MAC_LOOPBACK 0x00000002
95 # define MAC_FDX 0x00000001
96 #define CPMAC_MAC_STATUS 0x0164
97 # define MAC_STATUS_QOS 0x00000004
98 # define MAC_STATUS_RXFLOW 0x00000002
99 # define MAC_STATUS_TXFLOW 0x00000001
100 #define CPMAC_TX_INT_ENABLE 0x0178
101 #define CPMAC_TX_INT_CLEAR 0x017c
102 #define CPMAC_MAC_INT_VECTOR 0x0180
103 # define MAC_INT_STATUS 0x00080000
104 # define MAC_INT_HOST 0x00040000
105 # define MAC_INT_RX 0x00020000
106 # define MAC_INT_TX 0x00010000
107 #define CPMAC_MAC_EOI_VECTOR 0x0184
108 #define CPMAC_RX_INT_ENABLE 0x0198
109 #define CPMAC_RX_INT_CLEAR 0x019c
110 #define CPMAC_MAC_INT_ENABLE 0x01a8
111 #define CPMAC_MAC_INT_CLEAR 0x01ac
112 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
113 #define CPMAC_MAC_ADDR_MID 0x01d0
114 #define CPMAC_MAC_ADDR_HI 0x01d4
115 #define CPMAC_MAC_HASH_LO 0x01d8
116 #define CPMAC_MAC_HASH_HI 0x01dc
117 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
118 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
119 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
120 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
121 #define CPMAC_REG_END 0x0680
122 /*
123 * Rx/Tx statistics
124 * TODO: use some of them to fill stats in cpmac_stats()
125 */
126 #define CPMAC_STATS_RX_GOOD 0x0200
127 #define CPMAC_STATS_RX_BCAST 0x0204
128 #define CPMAC_STATS_RX_MCAST 0x0208
129 #define CPMAC_STATS_RX_PAUSE 0x020c
130 #define CPMAC_STATS_RX_CRC 0x0210
131 #define CPMAC_STATS_RX_ALIGN 0x0214
132 #define CPMAC_STATS_RX_OVER 0x0218
133 #define CPMAC_STATS_RX_JABBER 0x021c
134 #define CPMAC_STATS_RX_UNDER 0x0220
135 #define CPMAC_STATS_RX_FRAG 0x0224
136 #define CPMAC_STATS_RX_FILTER 0x0228
137 #define CPMAC_STATS_RX_QOSFILTER 0x022c
138 #define CPMAC_STATS_RX_OCTETS 0x0230
139
140 #define CPMAC_STATS_TX_GOOD 0x0234
141 #define CPMAC_STATS_TX_BCAST 0x0238
142 #define CPMAC_STATS_TX_MCAST 0x023c
143 #define CPMAC_STATS_TX_PAUSE 0x0240
144 #define CPMAC_STATS_TX_DEFER 0x0244
145 #define CPMAC_STATS_TX_COLLISION 0x0248
146 #define CPMAC_STATS_TX_SINGLECOLL 0x024c
147 #define CPMAC_STATS_TX_MULTICOLL 0x0250
148 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
149 #define CPMAC_STATS_TX_LATECOLL 0x0258
150 #define CPMAC_STATS_TX_UNDERRUN 0x025c
151 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
152 #define CPMAC_STATS_TX_OCTETS 0x0264
153
154 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
155 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
156 (reg)))
157
158 /* MDIO bus */
159 #define CPMAC_MDIO_VERSION 0x0000
160 #define CPMAC_MDIO_CONTROL 0x0004
161 # define MDIOC_IDLE 0x80000000
162 # define MDIOC_ENABLE 0x40000000
163 # define MDIOC_PREAMBLE 0x00100000
164 # define MDIOC_FAULT 0x00080000
165 # define MDIOC_FAULTDETECT 0x00040000
166 # define MDIOC_INTTEST 0x00020000
167 # define MDIOC_CLKDIV(div) ((div) & 0xff)
168 #define CPMAC_MDIO_ALIVE 0x0008
169 #define CPMAC_MDIO_LINK 0x000c
170 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
171 # define MDIO_BUSY 0x80000000
172 # define MDIO_WRITE 0x40000000
173 # define MDIO_REG(reg) (((reg) & 0x1f) << 21)
174 # define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
175 # define MDIO_DATA(data) ((data) & 0xffff)
176 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
177 # define PHYSEL_LINKSEL 0x00000040
178 # define PHYSEL_LINKINT 0x00000020
179
180 struct cpmac_desc {
181 u32 hw_next;
182 u32 hw_data;
183 u16 buflen;
184 u16 bufflags;
185 u16 datalen;
186 u16 dataflags;
187 #define CPMAC_SOP 0x8000
188 #define CPMAC_EOP 0x4000
189 #define CPMAC_OWN 0x2000
190 #define CPMAC_EOQ 0x1000
191 struct sk_buff *skb;
192 struct cpmac_desc *next;
193 struct cpmac_desc *prev;
194 dma_addr_t mapping;
195 dma_addr_t data_mapping;
196 };
197
198 struct cpmac_priv {
199 spinlock_t lock;
200 spinlock_t rx_lock;
201 struct cpmac_desc *rx_head;
202 int ring_size;
203 struct cpmac_desc *desc_ring;
204 dma_addr_t dma_ring;
205 void __iomem *regs;
206 struct mii_bus *mii_bus;
207 struct phy_device *phy;
208 char phy_name[MII_BUS_ID_SIZE + 3];
209 int oldlink, oldspeed, oldduplex;
210 u32 msg_enable;
211 struct net_device *dev;
212 struct work_struct reset_work;
213 struct platform_device *pdev;
214 struct napi_struct napi;
215 atomic_t reset_pending;
216 };
217
218 static irqreturn_t cpmac_irq(int, void *);
219 static void cpmac_hw_start(struct net_device *dev);
220 static void cpmac_hw_stop(struct net_device *dev);
221 static int cpmac_stop(struct net_device *dev);
222 static int cpmac_open(struct net_device *dev);
223
224 static void cpmac_dump_regs(struct net_device *dev)
225 {
226 int i;
227 struct cpmac_priv *priv = netdev_priv(dev);
228 for (i = 0; i < CPMAC_REG_END; i += 4) {
229 if (i % 16 == 0) {
230 if (i)
231 pr_cont("\n");
232 printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
233 priv->regs + i);
234 }
235 printk(" %08x", cpmac_read(priv->regs, i));
236 }
237 printk("\n");
238 }
239
240 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
241 {
242 int i;
243 printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
244 for (i = 0; i < sizeof(*desc) / 4; i++)
245 printk(" %08x", ((u32 *)desc)[i]);
246 printk("\n");
247 }
248
249 static void cpmac_dump_all_desc(struct net_device *dev)
250 {
251 struct cpmac_priv *priv = netdev_priv(dev);
252 struct cpmac_desc *dump = priv->rx_head;
253 do {
254 cpmac_dump_desc(dev, dump);
255 dump = dump->next;
256 } while (dump != priv->rx_head);
257 }
258
259 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
260 {
261 int i;
262 printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
263 for (i = 0; i < skb->len; i++) {
264 if (i % 16 == 0) {
265 if (i)
266 pr_cont("\n");
267 printk(KERN_DEBUG "%s: data[%p]:", dev->name,
268 skb->data + i);
269 }
270 printk(" %02x", ((u8 *)skb->data)[i]);
271 }
272 printk("\n");
273 }
274
275 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
276 {
277 u32 val;
278
279 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
280 cpu_relax();
281 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
282 MDIO_PHY(phy_id));
283 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
284 cpu_relax();
285 return MDIO_DATA(val);
286 }
287
288 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
289 int reg, u16 val)
290 {
291 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
292 cpu_relax();
293 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
294 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
295 return 0;
296 }
297
298 static int cpmac_mdio_reset(struct mii_bus *bus)
299 {
300 struct clk *cpmac_clk;
301
302 cpmac_clk = clk_get(&bus->dev, "cpmac");
303 if (IS_ERR(cpmac_clk)) {
304 printk(KERN_ERR "unable to get cpmac clock\n");
305 return -1;
306 }
307 ar7_device_reset(AR7_RESET_BIT_MDIO);
308 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
309 MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
310 return 0;
311 }
312
313 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
314
315 static struct mii_bus *cpmac_mii;
316
317 static int cpmac_config(struct net_device *dev, struct ifmap *map)
318 {
319 if (dev->flags & IFF_UP)
320 return -EBUSY;
321
322 /* Don't allow changing the I/O address */
323 if (map->base_addr != dev->base_addr)
324 return -EOPNOTSUPP;
325
326 /* ignore other fields */
327 return 0;
328 }
329
330 static void cpmac_set_multicast_list(struct net_device *dev)
331 {
332 struct netdev_hw_addr *ha;
333 u8 tmp;
334 u32 mbp, bit, hash[2] = { 0, };
335 struct cpmac_priv *priv = netdev_priv(dev);
336
337 mbp = cpmac_read(priv->regs, CPMAC_MBP);
338 if (dev->flags & IFF_PROMISC) {
339 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
340 MBP_RXPROMISC);
341 } else {
342 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
343 if (dev->flags & IFF_ALLMULTI) {
344 /* enable all multicast mode */
345 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
346 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
347 } else {
348 /*
349 * cpmac uses some strange mac address hashing
350 * (not crc32)
351 */
352 netdev_for_each_mc_addr(ha, dev) {
353 bit = 0;
354 tmp = ha->addr[0];
355 bit ^= (tmp >> 2) ^ (tmp << 4);
356 tmp = ha->addr[1];
357 bit ^= (tmp >> 4) ^ (tmp << 2);
358 tmp = ha->addr[2];
359 bit ^= (tmp >> 6) ^ tmp;
360 tmp = ha->addr[3];
361 bit ^= (tmp >> 2) ^ (tmp << 4);
362 tmp = ha->addr[4];
363 bit ^= (tmp >> 4) ^ (tmp << 2);
364 tmp = ha->addr[5];
365 bit ^= (tmp >> 6) ^ tmp;
366 bit &= 0x3f;
367 hash[bit / 32] |= 1 << (bit % 32);
368 }
369
370 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
371 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
372 }
373 }
374 }
375
376 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
377 struct cpmac_desc *desc)
378 {
379 struct sk_buff *skb, *result = NULL;
380
381 if (unlikely(netif_msg_hw(priv)))
382 cpmac_dump_desc(priv->dev, desc);
383 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
384 if (unlikely(!desc->datalen)) {
385 if (netif_msg_rx_err(priv) && net_ratelimit())
386 printk(KERN_WARNING "%s: rx: spurious interrupt\n",
387 priv->dev->name);
388 return NULL;
389 }
390
391 skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
392 if (likely(skb)) {
393 skb_put(desc->skb, desc->datalen);
394 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
395 skb_checksum_none_assert(desc->skb);
396 priv->dev->stats.rx_packets++;
397 priv->dev->stats.rx_bytes += desc->datalen;
398 result = desc->skb;
399 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
400 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
401 desc->skb = skb;
402 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
403 CPMAC_SKB_SIZE,
404 DMA_FROM_DEVICE);
405 desc->hw_data = (u32)desc->data_mapping;
406 if (unlikely(netif_msg_pktdata(priv))) {
407 printk(KERN_DEBUG "%s: received packet:\n",
408 priv->dev->name);
409 cpmac_dump_skb(priv->dev, result);
410 }
411 } else {
412 if (netif_msg_rx_err(priv) && net_ratelimit())
413 printk(KERN_WARNING
414 "%s: low on skbs, dropping packet\n",
415 priv->dev->name);
416 priv->dev->stats.rx_dropped++;
417 }
418
419 desc->buflen = CPMAC_SKB_SIZE;
420 desc->dataflags = CPMAC_OWN;
421
422 return result;
423 }
424
425 static int cpmac_poll(struct napi_struct *napi, int budget)
426 {
427 struct sk_buff *skb;
428 struct cpmac_desc *desc, *restart;
429 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
430 int received = 0, processed = 0;
431
432 spin_lock(&priv->rx_lock);
433 if (unlikely(!priv->rx_head)) {
434 if (netif_msg_rx_err(priv) && net_ratelimit())
435 printk(KERN_WARNING "%s: rx: polling, but no queue\n",
436 priv->dev->name);
437 spin_unlock(&priv->rx_lock);
438 napi_complete(napi);
439 return 0;
440 }
441
442 desc = priv->rx_head;
443 restart = NULL;
444 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
445 processed++;
446
447 if ((desc->dataflags & CPMAC_EOQ) != 0) {
448 /* The last update to eoq->hw_next didn't happen
449 * soon enough, and the receiver stopped here.
450 *Remember this descriptor so we can restart
451 * the receiver after freeing some space.
452 */
453 if (unlikely(restart)) {
454 if (netif_msg_rx_err(priv))
455 printk(KERN_ERR "%s: poll found a"
456 " duplicate EOQ: %p and %p\n",
457 priv->dev->name, restart, desc);
458 goto fatal_error;
459 }
460
461 restart = desc->next;
462 }
463
464 skb = cpmac_rx_one(priv, desc);
465 if (likely(skb)) {
466 netif_receive_skb(skb);
467 received++;
468 }
469 desc = desc->next;
470 }
471
472 if (desc != priv->rx_head) {
473 /* We freed some buffers, but not the whole ring,
474 * add what we did free to the rx list */
475 desc->prev->hw_next = (u32)0;
476 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
477 }
478
479 /* Optimization: If we did not actually process an EOQ (perhaps because
480 * of quota limits), check to see if the tail of the queue has EOQ set.
481 * We should immediately restart in that case so that the receiver can
482 * restart and run in parallel with more packet processing.
483 * This lets us handle slightly larger bursts before running
484 * out of ring space (assuming dev->weight < ring_size) */
485
486 if (!restart &&
487 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
488 == CPMAC_EOQ &&
489 (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
490 /* reset EOQ so the poll loop (above) doesn't try to
491 * restart this when it eventually gets to this descriptor.
492 */
493 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
494 restart = priv->rx_head;
495 }
496
497 if (restart) {
498 priv->dev->stats.rx_errors++;
499 priv->dev->stats.rx_fifo_errors++;
500 if (netif_msg_rx_err(priv) && net_ratelimit())
501 printk(KERN_WARNING "%s: rx dma ring overrun\n",
502 priv->dev->name);
503
504 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
505 if (netif_msg_drv(priv))
506 printk(KERN_ERR "%s: cpmac_poll is trying to "
507 "restart rx from a descriptor that's "
508 "not free: %p\n",
509 priv->dev->name, restart);
510 goto fatal_error;
511 }
512
513 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
514 }
515
516 priv->rx_head = desc;
517 spin_unlock(&priv->rx_lock);
518 if (unlikely(netif_msg_rx_status(priv)))
519 printk(KERN_DEBUG "%s: poll processed %d packets\n",
520 priv->dev->name, received);
521 if (processed == 0) {
522 /* we ran out of packets to read,
523 * revert to interrupt-driven mode */
524 napi_complete(napi);
525 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
526 return 0;
527 }
528
529 return 1;
530
531 fatal_error:
532 /* Something went horribly wrong.
533 * Reset hardware to try to recover rather than wedging. */
534
535 if (netif_msg_drv(priv)) {
536 printk(KERN_ERR "%s: cpmac_poll is confused. "
537 "Resetting hardware\n", priv->dev->name);
538 cpmac_dump_all_desc(priv->dev);
539 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
540 priv->dev->name,
541 cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
542 cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
543 }
544
545 spin_unlock(&priv->rx_lock);
546 napi_complete(napi);
547 netif_tx_stop_all_queues(priv->dev);
548 napi_disable(&priv->napi);
549
550 atomic_inc(&priv->reset_pending);
551 cpmac_hw_stop(priv->dev);
552 if (!schedule_work(&priv->reset_work))
553 atomic_dec(&priv->reset_pending);
554 return 0;
555
556 }
557
558 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
559 {
560 int queue, len;
561 struct cpmac_desc *desc;
562 struct cpmac_priv *priv = netdev_priv(dev);
563
564 if (unlikely(atomic_read(&priv->reset_pending)))
565 return NETDEV_TX_BUSY;
566
567 if (unlikely(skb_padto(skb, ETH_ZLEN)))
568 return NETDEV_TX_OK;
569
570 len = max(skb->len, ETH_ZLEN);
571 queue = skb_get_queue_mapping(skb);
572 netif_stop_subqueue(dev, queue);
573
574 desc = &priv->desc_ring[queue];
575 if (unlikely(desc->dataflags & CPMAC_OWN)) {
576 if (netif_msg_tx_err(priv) && net_ratelimit())
577 printk(KERN_WARNING "%s: tx dma ring full\n",
578 dev->name);
579 return NETDEV_TX_BUSY;
580 }
581
582 spin_lock(&priv->lock);
583 spin_unlock(&priv->lock);
584 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
585 desc->skb = skb;
586 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
587 DMA_TO_DEVICE);
588 desc->hw_data = (u32)desc->data_mapping;
589 desc->datalen = len;
590 desc->buflen = len;
591 if (unlikely(netif_msg_tx_queued(priv)))
592 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
593 skb->len);
594 if (unlikely(netif_msg_hw(priv)))
595 cpmac_dump_desc(dev, desc);
596 if (unlikely(netif_msg_pktdata(priv)))
597 cpmac_dump_skb(dev, skb);
598 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
599
600 return NETDEV_TX_OK;
601 }
602
603 static void cpmac_end_xmit(struct net_device *dev, int queue)
604 {
605 struct cpmac_desc *desc;
606 struct cpmac_priv *priv = netdev_priv(dev);
607
608 desc = &priv->desc_ring[queue];
609 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
610 if (likely(desc->skb)) {
611 spin_lock(&priv->lock);
612 dev->stats.tx_packets++;
613 dev->stats.tx_bytes += desc->skb->len;
614 spin_unlock(&priv->lock);
615 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
616 DMA_TO_DEVICE);
617
618 if (unlikely(netif_msg_tx_done(priv)))
619 printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
620 desc->skb, desc->skb->len);
621
622 dev_kfree_skb_irq(desc->skb);
623 desc->skb = NULL;
624 if (__netif_subqueue_stopped(dev, queue))
625 netif_wake_subqueue(dev, queue);
626 } else {
627 if (netif_msg_tx_err(priv) && net_ratelimit())
628 printk(KERN_WARNING
629 "%s: end_xmit: spurious interrupt\n", dev->name);
630 if (__netif_subqueue_stopped(dev, queue))
631 netif_wake_subqueue(dev, queue);
632 }
633 }
634
635 static void cpmac_hw_stop(struct net_device *dev)
636 {
637 int i;
638 struct cpmac_priv *priv = netdev_priv(dev);
639 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
640
641 ar7_device_reset(pdata->reset_bit);
642 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
643 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
644 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
645 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
646 for (i = 0; i < 8; i++) {
647 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
648 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
649 }
650 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
651 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
652 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
653 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
654 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
655 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
656 }
657
658 static void cpmac_hw_start(struct net_device *dev)
659 {
660 int i;
661 struct cpmac_priv *priv = netdev_priv(dev);
662 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
663
664 ar7_device_reset(pdata->reset_bit);
665 for (i = 0; i < 8; i++) {
666 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
667 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
668 }
669 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
670
671 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
672 MBP_RXMCAST);
673 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
674 for (i = 0; i < 8; i++)
675 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
676 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
677 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
678 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
679 (dev->dev_addr[3] << 24));
680 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
681 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
682 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
683 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
684 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
685 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
686 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
687 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
688 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
689
690 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
691 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
692 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
693 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
694 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
695 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
696 MAC_FDX);
697 }
698
699 static void cpmac_clear_rx(struct net_device *dev)
700 {
701 struct cpmac_priv *priv = netdev_priv(dev);
702 struct cpmac_desc *desc;
703 int i;
704 if (unlikely(!priv->rx_head))
705 return;
706 desc = priv->rx_head;
707 for (i = 0; i < priv->ring_size; i++) {
708 if ((desc->dataflags & CPMAC_OWN) == 0) {
709 if (netif_msg_rx_err(priv) && net_ratelimit())
710 printk(KERN_WARNING "%s: packet dropped\n",
711 dev->name);
712 if (unlikely(netif_msg_hw(priv)))
713 cpmac_dump_desc(dev, desc);
714 desc->dataflags = CPMAC_OWN;
715 dev->stats.rx_dropped++;
716 }
717 desc->hw_next = desc->next->mapping;
718 desc = desc->next;
719 }
720 priv->rx_head->prev->hw_next = 0;
721 }
722
723 static void cpmac_clear_tx(struct net_device *dev)
724 {
725 struct cpmac_priv *priv = netdev_priv(dev);
726 int i;
727 if (unlikely(!priv->desc_ring))
728 return;
729 for (i = 0; i < CPMAC_QUEUES; i++) {
730 priv->desc_ring[i].dataflags = 0;
731 if (priv->desc_ring[i].skb) {
732 dev_kfree_skb_any(priv->desc_ring[i].skb);
733 priv->desc_ring[i].skb = NULL;
734 }
735 }
736 }
737
738 static void cpmac_hw_error(struct work_struct *work)
739 {
740 struct cpmac_priv *priv =
741 container_of(work, struct cpmac_priv, reset_work);
742
743 spin_lock(&priv->rx_lock);
744 cpmac_clear_rx(priv->dev);
745 spin_unlock(&priv->rx_lock);
746 cpmac_clear_tx(priv->dev);
747 cpmac_hw_start(priv->dev);
748 barrier();
749 atomic_dec(&priv->reset_pending);
750
751 netif_tx_wake_all_queues(priv->dev);
752 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
753 }
754
755 static void cpmac_check_status(struct net_device *dev)
756 {
757 struct cpmac_priv *priv = netdev_priv(dev);
758
759 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
760 int rx_channel = (macstatus >> 8) & 7;
761 int rx_code = (macstatus >> 12) & 15;
762 int tx_channel = (macstatus >> 16) & 7;
763 int tx_code = (macstatus >> 20) & 15;
764
765 if (rx_code || tx_code) {
766 if (netif_msg_drv(priv) && net_ratelimit()) {
767 /* Can't find any documentation on what these
768 *error codes actually are. So just log them and hope..
769 */
770 if (rx_code)
771 printk(KERN_WARNING "%s: host error %d on rx "
772 "channel %d (macstatus %08x), resetting\n",
773 dev->name, rx_code, rx_channel, macstatus);
774 if (tx_code)
775 printk(KERN_WARNING "%s: host error %d on tx "
776 "channel %d (macstatus %08x), resetting\n",
777 dev->name, tx_code, tx_channel, macstatus);
778 }
779
780 netif_tx_stop_all_queues(dev);
781 cpmac_hw_stop(dev);
782 if (schedule_work(&priv->reset_work))
783 atomic_inc(&priv->reset_pending);
784 if (unlikely(netif_msg_hw(priv)))
785 cpmac_dump_regs(dev);
786 }
787 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
788 }
789
790 static irqreturn_t cpmac_irq(int irq, void *dev_id)
791 {
792 struct net_device *dev = dev_id;
793 struct cpmac_priv *priv;
794 int queue;
795 u32 status;
796
797 priv = netdev_priv(dev);
798
799 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
800
801 if (unlikely(netif_msg_intr(priv)))
802 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
803 status);
804
805 if (status & MAC_INT_TX)
806 cpmac_end_xmit(dev, (status & 7));
807
808 if (status & MAC_INT_RX) {
809 queue = (status >> 8) & 7;
810 if (napi_schedule_prep(&priv->napi)) {
811 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
812 __napi_schedule(&priv->napi);
813 }
814 }
815
816 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
817
818 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
819 cpmac_check_status(dev);
820
821 return IRQ_HANDLED;
822 }
823
824 static void cpmac_tx_timeout(struct net_device *dev)
825 {
826 struct cpmac_priv *priv = netdev_priv(dev);
827
828 spin_lock(&priv->lock);
829 dev->stats.tx_errors++;
830 spin_unlock(&priv->lock);
831 if (netif_msg_tx_err(priv) && net_ratelimit())
832 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
833
834 atomic_inc(&priv->reset_pending);
835 barrier();
836 cpmac_clear_tx(dev);
837 barrier();
838 atomic_dec(&priv->reset_pending);
839
840 netif_tx_wake_all_queues(priv->dev);
841 }
842
843 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
844 {
845 struct cpmac_priv *priv = netdev_priv(dev);
846 if (!(netif_running(dev)))
847 return -EINVAL;
848 if (!priv->phy)
849 return -EINVAL;
850
851 return phy_mii_ioctl(priv->phy, ifr, cmd);
852 }
853
854 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
855 {
856 struct cpmac_priv *priv = netdev_priv(dev);
857
858 if (priv->phy)
859 return phy_ethtool_gset(priv->phy, cmd);
860
861 return -EINVAL;
862 }
863
864 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
865 {
866 struct cpmac_priv *priv = netdev_priv(dev);
867
868 if (!capable(CAP_NET_ADMIN))
869 return -EPERM;
870
871 if (priv->phy)
872 return phy_ethtool_sset(priv->phy, cmd);
873
874 return -EINVAL;
875 }
876
877 static void cpmac_get_ringparam(struct net_device *dev,
878 struct ethtool_ringparam *ring)
879 {
880 struct cpmac_priv *priv = netdev_priv(dev);
881
882 ring->rx_max_pending = 1024;
883 ring->rx_mini_max_pending = 1;
884 ring->rx_jumbo_max_pending = 1;
885 ring->tx_max_pending = 1;
886
887 ring->rx_pending = priv->ring_size;
888 ring->rx_mini_pending = 1;
889 ring->rx_jumbo_pending = 1;
890 ring->tx_pending = 1;
891 }
892
893 static int cpmac_set_ringparam(struct net_device *dev,
894 struct ethtool_ringparam *ring)
895 {
896 struct cpmac_priv *priv = netdev_priv(dev);
897
898 if (netif_running(dev))
899 return -EBUSY;
900 priv->ring_size = ring->rx_pending;
901 return 0;
902 }
903
904 static void cpmac_get_drvinfo(struct net_device *dev,
905 struct ethtool_drvinfo *info)
906 {
907 strcpy(info->driver, "cpmac");
908 strcpy(info->version, CPMAC_VERSION);
909 info->fw_version[0] = '\0';
910 sprintf(info->bus_info, "%s", "cpmac");
911 info->regdump_len = 0;
912 }
913
914 static const struct ethtool_ops cpmac_ethtool_ops = {
915 .get_settings = cpmac_get_settings,
916 .set_settings = cpmac_set_settings,
917 .get_drvinfo = cpmac_get_drvinfo,
918 .get_link = ethtool_op_get_link,
919 .get_ringparam = cpmac_get_ringparam,
920 .set_ringparam = cpmac_set_ringparam,
921 };
922
923 static void cpmac_adjust_link(struct net_device *dev)
924 {
925 struct cpmac_priv *priv = netdev_priv(dev);
926 int new_state = 0;
927
928 spin_lock(&priv->lock);
929 if (priv->phy->link) {
930 netif_tx_start_all_queues(dev);
931 if (priv->phy->duplex != priv->oldduplex) {
932 new_state = 1;
933 priv->oldduplex = priv->phy->duplex;
934 }
935
936 if (priv->phy->speed != priv->oldspeed) {
937 new_state = 1;
938 priv->oldspeed = priv->phy->speed;
939 }
940
941 if (!priv->oldlink) {
942 new_state = 1;
943 priv->oldlink = 1;
944 }
945 } else if (priv->oldlink) {
946 new_state = 1;
947 priv->oldlink = 0;
948 priv->oldspeed = 0;
949 priv->oldduplex = -1;
950 }
951
952 if (new_state && netif_msg_link(priv) && net_ratelimit())
953 phy_print_status(priv->phy);
954
955 spin_unlock(&priv->lock);
956 }
957
958 static int cpmac_open(struct net_device *dev)
959 {
960 int i, size, res;
961 struct cpmac_priv *priv = netdev_priv(dev);
962 struct resource *mem;
963 struct cpmac_desc *desc;
964 struct sk_buff *skb;
965
966 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
967 if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
968 if (netif_msg_drv(priv))
969 printk(KERN_ERR "%s: failed to request registers\n",
970 dev->name);
971 res = -ENXIO;
972 goto fail_reserve;
973 }
974
975 priv->regs = ioremap(mem->start, resource_size(mem));
976 if (!priv->regs) {
977 if (netif_msg_drv(priv))
978 printk(KERN_ERR "%s: failed to remap registers\n",
979 dev->name);
980 res = -ENXIO;
981 goto fail_remap;
982 }
983
984 size = priv->ring_size + CPMAC_QUEUES;
985 priv->desc_ring = dma_alloc_coherent(&dev->dev,
986 sizeof(struct cpmac_desc) * size,
987 &priv->dma_ring,
988 GFP_KERNEL);
989 if (!priv->desc_ring) {
990 res = -ENOMEM;
991 goto fail_alloc;
992 }
993
994 for (i = 0; i < size; i++)
995 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
996
997 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
998 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
999 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
1000 if (unlikely(!skb)) {
1001 res = -ENOMEM;
1002 goto fail_desc;
1003 }
1004 desc->skb = skb;
1005 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1006 CPMAC_SKB_SIZE,
1007 DMA_FROM_DEVICE);
1008 desc->hw_data = (u32)desc->data_mapping;
1009 desc->buflen = CPMAC_SKB_SIZE;
1010 desc->dataflags = CPMAC_OWN;
1011 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1012 desc->next->prev = desc;
1013 desc->hw_next = (u32)desc->next->mapping;
1014 }
1015
1016 priv->rx_head->prev->hw_next = (u32)0;
1017
1018 res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1019 if (res) {
1020 if (netif_msg_drv(priv))
1021 printk(KERN_ERR "%s: failed to obtain irq\n",
1022 dev->name);
1023 goto fail_irq;
1024 }
1025
1026 atomic_set(&priv->reset_pending, 0);
1027 INIT_WORK(&priv->reset_work, cpmac_hw_error);
1028 cpmac_hw_start(dev);
1029
1030 napi_enable(&priv->napi);
1031 priv->phy->state = PHY_CHANGELINK;
1032 phy_start(priv->phy);
1033
1034 return 0;
1035
1036 fail_irq:
1037 fail_desc:
1038 for (i = 0; i < priv->ring_size; i++) {
1039 if (priv->rx_head[i].skb) {
1040 dma_unmap_single(&dev->dev,
1041 priv->rx_head[i].data_mapping,
1042 CPMAC_SKB_SIZE,
1043 DMA_FROM_DEVICE);
1044 kfree_skb(priv->rx_head[i].skb);
1045 }
1046 }
1047 fail_alloc:
1048 kfree(priv->desc_ring);
1049 iounmap(priv->regs);
1050
1051 fail_remap:
1052 release_mem_region(mem->start, resource_size(mem));
1053
1054 fail_reserve:
1055 return res;
1056 }
1057
1058 static int cpmac_stop(struct net_device *dev)
1059 {
1060 int i;
1061 struct cpmac_priv *priv = netdev_priv(dev);
1062 struct resource *mem;
1063
1064 netif_tx_stop_all_queues(dev);
1065
1066 cancel_work_sync(&priv->reset_work);
1067 napi_disable(&priv->napi);
1068 phy_stop(priv->phy);
1069
1070 cpmac_hw_stop(dev);
1071
1072 for (i = 0; i < 8; i++)
1073 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1074 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1075 cpmac_write(priv->regs, CPMAC_MBP, 0);
1076
1077 free_irq(dev->irq, dev);
1078 iounmap(priv->regs);
1079 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1080 release_mem_region(mem->start, resource_size(mem));
1081 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1082 for (i = 0; i < priv->ring_size; i++) {
1083 if (priv->rx_head[i].skb) {
1084 dma_unmap_single(&dev->dev,
1085 priv->rx_head[i].data_mapping,
1086 CPMAC_SKB_SIZE,
1087 DMA_FROM_DEVICE);
1088 kfree_skb(priv->rx_head[i].skb);
1089 }
1090 }
1091
1092 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1093 (CPMAC_QUEUES + priv->ring_size),
1094 priv->desc_ring, priv->dma_ring);
1095 return 0;
1096 }
1097
1098 static const struct net_device_ops cpmac_netdev_ops = {
1099 .ndo_open = cpmac_open,
1100 .ndo_stop = cpmac_stop,
1101 .ndo_start_xmit = cpmac_start_xmit,
1102 .ndo_tx_timeout = cpmac_tx_timeout,
1103 .ndo_set_rx_mode = cpmac_set_multicast_list,
1104 .ndo_do_ioctl = cpmac_ioctl,
1105 .ndo_set_config = cpmac_config,
1106 .ndo_change_mtu = eth_change_mtu,
1107 .ndo_validate_addr = eth_validate_addr,
1108 .ndo_set_mac_address = eth_mac_addr,
1109 };
1110
1111 static int external_switch;
1112
1113 static int cpmac_probe(struct platform_device *pdev)
1114 {
1115 int rc, phy_id;
1116 char mdio_bus_id[MII_BUS_ID_SIZE];
1117 struct resource *mem;
1118 struct cpmac_priv *priv;
1119 struct net_device *dev;
1120 struct plat_cpmac_data *pdata;
1121
1122 pdata = pdev->dev.platform_data;
1123
1124 if (external_switch || dumb_switch) {
1125 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1126 phy_id = pdev->id;
1127 } else {
1128 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1129 if (!(pdata->phy_mask & (1 << phy_id)))
1130 continue;
1131 if (!cpmac_mii->phy_map[phy_id])
1132 continue;
1133 strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1134 break;
1135 }
1136 }
1137
1138 if (phy_id == PHY_MAX_ADDR) {
1139 dev_err(&pdev->dev, "no PHY present, falling back "
1140 "to switch on MDIO bus 0\n");
1141 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1142 phy_id = pdev->id;
1143 }
1144
1145 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1146 if (!dev)
1147 return -ENOMEM;
1148
1149 platform_set_drvdata(pdev, dev);
1150 priv = netdev_priv(dev);
1151
1152 priv->pdev = pdev;
1153 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1154 if (!mem) {
1155 rc = -ENODEV;
1156 goto fail;
1157 }
1158
1159 dev->irq = platform_get_irq_byname(pdev, "irq");
1160
1161 dev->netdev_ops = &cpmac_netdev_ops;
1162 dev->ethtool_ops = &cpmac_ethtool_ops;
1163
1164 netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1165
1166 spin_lock_init(&priv->lock);
1167 spin_lock_init(&priv->rx_lock);
1168 priv->dev = dev;
1169 priv->ring_size = 64;
1170 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1171 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1172
1173 snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1174 mdio_bus_id, phy_id);
1175
1176 priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link, 0,
1177 PHY_INTERFACE_MODE_MII);
1178
1179 if (IS_ERR(priv->phy)) {
1180 if (netif_msg_drv(priv))
1181 printk(KERN_ERR "%s: Could not attach to PHY\n",
1182 dev->name);
1183 rc = PTR_ERR(priv->phy);
1184 goto fail;
1185 }
1186
1187 rc = register_netdev(dev);
1188 if (rc) {
1189 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1190 dev->name);
1191 goto fail;
1192 }
1193
1194 if (netif_msg_probe(priv)) {
1195 printk(KERN_INFO
1196 "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1197 "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1198 priv->phy_name, dev->dev_addr);
1199 }
1200 return 0;
1201
1202 fail:
1203 free_netdev(dev);
1204 return rc;
1205 }
1206
1207 static int cpmac_remove(struct platform_device *pdev)
1208 {
1209 struct net_device *dev = platform_get_drvdata(pdev);
1210 unregister_netdev(dev);
1211 free_netdev(dev);
1212 return 0;
1213 }
1214
1215 static struct platform_driver cpmac_driver = {
1216 .driver.name = "cpmac",
1217 .driver.owner = THIS_MODULE,
1218 .probe = cpmac_probe,
1219 .remove = cpmac_remove,
1220 };
1221
1222 int cpmac_init(void)
1223 {
1224 u32 mask;
1225 int i, res;
1226
1227 cpmac_mii = mdiobus_alloc();
1228 if (cpmac_mii == NULL)
1229 return -ENOMEM;
1230
1231 cpmac_mii->name = "cpmac-mii";
1232 cpmac_mii->read = cpmac_mdio_read;
1233 cpmac_mii->write = cpmac_mdio_write;
1234 cpmac_mii->reset = cpmac_mdio_reset;
1235 cpmac_mii->irq = mii_irqs;
1236
1237 cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1238
1239 if (!cpmac_mii->priv) {
1240 printk(KERN_ERR "Can't ioremap mdio registers\n");
1241 res = -ENXIO;
1242 goto fail_alloc;
1243 }
1244
1245 #warning FIXME: unhardcode gpio&reset bits
1246 ar7_gpio_disable(26);
1247 ar7_gpio_disable(27);
1248 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1249 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1250 ar7_device_reset(AR7_RESET_BIT_EPHY);
1251
1252 cpmac_mii->reset(cpmac_mii);
1253
1254 for (i = 0; i < 300; i++) {
1255 mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1256 if (mask)
1257 break;
1258 else
1259 msleep(10);
1260 }
1261
1262 mask &= 0x7fffffff;
1263 if (mask & (mask - 1)) {
1264 external_switch = 1;
1265 mask = 0;
1266 }
1267
1268 cpmac_mii->phy_mask = ~(mask | 0x80000000);
1269 snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1270
1271 res = mdiobus_register(cpmac_mii);
1272 if (res)
1273 goto fail_mii;
1274
1275 res = platform_driver_register(&cpmac_driver);
1276 if (res)
1277 goto fail_cpmac;
1278
1279 return 0;
1280
1281 fail_cpmac:
1282 mdiobus_unregister(cpmac_mii);
1283
1284 fail_mii:
1285 iounmap(cpmac_mii->priv);
1286
1287 fail_alloc:
1288 mdiobus_free(cpmac_mii);
1289
1290 return res;
1291 }
1292
1293 void cpmac_exit(void)
1294 {
1295 platform_driver_unregister(&cpmac_driver);
1296 mdiobus_unregister(cpmac_mii);
1297 iounmap(cpmac_mii->priv);
1298 mdiobus_free(cpmac_mii);
1299 }
1300
1301 module_init(cpmac_init);
1302 module_exit(cpmac_exit);